xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 2946cd701067404b99c39fb29dc9c74bd7193eb3)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeNVPTX.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/Basic/Builtins.h"
37 #include "clang/Basic/CharInfo.h"
38 #include "clang/Basic/CodeGenOptions.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/FrontendDiagnostic.h"
46 #include "llvm/ADT/StringSwitch.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/CodeGen.h"
57 #include "llvm/Support/ConvertUTF.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/MD5.h"
60 
61 using namespace clang;
62 using namespace CodeGen;
63 
64 static llvm::cl::opt<bool> LimitedCoverage(
65     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
66     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
67     llvm::cl::init(false));
68 
69 static const char AnnotationSection[] = "llvm.metadata";
70 
71 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
72   switch (CGM.getTarget().getCXXABI().getKind()) {
73   case TargetCXXABI::GenericAArch64:
74   case TargetCXXABI::GenericARM:
75   case TargetCXXABI::iOS:
76   case TargetCXXABI::iOS64:
77   case TargetCXXABI::WatchOS:
78   case TargetCXXABI::GenericMIPS:
79   case TargetCXXABI::GenericItanium:
80   case TargetCXXABI::WebAssembly:
81     return CreateItaniumCXXABI(CGM);
82   case TargetCXXABI::Microsoft:
83     return CreateMicrosoftCXXABI(CGM);
84   }
85 
86   llvm_unreachable("invalid C++ ABI kind");
87 }
88 
89 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
90                              const PreprocessorOptions &PPO,
91                              const CodeGenOptions &CGO, llvm::Module &M,
92                              DiagnosticsEngine &diags,
93                              CoverageSourceInfo *CoverageInfo)
94     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
95       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
96       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
97       VMContext(M.getContext()), Types(*this), VTables(*this),
98       SanitizerMD(new SanitizerMetadata(*this)) {
99 
100   // Initialize the type cache.
101   llvm::LLVMContext &LLVMContext = M.getContext();
102   VoidTy = llvm::Type::getVoidTy(LLVMContext);
103   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
104   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
105   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
106   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
107   HalfTy = llvm::Type::getHalfTy(LLVMContext);
108   FloatTy = llvm::Type::getFloatTy(LLVMContext);
109   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
110   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
111   PointerAlignInBytes =
112     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
113   SizeSizeInBytes =
114     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
115   IntAlignInBytes =
116     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
117   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
118   IntPtrTy = llvm::IntegerType::get(LLVMContext,
119     C.getTargetInfo().getMaxPointerWidth());
120   Int8PtrTy = Int8Ty->getPointerTo(0);
121   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
122   AllocaInt8PtrTy = Int8Ty->getPointerTo(
123       M.getDataLayout().getAllocaAddrSpace());
124   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
125 
126   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
127 
128   if (LangOpts.ObjC)
129     createObjCRuntime();
130   if (LangOpts.OpenCL)
131     createOpenCLRuntime();
132   if (LangOpts.OpenMP)
133     createOpenMPRuntime();
134   if (LangOpts.CUDA)
135     createCUDARuntime();
136 
137   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
138   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
139       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
140     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
141                                getCXXABI().getMangleContext()));
142 
143   // If debug info or coverage generation is enabled, create the CGDebugInfo
144   // object.
145   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
146       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
147     DebugInfo.reset(new CGDebugInfo(*this));
148 
149   Block.GlobalUniqueCount = 0;
150 
151   if (C.getLangOpts().ObjC)
152     ObjCData.reset(new ObjCEntrypoints());
153 
154   if (CodeGenOpts.hasProfileClangUse()) {
155     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
156         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
157     if (auto E = ReaderOrErr.takeError()) {
158       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
159                                               "Could not read profile %0: %1");
160       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
161         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
162                                   << EI.message();
163       });
164     } else
165       PGOReader = std::move(ReaderOrErr.get());
166   }
167 
168   // If coverage mapping generation is enabled, create the
169   // CoverageMappingModuleGen object.
170   if (CodeGenOpts.CoverageMapping)
171     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
172 }
173 
174 CodeGenModule::~CodeGenModule() {}
175 
176 void CodeGenModule::createObjCRuntime() {
177   // This is just isGNUFamily(), but we want to force implementors of
178   // new ABIs to decide how best to do this.
179   switch (LangOpts.ObjCRuntime.getKind()) {
180   case ObjCRuntime::GNUstep:
181   case ObjCRuntime::GCC:
182   case ObjCRuntime::ObjFW:
183     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
184     return;
185 
186   case ObjCRuntime::FragileMacOSX:
187   case ObjCRuntime::MacOSX:
188   case ObjCRuntime::iOS:
189   case ObjCRuntime::WatchOS:
190     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
191     return;
192   }
193   llvm_unreachable("bad runtime kind");
194 }
195 
196 void CodeGenModule::createOpenCLRuntime() {
197   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
198 }
199 
200 void CodeGenModule::createOpenMPRuntime() {
201   // Select a specialized code generation class based on the target, if any.
202   // If it does not exist use the default implementation.
203   switch (getTriple().getArch()) {
204   case llvm::Triple::nvptx:
205   case llvm::Triple::nvptx64:
206     assert(getLangOpts().OpenMPIsDevice &&
207            "OpenMP NVPTX is only prepared to deal with device code.");
208     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
209     break;
210   default:
211     if (LangOpts.OpenMPSimd)
212       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
213     else
214       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
215     break;
216   }
217 }
218 
219 void CodeGenModule::createCUDARuntime() {
220   CUDARuntime.reset(CreateNVCUDARuntime(*this));
221 }
222 
223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
224   Replacements[Name] = C;
225 }
226 
227 void CodeGenModule::applyReplacements() {
228   for (auto &I : Replacements) {
229     StringRef MangledName = I.first();
230     llvm::Constant *Replacement = I.second;
231     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
232     if (!Entry)
233       continue;
234     auto *OldF = cast<llvm::Function>(Entry);
235     auto *NewF = dyn_cast<llvm::Function>(Replacement);
236     if (!NewF) {
237       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
238         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
239       } else {
240         auto *CE = cast<llvm::ConstantExpr>(Replacement);
241         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
242                CE->getOpcode() == llvm::Instruction::GetElementPtr);
243         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
244       }
245     }
246 
247     // Replace old with new, but keep the old order.
248     OldF->replaceAllUsesWith(Replacement);
249     if (NewF) {
250       NewF->removeFromParent();
251       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
252                                                        NewF);
253     }
254     OldF->eraseFromParent();
255   }
256 }
257 
258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
259   GlobalValReplacements.push_back(std::make_pair(GV, C));
260 }
261 
262 void CodeGenModule::applyGlobalValReplacements() {
263   for (auto &I : GlobalValReplacements) {
264     llvm::GlobalValue *GV = I.first;
265     llvm::Constant *C = I.second;
266 
267     GV->replaceAllUsesWith(C);
268     GV->eraseFromParent();
269   }
270 }
271 
272 // This is only used in aliases that we created and we know they have a
273 // linear structure.
274 static const llvm::GlobalObject *getAliasedGlobal(
275     const llvm::GlobalIndirectSymbol &GIS) {
276   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
277   const llvm::Constant *C = &GIS;
278   for (;;) {
279     C = C->stripPointerCasts();
280     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
281       return GO;
282     // stripPointerCasts will not walk over weak aliases.
283     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
284     if (!GIS2)
285       return nullptr;
286     if (!Visited.insert(GIS2).second)
287       return nullptr;
288     C = GIS2->getIndirectSymbol();
289   }
290 }
291 
292 void CodeGenModule::checkAliases() {
293   // Check if the constructed aliases are well formed. It is really unfortunate
294   // that we have to do this in CodeGen, but we only construct mangled names
295   // and aliases during codegen.
296   bool Error = false;
297   DiagnosticsEngine &Diags = getDiags();
298   for (const GlobalDecl &GD : Aliases) {
299     const auto *D = cast<ValueDecl>(GD.getDecl());
300     SourceLocation Location;
301     bool IsIFunc = D->hasAttr<IFuncAttr>();
302     if (const Attr *A = D->getDefiningAttr())
303       Location = A->getLocation();
304     else
305       llvm_unreachable("Not an alias or ifunc?");
306     StringRef MangledName = getMangledName(GD);
307     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
308     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
309     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
310     if (!GV) {
311       Error = true;
312       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
313     } else if (GV->isDeclaration()) {
314       Error = true;
315       Diags.Report(Location, diag::err_alias_to_undefined)
316           << IsIFunc << IsIFunc;
317     } else if (IsIFunc) {
318       // Check resolver function type.
319       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
320           GV->getType()->getPointerElementType());
321       assert(FTy);
322       if (!FTy->getReturnType()->isPointerTy())
323         Diags.Report(Location, diag::err_ifunc_resolver_return);
324     }
325 
326     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
327     llvm::GlobalValue *AliaseeGV;
328     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
329       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
330     else
331       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
332 
333     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
334       StringRef AliasSection = SA->getName();
335       if (AliasSection != AliaseeGV->getSection())
336         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
337             << AliasSection << IsIFunc << IsIFunc;
338     }
339 
340     // We have to handle alias to weak aliases in here. LLVM itself disallows
341     // this since the object semantics would not match the IL one. For
342     // compatibility with gcc we implement it by just pointing the alias
343     // to its aliasee's aliasee. We also warn, since the user is probably
344     // expecting the link to be weak.
345     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
346       if (GA->isInterposable()) {
347         Diags.Report(Location, diag::warn_alias_to_weak_alias)
348             << GV->getName() << GA->getName() << IsIFunc;
349         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
350             GA->getIndirectSymbol(), Alias->getType());
351         Alias->setIndirectSymbol(Aliasee);
352       }
353     }
354   }
355   if (!Error)
356     return;
357 
358   for (const GlobalDecl &GD : Aliases) {
359     StringRef MangledName = getMangledName(GD);
360     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
361     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
362     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
363     Alias->eraseFromParent();
364   }
365 }
366 
367 void CodeGenModule::clear() {
368   DeferredDeclsToEmit.clear();
369   if (OpenMPRuntime)
370     OpenMPRuntime->clear();
371 }
372 
373 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
374                                        StringRef MainFile) {
375   if (!hasDiagnostics())
376     return;
377   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
378     if (MainFile.empty())
379       MainFile = "<stdin>";
380     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
381   } else {
382     if (Mismatched > 0)
383       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
384 
385     if (Missing > 0)
386       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
387   }
388 }
389 
390 void CodeGenModule::Release() {
391   EmitDeferred();
392   EmitVTablesOpportunistically();
393   applyGlobalValReplacements();
394   applyReplacements();
395   checkAliases();
396   emitMultiVersionFunctions();
397   EmitCXXGlobalInitFunc();
398   EmitCXXGlobalDtorFunc();
399   registerGlobalDtorsWithAtExit();
400   EmitCXXThreadLocalInitFunc();
401   if (ObjCRuntime)
402     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
403       AddGlobalCtor(ObjCInitFunction);
404   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
405       CUDARuntime) {
406     if (llvm::Function *CudaCtorFunction =
407             CUDARuntime->makeModuleCtorFunction())
408       AddGlobalCtor(CudaCtorFunction);
409   }
410   if (OpenMPRuntime) {
411     if (llvm::Function *OpenMPRegistrationFunction =
412             OpenMPRuntime->emitRegistrationFunction()) {
413       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
414         OpenMPRegistrationFunction : nullptr;
415       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
416     }
417     OpenMPRuntime->clear();
418   }
419   if (PGOReader) {
420     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
421     if (PGOStats.hasDiagnostics())
422       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
423   }
424   EmitCtorList(GlobalCtors, "llvm.global_ctors");
425   EmitCtorList(GlobalDtors, "llvm.global_dtors");
426   EmitGlobalAnnotations();
427   EmitStaticExternCAliases();
428   EmitDeferredUnusedCoverageMappings();
429   if (CoverageMapping)
430     CoverageMapping->emit();
431   if (CodeGenOpts.SanitizeCfiCrossDso) {
432     CodeGenFunction(*this).EmitCfiCheckFail();
433     CodeGenFunction(*this).EmitCfiCheckStub();
434   }
435   emitAtAvailableLinkGuard();
436   emitLLVMUsed();
437   if (SanStats)
438     SanStats->finish();
439 
440   if (CodeGenOpts.Autolink &&
441       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
442     EmitModuleLinkOptions();
443   }
444 
445   // Record mregparm value now so it is visible through rest of codegen.
446   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
447     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
448                               CodeGenOpts.NumRegisterParameters);
449 
450   if (CodeGenOpts.DwarfVersion) {
451     // We actually want the latest version when there are conflicts.
452     // We can change from Warning to Latest if such mode is supported.
453     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
454                               CodeGenOpts.DwarfVersion);
455   }
456   if (CodeGenOpts.EmitCodeView) {
457     // Indicate that we want CodeView in the metadata.
458     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
459   }
460   if (CodeGenOpts.CodeViewGHash) {
461     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
462   }
463   if (CodeGenOpts.ControlFlowGuard) {
464     // We want function ID tables for Control Flow Guard.
465     getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1);
466   }
467   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
468     // We don't support LTO with 2 with different StrictVTablePointers
469     // FIXME: we could support it by stripping all the information introduced
470     // by StrictVTablePointers.
471 
472     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
473 
474     llvm::Metadata *Ops[2] = {
475               llvm::MDString::get(VMContext, "StrictVTablePointers"),
476               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
477                   llvm::Type::getInt32Ty(VMContext), 1))};
478 
479     getModule().addModuleFlag(llvm::Module::Require,
480                               "StrictVTablePointersRequirement",
481                               llvm::MDNode::get(VMContext, Ops));
482   }
483   if (DebugInfo)
484     // We support a single version in the linked module. The LLVM
485     // parser will drop debug info with a different version number
486     // (and warn about it, too).
487     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
488                               llvm::DEBUG_METADATA_VERSION);
489 
490   // We need to record the widths of enums and wchar_t, so that we can generate
491   // the correct build attributes in the ARM backend. wchar_size is also used by
492   // TargetLibraryInfo.
493   uint64_t WCharWidth =
494       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
495   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
496 
497   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
498   if (   Arch == llvm::Triple::arm
499       || Arch == llvm::Triple::armeb
500       || Arch == llvm::Triple::thumb
501       || Arch == llvm::Triple::thumbeb) {
502     // The minimum width of an enum in bytes
503     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
504     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
505   }
506 
507   if (CodeGenOpts.SanitizeCfiCrossDso) {
508     // Indicate that we want cross-DSO control flow integrity checks.
509     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
510   }
511 
512   if (CodeGenOpts.CFProtectionReturn &&
513       Target.checkCFProtectionReturnSupported(getDiags())) {
514     // Indicate that we want to instrument return control flow protection.
515     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
516                               1);
517   }
518 
519   if (CodeGenOpts.CFProtectionBranch &&
520       Target.checkCFProtectionBranchSupported(getDiags())) {
521     // Indicate that we want to instrument branch control flow protection.
522     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
523                               1);
524   }
525 
526   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
527     // Indicate whether __nvvm_reflect should be configured to flush denormal
528     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
529     // property.)
530     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
531                               CodeGenOpts.FlushDenorm ? 1 : 0);
532   }
533 
534   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
535   if (LangOpts.OpenCL) {
536     EmitOpenCLMetadata();
537     // Emit SPIR version.
538     if (getTriple().getArch() == llvm::Triple::spir ||
539         getTriple().getArch() == llvm::Triple::spir64) {
540       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
541       // opencl.spir.version named metadata.
542       llvm::Metadata *SPIRVerElts[] = {
543           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
544               Int32Ty, LangOpts.OpenCLVersion / 100)),
545           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
546               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
547       llvm::NamedMDNode *SPIRVerMD =
548           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
549       llvm::LLVMContext &Ctx = TheModule.getContext();
550       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
551     }
552   }
553 
554   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
555     assert(PLevel < 3 && "Invalid PIC Level");
556     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
557     if (Context.getLangOpts().PIE)
558       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
559   }
560 
561   if (getCodeGenOpts().CodeModel.size() > 0) {
562     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
563                   .Case("tiny", llvm::CodeModel::Tiny)
564                   .Case("small", llvm::CodeModel::Small)
565                   .Case("kernel", llvm::CodeModel::Kernel)
566                   .Case("medium", llvm::CodeModel::Medium)
567                   .Case("large", llvm::CodeModel::Large)
568                   .Default(~0u);
569     if (CM != ~0u) {
570       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
571       getModule().setCodeModel(codeModel);
572     }
573   }
574 
575   if (CodeGenOpts.NoPLT)
576     getModule().setRtLibUseGOT();
577 
578   SimplifyPersonality();
579 
580   if (getCodeGenOpts().EmitDeclMetadata)
581     EmitDeclMetadata();
582 
583   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
584     EmitCoverageFile();
585 
586   if (DebugInfo)
587     DebugInfo->finalize();
588 
589   if (getCodeGenOpts().EmitVersionIdentMetadata)
590     EmitVersionIdentMetadata();
591 
592   if (!getCodeGenOpts().RecordCommandLine.empty())
593     EmitCommandLineMetadata();
594 
595   EmitTargetMetadata();
596 }
597 
598 void CodeGenModule::EmitOpenCLMetadata() {
599   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
600   // opencl.ocl.version named metadata node.
601   llvm::Metadata *OCLVerElts[] = {
602       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
603           Int32Ty, LangOpts.OpenCLVersion / 100)),
604       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
605           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
606   llvm::NamedMDNode *OCLVerMD =
607       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
608   llvm::LLVMContext &Ctx = TheModule.getContext();
609   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
610 }
611 
612 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
613   // Make sure that this type is translated.
614   Types.UpdateCompletedType(TD);
615 }
616 
617 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
618   // Make sure that this type is translated.
619   Types.RefreshTypeCacheForClass(RD);
620 }
621 
622 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
623   if (!TBAA)
624     return nullptr;
625   return TBAA->getTypeInfo(QTy);
626 }
627 
628 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
629   if (!TBAA)
630     return TBAAAccessInfo();
631   return TBAA->getAccessInfo(AccessType);
632 }
633 
634 TBAAAccessInfo
635 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
636   if (!TBAA)
637     return TBAAAccessInfo();
638   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
639 }
640 
641 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
642   if (!TBAA)
643     return nullptr;
644   return TBAA->getTBAAStructInfo(QTy);
645 }
646 
647 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
648   if (!TBAA)
649     return nullptr;
650   return TBAA->getBaseTypeInfo(QTy);
651 }
652 
653 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
654   if (!TBAA)
655     return nullptr;
656   return TBAA->getAccessTagInfo(Info);
657 }
658 
659 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
660                                                    TBAAAccessInfo TargetInfo) {
661   if (!TBAA)
662     return TBAAAccessInfo();
663   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
664 }
665 
666 TBAAAccessInfo
667 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
668                                                    TBAAAccessInfo InfoB) {
669   if (!TBAA)
670     return TBAAAccessInfo();
671   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
672 }
673 
674 TBAAAccessInfo
675 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
676                                               TBAAAccessInfo SrcInfo) {
677   if (!TBAA)
678     return TBAAAccessInfo();
679   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
680 }
681 
682 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
683                                                 TBAAAccessInfo TBAAInfo) {
684   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
685     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
686 }
687 
688 void CodeGenModule::DecorateInstructionWithInvariantGroup(
689     llvm::Instruction *I, const CXXRecordDecl *RD) {
690   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
691                  llvm::MDNode::get(getLLVMContext(), {}));
692 }
693 
694 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
695   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
696   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
697 }
698 
699 /// ErrorUnsupported - Print out an error that codegen doesn't support the
700 /// specified stmt yet.
701 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
702   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
703                                                "cannot compile this %0 yet");
704   std::string Msg = Type;
705   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
706       << Msg << S->getSourceRange();
707 }
708 
709 /// ErrorUnsupported - Print out an error that codegen doesn't support the
710 /// specified decl yet.
711 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
712   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
713                                                "cannot compile this %0 yet");
714   std::string Msg = Type;
715   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
716 }
717 
718 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
719   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
720 }
721 
722 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
723                                         const NamedDecl *D) const {
724   if (GV->hasDLLImportStorageClass())
725     return;
726   // Internal definitions always have default visibility.
727   if (GV->hasLocalLinkage()) {
728     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
729     return;
730   }
731   if (!D)
732     return;
733   // Set visibility for definitions.
734   LinkageInfo LV = D->getLinkageAndVisibility();
735   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
736     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
737 }
738 
739 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
740                                  llvm::GlobalValue *GV) {
741   if (GV->hasLocalLinkage())
742     return true;
743 
744   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
745     return true;
746 
747   // DLLImport explicitly marks the GV as external.
748   if (GV->hasDLLImportStorageClass())
749     return false;
750 
751   const llvm::Triple &TT = CGM.getTriple();
752   if (TT.isWindowsGNUEnvironment()) {
753     // In MinGW, variables without DLLImport can still be automatically
754     // imported from a DLL by the linker; don't mark variables that
755     // potentially could come from another DLL as DSO local.
756     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
757         !GV->isThreadLocal())
758       return false;
759   }
760   // Every other GV is local on COFF.
761   // Make an exception for windows OS in the triple: Some firmware builds use
762   // *-win32-macho triples. This (accidentally?) produced windows relocations
763   // without GOT tables in older clang versions; Keep this behaviour.
