xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 2943071e2ee0c7f31f34062a44d12aeb0e3a66fd)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 #include "llvm/Support/X86TargetParser.h"
67 
68 using namespace clang;
69 using namespace CodeGen;
70 
71 static llvm::cl::opt<bool> LimitedCoverage(
72     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
73     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
74     llvm::cl::init(false));
75 
76 static const char AnnotationSection[] = "llvm.metadata";
77 
78 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
79   switch (CGM.getContext().getCXXABIKind()) {
80   case TargetCXXABI::AppleARM64:
81   case TargetCXXABI::Fuchsia:
82   case TargetCXXABI::GenericAArch64:
83   case TargetCXXABI::GenericARM:
84   case TargetCXXABI::iOS:
85   case TargetCXXABI::WatchOS:
86   case TargetCXXABI::GenericMIPS:
87   case TargetCXXABI::GenericItanium:
88   case TargetCXXABI::WebAssembly:
89   case TargetCXXABI::XL:
90     return CreateItaniumCXXABI(CGM);
91   case TargetCXXABI::Microsoft:
92     return CreateMicrosoftCXXABI(CGM);
93   }
94 
95   llvm_unreachable("invalid C++ ABI kind");
96 }
97 
98 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
99                              const PreprocessorOptions &PPO,
100                              const CodeGenOptions &CGO, llvm::Module &M,
101                              DiagnosticsEngine &diags,
102                              CoverageSourceInfo *CoverageInfo)
103     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
104       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
105       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
106       VMContext(M.getContext()), Types(*this), VTables(*this),
107       SanitizerMD(new SanitizerMetadata(*this)) {
108 
109   // Initialize the type cache.
110   llvm::LLVMContext &LLVMContext = M.getContext();
111   VoidTy = llvm::Type::getVoidTy(LLVMContext);
112   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
113   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
114   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
115   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
116   HalfTy = llvm::Type::getHalfTy(LLVMContext);
117   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
118   FloatTy = llvm::Type::getFloatTy(LLVMContext);
119   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
120   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
121   PointerAlignInBytes =
122     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
123   SizeSizeInBytes =
124     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
125   IntAlignInBytes =
126     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
127   CharTy =
128     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
129   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
130   IntPtrTy = llvm::IntegerType::get(LLVMContext,
131     C.getTargetInfo().getMaxPointerWidth());
132   Int8PtrTy = Int8Ty->getPointerTo(0);
133   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
134   const llvm::DataLayout &DL = M.getDataLayout();
135   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
136   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
137   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
138 
139   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
140 
141   if (LangOpts.ObjC)
142     createObjCRuntime();
143   if (LangOpts.OpenCL)
144     createOpenCLRuntime();
145   if (LangOpts.OpenMP)
146     createOpenMPRuntime();
147   if (LangOpts.CUDA)
148     createCUDARuntime();
149 
150   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
151   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
152       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
153     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
154                                getCXXABI().getMangleContext()));
155 
156   // If debug info or coverage generation is enabled, create the CGDebugInfo
157   // object.
158   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
159       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
160     DebugInfo.reset(new CGDebugInfo(*this));
161 
162   Block.GlobalUniqueCount = 0;
163 
164   if (C.getLangOpts().ObjC)
165     ObjCData.reset(new ObjCEntrypoints());
166 
167   if (CodeGenOpts.hasProfileClangUse()) {
168     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
169         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
170     if (auto E = ReaderOrErr.takeError()) {
171       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
172                                               "Could not read profile %0: %1");
173       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
174         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
175                                   << EI.message();
176       });
177     } else
178       PGOReader = std::move(ReaderOrErr.get());
179   }
180 
181   // If coverage mapping generation is enabled, create the
182   // CoverageMappingModuleGen object.
183   if (CodeGenOpts.CoverageMapping)
184     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
185 
186   // Generate the module name hash here if needed.
187   if (CodeGenOpts.UniqueInternalLinkageNames &&
188       !getModule().getSourceFileName().empty()) {
189     std::string Path = getModule().getSourceFileName();
190     // Check if a path substitution is needed from the MacroPrefixMap.
191     for (const auto &Entry : LangOpts.MacroPrefixMap)
192       if (Path.rfind(Entry.first, 0) != std::string::npos) {
193         Path = Entry.second + Path.substr(Entry.first.size());
194         break;
195       }
196     llvm::MD5 Md5;
197     Md5.update(Path);
198     llvm::MD5::MD5Result R;
199     Md5.final(R);
200     SmallString<32> Str;
201     llvm::MD5::stringifyResult(R, Str);
202     // Convert MD5hash to Decimal. Demangler suffixes can either contain
203     // numbers or characters but not both.
204     llvm::APInt IntHash(128, Str.str(), 16);
205     // Prepend "__uniq" before the hash for tools like profilers to understand
206     // that this symbol is of internal linkage type.  The "__uniq" is the
207     // pre-determined prefix that is used to tell tools that this symbol was
208     // created with -funique-internal-linakge-symbols and the tools can strip or
209     // keep the prefix as needed.
210     ModuleNameHash = (Twine(".__uniq.") +
211         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
212   }
213 }
214 
215 CodeGenModule::~CodeGenModule() {}
216 
217 void CodeGenModule::createObjCRuntime() {
218   // This is just isGNUFamily(), but we want to force implementors of
219   // new ABIs to decide how best to do this.
220   switch (LangOpts.ObjCRuntime.getKind()) {
221   case ObjCRuntime::GNUstep:
222   case ObjCRuntime::GCC:
223   case ObjCRuntime::ObjFW:
224     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
225     return;
226 
227   case ObjCRuntime::FragileMacOSX:
228   case ObjCRuntime::MacOSX:
229   case ObjCRuntime::iOS:
230   case ObjCRuntime::WatchOS:
231     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
232     return;
233   }
234   llvm_unreachable("bad runtime kind");
235 }
236 
237 void CodeGenModule::createOpenCLRuntime() {
238   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
239 }
240 
241 void CodeGenModule::createOpenMPRuntime() {
242   // Select a specialized code generation class based on the target, if any.
243   // If it does not exist use the default implementation.
244   switch (getTriple().getArch()) {
245   case llvm::Triple::nvptx:
246   case llvm::Triple::nvptx64:
247     assert(getLangOpts().OpenMPIsDevice &&
248            "OpenMP NVPTX is only prepared to deal with device code.");
249     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
250     break;
251   case llvm::Triple::amdgcn:
252     assert(getLangOpts().OpenMPIsDevice &&
253            "OpenMP AMDGCN is only prepared to deal with device code.");
254     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
255     break;
256   default:
257     if (LangOpts.OpenMPSimd)
258       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
259     else
260       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
261     break;
262   }
263 }
264 
265 void CodeGenModule::createCUDARuntime() {
266   CUDARuntime.reset(CreateNVCUDARuntime(*this));
267 }
268 
269 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
270   Replacements[Name] = C;
271 }
272 
273 void CodeGenModule::applyReplacements() {
274   for (auto &I : Replacements) {
275     StringRef MangledName = I.first();
276     llvm::Constant *Replacement = I.second;
277     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
278     if (!Entry)
279       continue;
280     auto *OldF = cast<llvm::Function>(Entry);
281     auto *NewF = dyn_cast<llvm::Function>(Replacement);
282     if (!NewF) {
283       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
284         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
285       } else {
286         auto *CE = cast<llvm::ConstantExpr>(Replacement);
287         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
288                CE->getOpcode() == llvm::Instruction::GetElementPtr);
289         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
290       }
291     }
292 
293     // Replace old with new, but keep the old order.
294     OldF->replaceAllUsesWith(Replacement);
295     if (NewF) {
296       NewF->removeFromParent();
297       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
298                                                        NewF);
299     }
300     OldF->eraseFromParent();
301   }
302 }
303 
304 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
305   GlobalValReplacements.push_back(std::make_pair(GV, C));
306 }
307 
308 void CodeGenModule::applyGlobalValReplacements() {
309   for (auto &I : GlobalValReplacements) {
310     llvm::GlobalValue *GV = I.first;
311     llvm::Constant *C = I.second;
312 
313     GV->replaceAllUsesWith(C);
314     GV->eraseFromParent();
315   }
316 }
317 
318 // This is only used in aliases that we created and we know they have a
319 // linear structure.
320 static const llvm::GlobalObject *getAliasedGlobal(
321     const llvm::GlobalIndirectSymbol &GIS) {
322   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
323   const llvm::Constant *C = &GIS;
324   for (;;) {
325     C = C->stripPointerCasts();
326     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
327       return GO;
328     // stripPointerCasts will not walk over weak aliases.
329     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
330     if (!GIS2)
331       return nullptr;
332     if (!Visited.insert(GIS2).second)
333       return nullptr;
334     C = GIS2->getIndirectSymbol();
335   }
336 }
337 
338 void CodeGenModule::checkAliases() {
339   // Check if the constructed aliases are well formed. It is really unfortunate
340   // that we have to do this in CodeGen, but we only construct mangled names
341   // and aliases during codegen.
342   bool Error = false;
343   DiagnosticsEngine &Diags = getDiags();
344   for (const GlobalDecl &GD : Aliases) {
345     const auto *D = cast<ValueDecl>(GD.getDecl());
346     SourceLocation Location;
347     bool IsIFunc = D->hasAttr<IFuncAttr>();
348     if (const Attr *A = D->getDefiningAttr())
349       Location = A->getLocation();
350     else
351       llvm_unreachable("Not an alias or ifunc?");
352     StringRef MangledName = getMangledName(GD);
353     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
354     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
355     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
356     if (!GV) {
357       Error = true;
358       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
359     } else if (GV->isDeclaration()) {
360       Error = true;
361       Diags.Report(Location, diag::err_alias_to_undefined)
362           << IsIFunc << IsIFunc;
363     } else if (IsIFunc) {
364       // Check resolver function type.
365       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
366           GV->getType()->getPointerElementType());
367       assert(FTy);
368       if (!FTy->getReturnType()->isPointerTy())
369         Diags.Report(Location, diag::err_ifunc_resolver_return);
370     }
371 
372     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
373     llvm::GlobalValue *AliaseeGV;
374     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
375       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
376     else
377       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
378 
379     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
380       StringRef AliasSection = SA->getName();
381       if (AliasSection != AliaseeGV->getSection())
382         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
383             << AliasSection << IsIFunc << IsIFunc;
384     }
385 
386     // We have to handle alias to weak aliases in here. LLVM itself disallows
387     // this since the object semantics would not match the IL one. For
388     // compatibility with gcc we implement it by just pointing the alias
389     // to its aliasee's aliasee. We also warn, since the user is probably
390     // expecting the link to be weak.
391     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
392       if (GA->isInterposable()) {
393         Diags.Report(Location, diag::warn_alias_to_weak_alias)
394             << GV->getName() << GA->getName() << IsIFunc;
395         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
396             GA->getIndirectSymbol(), Alias->getType());
397         Alias->setIndirectSymbol(Aliasee);
398       }
399     }
400   }
401   if (!Error)
402     return;
403 
404   for (const GlobalDecl &GD : Aliases) {
405     StringRef MangledName = getMangledName(GD);
406     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
407     auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
408     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
409     Alias->eraseFromParent();
410   }
411 }
412 
413 void CodeGenModule::clear() {
414   DeferredDeclsToEmit.clear();
415   if (OpenMPRuntime)
416     OpenMPRuntime->clear();
417 }
418 
419 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
420                                        StringRef MainFile) {
421   if (!hasDiagnostics())
422     return;
423   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
424     if (MainFile.empty())
425       MainFile = "<stdin>";
426     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
427   } else {
428     if (Mismatched > 0)
429       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
430 
431     if (Missing > 0)
432       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
433   }
434 }
435 
436 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
437                                              llvm::Module &M) {
438   if (!LO.VisibilityFromDLLStorageClass)
439     return;
440 
441   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
442       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
443   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
444       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
445   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
446       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
447   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
448       CodeGenModule::GetLLVMVisibility(
449           LO.getExternDeclNoDLLStorageClassVisibility());
450 
451   for (llvm::GlobalValue &GV : M.global_values()) {
452     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
453       continue;
454 
455     // Reset DSO locality before setting the visibility. This removes
456     // any effects that visibility options and annotations may have
457     // had on the DSO locality. Setting the visibility will implicitly set
458     // appropriate globals to DSO Local; however, this will be pessimistic
459     // w.r.t. to the normal compiler IRGen.
460     GV.setDSOLocal(false);
461 
462     if (GV.isDeclarationForLinker()) {
463       GV.setVisibility(GV.getDLLStorageClass() ==
464                                llvm::GlobalValue::DLLImportStorageClass
465                            ? ExternDeclDLLImportVisibility
466                            : ExternDeclNoDLLStorageClassVisibility);
467     } else {
468       GV.setVisibility(GV.getDLLStorageClass() ==
469                                llvm::GlobalValue::DLLExportStorageClass
470                            ? DLLExportVisibility
471                            : NoDLLStorageClassVisibility);
472     }
473 
474     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
475   }
476 }
477 
478 void CodeGenModule::Release() {
479   EmitDeferred();
480   EmitVTablesOpportunistically();
481   applyGlobalValReplacements();
482   applyReplacements();
483   checkAliases();
484   emitMultiVersionFunctions();
485   EmitCXXGlobalInitFunc();
486   EmitCXXGlobalCleanUpFunc();
487   registerGlobalDtorsWithAtExit();
488   EmitCXXThreadLocalInitFunc();
489   if (ObjCRuntime)
490     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
491       AddGlobalCtor(ObjCInitFunction);
492   if (Context.getLangOpts().CUDA && CUDARuntime) {
493     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
494       AddGlobalCtor(CudaCtorFunction);
495   }
496   if (OpenMPRuntime) {
497     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
498             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
499       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
500     }
501     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
502     OpenMPRuntime->clear();
503   }
504   if (PGOReader) {
505     getModule().setProfileSummary(
506         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
507         llvm::ProfileSummary::PSK_Instr);
508     if (PGOStats.hasDiagnostics())
509       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
510   }
511   EmitCtorList(GlobalCtors, "llvm.global_ctors");
512   EmitCtorList(GlobalDtors, "llvm.global_dtors");
513   EmitGlobalAnnotations();
514   EmitStaticExternCAliases();
515   EmitDeferredUnusedCoverageMappings();
516   CodeGenPGO(*this).setValueProfilingFlag(getModule());
517   if (CoverageMapping)
518     CoverageMapping->emit();
519   if (CodeGenOpts.SanitizeCfiCrossDso) {
520     CodeGenFunction(*this).EmitCfiCheckFail();
521     CodeGenFunction(*this).EmitCfiCheckStub();
522   }
523   emitAtAvailableLinkGuard();
524   if (Context.getTargetInfo().getTriple().isWasm() &&
525       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
526     EmitMainVoidAlias();
527   }
528 
529   // Emit reference of __amdgpu_device_library_preserve_asan_functions to
530   // preserve ASAN functions in bitcode libraries.
531   if (LangOpts.Sanitize.has(SanitizerKind::Address) && getTriple().isAMDGPU()) {
532     auto *FT = llvm::FunctionType::get(VoidTy, {});
533     auto *F = llvm::Function::Create(
534         FT, llvm::GlobalValue::ExternalLinkage,
535         "__amdgpu_device_library_preserve_asan_functions", &getModule());
536     auto *Var = new llvm::GlobalVariable(
537         getModule(), FT->getPointerTo(),
538         /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
539         "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
540         llvm::GlobalVariable::NotThreadLocal);
541     addCompilerUsedGlobal(Var);
542   }
543 
544   emitLLVMUsed();
545   if (SanStats)
546     SanStats->finish();
547 
548   if (CodeGenOpts.Autolink &&
549       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
550     EmitModuleLinkOptions();
551   }
552 
553   // On ELF we pass the dependent library specifiers directly to the linker
554   // without manipulating them. This is in contrast to other platforms where
555   // they are mapped to a specific linker option by the compiler. This
556   // difference is a result of the greater variety of ELF linkers and the fact
557   // that ELF linkers tend to handle libraries in a more complicated fashion
558   // than on other platforms. This forces us to defer handling the dependent
559   // libs to the linker.
560   //
561   // CUDA/HIP device and host libraries are different. Currently there is no
562   // way to differentiate dependent libraries for host or device. Existing
563   // usage of #pragma comment(lib, *) is intended for host libraries on
564   // Windows. Therefore emit llvm.dependent-libraries only for host.
565   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
566     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
567     for (auto *MD : ELFDependentLibraries)
568       NMD->addOperand(MD);
569   }
570 
571   // Record mregparm value now so it is visible through rest of codegen.
572   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
573     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
574                               CodeGenOpts.NumRegisterParameters);
575 
576   if (CodeGenOpts.DwarfVersion) {
577     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
578                               CodeGenOpts.DwarfVersion);
579   }
580 
581   if (CodeGenOpts.Dwarf64)
582     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
583 
584   if (Context.getLangOpts().SemanticInterposition)
585     // Require various optimization to respect semantic interposition.
586     getModule().setSemanticInterposition(1);
587 
588   if (CodeGenOpts.EmitCodeView) {
589     // Indicate that we want CodeView in the metadata.
590     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
591   }
592   if (CodeGenOpts.CodeViewGHash) {
593     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
594   }
595   if (CodeGenOpts.ControlFlowGuard) {
596     // Function ID tables and checks for Control Flow Guard (cfguard=2).
597     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
598   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
599     // Function ID tables for Control Flow Guard (cfguard=1).
600     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
601   }
602   if (CodeGenOpts.EHContGuard) {
603     // Function ID tables for EH Continuation Guard.
604     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
605   }
606   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
607     // We don't support LTO with 2 with different StrictVTablePointers
608     // FIXME: we could support it by stripping all the information introduced
609     // by StrictVTablePointers.
610 
611     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
612 
613     llvm::Metadata *Ops[2] = {
614               llvm::MDString::get(VMContext, "StrictVTablePointers"),
615               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
616                   llvm::Type::getInt32Ty(VMContext), 1))};
617 
618     getModule().addModuleFlag(llvm::Module::Require,
619                               "StrictVTablePointersRequirement",
620                               llvm::MDNode::get(VMContext, Ops));
621   }
622   if (getModuleDebugInfo())
623     // We support a single version in the linked module. The LLVM
624     // parser will drop debug info with a different version number
625     // (and warn about it, too).
626     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
627                               llvm::DEBUG_METADATA_VERSION);
628 
629   // We need to record the widths of enums and wchar_t, so that we can generate
630   // the correct build attributes in the ARM backend. wchar_size is also used by
631   // TargetLibraryInfo.
632   uint64_t WCharWidth =
633       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
634   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
635 
636   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
637   if (   Arch == llvm::Triple::arm
638       || Arch == llvm::Triple::armeb
639       || Arch == llvm::Triple::thumb
640       || Arch == llvm::Triple::thumbeb) {
641     // The minimum width of an enum in bytes
642     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
643     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
644   }
645 
646   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
647     StringRef ABIStr = Target.getABI();
648     llvm::LLVMContext &Ctx = TheModule.getContext();
649     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
650                               llvm::MDString::get(Ctx, ABIStr));
651   }
652 
653   if (CodeGenOpts.SanitizeCfiCrossDso) {
654     // Indicate that we want cross-DSO control flow integrity checks.
655     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
656   }
657 
658   if (CodeGenOpts.WholeProgramVTables) {
659     // Indicate whether VFE was enabled for this module, so that the
660     // vcall_visibility metadata added under whole program vtables is handled
661     // appropriately in the optimizer.
662     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
663                               CodeGenOpts.VirtualFunctionElimination);
664   }
665 
666   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
667     getModule().addModuleFlag(llvm::Module::Override,
668                               "CFI Canonical Jump Tables",
669                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
670   }
671 
672   if (CodeGenOpts.CFProtectionReturn &&
673       Target.checkCFProtectionReturnSupported(getDiags())) {
674     // Indicate that we want to instrument return control flow protection.
675     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
676                               1);
677   }
678 
679   if (CodeGenOpts.CFProtectionBranch &&
680       Target.checkCFProtectionBranchSupported(getDiags())) {
681     // Indicate that we want to instrument branch control flow protection.
682     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
683                               1);
684   }
685 
686   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
687       Arch == llvm::Triple::aarch64_be) {
688     getModule().addModuleFlag(llvm::Module::Error,
689                               "branch-target-enforcement",
690                               LangOpts.BranchTargetEnforcement);
691 
692     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
693                               LangOpts.hasSignReturnAddress());
694 
695     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
696                               LangOpts.isSignReturnAddressScopeAll());
697 
698     getModule().addModuleFlag(llvm::Module::Error,
699                               "sign-return-address-with-bkey",
700                               !LangOpts.isSignReturnAddressWithAKey());
701   }
702 
703   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
704     llvm::LLVMContext &Ctx = TheModule.getContext();
705     getModule().addModuleFlag(
706         llvm::Module::Error, "MemProfProfileFilename",
707         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
708   }
709 
710   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
711     // Indicate whether __nvvm_reflect should be configured to flush denormal
712     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
713     // property.)
714     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
715                               CodeGenOpts.FP32DenormalMode.Output !=
716                                   llvm::DenormalMode::IEEE);
717   }
718 
719   if (LangOpts.EHAsynch)
720     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
721 
722   // Indicate whether this Module was compiled with -fopenmp
723   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
724     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
725   if (getLangOpts().OpenMPIsDevice)
726     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
727                               LangOpts.OpenMP);
728 
729   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
730   if (LangOpts.OpenCL) {
731     EmitOpenCLMetadata();
732     // Emit SPIR version.
733     if (getTriple().isSPIR()) {
734       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
735       // opencl.spir.version named metadata.
736       // C++ for OpenCL has a distinct mapping for version compatibility with
737       // OpenCL.