764   // FIXME: even thread local variables?
765   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
766     return true;
767 
768   // Only handle COFF and ELF for now.
769   if (!TT.isOSBinFormatELF())
770     return false;
771 
772   // If this is not an executable, don't assume anything is local.
773   const auto &CGOpts = CGM.getCodeGenOpts();
774   llvm::Reloc::Model RM = CGOpts.RelocationModel;
775   const auto &LOpts = CGM.getLangOpts();
776   if (RM != llvm::Reloc::Static && !LOpts.PIE)
777     return false;
778 
779   // A definition cannot be preempted from an executable.
780   if (!GV->isDeclarationForLinker())
781     return true;
782 
783   // Most PIC code sequences that assume that a symbol is local cannot produce a
784   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
785   // depended, it seems worth it to handle it here.
786   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
787     return false;
788 
789   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
790   llvm::Triple::ArchType Arch = TT.getArch();
791   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
792       Arch == llvm::Triple::ppc64le)
793     return false;
794 
795   // If we can use copy relocations we can assume it is local.
796   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
797     if (!Var->isThreadLocal() &&
798         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
799       return true;
800 
801   // If we can use a plt entry as the symbol address we can assume it
802   // is local.
803   // FIXME: This should work for PIE, but the gold linker doesn't support it.
804   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
805     return true;
806 
807   // Otherwise don't assue it is local.
808   return false;
809 }
810 
811 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
812   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
813 }
814 
815 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
816                                           GlobalDecl GD) const {
817   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
818   // C++ destructors have a few C++ ABI specific special cases.
819   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
820     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
821     return;
822   }
823   setDLLImportDLLExport(GV, D);
824 }
825 
826 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
827                                           const NamedDecl *D) const {
828   if (D && D->isExternallyVisible()) {
829     if (D->hasAttr<DLLImportAttr>())
830       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
831     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
832       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
833   }
834 }
835 
836 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
837                                     GlobalDecl GD) const {
838   setDLLImportDLLExport(GV, GD);
839   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
840 }
841 
842 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
843                                     const NamedDecl *D) const {
844   setDLLImportDLLExport(GV, D);
845   setGlobalVisibilityAndLocal(GV, D);
846 }
847 
848 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
849                                                 const NamedDecl *D) const {
850   setGlobalVisibility(GV, D);
851   setDSOLocal(GV);
852 }
853 
854 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
855   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
856       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
857       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
858       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
859       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
860 }
861 
862 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
863     CodeGenOptions::TLSModel M) {
864   switch (M) {
865   case CodeGenOptions::GeneralDynamicTLSModel:
866     return llvm::GlobalVariable::GeneralDynamicTLSModel;
867   case CodeGenOptions::LocalDynamicTLSModel:
868     return llvm::GlobalVariable::LocalDynamicTLSModel;
869   case CodeGenOptions::InitialExecTLSModel:
870     return llvm::GlobalVariable::InitialExecTLSModel;
871   case CodeGenOptions::LocalExecTLSModel:
872     return llvm::GlobalVariable::LocalExecTLSModel;
873   }
874   llvm_unreachable("Invalid TLS model!");
875 }
876 
877 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
878   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
879 
880   llvm::GlobalValue::ThreadLocalMode TLM;
881   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
882 
883   // Override the TLS model if it is explicitly specified.
884   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
885     TLM = GetLLVMTLSModel(Attr->getModel());
886   }
887 
888   GV->setThreadLocalMode(TLM);
889 }
890 
891 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
892                                           StringRef Name) {
893   const TargetInfo &Target = CGM.getTarget();
894   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
895 }
896 
897 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
898                                                  const CPUSpecificAttr *Attr,
899                                                  unsigned CPUIndex,
900                                                  raw_ostream &Out) {
901   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
902   // supported.
903   if (Attr)
904     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
905   else if (CGM.getTarget().supportsIFunc())
906     Out << ".resolver";
907 }
908 
909 static void AppendTargetMangling(const CodeGenModule &CGM,
910                                  const TargetAttr *Attr, raw_ostream &Out) {
911   if (Attr->isDefaultVersion())
912     return;
913 
914   Out << '.';
915   const TargetInfo &Target = CGM.getTarget();
916   TargetAttr::ParsedTargetAttr Info =
917       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
918         // Multiversioning doesn't allow "no-${feature}", so we can
919         // only have "+" prefixes here.
920         assert(LHS.startswith("+") && RHS.startswith("+") &&
921                "Features should always have a prefix.");
922         return Target.multiVersionSortPriority(LHS.substr(1)) >
923                Target.multiVersionSortPriority(RHS.substr(1));
924       });
925 
926   bool IsFirst = true;
927 
928   if (!Info.Architecture.empty()) {
929     IsFirst = false;
930     Out << "arch_" << Info.Architecture;
931   }
932 
933   for (StringRef Feat : Info.Features) {
934     if (!IsFirst)
935       Out << '_';
936     IsFirst = false;
937     Out << Feat.substr(1);
938   }
939 }
940 
941 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
942                                       const NamedDecl *ND,
943                                       bool OmitMultiVersionMangling = false) {
944   SmallString<256> Buffer;
945   llvm::raw_svector_ostream Out(Buffer);
946   MangleContext &MC = CGM.getCXXABI().getMangleContext();
947   if (MC.shouldMangleDeclName(ND)) {
948     llvm::raw_svector_ostream Out(Buffer);
949     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
950       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
951     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
952       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
953     else
954       MC.mangleName(ND, Out);
955   } else {
956     IdentifierInfo *II = ND->getIdentifier();
957     assert(II && "Attempt to mangle unnamed decl.");
958     const auto *FD = dyn_cast<FunctionDecl>(ND);
959 
960     if (FD &&
961         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
962       llvm::raw_svector_ostream Out(Buffer);
963       Out << "__regcall3__" << II->getName();
964     } else {
965       Out << II->getName();
966     }
967   }
968 
969   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
970     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
971       switch (FD->getMultiVersionKind()) {
972       case MultiVersionKind::CPUDispatch:
973       case MultiVersionKind::CPUSpecific:
974         AppendCPUSpecificCPUDispatchMangling(CGM,
975                                              FD->getAttr<CPUSpecificAttr>(),
976                                              GD.getMultiVersionIndex(), Out);
977         break;
978       case MultiVersionKind::Target:
979         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
980         break;
981       case MultiVersionKind::None:
982         llvm_unreachable("None multiversion type isn't valid here");
983       }
984     }
985 
986   return Out.str();
987 }
988 
989 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
990                                             const FunctionDecl *FD) {
991   if (!FD->isMultiVersion())
992     return;
993 
994   // Get the name of what this would be without the 'target' attribute.  This
995   // allows us to lookup the version that was emitted when this wasn't a
996   // multiversion function.
997   std::string NonTargetName =
998       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
999   GlobalDecl OtherGD;
1000   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1001     assert(OtherGD.getCanonicalDecl()
1002                .getDecl()
1003                ->getAsFunction()
1004                ->isMultiVersion() &&
1005            "Other GD should now be a multiversioned function");
1006     // OtherFD is the version of this function that was mangled BEFORE
1007     // becoming a MultiVersion function.  It potentially needs to be updated.
1008     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1009                                       .getDecl()
1010                                       ->getAsFunction()
1011                                       ->getMostRecentDecl();
1012     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1013     // This is so that if the initial version was already the 'default'
1014     // version, we don't try to update it.
1015     if (OtherName != NonTargetName) {
1016       // Remove instead of erase, since others may have stored the StringRef
1017       // to this.
1018       const auto ExistingRecord = Manglings.find(NonTargetName);
1019       if (ExistingRecord != std::end(Manglings))
1020         Manglings.remove(&(*ExistingRecord));
1021       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1022       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1023       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1024         Entry->setName(OtherName);
1025     }
1026   }
1027 }
1028 
1029 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1030   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1031 
1032   // Some ABIs don't have constructor variants.  Make sure that base and
1033   // complete constructors get mangled the same.
1034   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1035     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1036       CXXCtorType OrigCtorType = GD.getCtorType();
1037       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1038       if (OrigCtorType == Ctor_Base)
1039         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1040     }
1041   }
1042 
1043   auto FoundName = MangledDeclNames.find(CanonicalGD);
1044   if (FoundName != MangledDeclNames.end())
1045     return FoundName->second;
1046 
1047   // Keep the first result in the case of a mangling collision.
1048   const auto *ND = cast<NamedDecl>(GD.getDecl());
1049   auto Result =
1050       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
1051   return MangledDeclNames[CanonicalGD] = Result.first->first();
1052 }
1053 
1054 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1055                                              const BlockDecl *BD) {
1056   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1057   const Decl *D = GD.getDecl();
1058 
1059   SmallString<256> Buffer;
1060   llvm::raw_svector_ostream Out(Buffer);
1061   if (!D)
1062     MangleCtx.mangleGlobalBlock(BD,
1063       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1064   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1065     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1066   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1067     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1068   else
1069     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1070 
1071   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1072   return Result.first->first();
1073 }
1074 
1075 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1076   return getModule().getNamedValue(Name);
1077 }
1078 
1079 /// AddGlobalCtor - Add a function to the list that will be called before
1080 /// main() runs.
1081 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1082                                   llvm::Constant *AssociatedData) {
1083   // FIXME: Type coercion of void()* types.
1084   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1085 }
1086 
1087 /// AddGlobalDtor - Add a function to the list that will be called
1088 /// when the module is unloaded.
1089 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1090   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1091     DtorsUsingAtExit[Priority].push_back(Dtor);
1092     return;
1093   }
1094 
1095   // FIXME: Type coercion of void()* types.
1096   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1097 }
1098 
1099 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1100   if (Fns.empty()) return;
1101 
1102   // Ctor function type is void()*.
1103   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1104   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1105       TheModule.getDataLayout().getProgramAddressSpace());
1106 
1107   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1108   llvm::StructType *CtorStructTy = llvm::StructType::get(
1109       Int32Ty, CtorPFTy, VoidPtrTy);
1110 
1111   // Construct the constructor and destructor arrays.
1112   ConstantInitBuilder builder(*this);
1113   auto ctors = builder.beginArray(CtorStructTy);
1114   for (const auto &I : Fns) {
1115     auto ctor = ctors.beginStruct(CtorStructTy);
1116     ctor.addInt(Int32Ty, I.Priority);
1117     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1118     if (I.AssociatedData)
1119       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1120     else
1121       ctor.addNullPointer(VoidPtrTy);
1122     ctor.finishAndAddTo(ctors);
1123   }
1124 
1125   auto list =
1126     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1127                                 /*constant*/ false,
1128                                 llvm::GlobalValue::AppendingLinkage);
1129 
1130   // The LTO linker doesn't seem to like it when we set an alignment
1131   // on appending variables.  Take it off as a workaround.
1132   list->setAlignment(0);
1133 
1134   Fns.clear();
1135 }
1136 
1137 llvm::GlobalValue::LinkageTypes
1138 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1139   const auto *D = cast<FunctionDecl>(GD.getDecl());
1140 
1141   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1142 
1143   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1144     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1145 
1146   if (isa<CXXConstructorDecl>(D) &&
1147       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1148       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1149     // Our approach to inheriting constructors is fundamentally different from
1150     // that used by the MS ABI, so keep our inheriting constructor thunks
1151     // internal rather than trying to pick an unambiguous mangling for them.
1152     return llvm::GlobalValue::InternalLinkage;
1153   }
1154 
1155   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1156 }
1157 
1158 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1159   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1160   if (!MDS) return nullptr;
1161 
1162   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1163 }
1164 
1165 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1166                                               const CGFunctionInfo &Info,
1167                                               llvm::Function *F) {
1168   unsigned CallingConv;
1169   llvm::AttributeList PAL;
1170   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1171   F->setAttributes(PAL);
1172   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1173 }
1174 
1175 /// Determines whether the language options require us to model
1176 /// unwind exceptions.  We treat -fexceptions as mandating this
1177 /// except under the fragile ObjC ABI with only ObjC exceptions
1178 /// enabled.  This means, for example, that C with -fexceptions
1179 /// enables this.
1180 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1181   // If exceptions are completely disabled, obviously this is false.
1182   if (!LangOpts.Exceptions) return false;
1183 
1184   // If C++ exceptions are enabled, this is true.
1185   if (LangOpts.CXXExceptions) return true;
1186 
1187   // If ObjC exceptions are enabled, this depends on the ABI.
1188   if (LangOpts.ObjCExceptions) {
1189     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1190   }
1191 
1192   return true;
1193 }
1194 
1195 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1196                                                       const CXXMethodDecl *MD) {
1197   // Check that the type metadata can ever actually be used by a call.
1198   if (!CGM.getCodeGenOpts().LTOUnit ||
1199       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1200     return false;
1201 
1202   // Only functions whose address can be taken with a member function pointer
1203   // need this sort of type metadata.
1204   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1205          !isa<CXXDestructorDecl>(MD);
1206 }
1207 
1208 std::vector<const CXXRecordDecl *>
1209 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1210   llvm::SetVector<const CXXRecordDecl *> MostBases;
1211 
1212   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1213   CollectMostBases = [&](const CXXRecordDecl *RD) {
1214     if (RD->getNumBases() == 0)
1215       MostBases.insert(RD);
1216     for (const CXXBaseSpecifier &B : RD->bases())
1217       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1218   };
1219   CollectMostBases(RD);
1220   return MostBases.takeVector();
1221 }
1222 
1223 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1224                                                            llvm::Function *F) {
1225   llvm::AttrBuilder B;
1226 
1227   if (CodeGenOpts.UnwindTables)
1228     B.addAttribute(llvm::Attribute::UWTable);
1229 
1230   if (!hasUnwindExceptions(LangOpts))
1231     B.addAttribute(llvm::Attribute::NoUnwind);
1232 
1233   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1234     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1235       B.addAttribute(llvm::Attribute::StackProtect);
1236     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1237       B.addAttribute(llvm::Attribute::StackProtectStrong);
1238     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1239       B.addAttribute(llvm::Attribute::StackProtectReq);
1240   }
1241 
1242   if (!D) {
1243     // If we don't have a declaration to control inlining, the function isn't
1244     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1245     // disabled, mark the function as noinline.
1246     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1247         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1248       B.addAttribute(llvm::Attribute::NoInline);
1249 
1250     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1251     return;
1252   }
1253 
1254   // Track whether we need to add the optnone LLVM attribute,
1255   // starting with the default for this optimization level.
1256   bool ShouldAddOptNone =
1257       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1258   // We can't add optnone in the following cases, it won't pass the verifier.
1259   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1260   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1261   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1262 
1263   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1264     B.addAttribute(llvm::Attribute::OptimizeNone);
1265 
1266     // OptimizeNone implies noinline; we should not be inlining such functions.
1267     B.addAttribute(llvm::Attribute::NoInline);
1268     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1269            "OptimizeNone and AlwaysInline on same function!");
1270 
1271     // We still need to handle naked functions even though optnone subsumes
1272     // much of their semantics.
1273     if (D->hasAttr<NakedAttr>())
1274       B.addAttribute(llvm::Attribute::Naked);
1275 
1276     // OptimizeNone wins over OptimizeForSize and MinSize.
1277     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1278     F->removeFnAttr(llvm::Attribute::MinSize);
1279   } else if (D->hasAttr<NakedAttr>()) {
1280     // Naked implies noinline: we should not be inlining such functions.
1281     B.addAttribute(llvm::Attribute::Naked);
1282     B.addAttribute(llvm::Attribute::NoInline);
1283   } else if (D->hasAttr<NoDuplicateAttr>()) {
1284     B.addAttribute(llvm::Attribute::NoDuplicate);
1285   } else if (D->hasAttr<NoInlineAttr>()) {
1286     B.addAttribute(llvm::Attribute::NoInline);
1287   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1288              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1289     // (noinline wins over always_inline, and we can't specify both in IR)
1290     B.addAttribute(llvm::Attribute::AlwaysInline);
1291   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1292     // If we're not inlining, then force everything that isn't always_inline to
1293     // carry an explicit noinline attribute.
1294     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1295       B.addAttribute(llvm::Attribute::NoInline);
1296   } else {
1297     // Otherwise, propagate the inline hint attribute and potentially use its
1298     // absence to mark things as noinline.
1299     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1300       // Search function and template pattern redeclarations for inline.
1301       auto CheckForInline = [](const FunctionDecl *FD) {
1302         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1303           return Redecl->isInlineSpecified();
1304         };
1305         if (any_of(FD->redecls(), CheckRedeclForInline))
1306           return true;
1307         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1308         if (!Pattern)
1309           return false;
1310         return any_of(Pattern->redecls(), CheckRedeclForInline);
1311       };
1312       if (CheckForInline(FD)) {
1313         B.addAttribute(llvm::Attribute::InlineHint);
1314       } else if (CodeGenOpts.getInlining() ==
1315                      CodeGenOptions::OnlyHintInlining &&
1316                  !FD->isInlined() &&
1317                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1318         B.addAttribute(llvm::Attribute::NoInline);
1319       }
1320     }
1321   }
1322 
1323   // Add other optimization related attributes if we are optimizing this
1324   // function.
1325   if (!D->hasAttr<OptimizeNoneAttr>()) {
1326     if (D->hasAttr<ColdAttr>()) {
1327       if (!ShouldAddOptNone)
1328         B.addAttribute(llvm::Attribute::OptimizeForSize);
1329       B.addAttribute(llvm::Attribute::Cold);
1330     }
1331 
1332     if (D->hasAttr<MinSizeAttr>())
1333       B.addAttribute(llvm::Attribute::MinSize);
1334   }
1335 
1336   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1337 
1338   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1339   if (alignment)
1340     F->setAlignment(alignment);
1341 
1342   if (!D->hasAttr<AlignedAttr>())
1343     if (LangOpts.FunctionAlignment)
1344       F->setAlignment(1 << LangOpts.FunctionAlignment);
1345 
1346   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1347   // reserve a bit for differentiating between virtual and non-virtual member
1348   // functions. If the current target's C++ ABI requires this and this is a
1349   // member function, set its alignment accordingly.
1350   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1351     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1352       F->setAlignment(2);
1353   }
1354 
1355   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1356   if (CodeGenOpts.SanitizeCfiCrossDso)
1357     if (auto *FD = dyn_cast<FunctionDecl>(D))
1358       CreateFunctionTypeMetadataForIcall(FD, F);
1359 
1360   // Emit type metadata on member functions for member function pointer checks.
1361   // These are only ever necessary on definitions; we're guaranteed that the
1362   // definition will be present in the LTO unit as a result of LTO visibility.
1363   auto *MD = dyn_cast<CXXMethodDecl>(D);
1364   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1365     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1366       llvm::Metadata *Id =
1367           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1368               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1369       F->addTypeMetadata(0, Id);
1370     }
1371   }
1372 }
1373 
1374 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1375   const Decl *D = GD.getDecl();
1376   if (dyn_cast_or_null<NamedDecl>(D))
1377     setGVProperties(GV, GD);
1378   else
1379     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1380 
1381   if (D && D->hasAttr<UsedAttr>())
1382     addUsedGlobal(GV);
1383 
1384   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1385     const auto *VD = cast<VarDecl>(D);
1386     if (VD->getType().isConstQualified() &&
1387         VD->getStorageDuration() == SD_Static)
1388       addUsedGlobal(GV);
1389   }
1390 }
1391 
1392 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1393                                                 llvm::AttrBuilder &Attrs) {
1394   // Add target-cpu and target-features attributes to functions. If
1395   // we have a decl for the function and it has a target attribute then
1396   // parse that and add it to the feature set.
1397   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1398   std::vector<std::string> Features;
1399   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1400   FD = FD ? FD->getMostRecentDecl() : FD;
1401   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1402   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1403   bool AddedAttr = false;
1404   if (TD || SD) {
1405     llvm::StringMap<bool> FeatureMap;
1406     getFunctionFeatureMap(FeatureMap, GD);
1407 
1408     // Produce the canonical string for this set of features.
1409     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1410       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1411 
1412     // Now add the target-cpu and target-features to the function.
1413     // While we populated the feature map above, we still need to
1414     // get and parse the target attribute so we can get the cpu for
1415     // the function.
1416     if (TD) {
1417       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1418       if (ParsedAttr.Architecture != "" &&
1419           getTarget().isValidCPUName(ParsedAttr.Architecture))
1420         TargetCPU = ParsedAttr.Architecture;
1421     }
1422   } else {
1423     // Otherwise just add the existing target cpu and target features to the
1424     // function.
1425     Features = getTarget().getTargetOpts().Features;
1426   }
1427 
1428   if (TargetCPU != "") {
1429     Attrs.addAttribute("target-cpu", TargetCPU);
1430     AddedAttr = true;
1431   }
1432   if (!Features.empty()) {
1433     llvm::sort(Features);
1434     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1435     AddedAttr = true;
1436   }
1437 
1438   return AddedAttr;
1439 }
1440 
1441 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1442                                           llvm::GlobalObject *GO) {
1443   const Decl *D = GD.getDecl();
1444   SetCommonAttributes(GD, GO);
1445 
1446   if (D) {
1447     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1448       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1449         GV->addAttribute("bss-section", SA->getName());
1450       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1451         GV->addAttribute("data-section", SA->getName());
1452       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1453         GV->addAttribute("rodata-section", SA->getName());
1454     }
1455 
1456     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1457       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1458         if (!D->getAttr<SectionAttr>())
1459           F->addFnAttr("implicit-section-name", SA->getName());
1460 
1461       llvm::AttrBuilder Attrs;
1462       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1463         // We know that GetCPUAndFeaturesAttributes will always have the
1464         // newest set, since it has the newest possible FunctionDecl, so the
1465         // new ones should replace the old.