738       auto Version = LangOpts.getOpenCLCompatibleVersion();
739       llvm::Metadata *SPIRVerElts[] = {
740           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
741               Int32Ty, Version / 100)),
742           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
743               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
744       llvm::NamedMDNode *SPIRVerMD =
745           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
746       llvm::LLVMContext &Ctx = TheModule.getContext();
747       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
748     }
749   }
750 
751   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
752     assert(PLevel < 3 && "Invalid PIC Level");
753     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
754     if (Context.getLangOpts().PIE)
755       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
756   }
757 
758   if (getCodeGenOpts().CodeModel.size() > 0) {
759     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
760                   .Case("tiny", llvm::CodeModel::Tiny)
761                   .Case("small", llvm::CodeModel::Small)
762                   .Case("kernel", llvm::CodeModel::Kernel)
763                   .Case("medium", llvm::CodeModel::Medium)
764                   .Case("large", llvm::CodeModel::Large)
765                   .Default(~0u);
766     if (CM != ~0u) {
767       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
768       getModule().setCodeModel(codeModel);
769     }
770   }
771 
772   if (CodeGenOpts.NoPLT)
773     getModule().setRtLibUseGOT();
774   if (CodeGenOpts.UnwindTables)
775     getModule().setUwtable();
776 
777   switch (CodeGenOpts.getFramePointer()) {
778   case CodeGenOptions::FramePointerKind::None:
779     // 0 ("none") is the default.
780     break;
781   case CodeGenOptions::FramePointerKind::NonLeaf:
782     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
783     break;
784   case CodeGenOptions::FramePointerKind::All:
785     getModule().setFramePointer(llvm::FramePointerKind::All);
786     break;
787   }
788 
789   SimplifyPersonality();
790 
791   if (getCodeGenOpts().EmitDeclMetadata)
792     EmitDeclMetadata();
793 
794   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
795     EmitCoverageFile();
796 
797   if (CGDebugInfo *DI = getModuleDebugInfo())
798     DI->finalize();
799 
800   if (getCodeGenOpts().EmitVersionIdentMetadata)
801     EmitVersionIdentMetadata();
802 
803   if (!getCodeGenOpts().RecordCommandLine.empty())
804     EmitCommandLineMetadata();
805 
806   if (!getCodeGenOpts().StackProtectorGuard.empty())
807     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
808   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
809     getModule().setStackProtectorGuardReg(
810         getCodeGenOpts().StackProtectorGuardReg);
811   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
812     getModule().setStackProtectorGuardOffset(
813         getCodeGenOpts().StackProtectorGuardOffset);
814   if (getCodeGenOpts().StackAlignment)
815     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
816 
817   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
818 
819   EmitBackendOptionsMetadata(getCodeGenOpts());
820 
821   // Set visibility from DLL storage class
822   // We do this at the end of LLVM IR generation; after any operation
823   // that might affect the DLL storage class or the visibility, and
824   // before anything that might act on these.
825   setVisibilityFromDLLStorageClass(LangOpts, getModule());
826 }
827 
828 void CodeGenModule::EmitOpenCLMetadata() {
829   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
830   // opencl.ocl.version named metadata node.
831   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
832   auto Version = LangOpts.getOpenCLCompatibleVersion();
833   llvm::Metadata *OCLVerElts[] = {
834       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
835           Int32Ty, Version / 100)),
836       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
837           Int32Ty, (Version % 100) / 10))};
838   llvm::NamedMDNode *OCLVerMD =
839       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
840   llvm::LLVMContext &Ctx = TheModule.getContext();
841   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
842 }
843 
844 void CodeGenModule::EmitBackendOptionsMetadata(
845     const CodeGenOptions CodeGenOpts) {
846   switch (getTriple().getArch()) {
847   default:
848     break;
849   case llvm::Triple::riscv32:
850   case llvm::Triple::riscv64:
851     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
852                               CodeGenOpts.SmallDataLimit);
853     break;
854   }
855 }
856 
857 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
858   // Make sure that this type is translated.
859   Types.UpdateCompletedType(TD);
860 }
861 
862 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
863   // Make sure that this type is translated.
864   Types.RefreshTypeCacheForClass(RD);
865 }
866 
867 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
868   if (!TBAA)
869     return nullptr;
870   return TBAA->getTypeInfo(QTy);
871 }
872 
873 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
874   if (!TBAA)
875     return TBAAAccessInfo();
876   if (getLangOpts().CUDAIsDevice) {
877     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
878     // access info.
879     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
880       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
881           nullptr)
882         return TBAAAccessInfo();
883     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
884       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
885           nullptr)
886         return TBAAAccessInfo();
887     }
888   }
889   return TBAA->getAccessInfo(AccessType);
890 }
891 
892 TBAAAccessInfo
893 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
894   if (!TBAA)
895     return TBAAAccessInfo();
896   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
897 }
898 
899 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
900   if (!TBAA)
901     return nullptr;
902   return TBAA->getTBAAStructInfo(QTy);
903 }
904 
905 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
906   if (!TBAA)
907     return nullptr;
908   return TBAA->getBaseTypeInfo(QTy);
909 }
910 
911 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
912   if (!TBAA)
913     return nullptr;
914   return TBAA->getAccessTagInfo(Info);
915 }
916 
917 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
918                                                    TBAAAccessInfo TargetInfo) {
919   if (!TBAA)
920     return TBAAAccessInfo();
921   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
922 }
923 
924 TBAAAccessInfo
925 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
926                                                    TBAAAccessInfo InfoB) {
927   if (!TBAA)
928     return TBAAAccessInfo();
929   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
930 }
931 
932 TBAAAccessInfo
933 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
934                                               TBAAAccessInfo SrcInfo) {
935   if (!TBAA)
936     return TBAAAccessInfo();
937   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
938 }
939 
940 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
941                                                 TBAAAccessInfo TBAAInfo) {
942   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
943     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
944 }
945 
946 void CodeGenModule::DecorateInstructionWithInvariantGroup(
947     llvm::Instruction *I, const CXXRecordDecl *RD) {
948   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
949                  llvm::MDNode::get(getLLVMContext(), {}));
950 }
951 
952 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
953   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
954   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
955 }
956 
957 /// ErrorUnsupported - Print out an error that codegen doesn't support the
958 /// specified stmt yet.
959 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
960   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
961                                                "cannot compile this %0 yet");
962   std::string Msg = Type;
963   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
964       << Msg << S->getSourceRange();
965 }
966 
967 /// ErrorUnsupported - Print out an error that codegen doesn't support the
968 /// specified decl yet.
969 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
970   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
971                                                "cannot compile this %0 yet");
972   std::string Msg = Type;
973   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
974 }
975 
976 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
977   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
978 }
979 
980 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
981                                         const NamedDecl *D) const {
982   if (GV->hasDLLImportStorageClass())
983     return;
984   // Internal definitions always have default visibility.
985   if (GV->hasLocalLinkage()) {
986     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
987     return;
988   }
989   if (!D)
990     return;
991   // Set visibility for definitions, and for declarations if requested globally
992   // or set explicitly.
993   LinkageInfo LV = D->getLinkageAndVisibility();
994   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
995       !GV->isDeclarationForLinker())
996     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
997 }
998 
999 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1000                                  llvm::GlobalValue *GV) {
1001   if (GV->hasLocalLinkage())
1002     return true;
1003 
1004   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1005     return true;
1006 
1007   // DLLImport explicitly marks the GV as external.
1008   if (GV->hasDLLImportStorageClass())
1009     return false;
1010 
1011   const llvm::Triple &TT = CGM.getTriple();
1012   if (TT.isWindowsGNUEnvironment()) {
1013     // In MinGW, variables without DLLImport can still be automatically
1014     // imported from a DLL by the linker; don't mark variables that
1015     // potentially could come from another DLL as DSO local.
1016 
1017     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1018     // (and this actually happens in the public interface of libstdc++), so
1019     // such variables can't be marked as DSO local. (Native TLS variables
1020     // can't be dllimported at all, though.)
1021     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1022         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1023       return false;
1024   }
1025 
1026   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1027   // remain unresolved in the link, they can be resolved to zero, which is
1028   // outside the current DSO.
1029   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1030     return false;
1031 
1032   // Every other GV is local on COFF.
1033   // Make an exception for windows OS in the triple: Some firmware builds use
1034   // *-win32-macho triples. This (accidentally?) produced windows relocations
1035   // without GOT tables in older clang versions; Keep this behaviour.
1036   // FIXME: even thread local variables?
1037   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1038     return true;
1039 
1040   // Only handle COFF and ELF for now.
1041   if (!TT.isOSBinFormatELF())
1042     return false;
1043 
1044   // If this is not an executable, don't assume anything is local.
1045   const auto &CGOpts = CGM.getCodeGenOpts();
1046   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1047   const auto &LOpts = CGM.getLangOpts();
1048   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1049     // On ELF, if -fno-semantic-interposition is specified and the target
1050     // supports local aliases, there will be neither CC1
1051     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1052     // dso_local on the function if using a local alias is preferable (can avoid
1053     // PLT indirection).
1054     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1055       return false;
1056     return !(CGM.getLangOpts().SemanticInterposition ||
1057              CGM.getLangOpts().HalfNoSemanticInterposition);
1058   }
1059 
1060   // A definition cannot be preempted from an executable.
1061   if (!GV->isDeclarationForLinker())
1062     return true;
1063 
1064   // Most PIC code sequences that assume that a symbol is local cannot produce a
1065   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1066   // depended, it seems worth it to handle it here.
1067   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1068     return false;
1069 
1070   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1071   if (TT.isPPC64())
1072     return false;
1073 
1074   if (CGOpts.DirectAccessExternalData) {
1075     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1076     // for non-thread-local variables. If the symbol is not defined in the
1077     // executable, a copy relocation will be needed at link time. dso_local is
1078     // excluded for thread-local variables because they generally don't support
1079     // copy relocations.
1080     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1081       if (!Var->isThreadLocal())
1082         return true;
1083 
1084     // -fno-pic sets dso_local on a function declaration to allow direct
1085     // accesses when taking its address (similar to a data symbol). If the
1086     // function is not defined in the executable, a canonical PLT entry will be
1087     // needed at link time. -fno-direct-access-external-data can avoid the
1088     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1089     // it could just cause trouble without providing perceptible benefits.
1090     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1091       return true;
1092   }
1093 
1094   // If we can use copy relocations we can assume it is local.
1095 
1096   // Otherwise don't assume it is local.
1097   return false;
1098 }
1099 
1100 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1101   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1102 }
1103 
1104 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1105                                           GlobalDecl GD) const {
1106   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1107   // C++ destructors have a few C++ ABI specific special cases.
1108   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1109     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1110     return;
1111   }
1112   setDLLImportDLLExport(GV, D);
1113 }
1114 
1115 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1116                                           const NamedDecl *D) const {
1117   if (D && D->isExternallyVisible()) {
1118     if (D->hasAttr<DLLImportAttr>())
1119       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1120     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1121       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1122   }
1123 }
1124 
1125 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1126                                     GlobalDecl GD) const {
1127   setDLLImportDLLExport(GV, GD);
1128   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1129 }
1130 
1131 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1132                                     const NamedDecl *D) const {
1133   setDLLImportDLLExport(GV, D);
1134   setGVPropertiesAux(GV, D);
1135 }
1136 
1137 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1138                                        const NamedDecl *D) const {
1139   setGlobalVisibility(GV, D);
1140   setDSOLocal(GV);
1141   GV->setPartition(CodeGenOpts.SymbolPartition);
1142 }
1143 
1144 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1145   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1146       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1147       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1148       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1149       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1150 }
1151 
1152 llvm::GlobalVariable::ThreadLocalMode
1153 CodeGenModule::GetDefaultLLVMTLSModel() const {
1154   switch (CodeGenOpts.getDefaultTLSModel()) {
1155   case CodeGenOptions::GeneralDynamicTLSModel:
1156     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1157   case CodeGenOptions::LocalDynamicTLSModel:
1158     return llvm::GlobalVariable::LocalDynamicTLSModel;
1159   case CodeGenOptions::InitialExecTLSModel:
1160     return llvm::GlobalVariable::InitialExecTLSModel;
1161   case CodeGenOptions::LocalExecTLSModel:
1162     return llvm::GlobalVariable::LocalExecTLSModel;
1163   }
1164   llvm_unreachable("Invalid TLS model!");
1165 }
1166 
1167 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1168   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1169 
1170   llvm::GlobalValue::ThreadLocalMode TLM;
1171   TLM = GetDefaultLLVMTLSModel();
1172 
1173   // Override the TLS model if it is explicitly specified.
1174   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1175     TLM = GetLLVMTLSModel(Attr->getModel());
1176   }
1177 
1178   GV->setThreadLocalMode(TLM);
1179 }
1180 
1181 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1182                                           StringRef Name) {
1183   const TargetInfo &Target = CGM.getTarget();
1184   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1185 }
1186 
1187 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1188                                                  const CPUSpecificAttr *Attr,
1189                                                  unsigned CPUIndex,
1190                                                  raw_ostream &Out) {
1191   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1192   // supported.
1193   if (Attr)
1194     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1195   else if (CGM.getTarget().supportsIFunc())
1196     Out << ".resolver";
1197 }
1198 
1199 static void AppendTargetMangling(const CodeGenModule &CGM,
1200                                  const TargetAttr *Attr, raw_ostream &Out) {
1201   if (Attr->isDefaultVersion())
1202     return;
1203 
1204   Out << '.';
1205   const TargetInfo &Target = CGM.getTarget();
1206   ParsedTargetAttr Info =
1207       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1208         // Multiversioning doesn't allow "no-${feature}", so we can
1209         // only have "+" prefixes here.
1210         assert(LHS.startswith("+") && RHS.startswith("+") &&
1211                "Features should always have a prefix.");
1212         return Target.multiVersionSortPriority(LHS.substr(1)) >
1213                Target.multiVersionSortPriority(RHS.substr(1));
1214       });
1215 
1216   bool IsFirst = true;
1217 
1218   if (!Info.Architecture.empty()) {
1219     IsFirst = false;
1220     Out << "arch_" << Info.Architecture;
1221   }
1222 
1223   for (StringRef Feat : Info.Features) {
1224     if (!IsFirst)
1225       Out << '_';
1226     IsFirst = false;
1227     Out << Feat.substr(1);
1228   }
1229 }
1230 
1231 // Returns true if GD is a function decl with internal linkage and
1232 // needs a unique suffix after the mangled name.
1233 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1234                                         CodeGenModule &CGM) {
1235   const Decl *D = GD.getDecl();
1236   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1237          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1238 }
1239 
1240 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1241                                       const NamedDecl *ND,
1242                                       bool OmitMultiVersionMangling = false) {
1243   SmallString<256> Buffer;
1244   llvm::raw_svector_ostream Out(Buffer);
1245   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1246   if (!CGM.getModuleNameHash().empty())
1247     MC.needsUniqueInternalLinkageNames();
1248   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1249   if (ShouldMangle)
1250     MC.mangleName(GD.getWithDecl(ND), Out);
1251   else {
1252     IdentifierInfo *II = ND->getIdentifier();
1253     assert(II && "Attempt to mangle unnamed decl.");
1254     const auto *FD = dyn_cast<FunctionDecl>(ND);
1255 
1256     if (FD &&
1257         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1258       Out << "__regcall3__" << II->getName();
1259     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1260                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1261       Out << "__device_stub__" << II->getName();
1262     } else {
1263       Out << II->getName();
1264     }
1265   }
1266 
1267   // Check if the module name hash should be appended for internal linkage
1268   // symbols.   This should come before multi-version target suffixes are
1269   // appended. This is to keep the name and module hash suffix of the
1270   // internal linkage function together.  The unique suffix should only be
1271   // added when name mangling is done to make sure that the final name can
1272   // be properly demangled.  For example, for C functions without prototypes,
1273   // name mangling is not done and the unique suffix should not be appeneded
1274   // then.
1275   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1276     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1277            "Hash computed when not explicitly requested");
1278     Out << CGM.getModuleNameHash();
1279   }
1280 
1281   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1282     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1283       switch (FD->getMultiVersionKind()) {
1284       case MultiVersionKind::CPUDispatch:
1285       case MultiVersionKind::CPUSpecific:
1286         AppendCPUSpecificCPUDispatchMangling(CGM,
1287                                              FD->getAttr<CPUSpecificAttr>(),
1288                                              GD.getMultiVersionIndex(), Out);
1289         break;
1290       case MultiVersionKind::Target:
1291         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1292         break;
1293       case MultiVersionKind::None:
1294         llvm_unreachable("None multiversion type isn't valid here");
1295       }
1296     }
1297 
1298   // Make unique name for device side static file-scope variable for HIP.
1299   if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
1300       CGM.getLangOpts().GPURelocatableDeviceCode &&
1301       CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
1302     CGM.printPostfixForExternalizedStaticVar(Out);
1303   return std::string(Out.str());
1304 }
1305 
1306 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1307                                             const FunctionDecl *FD) {
1308   if (!FD->isMultiVersion())
1309     return;
1310 
1311   // Get the name of what this would be without the 'target' attribute.  This
1312   // allows us to lookup the version that was emitted when this wasn't a
1313   // multiversion function.
1314   std::string NonTargetName =
1315       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1316   GlobalDecl OtherGD;
1317   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1318     assert(OtherGD.getCanonicalDecl()
1319                .getDecl()
1320                ->getAsFunction()
1321                ->isMultiVersion() &&
1322            "Other GD should now be a multiversioned function");
1323     // OtherFD is the version of this function that was mangled BEFORE
1324     // becoming a MultiVersion function.  It potentially needs to be updated.
1325     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1326                                       .getDecl()
1327                                       ->getAsFunction()
1328                                       ->getMostRecentDecl();
1329     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1330     // This is so that if the initial version was already the 'default'
1331     // version, we don't try to update it.
1332     if (OtherName != NonTargetName) {
1333       // Remove instead of erase, since others may have stored the StringRef
1334       // to this.
1335       const auto ExistingRecord = Manglings.find(NonTargetName);
1336       if (ExistingRecord != std::end(Manglings))
1337         Manglings.remove(&(*ExistingRecord));
1338       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1339       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1340       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1341         Entry->setName(OtherName);
1342     }
1343   }
1344 }
1345 
1346 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1347   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1348 
1349   // Some ABIs don't have constructor variants.  Make sure that base and
1350   // complete constructors get mangled the same.
1351   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1352     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1353       CXXCtorType OrigCtorType = GD.getCtorType();
1354       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1355       if (OrigCtorType == Ctor_Base)
1356         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1357     }
1358   }
1359 
1360   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1361   // static device variable depends on whether the variable is referenced by
1362   // a host or device host function. Therefore the mangled name cannot be
1363   // cached.
1364   if (!LangOpts.CUDAIsDevice ||
1365       !getContext().mayExternalizeStaticVar(GD.getDecl())) {
1366     auto FoundName = MangledDeclNames.find(CanonicalGD);
1367     if (FoundName != MangledDeclNames.end())
1368       return FoundName->second;
1369   }
1370 
1371   // Keep the first result in the case of a mangling collision.
1372   const auto *ND = cast<NamedDecl>(GD.getDecl());
1373   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1374 
1375   // Ensure either we have different ABIs between host and device compilations,
1376   // says host compilation following MSVC ABI but device compilation follows
1377   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1378   // mangling should be the same after name stubbing. The later checking is
1379   // very important as the device kernel name being mangled in host-compilation
1380   // is used to resolve the device binaries to be executed. Inconsistent naming
1381   // result in undefined behavior. Even though we cannot check that naming
1382   // directly between host- and device-compilations, the host- and
1383   // device-mangling in host compilation could help catching certain ones.
1384   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1385          getLangOpts().CUDAIsDevice ||
1386          (getContext().getAuxTargetInfo() &&
1387           (getContext().getAuxTargetInfo()->getCXXABI() !=
1388            getContext().getTargetInfo().getCXXABI())) ||
1389          getCUDARuntime().getDeviceSideName(ND) ==
1390              getMangledNameImpl(
1391                  *this,
1392                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1393                  ND));
1394 
1395   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1396   return MangledDeclNames[CanonicalGD] = Result.first->first();
1397 }
1398 
1399 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1400                                              const BlockDecl *BD) {
1401   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1402   const Decl *D = GD.getDecl();
1403 
1404   SmallString<256> Buffer;
1405   llvm::raw_svector_ostream Out(Buffer);
1406   if (!D)
1407     MangleCtx.mangleGlobalBlock(BD,
1408       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1409   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1410     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1411   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1412     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1413   else
1414     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1415 
1416   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1417   return Result.first->first();
1418 }
1419 
1420 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1421   return getModule().getNamedValue(Name);
1422 }
1423 
1424 /// AddGlobalCtor - Add a function to the list that will be called before
1425 /// main() runs.
1426 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1427                                   llvm::Constant *AssociatedData) {
1428   // FIXME: Type coercion of void()* types.
1429   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1430 }
1431 
1432 /// AddGlobalDtor - Add a function to the list that will be called
1433 /// when the module is unloaded.
1434 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1435                                   bool IsDtorAttrFunc) {
1436   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1437       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1438     DtorsUsingAtExit[Priority].push_back(Dtor);
1439     return;
1440   }
1441 
1442   // FIXME: Type coercion of void()* types.
1443   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1444 }
1445 
1446 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1447   if (Fns.empty()) return;
1448 
1449   // Ctor function type is void()*.
1450   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1451   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1452       TheModule.getDataLayout().getProgramAddressSpace());
1453 
1454   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1455   llvm::StructType *CtorStructTy = llvm::StructType::get(
1456       Int32Ty, CtorPFTy, VoidPtrTy);
1457 
1458   // Construct the constructor and destructor arrays.