1466         F->removeFnAttr("target-cpu");
1467         F->removeFnAttr("target-features");
1468         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1469       }
1470     }
1471 
1472     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1473       GO->setSection(CSA->getName());
1474     else if (const auto *SA = D->getAttr<SectionAttr>())
1475       GO->setSection(SA->getName());
1476   }
1477 
1478   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1479 }
1480 
1481 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1482                                                   llvm::Function *F,
1483                                                   const CGFunctionInfo &FI) {
1484   const Decl *D = GD.getDecl();
1485   SetLLVMFunctionAttributes(GD, FI, F);
1486   SetLLVMFunctionAttributesForDefinition(D, F);
1487 
1488   F->setLinkage(llvm::Function::InternalLinkage);
1489 
1490   setNonAliasAttributes(GD, F);
1491 }
1492 
1493 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1494   // Set linkage and visibility in case we never see a definition.
1495   LinkageInfo LV = ND->getLinkageAndVisibility();
1496   // Don't set internal linkage on declarations.
1497   // "extern_weak" is overloaded in LLVM; we probably should have
1498   // separate linkage types for this.
1499   if (isExternallyVisible(LV.getLinkage()) &&
1500       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1501     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1502 }
1503 
1504 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1505                                                        llvm::Function *F) {
1506   // Only if we are checking indirect calls.
1507   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1508     return;
1509 
1510   // Non-static class methods are handled via vtable or member function pointer
1511   // checks elsewhere.
1512   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1513     return;
1514 
1515   // Additionally, if building with cross-DSO support...
1516   if (CodeGenOpts.SanitizeCfiCrossDso) {
1517     // Skip available_externally functions. They won't be codegen'ed in the
1518     // current module anyway.
1519     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1520       return;
1521   }
1522 
1523   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1524   F->addTypeMetadata(0, MD);
1525   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1526 
1527   // Emit a hash-based bit set entry for cross-DSO calls.
1528   if (CodeGenOpts.SanitizeCfiCrossDso)
1529     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1530       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1531 }
1532 
1533 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1534                                           bool IsIncompleteFunction,
1535                                           bool IsThunk) {
1536 
1537   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1538     // If this is an intrinsic function, set the function's attributes
1539     // to the intrinsic's attributes.
1540     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1541     return;
1542   }
1543 
1544   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1545 
1546   if (!IsIncompleteFunction) {
1547     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1548     // Setup target-specific attributes.
1549     if (F->isDeclaration())
1550       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1551   }
1552 
1553   // Add the Returned attribute for "this", except for iOS 5 and earlier
1554   // where substantial code, including the libstdc++ dylib, was compiled with
1555   // GCC and does not actually return "this".
1556   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1557       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1558     assert(!F->arg_empty() &&
1559            F->arg_begin()->getType()
1560              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1561            "unexpected this return");
1562     F->addAttribute(1, llvm::Attribute::Returned);
1563   }
1564 
1565   // Only a few attributes are set on declarations; these may later be
1566   // overridden by a definition.
1567 
1568   setLinkageForGV(F, FD);
1569   setGVProperties(F, FD);
1570 
1571   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1572     F->setSection(CSA->getName());
1573   else if (const auto *SA = FD->getAttr<SectionAttr>())
1574      F->setSection(SA->getName());
1575 
1576   if (FD->isReplaceableGlobalAllocationFunction()) {
1577     // A replaceable global allocation function does not act like a builtin by
1578     // default, only if it is invoked by a new-expression or delete-expression.
1579     F->addAttribute(llvm::AttributeList::FunctionIndex,
1580                     llvm::Attribute::NoBuiltin);
1581 
1582     // A sane operator new returns a non-aliasing pointer.
1583     // FIXME: Also add NonNull attribute to the return value
1584     // for the non-nothrow forms?
1585     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1586     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1587         (Kind == OO_New || Kind == OO_Array_New))
1588       F->addAttribute(llvm::AttributeList::ReturnIndex,
1589                       llvm::Attribute::NoAlias);
1590   }
1591 
1592   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1593     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1594   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1595     if (MD->isVirtual())
1596       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1597 
1598   // Don't emit entries for function declarations in the cross-DSO mode. This
1599   // is handled with better precision by the receiving DSO.
1600   if (!CodeGenOpts.SanitizeCfiCrossDso)
1601     CreateFunctionTypeMetadataForIcall(FD, F);
1602 
1603   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1604     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1605 
1606   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1607     // Annotate the callback behavior as metadata:
1608     //  - The callback callee (as argument number).
1609     //  - The callback payloads (as argument numbers).
1610     llvm::LLVMContext &Ctx = F->getContext();
1611     llvm::MDBuilder MDB(Ctx);
1612 
1613     // The payload indices are all but the first one in the encoding. The first
1614     // identifies the callback callee.
1615     int CalleeIdx = *CB->encoding_begin();
1616     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1617     F->addMetadata(llvm::LLVMContext::MD_callback,
1618                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1619                                                CalleeIdx, PayloadIndices,
1620                                                /* VarArgsArePassed */ false)}));
1621   }
1622 }
1623 
1624 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1625   assert(!GV->isDeclaration() &&
1626          "Only globals with definition can force usage.");
1627   LLVMUsed.emplace_back(GV);
1628 }
1629 
1630 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1631   assert(!GV->isDeclaration() &&
1632          "Only globals with definition can force usage.");
1633   LLVMCompilerUsed.emplace_back(GV);
1634 }
1635 
1636 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1637                      std::vector<llvm::WeakTrackingVH> &List) {
1638   // Don't create llvm.used if there is no need.
1639   if (List.empty())
1640     return;
1641 
1642   // Convert List to what ConstantArray needs.
1643   SmallVector<llvm::Constant*, 8> UsedArray;
1644   UsedArray.resize(List.size());
1645   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1646     UsedArray[i] =
1647         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1648             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1649   }
1650 
1651   if (UsedArray.empty())
1652     return;
1653   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1654 
1655   auto *GV = new llvm::GlobalVariable(
1656       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1657       llvm::ConstantArray::get(ATy, UsedArray), Name);
1658 
1659   GV->setSection("llvm.metadata");
1660 }
1661 
1662 void CodeGenModule::emitLLVMUsed() {
1663   emitUsed(*this, "llvm.used", LLVMUsed);
1664   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1665 }
1666 
1667 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1668   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1669   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1670 }
1671 
1672 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1673   llvm::SmallString<32> Opt;
1674   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1675   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1676   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1677 }
1678 
1679 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1680   auto &C = getLLVMContext();
1681   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1682       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1683 }
1684 
1685 void CodeGenModule::AddDependentLib(StringRef Lib) {
1686   llvm::SmallString<24> Opt;
1687   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1688   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1689   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1690 }
1691 
1692 /// Add link options implied by the given module, including modules
1693 /// it depends on, using a postorder walk.
1694 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1695                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1696                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1697   // Import this module's parent.
1698   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1699     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1700   }
1701 
1702   // Import this module's dependencies.
1703   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1704     if (Visited.insert(Mod->Imports[I - 1]).second)
1705       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1706   }
1707 
1708   // Add linker options to link against the libraries/frameworks
1709   // described by this module.
1710   llvm::LLVMContext &Context = CGM.getLLVMContext();
1711   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
1712   bool IsPS4 = CGM.getTarget().getTriple().isPS4();
1713 
1714   // For modules that use export_as for linking, use that module
1715   // name instead.
1716   if (Mod->UseExportAsModuleLinkName)
1717     return;
1718 
1719   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1720     // Link against a framework.  Frameworks are currently Darwin only, so we
1721     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1722     if (Mod->LinkLibraries[I-1].IsFramework) {
1723       llvm::Metadata *Args[2] = {
1724           llvm::MDString::get(Context, "-framework"),
1725           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1726 
1727       Metadata.push_back(llvm::MDNode::get(Context, Args));
1728       continue;
1729     }
1730 
1731     // Link against a library.
1732     if (IsELF && !IsPS4) {
1733       llvm::Metadata *Args[2] = {
1734           llvm::MDString::get(Context, "lib"),
1735           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
1736       };
1737       Metadata.push_back(llvm::MDNode::get(Context, Args));
1738     } else {
1739       llvm::SmallString<24> Opt;
1740       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1741           Mod->LinkLibraries[I - 1].Library, Opt);
1742       auto *OptString = llvm::MDString::get(Context, Opt);
1743       Metadata.push_back(llvm::MDNode::get(Context, OptString));
1744     }
1745   }
1746 }
1747 
1748 void CodeGenModule::EmitModuleLinkOptions() {
1749   // Collect the set of all of the modules we want to visit to emit link
1750   // options, which is essentially the imported modules and all of their
1751   // non-explicit child modules.
1752   llvm::SetVector<clang::Module *> LinkModules;
1753   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1754   SmallVector<clang::Module *, 16> Stack;
1755 
1756   // Seed the stack with imported modules.
1757   for (Module *M : ImportedModules) {
1758     // Do not add any link flags when an implementation TU of a module imports
1759     // a header of that same module.
1760     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1761         !getLangOpts().isCompilingModule())
1762       continue;
1763     if (Visited.insert(M).second)
1764       Stack.push_back(M);
1765   }
1766 
1767   // Find all of the modules to import, making a little effort to prune
1768   // non-leaf modules.
1769   while (!Stack.empty()) {
1770     clang::Module *Mod = Stack.pop_back_val();
1771 
1772     bool AnyChildren = false;
1773 
1774     // Visit the submodules of this module.
1775     for (const auto &SM : Mod->submodules()) {
1776       // Skip explicit children; they need to be explicitly imported to be
1777       // linked against.
1778       if (SM->IsExplicit)
1779         continue;
1780 
1781       if (Visited.insert(SM).second) {
1782         Stack.push_back(SM);
1783         AnyChildren = true;
1784       }
1785     }
1786 
1787     // We didn't find any children, so add this module to the list of
1788     // modules to link against.
1789     if (!AnyChildren) {
1790       LinkModules.insert(Mod);
1791     }
1792   }
1793 
1794   // Add link options for all of the imported modules in reverse topological
1795   // order.  We don't do anything to try to order import link flags with respect
1796   // to linker options inserted by things like #pragma comment().
1797   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1798   Visited.clear();
1799   for (Module *M : LinkModules)
1800     if (Visited.insert(M).second)
1801       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1802   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1803   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1804 
1805   // Add the linker options metadata flag.
1806   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1807   for (auto *MD : LinkerOptionsMetadata)
1808     NMD->addOperand(MD);
1809 }
1810 
1811 void CodeGenModule::EmitDeferred() {
1812   // Emit deferred declare target declarations.
1813   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1814     getOpenMPRuntime().emitDeferredTargetDecls();
1815 
1816   // Emit code for any potentially referenced deferred decls.  Since a
1817   // previously unused static decl may become used during the generation of code
1818   // for a static function, iterate until no changes are made.
1819 
1820   if (!DeferredVTables.empty()) {
1821     EmitDeferredVTables();
1822 
1823     // Emitting a vtable doesn't directly cause more vtables to
1824     // become deferred, although it can cause functions to be
1825     // emitted that then need those vtables.
1826     assert(DeferredVTables.empty());
1827   }
1828 
1829   // Stop if we're out of both deferred vtables and deferred declarations.
1830   if (DeferredDeclsToEmit.empty())
1831     return;
1832 
1833   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1834   // work, it will not interfere with this.
1835   std::vector<GlobalDecl> CurDeclsToEmit;
1836   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1837 
1838   for (GlobalDecl &D : CurDeclsToEmit) {
1839     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1840     // to get GlobalValue with exactly the type we need, not something that
1841     // might had been created for another decl with the same mangled name but
1842     // different type.
1843     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1844         GetAddrOfGlobal(D, ForDefinition));
1845 
1846     // In case of different address spaces, we may still get a cast, even with
1847     // IsForDefinition equal to true. Query mangled names table to get
1848     // GlobalValue.
1849     if (!GV)
1850       GV = GetGlobalValue(getMangledName(D));
1851 
1852     // Make sure GetGlobalValue returned non-null.
1853     assert(GV);
1854 
1855     // Check to see if we've already emitted this.  This is necessary
1856     // for a couple of reasons: first, decls can end up in the
1857     // deferred-decls queue multiple times, and second, decls can end
1858     // up with definitions in unusual ways (e.g. by an extern inline
1859     // function acquiring a strong function redefinition).  Just
1860     // ignore these cases.
1861     if (!GV->isDeclaration())
1862       continue;
1863 
1864     // Otherwise, emit the definition and move on to the next one.
1865     EmitGlobalDefinition(D, GV);
1866 
1867     // If we found out that we need to emit more decls, do that recursively.
1868     // This has the advantage that the decls are emitted in a DFS and related
1869     // ones are close together, which is convenient for testing.
1870     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1871       EmitDeferred();
1872       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1873     }
1874   }
1875 }
1876 
1877 void CodeGenModule::EmitVTablesOpportunistically() {
1878   // Try to emit external vtables as available_externally if they have emitted
1879   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1880   // is not allowed to create new references to things that need to be emitted
1881   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1882 
1883   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1884          && "Only emit opportunistic vtables with optimizations");
1885 
1886   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1887     assert(getVTables().isVTableExternal(RD) &&
1888            "This queue should only contain external vtables");
1889     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1890       VTables.GenerateClassData(RD);
1891   }
1892   OpportunisticVTables.clear();
1893 }
1894 
1895 void CodeGenModule::EmitGlobalAnnotations() {
1896   if (Annotations.empty())
1897     return;
1898 
1899   // Create a new global variable for the ConstantStruct in the Module.
1900   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1901     Annotations[0]->getType(), Annotations.size()), Annotations);
1902   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1903                                       llvm::GlobalValue::AppendingLinkage,
1904                                       Array, "llvm.global.annotations");
1905   gv->setSection(AnnotationSection);
1906 }
1907 
1908 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1909   llvm::Constant *&AStr = AnnotationStrings[Str];
1910   if (AStr)
1911     return AStr;
1912 
1913   // Not found yet, create a new global.
1914   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1915   auto *gv =
1916       new llvm::GlobalVariable(getModule(), s->getType(), true,
1917                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1918   gv->setSection(AnnotationSection);
1919   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1920   AStr = gv;
1921   return gv;
1922 }
1923 
1924 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1925   SourceManager &SM = getContext().getSourceManager();
1926   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1927   if (PLoc.isValid())
1928     return EmitAnnotationString(PLoc.getFilename());
1929   return EmitAnnotationString(SM.getBufferName(Loc));
1930 }
1931 
1932 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1933   SourceManager &SM = getContext().getSourceManager();
1934   PresumedLoc PLoc = SM.getPresumedLoc(L);
1935   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1936     SM.getExpansionLineNumber(L);
1937   return llvm::ConstantInt::get(Int32Ty, LineNo);
1938 }
1939 
1940 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1941                                                 const AnnotateAttr *AA,
1942                                                 SourceLocation L) {
1943   // Get the globals for file name, annotation, and the line number.
1944   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1945                  *UnitGV = EmitAnnotationUnit(L),
1946                  *LineNoCst = EmitAnnotationLineNo(L);
1947 
1948   // Create the ConstantStruct for the global annotation.
1949   llvm::Constant *Fields[4] = {
1950     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1951     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1952     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1953     LineNoCst
1954   };
1955   return llvm::ConstantStruct::getAnon(Fields);
1956 }
1957 
1958 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1959                                          llvm::GlobalValue *GV) {
1960   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1961   // Get the struct elements for these annotations.
1962   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1963     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1964 }
1965 
1966 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1967                                            llvm::Function *Fn,
1968                                            SourceLocation Loc) const {
1969   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1970   // Blacklist by function name.
1971   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1972     return true;
1973   // Blacklist by location.
1974   if (Loc.isValid())
1975     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1976   // If location is unknown, this may be a compiler-generated function. Assume
1977   // it's located in the main file.
1978   auto &SM = Context.getSourceManager();
1979   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1980     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1981   }
1982   return false;
1983 }
1984 
1985 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1986                                            SourceLocation Loc, QualType Ty,
1987                                            StringRef Category) const {
1988   // For now globals can be blacklisted only in ASan and KASan.
1989   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1990       (SanitizerKind::Address | SanitizerKind::KernelAddress |
1991        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
1992   if (!EnabledAsanMask)
1993     return false;
1994   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1995   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1996     return true;
1997   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1998     return true;
1999   // Check global type.
2000   if (!Ty.isNull()) {
2001     // Drill down the array types: if global variable of a fixed type is
2002     // blacklisted, we also don't instrument arrays of them.
2003     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2004       Ty = AT->getElementType();
2005     Ty = Ty.getCanonicalType().getUnqualifiedType();
2006     // We allow to blacklist only record types (classes, structs etc.)
2007     if (Ty->isRecordType()) {
2008       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2009       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2010         return true;
2011     }
2012   }
2013   return false;
2014 }
2015 
2016 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2017                                    StringRef Category) const {
2018   const auto &XRayFilter = getContext().getXRayFilter();
2019   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2020   auto Attr = ImbueAttr::NONE;
2021   if (Loc.isValid())
2022     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2023   if (Attr == ImbueAttr::NONE)
2024     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2025   switch (Attr) {
2026   case ImbueAttr::NONE:
2027     return false;
2028   case ImbueAttr::ALWAYS:
2029     Fn->addFnAttr("function-instrument", "xray-always");
2030     break;
2031   case ImbueAttr::ALWAYS_ARG1:
2032     Fn->addFnAttr("function-instrument", "xray-always");
2033     Fn->addFnAttr("xray-log-args", "1");
2034     break;
2035   case ImbueAttr::NEVER:
2036     Fn->addFnAttr("function-instrument", "xray-never");
2037     break;
2038   }
2039   return true;
2040 }
2041 
2042 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2043   // Never defer when EmitAllDecls is specified.
2044   if (LangOpts.EmitAllDecls)
2045     return true;
2046 
2047   if (CodeGenOpts.KeepStaticConsts) {
2048     const auto *VD = dyn_cast<VarDecl>(Global);
2049     if (VD && VD->getType().isConstQualified() &&
2050         VD->getStorageDuration() == SD_Static)
2051       return true;
2052   }
2053 
2054   return getContext().DeclMustBeEmitted(Global);
2055 }
2056 
2057 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2058   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
2059     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2060       // Implicit template instantiations may change linkage if they are later
2061       // explicitly instantiated, so they should not be emitted eagerly.
2062       return false;
2063   if (const auto *VD = dyn_cast<VarDecl>(Global))
2064     if (Context.getInlineVariableDefinitionKind(VD) ==
2065         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2066       // A definition of an inline constexpr static data member may change
2067       // linkage later if it's redeclared outside the class.
2068       return false;
2069   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2070   // codegen for global variables, because they may be marked as threadprivate.
2071   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2072       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2073       !isTypeConstant(Global->getType(), false) &&
2074       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2075     return false;
2076 
2077   return true;
2078 }
2079 
2080 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2081     const CXXUuidofExpr* E) {
2082   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2083   // well-formed.
2084   StringRef Uuid = E->getUuidStr();
2085   std::string Name = "_GUID_" + Uuid.lower();
2086   std::replace(Name.begin(), Name.end(), '-', '_');
2087 
2088   // The UUID descriptor should be pointer aligned.
2089   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2090 
2091   // Look for an existing global.
2092   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2093     return ConstantAddress(GV, Alignment);
2094 
2095   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2096   assert(Init && "failed to initialize as constant");
2097 
2098   auto *GV = new llvm::GlobalVariable(
2099       getModule(), Init->getType(),
2100       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2101   if (supportsCOMDAT())
2102     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2103   setDSOLocal(GV);
2104   return ConstantAddress(GV, Alignment);
2105 }
2106 
2107 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2108   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2109   assert(AA && "No alias?");
2110 
2111   CharUnits Alignment = getContext().getDeclAlign(VD);
2112   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2113 
2114   // See if there is already something with the target's name in the module.
2115   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2116   if (Entry) {
2117     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2118     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2119     return ConstantAddress(Ptr, Alignment);
2120   }
2121 
2122   llvm::Constant *Aliasee;
2123   if (isa<llvm::FunctionType>(DeclTy))
2124     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2125                                       GlobalDecl(cast<FunctionDecl>(VD)),
2126                                       /*ForVTable=*/false);
2127   else
2128     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2129                                     llvm::PointerType::getUnqual(DeclTy),
2130                                     nullptr);
2131 
2132   auto *F = cast<llvm::GlobalValue>(Aliasee);
2133   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2134   WeakRefReferences.insert(F);
2135 
2136   return ConstantAddress(Aliasee, Alignment);
2137 }
2138 
2139 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2140   const auto *Global = cast<ValueDecl>(GD.getDecl());
2141 
2142   // Weak references don't produce any output by themselves.
2143   if (Global->hasAttr<WeakRefAttr>())
2144     return;
2145 
2146   // If this is an alias definition (which otherwise looks like a declaration)
2147   // emit it now.
2148   if (Global->hasAttr<AliasAttr>())
2149     return EmitAliasDefinition(GD);
2150 
2151   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2152   if (Global->hasAttr<IFuncAttr>())
2153     return emitIFuncDefinition(GD);
2154 
2155   // If this is a cpu_dispatch multiversion function, emit the resolver.
2156   if (Global->hasAttr<CPUDispatchAttr>())
2157     return emitCPUDispatchDefinition(GD);
2158 
2159   // If this is CUDA, be selective about which declarations we emit.
2160   if (LangOpts.CUDA) {
2161     if (LangOpts.CUDAIsDevice) {
2162       if (!Global->hasAttr<CUDADeviceAttr>() &&
2163           !Global->hasAttr<CUDAGlobalAttr>() &&
2164           !Global->hasAttr<CUDAConstantAttr>() &&
2165           !Global->hasAttr<CUDASharedAttr>())
2166         return;
2167     } else {
2168       // We need to emit host-side 'shadows' for all global
2169       // device-side variables because the CUDA runtime needs their
2170       // size and host-side address in order to provide access to
2171       // their device-side incarnations.
2172 
2173       // So device-only functions are the only things we skip.
2174       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2175           Global->hasAttr<CUDADeviceAttr>())
2176         return;
2177 
2178       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2179              "Expected Variable or Function");
2180     }
2181   }
2182 
2183   if (LangOpts.OpenMP) {
2184     // If this is OpenMP device, check if it is legal to emit this global
2185     // normally.
2186     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2187       return;
2188     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2189       if (MustBeEmitted(Global))
2190         EmitOMPDeclareReduction(DRD);
2191       return;
2192     }
2193   }
2194 
2195   // Ignore declarations, they will be emitted on their first use.
2196   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2197     // Forward declarations are emitted lazily on first use.
2198     if (!FD->doesThisDeclarationHaveABody()) {
2199       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2200         return;
2201 
2202       StringRef MangledName = getMangledName(GD);
2203 
2204       // Compute the function info and LLVM type.
2205       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2206       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2207 
2208       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2209                               /*DontDefer=*/false);
2210       return;
2211     }
2212   } else {
2213     const auto *VD = cast<VarDecl>(Global);
2214     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2215     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2216         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2217       if (LangOpts.OpenMP) {
2218         // Emit declaration of the must-be-emitted declare target variable.
2219         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2220                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2221           if (*Res == OMPDeclareTargetDeclAttr::MT_To) {
2222             (void)GetAddrOfGlobalVar(VD);
2223           } else {
2224             assert(*Res == OMPDeclareTargetDeclAttr::MT_Link &&
2225                    "link claue expected.");
2226             (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2227           }
2228           return;
2229         }
2230       }
2231       // If this declaration may have caused an inline variable definition to
2232       // change linkage, make sure that it's emitted.
2233       if (Context.getInlineVariableDefinitionKind(VD) ==
2234           ASTContext::InlineVariableDefinitionKind::Strong)
2235         GetAddrOfGlobalVar(VD);
2236       return;
2237     }
2238   }
2239 
2240   // Defer code generation to first use when possible, e.g. if this is an inline
2241   // function. If the global must always be emitted, do it eagerly if possible
2242   // to benefit from cache locality.
2243   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2244     // Emit the definition if it can't be deferred.
2245     EmitGlobalDefinition(GD);
2246     return;
2247   }
2248 
2249   // If we're deferring emission of a C++ variable with an
2250   // initializer, remember the order in which it appeared in the file.
2251   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2252       cast<VarDecl>(Global)->hasInit()) {
2253     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2254     CXXGlobalInits.push_back(nullptr);
2255   }
2256 
2257   StringRef MangledName = getMangledName(GD);
2258   if (GetGlobalValue(MangledName) != nullptr) {
2259     // The value has already been used and should therefore be emitted.
2260     addDeferredDeclToEmit(GD);
2261   } else if (MustBeEmitted(Global)) {
2262     // The value must be emitted, but cannot be emitted eagerly.
2263     assert(!MayBeEmittedEagerly(Global));
2264     addDeferredDeclToEmit(GD);
2265   } else {
2266     // Otherwise, remember that we saw a deferred decl with this name.  The
2267     // first use of the mangled name will cause it to move into
2268     // DeferredDeclsToEmit.
2269     DeferredDecls[MangledName] = GD;
2270   }
2271 }
2272 
2273 // Check if T is a class type with a destructor that's not dllimport.
2274 static bool HasNonDllImportDtor(QualType T) {
2275   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2276     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2277       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2278         return true;
2279 
2280   return false;
2281 }
2282 
2283 namespace {
2284   struct FunctionIsDirectlyRecursive :
2285     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2286     const StringRef Name;
2287     const Builtin::Context &BI;
2288     bool Result;
2289     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2290       Name(N), BI(C), Result(false) {
2291     }
2292     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2293 
2294     bool TraverseCallExpr(CallExpr *E) {
2295       const FunctionDecl *FD = E->getDirectCallee();
2296       if (!FD)
2297         return true;
2298       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2299       if (Attr && Name == Attr->getLabel()) {
2300         Result = true;
2301         return false;
2302       }
2303       unsigned BuiltinID = FD->getBuiltinID();
2304       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2305         return true;
2306       StringRef BuiltinName = BI.getName(BuiltinID);
2307       if (BuiltinName.startswith("__builtin_") &&
2308           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2309         Result = true;
2310         return false;
2311       }
2312       return true;
2313     }
2314   };
2315 
2316   // Make sure we're not referencing non-imported vars or functions.
2317   struct DLLImportFunctionVisitor
2318       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2319     bool SafeToInline = true;
2320 
2321     bool shouldVisitImplicitCode() const { return true; }
2322 
2323     bool VisitVarDecl(VarDecl *VD) {
2324       if (VD->getTLSKind()) {
2325         // A thread-local variable cannot be imported.
2326         SafeToInline = false;
2327         return SafeToInline;
2328       }
2329 
2330       // A variable definition might imply a destructor call.
2331       if (VD->isThisDeclarationADefinition())
2332         SafeToInline = !HasNonDllImportDtor(VD->getType());
2333 
2334       return SafeToInline;
2335     }
2336 
2337     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2338       if (const auto *D = E->getTemporary()->getDestructor())
2339         SafeToInline = D->hasAttr<DLLImportAttr>();
2340       return SafeToInline;
2341     }
2342 
2343     bool VisitDeclRefExpr(DeclRefExpr *E) {
2344       ValueDecl *VD = E->getDecl();
2345       if (isa<FunctionDecl>(VD))
2346         SafeToInline = VD->hasAttr<DLLImportAttr>();
2347       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2348         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2349       return SafeToInline;
2350     }
2351 
2352     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2353       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2354       return SafeToInline;
2355     }
2356 
2357     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2358       CXXMethodDecl *M = E->getMethodDecl();
2359       if (!M) {
2360         // Call through a pointer to member function. This is safe to inline.
2361         SafeToInline = true;
2362       } else {
2363         SafeToInline = M->hasAttr<DLLImportAttr>();
2364       }
2365       return SafeToInline;
2366     }
2367 
2368     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2369       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2370       return SafeToInline;
2371     }
2372 
2373     bool VisitCXXNewExpr(CXXNewExpr *E) {
2374       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2375       return SafeToInline;
2376     }
2377   };
2378 }
2379 
2380 // isTriviallyRecursive - Check if this function calls another
2381 // decl that, because of the asm attribute or the other decl being a builtin,
2382 // ends up pointing to itself.
2383 bool
2384 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2385   StringRef Name;
2386   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2387     // asm labels are a special kind of mangling we have to support.
2388     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2389     if (!Attr)
2390       return false;
2391     Name = Attr->getLabel();
2392   } else {
2393     Name = FD->getName();
2394   }
2395 
2396   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2397   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2398   return Walker.Result;
2399 }
2400 
2401 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2402   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2403     return true;
2404   const auto *F = cast<FunctionDecl>(GD.getDecl());
2405   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2406     return false;
2407 
2408   if (F->hasAttr<DLLImportAttr>()) {
2409     // Check whether it would be safe to inline this dllimport function.
2410     DLLImportFunctionVisitor Visitor;
2411     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2412     if (!Visitor.SafeToInline)
2413       return false;
2414 
2415     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2416       // Implicit destructor invocations aren't captured in the AST, so the
2417       // check above can't see them. Check for them manually here.
2418       for (const Decl *Member : Dtor->getParent()->decls())
2419         if (isa<FieldDecl>(Member))
2420           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2421             return false;
2422       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2423         if (HasNonDllImportDtor(B.getType()))
2424           return false;
2425     }
2426   }
2427 
2428   // PR9614. Avoid cases where the source code is lying to us. An available
2429   // externally function should have an equivalent function somewhere else,
2430   // but a function that calls itself is clearly not equivalent to the real
2431   // implementation.
2432   // This happens in glibc's btowc and in some configure checks.
2433   return !isTriviallyRecursive(F);
2434 }
2435 
2436 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2437   return CodeGenOpts.OptimizationLevel > 0;
2438 }
2439 
2440 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2441                                                        llvm::GlobalValue *GV) {
2442   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2443 
2444   if (FD->isCPUSpecificMultiVersion()) {
2445     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2446     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2447       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2448     // Requires multiple emits.
2449   } else
2450     EmitGlobalFunctionDefinition(GD, GV);
2451 }
2452 
2453 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2454   const auto *D = cast<ValueDecl>(GD.getDecl());
2455 
2456   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2457                                  Context.getSourceManager(),
2458                                  "Generating code for declaration");
2459 
2460   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2461     // At -O0, don't generate IR for functions with available_externally
2462     // linkage.
2463     if (!shouldEmitFunction(GD))
2464       return;
2465 
2466     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2467       // Make sure to emit the definition(s) before we emit the thunks.
2468       // This is necessary for the generation of certain thunks.
2469       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2470         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2471       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2472         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2473       else if (FD->isMultiVersion())
2474         EmitMultiVersionFunctionDefinition(GD, GV);
2475       else
2476         EmitGlobalFunctionDefinition(GD, GV);
2477 
2478       if (Method->isVirtual())
2479         getVTables().EmitThunks(GD);
2480 
2481       return;
2482     }
2483 
2484     if (FD->isMultiVersion())
2485       return EmitMultiVersionFunctionDefinition(GD, GV);
2486     return EmitGlobalFunctionDefinition(GD, GV);
2487   }
2488 
2489   if (const auto *VD = dyn_cast<VarDecl>(D))
2490     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2491 
2492   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2493 }
2494 
2495 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2496                                                       llvm::Function *NewFn);
2497 
2498 static unsigned
2499 TargetMVPriority(const TargetInfo &TI,
2500                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2501   unsigned Priority = 0;
2502   for (StringRef Feat : RO.Conditions.Features)
2503     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2504 
2505   if (!RO.Conditions.Architecture.empty())
2506     Priority = std::max(
2507         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2508   return Priority;
2509 }
2510 
2511 void CodeGenModule::emitMultiVersionFunctions() {
2512   for (GlobalDecl GD : MultiVersionFuncs) {
2513     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2514     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2515     getContext().forEachMultiversionedFunctionVersion(
2516         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2517           GlobalDecl CurGD{
2518               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2519           StringRef MangledName = getMangledName(CurGD);
2520           llvm::Constant *Func = GetGlobalValue(MangledName);
2521           if (!Func) {
2522             if (CurFD->isDefined()) {
2523               EmitGlobalFunctionDefinition(CurGD, nullptr);
2524               Func = GetGlobalValue(MangledName);
2525             } else {
2526               const CGFunctionInfo &FI =
2527                   getTypes().arrangeGlobalDeclaration(GD);
2528               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2529               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2530                                        /*DontDefer=*/false, ForDefinition);
2531             }
2532             assert(Func && "This should have just been created");
2533           }
2534 
2535           const auto *TA = CurFD->getAttr<TargetAttr>();
2536           llvm::SmallVector<StringRef, 8> Feats;
2537           TA->getAddedFeatures(Feats);
2538 
2539           Options.emplace_back(cast<llvm::Function>(Func),
2540                                TA->getArchitecture(), Feats);
2541         });
2542 
2543     llvm::Function *ResolverFunc;
2544     const TargetInfo &TI = getTarget();
2545 
2546     if (TI.supportsIFunc() || FD->isTargetMultiVersion())
2547       ResolverFunc = cast<llvm::Function>(
2548           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2549     else
2550       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2551 
2552     if (supportsCOMDAT())
2553       ResolverFunc->setComdat(
2554           getModule().getOrInsertComdat(ResolverFunc->getName()));
2555 
2556     std::stable_sort(
2557         Options.begin(), Options.end(),
2558         [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2559               const CodeGenFunction::MultiVersionResolverOption &RHS) {
2560           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2561         });
2562     CodeGenFunction CGF(*this);
2563     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2564   }
2565 }
2566 
2567 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2568   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2569   assert(FD && "Not a FunctionDecl?");
2570   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2571   assert(DD && "Not a cpu_dispatch Function?");
2572   QualType CanonTy = Context.getCanonicalType(FD->getType());
2573   llvm::Type *DeclTy = getTypes().ConvertFunctionType(CanonTy, FD);
2574 
2575   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2576     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2577     DeclTy = getTypes().GetFunctionType(FInfo);
2578   }
2579 
2580   StringRef ResolverName = getMangledName(GD);
2581 
2582   llvm::Type *ResolverType;
2583   GlobalDecl ResolverGD;
2584   if (getTarget().supportsIFunc())
2585     ResolverType = llvm::FunctionType::get(
2586         llvm::PointerType::get(DeclTy,
2587                                Context.getTargetAddressSpace(FD->getType())),
2588         false);
2589   else {
2590     ResolverType = DeclTy;
2591     ResolverGD = GD;
2592   }
2593 
2594   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2595       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2596 
2597   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2598   const TargetInfo &Target = getTarget();
2599   unsigned Index = 0;
2600   for (const IdentifierInfo *II : DD->cpus()) {
2601     // Get the name of the target function so we can look it up/create it.
2602     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2603                               getCPUSpecificMangling(*this, II->getName());
2604 
2605     llvm::Constant *Func = GetGlobalValue(MangledName);
2606 
2607     if (!Func) {
2608       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2609       if (ExistingDecl.getDecl() &&
2610           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2611         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2612         Func = GetGlobalValue(MangledName);
2613       } else {
2614         if (!ExistingDecl.getDecl())
2615           ExistingDecl = GD.getWithMultiVersionIndex(Index);
2616 
2617       Func = GetOrCreateLLVMFunction(
2618           MangledName, DeclTy, ExistingDecl,
2619           /*ForVTable=*/false, /*DontDefer=*/true,
2620           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2621       }
2622     }
2623 
2624     llvm::SmallVector<StringRef, 32> Features;
2625     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2626     llvm::transform(Features, Features.begin(),
2627                     [](StringRef Str) { return Str.substr(1); });
2628     Features.erase(std::remove_if(
2629         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2630           return !Target.validateCpuSupports(Feat);
2631         }), Features.end());
2632     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2633     ++Index;
2634   }
2635 
2636   llvm::sort(
2637       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2638                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
2639         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2640                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2641       });
2642 
2643   // If the list contains multiple 'default' versions, such as when it contains
2644   // 'pentium' and 'generic', don't emit the call to the generic one (since we
2645   // always run on at least a 'pentium'). We do this by deleting the 'least
2646   // advanced' (read, lowest mangling letter).
2647   while (Options.size() > 1 &&
2648          CodeGenFunction::GetX86CpuSupportsMask(
2649              (Options.end() - 2)->Conditions.Features) == 0) {
2650     StringRef LHSName = (Options.end() - 2)->Function->getName();
2651     StringRef RHSName = (Options.end() - 1)->Function->getName();
2652     if (LHSName.compare(RHSName) < 0)
2653       Options.erase(Options.end() - 2);
2654     else
2655       Options.erase(Options.end() - 1);
2656   }
2657 
2658   CodeGenFunction CGF(*this);
2659   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2660 }
2661 
2662 /// If a dispatcher for the specified mangled name is not in the module, create
2663 /// and return an llvm Function with the specified type.
2664 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
2665     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
2666   std::string MangledName =
2667       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
2668 
2669   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
2670   // a separate resolver).
2671   std::string ResolverName = MangledName;
2672   if (getTarget().supportsIFunc())
2673     ResolverName += ".ifunc";
2674   else if (FD->isTargetMultiVersion())
2675     ResolverName += ".resolver";
2676 
2677   // If this already exists, just return that one.
2678   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
2679     return ResolverGV;
2680 
2681   // Since this is the first time we've created this IFunc, make sure
2682   // that we put this multiversioned function into the list to be
2683   // replaced later if necessary (target multiversioning only).
2684   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
2685     MultiVersionFuncs.push_back(GD);
2686 
2687   if (getTarget().supportsIFunc()) {
2688     llvm::Type *ResolverType = llvm::FunctionType::get(
2689         llvm::PointerType::get(
2690             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
2691         false);
2692     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2693         MangledName + ".resolver", ResolverType, GlobalDecl{},
2694         /*ForVTable=*/false);
2695     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2696         DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2697     GIF->setName(ResolverName);
2698     SetCommonAttributes(FD, GIF);
2699 
2700     return GIF;
2701   }
2702 
2703   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2704       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
2705   assert(isa<llvm::GlobalValue>(Resolver) &&
2706          "Resolver should be created for the first time");
2707   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
2708   return Resolver;
2709 }
2710 
2711 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2712 /// module, create and return an llvm Function with the specified type. If there
2713 /// is something in the module with the specified name, return it potentially
2714 /// bitcasted to the right type.
2715 ///
2716 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2717 /// to set the attributes on the function when it is first created.
2718 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2719     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2720     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2721     ForDefinition_t IsForDefinition) {
2722   const Decl *D = GD.getDecl();
2723 
2724   // Any attempts to use a MultiVersion function should result in retrieving
2725   // the iFunc instead. Name Mangling will handle the rest of the changes.
2726   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2727     // For the device mark the function as one that should be emitted.
2728     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2729         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2730         !DontDefer && !IsForDefinition) {
2731       if (const FunctionDecl *FDDef = FD->getDefinition()) {
2732         GlobalDecl GDDef;
2733         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2734           GDDef = GlobalDecl(CD, GD.getCtorType());
2735         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2736           GDDef = GlobalDecl(DD, GD.getDtorType());
2737         else
2738           GDDef = GlobalDecl(FDDef);
2739         EmitGlobal(GDDef);
2740       }
2741     }
2742 
2743     if (FD->isMultiVersion()) {
2744       const auto *TA = FD->getAttr<TargetAttr>();
2745       if (TA && TA->isDefaultVersion())
2746         UpdateMultiVersionNames(GD, FD);
2747       if (!IsForDefinition)
2748         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
2749     }
2750   }
2751 
2752   // Lookup the entry, lazily creating it if necessary.
2753   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2754   if (Entry) {
2755     if (WeakRefReferences.erase(Entry)) {
2756       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2757       if (FD && !FD->hasAttr<WeakAttr>())
2758         Entry->setLinkage(llvm::Function::ExternalLinkage);
2759     }
2760 
2761     // Handle dropped DLL attributes.
2762     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2763       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2764       setDSOLocal(Entry);
2765     }
2766 
2767     // If there are two attempts to define the same mangled name, issue an
2768     // error.
2769     if (IsForDefinition && !Entry->isDeclaration()) {
2770       GlobalDecl OtherGD;
2771       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2772       // to make sure that we issue an error only once.
2773       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2774           (GD.getCanonicalDecl().getDecl() !=
2775            OtherGD.getCanonicalDecl().getDecl()) &&
2776           DiagnosedConflictingDefinitions.insert(GD).second) {
2777         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2778             << MangledName;
2779         getDiags().Report(OtherGD.getDecl()->getLocation(),
2780                           diag::note_previous_definition);
2781       }
2782     }
2783 
2784     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2785         (Entry->getType()->getElementType() == Ty)) {
2786       return Entry;
2787     }
2788 
2789     // Make sure the result is of the correct type.
2790     // (If function is requested for a definition, we always need to create a new
2791     // function, not just return a bitcast.)
2792     if (!IsForDefinition)
2793       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2794   }
2795 
2796   // This function doesn't have a complete type (for example, the return
2797   // type is an incomplete struct). Use a fake type instead, and make
2798   // sure not to try to set attributes.
2799   bool IsIncompleteFunction = false;
2800 
2801   llvm::FunctionType *FTy;
2802   if (isa<llvm::FunctionType>(Ty)) {
2803     FTy = cast<llvm::FunctionType>(Ty);
2804   } else {
2805     FTy = llvm::FunctionType::get(VoidTy, false);
2806     IsIncompleteFunction = true;
2807   }
2808 
2809   llvm::Function *F =
2810       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2811                              Entry ? StringRef() : MangledName, &getModule());
2812 
2813   // If we already created a function with the same mangled name (but different
2814   // type) before, take its name and add it to the list of functions to be
2815   // replaced with F at the end of CodeGen.
2816   //
2817   // This happens if there is a prototype for a function (e.g. "int f()") and
2818   // then a definition of a different type (e.g. "int f(int x)").