1459   ConstantInitBuilder builder(*this);
1460   auto ctors = builder.beginArray(CtorStructTy);
1461   for (const auto &I : Fns) {
1462     auto ctor = ctors.beginStruct(CtorStructTy);
1463     ctor.addInt(Int32Ty, I.Priority);
1464     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1465     if (I.AssociatedData)
1466       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1467     else
1468       ctor.addNullPointer(VoidPtrTy);
1469     ctor.finishAndAddTo(ctors);
1470   }
1471 
1472   auto list =
1473     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1474                                 /*constant*/ false,
1475                                 llvm::GlobalValue::AppendingLinkage);
1476 
1477   // The LTO linker doesn't seem to like it when we set an alignment
1478   // on appending variables.  Take it off as a workaround.
1479   list->setAlignment(llvm::None);
1480 
1481   Fns.clear();
1482 }
1483 
1484 llvm::GlobalValue::LinkageTypes
1485 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1486   const auto *D = cast<FunctionDecl>(GD.getDecl());
1487 
1488   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1489 
1490   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1491     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1492 
1493   if (isa<CXXConstructorDecl>(D) &&
1494       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1495       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1496     // Our approach to inheriting constructors is fundamentally different from
1497     // that used by the MS ABI, so keep our inheriting constructor thunks
1498     // internal rather than trying to pick an unambiguous mangling for them.
1499     return llvm::GlobalValue::InternalLinkage;
1500   }
1501 
1502   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1503 }
1504 
1505 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1506   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1507   if (!MDS) return nullptr;
1508 
1509   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1510 }
1511 
1512 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1513                                               const CGFunctionInfo &Info,
1514                                               llvm::Function *F, bool IsThunk) {
1515   unsigned CallingConv;
1516   llvm::AttributeList PAL;
1517   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1518                          /*AttrOnCallSite=*/false, IsThunk);
1519   F->setAttributes(PAL);
1520   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1521 }
1522 
1523 static void removeImageAccessQualifier(std::string& TyName) {
1524   std::string ReadOnlyQual("__read_only");
1525   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1526   if (ReadOnlyPos != std::string::npos)
1527     // "+ 1" for the space after access qualifier.
1528     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1529   else {
1530     std::string WriteOnlyQual("__write_only");
1531     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1532     if (WriteOnlyPos != std::string::npos)
1533       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1534     else {
1535       std::string ReadWriteQual("__read_write");
1536       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1537       if (ReadWritePos != std::string::npos)
1538         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1539     }
1540   }
1541 }
1542 
1543 // Returns the address space id that should be produced to the
1544 // kernel_arg_addr_space metadata. This is always fixed to the ids
1545 // as specified in the SPIR 2.0 specification in order to differentiate
1546 // for example in clGetKernelArgInfo() implementation between the address
1547 // spaces with targets without unique mapping to the OpenCL address spaces
1548 // (basically all single AS CPUs).
1549 static unsigned ArgInfoAddressSpace(LangAS AS) {
1550   switch (AS) {
1551   case LangAS::opencl_global:
1552     return 1;
1553   case LangAS::opencl_constant:
1554     return 2;
1555   case LangAS::opencl_local:
1556     return 3;
1557   case LangAS::opencl_generic:
1558     return 4; // Not in SPIR 2.0 specs.
1559   case LangAS::opencl_global_device:
1560     return 5;
1561   case LangAS::opencl_global_host:
1562     return 6;
1563   default:
1564     return 0; // Assume private.
1565   }
1566 }
1567 
1568 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1569                                          const FunctionDecl *FD,
1570                                          CodeGenFunction *CGF) {
1571   assert(((FD && CGF) || (!FD && !CGF)) &&
1572          "Incorrect use - FD and CGF should either be both null or not!");
1573   // Create MDNodes that represent the kernel arg metadata.
1574   // Each MDNode is a list in the form of "key", N number of values which is
1575   // the same number of values as their are kernel arguments.
1576 
1577   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1578 
1579   // MDNode for the kernel argument address space qualifiers.
1580   SmallVector<llvm::Metadata *, 8> addressQuals;
1581 
1582   // MDNode for the kernel argument access qualifiers (images only).
1583   SmallVector<llvm::Metadata *, 8> accessQuals;
1584 
1585   // MDNode for the kernel argument type names.
1586   SmallVector<llvm::Metadata *, 8> argTypeNames;
1587 
1588   // MDNode for the kernel argument base type names.
1589   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1590 
1591   // MDNode for the kernel argument type qualifiers.
1592   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1593 
1594   // MDNode for the kernel argument names.
1595   SmallVector<llvm::Metadata *, 8> argNames;
1596 
1597   if (FD && CGF)
1598     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1599       const ParmVarDecl *parm = FD->getParamDecl(i);
1600       QualType ty = parm->getType();
1601       std::string typeQuals;
1602 
1603       // Get image and pipe access qualifier:
1604       if (ty->isImageType() || ty->isPipeType()) {
1605         const Decl *PDecl = parm;
1606         if (auto *TD = dyn_cast<TypedefType>(ty))
1607           PDecl = TD->getDecl();
1608         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1609         if (A && A->isWriteOnly())
1610           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1611         else if (A && A->isReadWrite())
1612           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1613         else
1614           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1615       } else
1616         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1617 
1618       // Get argument name.
1619       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1620 
1621       auto getTypeSpelling = [&](QualType Ty) {
1622         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1623 
1624         if (Ty.isCanonical()) {
1625           StringRef typeNameRef = typeName;
1626           // Turn "unsigned type" to "utype"
1627           if (typeNameRef.consume_front("unsigned "))
1628             return std::string("u") + typeNameRef.str();
1629           if (typeNameRef.consume_front("signed "))
1630             return typeNameRef.str();
1631         }
1632 
1633         return typeName;
1634       };
1635 
1636       if (ty->isPointerType()) {
1637         QualType pointeeTy = ty->getPointeeType();
1638 
1639         // Get address qualifier.
1640         addressQuals.push_back(
1641             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1642                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1643 
1644         // Get argument type name.
1645         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1646         std::string baseTypeName =
1647             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1648         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1649         argBaseTypeNames.push_back(
1650             llvm::MDString::get(VMContext, baseTypeName));
1651 
1652         // Get argument type qualifiers:
1653         if (ty.isRestrictQualified())
1654           typeQuals = "restrict";
1655         if (pointeeTy.isConstQualified() ||
1656             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1657           typeQuals += typeQuals.empty() ? "const" : " const";
1658         if (pointeeTy.isVolatileQualified())
1659           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1660       } else {
1661         uint32_t AddrSpc = 0;
1662         bool isPipe = ty->isPipeType();
1663         if (ty->isImageType() || isPipe)
1664           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1665 
1666         addressQuals.push_back(
1667             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1668 
1669         // Get argument type name.
1670         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1671         std::string typeName = getTypeSpelling(ty);
1672         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1673 
1674         // Remove access qualifiers on images
1675         // (as they are inseparable from type in clang implementation,
1676         // but OpenCL spec provides a special query to get access qualifier
1677         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1678         if (ty->isImageType()) {
1679           removeImageAccessQualifier(typeName);
1680           removeImageAccessQualifier(baseTypeName);
1681         }
1682 
1683         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1684         argBaseTypeNames.push_back(
1685             llvm::MDString::get(VMContext, baseTypeName));
1686 
1687         if (isPipe)
1688           typeQuals = "pipe";
1689       }
1690       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1691     }
1692 
1693   Fn->setMetadata("kernel_arg_addr_space",
1694                   llvm::MDNode::get(VMContext, addressQuals));
1695   Fn->setMetadata("kernel_arg_access_qual",
1696                   llvm::MDNode::get(VMContext, accessQuals));
1697   Fn->setMetadata("kernel_arg_type",
1698                   llvm::MDNode::get(VMContext, argTypeNames));
1699   Fn->setMetadata("kernel_arg_base_type",
1700                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1701   Fn->setMetadata("kernel_arg_type_qual",
1702                   llvm::MDNode::get(VMContext, argTypeQuals));
1703   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1704     Fn->setMetadata("kernel_arg_name",
1705                     llvm::MDNode::get(VMContext, argNames));
1706 }
1707 
1708 /// Determines whether the language options require us to model
1709 /// unwind exceptions.  We treat -fexceptions as mandating this
1710 /// except under the fragile ObjC ABI with only ObjC exceptions
1711 /// enabled.  This means, for example, that C with -fexceptions
1712 /// enables this.
1713 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1714   // If exceptions are completely disabled, obviously this is false.
1715   if (!LangOpts.Exceptions) return false;
1716 
1717   // If C++ exceptions are enabled, this is true.
1718   if (LangOpts.CXXExceptions) return true;
1719 
1720   // If ObjC exceptions are enabled, this depends on the ABI.
1721   if (LangOpts.ObjCExceptions) {
1722     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1723   }
1724 
1725   return true;
1726 }
1727 
1728 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1729                                                       const CXXMethodDecl *MD) {
1730   // Check that the type metadata can ever actually be used by a call.
1731   if (!CGM.getCodeGenOpts().LTOUnit ||
1732       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1733     return false;
1734 
1735   // Only functions whose address can be taken with a member function pointer
1736   // need this sort of type metadata.
1737   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1738          !isa<CXXDestructorDecl>(MD);
1739 }
1740 
1741 std::vector<const CXXRecordDecl *>
1742 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1743   llvm::SetVector<const CXXRecordDecl *> MostBases;
1744 
1745   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1746   CollectMostBases = [&](const CXXRecordDecl *RD) {
1747     if (RD->getNumBases() == 0)
1748       MostBases.insert(RD);
1749     for (const CXXBaseSpecifier &B : RD->bases())
1750       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1751   };
1752   CollectMostBases(RD);
1753   return MostBases.takeVector();
1754 }
1755 
1756 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1757                                                            llvm::Function *F) {
1758   llvm::AttrBuilder B;
1759 
1760   if (CodeGenOpts.UnwindTables)
1761     B.addAttribute(llvm::Attribute::UWTable);
1762 
1763   if (CodeGenOpts.StackClashProtector)
1764     B.addAttribute("probe-stack", "inline-asm");
1765 
1766   if (!hasUnwindExceptions(LangOpts))
1767     B.addAttribute(llvm::Attribute::NoUnwind);
1768 
1769   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1770     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1771       B.addAttribute(llvm::Attribute::StackProtect);
1772     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1773       B.addAttribute(llvm::Attribute::StackProtectStrong);
1774     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1775       B.addAttribute(llvm::Attribute::StackProtectReq);
1776   }
1777 
1778   if (!D) {
1779     // If we don't have a declaration to control inlining, the function isn't
1780     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1781     // disabled, mark the function as noinline.
1782     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1783         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1784       B.addAttribute(llvm::Attribute::NoInline);
1785 
1786     F->addFnAttrs(B);
1787     return;
1788   }
1789 
1790   // Track whether we need to add the optnone LLVM attribute,
1791   // starting with the default for this optimization level.
1792   bool ShouldAddOptNone =
1793       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1794   // We can't add optnone in the following cases, it won't pass the verifier.
1795   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1796   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1797 
1798   // Add optnone, but do so only if the function isn't always_inline.
1799   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1800       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1801     B.addAttribute(llvm::Attribute::OptimizeNone);
1802 
1803     // OptimizeNone implies noinline; we should not be inlining such functions.
1804     B.addAttribute(llvm::Attribute::NoInline);
1805 
1806     // We still need to handle naked functions even though optnone subsumes
1807     // much of their semantics.
1808     if (D->hasAttr<NakedAttr>())
1809       B.addAttribute(llvm::Attribute::Naked);
1810 
1811     // OptimizeNone wins over OptimizeForSize and MinSize.
1812     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1813     F->removeFnAttr(llvm::Attribute::MinSize);
1814   } else if (D->hasAttr<NakedAttr>()) {
1815     // Naked implies noinline: we should not be inlining such functions.
1816     B.addAttribute(llvm::Attribute::Naked);
1817     B.addAttribute(llvm::Attribute::NoInline);
1818   } else if (D->hasAttr<NoDuplicateAttr>()) {
1819     B.addAttribute(llvm::Attribute::NoDuplicate);
1820   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1821     // Add noinline if the function isn't always_inline.
1822     B.addAttribute(llvm::Attribute::NoInline);
1823   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1824              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1825     // (noinline wins over always_inline, and we can't specify both in IR)
1826     B.addAttribute(llvm::Attribute::AlwaysInline);
1827   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1828     // If we're not inlining, then force everything that isn't always_inline to
1829     // carry an explicit noinline attribute.
1830     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1831       B.addAttribute(llvm::Attribute::NoInline);
1832   } else {
1833     // Otherwise, propagate the inline hint attribute and potentially use its
1834     // absence to mark things as noinline.
1835     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1836       // Search function and template pattern redeclarations for inline.
1837       auto CheckForInline = [](const FunctionDecl *FD) {
1838         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1839           return Redecl->isInlineSpecified();
1840         };
1841         if (any_of(FD->redecls(), CheckRedeclForInline))
1842           return true;
1843         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1844         if (!Pattern)
1845           return false;
1846         return any_of(Pattern->redecls(), CheckRedeclForInline);
1847       };
1848       if (CheckForInline(FD)) {
1849         B.addAttribute(llvm::Attribute::InlineHint);
1850       } else if (CodeGenOpts.getInlining() ==
1851                      CodeGenOptions::OnlyHintInlining &&
1852                  !FD->isInlined() &&
1853                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1854         B.addAttribute(llvm::Attribute::NoInline);
1855       }
1856     }
1857   }
1858 
1859   // Add other optimization related attributes if we are optimizing this
1860   // function.
1861   if (!D->hasAttr<OptimizeNoneAttr>()) {
1862     if (D->hasAttr<ColdAttr>()) {
1863       if (!ShouldAddOptNone)
1864         B.addAttribute(llvm::Attribute::OptimizeForSize);
1865       B.addAttribute(llvm::Attribute::Cold);
1866     }
1867     if (D->hasAttr<HotAttr>())
1868       B.addAttribute(llvm::Attribute::Hot);
1869     if (D->hasAttr<MinSizeAttr>())
1870       B.addAttribute(llvm::Attribute::MinSize);
1871   }
1872 
1873   F->addFnAttrs(B);
1874 
1875   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1876   if (alignment)
1877     F->setAlignment(llvm::Align(alignment));
1878 
1879   if (!D->hasAttr<AlignedAttr>())
1880     if (LangOpts.FunctionAlignment)
1881       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1882 
1883   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1884   // reserve a bit for differentiating between virtual and non-virtual member
1885   // functions. If the current target's C++ ABI requires this and this is a
1886   // member function, set its alignment accordingly.
1887   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1888     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1889       F->setAlignment(llvm::Align(2));
1890   }
1891 
1892   // In the cross-dso CFI mode with canonical jump tables, we want !type
1893   // attributes on definitions only.
1894   if (CodeGenOpts.SanitizeCfiCrossDso &&
1895       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1896     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1897       // Skip available_externally functions. They won't be codegen'ed in the
1898       // current module anyway.
1899       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1900         CreateFunctionTypeMetadataForIcall(FD, F);
1901     }
1902   }
1903 
1904   // Emit type metadata on member functions for member function pointer checks.
1905   // These are only ever necessary on definitions; we're guaranteed that the
1906   // definition will be present in the LTO unit as a result of LTO visibility.
1907   auto *MD = dyn_cast<CXXMethodDecl>(D);
1908   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1909     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1910       llvm::Metadata *Id =
1911           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1912               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1913       F->addTypeMetadata(0, Id);
1914     }
1915   }
1916 }
1917 
1918 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1919                                                   llvm::Function *F) {
1920   if (D->hasAttr<StrictFPAttr>()) {
1921     llvm::AttrBuilder FuncAttrs;
1922     FuncAttrs.addAttribute("strictfp");
1923     F->addFnAttrs(FuncAttrs);
1924   }
1925 }
1926 
1927 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1928   const Decl *D = GD.getDecl();
1929   if (dyn_cast_or_null<NamedDecl>(D))
1930     setGVProperties(GV, GD);
1931   else
1932     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1933 
1934   if (D && D->hasAttr<UsedAttr>())
1935     addUsedOrCompilerUsedGlobal(GV);
1936 
1937   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1938     const auto *VD = cast<VarDecl>(D);
1939     if (VD->getType().isConstQualified() &&
1940         VD->getStorageDuration() == SD_Static)
1941       addUsedOrCompilerUsedGlobal(GV);
1942   }
1943 }
1944 
1945 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1946                                                 llvm::AttrBuilder &Attrs) {
1947   // Add target-cpu and target-features attributes to functions. If
1948   // we have a decl for the function and it has a target attribute then
1949   // parse that and add it to the feature set.
1950   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1951   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1952   std::vector<std::string> Features;
1953   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1954   FD = FD ? FD->getMostRecentDecl() : FD;
1955   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1956   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1957   bool AddedAttr = false;
1958   if (TD || SD) {
1959     llvm::StringMap<bool> FeatureMap;
1960     getContext().getFunctionFeatureMap(FeatureMap, GD);
1961 
1962     // Produce the canonical string for this set of features.
1963     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1964       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1965 
1966     // Now add the target-cpu and target-features to the function.
1967     // While we populated the feature map above, we still need to
1968     // get and parse the target attribute so we can get the cpu for
1969     // the function.
1970     if (TD) {
1971       ParsedTargetAttr ParsedAttr = TD->parse();
1972       if (!ParsedAttr.Architecture.empty() &&
1973           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1974         TargetCPU = ParsedAttr.Architecture;
1975         TuneCPU = ""; // Clear the tune CPU.
1976       }
1977       if (!ParsedAttr.Tune.empty() &&
1978           getTarget().isValidCPUName(ParsedAttr.Tune))
1979         TuneCPU = ParsedAttr.Tune;
1980     }
1981   } else {
1982     // Otherwise just add the existing target cpu and target features to the
1983     // function.
1984     Features = getTarget().getTargetOpts().Features;
1985   }
1986 
1987   if (!TargetCPU.empty()) {
1988     Attrs.addAttribute("target-cpu", TargetCPU);
1989     AddedAttr = true;
1990   }
1991   if (!TuneCPU.empty()) {
1992     Attrs.addAttribute("tune-cpu", TuneCPU);
1993     AddedAttr = true;
1994   }
1995   if (!Features.empty()) {
1996     llvm::sort(Features);
1997     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1998     AddedAttr = true;
1999   }
2000 
2001   return AddedAttr;
2002 }
2003 
2004 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2005                                           llvm::GlobalObject *GO) {
2006   const Decl *D = GD.getDecl();
2007   SetCommonAttributes(GD, GO);
2008 
2009   if (D) {
2010     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2011       if (D->hasAttr<RetainAttr>())
2012         addUsedGlobal(GV);
2013       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2014         GV->addAttribute("bss-section", SA->getName());
2015       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2016         GV->addAttribute("data-section", SA->getName());
2017       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2018         GV->addAttribute("rodata-section", SA->getName());
2019       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2020         GV->addAttribute("relro-section", SA->getName());
2021     }
2022 
2023     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2024       if (D->hasAttr<RetainAttr>())
2025         addUsedGlobal(F);
2026       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2027         if (!D->getAttr<SectionAttr>())
2028           F->addFnAttr("implicit-section-name", SA->getName());
2029 
2030       llvm::AttrBuilder Attrs;
2031       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2032         // We know that GetCPUAndFeaturesAttributes will always have the
2033         // newest set, since it has the newest possible FunctionDecl, so the
2034         // new ones should replace the old.
2035         llvm::AttrBuilder RemoveAttrs;
2036         RemoveAttrs.addAttribute("target-cpu");
2037         RemoveAttrs.addAttribute("target-features");
2038         RemoveAttrs.addAttribute("tune-cpu");
2039         F->removeFnAttrs(RemoveAttrs);
2040         F->addFnAttrs(Attrs);
2041       }
2042     }
2043 
2044     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2045       GO->setSection(CSA->getName());
2046     else if (const auto *SA = D->getAttr<SectionAttr>())
2047       GO->setSection(SA->getName());
2048   }
2049 
2050   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2051 }
2052 
2053 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2054                                                   llvm::Function *F,
2055                                                   const CGFunctionInfo &FI) {
2056   const Decl *D = GD.getDecl();
2057   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2058   SetLLVMFunctionAttributesForDefinition(D, F);
2059 
2060   F->setLinkage(llvm::Function::InternalLinkage);
2061 
2062   setNonAliasAttributes(GD, F);
2063 }
2064 
2065 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2066   // Set linkage and visibility in case we never see a definition.
2067   LinkageInfo LV = ND->getLinkageAndVisibility();
2068   // Don't set internal linkage on declarations.
2069   // "extern_weak" is overloaded in LLVM; we probably should have
2070   // separate linkage types for this.
2071   if (isExternallyVisible(LV.getLinkage()) &&
2072       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2073     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2074 }
2075 
2076 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2077                                                        llvm::Function *F) {
2078   // Only if we are checking indirect calls.
2079   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2080     return;
2081 
2082   // Non-static class methods are handled via vtable or member function pointer
2083   // checks elsewhere.
2084   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2085     return;
2086 
2087   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2088   F->addTypeMetadata(0, MD);
2089   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2090 
2091   // Emit a hash-based bit set entry for cross-DSO calls.
2092   if (CodeGenOpts.SanitizeCfiCrossDso)
2093     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2094       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2095 }
2096 
2097 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2098                                           bool IsIncompleteFunction,
2099                                           bool IsThunk) {
2100 
2101   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2102     // If this is an intrinsic function, set the function's attributes
2103     // to the intrinsic's attributes.
2104     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2105     return;
2106   }
2107 
2108   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2109 
2110   if (!IsIncompleteFunction)
2111     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2112                               IsThunk);
2113 
2114   // Add the Returned attribute for "this", except for iOS 5 and earlier
2115   // where substantial code, including the libstdc++ dylib, was compiled with
2116   // GCC and does not actually return "this".
2117   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2118       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2119     assert(!F->arg_empty() &&
2120            F->arg_begin()->getType()
2121              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2122            "unexpected this return");
2123     F->addParamAttr(0, llvm::Attribute::Returned);
2124   }
2125 
2126   // Only a few attributes are set on declarations; these may later be
2127   // overridden by a definition.