2819   if (Entry) {
2820     F->takeName(Entry);
2821 
2822     // This might be an implementation of a function without a prototype, in
2823     // which case, try to do special replacement of calls which match the new
2824     // prototype.  The really key thing here is that we also potentially drop
2825     // arguments from the call site so as to make a direct call, which makes the
2826     // inliner happier and suppresses a number of optimizer warnings (!) about
2827     // dropping arguments.
2828     if (!Entry->use_empty()) {
2829       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2830       Entry->removeDeadConstantUsers();
2831     }
2832 
2833     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2834         F, Entry->getType()->getElementType()->getPointerTo());
2835     addGlobalValReplacement(Entry, BC);
2836   }
2837 
2838   assert(F->getName() == MangledName && "name was uniqued!");
2839   if (D)
2840     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2841   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2842     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2843     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2844   }
2845 
2846   if (!DontDefer) {
2847     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2848     // each other bottoming out with the base dtor.  Therefore we emit non-base
2849     // dtors on usage, even if there is no dtor definition in the TU.
2850     if (D && isa<CXXDestructorDecl>(D) &&
2851         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2852                                            GD.getDtorType()))
2853       addDeferredDeclToEmit(GD);
2854 
2855     // This is the first use or definition of a mangled name.  If there is a
2856     // deferred decl with this name, remember that we need to emit it at the end
2857     // of the file.
2858     auto DDI = DeferredDecls.find(MangledName);
2859     if (DDI != DeferredDecls.end()) {
2860       // Move the potentially referenced deferred decl to the
2861       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2862       // don't need it anymore).
2863       addDeferredDeclToEmit(DDI->second);
2864       DeferredDecls.erase(DDI);
2865 
2866       // Otherwise, there are cases we have to worry about where we're
2867       // using a declaration for which we must emit a definition but where
2868       // we might not find a top-level definition:
2869       //   - member functions defined inline in their classes
2870       //   - friend functions defined inline in some class
2871       //   - special member functions with implicit definitions
2872       // If we ever change our AST traversal to walk into class methods,
2873       // this will be unnecessary.
2874       //
2875       // We also don't emit a definition for a function if it's going to be an
2876       // entry in a vtable, unless it's already marked as used.
2877     } else if (getLangOpts().CPlusPlus && D) {
2878       // Look for a declaration that's lexically in a record.
2879       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2880            FD = FD->getPreviousDecl()) {
2881         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2882           if (FD->doesThisDeclarationHaveABody()) {
2883             addDeferredDeclToEmit(GD.getWithDecl(FD));
2884             break;
2885           }
2886         }
2887       }
2888     }
2889   }
2890 
2891   // Make sure the result is of the requested type.
2892   if (!IsIncompleteFunction) {
2893     assert(F->getType()->getElementType() == Ty);
2894     return F;
2895   }
2896 
2897   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2898   return llvm::ConstantExpr::getBitCast(F, PTy);
2899 }
2900 
2901 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2902 /// non-null, then this function will use the specified type if it has to
2903 /// create it (this occurs when we see a definition of the function).
2904 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2905                                                  llvm::Type *Ty,
2906                                                  bool ForVTable,
2907                                                  bool DontDefer,
2908                                               ForDefinition_t IsForDefinition) {
2909   // If there was no specific requested type, just convert it now.
2910   if (!Ty) {
2911     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2912     auto CanonTy = Context.getCanonicalType(FD->getType());
2913     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2914   }
2915 
2916   // Devirtualized destructor calls may come through here instead of via
2917   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2918   // of the complete destructor when necessary.
2919   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2920     if (getTarget().getCXXABI().isMicrosoft() &&
2921         GD.getDtorType() == Dtor_Complete &&
2922         DD->getParent()->getNumVBases() == 0)
2923       GD = GlobalDecl(DD, Dtor_Base);
2924   }
2925 
2926   StringRef MangledName = getMangledName(GD);
2927   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2928                                  /*IsThunk=*/false, llvm::AttributeList(),
2929                                  IsForDefinition);
2930 }
2931 
2932 static const FunctionDecl *
2933 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2934   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2935   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2936 
2937   IdentifierInfo &CII = C.Idents.get(Name);
2938   for (const auto &Result : DC->lookup(&CII))
2939     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2940       return FD;
2941 
2942   if (!C.getLangOpts().CPlusPlus)
2943     return nullptr;
2944 
2945   // Demangle the premangled name from getTerminateFn()
2946   IdentifierInfo &CXXII =
2947       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2948           ? C.Idents.get("terminate")
2949           : C.Idents.get(Name);
2950 
2951   for (const auto &N : {"__cxxabiv1", "std"}) {
2952     IdentifierInfo &NS = C.Idents.get(N);
2953     for (const auto &Result : DC->lookup(&NS)) {
2954       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2955       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2956         for (const auto &Result : LSD->lookup(&NS))
2957           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2958             break;
2959 
2960       if (ND)
2961         for (const auto &Result : ND->lookup(&CXXII))
2962           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2963             return FD;
2964     }
2965   }
2966 
2967   return nullptr;
2968 }
2969 
2970 /// CreateRuntimeFunction - Create a new runtime function with the specified
2971 /// type and name.
2972 llvm::Constant *
2973 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2974                                      llvm::AttributeList ExtraAttrs,
2975                                      bool Local) {
2976   llvm::Constant *C =
2977       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2978                               /*DontDefer=*/false, /*IsThunk=*/false,
2979                               ExtraAttrs);
2980 
2981   if (auto *F = dyn_cast<llvm::Function>(C)) {
2982     if (F->empty()) {
2983       F->setCallingConv(getRuntimeCC());
2984 
2985       if (!Local && getTriple().isOSBinFormatCOFF() &&
2986           !getCodeGenOpts().LTOVisibilityPublicStd &&
2987           !getTriple().isWindowsGNUEnvironment()) {
2988         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2989         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2990           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2991           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2992         }
2993       }
2994       setDSOLocal(F);
2995     }
2996   }
2997 
2998   return C;
2999 }
3000 
3001 /// CreateBuiltinFunction - Create a new builtin function with the specified
3002 /// type and name.
3003 llvm::Constant *
3004 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
3005                                      llvm::AttributeList ExtraAttrs) {
3006   return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true);
3007 }
3008 
3009 /// isTypeConstant - Determine whether an object of this type can be emitted
3010 /// as a constant.
3011 ///
3012 /// If ExcludeCtor is true, the duration when the object's constructor runs
3013 /// will not be considered. The caller will need to verify that the object is
3014 /// not written to during its construction.
3015 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3016   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3017     return false;
3018 
3019   if (Context.getLangOpts().CPlusPlus) {
3020     if (const CXXRecordDecl *Record
3021           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3022       return ExcludeCtor && !Record->hasMutableFields() &&
3023              Record->hasTrivialDestructor();
3024   }
3025 
3026   return true;
3027 }
3028 
3029 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3030 /// create and return an llvm GlobalVariable with the specified type.  If there
3031 /// is something in the module with the specified name, return it potentially
3032 /// bitcasted to the right type.
3033 ///
3034 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3035 /// to set the attributes on the global when it is first created.
3036 ///
3037 /// If IsForDefinition is true, it is guaranteed that an actual global with
3038 /// type Ty will be returned, not conversion of a variable with the same
3039 /// mangled name but some other type.
3040 llvm::Constant *
3041 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3042                                      llvm::PointerType *Ty,
3043                                      const VarDecl *D,
3044                                      ForDefinition_t IsForDefinition) {
3045   // Lookup the entry, lazily creating it if necessary.
3046   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3047   if (Entry) {
3048     if (WeakRefReferences.erase(Entry)) {
3049       if (D && !D->hasAttr<WeakAttr>())
3050         Entry->setLinkage(llvm::Function::ExternalLinkage);
3051     }
3052 
3053     // Handle dropped DLL attributes.
3054     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3055       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3056 
3057     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3058       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3059 
3060     if (Entry->getType() == Ty)
3061       return Entry;
3062 
3063     // If there are two attempts to define the same mangled name, issue an
3064     // error.
3065     if (IsForDefinition && !Entry->isDeclaration()) {
3066       GlobalDecl OtherGD;
3067       const VarDecl *OtherD;
3068 
3069       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3070       // to make sure that we issue an error only once.
3071       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3072           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3073           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3074           OtherD->hasInit() &&
3075           DiagnosedConflictingDefinitions.insert(D).second) {
3076         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3077             << MangledName;
3078         getDiags().Report(OtherGD.getDecl()->getLocation(),
3079                           diag::note_previous_definition);
3080       }
3081     }
3082 
3083     // Make sure the result is of the correct type.
3084     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3085       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3086 
3087     // (If global is requested for a definition, we always need to create a new
3088     // global, not just return a bitcast.)
3089     if (!IsForDefinition)
3090       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3091   }
3092 
3093   auto AddrSpace = GetGlobalVarAddressSpace(D);
3094   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3095 
3096   auto *GV = new llvm::GlobalVariable(
3097       getModule(), Ty->getElementType(), false,
3098       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3099       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3100 
3101   // If we already created a global with the same mangled name (but different
3102   // type) before, take its name and remove it from its parent.
3103   if (Entry) {
3104     GV->takeName(Entry);
3105 
3106     if (!Entry->use_empty()) {
3107       llvm::Constant *NewPtrForOldDecl =
3108           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3109       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3110     }
3111 
3112     Entry->eraseFromParent();
3113   }
3114 
3115   // This is the first use or definition of a mangled name.  If there is a
3116   // deferred decl with this name, remember that we need to emit it at the end
3117   // of the file.
3118   auto DDI = DeferredDecls.find(MangledName);
3119   if (DDI != DeferredDecls.end()) {
3120     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3121     // list, and remove it from DeferredDecls (since we don't need it anymore).
3122     addDeferredDeclToEmit(DDI->second);
3123     DeferredDecls.erase(DDI);
3124   }
3125 
3126   // Handle things which are present even on external declarations.
3127   if (D) {
3128     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3129       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3130 
3131     // FIXME: This code is overly simple and should be merged with other global
3132     // handling.
3133     GV->setConstant(isTypeConstant(D->getType(), false));
3134 
3135     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3136 
3137     setLinkageForGV(GV, D);
3138 
3139     if (D->getTLSKind()) {
3140       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3141         CXXThreadLocals.push_back(D);
3142       setTLSMode(GV, *D);
3143     }
3144 
3145     setGVProperties(GV, D);
3146 
3147     // If required by the ABI, treat declarations of static data members with
3148     // inline initializers as definitions.
3149     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3150       EmitGlobalVarDefinition(D);
3151     }
3152 
3153     // Emit section information for extern variables.
3154     if (D->hasExternalStorage()) {
3155       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3156         GV->setSection(SA->getName());
3157     }
3158 
3159     // Handle XCore specific ABI requirements.
3160     if (getTriple().getArch() == llvm::Triple::xcore &&
3161         D->getLanguageLinkage() == CLanguageLinkage &&
3162         D->getType().isConstant(Context) &&
3163         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3164       GV->setSection(".cp.rodata");
3165 
3166     // Check if we a have a const declaration with an initializer, we may be
3167     // able to emit it as available_externally to expose it's value to the
3168     // optimizer.
3169     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3170         D->getType().isConstQualified() && !GV->hasInitializer() &&
3171         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3172       const auto *Record =
3173           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3174       bool HasMutableFields = Record && Record->hasMutableFields();
3175       if (!HasMutableFields) {
3176         const VarDecl *InitDecl;
3177         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3178         if (InitExpr) {
3179           ConstantEmitter emitter(*this);
3180           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3181           if (Init) {
3182             auto *InitType = Init->getType();
3183             if (GV->getType()->getElementType() != InitType) {
3184               // The type of the initializer does not match the definition.
3185               // This happens when an initializer has a different type from
3186               // the type of the global (because of padding at the end of a
3187               // structure for instance).
3188               GV->setName(StringRef());
3189               // Make a new global with the correct type, this is now guaranteed
3190               // to work.
3191               auto *NewGV = cast<llvm::GlobalVariable>(
3192                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3193 
3194               // Erase the old global, since it is no longer used.
3195               GV->eraseFromParent();
3196               GV = NewGV;
3197             } else {
3198               GV->setInitializer(Init);
3199               GV->setConstant(true);
3200               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3201             }
3202             emitter.finalize(GV);
3203           }
3204         }
3205       }
3206     }
3207   }
3208 
3209   LangAS ExpectedAS =
3210       D ? D->getType().getAddressSpace()
3211         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3212   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3213          Ty->getPointerAddressSpace());
3214   if (AddrSpace != ExpectedAS)
3215     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3216                                                        ExpectedAS, Ty);
3217 
3218   return GV;
3219 }
3220 
3221 llvm::Constant *
3222 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3223                                ForDefinition_t IsForDefinition) {
3224   const Decl *D = GD.getDecl();
3225   if (isa<CXXConstructorDecl>(D))
3226     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
3227                                 getFromCtorType(GD.getCtorType()),
3228                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3229                                 /*DontDefer=*/false, IsForDefinition);
3230   else if (isa<CXXDestructorDecl>(D))
3231     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
3232                                 getFromDtorType(GD.getDtorType()),
3233                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3234                                 /*DontDefer=*/false, IsForDefinition);
3235   else if (isa<CXXMethodDecl>(D)) {
3236     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3237         cast<CXXMethodDecl>(D));
3238     auto Ty = getTypes().GetFunctionType(*FInfo);
3239     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3240                              IsForDefinition);
3241   } else if (isa<FunctionDecl>(D)) {
3242     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3243     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3244     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3245                              IsForDefinition);
3246   } else
3247     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3248                               IsForDefinition);
3249 }
3250 
3251 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3252     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3253     unsigned Alignment) {
3254   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3255   llvm::GlobalVariable *OldGV = nullptr;
3256 
3257   if (GV) {
3258     // Check if the variable has the right type.
3259     if (GV->getType()->getElementType() == Ty)
3260       return GV;
3261 
3262     // Because C++ name mangling, the only way we can end up with an already
3263     // existing global with the same name is if it has been declared extern "C".
3264     assert(GV->isDeclaration() && "Declaration has wrong type!");
3265     OldGV = GV;
3266   }
3267 
3268   // Create a new variable.
3269   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3270                                 Linkage, nullptr, Name);
3271 
3272   if (OldGV) {
3273     // Replace occurrences of the old variable if needed.
3274     GV->takeName(OldGV);
3275 
3276     if (!OldGV->use_empty()) {
3277       llvm::Constant *NewPtrForOldDecl =
3278       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3279       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3280     }
3281 
3282     OldGV->eraseFromParent();
3283   }
3284 
3285   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3286       !GV->hasAvailableExternallyLinkage())
3287     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3288 
3289   GV->setAlignment(Alignment);
3290 
3291   return GV;
3292 }
3293 
3294 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3295 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3296 /// then it will be created with the specified type instead of whatever the
3297 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3298 /// that an actual global with type Ty will be returned, not conversion of a
3299 /// variable with the same mangled name but some other type.
3300 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3301                                                   llvm::Type *Ty,
3302                                            ForDefinition_t IsForDefinition) {
3303   assert(D->hasGlobalStorage() && "Not a global variable");
3304   QualType ASTTy = D->getType();
3305   if (!Ty)
3306     Ty = getTypes().ConvertTypeForMem(ASTTy);
3307 
3308   llvm::PointerType *PTy =
3309     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3310 
3311   StringRef MangledName = getMangledName(D);
3312   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3313 }
3314 
3315 /// CreateRuntimeVariable - Create a new runtime global variable with the
3316 /// specified type and name.
3317 llvm::Constant *
3318 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3319                                      StringRef Name) {
3320   auto *Ret =
3321       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3322   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3323   return Ret;
3324 }
3325 
3326 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3327   assert(!D->getInit() && "Cannot emit definite definitions here!");
3328 
3329   StringRef MangledName = getMangledName(D);
3330   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3331 
3332   // We already have a definition, not declaration, with the same mangled name.
3333   // Emitting of declaration is not required (and actually overwrites emitted
3334   // definition).
3335   if (GV && !GV->isDeclaration())
3336     return;
3337 
3338   // If we have not seen a reference to this variable yet, place it into the
3339   // deferred declarations table to be emitted if needed later.
3340   if (!MustBeEmitted(D) && !GV) {
3341       DeferredDecls[MangledName] = D;
3342       return;
3343   }
3344 
3345   // The tentative definition is the only definition.
3346   EmitGlobalVarDefinition(D);
3347 }
3348 
3349 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3350   return Context.toCharUnitsFromBits(
3351       getDataLayout().getTypeStoreSizeInBits(Ty));
3352 }
3353 
3354 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3355   LangAS AddrSpace = LangAS::Default;
3356   if (LangOpts.OpenCL) {
3357     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3358     assert(AddrSpace == LangAS::opencl_global ||
3359            AddrSpace == LangAS::opencl_constant ||
3360            AddrSpace == LangAS::opencl_local ||
3361            AddrSpace >= LangAS::FirstTargetAddressSpace);
3362     return AddrSpace;
3363   }
3364 
3365   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3366     if (D && D->hasAttr<CUDAConstantAttr>())
3367       return LangAS::cuda_constant;
3368     else if (D && D->hasAttr<CUDASharedAttr>())
3369       return LangAS::cuda_shared;
3370     else if (D && D->hasAttr<CUDADeviceAttr>())
3371       return LangAS::cuda_device;
3372     else if (D && D->getType().isConstQualified())
3373       return LangAS::cuda_constant;
3374     else
3375       return LangAS::cuda_device;
3376   }
3377 
3378   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3379 }
3380 
3381 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3382   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3383   if (LangOpts.OpenCL)
3384     return LangAS::opencl_constant;
3385   if (auto AS = getTarget().getConstantAddressSpace())
3386     return AS.getValue();
3387   return LangAS::Default;
3388 }
3389 
3390 // In address space agnostic languages, string literals are in default address
3391 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3392 // emitted in constant address space in LLVM IR. To be consistent with other
3393 // parts of AST, string literal global variables in constant address space
3394 // need to be casted to default address space before being put into address
3395 // map and referenced by other part of CodeGen.
3396 // In OpenCL, string literals are in constant address space in AST, therefore
3397 // they should not be casted to default address space.
3398 static llvm::Constant *
3399 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3400                                        llvm::GlobalVariable *GV) {
3401   llvm::Constant *Cast = GV;
3402   if (!CGM.getLangOpts().OpenCL) {
3403     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3404       if (AS != LangAS::Default)
3405         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3406             CGM, GV, AS.getValue(), LangAS::Default,
3407             GV->getValueType()->getPointerTo(
3408                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3409     }
3410   }
3411   return Cast;
3412 }
3413 
3414 template<typename SomeDecl>
3415 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3416                                                llvm::GlobalValue *GV) {
3417   if (!getLangOpts().CPlusPlus)
3418     return;
3419 
3420   // Must have 'used' attribute, or else inline assembly can't rely on
3421   // the name existing.
3422   if (!D->template hasAttr<UsedAttr>())
3423     return;
3424 
3425   // Must have internal linkage and an ordinary name.
3426   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3427     return;
3428 
3429   // Must be in an extern "C" context. Entities declared directly within
3430   // a record are not extern "C" even if the record is in such a context.
3431   const SomeDecl *First = D->getFirstDecl();
3432   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3433     return;
3434 
3435   // OK, this is an internal linkage entity inside an extern "C" linkage
3436   // specification. Make a note of that so we can give it the "expected"
3437   // mangled name if nothing else is using that name.
3438   std::pair<StaticExternCMap::iterator, bool> R =
3439       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3440 
3441   // If we have multiple internal linkage entities with the same name
3442   // in extern "C" regions, none of them gets that name.
3443   if (!R.second)
3444     R.first->second = nullptr;
3445 }
3446 
3447 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3448   if (!CGM.supportsCOMDAT())
3449     return false;
3450 
3451   if (D.hasAttr<SelectAnyAttr>())
3452     return true;
3453 
3454   GVALinkage Linkage;
3455   if (auto *VD = dyn_cast<VarDecl>(&D))
3456     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3457   else
3458     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3459 
3460   switch (Linkage) {
3461   case GVA_Internal:
3462   case GVA_AvailableExternally:
3463   case GVA_StrongExternal:
3464     return false;
3465   case GVA_DiscardableODR:
3466   case GVA_StrongODR:
3467     return true;
3468   }
3469   llvm_unreachable("No such linkage");
3470 }
3471 
3472 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3473                                           llvm::GlobalObject &GO) {
3474   if (!shouldBeInCOMDAT(*this, D))
3475     return;
3476   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3477 }
3478 
3479 /// Pass IsTentative as true if you want to create a tentative definition.
3480 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3481                                             bool IsTentative) {
3482   // OpenCL global variables of sampler type are translated to function calls,
3483   // therefore no need to be translated.
3484   QualType ASTTy = D->getType();
3485   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3486     return;
3487 
3488   // If this is OpenMP device, check if it is legal to emit this global
3489   // normally.
3490   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3491       OpenMPRuntime->emitTargetGlobalVariable(D))
3492     return;
3493 
3494   llvm::Constant *Init = nullptr;
3495   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3496   bool NeedsGlobalCtor = false;
3497   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3498 
3499   const VarDecl *InitDecl;
3500   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3501 
3502   Optional<ConstantEmitter> emitter;
3503 
3504   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3505   // as part of their declaration."  Sema has already checked for
3506   // error cases, so we just need to set Init to UndefValue.