2128 
2129   setLinkageForGV(F, FD);
2130   setGVProperties(F, FD);
2131 
2132   // Setup target-specific attributes.
2133   if (!IsIncompleteFunction && F->isDeclaration())
2134     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2135 
2136   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2137     F->setSection(CSA->getName());
2138   else if (const auto *SA = FD->getAttr<SectionAttr>())
2139      F->setSection(SA->getName());
2140 
2141   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2142     if (EA->isError())
2143       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2144     else if (EA->isWarning())
2145       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2146   }
2147 
2148   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2149   if (FD->isInlineBuiltinDeclaration()) {
2150     const FunctionDecl *FDBody;
2151     bool HasBody = FD->hasBody(FDBody);
2152     (void)HasBody;
2153     assert(HasBody && "Inline builtin declarations should always have an "
2154                       "available body!");
2155     if (shouldEmitFunction(FDBody))
2156       F->addFnAttr(llvm::Attribute::NoBuiltin);
2157   }
2158 
2159   if (FD->isReplaceableGlobalAllocationFunction()) {
2160     // A replaceable global allocation function does not act like a builtin by
2161     // default, only if it is invoked by a new-expression or delete-expression.
2162     F->addFnAttr(llvm::Attribute::NoBuiltin);
2163   }
2164 
2165   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2166     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2167   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2168     if (MD->isVirtual())
2169       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2170 
2171   // Don't emit entries for function declarations in the cross-DSO mode. This
2172   // is handled with better precision by the receiving DSO. But if jump tables
2173   // are non-canonical then we need type metadata in order to produce the local
2174   // jump table.
2175   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2176       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2177     CreateFunctionTypeMetadataForIcall(FD, F);
2178 
2179   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2180     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2181 
2182   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2183     // Annotate the callback behavior as metadata:
2184     //  - The callback callee (as argument number).
2185     //  - The callback payloads (as argument numbers).
2186     llvm::LLVMContext &Ctx = F->getContext();
2187     llvm::MDBuilder MDB(Ctx);
2188 
2189     // The payload indices are all but the first one in the encoding. The first
2190     // identifies the callback callee.
2191     int CalleeIdx = *CB->encoding_begin();
2192     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2193     F->addMetadata(llvm::LLVMContext::MD_callback,
2194                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2195                                                CalleeIdx, PayloadIndices,
2196                                                /* VarArgsArePassed */ false)}));
2197   }
2198 }
2199 
2200 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2201   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2202          "Only globals with definition can force usage.");
2203   LLVMUsed.emplace_back(GV);
2204 }
2205 
2206 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2207   assert(!GV->isDeclaration() &&
2208          "Only globals with definition can force usage.");
2209   LLVMCompilerUsed.emplace_back(GV);
2210 }
2211 
2212 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2213   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2214          "Only globals with definition can force usage.");
2215   if (getTriple().isOSBinFormatELF())
2216     LLVMCompilerUsed.emplace_back(GV);
2217   else
2218     LLVMUsed.emplace_back(GV);
2219 }
2220 
2221 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2222                      std::vector<llvm::WeakTrackingVH> &List) {
2223   // Don't create llvm.used if there is no need.
2224   if (List.empty())
2225     return;
2226 
2227   // Convert List to what ConstantArray needs.
2228   SmallVector<llvm::Constant*, 8> UsedArray;
2229   UsedArray.resize(List.size());
2230   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2231     UsedArray[i] =
2232         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2233             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2234   }
2235 
2236   if (UsedArray.empty())
2237     return;
2238   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2239 
2240   auto *GV = new llvm::GlobalVariable(
2241       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2242       llvm::ConstantArray::get(ATy, UsedArray), Name);
2243 
2244   GV->setSection("llvm.metadata");
2245 }
2246 
2247 void CodeGenModule::emitLLVMUsed() {
2248   emitUsed(*this, "llvm.used", LLVMUsed);
2249   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2250 }
2251 
2252 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2253   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2254   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2255 }
2256 
2257 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2258   llvm::SmallString<32> Opt;
2259   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2260   if (Opt.empty())
2261     return;
2262   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2263   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2264 }
2265 
2266 void CodeGenModule::AddDependentLib(StringRef Lib) {
2267   auto &C = getLLVMContext();
2268   if (getTarget().getTriple().isOSBinFormatELF()) {
2269       ELFDependentLibraries.push_back(
2270         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2271     return;
2272   }
2273 
2274   llvm::SmallString<24> Opt;
2275   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2276   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2277   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2278 }
2279 
2280 /// Add link options implied by the given module, including modules
2281 /// it depends on, using a postorder walk.
2282 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2283                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2284                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2285   // Import this module's parent.
2286   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2287     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2288   }
2289 
2290   // Import this module's dependencies.
2291   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2292     if (Visited.insert(Mod->Imports[I - 1]).second)
2293       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2294   }
2295 
2296   // Add linker options to link against the libraries/frameworks
2297   // described by this module.
2298   llvm::LLVMContext &Context = CGM.getLLVMContext();
2299   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2300 
2301   // For modules that use export_as for linking, use that module
2302   // name instead.
2303   if (Mod->UseExportAsModuleLinkName)
2304     return;
2305 
2306   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2307     // Link against a framework.  Frameworks are currently Darwin only, so we
2308     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2309     if (Mod->LinkLibraries[I-1].IsFramework) {
2310       llvm::Metadata *Args[2] = {
2311           llvm::MDString::get(Context, "-framework"),
2312           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2313 
2314       Metadata.push_back(llvm::MDNode::get(Context, Args));
2315       continue;
2316     }
2317 
2318     // Link against a library.
2319     if (IsELF) {
2320       llvm::Metadata *Args[2] = {
2321           llvm::MDString::get(Context, "lib"),
2322           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2323       };
2324       Metadata.push_back(llvm::MDNode::get(Context, Args));
2325     } else {
2326       llvm::SmallString<24> Opt;
2327       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2328           Mod->LinkLibraries[I - 1].Library, Opt);
2329       auto *OptString = llvm::MDString::get(Context, Opt);
2330       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2331     }
2332   }
2333 }
2334 
2335 void CodeGenModule::EmitModuleLinkOptions() {
2336   // Collect the set of all of the modules we want to visit to emit link
2337   // options, which is essentially the imported modules and all of their
2338   // non-explicit child modules.
2339   llvm::SetVector<clang::Module *> LinkModules;
2340   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2341   SmallVector<clang::Module *, 16> Stack;
2342 
2343   // Seed the stack with imported modules.
2344   for (Module *M : ImportedModules) {
2345     // Do not add any link flags when an implementation TU of a module imports
2346     // a header of that same module.
2347     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2348         !getLangOpts().isCompilingModule())
2349       continue;
2350     if (Visited.insert(M).second)
2351       Stack.push_back(M);
2352   }
2353 
2354   // Find all of the modules to import, making a little effort to prune
2355   // non-leaf modules.
2356   while (!Stack.empty()) {
2357     clang::Module *Mod = Stack.pop_back_val();
2358 
2359     bool AnyChildren = false;
2360 
2361     // Visit the submodules of this module.
2362     for (const auto &SM : Mod->submodules()) {
2363       // Skip explicit children; they need to be explicitly imported to be
2364       // linked against.
2365       if (SM->IsExplicit)
2366         continue;
2367 
2368       if (Visited.insert(SM).second) {
2369         Stack.push_back(SM);
2370         AnyChildren = true;
2371       }
2372     }
2373 
2374     // We didn't find any children, so add this module to the list of
2375     // modules to link against.
2376     if (!AnyChildren) {
2377       LinkModules.insert(Mod);
2378     }
2379   }
2380 
2381   // Add link options for all of the imported modules in reverse topological
2382   // order.  We don't do anything to try to order import link flags with respect
2383   // to linker options inserted by things like #pragma comment().
2384   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2385   Visited.clear();
2386   for (Module *M : LinkModules)
2387     if (Visited.insert(M).second)
2388       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2389   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2390   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2391 
2392   // Add the linker options metadata flag.
2393   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2394   for (auto *MD : LinkerOptionsMetadata)
2395     NMD->addOperand(MD);
2396 }
2397 
2398 void CodeGenModule::EmitDeferred() {
2399   // Emit deferred declare target declarations.
2400   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2401     getOpenMPRuntime().emitDeferredTargetDecls();
2402 
2403   // Emit code for any potentially referenced deferred decls.  Since a
2404   // previously unused static decl may become used during the generation of code
2405   // for a static function, iterate until no changes are made.
2406 
2407   if (!DeferredVTables.empty()) {
2408     EmitDeferredVTables();
2409 
2410     // Emitting a vtable doesn't directly cause more vtables to
2411     // become deferred, although it can cause functions to be
2412     // emitted that then need those vtables.
2413     assert(DeferredVTables.empty());
2414   }
2415 
2416   // Emit CUDA/HIP static device variables referenced by host code only.
2417   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2418   // needed for further handling.
2419   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2420     for (const auto *V : getContext().CUDADeviceVarODRUsedByHost)
2421       DeferredDeclsToEmit.push_back(V);
2422 
2423   // Stop if we're out of both deferred vtables and deferred declarations.
2424   if (DeferredDeclsToEmit.empty())
2425     return;
2426 
2427   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2428   // work, it will not interfere with this.
2429   std::vector<GlobalDecl> CurDeclsToEmit;
2430   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2431 
2432   for (GlobalDecl &D : CurDeclsToEmit) {
2433     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2434     // to get GlobalValue with exactly the type we need, not something that
2435     // might had been created for another decl with the same mangled name but
2436     // different type.
2437     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2438         GetAddrOfGlobal(D, ForDefinition));
2439 
2440     // In case of different address spaces, we may still get a cast, even with
2441     // IsForDefinition equal to true. Query mangled names table to get
2442     // GlobalValue.
2443     if (!GV)
2444       GV = GetGlobalValue(getMangledName(D));
2445 
2446     // Make sure GetGlobalValue returned non-null.
2447     assert(GV);
2448 
2449     // Check to see if we've already emitted this.  This is necessary
2450     // for a couple of reasons: first, decls can end up in the
2451     // deferred-decls queue multiple times, and second, decls can end
2452     // up with definitions in unusual ways (e.g. by an extern inline
2453     // function acquiring a strong function redefinition).  Just
2454     // ignore these cases.
2455     if (!GV->isDeclaration())
2456       continue;
2457 
2458     // If this is OpenMP, check if it is legal to emit this global normally.
2459     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2460       continue;
2461 
2462     // Otherwise, emit the definition and move on to the next one.
2463     EmitGlobalDefinition(D, GV);
2464 
2465     // If we found out that we need to emit more decls, do that recursively.
2466     // This has the advantage that the decls are emitted in a DFS and related
2467     // ones are close together, which is convenient for testing.
2468     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2469       EmitDeferred();
2470       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2471     }
2472   }
2473 }
2474 
2475 void CodeGenModule::EmitVTablesOpportunistically() {
2476   // Try to emit external vtables as available_externally if they have emitted
2477   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2478   // is not allowed to create new references to things that need to be emitted
2479   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2480 
2481   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2482          && "Only emit opportunistic vtables with optimizations");
2483 
2484   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2485     assert(getVTables().isVTableExternal(RD) &&
2486            "This queue should only contain external vtables");
2487     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2488       VTables.GenerateClassData(RD);
2489   }
2490   OpportunisticVTables.clear();
2491 }
2492 
2493 void CodeGenModule::EmitGlobalAnnotations() {
2494   if (Annotations.empty())
2495     return;
2496 
2497   // Create a new global variable for the ConstantStruct in the Module.
2498   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2499     Annotations[0]->getType(), Annotations.size()), Annotations);
2500   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2501                                       llvm::GlobalValue::AppendingLinkage,
2502                                       Array, "llvm.global.annotations");
2503   gv->setSection(AnnotationSection);
2504 }
2505 
2506 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2507   llvm::Constant *&AStr = AnnotationStrings[Str];
2508   if (AStr)
2509     return AStr;
2510 
2511   // Not found yet, create a new global.
2512   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2513   auto *gv =
2514       new llvm::GlobalVariable(getModule(), s->getType(), true,
2515                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2516   gv->setSection(AnnotationSection);
2517   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2518   AStr = gv;
2519   return gv;
2520 }
2521 
2522 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2523   SourceManager &SM = getContext().getSourceManager();
2524   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2525   if (PLoc.isValid())
2526     return EmitAnnotationString(PLoc.getFilename());
2527   return EmitAnnotationString(SM.getBufferName(Loc));
2528 }
2529 
2530 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2531   SourceManager &SM = getContext().getSourceManager();
2532   PresumedLoc PLoc = SM.getPresumedLoc(L);
2533   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2534     SM.getExpansionLineNumber(L);
2535   return llvm::ConstantInt::get(Int32Ty, LineNo);
2536 }
2537 
2538 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2539   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2540   if (Exprs.empty())
2541     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2542 
2543   llvm::FoldingSetNodeID ID;
2544   for (Expr *E : Exprs) {
2545     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2546   }
2547   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2548   if (Lookup)
2549     return Lookup;
2550 
2551   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2552   LLVMArgs.reserve(Exprs.size());
2553   ConstantEmitter ConstEmiter(*this);
2554   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2555     const auto *CE = cast<clang::ConstantExpr>(E);
2556     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2557                                     CE->getType());
2558   });
2559   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2560   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2561                                       llvm::GlobalValue::PrivateLinkage, Struct,
2562                                       ".args");
2563   GV->setSection(AnnotationSection);
2564   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2565   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2566 
2567   Lookup = Bitcasted;
2568   return Bitcasted;
2569 }
2570 
2571 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2572                                                 const AnnotateAttr *AA,
2573                                                 SourceLocation L) {
2574   // Get the globals for file name, annotation, and the line number.
2575   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2576                  *UnitGV = EmitAnnotationUnit(L),
2577                  *LineNoCst = EmitAnnotationLineNo(L),
2578                  *Args = EmitAnnotationArgs(AA);
2579 
2580   llvm::Constant *GVInGlobalsAS = GV;
2581   if (GV->getAddressSpace() !=
2582       getDataLayout().getDefaultGlobalsAddressSpace()) {
2583     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2584         GV, GV->getValueType()->getPointerTo(
2585                 getDataLayout().getDefaultGlobalsAddressSpace()));
2586   }
2587 
2588   // Create the ConstantStruct for the global annotation.
2589   llvm::Constant *Fields[] = {
2590       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2591       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2592       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2593       LineNoCst,
2594       Args,
2595   };
2596   return llvm::ConstantStruct::getAnon(Fields);
2597 }
2598 
2599 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2600                                          llvm::GlobalValue *GV) {
2601   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2602   // Get the struct elements for these annotations.
2603   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2604     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2605 }
2606 
2607 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2608                                        SourceLocation Loc) const {
2609   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2610   // NoSanitize by function name.
2611   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2612     return true;
2613   // NoSanitize by location.
2614   if (Loc.isValid())
2615     return NoSanitizeL.containsLocation(Kind, Loc);
2616   // If location is unknown, this may be a compiler-generated function. Assume
2617   // it's located in the main file.
2618   auto &SM = Context.getSourceManager();
2619   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2620     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2621   }
2622   return false;
2623 }
2624 
2625 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2626                                        SourceLocation Loc, QualType Ty,
2627                                        StringRef Category) const {
2628   // For now globals can be ignored only in ASan and KASan.
2629   const SanitizerMask EnabledAsanMask =
2630       LangOpts.Sanitize.Mask &
2631       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2632        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2633        SanitizerKind::MemTag);
2634   if (!EnabledAsanMask)
2635     return false;
2636   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2637   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2638     return true;
2639   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2640     return true;
2641   // Check global type.
2642   if (!Ty.isNull()) {
2643     // Drill down the array types: if global variable of a fixed type is
2644     // not sanitized, we also don't instrument arrays of them.
2645     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2646       Ty = AT->getElementType();
2647     Ty = Ty.getCanonicalType().getUnqualifiedType();
2648     // Only record types (classes, structs etc.) are ignored.
2649     if (Ty->isRecordType()) {
2650       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2651       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2652         return true;
2653     }
2654   }
2655   return false;
2656 }
2657 
2658 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2659                                    StringRef Category) const {
2660   const auto &XRayFilter = getContext().getXRayFilter();
2661   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2662   auto Attr = ImbueAttr::NONE;
2663   if (Loc.isValid())
2664     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2665   if (Attr == ImbueAttr::NONE)
2666     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2667   switch (Attr) {
2668   case ImbueAttr::NONE:
2669     return false;
2670   case ImbueAttr::ALWAYS:
2671     Fn->addFnAttr("function-instrument", "xray-always");
2672     break;
2673   case ImbueAttr::ALWAYS_ARG1:
2674     Fn->addFnAttr("function-instrument", "xray-always");
2675     Fn->addFnAttr("xray-log-args", "1");
2676     break;
2677   case ImbueAttr::NEVER:
2678     Fn->addFnAttr("function-instrument", "xray-never");
2679     break;
2680   }
2681   return true;
2682 }
2683 
2684 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2685                                            SourceLocation Loc) const {
2686   const auto &ProfileList = getContext().getProfileList();
2687   // If the profile list is empty, then instrument everything.
2688   if (ProfileList.isEmpty())
2689     return false;
2690   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2691   // First, check the function name.
2692   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2693   if (V.hasValue())
2694     return *V;
2695   // Next, check the source location.
2696   if (Loc.isValid()) {
2697     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2698     if (V.hasValue())
2699       return *V;
2700   }
2701   // If location is unknown, this may be a compiler-generated function. Assume
2702   // it's located in the main file.
2703   auto &SM = Context.getSourceManager();
2704   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2705     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2706     if (V.hasValue())
2707       return *V;
2708   }
2709   return ProfileList.getDefault();
2710 }
2711 
2712 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2713   // Never defer when EmitAllDecls is specified.
2714   if (LangOpts.EmitAllDecls)
2715     return true;
2716 
2717   if (CodeGenOpts.KeepStaticConsts) {
2718     const auto *VD = dyn_cast<VarDecl>(Global);
2719     if (VD && VD->getType().isConstQualified() &&
2720         VD->getStorageDuration() == SD_Static)
2721       return true;
2722   }
2723 
2724   return getContext().DeclMustBeEmitted(Global);
2725 }
2726 
2727 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2728   // In OpenMP 5.0 variables and function may be marked as
2729   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2730   // that they must be emitted on the host/device. To be sure we need to have
2731   // seen a declare target with an explicit mentioning of the function, we know
2732   // we have if the level of the declare target attribute is -1. Note that we
2733   // check somewhere else if we should emit this at all.
2734   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2735     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2736         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2737     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2738       return false;
2739   }
2740 
2741   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2742     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2743       // Implicit template instantiations may change linkage if they are later
2744       // explicitly instantiated, so they should not be emitted eagerly.
2745       return false;
2746   }
2747   if (const auto *VD = dyn_cast<VarDecl>(Global))
2748     if (Context.getInlineVariableDefinitionKind(VD) ==
2749         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2750       // A definition of an inline constexpr static data member may change
2751       // linkage later if it's redeclared outside the class.
2752       return false;
2753   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2754   // codegen for global variables, because they may be marked as threadprivate.
2755   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2756       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2757       !isTypeConstant(Global->getType(), false) &&
2758       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2759     return false;
2760 
2761   return true;
2762 }
2763 
2764 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2765   StringRef Name = getMangledName(GD);
2766 
2767   // The UUID descriptor should be pointer aligned.
2768   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2769 
2770   // Look for an existing global.
2771   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2772     return ConstantAddress(GV, Alignment);
2773 
2774   ConstantEmitter Emitter(*this);
2775   llvm::Constant *Init;
2776 
2777   APValue &V = GD->getAsAPValue();
2778   if (!V.isAbsent()) {
2779     // If possible, emit the APValue version of the initializer. In particular,
2780     // this gets the type of the constant right.
2781     Init = Emitter.emitForInitializer(
2782         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2783   } else {
2784     // As a fallback, directly construct the constant.
2785     // FIXME: This may get padding wrong under esoteric struct layout rules.
2786     // MSVC appears to create a complete type 'struct __s_GUID' that it
2787     // presumably uses to represent these constants.
2788     MSGuidDecl::Parts Parts = GD->getParts();
2789     llvm::Constant *Fields[4] = {
2790         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2791         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2792         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2793         llvm::ConstantDataArray::getRaw(
2794             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2795             Int8Ty)};
2796     Init = llvm::ConstantStruct::getAnon(Fields);
2797   }
2798 
2799   auto *GV = new llvm::GlobalVariable(
2800       getModule(), Init->getType(),
2801       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2802   if (supportsCOMDAT())
2803     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2804   setDSOLocal(GV);
2805 
2806   llvm::Constant *Addr = GV;
2807   if (!V.isAbsent()) {
2808     Emitter.finalize(GV);
2809   } else {
2810     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2811     Addr = llvm::ConstantExpr::getBitCast(
2812         GV, Ty->getPointerTo(GV->getAddressSpace()));
2813   }
2814   return ConstantAddress(Addr, Alignment);
2815 }
2816 
2817 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2818     const TemplateParamObjectDecl *TPO) {
2819   StringRef Name = getMangledName(TPO);
2820   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2821 
2822   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2823     return ConstantAddress(GV, Alignment);
2824 
2825   ConstantEmitter Emitter(*this);
2826   llvm::Constant *Init = Emitter.emitForInitializer(
2827         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2828 
2829   if (!Init) {
2830     ErrorUnsupported(TPO, "template parameter object");
2831     return ConstantAddress::invalid();
2832   }
2833 
2834   auto *GV = new llvm::GlobalVariable(
2835       getModule(), Init->getType(),
2836       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2837   if (supportsCOMDAT())
2838     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2839   Emitter.finalize(GV);
2840 
2841   return ConstantAddress(GV, Alignment);
2842 }
2843 
2844 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2845   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2846   assert(AA && "No alias?");
2847 
2848   CharUnits Alignment = getContext().getDeclAlign(VD);
2849   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2850 
2851   // See if there is already something with the target's name in the module.