3507   bool IsCUDASharedVar =
3508       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3509   // Shadows of initialized device-side global variables are also left
3510   // undefined.
3511   bool IsCUDAShadowVar =
3512       !getLangOpts().CUDAIsDevice &&
3513       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3514        D->hasAttr<CUDASharedAttr>());
3515   if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar))
3516     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3517   else if (!InitExpr) {
3518     // This is a tentative definition; tentative definitions are
3519     // implicitly initialized with { 0 }.
3520     //
3521     // Note that tentative definitions are only emitted at the end of
3522     // a translation unit, so they should never have incomplete
3523     // type. In addition, EmitTentativeDefinition makes sure that we
3524     // never attempt to emit a tentative definition if a real one
3525     // exists. A use may still exists, however, so we still may need
3526     // to do a RAUW.
3527     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3528     Init = EmitNullConstant(D->getType());
3529   } else {
3530     initializedGlobalDecl = GlobalDecl(D);
3531     emitter.emplace(*this);
3532     Init = emitter->tryEmitForInitializer(*InitDecl);
3533 
3534     if (!Init) {
3535       QualType T = InitExpr->getType();
3536       if (D->getType()->isReferenceType())
3537         T = D->getType();
3538 
3539       if (getLangOpts().CPlusPlus) {
3540         Init = EmitNullConstant(T);
3541         NeedsGlobalCtor = true;
3542       } else {
3543         ErrorUnsupported(D, "static initializer");
3544         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3545       }
3546     } else {
3547       // We don't need an initializer, so remove the entry for the delayed
3548       // initializer position (just in case this entry was delayed) if we
3549       // also don't need to register a destructor.
3550       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3551         DelayedCXXInitPosition.erase(D);
3552     }
3553   }
3554 
3555   llvm::Type* InitType = Init->getType();
3556   llvm::Constant *Entry =
3557       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3558 
3559   // Strip off a bitcast if we got one back.
3560   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3561     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3562            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3563            // All zero index gep.
3564            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3565     Entry = CE->getOperand(0);
3566   }
3567 
3568   // Entry is now either a Function or GlobalVariable.
3569   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3570 
3571   // We have a definition after a declaration with the wrong type.
3572   // We must make a new GlobalVariable* and update everything that used OldGV
3573   // (a declaration or tentative definition) with the new GlobalVariable*
3574   // (which will be a definition).
3575   //
3576   // This happens if there is a prototype for a global (e.g.
3577   // "extern int x[];") and then a definition of a different type (e.g.
3578   // "int x[10];"). This also happens when an initializer has a different type
3579   // from the type of the global (this happens with unions).
3580   if (!GV || GV->getType()->getElementType() != InitType ||
3581       GV->getType()->getAddressSpace() !=
3582           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3583 
3584     // Move the old entry aside so that we'll create a new one.
3585     Entry->setName(StringRef());
3586 
3587     // Make a new global with the correct type, this is now guaranteed to work.
3588     GV = cast<llvm::GlobalVariable>(
3589         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3590 
3591     // Replace all uses of the old global with the new global
3592     llvm::Constant *NewPtrForOldDecl =
3593         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3594     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3595 
3596     // Erase the old global, since it is no longer used.
3597     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3598   }
3599 
3600   MaybeHandleStaticInExternC(D, GV);
3601 
3602   if (D->hasAttr<AnnotateAttr>())
3603     AddGlobalAnnotations(D, GV);
3604 
3605   // Set the llvm linkage type as appropriate.
3606   llvm::GlobalValue::LinkageTypes Linkage =
3607       getLLVMLinkageVarDefinition(D, GV->isConstant());
3608 
3609   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3610   // the device. [...]"
3611   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3612   // __device__, declares a variable that: [...]
3613   // Is accessible from all the threads within the grid and from the host
3614   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3615   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3616   if (GV && LangOpts.CUDA) {
3617     if (LangOpts.CUDAIsDevice) {
3618       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3619         GV->setExternallyInitialized(true);
3620     } else {
3621       // Host-side shadows of external declarations of device-side
3622       // global variables become internal definitions. These have to
3623       // be internal in order to prevent name conflicts with global
3624       // host variables with the same name in a different TUs.
3625       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3626         Linkage = llvm::GlobalValue::InternalLinkage;
3627 
3628         // Shadow variables and their properties must be registered
3629         // with CUDA runtime.
3630         unsigned Flags = 0;
3631         if (!D->hasDefinition())
3632           Flags |= CGCUDARuntime::ExternDeviceVar;
3633         if (D->hasAttr<CUDAConstantAttr>())
3634           Flags |= CGCUDARuntime::ConstantDeviceVar;
3635         // Extern global variables will be registered in the TU where they are
3636         // defined.
3637         if (!D->hasExternalStorage())
3638           getCUDARuntime().registerDeviceVar(*GV, Flags);
3639       } else if (D->hasAttr<CUDASharedAttr>())
3640         // __shared__ variables are odd. Shadows do get created, but
3641         // they are not registered with the CUDA runtime, so they
3642         // can't really be used to access their device-side
3643         // counterparts. It's not clear yet whether it's nvcc's bug or
3644         // a feature, but we've got to do the same for compatibility.
3645         Linkage = llvm::GlobalValue::InternalLinkage;
3646     }
3647   }
3648 
3649   GV->setInitializer(Init);
3650   if (emitter) emitter->finalize(GV);
3651 
3652   // If it is safe to mark the global 'constant', do so now.
3653   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3654                   isTypeConstant(D->getType(), true));
3655 
3656   // If it is in a read-only section, mark it 'constant'.
3657   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3658     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3659     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3660       GV->setConstant(true);
3661   }
3662 
3663   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3664 
3665 
3666   // On Darwin, if the normal linkage of a C++ thread_local variable is
3667   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3668   // copies within a linkage unit; otherwise, the backing variable has
3669   // internal linkage and all accesses should just be calls to the
3670   // Itanium-specified entry point, which has the normal linkage of the
3671   // variable. This is to preserve the ability to change the implementation
3672   // behind the scenes.
3673   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3674       Context.getTargetInfo().getTriple().isOSDarwin() &&
3675       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3676       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3677     Linkage = llvm::GlobalValue::InternalLinkage;
3678 
3679   GV->setLinkage(Linkage);
3680   if (D->hasAttr<DLLImportAttr>())
3681     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3682   else if (D->hasAttr<DLLExportAttr>())
3683     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3684   else
3685     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3686 
3687   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3688     // common vars aren't constant even if declared const.
3689     GV->setConstant(false);
3690     // Tentative definition of global variables may be initialized with
3691     // non-zero null pointers. In this case they should have weak linkage
3692     // since common linkage must have zero initializer and must not have
3693     // explicit section therefore cannot have non-zero initial value.
3694     if (!GV->getInitializer()->isNullValue())
3695       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3696   }
3697 
3698   setNonAliasAttributes(D, GV);
3699 
3700   if (D->getTLSKind() && !GV->isThreadLocal()) {
3701     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3702       CXXThreadLocals.push_back(D);
3703     setTLSMode(GV, *D);
3704   }
3705 
3706   maybeSetTrivialComdat(*D, *GV);
3707 
3708   // Emit the initializer function if necessary.
3709   if (NeedsGlobalCtor || NeedsGlobalDtor)
3710     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3711 
3712   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3713 
3714   // Emit global variable debug information.
3715   if (CGDebugInfo *DI = getModuleDebugInfo())
3716     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3717       DI->EmitGlobalVariable(GV, D);
3718 }
3719 
3720 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3721                                       CodeGenModule &CGM, const VarDecl *D,
3722                                       bool NoCommon) {
3723   // Don't give variables common linkage if -fno-common was specified unless it
3724   // was overridden by a NoCommon attribute.
3725   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3726     return true;
3727 
3728   // C11 6.9.2/2:
3729   //   A declaration of an identifier for an object that has file scope without
3730   //   an initializer, and without a storage-class specifier or with the
3731   //   storage-class specifier static, constitutes a tentative definition.
3732   if (D->getInit() || D->hasExternalStorage())
3733     return true;
3734 
3735   // A variable cannot be both common and exist in a section.
3736   if (D->hasAttr<SectionAttr>())
3737     return true;
3738 
3739   // A variable cannot be both common and exist in a section.
3740   // We don't try to determine which is the right section in the front-end.
3741   // If no specialized section name is applicable, it will resort to default.
3742   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3743       D->hasAttr<PragmaClangDataSectionAttr>() ||
3744       D->hasAttr<PragmaClangRodataSectionAttr>())
3745     return true;
3746 
3747   // Thread local vars aren't considered common linkage.
3748   if (D->getTLSKind())
3749     return true;
3750 
3751   // Tentative definitions marked with WeakImportAttr are true definitions.
3752   if (D->hasAttr<WeakImportAttr>())
3753     return true;
3754 
3755   // A variable cannot be both common and exist in a comdat.
3756   if (shouldBeInCOMDAT(CGM, *D))
3757     return true;
3758 
3759   // Declarations with a required alignment do not have common linkage in MSVC
3760   // mode.
3761   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3762     if (D->hasAttr<AlignedAttr>())
3763       return true;
3764     QualType VarType = D->getType();
3765     if (Context.isAlignmentRequired(VarType))
3766       return true;
3767 
3768     if (const auto *RT = VarType->getAs<RecordType>()) {
3769       const RecordDecl *RD = RT->getDecl();
3770       for (const FieldDecl *FD : RD->fields()) {
3771         if (FD->isBitField())
3772           continue;
3773         if (FD->hasAttr<AlignedAttr>())
3774           return true;
3775         if (Context.isAlignmentRequired(FD->getType()))
3776           return true;
3777       }
3778     }
3779   }
3780 
3781   // Microsoft's link.exe doesn't support alignments greater than 32 for common
3782   // symbols, so symbols with greater alignment requirements cannot be common.
3783   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
3784   // alignments for common symbols via the aligncomm directive, so this
3785   // restriction only applies to MSVC environments.
3786   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
3787       Context.getTypeAlignIfKnown(D->getType()) > 32)
3788     return true;
3789 
3790   return false;
3791 }
3792 
3793 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3794     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3795   if (Linkage == GVA_Internal)
3796     return llvm::Function::InternalLinkage;
3797 
3798   if (D->hasAttr<WeakAttr>()) {
3799     if (IsConstantVariable)
3800       return llvm::GlobalVariable::WeakODRLinkage;
3801     else
3802       return llvm::GlobalVariable::WeakAnyLinkage;
3803   }
3804 
3805   if (const auto *FD = D->getAsFunction())
3806     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
3807       return llvm::GlobalVariable::LinkOnceAnyLinkage;
3808 
3809   // We are guaranteed to have a strong definition somewhere else,
3810   // so we can use available_externally linkage.
3811   if (Linkage == GVA_AvailableExternally)
3812     return llvm::GlobalValue::AvailableExternallyLinkage;
3813 
3814   // Note that Apple's kernel linker doesn't support symbol
3815   // coalescing, so we need to avoid linkonce and weak linkages there.
3816   // Normally, this means we just map to internal, but for explicit
3817   // instantiations we'll map to external.
3818 
3819   // In C++, the compiler has to emit a definition in every translation unit
3820   // that references the function.  We should use linkonce_odr because
3821   // a) if all references in this translation unit are optimized away, we
3822   // don't need to codegen it.  b) if the function persists, it needs to be
3823   // merged with other definitions. c) C++ has the ODR, so we know the
3824   // definition is dependable.
3825   if (Linkage == GVA_DiscardableODR)
3826     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3827                                             : llvm::Function::InternalLinkage;
3828 
3829   // An explicit instantiation of a template has weak linkage, since
3830   // explicit instantiations can occur in multiple translation units
3831   // and must all be equivalent. However, we are not allowed to
3832   // throw away these explicit instantiations.
3833   //
3834   // We don't currently support CUDA device code spread out across multiple TUs,
3835   // so say that CUDA templates are either external (for kernels) or internal.
3836   // This lets llvm perform aggressive inter-procedural optimizations.
3837   if (Linkage == GVA_StrongODR) {
3838     if (Context.getLangOpts().AppleKext)
3839       return llvm::Function::ExternalLinkage;
3840     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3841       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3842                                           : llvm::Function::InternalLinkage;
3843     return llvm::Function::WeakODRLinkage;
3844   }
3845 
3846   // C++ doesn't have tentative definitions and thus cannot have common
3847   // linkage.
3848   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3849       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3850                                  CodeGenOpts.NoCommon))
3851     return llvm::GlobalVariable::CommonLinkage;
3852 
3853   // selectany symbols are externally visible, so use weak instead of
3854   // linkonce.  MSVC optimizes away references to const selectany globals, so
3855   // all definitions should be the same and ODR linkage should be used.
3856   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3857   if (D->hasAttr<SelectAnyAttr>())
3858     return llvm::GlobalVariable::WeakODRLinkage;
3859 
3860   // Otherwise, we have strong external linkage.
3861   assert(Linkage == GVA_StrongExternal);
3862   return llvm::GlobalVariable::ExternalLinkage;
3863 }
3864 
3865 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3866     const VarDecl *VD, bool IsConstant) {
3867   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3868   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3869 }
3870 
3871 /// Replace the uses of a function that was declared with a non-proto type.
3872 /// We want to silently drop extra arguments from call sites
3873 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3874                                           llvm::Function *newFn) {
3875   // Fast path.
3876   if (old->use_empty()) return;
3877 
3878   llvm::Type *newRetTy = newFn->getReturnType();
3879   SmallVector<llvm::Value*, 4> newArgs;
3880   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3881 
3882   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3883          ui != ue; ) {
3884     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3885     llvm::User *user = use->getUser();
3886 
3887     // Recognize and replace uses of bitcasts.  Most calls to
3888     // unprototyped functions will use bitcasts.
3889     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3890       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3891         replaceUsesOfNonProtoConstant(bitcast, newFn);
3892       continue;
3893     }
3894 
3895     // Recognize calls to the function.
3896     llvm::CallSite callSite(user);
3897     if (!callSite) continue;
3898     if (!callSite.isCallee(&*use)) continue;
3899 
3900     // If the return types don't match exactly, then we can't
3901     // transform this call unless it's dead.
3902     if (callSite->getType() != newRetTy && !callSite->use_empty())
3903       continue;
3904 
3905     // Get the call site's attribute list.
3906     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3907     llvm::AttributeList oldAttrs = callSite.getAttributes();
3908 
3909     // If the function was passed too few arguments, don't transform.
3910     unsigned newNumArgs = newFn->arg_size();
3911     if (callSite.arg_size() < newNumArgs) continue;
3912 
3913     // If extra arguments were passed, we silently drop them.
3914     // If any of the types mismatch, we don't transform.
3915     unsigned argNo = 0;
3916     bool dontTransform = false;
3917     for (llvm::Argument &A : newFn->args()) {
3918       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3919         dontTransform = true;
3920         break;
3921       }
3922 
3923       // Add any parameter attributes.
3924       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3925       argNo++;
3926     }
3927     if (dontTransform)
3928       continue;
3929 
3930     // Okay, we can transform this.  Create the new call instruction and copy
3931     // over the required information.
3932     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3933 
3934     // Copy over any operand bundles.
3935     callSite.getOperandBundlesAsDefs(newBundles);
3936 
3937     llvm::CallSite newCall;
3938     if (callSite.isCall()) {
3939       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3940                                        callSite.getInstruction());
3941     } else {
3942       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3943       newCall = llvm::InvokeInst::Create(newFn,
3944                                          oldInvoke->getNormalDest(),
3945                                          oldInvoke->getUnwindDest(),
3946                                          newArgs, newBundles, "",
3947                                          callSite.getInstruction());
3948     }
3949     newArgs.clear(); // for the next iteration
3950 
3951     if (!newCall->getType()->isVoidTy())
3952       newCall->takeName(callSite.getInstruction());
3953     newCall.setAttributes(llvm::AttributeList::get(
3954         newFn->getContext(), oldAttrs.getFnAttributes(),
3955         oldAttrs.getRetAttributes(), newArgAttrs));
3956     newCall.setCallingConv(callSite.getCallingConv());
3957 
3958     // Finally, remove the old call, replacing any uses with the new one.
3959     if (!callSite->use_empty())
3960       callSite->replaceAllUsesWith(newCall.getInstruction());
3961 
3962     // Copy debug location attached to CI.
3963     if (callSite->getDebugLoc())
3964       newCall->setDebugLoc(callSite->getDebugLoc());
3965 
3966     callSite->eraseFromParent();
3967   }
3968 }
3969 
3970 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3971 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3972 /// existing call uses of the old function in the module, this adjusts them to
3973 /// call the new function directly.
3974 ///
3975 /// This is not just a cleanup: the always_inline pass requires direct calls to
3976 /// functions to be able to inline them.  If there is a bitcast in the way, it
3977 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3978 /// run at -O0.
3979 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3980                                                       llvm::Function *NewFn) {
3981   // If we're redefining a global as a function, don't transform it.
3982   if (!isa<llvm::Function>(Old)) return;
3983 
3984   replaceUsesOfNonProtoConstant(Old, NewFn);
3985 }
3986 
3987 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3988   auto DK = VD->isThisDeclarationADefinition();
3989   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3990     return;
3991 
3992   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3993   // If we have a definition, this might be a deferred decl. If the
3994   // instantiation is explicit, make sure we emit it at the end.
3995   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3996     GetAddrOfGlobalVar(VD);
3997 
3998   EmitTopLevelDecl(VD);
3999 }
4000 
4001 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4002                                                  llvm::GlobalValue *GV) {
4003   const auto *D = cast<FunctionDecl>(GD.getDecl());
4004 
4005   // Compute the function info and LLVM type.
4006   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4007   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4008 
4009   // Get or create the prototype for the function.
4010   if (!GV || (GV->getType()->getElementType() != Ty))
4011     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4012                                                    /*DontDefer=*/true,
4013                                                    ForDefinition));
4014 
4015   // Already emitted.
4016   if (!GV->isDeclaration())
4017     return;
4018 
4019   // We need to set linkage and visibility on the function before
4020   // generating code for it because various parts of IR generation
4021   // want to propagate this information down (e.g. to local static
4022   // declarations).
4023   auto *Fn = cast<llvm::Function>(GV);
4024   setFunctionLinkage(GD, Fn);
4025 
4026   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4027   setGVProperties(Fn, GD);
4028 
4029   MaybeHandleStaticInExternC(D, Fn);
4030 
4031 
4032   maybeSetTrivialComdat(*D, *Fn);
4033 
4034   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4035 
4036   setNonAliasAttributes(GD, Fn);
4037   SetLLVMFunctionAttributesForDefinition(D, Fn);
4038 
4039   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4040     AddGlobalCtor(Fn, CA->getPriority());
4041   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4042     AddGlobalDtor(Fn, DA->getPriority());
4043   if (D->hasAttr<AnnotateAttr>())
4044     AddGlobalAnnotations(D, Fn);
4045 }
4046 
4047 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4048   const auto *D = cast<ValueDecl>(GD.getDecl());
4049   const AliasAttr *AA = D->getAttr<AliasAttr>();
4050   assert(AA && "Not an alias?");
4051 
4052   StringRef MangledName = getMangledName(GD);
4053 
4054   if (AA->getAliasee() == MangledName) {
4055     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4056     return;
4057   }
4058 
4059   // If there is a definition in the module, then it wins over the alias.
4060   // This is dubious, but allow it to be safe.  Just ignore the alias.
4061   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4062   if (Entry && !Entry->isDeclaration())
4063     return;
4064 
4065   Aliases.push_back(GD);
4066 
4067   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4068 
4069   // Create a reference to the named value.  This ensures that it is emitted
4070   // if a deferred decl.
4071   llvm::Constant *Aliasee;
4072   if (isa<llvm::FunctionType>(DeclTy))
4073     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4074                                       /*ForVTable=*/false);
4075   else
4076     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4077                                     llvm::PointerType::getUnqual(DeclTy),
4078                                     /*D=*/nullptr);
4079 
4080   // Create the new alias itself, but don't set a name yet.
4081   auto *GA = llvm::GlobalAlias::create(
4082       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
4083 
4084   if (Entry) {
4085     if (GA->getAliasee() == Entry) {
4086       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4087       return;
4088     }
4089 
4090     assert(Entry->isDeclaration());
4091 
4092     // If there is a declaration in the module, then we had an extern followed
4093     // by the alias, as in:
4094     //   extern int test6();
4095     //   ...
4096     //   int test6() __attribute__((alias("test7")));
4097     //
4098     // Remove it and replace uses of it with the alias.
4099     GA->takeName(Entry);
4100 
4101     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4102                                                           Entry->getType()));
4103     Entry->eraseFromParent();
4104   } else {
4105     GA->setName(MangledName);
4106   }
4107 
4108   // Set attributes which are particular to an alias; this is a
4109   // specialization of the attributes which may be set on a global
4110   // variable/function.
4111   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4112       D->isWeakImported()) {
4113     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4114   }
4115 
4116   if (const auto *VD = dyn_cast<VarDecl>(D))
4117     if (VD->getTLSKind())
4118       setTLSMode(GA, *VD);
4119 
4120   SetCommonAttributes(GD, GA);
4121 }
4122 
4123 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4124   const auto *D = cast<ValueDecl>(GD.getDecl());
4125   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4126   assert(IFA && "Not an ifunc?");
4127 
4128   StringRef MangledName = getMangledName(GD);
4129 
4130   if (IFA->getResolver() == MangledName) {
4131     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4132     return;
4133   }
4134 
4135   // Report an error if some definition overrides ifunc.