2852   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2853   if (Entry) {
2854     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2855     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2856     return ConstantAddress(Ptr, Alignment);
2857   }
2858 
2859   llvm::Constant *Aliasee;
2860   if (isa<llvm::FunctionType>(DeclTy))
2861     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2862                                       GlobalDecl(cast<FunctionDecl>(VD)),
2863                                       /*ForVTable=*/false);
2864   else
2865     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
2866                                     nullptr);
2867 
2868   auto *F = cast<llvm::GlobalValue>(Aliasee);
2869   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2870   WeakRefReferences.insert(F);
2871 
2872   return ConstantAddress(Aliasee, Alignment);
2873 }
2874 
2875 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2876   const auto *Global = cast<ValueDecl>(GD.getDecl());
2877 
2878   // Weak references don't produce any output by themselves.
2879   if (Global->hasAttr<WeakRefAttr>())
2880     return;
2881 
2882   // If this is an alias definition (which otherwise looks like a declaration)
2883   // emit it now.
2884   if (Global->hasAttr<AliasAttr>())
2885     return EmitAliasDefinition(GD);
2886 
2887   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2888   if (Global->hasAttr<IFuncAttr>())
2889     return emitIFuncDefinition(GD);
2890 
2891   // If this is a cpu_dispatch multiversion function, emit the resolver.
2892   if (Global->hasAttr<CPUDispatchAttr>())
2893     return emitCPUDispatchDefinition(GD);
2894 
2895   // If this is CUDA, be selective about which declarations we emit.
2896   if (LangOpts.CUDA) {
2897     if (LangOpts.CUDAIsDevice) {
2898       if (!Global->hasAttr<CUDADeviceAttr>() &&
2899           !Global->hasAttr<CUDAGlobalAttr>() &&
2900           !Global->hasAttr<CUDAConstantAttr>() &&
2901           !Global->hasAttr<CUDASharedAttr>() &&
2902           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2903           !Global->getType()->isCUDADeviceBuiltinTextureType())
2904         return;
2905     } else {
2906       // We need to emit host-side 'shadows' for all global
2907       // device-side variables because the CUDA runtime needs their
2908       // size and host-side address in order to provide access to
2909       // their device-side incarnations.
2910 
2911       // So device-only functions are the only things we skip.
2912       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2913           Global->hasAttr<CUDADeviceAttr>())
2914         return;
2915 
2916       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2917              "Expected Variable or Function");
2918     }
2919   }
2920 
2921   if (LangOpts.OpenMP) {
2922     // If this is OpenMP, check if it is legal to emit this global normally.
2923     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2924       return;
2925     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2926       if (MustBeEmitted(Global))
2927         EmitOMPDeclareReduction(DRD);
2928       return;
2929     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2930       if (MustBeEmitted(Global))
2931         EmitOMPDeclareMapper(DMD);
2932       return;
2933     }
2934   }
2935 
2936   // Ignore declarations, they will be emitted on their first use.
2937   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2938     // Forward declarations are emitted lazily on first use.
2939     if (!FD->doesThisDeclarationHaveABody()) {
2940       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2941         return;
2942 
2943       StringRef MangledName = getMangledName(GD);
2944 
2945       // Compute the function info and LLVM type.
2946       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2947       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2948 
2949       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2950                               /*DontDefer=*/false);
2951       return;
2952     }
2953   } else {
2954     const auto *VD = cast<VarDecl>(Global);
2955     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2956     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2957         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2958       if (LangOpts.OpenMP) {
2959         // Emit declaration of the must-be-emitted declare target variable.
2960         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2961                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2962           bool UnifiedMemoryEnabled =
2963               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2964           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2965               !UnifiedMemoryEnabled) {
2966             (void)GetAddrOfGlobalVar(VD);
2967           } else {
2968             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2969                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2970                      UnifiedMemoryEnabled)) &&
2971                    "Link clause or to clause with unified memory expected.");
2972             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2973           }
2974 
2975           return;
2976         }
2977       }
2978       // If this declaration may have caused an inline variable definition to
2979       // change linkage, make sure that it's emitted.
2980       if (Context.getInlineVariableDefinitionKind(VD) ==
2981           ASTContext::InlineVariableDefinitionKind::Strong)
2982         GetAddrOfGlobalVar(VD);
2983       return;
2984     }
2985   }
2986 
2987   // Defer code generation to first use when possible, e.g. if this is an inline
2988   // function. If the global must always be emitted, do it eagerly if possible
2989   // to benefit from cache locality.
2990   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2991     // Emit the definition if it can't be deferred.
2992     EmitGlobalDefinition(GD);
2993     return;
2994   }
2995 
2996   // If we're deferring emission of a C++ variable with an
2997   // initializer, remember the order in which it appeared in the file.
2998   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2999       cast<VarDecl>(Global)->hasInit()) {
3000     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3001     CXXGlobalInits.push_back(nullptr);
3002   }
3003 
3004   StringRef MangledName = getMangledName(GD);
3005   if (GetGlobalValue(MangledName) != nullptr) {
3006     // The value has already been used and should therefore be emitted.
3007     addDeferredDeclToEmit(GD);
3008   } else if (MustBeEmitted(Global)) {
3009     // The value must be emitted, but cannot be emitted eagerly.
3010     assert(!MayBeEmittedEagerly(Global));
3011     addDeferredDeclToEmit(GD);
3012   } else {
3013     // Otherwise, remember that we saw a deferred decl with this name.  The
3014     // first use of the mangled name will cause it to move into
3015     // DeferredDeclsToEmit.
3016     DeferredDecls[MangledName] = GD;
3017   }
3018 }
3019 
3020 // Check if T is a class type with a destructor that's not dllimport.
3021 static bool HasNonDllImportDtor(QualType T) {
3022   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3023     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3024       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3025         return true;
3026 
3027   return false;
3028 }
3029 
3030 namespace {
3031   struct FunctionIsDirectlyRecursive
3032       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3033     const StringRef Name;
3034     const Builtin::Context &BI;
3035     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3036         : Name(N), BI(C) {}
3037 
3038     bool VisitCallExpr(const CallExpr *E) {
3039       const FunctionDecl *FD = E->getDirectCallee();
3040       if (!FD)
3041         return false;
3042       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3043       if (Attr && Name == Attr->getLabel())
3044         return true;
3045       unsigned BuiltinID = FD->getBuiltinID();
3046       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3047         return false;
3048       StringRef BuiltinName = BI.getName(BuiltinID);
3049       if (BuiltinName.startswith("__builtin_") &&
3050           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3051         return true;
3052       }
3053       return false;
3054     }
3055 
3056     bool VisitStmt(const Stmt *S) {
3057       for (const Stmt *Child : S->children())
3058         if (Child && this->Visit(Child))
3059           return true;
3060       return false;
3061     }
3062   };
3063 
3064   // Make sure we're not referencing non-imported vars or functions.
3065   struct DLLImportFunctionVisitor
3066       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3067     bool SafeToInline = true;
3068 
3069     bool shouldVisitImplicitCode() const { return true; }
3070 
3071     bool VisitVarDecl(VarDecl *VD) {
3072       if (VD->getTLSKind()) {
3073         // A thread-local variable cannot be imported.
3074         SafeToInline = false;
3075         return SafeToInline;
3076       }
3077 
3078       // A variable definition might imply a destructor call.
3079       if (VD->isThisDeclarationADefinition())
3080         SafeToInline = !HasNonDllImportDtor(VD->getType());
3081 
3082       return SafeToInline;
3083     }
3084 
3085     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3086       if (const auto *D = E->getTemporary()->getDestructor())
3087         SafeToInline = D->hasAttr<DLLImportAttr>();
3088       return SafeToInline;
3089     }
3090 
3091     bool VisitDeclRefExpr(DeclRefExpr *E) {
3092       ValueDecl *VD = E->getDecl();
3093       if (isa<FunctionDecl>(VD))
3094         SafeToInline = VD->hasAttr<DLLImportAttr>();
3095       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3096         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3097       return SafeToInline;
3098     }
3099 
3100     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3101       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3102       return SafeToInline;
3103     }
3104 
3105     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3106       CXXMethodDecl *M = E->getMethodDecl();
3107       if (!M) {
3108         // Call through a pointer to member function. This is safe to inline.
3109         SafeToInline = true;
3110       } else {
3111         SafeToInline = M->hasAttr<DLLImportAttr>();
3112       }
3113       return SafeToInline;
3114     }
3115 
3116     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3117       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3118       return SafeToInline;
3119     }
3120 
3121     bool VisitCXXNewExpr(CXXNewExpr *E) {
3122       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3123       return SafeToInline;
3124     }
3125   };
3126 }
3127 
3128 // isTriviallyRecursive - Check if this function calls another
3129 // decl that, because of the asm attribute or the other decl being a builtin,
3130 // ends up pointing to itself.
3131 bool
3132 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3133   StringRef Name;
3134   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3135     // asm labels are a special kind of mangling we have to support.
3136     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3137     if (!Attr)
3138       return false;
3139     Name = Attr->getLabel();
3140   } else {
3141     Name = FD->getName();
3142   }
3143 
3144   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3145   const Stmt *Body = FD->getBody();
3146   return Body ? Walker.Visit(Body) : false;
3147 }
3148 
3149 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3150   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3151     return true;
3152   const auto *F = cast<FunctionDecl>(GD.getDecl());
3153   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3154     return false;
3155 
3156   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3157     // Check whether it would be safe to inline this dllimport function.
3158     DLLImportFunctionVisitor Visitor;
3159     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3160     if (!Visitor.SafeToInline)
3161       return false;
3162 
3163     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3164       // Implicit destructor invocations aren't captured in the AST, so the
3165       // check above can't see them. Check for them manually here.
3166       for (const Decl *Member : Dtor->getParent()->decls())
3167         if (isa<FieldDecl>(Member))
3168           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3169             return false;
3170       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3171         if (HasNonDllImportDtor(B.getType()))
3172           return false;
3173     }
3174   }
3175 
3176   // Inline builtins declaration must be emitted. They often are fortified
3177   // functions.
3178   if (F->isInlineBuiltinDeclaration())
3179     return true;
3180 
3181   // PR9614. Avoid cases where the source code is lying to us. An available
3182   // externally function should have an equivalent function somewhere else,
3183   // but a function that calls itself through asm label/`__builtin_` trickery is
3184   // clearly not equivalent to the real implementation.
3185   // This happens in glibc's btowc and in some configure checks.
3186   return !isTriviallyRecursive(F);
3187 }
3188 
3189 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3190   return CodeGenOpts.OptimizationLevel > 0;
3191 }
3192 
3193 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3194                                                        llvm::GlobalValue *GV) {
3195   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3196 
3197   if (FD->isCPUSpecificMultiVersion()) {
3198     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3199     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3200       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3201     // Requires multiple emits.
3202   } else
3203     EmitGlobalFunctionDefinition(GD, GV);
3204 }
3205 
3206 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3207   const auto *D = cast<ValueDecl>(GD.getDecl());
3208 
3209   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3210                                  Context.getSourceManager(),
3211                                  "Generating code for declaration");
3212 
3213   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3214     // At -O0, don't generate IR for functions with available_externally
3215     // linkage.
3216     if (!shouldEmitFunction(GD))
3217       return;
3218 
3219     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3220       std::string Name;
3221       llvm::raw_string_ostream OS(Name);
3222       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3223                                /*Qualified=*/true);
3224       return Name;
3225     });
3226 
3227     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3228       // Make sure to emit the definition(s) before we emit the thunks.
3229       // This is necessary for the generation of certain thunks.
3230       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3231         ABI->emitCXXStructor(GD);
3232       else if (FD->isMultiVersion())
3233         EmitMultiVersionFunctionDefinition(GD, GV);
3234       else
3235         EmitGlobalFunctionDefinition(GD, GV);
3236 
3237       if (Method->isVirtual())
3238         getVTables().EmitThunks(GD);
3239 
3240       return;
3241     }
3242 
3243     if (FD->isMultiVersion())
3244       return EmitMultiVersionFunctionDefinition(GD, GV);
3245     return EmitGlobalFunctionDefinition(GD, GV);
3246   }
3247 
3248   if (const auto *VD = dyn_cast<VarDecl>(D))
3249     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3250 
3251   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3252 }
3253 
3254 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3255                                                       llvm::Function *NewFn);
3256 
3257 static unsigned
3258 TargetMVPriority(const TargetInfo &TI,
3259                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3260   unsigned Priority = 0;
3261   for (StringRef Feat : RO.Conditions.Features)
3262     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3263 
3264   if (!RO.Conditions.Architecture.empty())
3265     Priority = std::max(
3266         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3267   return Priority;
3268 }
3269 
3270 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3271 // TU can forward declare the function without causing problems.  Particularly
3272 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3273 // work with internal linkage functions, so that the same function name can be
3274 // used with internal linkage in multiple TUs.
3275 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3276                                                        GlobalDecl GD) {
3277   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3278   if (FD->getFormalLinkage() == InternalLinkage)
3279     return llvm::GlobalValue::InternalLinkage;
3280   return llvm::GlobalValue::WeakODRLinkage;
3281 }
3282 
3283 void CodeGenModule::emitMultiVersionFunctions() {
3284   std::vector<GlobalDecl> MVFuncsToEmit;
3285   MultiVersionFuncs.swap(MVFuncsToEmit);
3286   for (GlobalDecl GD : MVFuncsToEmit) {
3287     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3288     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3289     getContext().forEachMultiversionedFunctionVersion(
3290         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3291           GlobalDecl CurGD{
3292               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3293           StringRef MangledName = getMangledName(CurGD);
3294           llvm::Constant *Func = GetGlobalValue(MangledName);
3295           if (!Func) {
3296             if (CurFD->isDefined()) {
3297               EmitGlobalFunctionDefinition(CurGD, nullptr);
3298               Func = GetGlobalValue(MangledName);
3299             } else {
3300               const CGFunctionInfo &FI =
3301                   getTypes().arrangeGlobalDeclaration(GD);
3302               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3303               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3304                                        /*DontDefer=*/false, ForDefinition);
3305             }
3306             assert(Func && "This should have just been created");
3307           }
3308 
3309           const auto *TA = CurFD->getAttr<TargetAttr>();
3310           llvm::SmallVector<StringRef, 8> Feats;
3311           TA->getAddedFeatures(Feats);
3312 
3313           Options.emplace_back(cast<llvm::Function>(Func),
3314                                TA->getArchitecture(), Feats);
3315         });
3316 
3317     llvm::Function *ResolverFunc;
3318     const TargetInfo &TI = getTarget();
3319 
3320     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3321       ResolverFunc = cast<llvm::Function>(
3322           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3323       ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3324     } else {
3325       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3326     }
3327 
3328     if (supportsCOMDAT())
3329       ResolverFunc->setComdat(
3330           getModule().getOrInsertComdat(ResolverFunc->getName()));
3331 
3332     llvm::stable_sort(
3333         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3334                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3335           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3336         });
3337     CodeGenFunction CGF(*this);
3338     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3339   }
3340 
3341   // Ensure that any additions to the deferred decls list caused by emitting a
3342   // variant are emitted.  This can happen when the variant itself is inline and
3343   // calls a function without linkage.
3344   if (!MVFuncsToEmit.empty())
3345     EmitDeferred();
3346 
3347   // Ensure that any additions to the multiversion funcs list from either the
3348   // deferred decls or the multiversion functions themselves are emitted.
3349   if (!MultiVersionFuncs.empty())
3350     emitMultiVersionFunctions();
3351 }
3352 
3353 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3354   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3355   assert(FD && "Not a FunctionDecl?");
3356   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3357   assert(DD && "Not a cpu_dispatch Function?");
3358   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3359 
3360   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3361     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3362     DeclTy = getTypes().GetFunctionType(FInfo);
3363   }
3364 
3365   StringRef ResolverName = getMangledName(GD);
3366 
3367   llvm::Type *ResolverType;
3368   GlobalDecl ResolverGD;
3369   if (getTarget().supportsIFunc())
3370     ResolverType = llvm::FunctionType::get(
3371         llvm::PointerType::get(DeclTy,
3372                                Context.getTargetAddressSpace(FD->getType())),
3373         false);
3374   else {
3375     ResolverType = DeclTy;
3376     ResolverGD = GD;
3377   }
3378 
3379   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3380       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3381   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3382   if (supportsCOMDAT())
3383     ResolverFunc->setComdat(
3384         getModule().getOrInsertComdat(ResolverFunc->getName()));
3385 
3386   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3387   const TargetInfo &Target = getTarget();
3388   unsigned Index = 0;
3389   for (const IdentifierInfo *II : DD->cpus()) {
3390     // Get the name of the target function so we can look it up/create it.
3391     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3392                               getCPUSpecificMangling(*this, II->getName());
3393 
3394     llvm::Constant *Func = GetGlobalValue(MangledName);
3395 
3396     if (!Func) {
3397       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3398       if (ExistingDecl.getDecl() &&
3399           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3400         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3401         Func = GetGlobalValue(MangledName);
3402       } else {
3403         if (!ExistingDecl.getDecl())
3404           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3405 
3406       Func = GetOrCreateLLVMFunction(
3407           MangledName, DeclTy, ExistingDecl,
3408           /*ForVTable=*/false, /*DontDefer=*/true,
3409           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3410       }
3411     }
3412 
3413     llvm::SmallVector<StringRef, 32> Features;
3414     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3415     llvm::transform(Features, Features.begin(),
3416                     [](StringRef Str) { return Str.substr(1); });
3417     Features.erase(std::remove_if(
3418         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3419           return !Target.validateCpuSupports(Feat);
3420         }), Features.end());
3421     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3422     ++Index;
3423   }
3424 
3425   llvm::stable_sort(
3426       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3427                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3428         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3429                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3430       });
3431 
3432   // If the list contains multiple 'default' versions, such as when it contains
3433   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3434   // always run on at least a 'pentium'). We do this by deleting the 'least
3435   // advanced' (read, lowest mangling letter).
3436   while (Options.size() > 1 &&
3437          llvm::X86::getCpuSupportsMask(
3438              (Options.end() - 2)->Conditions.Features) == 0) {
3439     StringRef LHSName = (Options.end() - 2)->Function->getName();
3440     StringRef RHSName = (Options.end() - 1)->Function->getName();
3441     if (LHSName.compare(RHSName) < 0)
3442       Options.erase(Options.end() - 2);
3443     else
3444       Options.erase(Options.end() - 1);
3445   }
3446 
3447   CodeGenFunction CGF(*this);
3448   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3449 
3450   if (getTarget().supportsIFunc()) {
3451     std::string AliasName = getMangledNameImpl(
3452         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3453     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3454     if (!AliasFunc) {
3455       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3456           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3457           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3458       auto *GA = llvm::GlobalAlias::create(DeclTy, 0,
3459                                            getMultiversionLinkage(*this, GD),
3460                                            AliasName, IFunc, &getModule());
3461       SetCommonAttributes(GD, GA);
3462     }
3463   }
3464 }
3465 
3466 /// If a dispatcher for the specified mangled name is not in the module, create
3467 /// and return an llvm Function with the specified type.
3468 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3469     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3470   std::string MangledName =
3471       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3472 
3473   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3474   // a separate resolver).
3475   std::string ResolverName = MangledName;
3476   if (getTarget().supportsIFunc())
3477     ResolverName += ".ifunc";
3478   else if (FD->isTargetMultiVersion())
3479     ResolverName += ".resolver";
3480 
3481   // If this already exists, just return that one.
3482   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3483     return ResolverGV;
3484 
3485   // Since this is the first time we've created this IFunc, make sure
3486   // that we put this multiversioned function into the list to be
3487   // replaced later if necessary (target multiversioning only).
3488   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3489     MultiVersionFuncs.push_back(GD);
3490 
3491   if (getTarget().supportsIFunc()) {
3492     llvm::Type *ResolverType = llvm::FunctionType::get(
3493         llvm::PointerType::get(
3494             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3495         false);
3496     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3497         MangledName + ".resolver", ResolverType, GlobalDecl{},
3498         /*ForVTable=*/false);
3499     llvm::GlobalIFunc *GIF =
3500         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3501                                   "", Resolver, &getModule());
3502     GIF->setName(ResolverName);
3503     SetCommonAttributes(FD, GIF);
3504 
3505     return GIF;
3506   }
3507 
3508   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3509       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3510   assert(isa<llvm::GlobalValue>(Resolver) &&
3511          "Resolver should be created for the first time");
3512   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3513   return Resolver;
3514 }
3515 
3516 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3517 /// module, create and return an llvm Function with the specified type. If there
3518 /// is something in the module with the specified name, return it potentially
3519 /// bitcasted to the right type.
3520 ///
3521 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3522 /// to set the attributes on the function when it is first created.
3523 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3524     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3525     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3526     ForDefinition_t IsForDefinition) {
3527   const Decl *D = GD.getDecl();
3528 
3529   // Any attempts to use a MultiVersion function should result in retrieving
3530   // the iFunc instead. Name Mangling will handle the rest of the changes.
3531   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3532     // For the device mark the function as one that should be emitted.
3533     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3534         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3535         !DontDefer && !IsForDefinition) {
3536       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3537         GlobalDecl GDDef;
3538         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3539           GDDef = GlobalDecl(CD, GD.getCtorType());
3540         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3541           GDDef = GlobalDecl(DD, GD.getDtorType());
3542         else
3543           GDDef = GlobalDecl(FDDef);
3544         EmitGlobal(GDDef);
3545       }
3546     }
3547 
3548     if (FD->isMultiVersion()) {
3549       if (FD->hasAttr<TargetAttr>())
3550         UpdateMultiVersionNames(GD, FD);
3551       if (!IsForDefinition)
3552         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3553     }
3554   }
3555 
3556   // Lookup the entry, lazily creating it if necessary.