4136   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4137   if (Entry && !Entry->isDeclaration()) {
4138     GlobalDecl OtherGD;
4139     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4140         DiagnosedConflictingDefinitions.insert(GD).second) {
4141       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4142           << MangledName;
4143       Diags.Report(OtherGD.getDecl()->getLocation(),
4144                    diag::note_previous_definition);
4145     }
4146     return;
4147   }
4148 
4149   Aliases.push_back(GD);
4150 
4151   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4152   llvm::Constant *Resolver =
4153       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4154                               /*ForVTable=*/false);
4155   llvm::GlobalIFunc *GIF =
4156       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4157                                 "", Resolver, &getModule());
4158   if (Entry) {
4159     if (GIF->getResolver() == Entry) {
4160       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4161       return;
4162     }
4163     assert(Entry->isDeclaration());
4164 
4165     // If there is a declaration in the module, then we had an extern followed
4166     // by the ifunc, as in:
4167     //   extern int test();
4168     //   ...
4169     //   int test() __attribute__((ifunc("resolver")));
4170     //
4171     // Remove it and replace uses of it with the ifunc.
4172     GIF->takeName(Entry);
4173 
4174     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4175                                                           Entry->getType()));
4176     Entry->eraseFromParent();
4177   } else
4178     GIF->setName(MangledName);
4179 
4180   SetCommonAttributes(GD, GIF);
4181 }
4182 
4183 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4184                                             ArrayRef<llvm::Type*> Tys) {
4185   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4186                                          Tys);
4187 }
4188 
4189 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4190 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4191                          const StringLiteral *Literal, bool TargetIsLSB,
4192                          bool &IsUTF16, unsigned &StringLength) {
4193   StringRef String = Literal->getString();
4194   unsigned NumBytes = String.size();
4195 
4196   // Check for simple case.
4197   if (!Literal->containsNonAsciiOrNull()) {
4198     StringLength = NumBytes;
4199     return *Map.insert(std::make_pair(String, nullptr)).first;
4200   }
4201 
4202   // Otherwise, convert the UTF8 literals into a string of shorts.
4203   IsUTF16 = true;
4204 
4205   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4206   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4207   llvm::UTF16 *ToPtr = &ToBuf[0];
4208 
4209   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4210                                  ToPtr + NumBytes, llvm::strictConversion);
4211 
4212   // ConvertUTF8toUTF16 returns the length in ToPtr.
4213   StringLength = ToPtr - &ToBuf[0];
4214 
4215   // Add an explicit null.
4216   *ToPtr = 0;
4217   return *Map.insert(std::make_pair(
4218                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4219                                    (StringLength + 1) * 2),
4220                          nullptr)).first;
4221 }
4222 
4223 ConstantAddress
4224 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4225   unsigned StringLength = 0;
4226   bool isUTF16 = false;
4227   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4228       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4229                                getDataLayout().isLittleEndian(), isUTF16,
4230                                StringLength);
4231 
4232   if (auto *C = Entry.second)
4233     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4234 
4235   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4236   llvm::Constant *Zeros[] = { Zero, Zero };
4237 
4238   const ASTContext &Context = getContext();
4239   const llvm::Triple &Triple = getTriple();
4240 
4241   const auto CFRuntime = getLangOpts().CFRuntime;
4242   const bool IsSwiftABI =
4243       static_cast<unsigned>(CFRuntime) >=
4244       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4245   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4246 
4247   // If we don't already have it, get __CFConstantStringClassReference.
4248   if (!CFConstantStringClassRef) {
4249     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4250     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4251     Ty = llvm::ArrayType::get(Ty, 0);
4252 
4253     switch (CFRuntime) {
4254     default: break;
4255     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4256     case LangOptions::CoreFoundationABI::Swift5_0:
4257       CFConstantStringClassName =
4258           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4259                               : "$s10Foundation19_NSCFConstantStringCN";
4260       Ty = IntPtrTy;
4261       break;
4262     case LangOptions::CoreFoundationABI::Swift4_2:
4263       CFConstantStringClassName =
4264           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4265                               : "$S10Foundation19_NSCFConstantStringCN";
4266       Ty = IntPtrTy;
4267       break;
4268     case LangOptions::CoreFoundationABI::Swift4_1:
4269       CFConstantStringClassName =
4270           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4271                               : "__T010Foundation19_NSCFConstantStringCN";
4272       Ty = IntPtrTy;
4273       break;
4274     }
4275 
4276     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4277 
4278     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4279       llvm::GlobalValue *GV = nullptr;
4280 
4281       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4282         IdentifierInfo &II = Context.Idents.get(GV->getName());
4283         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4284         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4285 
4286         const VarDecl *VD = nullptr;
4287         for (const auto &Result : DC->lookup(&II))
4288           if ((VD = dyn_cast<VarDecl>(Result)))
4289             break;
4290 
4291         if (Triple.isOSBinFormatELF()) {
4292           if (!VD)
4293             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4294         } else {
4295           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4296           if (!VD || !VD->hasAttr<DLLExportAttr>())
4297             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4298           else
4299             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4300         }
4301 
4302         setDSOLocal(GV);
4303       }
4304     }
4305 
4306     // Decay array -> ptr
4307     CFConstantStringClassRef =
4308         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4309                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4310   }
4311 
4312   QualType CFTy = Context.getCFConstantStringType();
4313 
4314   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4315 
4316   ConstantInitBuilder Builder(*this);
4317   auto Fields = Builder.beginStruct(STy);
4318 
4319   // Class pointer.
4320   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4321 
4322   // Flags.
4323   if (IsSwiftABI) {
4324     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4325     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4326   } else {
4327     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4328   }
4329 
4330   // String pointer.
4331   llvm::Constant *C = nullptr;
4332   if (isUTF16) {
4333     auto Arr = llvm::makeArrayRef(
4334         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4335         Entry.first().size() / 2);
4336     C = llvm::ConstantDataArray::get(VMContext, Arr);
4337   } else {
4338     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4339   }
4340 
4341   // Note: -fwritable-strings doesn't make the backing store strings of
4342   // CFStrings writable. (See <rdar://problem/10657500>)
4343   auto *GV =
4344       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4345                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4346   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4347   // Don't enforce the target's minimum global alignment, since the only use
4348   // of the string is via this class initializer.
4349   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4350                             : Context.getTypeAlignInChars(Context.CharTy);
4351   GV->setAlignment(Align.getQuantity());
4352 
4353   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4354   // Without it LLVM can merge the string with a non unnamed_addr one during
4355   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4356   if (Triple.isOSBinFormatMachO())
4357     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4358                            : "__TEXT,__cstring,cstring_literals");
4359   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4360   // the static linker to adjust permissions to read-only later on.
4361   else if (Triple.isOSBinFormatELF())
4362     GV->setSection(".rodata");
4363 
4364   // String.
4365   llvm::Constant *Str =
4366       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4367 
4368   if (isUTF16)
4369     // Cast the UTF16 string to the correct type.
4370     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4371   Fields.add(Str);
4372 
4373   // String length.
4374   llvm::IntegerType *LengthTy =
4375       llvm::IntegerType::get(getModule().getContext(),
4376                              Context.getTargetInfo().getLongWidth());
4377   if (IsSwiftABI) {
4378     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4379         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4380       LengthTy = Int32Ty;
4381     else
4382       LengthTy = IntPtrTy;
4383   }
4384   Fields.addInt(LengthTy, StringLength);
4385 
4386   CharUnits Alignment = getPointerAlign();
4387 
4388   // The struct.
4389   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4390                                     /*isConstant=*/false,
4391                                     llvm::GlobalVariable::PrivateLinkage);
4392   switch (Triple.getObjectFormat()) {
4393   case llvm::Triple::UnknownObjectFormat:
4394     llvm_unreachable("unknown file format");
4395   case llvm::Triple::COFF:
4396   case llvm::Triple::ELF:
4397   case llvm::Triple::Wasm:
4398     GV->setSection("cfstring");
4399     break;
4400   case llvm::Triple::MachO:
4401     GV->setSection("__DATA,__cfstring");
4402     break;
4403   }
4404   Entry.second = GV;
4405 
4406   return ConstantAddress(GV, Alignment);
4407 }
4408 
4409 bool CodeGenModule::getExpressionLocationsEnabled() const {
4410   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4411 }
4412 
4413 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4414   if (ObjCFastEnumerationStateType.isNull()) {
4415     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4416     D->startDefinition();
4417 
4418     QualType FieldTypes[] = {
4419       Context.UnsignedLongTy,
4420       Context.getPointerType(Context.getObjCIdType()),
4421       Context.getPointerType(Context.UnsignedLongTy),
4422       Context.getConstantArrayType(Context.UnsignedLongTy,
4423                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4424     };
4425 
4426     for (size_t i = 0; i < 4; ++i) {
4427       FieldDecl *Field = FieldDecl::Create(Context,
4428                                            D,
4429                                            SourceLocation(),
4430                                            SourceLocation(), nullptr,
4431                                            FieldTypes[i], /*TInfo=*/nullptr,
4432                                            /*BitWidth=*/nullptr,
4433                                            /*Mutable=*/false,
4434                                            ICIS_NoInit);
4435       Field->setAccess(AS_public);
4436       D->addDecl(Field);
4437     }
4438 
4439     D->completeDefinition();
4440     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4441   }
4442 
4443   return ObjCFastEnumerationStateType;
4444 }
4445 
4446 llvm::Constant *
4447 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4448   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4449 
4450   // Don't emit it as the address of the string, emit the string data itself
4451   // as an inline array.
4452   if (E->getCharByteWidth() == 1) {
4453     SmallString<64> Str(E->getString());
4454 
4455     // Resize the string to the right size, which is indicated by its type.
4456     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4457     Str.resize(CAT->getSize().getZExtValue());
4458     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4459   }
4460 
4461   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4462   llvm::Type *ElemTy = AType->getElementType();
4463   unsigned NumElements = AType->getNumElements();
4464 
4465   // Wide strings have either 2-byte or 4-byte elements.
4466   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4467     SmallVector<uint16_t, 32> Elements;
4468     Elements.reserve(NumElements);
4469 
4470     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4471       Elements.push_back(E->getCodeUnit(i));
4472     Elements.resize(NumElements);
4473     return llvm::ConstantDataArray::get(VMContext, Elements);
4474   }
4475 
4476   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4477   SmallVector<uint32_t, 32> Elements;
4478   Elements.reserve(NumElements);
4479 
4480   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4481     Elements.push_back(E->getCodeUnit(i));
4482   Elements.resize(NumElements);
4483   return llvm::ConstantDataArray::get(VMContext, Elements);
4484 }
4485 
4486 static llvm::GlobalVariable *
4487 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4488                       CodeGenModule &CGM, StringRef GlobalName,
4489                       CharUnits Alignment) {
4490   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4491       CGM.getStringLiteralAddressSpace());
4492 
4493   llvm::Module &M = CGM.getModule();
4494   // Create a global variable for this string
4495   auto *GV = new llvm::GlobalVariable(
4496       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4497       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4498   GV->setAlignment(Alignment.getQuantity());
4499   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4500   if (GV->isWeakForLinker()) {
4501     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4502     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4503   }
4504   CGM.setDSOLocal(GV);
4505 
4506   return GV;
4507 }
4508 
4509 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4510 /// constant array for the given string literal.
4511 ConstantAddress
4512 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4513                                                   StringRef Name) {
4514   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4515 
4516   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4517   llvm::GlobalVariable **Entry = nullptr;
4518   if (!LangOpts.WritableStrings) {
4519     Entry = &ConstantStringMap[C];
4520     if (auto GV = *Entry) {
4521       if (Alignment.getQuantity() > GV->getAlignment())
4522         GV->setAlignment(Alignment.getQuantity());
4523       return ConstantAddress(GV, Alignment);
4524     }
4525   }
4526 
4527   SmallString<256> MangledNameBuffer;
4528   StringRef GlobalVariableName;
4529   llvm::GlobalValue::LinkageTypes LT;
4530 
4531   // Mangle the string literal if that's how the ABI merges duplicate strings.
4532   // Don't do it if they are writable, since we don't want writes in one TU to
4533   // affect strings in another.
4534   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4535       !LangOpts.WritableStrings) {
4536     llvm::raw_svector_ostream Out(MangledNameBuffer);
4537     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4538     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4539     GlobalVariableName = MangledNameBuffer;
4540   } else {
4541     LT = llvm::GlobalValue::PrivateLinkage;
4542     GlobalVariableName = Name;
4543   }
4544 
4545   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4546   if (Entry)
4547     *Entry = GV;
4548 
4549   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4550                                   QualType());
4551 
4552   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4553                          Alignment);
4554 }
4555 
4556 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4557 /// array for the given ObjCEncodeExpr node.
4558 ConstantAddress
4559 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4560   std::string Str;
4561   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4562 
4563   return GetAddrOfConstantCString(Str);
4564 }
4565 
4566 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4567 /// the literal and a terminating '\0' character.
4568 /// The result has pointer to array type.
4569 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4570     const std::string &Str, const char *GlobalName) {
4571   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4572   CharUnits Alignment =
4573     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4574 
4575   llvm::Constant *C =
4576       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4577 
4578   // Don't share any string literals if strings aren't constant.
4579   llvm::GlobalVariable **Entry = nullptr;
4580   if (!LangOpts.WritableStrings) {
4581     Entry = &ConstantStringMap[C];
4582     if (auto GV = *Entry) {
4583       if (Alignment.getQuantity() > GV->getAlignment())
4584         GV->setAlignment(Alignment.getQuantity());
4585       return ConstantAddress(GV, Alignment);
4586     }
4587   }
4588 
4589   // Get the default prefix if a name wasn't specified.
4590   if (!GlobalName)
4591     GlobalName = ".str";
4592   // Create a global variable for this.
4593   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4594                                   GlobalName, Alignment);
4595   if (Entry)
4596     *Entry = GV;
4597 
4598   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4599                          Alignment);
4600 }
4601 
4602 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4603     const MaterializeTemporaryExpr *E, const Expr *Init) {
4604   assert((E->getStorageDuration() == SD_Static ||
4605           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4606   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4607 
4608   // If we're not materializing a subobject of the temporary, keep the
4609   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4610   QualType MaterializedType = Init->getType();
4611   if (Init == E->GetTemporaryExpr())
4612     MaterializedType = E->getType();
4613 
4614   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4615 
4616   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4617     return ConstantAddress(Slot, Align);
4618 
4619   // FIXME: If an externally-visible declaration extends multiple temporaries,
4620   // we need to give each temporary the same name in every translation unit (and
4621   // we also need to make the temporaries externally-visible).
4622   SmallString<256> Name;
4623   llvm::raw_svector_ostream Out(Name);
4624   getCXXABI().getMangleContext().mangleReferenceTemporary(
4625       VD, E->getManglingNumber(), Out);
4626 
4627   APValue *Value = nullptr;
4628   if (E->getStorageDuration() == SD_Static) {
4629     // We might have a cached constant initializer for this temporary. Note
4630     // that this might have a different value from the value computed by
4631     // evaluating the initializer if the surrounding constant expression
4632     // modifies the temporary.
4633     Value = getContext().getMaterializedTemporaryValue(E, false);
4634     if (Value && Value->isUninit())
4635       Value = nullptr;
4636   }
4637 
4638   // Try evaluating it now, it might have a constant initializer.
4639   Expr::EvalResult EvalResult;
4640   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4641       !EvalResult.hasSideEffects())
4642     Value = &EvalResult.Val;
4643 
4644   LangAS AddrSpace =
4645       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4646 
4647   Optional<ConstantEmitter> emitter;
4648   llvm::Constant *InitialValue = nullptr;
4649   bool Constant = false;
4650   llvm::Type *Type;
4651   if (Value) {
4652     // The temporary has a constant initializer, use it.
4653     emitter.emplace(*this);
4654     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4655                                                MaterializedType);
4656     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4657     Type = InitialValue->getType();
4658   } else {
4659     // No initializer, the initialization will be provided when we
4660     // initialize the declaration which performed lifetime extension.
4661     Type = getTypes().ConvertTypeForMem(MaterializedType);
4662   }
4663 
4664   // Create a global variable for this lifetime-extended temporary.
4665   llvm::GlobalValue::LinkageTypes Linkage =
4666       getLLVMLinkageVarDefinition(VD, Constant);
4667   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4668     const VarDecl *InitVD;
4669     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4670         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4671       // Temporaries defined inside a class get linkonce_odr linkage because the
4672       // class can be defined in multiple translation units.
4673       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4674     } else {
4675       // There is no need for this temporary to have external linkage if the
4676       // VarDecl has external linkage.
4677       Linkage = llvm::GlobalVariable::InternalLinkage;
4678     }
4679   }
4680   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4681   auto *GV = new llvm::GlobalVariable(
4682       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4683       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4684   if (emitter) emitter->finalize(GV);
4685   setGVProperties(GV, VD);
4686   GV->setAlignment(Align.getQuantity());
4687   if (supportsCOMDAT() && GV->isWeakForLinker())
4688     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4689   if (VD->getTLSKind())
4690     setTLSMode(GV, *VD);
4691   llvm::Constant *CV = GV;
4692   if (AddrSpace != LangAS::Default)
4693     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4694         *this, GV, AddrSpace, LangAS::Default,
4695         Type->getPointerTo(
4696             getContext().getTargetAddressSpace(LangAS::Default)));
4697   MaterializedGlobalTemporaryMap[E] = CV;
4698   return ConstantAddress(CV, Align);
4699 }
4700 
4701 /// EmitObjCPropertyImplementations - Emit information for synthesized
4702 /// properties for an implementation.
4703 void CodeGenModule::EmitObjCPropertyImplementations(const
4704                                                     ObjCImplementationDecl *D) {
4705   for (const auto *PID : D->property_impls()) {
4706     // Dynamic is just for type-checking.
4707     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4708       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4709 
4710       // Determine which methods need to be implemented, some may have
4711       // been overridden. Note that ::isPropertyAccessor is not the method
4712       // we want, that just indicates if the decl came from a
4713       // property. What we want to know is if the method is defined in
4714       // this implementation.
4715       if (!D->getInstanceMethod(PD->getGetterName()))
4716         CodeGenFunction(*this).GenerateObjCGetter(
4717                                  const_cast<ObjCImplementationDecl *>(D), PID);
4718       if (!PD->isReadOnly() &&
4719           !D->getInstanceMethod(PD->getSetterName()))
4720         CodeGenFunction(*this).GenerateObjCSetter(
4721                                  const_cast<ObjCImplementationDecl *>(D), PID);
4722     }
4723   }
4724 }
4725 
4726 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4727   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4728   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4729        ivar; ivar = ivar->getNextIvar())
4730     if (ivar->getType().isDestructedType())
4731       return true;
4732 
4733   return false;
4734 }
4735 
4736 static bool AllTrivialInitializers(CodeGenModule &CGM,
4737                                    ObjCImplementationDecl *D) {
4738   CodeGenFunction CGF(CGM);
4739   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4740        E = D->init_end(); B != E; ++B) {
4741     CXXCtorInitializer *CtorInitExp = *B;
4742     Expr *Init = CtorInitExp->getInit();
4743     if (!CGF.isTrivialInitializer(Init))
4744       return false;
4745   }
4746   return true;
4747 }
4748 
4749 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4750 /// for an implementation.
4751 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4752   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4753   if (needsDestructMethod(D)) {
4754     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4755     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4756     ObjCMethodDecl *DTORMethod =
4757       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4758                              cxxSelector, getContext().VoidTy, nullptr, D,
4759                              /*isInstance=*/true, /*isVariadic=*/false,
4760                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4761                              /*isDefined=*/false, ObjCMethodDecl::Required);
4762     D->addInstanceMethod(DTORMethod);
4763     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4764     D->setHasDestructors(true);
4765   }
4766 
4767   // If the implementation doesn't have any ivar initializers, we don't need
4768   // a .cxx_construct.
4769   if (D->getNumIvarInitializers() == 0 ||
4770       AllTrivialInitializers(*this, D))
4771     return;
4772 
4773   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4774   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4775   // The constructor returns 'self'.
4776   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4777                                                 D->getLocation(),
4778                                                 D->getLocation(),
4779                                                 cxxSelector,
4780                                                 getContext().getObjCIdType(),
4781                                                 nullptr, D, /*isInstance=*/true,
4782                                                 /*isVariadic=*/false,
4783                                                 /*isPropertyAccessor=*/true,
4784                                                 /*isImplicitlyDeclared=*/true,
4785                                                 /*isDefined=*/false,
4786                                                 ObjCMethodDecl::Required);
4787   D->addInstanceMethod(CTORMethod);
4788   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4789   D->setHasNonZeroConstructors(true);
4790 }
4791 
4792 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4793 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4794   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4795       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4796     ErrorUnsupported(LSD, "linkage spec");
4797     return;
4798   }
4799 
4800   EmitDeclContext(LSD);
4801 }
4802 
4803 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4804   for (auto *I : DC->decls()) {
4805     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4806     // are themselves considered "top-level", so EmitTopLevelDecl on an
4807     // ObjCImplDecl does not recursively visit them. We need to do that in
4808     // case they're nested inside another construct (LinkageSpecDecl /
4809     // ExportDecl) that does stop them from being considered "top-level".
4810     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4811       for (auto *M : OID->methods())
4812         EmitTopLevelDecl(M);
4813     }
4814 
4815     EmitTopLevelDecl(I);
4816   }
4817 }
4818 
4819 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4820 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4821   // Ignore dependent declarations.
4822   if (D->isTemplated())
4823     return;
4824 
4825   switch (D->getKind()) {
4826   case Decl::CXXConversion:
4827   case Decl::CXXMethod:
4828   case Decl::Function:
4829     EmitGlobal(cast<FunctionDecl>(D));
4830     // Always provide some coverage mapping
4831     // even for the functions that aren't emitted.
4832     AddDeferredUnusedCoverageMapping(D);
4833     break;
4834 
4835   case Decl::CXXDeductionGuide:
4836     // Function-like, but does not result in code emission.
4837     break;
4838 
4839   case Decl::Var:
4840   case Decl::Decomposition:
4841   case Decl::VarTemplateSpecialization:
4842     EmitGlobal(cast<VarDecl>(D));
4843     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4844       for (auto *B : DD->bindings())
4845         if (auto *HD = B->getHoldingVar())
4846           EmitGlobal(HD);
4847     break;
4848 
4849   // Indirect fields from global anonymous structs and unions can be
4850   // ignored; only the actual variable requires IR gen support.
4851   case Decl::IndirectField:
4852     break;
4853 
4854   // C++ Decls
4855   case Decl::Namespace:
4856     EmitDeclContext(cast<NamespaceDecl>(D));
4857     break;
4858   case Decl::ClassTemplateSpecialization: {
4859     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4860     if (DebugInfo &&
4861         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4862         Spec->hasDefinition())
4863       DebugInfo->completeTemplateDefinition(*Spec);
4864   } LLVM_FALLTHROUGH;
4865   case Decl::CXXRecord:
4866     if (DebugInfo) {
4867       if (auto *ES = D->getASTContext().getExternalSource())
4868         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4869           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4870     }
4871     // Emit any static data members, they may be definitions.
4872     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4873       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4874         EmitTopLevelDecl(I);
4875     break;
4876     // No code generation needed.
4877   case Decl::UsingShadow:
4878   case Decl::ClassTemplate:
4879   case Decl::VarTemplate:
4880   case Decl::VarTemplatePartialSpecialization:
4881   case Decl::FunctionTemplate:
4882   case Decl::TypeAliasTemplate:
4883   case Decl::Block:
4884   case Decl::Empty:
4885   case Decl::Binding:
4886     break;
4887   case Decl::Using:          // using X; [C++]
4888     if (CGDebugInfo *DI = getModuleDebugInfo())
4889         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4890     return;
4891   case Decl::NamespaceAlias:
4892     if (CGDebugInfo *DI = getModuleDebugInfo())
4893         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4894     return;
4895   case Decl::UsingDirective: // using namespace X; [C++]
4896     if (CGDebugInfo *DI = getModuleDebugInfo())
4897       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4898     return;
4899   case Decl::CXXConstructor:
4900     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4901     break;
4902   case Decl::CXXDestructor:
4903     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4904     break;
4905 
4906   case Decl::StaticAssert:
4907     // Nothing to do.
4908     break;
4909 
4910   // Objective-C Decls
4911 
4912   // Forward declarations, no (immediate) code generation.
4913   case Decl::ObjCInterface:
4914   case Decl::ObjCCategory:
4915     break;
4916 
4917   case Decl::ObjCProtocol: {
4918     auto *Proto = cast<ObjCProtocolDecl>(D);
4919     if (Proto->isThisDeclarationADefinition())
4920       ObjCRuntime->GenerateProtocol(Proto);
4921     break;
4922   }
4923 
4924   case Decl::ObjCCategoryImpl:
4925     // Categories have properties but don't support synthesize so we
4926     // can ignore them here.
4927     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4928     break;
4929 
4930   case Decl::ObjCImplementation: {
4931     auto *OMD = cast<ObjCImplementationDecl>(D);
4932     EmitObjCPropertyImplementations(OMD);
4933     EmitObjCIvarInitializations(OMD);
4934     ObjCRuntime->GenerateClass(OMD);
4935     // Emit global variable debug information.
4936     if (CGDebugInfo *DI = getModuleDebugInfo())
4937       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4938         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4939             OMD->getClassInterface()), OMD->getLocation());
4940     break;
4941   }
4942   case Decl::ObjCMethod: {
4943     auto *OMD = cast<ObjCMethodDecl>(D);
4944     // If this is not a prototype, emit the body.
4945     if (OMD->getBody())
4946       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4947     break;
4948   }
4949   case Decl::ObjCCompatibleAlias:
4950     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4951     break;
4952 
4953   case Decl::PragmaComment: {
4954     const auto *PCD = cast<PragmaCommentDecl>(D);
4955     switch (PCD->getCommentKind()) {
4956     case PCK_Unknown:
4957       llvm_unreachable("unexpected pragma comment kind");
4958     case PCK_Linker:
4959       AppendLinkerOptions(PCD->getArg());
4960       break;
4961     case PCK_Lib:
4962       if (getTarget().getTriple().isOSBinFormatELF() &&
4963           !getTarget().getTriple().isPS4())
4964         AddELFLibDirective(PCD->getArg());
4965       else
4966         AddDependentLib(PCD->getArg());
4967       break;
4968     case PCK_Compiler:
4969     case PCK_ExeStr:
4970     case PCK_User:
4971       break; // We ignore all of these.
4972     }
4973     break;
4974   }
4975 
4976   case Decl::PragmaDetectMismatch: {
4977     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4978     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4979     break;
4980   }
4981 
4982   case Decl::LinkageSpec:
4983     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4984     break;
4985 
4986   case Decl::FileScopeAsm: {
4987     // File-scope asm is ignored during device-side CUDA compilation.
4988     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4989       break;
4990     // File-scope asm is ignored during device-side OpenMP compilation.
4991     if (LangOpts.OpenMPIsDevice)
4992       break;
4993     auto *AD = cast<FileScopeAsmDecl>(D);
4994     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4995     break;
4996   }
4997 
4998   case Decl::Import: {
4999     auto *Import = cast<ImportDecl>(D);
5000 
5001     // If we've already imported this module, we're done.
5002     if (!ImportedModules.insert(Import->getImportedModule()))
5003       break;
5004 
5005     // Emit debug information for direct imports.
5006     if (!Import->getImportedOwningModule()) {
5007       if (CGDebugInfo *DI = getModuleDebugInfo())
5008         DI->EmitImportDecl(*Import);
5009     }
5010 
5011     // Find all of the submodules and emit the module initializers.
5012     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5013     SmallVector<clang::Module *, 16> Stack;
5014     Visited.insert(Import->getImportedModule());
5015     Stack.push_back(Import->getImportedModule());
5016 
5017     while (!Stack.empty()) {
5018       clang::Module *Mod = Stack.pop_back_val();
5019       if (!EmittedModuleInitializers.insert(Mod).second)
5020         continue;
5021 
5022       for (auto *D : Context.getModuleInitializers(Mod))
5023         EmitTopLevelDecl(D);
5024 
5025       // Visit the submodules of this module.
5026       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5027                                              SubEnd = Mod->submodule_end();
5028            Sub != SubEnd; ++Sub) {
5029         // Skip explicit children; they need to be explicitly imported to emit
5030         // the initializers.
5031         if ((*Sub)->IsExplicit)
5032           continue;
5033 
5034         if (Visited.insert(*Sub).second)
5035           Stack.push_back(*Sub);
5036       }
5037     }
5038     break;
5039   }
5040 
5041   case Decl::Export:
5042     EmitDeclContext(cast<ExportDecl>(D));
5043     break;
5044 
5045   case Decl::OMPThreadPrivate:
5046     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5047     break;
5048 
5049   case Decl::OMPDeclareReduction:
5050     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5051     break;
5052 
5053   case Decl::OMPRequires:
5054     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5055     break;
5056 
5057   default:
5058     // Make sure we handled everything we should, every other kind is a
5059     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5060     // function. Need to recode Decl::Kind to do that easily.
5061     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5062     break;
5063   }
5064 }
5065 
5066 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5067   // Do we need to generate coverage mapping?
5068   if (!CodeGenOpts.CoverageMapping)
5069     return;
5070   switch (D->getKind()) {
5071   case Decl::CXXConversion:
5072   case Decl::CXXMethod:
5073   case Decl::Function:
5074   case Decl::ObjCMethod:
5075   case Decl::CXXConstructor:
5076   case Decl::CXXDestructor: {
5077     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5078       return;
5079     SourceManager &SM = getContext().getSourceManager();
5080     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5081       return;
5082     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5083     if (I == DeferredEmptyCoverageMappingDecls.end())
5084       DeferredEmptyCoverageMappingDecls[D] = true;
5085     break;
5086   }
5087   default:
5088     break;
5089   };
5090 }
5091 
5092 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5093   // Do we need to generate coverage mapping?
5094   if (!CodeGenOpts.CoverageMapping)
5095     return;
5096   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5097     if (Fn->isTemplateInstantiation())
5098       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5099   }
5100   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5101   if (I == DeferredEmptyCoverageMappingDecls.end())
5102     DeferredEmptyCoverageMappingDecls[D] = false;
5103   else
5104     I->second = false;
5105 }
5106 
5107 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5108   // We call takeVector() here to avoid use-after-free.
5109   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5110   // we deserialize function bodies to emit coverage info for them, and that
5111   // deserializes more declarations. How should we handle that case?
5112   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5113     if (!Entry.second)
5114       continue;
5115     const Decl *D = Entry.first;
5116     switch (D->getKind()) {
5117     case Decl::CXXConversion:
5118     case Decl::CXXMethod:
5119     case Decl::Function:
5120     case Decl::ObjCMethod: {
5121       CodeGenPGO PGO(*this);
5122       GlobalDecl GD(cast<FunctionDecl>(D));
5123       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5124                                   getFunctionLinkage(GD));
5125       break;
5126     }
5127     case Decl::CXXConstructor: {
5128       CodeGenPGO PGO(*this);
5129       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5130       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5131                                   getFunctionLinkage(GD));
5132       break;
5133     }
5134     case Decl::CXXDestructor: {
5135       CodeGenPGO PGO(*this);
5136       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5137       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5138                                   getFunctionLinkage(GD));
5139       break;
5140     }
5141     default:
5142       break;
5143     };
5144   }
5145 }
5146 
5147 /// Turns the given pointer into a constant.
5148 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5149                                           const void *Ptr) {
5150   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5151   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5152   return llvm::ConstantInt::get(i64, PtrInt);
5153 }
5154 
5155 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5156                                    llvm::NamedMDNode *&GlobalMetadata,
5157                                    GlobalDecl D,
5158                                    llvm::GlobalValue *Addr) {
5159   if (!GlobalMetadata)
5160     GlobalMetadata =
5161       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5162 
5163   // TODO: should we report variant information for ctors/dtors?
5164   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5165                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5166                                CGM.getLLVMContext(), D.getDecl()))};
5167   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5168 }
5169 
5170 /// For each function which is declared within an extern "C" region and marked
5171 /// as 'used', but has internal linkage, create an alias from the unmangled
5172 /// name to the mangled name if possible. People expect to be able to refer
5173 /// to such functions with an unmangled name from inline assembly within the
5174 /// same translation unit.
5175 void CodeGenModule::EmitStaticExternCAliases() {
5176   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5177     return;
5178   for (auto &I : StaticExternCValues) {
5179     IdentifierInfo *Name = I.first;
5180     llvm::GlobalValue *Val = I.second;
5181     if (Val && !getModule().getNamedValue(Name->getName()))
5182       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5183   }
5184 }
5185 
5186 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5187                                              GlobalDecl &Result) const {
5188   auto Res = Manglings.find(MangledName);
5189   if (Res == Manglings.end())
5190     return false;
5191   Result = Res->getValue();
5192   return true;
5193 }
5194 
5195 /// Emits metadata nodes associating all the global values in the
5196 /// current module with the Decls they came from.  This is useful for
5197 /// projects using IR gen as a subroutine.
5198 ///
5199 /// Since there's currently no way to associate an MDNode directly
5200 /// with an llvm::GlobalValue, we create a global named metadata
5201 /// with the name 'clang.global.decl.ptrs'.
5202 void CodeGenModule::EmitDeclMetadata() {
5203   llvm::NamedMDNode *GlobalMetadata = nullptr;
5204 
5205   for (auto &I : MangledDeclNames) {
5206     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5207     // Some mangled names don't necessarily have an associated GlobalValue
5208     // in this module, e.g. if we mangled it for DebugInfo.
5209     if (Addr)
5210       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5211   }
5212 }
5213 
5214 /// Emits metadata nodes for all the local variables in the current
5215 /// function.
5216 void CodeGenFunction::EmitDeclMetadata() {
5217   if (LocalDeclMap.empty()) return;
5218 
5219   llvm::LLVMContext &Context = getLLVMContext();
5220 
5221   // Find the unique metadata ID for this name.
5222   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5223 
5224   llvm::NamedMDNode *GlobalMetadata = nullptr;
5225 
5226   for (auto &I : LocalDeclMap) {
5227     const Decl *D = I.first;
5228     llvm::Value *Addr = I.second.getPointer();
5229     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5230       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5231       Alloca->setMetadata(
5232           DeclPtrKind, llvm::MDNode::get(
5233                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5234     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5235       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5236       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5237     }
5238   }
5239 }
5240 
5241 void CodeGenModule::EmitVersionIdentMetadata() {
5242   llvm::NamedMDNode *IdentMetadata =
5243     TheModule.getOrInsertNamedMetadata("llvm.ident");
5244   std::string Version = getClangFullVersion();
5245   llvm::LLVMContext &Ctx = TheModule.getContext();
5246 
5247   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5248   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5249 }
5250 
5251 void CodeGenModule::EmitCommandLineMetadata() {
5252   llvm::NamedMDNode *CommandLineMetadata =
5253     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5254   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5255   llvm::LLVMContext &Ctx = TheModule.getContext();
5256 
5257   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5258   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5259 }
5260 
5261 void CodeGenModule::EmitTargetMetadata() {
5262   // Warning, new MangledDeclNames may be appended within this loop.
5263   // We rely on MapVector insertions adding new elements to the end
5264   // of the container.
5265   // FIXME: Move this loop into the one target that needs it, and only
5266   // loop over those declarations for which we couldn't emit the target
5267   // metadata when we emitted the declaration.
5268   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5269     auto Val = *(MangledDeclNames.begin() + I);
5270     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5271     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5272     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5273   }
5274 }
5275 
5276 void CodeGenModule::EmitCoverageFile() {
5277   if (getCodeGenOpts().CoverageDataFile.empty() &&
5278       getCodeGenOpts().CoverageNotesFile.empty())
5279     return;
5280 
5281   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5282   if (!CUNode)
5283     return;
5284 
5285   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5286   llvm::LLVMContext &Ctx = TheModule.getContext();
5287   auto *CoverageDataFile =
5288       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5289   auto *CoverageNotesFile =
5290       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5291   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5292     llvm::MDNode *CU = CUNode->getOperand(i);
5293     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5294     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5295   }
5296 }
5297 
5298 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5299   // Sema has checked that all uuid strings are of the form
5300   // "12345678-1234-1234-1234-1234567890ab".
5301   assert(Uuid.size() == 36);
5302   for (unsigned i = 0; i < 36; ++i) {
5303     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5304     else                                         assert(isHexDigit(Uuid[i]));
5305   }
5306 
5307   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5308   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5309 
5310   llvm::Constant *Field3[8];
5311   for (unsigned Idx = 0; Idx < 8; ++Idx)
5312     Field3[Idx] = llvm::ConstantInt::get(
5313         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5314 
5315   llvm::Constant *Fields[4] = {
5316     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5317     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5318     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5319     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5320   };
5321 
5322   return llvm::ConstantStruct::getAnon(Fields);
5323 }
5324 
5325 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5326                                                        bool ForEH) {
5327   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5328   // FIXME: should we even be calling this method if RTTI is disabled
5329   // and it's not for EH?
5330   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5331     return llvm::Constant::getNullValue(Int8PtrTy);
5332 
5333   if (ForEH && Ty->isObjCObjectPointerType() &&
5334       LangOpts.ObjCRuntime.isGNUFamily())
5335     return ObjCRuntime->GetEHType(Ty);
5336 
5337   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5338 }
5339 
5340 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5341   // Do not emit threadprivates in simd-only mode.
5342   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5343     return;
5344   for (auto RefExpr : D->varlists()) {
5345     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5346     bool PerformInit =
5347         VD->getAnyInitializer() &&
5348         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5349                                                         /*ForRef=*/false);
5350 
5351     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5352     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5353             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5354       CXXGlobalInits.push_back(InitFunction);
5355   }
5356 }
5357 
5358 llvm::Metadata *
5359 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5360                                             StringRef Suffix) {
5361   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5362   if (InternalId)
5363     return InternalId;
5364 
5365   if (isExternallyVisible(T->getLinkage())) {
5366     std::string OutName;
5367     llvm::raw_string_ostream Out(OutName);
5368     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5369     Out << Suffix;
5370 
5371     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5372   } else {
5373     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5374                                            llvm::ArrayRef<llvm::Metadata *>());
5375   }
5376 
5377   return InternalId;
5378 }
5379 
5380 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5381   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5382 }
5383 
5384 llvm::Metadata *
5385 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5386   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5387 }
5388 
5389 // Generalize pointer types to a void pointer with the qualifiers of the
5390 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5391 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5392 // 'void *'.
5393 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5394   if (!Ty->isPointerType())
5395     return Ty;
5396 
5397   return Ctx.getPointerType(
5398       QualType(Ctx.VoidTy).withCVRQualifiers(
5399           Ty->getPointeeType().getCVRQualifiers()));
5400 }
5401 
5402 // Apply type generalization to a FunctionType's return and argument types
5403 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5404   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5405     SmallVector<QualType, 8> GeneralizedParams;
5406     for (auto &Param : FnType->param_types())
5407       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5408 
5409     return Ctx.getFunctionType(
5410         GeneralizeType(Ctx, FnType->getReturnType()),
5411         GeneralizedParams, FnType->getExtProtoInfo());
5412   }
5413 
5414   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5415     return Ctx.getFunctionNoProtoType(
5416         GeneralizeType(Ctx, FnType->getReturnType()));
5417 
5418   llvm_unreachable("Encountered unknown FunctionType");
5419 }
5420 
5421 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5422   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5423                                       GeneralizedMetadataIdMap, ".generalized");
5424 }
5425 
5426 /// Returns whether this module needs the "all-vtables" type identifier.
5427 bool CodeGenModule::NeedAllVtablesTypeId() const {
5428   // Returns true if at least one of vtable-based CFI checkers is enabled and
5429   // is not in the trapping mode.
5430   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5431            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5432           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5433            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5434           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5435            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5436           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5437            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5438 }
5439 
5440 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5441                                           CharUnits Offset,
5442                                           const CXXRecordDecl *RD) {
5443   llvm::Metadata *MD =
5444       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5445   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5446 
5447   if (CodeGenOpts.SanitizeCfiCrossDso)
5448     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5449       VTable->addTypeMetadata(Offset.getQuantity(),
5450                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5451 
5452   if (NeedAllVtablesTypeId()) {
5453     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5454     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5455   }
5456 }
5457 
5458 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5459   assert(TD != nullptr);
5460   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5461 
5462   ParsedAttr.Features.erase(
5463       llvm::remove_if(ParsedAttr.Features,
5464                       [&](const std::string &Feat) {
5465                         return !Target.isValidFeatureName(
5466                             StringRef{Feat}.substr(1));
5467                       }),
5468       ParsedAttr.Features.end());
5469   return ParsedAttr;
5470 }
5471 
5472 
5473 // Fills in the supplied string map with the set of target features for the
5474 // passed in function.
5475 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5476                                           GlobalDecl GD) {
5477   StringRef TargetCPU = Target.getTargetOpts().CPU;
5478   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
5479   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5480     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5481 
5482     // Make a copy of the features as passed on the command line into the
5483     // beginning of the additional features from the function to override.
5484     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5485                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5486                             Target.getTargetOpts().FeaturesAsWritten.end());
5487 
5488     if (ParsedAttr.Architecture != "" &&
5489         Target.isValidCPUName(ParsedAttr.Architecture))
5490       TargetCPU = ParsedAttr.Architecture;
5491 
5492     // Now populate the feature map, first with the TargetCPU which is either
5493     // the default or a new one from the target attribute string. Then we'll use
5494     // the passed in features (FeaturesAsWritten) along with the new ones from
5495     // the attribute.
5496     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5497                           ParsedAttr.Features);
5498   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5499     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5500     Target.getCPUSpecificCPUDispatchFeatures(
5501         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
5502     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5503     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5504   } else {
5505     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5506                           Target.getTargetOpts().Features);
5507   }
5508 }
5509 
5510 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5511   if (!SanStats)
5512     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5513 
5514   return *SanStats;
5515 }
5516 llvm::Value *
5517 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5518                                                   CodeGenFunction &CGF) {
5519   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5520   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5521   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5522   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5523                                 "__translate_sampler_initializer"),
5524                                 {C});
5525 }
5526