3557   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3558   if (Entry) {
3559     if (WeakRefReferences.erase(Entry)) {
3560       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3561       if (FD && !FD->hasAttr<WeakAttr>())
3562         Entry->setLinkage(llvm::Function::ExternalLinkage);
3563     }
3564 
3565     // Handle dropped DLL attributes.
3566     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3567       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3568       setDSOLocal(Entry);
3569     }
3570 
3571     // If there are two attempts to define the same mangled name, issue an
3572     // error.
3573     if (IsForDefinition && !Entry->isDeclaration()) {
3574       GlobalDecl OtherGD;
3575       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3576       // to make sure that we issue an error only once.
3577       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3578           (GD.getCanonicalDecl().getDecl() !=
3579            OtherGD.getCanonicalDecl().getDecl()) &&
3580           DiagnosedConflictingDefinitions.insert(GD).second) {
3581         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3582             << MangledName;
3583         getDiags().Report(OtherGD.getDecl()->getLocation(),
3584                           diag::note_previous_definition);
3585       }
3586     }
3587 
3588     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3589         (Entry->getValueType() == Ty)) {
3590       return Entry;
3591     }
3592 
3593     // Make sure the result is of the correct type.
3594     // (If function is requested for a definition, we always need to create a new
3595     // function, not just return a bitcast.)
3596     if (!IsForDefinition)
3597       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3598   }
3599 
3600   // This function doesn't have a complete type (for example, the return
3601   // type is an incomplete struct). Use a fake type instead, and make
3602   // sure not to try to set attributes.
3603   bool IsIncompleteFunction = false;
3604 
3605   llvm::FunctionType *FTy;
3606   if (isa<llvm::FunctionType>(Ty)) {
3607     FTy = cast<llvm::FunctionType>(Ty);
3608   } else {
3609     FTy = llvm::FunctionType::get(VoidTy, false);
3610     IsIncompleteFunction = true;
3611   }
3612 
3613   llvm::Function *F =
3614       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3615                              Entry ? StringRef() : MangledName, &getModule());
3616 
3617   // If we already created a function with the same mangled name (but different
3618   // type) before, take its name and add it to the list of functions to be
3619   // replaced with F at the end of CodeGen.
3620   //
3621   // This happens if there is a prototype for a function (e.g. "int f()") and
3622   // then a definition of a different type (e.g. "int f(int x)").
3623   if (Entry) {
3624     F->takeName(Entry);
3625 
3626     // This might be an implementation of a function without a prototype, in
3627     // which case, try to do special replacement of calls which match the new
3628     // prototype.  The really key thing here is that we also potentially drop
3629     // arguments from the call site so as to make a direct call, which makes the
3630     // inliner happier and suppresses a number of optimizer warnings (!) about
3631     // dropping arguments.
3632     if (!Entry->use_empty()) {
3633       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3634       Entry->removeDeadConstantUsers();
3635     }
3636 
3637     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3638         F, Entry->getValueType()->getPointerTo());
3639     addGlobalValReplacement(Entry, BC);
3640   }
3641 
3642   assert(F->getName() == MangledName && "name was uniqued!");
3643   if (D)
3644     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3645   if (ExtraAttrs.hasFnAttrs()) {
3646     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3647     F->addFnAttrs(B);
3648   }
3649 
3650   if (!DontDefer) {
3651     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3652     // each other bottoming out with the base dtor.  Therefore we emit non-base
3653     // dtors on usage, even if there is no dtor definition in the TU.
3654     if (D && isa<CXXDestructorDecl>(D) &&
3655         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3656                                            GD.getDtorType()))
3657       addDeferredDeclToEmit(GD);
3658 
3659     // This is the first use or definition of a mangled name.  If there is a
3660     // deferred decl with this name, remember that we need to emit it at the end
3661     // of the file.
3662     auto DDI = DeferredDecls.find(MangledName);
3663     if (DDI != DeferredDecls.end()) {
3664       // Move the potentially referenced deferred decl to the
3665       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3666       // don't need it anymore).
3667       addDeferredDeclToEmit(DDI->second);
3668       DeferredDecls.erase(DDI);
3669 
3670       // Otherwise, there are cases we have to worry about where we're
3671       // using a declaration for which we must emit a definition but where
3672       // we might not find a top-level definition:
3673       //   - member functions defined inline in their classes
3674       //   - friend functions defined inline in some class
3675       //   - special member functions with implicit definitions
3676       // If we ever change our AST traversal to walk into class methods,
3677       // this will be unnecessary.
3678       //
3679       // We also don't emit a definition for a function if it's going to be an
3680       // entry in a vtable, unless it's already marked as used.
3681     } else if (getLangOpts().CPlusPlus && D) {
3682       // Look for a declaration that's lexically in a record.
3683       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3684            FD = FD->getPreviousDecl()) {
3685         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3686           if (FD->doesThisDeclarationHaveABody()) {
3687             addDeferredDeclToEmit(GD.getWithDecl(FD));
3688             break;
3689           }
3690         }
3691       }
3692     }
3693   }
3694 
3695   // Make sure the result is of the requested type.
3696   if (!IsIncompleteFunction) {
3697     assert(F->getFunctionType() == Ty);
3698     return F;
3699   }
3700 
3701   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3702   return llvm::ConstantExpr::getBitCast(F, PTy);
3703 }
3704 
3705 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3706 /// non-null, then this function will use the specified type if it has to
3707 /// create it (this occurs when we see a definition of the function).
3708 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3709                                                  llvm::Type *Ty,
3710                                                  bool ForVTable,
3711                                                  bool DontDefer,
3712                                               ForDefinition_t IsForDefinition) {
3713   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3714          "consteval function should never be emitted");
3715   // If there was no specific requested type, just convert it now.
3716   if (!Ty) {
3717     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3718     Ty = getTypes().ConvertType(FD->getType());
3719   }
3720 
3721   // Devirtualized destructor calls may come through here instead of via
3722   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3723   // of the complete destructor when necessary.
3724   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3725     if (getTarget().getCXXABI().isMicrosoft() &&
3726         GD.getDtorType() == Dtor_Complete &&
3727         DD->getParent()->getNumVBases() == 0)
3728       GD = GlobalDecl(DD, Dtor_Base);
3729   }
3730 
3731   StringRef MangledName = getMangledName(GD);
3732   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3733                                     /*IsThunk=*/false, llvm::AttributeList(),
3734                                     IsForDefinition);
3735   // Returns kernel handle for HIP kernel stub function.
3736   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3737       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3738     auto *Handle = getCUDARuntime().getKernelHandle(
3739         cast<llvm::Function>(F->stripPointerCasts()), GD);
3740     if (IsForDefinition)
3741       return F;
3742     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3743   }
3744   return F;
3745 }
3746 
3747 static const FunctionDecl *
3748 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3749   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3750   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3751 
3752   IdentifierInfo &CII = C.Idents.get(Name);
3753   for (const auto *Result : DC->lookup(&CII))
3754     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3755       return FD;
3756 
3757   if (!C.getLangOpts().CPlusPlus)
3758     return nullptr;
3759 
3760   // Demangle the premangled name from getTerminateFn()
3761   IdentifierInfo &CXXII =
3762       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3763           ? C.Idents.get("terminate")
3764           : C.Idents.get(Name);
3765 
3766   for (const auto &N : {"__cxxabiv1", "std"}) {
3767     IdentifierInfo &NS = C.Idents.get(N);
3768     for (const auto *Result : DC->lookup(&NS)) {
3769       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3770       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
3771         for (const auto *Result : LSD->lookup(&NS))
3772           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3773             break;
3774 
3775       if (ND)
3776         for (const auto *Result : ND->lookup(&CXXII))
3777           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3778             return FD;
3779     }
3780   }
3781 
3782   return nullptr;
3783 }
3784 
3785 /// CreateRuntimeFunction - Create a new runtime function with the specified
3786 /// type and name.
3787 llvm::FunctionCallee
3788 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3789                                      llvm::AttributeList ExtraAttrs, bool Local,
3790                                      bool AssumeConvergent) {
3791   if (AssumeConvergent) {
3792     ExtraAttrs =
3793         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
3794   }
3795 
3796   llvm::Constant *C =
3797       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3798                               /*DontDefer=*/false, /*IsThunk=*/false,
3799                               ExtraAttrs);
3800 
3801   if (auto *F = dyn_cast<llvm::Function>(C)) {
3802     if (F->empty()) {
3803       F->setCallingConv(getRuntimeCC());
3804 
3805       // In Windows Itanium environments, try to mark runtime functions
3806       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3807       // will link their standard library statically or dynamically. Marking
3808       // functions imported when they are not imported can cause linker errors
3809       // and warnings.
3810       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3811           !getCodeGenOpts().LTOVisibilityPublicStd) {
3812         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3813         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3814           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3815           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3816         }
3817       }
3818       setDSOLocal(F);
3819     }
3820   }
3821 
3822   return {FTy, C};
3823 }
3824 
3825 /// isTypeConstant - Determine whether an object of this type can be emitted
3826 /// as a constant.
3827 ///
3828 /// If ExcludeCtor is true, the duration when the object's constructor runs
3829 /// will not be considered. The caller will need to verify that the object is
3830 /// not written to during its construction.
3831 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3832   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3833     return false;
3834 
3835   if (Context.getLangOpts().CPlusPlus) {
3836     if (const CXXRecordDecl *Record
3837           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3838       return ExcludeCtor && !Record->hasMutableFields() &&
3839              Record->hasTrivialDestructor();
3840   }
3841 
3842   return true;
3843 }
3844 
3845 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3846 /// create and return an llvm GlobalVariable with the specified type and address
3847 /// space. If there is something in the module with the specified name, return
3848 /// it potentially bitcasted to the right type.
3849 ///
3850 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3851 /// to set the attributes on the global when it is first created.
3852 ///
3853 /// If IsForDefinition is true, it is guaranteed that an actual global with
3854 /// type Ty will be returned, not conversion of a variable with the same
3855 /// mangled name but some other type.
3856 llvm::Constant *
3857 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
3858                                      LangAS AddrSpace, const VarDecl *D,
3859                                      ForDefinition_t IsForDefinition) {
3860   // Lookup the entry, lazily creating it if necessary.
3861   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3862   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
3863   if (Entry) {
3864     if (WeakRefReferences.erase(Entry)) {
3865       if (D && !D->hasAttr<WeakAttr>())
3866         Entry->setLinkage(llvm::Function::ExternalLinkage);
3867     }
3868 
3869     // Handle dropped DLL attributes.
3870     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3871       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3872 
3873     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3874       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3875 
3876     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
3877       return Entry;
3878 
3879     // If there are two attempts to define the same mangled name, issue an
3880     // error.
3881     if (IsForDefinition && !Entry->isDeclaration()) {
3882       GlobalDecl OtherGD;
3883       const VarDecl *OtherD;
3884 
3885       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3886       // to make sure that we issue an error only once.
3887       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3888           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3889           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3890           OtherD->hasInit() &&
3891           DiagnosedConflictingDefinitions.insert(D).second) {
3892         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3893             << MangledName;
3894         getDiags().Report(OtherGD.getDecl()->getLocation(),
3895                           diag::note_previous_definition);
3896       }
3897     }
3898 
3899     // Make sure the result is of the correct type.
3900     if (Entry->getType()->getAddressSpace() != TargetAS) {
3901       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
3902                                                   Ty->getPointerTo(TargetAS));
3903     }
3904 
3905     // (If global is requested for a definition, we always need to create a new
3906     // global, not just return a bitcast.)
3907     if (!IsForDefinition)
3908       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
3909   }
3910 
3911   auto DAddrSpace = GetGlobalVarAddressSpace(D);
3912 
3913   auto *GV = new llvm::GlobalVariable(
3914       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
3915       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
3916       getContext().getTargetAddressSpace(DAddrSpace));
3917 
3918   // If we already created a global with the same mangled name (but different
3919   // type) before, take its name and remove it from its parent.
3920   if (Entry) {
3921     GV->takeName(Entry);
3922 
3923     if (!Entry->use_empty()) {
3924       llvm::Constant *NewPtrForOldDecl =
3925           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3926       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3927     }
3928 
3929     Entry->eraseFromParent();
3930   }
3931 
3932   // This is the first use or definition of a mangled name.  If there is a
3933   // deferred decl with this name, remember that we need to emit it at the end
3934   // of the file.
3935   auto DDI = DeferredDecls.find(MangledName);
3936   if (DDI != DeferredDecls.end()) {
3937     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3938     // list, and remove it from DeferredDecls (since we don't need it anymore).
3939     addDeferredDeclToEmit(DDI->second);
3940     DeferredDecls.erase(DDI);
3941   }
3942 
3943   // Handle things which are present even on external declarations.
3944   if (D) {
3945     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3946       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3947 
3948     // FIXME: This code is overly simple and should be merged with other global
3949     // handling.
3950     GV->setConstant(isTypeConstant(D->getType(), false));
3951 
3952     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3953 
3954     setLinkageForGV(GV, D);
3955 
3956     if (D->getTLSKind()) {
3957       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3958         CXXThreadLocals.push_back(D);
3959       setTLSMode(GV, *D);
3960     }
3961 
3962     setGVProperties(GV, D);
3963 
3964     // If required by the ABI, treat declarations of static data members with
3965     // inline initializers as definitions.
3966     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3967       EmitGlobalVarDefinition(D);
3968     }
3969 
3970     // Emit section information for extern variables.
3971     if (D->hasExternalStorage()) {
3972       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3973         GV->setSection(SA->getName());
3974     }
3975 
3976     // Handle XCore specific ABI requirements.
3977     if (getTriple().getArch() == llvm::Triple::xcore &&
3978         D->getLanguageLinkage() == CLanguageLinkage &&
3979         D->getType().isConstant(Context) &&
3980         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3981       GV->setSection(".cp.rodata");
3982 
3983     // Check if we a have a const declaration with an initializer, we may be
3984     // able to emit it as available_externally to expose it's value to the
3985     // optimizer.
3986     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3987         D->getType().isConstQualified() && !GV->hasInitializer() &&
3988         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3989       const auto *Record =
3990           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3991       bool HasMutableFields = Record && Record->hasMutableFields();
3992       if (!HasMutableFields) {
3993         const VarDecl *InitDecl;
3994         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3995         if (InitExpr) {
3996           ConstantEmitter emitter(*this);
3997           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3998           if (Init) {
3999             auto *InitType = Init->getType();
4000             if (GV->getValueType() != InitType) {
4001               // The type of the initializer does not match the definition.
4002               // This happens when an initializer has a different type from
4003               // the type of the global (because of padding at the end of a
4004               // structure for instance).
4005               GV->setName(StringRef());
4006               // Make a new global with the correct type, this is now guaranteed
4007               // to work.
4008               auto *NewGV = cast<llvm::GlobalVariable>(
4009                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4010                       ->stripPointerCasts());
4011 
4012               // Erase the old global, since it is no longer used.
4013               GV->eraseFromParent();
4014               GV = NewGV;
4015             } else {
4016               GV->setInitializer(Init);
4017               GV->setConstant(true);
4018               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4019             }
4020             emitter.finalize(GV);
4021           }
4022         }
4023       }
4024     }
4025   }
4026 
4027   if (GV->isDeclaration()) {
4028     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4029     // External HIP managed variables needed to be recorded for transformation
4030     // in both device and host compilations.
4031     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4032         D->hasExternalStorage())
4033       getCUDARuntime().handleVarRegistration(D, *GV);
4034   }
4035 
4036   LangAS ExpectedAS =
4037       D ? D->getType().getAddressSpace()
4038         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4039   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4040   if (DAddrSpace != ExpectedAS) {
4041     return getTargetCodeGenInfo().performAddrSpaceCast(
4042         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4043   }
4044 
4045   return GV;
4046 }
4047 
4048 llvm::Constant *
4049 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4050   const Decl *D = GD.getDecl();
4051 
4052   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4053     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4054                                 /*DontDefer=*/false, IsForDefinition);
4055 
4056   if (isa<CXXMethodDecl>(D)) {
4057     auto FInfo =
4058         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4059     auto Ty = getTypes().GetFunctionType(*FInfo);
4060     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4061                              IsForDefinition);
4062   }
4063 
4064   if (isa<FunctionDecl>(D)) {
4065     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4066     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4067     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4068                              IsForDefinition);
4069   }
4070 
4071   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4072 }
4073 
4074 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4075     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4076     unsigned Alignment) {
4077   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4078   llvm::GlobalVariable *OldGV = nullptr;
4079 
4080   if (GV) {
4081     // Check if the variable has the right type.
4082     if (GV->getValueType() == Ty)
4083       return GV;
4084 
4085     // Because C++ name mangling, the only way we can end up with an already
4086     // existing global with the same name is if it has been declared extern "C".
4087     assert(GV->isDeclaration() && "Declaration has wrong type!");
4088     OldGV = GV;
4089   }
4090 
4091   // Create a new variable.
4092   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4093                                 Linkage, nullptr, Name);
4094 
4095   if (OldGV) {
4096     // Replace occurrences of the old variable if needed.
4097     GV->takeName(OldGV);
4098 
4099     if (!OldGV->use_empty()) {
4100       llvm::Constant *NewPtrForOldDecl =
4101       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4102       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4103     }
4104 
4105     OldGV->eraseFromParent();
4106   }
4107 
4108   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4109       !GV->hasAvailableExternallyLinkage())
4110     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4111 
4112   GV->setAlignment(llvm::MaybeAlign(Alignment));
4113 
4114   return GV;
4115 }
4116 
4117 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4118 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4119 /// then it will be created with the specified type instead of whatever the
4120 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4121 /// that an actual global with type Ty will be returned, not conversion of a
4122 /// variable with the same mangled name but some other type.
4123 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4124                                                   llvm::Type *Ty,
4125                                            ForDefinition_t IsForDefinition) {
4126   assert(D->hasGlobalStorage() && "Not a global variable");
4127   QualType ASTTy = D->getType();
4128   if (!Ty)
4129     Ty = getTypes().ConvertTypeForMem(ASTTy);
4130 
4131   StringRef MangledName = getMangledName(D);
4132   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4133                                IsForDefinition);
4134 }
4135 
4136 /// CreateRuntimeVariable - Create a new runtime global variable with the
4137 /// specified type and name.
4138 llvm::Constant *
4139 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4140                                      StringRef Name) {
4141   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4142                                                        : LangAS::Default;
4143   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4144   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4145   return Ret;
4146 }
4147 
4148 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4149   assert(!D->getInit() && "Cannot emit definite definitions here!");
4150 
4151   StringRef MangledName = getMangledName(D);
4152   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4153 
4154   // We already have a definition, not declaration, with the same mangled name.
4155   // Emitting of declaration is not required (and actually overwrites emitted
4156   // definition).
4157   if (GV && !GV->isDeclaration())
4158     return;
4159 
4160   // If we have not seen a reference to this variable yet, place it into the
4161   // deferred declarations table to be emitted if needed later.
4162   if (!MustBeEmitted(D) && !GV) {
4163       DeferredDecls[MangledName] = D;
4164       return;
4165   }
4166 
4167   // The tentative definition is the only definition.
4168   EmitGlobalVarDefinition(D);
4169 }
4170 
4171 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4172   EmitExternalVarDeclaration(D);
4173 }
4174 
4175 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4176   return Context.toCharUnitsFromBits(
4177       getDataLayout().getTypeStoreSizeInBits(Ty));
4178 }
4179 
4180 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4181   if (LangOpts.OpenCL) {
4182     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4183     assert(AS == LangAS::opencl_global ||
4184            AS == LangAS::opencl_global_device ||
4185            AS == LangAS::opencl_global_host ||
4186            AS == LangAS::opencl_constant ||
4187            AS == LangAS::opencl_local ||
4188            AS >= LangAS::FirstTargetAddressSpace);
4189     return AS;
4190   }
4191 
4192   if (LangOpts.SYCLIsDevice &&
4193       (!D || D->getType().getAddressSpace() == LangAS::Default))
4194     return LangAS::sycl_global;
4195 
4196   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4197     if (D && D->hasAttr<CUDAConstantAttr>())
4198       return LangAS::cuda_constant;
4199     else if (D && D->hasAttr<CUDASharedAttr>())
4200       return LangAS::cuda_shared;
4201     else if (D && D->hasAttr<CUDADeviceAttr>())
4202       return LangAS::cuda_device;
4203     else if (D && D->getType().isConstQualified())
4204       return LangAS::cuda_constant;
4205     else
4206       return LangAS::cuda_device;
4207   }
4208 
4209   if (LangOpts.OpenMP) {
4210     LangAS AS;
4211     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4212       return AS;
4213   }
4214   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4215 }
4216 
4217 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4218   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4219   if (LangOpts.OpenCL)
4220     return LangAS::opencl_constant;
4221   if (LangOpts.SYCLIsDevice)
4222     return LangAS::sycl_global;
4223   if (auto AS = getTarget().getConstantAddressSpace())
4224     return AS.getValue();
4225   return LangAS::Default;
4226 }
4227 
4228 // In address space agnostic languages, string literals are in default address
4229 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4230 // emitted in constant address space in LLVM IR. To be consistent with other
4231 // parts of AST, string literal global variables in constant address space
4232 // need to be casted to default address space before being put into address
4233 // map and referenced by other part of CodeGen.
4234 // In OpenCL, string literals are in constant address space in AST, therefore
4235 // they should not be casted to default address space.
4236 static llvm::Constant *
4237 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4238                                        llvm::GlobalVariable *GV) {
4239   llvm::Constant *Cast = GV;
4240   if (!CGM.getLangOpts().OpenCL) {
4241     auto AS = CGM.GetGlobalConstantAddressSpace();
4242     if (AS != LangAS::Default)
4243       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4244           CGM, GV, AS, LangAS::Default,
4245           GV->getValueType()->getPointerTo(
4246               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4247   }
4248   return Cast;
4249 }
4250 
4251 template<typename SomeDecl>
4252 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4253                                                llvm::GlobalValue *GV) {
4254   if (!getLangOpts().CPlusPlus)
4255     return;
4256 
4257   // Must have 'used' attribute, or else inline assembly can't rely on
4258   // the name existing.
4259   if (!D->template hasAttr<UsedAttr>())
4260     return;
4261 
4262   // Must have internal linkage and an ordinary name.
4263   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4264     return;
4265 
4266   // Must be in an extern "C" context. Entities declared directly within
4267   // a record are not extern "C" even if the record is in such a context.
4268   const SomeDecl *First = D->getFirstDecl();
4269   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4270     return;
4271 
4272   // OK, this is an internal linkage entity inside an extern "C" linkage
4273   // specification. Make a note of that so we can give it the "expected"
4274   // mangled name if nothing else is using that name.
4275   std::pair<StaticExternCMap::iterator, bool> R =
4276       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4277 
4278   // If we have multiple internal linkage entities with the same name
4279   // in extern "C" regions, none of them gets that name.
4280   if (!R.second)
4281     R.first->second = nullptr;
4282 }
4283 
4284 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4285   if (!CGM.supportsCOMDAT())
4286     return false;
4287 
4288   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4289   // them being "merged" by the COMDAT Folding linker optimization.
4290   if (D.hasAttr<CUDAGlobalAttr>())
4291     return false;
4292 
4293   if (D.hasAttr<SelectAnyAttr>())
4294     return true;
4295 
4296   GVALinkage Linkage;
4297   if (auto *VD = dyn_cast<VarDecl>(&D))
4298     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4299   else
4300     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4301 
4302   switch (Linkage) {
4303   case GVA_Internal:
4304   case GVA_AvailableExternally:
4305   case GVA_StrongExternal:
4306     return false;
4307   case GVA_DiscardableODR:
4308   case GVA_StrongODR:
4309     return true;
4310   }
4311   llvm_unreachable("No such linkage");
4312 }
4313 
4314 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4315                                           llvm::GlobalObject &GO) {
4316   if (!shouldBeInCOMDAT(*this, D))
4317     return;
4318   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4319 }
4320 
4321 /// Pass IsTentative as true if you want to create a tentative definition.
4322 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4323                                             bool IsTentative) {
4324   // OpenCL global variables of sampler type are translated to function calls,
4325   // therefore no need to be translated.
4326   QualType ASTTy = D->getType();
4327   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4328     return;
4329 
4330   // If this is OpenMP device, check if it is legal to emit this global
4331   // normally.
4332   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4333       OpenMPRuntime->emitTargetGlobalVariable(D))
4334     return;
4335 
4336   llvm::TrackingVH<llvm::Constant> Init;
4337   bool NeedsGlobalCtor = false;
4338   bool NeedsGlobalDtor =
4339       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4340 
4341   const VarDecl *InitDecl;
4342   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4343 
4344   Optional<ConstantEmitter> emitter;
4345 
4346   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4347   // as part of their declaration."  Sema has already checked for
4348   // error cases, so we just need to set Init to UndefValue.
4349   bool IsCUDASharedVar =
4350       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4351   // Shadows of initialized device-side global variables are also left
4352   // undefined.
4353   // Managed Variables should be initialized on both host side and device side.
4354   bool IsCUDAShadowVar =
4355       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4356       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4357        D->hasAttr<CUDASharedAttr>());
4358   bool IsCUDADeviceShadowVar =
4359       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4360       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4361        D->getType()->isCUDADeviceBuiltinTextureType());
4362   if (getLangOpts().CUDA &&
4363       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4364     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4365   else if (D->hasAttr<LoaderUninitializedAttr>())
4366     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4367   else if (!InitExpr) {
4368     // This is a tentative definition; tentative definitions are
4369     // implicitly initialized with { 0 }.
4370     //
4371     // Note that tentative definitions are only emitted at the end of
4372     // a translation unit, so they should never have incomplete
4373     // type. In addition, EmitTentativeDefinition makes sure that we
4374     // never attempt to emit a tentative definition if a real one
4375     // exists. A use may still exists, however, so we still may need
4376     // to do a RAUW.
4377     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4378     Init = EmitNullConstant(D->getType());
4379   } else {
4380     initializedGlobalDecl = GlobalDecl(D);
4381     emitter.emplace(*this);
4382     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4383     if (!Initializer) {
4384       QualType T = InitExpr->getType();
4385       if (D->getType()->isReferenceType())
4386         T = D->getType();
4387 
4388       if (getLangOpts().CPlusPlus) {
4389         Init = EmitNullConstant(T);
4390         NeedsGlobalCtor = true;
4391       } else {
4392         ErrorUnsupported(D, "static initializer");
4393         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4394       }
4395     } else {
4396       Init = Initializer;
4397       // We don't need an initializer, so remove the entry for the delayed
4398       // initializer position (just in case this entry was delayed) if we
4399       // also don't need to register a destructor.
4400       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4401         DelayedCXXInitPosition.erase(D);
4402     }
4403   }
4404 
4405   llvm::Type* InitType = Init->getType();
4406   llvm::Constant *Entry =
4407       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4408 
4409   // Strip off pointer casts if we got them.
4410   Entry = Entry->stripPointerCasts();
4411 
4412   // Entry is now either a Function or GlobalVariable.
4413   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4414 
4415   // We have a definition after a declaration with the wrong type.
4416   // We must make a new GlobalVariable* and update everything that used OldGV
4417   // (a declaration or tentative definition) with the new GlobalVariable*
4418   // (which will be a definition).
4419   //
4420   // This happens if there is a prototype for a global (e.g.
4421   // "extern int x[];") and then a definition of a different type (e.g.
4422   // "int x[10];"). This also happens when an initializer has a different type
4423   // from the type of the global (this happens with unions).
4424   if (!GV || GV->getValueType() != InitType ||
4425       GV->getType()->getAddressSpace() !=
4426           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4427 
4428     // Move the old entry aside so that we'll create a new one.
4429     Entry->setName(StringRef());
4430 
4431     // Make a new global with the correct type, this is now guaranteed to work.
4432     GV = cast<llvm::GlobalVariable>(
4433         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4434             ->stripPointerCasts());
4435 
4436     // Replace all uses of the old global with the new global
4437     llvm::Constant *NewPtrForOldDecl =
4438         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4439                                                              Entry->getType());
4440     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4441 
4442     // Erase the old global, since it is no longer used.
4443     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4444   }
4445 
4446   MaybeHandleStaticInExternC(D, GV);
4447 
4448   if (D->hasAttr<AnnotateAttr>())
4449     AddGlobalAnnotations(D, GV);
4450 
4451   // Set the llvm linkage type as appropriate.
4452   llvm::GlobalValue::LinkageTypes Linkage =
4453       getLLVMLinkageVarDefinition(D, GV->isConstant());
4454 
4455   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4456   // the device. [...]"
4457   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4458   // __device__, declares a variable that: [...]
4459   // Is accessible from all the threads within the grid and from the host
4460   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4461   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4462   if (GV && LangOpts.CUDA) {
4463     if (LangOpts.CUDAIsDevice) {
4464       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4465           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4466            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4467            D->getType()->isCUDADeviceBuiltinTextureType()))
4468         GV->setExternallyInitialized(true);
4469     } else {
4470       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4471     }
4472     getCUDARuntime().handleVarRegistration(D, *GV);
4473   }
4474 
4475   GV->setInitializer(Init);
4476   if (emitter)
4477     emitter->finalize(GV);
4478 
4479   // If it is safe to mark the global 'constant', do so now.
4480   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4481                   isTypeConstant(D->getType(), true));
4482 
4483   // If it is in a read-only section, mark it 'constant'.
4484   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4485     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4486     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4487       GV->setConstant(true);
4488   }
4489 
4490   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4491 
4492   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4493   // function is only defined alongside the variable, not also alongside
4494   // callers. Normally, all accesses to a thread_local go through the
4495   // thread-wrapper in order to ensure initialization has occurred, underlying
4496   // variable will never be used other than the thread-wrapper, so it can be
4497   // converted to internal linkage.
4498   //
4499   // However, if the variable has the 'constinit' attribute, it _can_ be
4500   // referenced directly, without calling the thread-wrapper, so the linkage
4501   // must not be changed.
4502   //
4503   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4504   // weak or linkonce, the de-duplication semantics are important to preserve,
4505   // so we don't change the linkage.
4506   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4507       Linkage == llvm::GlobalValue::ExternalLinkage &&
4508       Context.getTargetInfo().getTriple().isOSDarwin() &&
4509       !D->hasAttr<ConstInitAttr>())
4510     Linkage = llvm::GlobalValue::InternalLinkage;
4511 
4512   GV->setLinkage(Linkage);
4513   if (D->hasAttr<DLLImportAttr>())
4514     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4515   else if (D->hasAttr<DLLExportAttr>())
4516     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4517   else
4518     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4519 
4520   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4521     // common vars aren't constant even if declared const.
4522     GV->setConstant(false);
4523     // Tentative definition of global variables may be initialized with
4524     // non-zero null pointers. In this case they should have weak linkage
4525     // since common linkage must have zero initializer and must not have
4526     // explicit section therefore cannot have non-zero initial value.
4527     if (!GV->getInitializer()->isNullValue())
4528       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4529   }
4530 
4531   setNonAliasAttributes(D, GV);
4532 
4533   if (D->getTLSKind() && !GV->isThreadLocal()) {
4534     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4535       CXXThreadLocals.push_back(D);
4536     setTLSMode(GV, *D);
4537   }
4538 
4539   maybeSetTrivialComdat(*D, *GV);
4540 
4541   // Emit the initializer function if necessary.
4542   if (NeedsGlobalCtor || NeedsGlobalDtor)
4543     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4544 
4545   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4546 
4547   // Emit global variable debug information.
4548   if (CGDebugInfo *DI = getModuleDebugInfo())
4549     if (getCodeGenOpts().hasReducedDebugInfo())
4550       DI->EmitGlobalVariable(GV, D);
4551 }
4552 
4553 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4554   if (CGDebugInfo *DI = getModuleDebugInfo())
4555     if (getCodeGenOpts().hasReducedDebugInfo()) {
4556       QualType ASTTy = D->getType();
4557       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4558       llvm::Constant *GV =
4559           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4560       DI->EmitExternalVariable(
4561           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4562     }
4563 }
4564 
4565 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4566                                       CodeGenModule &CGM, const VarDecl *D,
4567                                       bool NoCommon) {
4568   // Don't give variables common linkage if -fno-common was specified unless it
4569   // was overridden by a NoCommon attribute.
4570   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4571     return true;
4572 
4573   // C11 6.9.2/2:
4574   //   A declaration of an identifier for an object that has file scope without
4575   //   an initializer, and without a storage-class specifier or with the
4576   //   storage-class specifier static, constitutes a tentative definition.
4577   if (D->getInit() || D->hasExternalStorage())
4578     return true;
4579 
4580   // A variable cannot be both common and exist in a section.
4581   if (D->hasAttr<SectionAttr>())
4582     return true;
4583 
4584   // A variable cannot be both common and exist in a section.
4585   // We don't try to determine which is the right section in the front-end.
4586   // If no specialized section name is applicable, it will resort to default.
4587   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4588       D->hasAttr<PragmaClangDataSectionAttr>() ||
4589       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4590       D->hasAttr<PragmaClangRodataSectionAttr>())
4591     return true;
4592 
4593   // Thread local vars aren't considered common linkage.
4594   if (D->getTLSKind())
4595     return true;
4596 
4597   // Tentative definitions marked with WeakImportAttr are true definitions.
4598   if (D->hasAttr<WeakImportAttr>())
4599     return true;
4600 
4601   // A variable cannot be both common and exist in a comdat.
4602   if (shouldBeInCOMDAT(CGM, *D))
4603     return true;
4604 
4605   // Declarations with a required alignment do not have common linkage in MSVC
4606   // mode.
4607   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4608     if (D->hasAttr<AlignedAttr>())
4609       return true;
4610     QualType VarType = D->getType();
4611     if (Context.isAlignmentRequired(VarType))
4612       return true;
4613 
4614     if (const auto *RT = VarType->getAs<RecordType>()) {
4615       const RecordDecl *RD = RT->getDecl();
4616       for (const FieldDecl *FD : RD->fields()) {
4617         if (FD->isBitField())
4618           continue;
4619         if (FD->hasAttr<AlignedAttr>())
4620           return true;
4621         if (Context.isAlignmentRequired(FD->getType()))
4622           return true;
4623       }
4624     }
4625   }
4626 
4627   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4628   // common symbols, so symbols with greater alignment requirements cannot be
4629   // common.
4630   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4631   // alignments for common symbols via the aligncomm directive, so this
4632   // restriction only applies to MSVC environments.
4633   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4634       Context.getTypeAlignIfKnown(D->getType()) >
4635           Context.toBits(CharUnits::fromQuantity(32)))
4636     return true;
4637 
4638   return false;
4639 }
4640 
4641 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4642     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4643   if (Linkage == GVA_Internal)
4644     return llvm::Function::InternalLinkage;
4645 
4646   if (D->hasAttr<WeakAttr>()) {
4647     if (IsConstantVariable)
4648       return llvm::GlobalVariable::WeakODRLinkage;
4649     else
4650       return llvm::GlobalVariable::WeakAnyLinkage;
4651   }
4652 
4653   if (const auto *FD = D->getAsFunction())
4654     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4655       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4656 
4657   // We are guaranteed to have a strong definition somewhere else,
4658   // so we can use available_externally linkage.
4659   if (Linkage == GVA_AvailableExternally)
4660     return llvm::GlobalValue::AvailableExternallyLinkage;
4661 
4662   // Note that Apple's kernel linker doesn't support symbol
4663   // coalescing, so we need to avoid linkonce and weak linkages there.
4664   // Normally, this means we just map to internal, but for explicit
4665   // instantiations we'll map to external.
4666 
4667   // In C++, the compiler has to emit a definition in every translation unit
4668   // that references the function.  We should use linkonce_odr because
4669   // a) if all references in this translation unit are optimized away, we
4670   // don't need to codegen it.  b) if the function persists, it needs to be
4671   // merged with other definitions. c) C++ has the ODR, so we know the
4672   // definition is dependable.
4673   if (Linkage == GVA_DiscardableODR)
4674     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4675                                             : llvm::Function::InternalLinkage;
4676 
4677   // An explicit instantiation of a template has weak linkage, since
4678   // explicit instantiations can occur in multiple translation units
4679   // and must all be equivalent. However, we are not allowed to
4680   // throw away these explicit instantiations.
4681   //
4682   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4683   // so say that CUDA templates are either external (for kernels) or internal.
4684   // This lets llvm perform aggressive inter-procedural optimizations. For
4685   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4686   // therefore we need to follow the normal linkage paradigm.
4687   if (Linkage == GVA_StrongODR) {
4688     if (getLangOpts().AppleKext)
4689       return llvm::Function::ExternalLinkage;
4690     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4691         !getLangOpts().GPURelocatableDeviceCode)
4692       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4693                                           : llvm::Function::InternalLinkage;
4694     return llvm::Function::WeakODRLinkage;
4695   }
4696 
4697   // C++ doesn't have tentative definitions and thus cannot have common
4698   // linkage.
4699   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4700       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4701                                  CodeGenOpts.NoCommon))
4702     return llvm::GlobalVariable::CommonLinkage;
4703 
4704   // selectany symbols are externally visible, so use weak instead of
4705   // linkonce.  MSVC optimizes away references to const selectany globals, so
4706   // all definitions should be the same and ODR linkage should be used.
4707   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4708   if (D->hasAttr<SelectAnyAttr>())
4709     return llvm::GlobalVariable::WeakODRLinkage;
4710 
4711   // Otherwise, we have strong external linkage.
4712   assert(Linkage == GVA_StrongExternal);
4713   return llvm::GlobalVariable::ExternalLinkage;
4714 }
4715 
4716 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4717     const VarDecl *VD, bool IsConstant) {
4718   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4719   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4720 }
4721 
4722 /// Replace the uses of a function that was declared with a non-proto type.
4723 /// We want to silently drop extra arguments from call sites
4724 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4725                                           llvm::Function *newFn) {
4726   // Fast path.
4727   if (old->use_empty()) return;
4728 
4729   llvm::Type *newRetTy = newFn->getReturnType();
4730   SmallVector<llvm::Value*, 4> newArgs;
4731 
4732   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4733          ui != ue; ) {
4734     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4735     llvm::User *user = use->getUser();
4736 
4737     // Recognize and replace uses of bitcasts.  Most calls to
4738     // unprototyped functions will use bitcasts.
4739     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4740       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4741         replaceUsesOfNonProtoConstant(bitcast, newFn);
4742       continue;
4743     }
4744 
4745     // Recognize calls to the function.
4746     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4747     if (!callSite) continue;
4748     if (!callSite->isCallee(&*use))
4749       continue;
4750 
4751     // If the return types don't match exactly, then we can't
4752     // transform this call unless it's dead.
4753     if (callSite->getType() != newRetTy && !callSite->use_empty())
4754       continue;
4755 
4756     // Get the call site's attribute list.
4757     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4758     llvm::AttributeList oldAttrs = callSite->getAttributes();
4759 
4760     // If the function was passed too few arguments, don't transform.
4761     unsigned newNumArgs = newFn->arg_size();
4762     if (callSite->arg_size() < newNumArgs)
4763       continue;
4764 
4765     // If extra arguments were passed, we silently drop them.
4766     // If any of the types mismatch, we don't transform.
4767     unsigned argNo = 0;
4768     bool dontTransform = false;
4769     for (llvm::Argument &A : newFn->args()) {
4770       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4771         dontTransform = true;
4772         break;
4773       }
4774 
4775       // Add any parameter attributes.
4776       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
4777       argNo++;
4778     }
4779     if (dontTransform)
4780       continue;
4781 
4782     // Okay, we can transform this.  Create the new call instruction and copy
4783     // over the required information.
4784     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4785 
4786     // Copy over any operand bundles.
4787     SmallVector<llvm::OperandBundleDef, 1> newBundles;
4788     callSite->getOperandBundlesAsDefs(newBundles);
4789 
4790     llvm::CallBase *newCall;
4791     if (dyn_cast<llvm::CallInst>(callSite)) {
4792       newCall =
4793           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4794     } else {
4795       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4796       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4797                                          oldInvoke->getUnwindDest(), newArgs,
4798                                          newBundles, "", callSite);
4799     }
4800     newArgs.clear(); // for the next iteration
4801 
4802     if (!newCall->getType()->isVoidTy())
4803       newCall->takeName(callSite);
4804     newCall->setAttributes(
4805         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
4806                                  oldAttrs.getRetAttrs(), newArgAttrs));
4807     newCall->setCallingConv(callSite->getCallingConv());
4808 
4809     // Finally, remove the old call, replacing any uses with the new one.
4810     if (!callSite->use_empty())
4811       callSite->replaceAllUsesWith(newCall);
4812 
4813     // Copy debug location attached to CI.
4814     if (callSite->getDebugLoc())
4815       newCall->setDebugLoc(callSite->getDebugLoc());
4816 
4817     callSite->eraseFromParent();
4818   }
4819 }
4820 
4821 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4822 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4823 /// existing call uses of the old function in the module, this adjusts them to
4824 /// call the new function directly.
4825 ///
4826 /// This is not just a cleanup: the always_inline pass requires direct calls to
4827 /// functions to be able to inline them.  If there is a bitcast in the way, it
4828 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4829 /// run at -O0.
4830 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4831                                                       llvm::Function *NewFn) {
4832   // If we're redefining a global as a function, don't transform it.
4833   if (!isa<llvm::Function>(Old)) return;
4834 
4835   replaceUsesOfNonProtoConstant(Old, NewFn);
4836 }
4837 
4838 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4839   auto DK = VD->isThisDeclarationADefinition();
4840   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4841     return;
4842 
4843   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4844   // If we have a definition, this might be a deferred decl. If the
4845   // instantiation is explicit, make sure we emit it at the end.
4846   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4847     GetAddrOfGlobalVar(VD);
4848 
4849   EmitTopLevelDecl(VD);
4850 }
4851 
4852 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4853                                                  llvm::GlobalValue *GV) {
4854   const auto *D = cast<FunctionDecl>(GD.getDecl());
4855 
4856   // Compute the function info and LLVM type.
4857   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4858   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4859 
4860   // Get or create the prototype for the function.
4861   if (!GV || (GV->getValueType() != Ty))
4862     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4863                                                    /*DontDefer=*/true,
4864                                                    ForDefinition));
4865 
4866   // Already emitted.
4867   if (!GV->isDeclaration())
4868     return;
4869 
4870   // We need to set linkage and visibility on the function before
4871   // generating code for it because various parts of IR generation
4872   // want to propagate this information down (e.g. to local static
4873   // declarations).
4874   auto *Fn = cast<llvm::Function>(GV);
4875   setFunctionLinkage(GD, Fn);
4876 
4877   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4878   setGVProperties(Fn, GD);
4879 
4880   MaybeHandleStaticInExternC(D, Fn);
4881 
4882   maybeSetTrivialComdat(*D, *Fn);
4883 
4884   // Set CodeGen attributes that represent floating point environment.
4885   setLLVMFunctionFEnvAttributes(D, Fn);
4886 
4887   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4888 
4889   setNonAliasAttributes(GD, Fn);
4890   SetLLVMFunctionAttributesForDefinition(D, Fn);
4891 
4892   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4893     AddGlobalCtor(Fn, CA->getPriority());
4894   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4895     AddGlobalDtor(Fn, DA->getPriority(), true);
4896   if (D->hasAttr<AnnotateAttr>())
4897     AddGlobalAnnotations(D, Fn);
4898 }
4899 
4900 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4901   const auto *D = cast<ValueDecl>(GD.getDecl());
4902   const AliasAttr *AA = D->getAttr<AliasAttr>();
4903   assert(AA && "Not an alias?");
4904 
4905   StringRef MangledName = getMangledName(GD);
4906 
4907   if (AA->getAliasee() == MangledName) {
4908     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4909     return;
4910   }
4911 
4912   // If there is a definition in the module, then it wins over the alias.
4913   // This is dubious, but allow it to be safe.  Just ignore the alias.
4914   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4915   if (Entry && !Entry->isDeclaration())
4916     return;
4917 
4918   Aliases.push_back(GD);
4919 
4920   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4921 
4922   // Create a reference to the named value.  This ensures that it is emitted
4923   // if a deferred decl.
4924   llvm::Constant *Aliasee;
4925   llvm::GlobalValue::LinkageTypes LT;
4926   if (isa<llvm::FunctionType>(DeclTy)) {
4927     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4928                                       /*ForVTable=*/false);
4929     LT = getFunctionLinkage(GD);
4930   } else {
4931     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
4932                                     /*D=*/nullptr);
4933     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4934       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4935     else
4936       LT = getFunctionLinkage(GD);
4937   }
4938 
4939   // Create the new alias itself, but don't set a name yet.
4940   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4941   auto *GA =
4942       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4943 
4944   if (Entry) {
4945     if (GA->getAliasee() == Entry) {
4946       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4947       return;
4948     }
4949 
4950     assert(Entry->isDeclaration());
4951 
4952     // If there is a declaration in the module, then we had an extern followed
4953     // by the alias, as in:
4954     //   extern int test6();
4955     //   ...
4956     //   int test6() __attribute__((alias("test7")));
4957     //
4958     // Remove it and replace uses of it with the alias.
4959     GA->takeName(Entry);
4960 
4961     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4962                                                           Entry->getType()));
4963     Entry->eraseFromParent();
4964   } else {
4965     GA->setName(MangledName);
4966   }
4967 
4968   // Set attributes which are particular to an alias; this is a
4969   // specialization of the attributes which may be set on a global
4970   // variable/function.
4971   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4972       D->isWeakImported()) {
4973     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4974   }
4975 
4976   if (const auto *VD = dyn_cast<VarDecl>(D))
4977     if (VD->getTLSKind())
4978       setTLSMode(GA, *VD);
4979 
4980   SetCommonAttributes(GD, GA);
4981 }
4982 
4983 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4984   const auto *D = cast<ValueDecl>(GD.getDecl());
4985   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4986   assert(IFA && "Not an ifunc?");
4987 
4988   StringRef MangledName = getMangledName(GD);
4989 
4990   if (IFA->getResolver() == MangledName) {
4991     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4992     return;
4993   }
4994 
4995   // Report an error if some definition overrides ifunc.
4996   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4997   if (Entry && !Entry->isDeclaration()) {
4998     GlobalDecl OtherGD;
4999     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5000         DiagnosedConflictingDefinitions.insert(GD).second) {
5001       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5002           << MangledName;
5003       Diags.Report(OtherGD.getDecl()->getLocation(),
5004                    diag::note_previous_definition);
5005     }
5006     return;
5007   }
5008 
5009   Aliases.push_back(GD);
5010 
5011   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5012   llvm::Constant *Resolver =
5013       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
5014                               /*ForVTable=*/false);
5015   llvm::GlobalIFunc *GIF =
5016       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5017                                 "", Resolver, &getModule());
5018   if (Entry) {
5019     if (GIF->getResolver() == Entry) {
5020       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5021       return;
5022     }
5023     assert(Entry->isDeclaration());
5024 
5025     // If there is a declaration in the module, then we had an extern followed
5026     // by the ifunc, as in:
5027     //   extern int test();
5028     //   ...
5029     //   int test() __attribute__((ifunc("resolver")));
5030     //
5031     // Remove it and replace uses of it with the ifunc.
5032     GIF->takeName(Entry);
5033 
5034     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5035                                                           Entry->getType()));
5036     Entry->eraseFromParent();
5037   } else
5038     GIF->setName(MangledName);
5039 
5040   SetCommonAttributes(GD, GIF);
5041 }
5042 
5043 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5044                                             ArrayRef<llvm::Type*> Tys) {
5045   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5046                                          Tys);
5047 }
5048 
5049 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5050 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5051                          const StringLiteral *Literal, bool TargetIsLSB,
5052                          bool &IsUTF16, unsigned &StringLength) {
5053   StringRef String = Literal->getString();
5054   unsigned NumBytes = String.size();
5055 
5056   // Check for simple case.
5057   if (!Literal->containsNonAsciiOrNull()) {
5058     StringLength = NumBytes;
5059     return *Map.insert(std::make_pair(String, nullptr)).first;
5060   }
5061 
5062   // Otherwise, convert the UTF8 literals into a string of shorts.
5063   IsUTF16 = true;
5064 
5065   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5066   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5067   llvm::UTF16 *ToPtr = &ToBuf[0];
5068 
5069   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5070                                  ToPtr + NumBytes, llvm::strictConversion);
5071 
5072   // ConvertUTF8toUTF16 returns the length in ToPtr.
5073   StringLength = ToPtr - &ToBuf[0];
5074 
5075   // Add an explicit null.
5076   *ToPtr = 0;
5077   return *Map.insert(std::make_pair(
5078                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5079                                    (StringLength + 1) * 2),
5080                          nullptr)).first;
5081 }
5082 
5083 ConstantAddress
5084 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5085   unsigned StringLength = 0;
5086   bool isUTF16 = false;
5087   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5088       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5089                                getDataLayout().isLittleEndian(), isUTF16,
5090                                StringLength);
5091 
5092   if (auto *C = Entry.second)
5093     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
5094 
5095   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5096   llvm::Constant *Zeros[] = { Zero, Zero };
5097 
5098   const ASTContext &Context = getContext();
5099   const llvm::Triple &Triple = getTriple();
5100 
5101   const auto CFRuntime = getLangOpts().CFRuntime;
5102   const bool IsSwiftABI =
5103       static_cast<unsigned>(CFRuntime) >=
5104       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5105   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5106 
5107   // If we don't already have it, get __CFConstantStringClassReference.
5108   if (!CFConstantStringClassRef) {
5109     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5110     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5111     Ty = llvm::ArrayType::get(Ty, 0);
5112 
5113     switch (CFRuntime) {
5114     default: break;
5115     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5116     case LangOptions::CoreFoundationABI::Swift5_0:
5117       CFConstantStringClassName =
5118           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5119                               : "$s10Foundation19_NSCFConstantStringCN";
5120       Ty = IntPtrTy;
5121       break;
5122     case LangOptions::CoreFoundationABI::Swift4_2:
5123       CFConstantStringClassName =
5124           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5125                               : "$S10Foundation19_NSCFConstantStringCN";
5126       Ty = IntPtrTy;
5127       break;
5128     case LangOptions::CoreFoundationABI::Swift4_1:
5129       CFConstantStringClassName =
5130           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5131                               : "__T010Foundation19_NSCFConstantStringCN";
5132       Ty = IntPtrTy;
5133       break;
5134     }
5135 
5136     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5137 
5138     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5139       llvm::GlobalValue *GV = nullptr;
5140 
5141       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5142         IdentifierInfo &II = Context.Idents.get(GV->getName());
5143         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5144         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5145 
5146         const VarDecl *VD = nullptr;
5147         for (const auto *Result : DC->lookup(&II))
5148           if ((VD = dyn_cast<VarDecl>(Result)))
5149             break;
5150 
5151         if (Triple.isOSBinFormatELF()) {
5152           if (!VD)
5153             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5154         } else {
5155           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5156           if (!VD || !VD->hasAttr<DLLExportAttr>())
5157             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5158           else
5159             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5160         }
5161 
5162         setDSOLocal(GV);
5163       }
5164     }
5165 
5166     // Decay array -> ptr
5167     CFConstantStringClassRef =
5168         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5169                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5170   }
5171 
5172   QualType CFTy = Context.getCFConstantStringType();
5173 
5174   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5175 
5176   ConstantInitBuilder Builder(*this);
5177   auto Fields = Builder.beginStruct(STy);
5178 
5179   // Class pointer.
5180   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5181 
5182   // Flags.
5183   if (IsSwiftABI) {
5184     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5185     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5186   } else {
5187     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5188   }
5189 
5190   // String pointer.
5191   llvm::Constant *C = nullptr;
5192   if (isUTF16) {
5193     auto Arr = llvm::makeArrayRef(
5194         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5195         Entry.first().size() / 2);
5196     C = llvm::ConstantDataArray::get(VMContext, Arr);
5197   } else {
5198     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5199   }
5200 
5201   // Note: -fwritable-strings doesn't make the backing store strings of
5202   // CFStrings writable. (See <rdar://problem/10657500>)
5203   auto *GV =
5204       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5205                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5206   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5207   // Don't enforce the target's minimum global alignment, since the only use
5208   // of the string is via this class initializer.
5209   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5210                             : Context.getTypeAlignInChars(Context.CharTy);
5211   GV->setAlignment(Align.getAsAlign());
5212 
5213   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5214   // Without it LLVM can merge the string with a non unnamed_addr one during
5215   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5216   if (Triple.isOSBinFormatMachO())
5217     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5218                            : "__TEXT,__cstring,cstring_literals");
5219   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5220   // the static linker to adjust permissions to read-only later on.
5221   else if (Triple.isOSBinFormatELF())
5222     GV->setSection(".rodata");
5223 
5224   // String.
5225   llvm::Constant *Str =
5226       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5227 
5228   if (isUTF16)
5229     // Cast the UTF16 string to the correct type.
5230     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5231   Fields.add(Str);
5232 
5233   // String length.
5234   llvm::IntegerType *LengthTy =
5235       llvm::IntegerType::get(getModule().getContext(),
5236                              Context.getTargetInfo().getLongWidth());
5237   if (IsSwiftABI) {
5238     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5239         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5240       LengthTy = Int32Ty;
5241     else
5242       LengthTy = IntPtrTy;
5243   }
5244   Fields.addInt(LengthTy, StringLength);
5245 
5246   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5247   // properly aligned on 32-bit platforms.
5248   CharUnits Alignment =
5249       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5250 
5251   // The struct.
5252   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5253                                     /*isConstant=*/false,
5254                                     llvm::GlobalVariable::PrivateLinkage);
5255   GV->addAttribute("objc_arc_inert");
5256   switch (Triple.getObjectFormat()) {
5257   case llvm::Triple::UnknownObjectFormat:
5258     llvm_unreachable("unknown file format");
5259   case llvm::Triple::GOFF:
5260     llvm_unreachable("GOFF is not yet implemented");
5261   case llvm::Triple::XCOFF:
5262     llvm_unreachable("XCOFF is not yet implemented");
5263   case llvm::Triple::COFF:
5264   case llvm::Triple::ELF:
5265   case llvm::Triple::Wasm:
5266     GV->setSection("cfstring");
5267     break;
5268   case llvm::Triple::MachO:
5269     GV->setSection("__DATA,__cfstring");
5270     break;
5271   }
5272   Entry.second = GV;
5273 
5274   return ConstantAddress(GV, Alignment);
5275 }
5276 
5277 bool CodeGenModule::getExpressionLocationsEnabled() const {
5278   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5279 }
5280 
5281 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5282   if (ObjCFastEnumerationStateType.isNull()) {
5283     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5284     D->startDefinition();
5285 
5286     QualType FieldTypes[] = {
5287       Context.UnsignedLongTy,
5288       Context.getPointerType(Context.getObjCIdType()),
5289       Context.getPointerType(Context.UnsignedLongTy),
5290       Context.getConstantArrayType(Context.UnsignedLongTy,
5291                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5292     };
5293 
5294     for (size_t i = 0; i < 4; ++i) {
5295       FieldDecl *Field = FieldDecl::Create(Context,
5296                                            D,
5297                                            SourceLocation(),
5298                                            SourceLocation(), nullptr,
5299                                            FieldTypes[i], /*TInfo=*/nullptr,
5300                                            /*BitWidth=*/nullptr,
5301                                            /*Mutable=*/false,
5302                                            ICIS_NoInit);
5303       Field->setAccess(AS_public);
5304       D->addDecl(Field);
5305     }
5306 
5307     D->completeDefinition();
5308     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5309   }
5310 
5311   return ObjCFastEnumerationStateType;
5312 }
5313 
5314 llvm::Constant *
5315 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5316   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5317 
5318   // Don't emit it as the address of the string, emit the string data itself
5319   // as an inline array.
5320   if (E->getCharByteWidth() == 1) {
5321     SmallString<64> Str(E->getString());
5322 
5323     // Resize the string to the right size, which is indicated by its type.
5324     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5325     Str.resize(CAT->getSize().getZExtValue());
5326     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5327   }
5328 
5329   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5330   llvm::Type *ElemTy = AType->getElementType();
5331   unsigned NumElements = AType->getNumElements();
5332 
5333   // Wide strings have either 2-byte or 4-byte elements.
5334   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5335     SmallVector<uint16_t, 32> Elements;
5336     Elements.reserve(NumElements);
5337 
5338     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5339       Elements.push_back(E->getCodeUnit(i));
5340     Elements.resize(NumElements);
5341     return llvm::ConstantDataArray::get(VMContext, Elements);
5342   }
5343 
5344   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5345   SmallVector<uint32_t, 32> Elements;
5346   Elements.reserve(NumElements);
5347 
5348   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5349     Elements.push_back(E->getCodeUnit(i));
5350   Elements.resize(NumElements);
5351   return llvm::ConstantDataArray::get(VMContext, Elements);
5352 }
5353 
5354 static llvm::GlobalVariable *
5355 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5356                       CodeGenModule &CGM, StringRef GlobalName,
5357                       CharUnits Alignment) {
5358   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5359       CGM.GetGlobalConstantAddressSpace());
5360 
5361   llvm::Module &M = CGM.getModule();
5362   // Create a global variable for this string
5363   auto *GV = new llvm::GlobalVariable(
5364       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5365       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5366   GV->setAlignment(Alignment.getAsAlign());
5367   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5368   if (GV->isWeakForLinker()) {
5369     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5370     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5371   }
5372   CGM.setDSOLocal(GV);
5373 
5374   return GV;
5375 }
5376 
5377 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5378 /// constant array for the given string literal.
5379 ConstantAddress
5380 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5381                                                   StringRef Name) {
5382   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5383 
5384   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5385   llvm::GlobalVariable **Entry = nullptr;
5386   if (!LangOpts.WritableStrings) {
5387     Entry = &ConstantStringMap[C];
5388     if (auto GV = *Entry) {
5389       if (Alignment.getQuantity() > GV->getAlignment())
5390         GV->setAlignment(Alignment.getAsAlign());
5391       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5392                              Alignment);
5393     }
5394   }
5395 
5396   SmallString<256> MangledNameBuffer;
5397   StringRef GlobalVariableName;
5398   llvm::GlobalValue::LinkageTypes LT;
5399 
5400   // Mangle the string literal if that's how the ABI merges duplicate strings.
5401   // Don't do it if they are writable, since we don't want writes in one TU to
5402   // affect strings in another.
5403   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5404       !LangOpts.WritableStrings) {
5405     llvm::raw_svector_ostream Out(MangledNameBuffer);
5406     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5407     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5408     GlobalVariableName = MangledNameBuffer;
5409   } else {
5410     LT = llvm::GlobalValue::PrivateLinkage;
5411     GlobalVariableName = Name;
5412   }
5413 
5414   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5415   if (Entry)
5416     *Entry = GV;
5417 
5418   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5419                                   QualType());
5420 
5421   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5422                          Alignment);
5423 }
5424 
5425 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5426 /// array for the given ObjCEncodeExpr node.
5427 ConstantAddress
5428 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5429   std::string Str;
5430   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5431 
5432   return GetAddrOfConstantCString(Str);
5433 }
5434 
5435 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5436 /// the literal and a terminating '\0' character.
5437 /// The result has pointer to array type.
5438 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5439     const std::string &Str, const char *GlobalName) {
5440   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5441   CharUnits Alignment =
5442     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5443 
5444   llvm::Constant *C =
5445       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5446 
5447   // Don't share any string literals if strings aren't constant.
5448   llvm::GlobalVariable **Entry = nullptr;
5449   if (!LangOpts.WritableStrings) {
5450     Entry = &ConstantStringMap[C];
5451     if (auto GV = *Entry) {
5452       if (Alignment.getQuantity() > GV->getAlignment())
5453         GV->setAlignment(Alignment.getAsAlign());
5454       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5455                              Alignment);
5456     }
5457   }
5458 
5459   // Get the default prefix if a name wasn't specified.
5460   if (!GlobalName)
5461     GlobalName = ".str";
5462   // Create a global variable for this.
5463   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5464                                   GlobalName, Alignment);
5465   if (Entry)
5466     *Entry = GV;
5467 
5468   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5469                          Alignment);
5470 }
5471 
5472 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5473     const MaterializeTemporaryExpr *E, const Expr *Init) {
5474   assert((E->getStorageDuration() == SD_Static ||
5475           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5476   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5477 
5478   // If we're not materializing a subobject of the temporary, keep the
5479   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5480   QualType MaterializedType = Init->getType();
5481   if (Init == E->getSubExpr())
5482     MaterializedType = E->getType();
5483 
5484   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5485 
5486   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5487   if (!InsertResult.second) {
5488     // We've seen this before: either we already created it or we're in the
5489     // process of doing so.
5490     if (!InsertResult.first->second) {
5491       // We recursively re-entered this function, probably during emission of
5492       // the initializer. Create a placeholder. We'll clean this up in the
5493       // outer call, at the end of this function.
5494       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5495       InsertResult.first->second = new llvm::GlobalVariable(
5496           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5497           nullptr);
5498     }
5499     return ConstantAddress(InsertResult.first->second, Align);
5500   }
5501 
5502   // FIXME: If an externally-visible declaration extends multiple temporaries,
5503   // we need to give each temporary the same name in every translation unit (and
5504   // we also need to make the temporaries externally-visible).
5505   SmallString<256> Name;
5506   llvm::raw_svector_ostream Out(Name);
5507   getCXXABI().getMangleContext().mangleReferenceTemporary(
5508       VD, E->getManglingNumber(), Out);
5509 
5510   APValue *Value = nullptr;
5511   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5512     // If the initializer of the extending declaration is a constant
5513     // initializer, we should have a cached constant initializer for this
5514     // temporary. Note that this might have a different value from the value
5515     // computed by evaluating the initializer if the surrounding constant
5516     // expression modifies the temporary.
5517     Value = E->getOrCreateValue(false);
5518   }
5519 
5520   // Try evaluating it now, it might have a constant initializer.
5521   Expr::EvalResult EvalResult;
5522   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5523       !EvalResult.hasSideEffects())
5524     Value = &EvalResult.Val;
5525 
5526   LangAS AddrSpace =
5527       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5528 
5529   Optional<ConstantEmitter> emitter;
5530   llvm::Constant *InitialValue = nullptr;
5531   bool Constant = false;
5532   llvm::Type *Type;
5533   if (Value) {
5534     // The temporary has a constant initializer, use it.
5535     emitter.emplace(*this);
5536     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5537                                                MaterializedType);
5538     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5539     Type = InitialValue->getType();
5540   } else {
5541     // No initializer, the initialization will be provided when we
5542     // initialize the declaration which performed lifetime extension.
5543     Type = getTypes().ConvertTypeForMem(MaterializedType);
5544   }
5545 
5546   // Create a global variable for this lifetime-extended temporary.
5547   llvm::GlobalValue::LinkageTypes Linkage =
5548       getLLVMLinkageVarDefinition(VD, Constant);
5549   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5550     const VarDecl *InitVD;
5551     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5552         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5553       // Temporaries defined inside a class get linkonce_odr linkage because the
5554       // class can be defined in multiple translation units.
5555       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5556     } else {
5557       // There is no need for this temporary to have external linkage if the
5558       // VarDecl has external linkage.
5559       Linkage = llvm::GlobalVariable::InternalLinkage;
5560     }
5561   }
5562   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5563   auto *GV = new llvm::GlobalVariable(
5564       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5565       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5566   if (emitter) emitter->finalize(GV);
5567   setGVProperties(GV, VD);
5568   GV->setAlignment(Align.getAsAlign());
5569   if (supportsCOMDAT() && GV->isWeakForLinker())
5570     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5571   if (VD->getTLSKind())
5572     setTLSMode(GV, *VD);
5573   llvm::Constant *CV = GV;
5574   if (AddrSpace != LangAS::Default)
5575     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5576         *this, GV, AddrSpace, LangAS::Default,
5577         Type->getPointerTo(
5578             getContext().getTargetAddressSpace(LangAS::Default)));
5579 
5580   // Update the map with the new temporary. If we created a placeholder above,
5581   // replace it with the new global now.
5582   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5583   if (Entry) {
5584     Entry->replaceAllUsesWith(
5585         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5586     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5587   }
5588   Entry = CV;
5589 
5590   return ConstantAddress(CV, Align);
5591 }
5592 
5593 /// EmitObjCPropertyImplementations - Emit information for synthesized
5594 /// properties for an implementation.
5595 void CodeGenModule::EmitObjCPropertyImplementations(const
5596                                                     ObjCImplementationDecl *D) {
5597   for (const auto *PID : D->property_impls()) {
5598     // Dynamic is just for type-checking.
5599     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5600       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5601 
5602       // Determine which methods need to be implemented, some may have
5603       // been overridden. Note that ::isPropertyAccessor is not the method
5604       // we want, that just indicates if the decl came from a
5605       // property. What we want to know is if the method is defined in
5606       // this implementation.
5607       auto *Getter = PID->getGetterMethodDecl();
5608       if (!Getter || Getter->isSynthesizedAccessorStub())
5609         CodeGenFunction(*this).GenerateObjCGetter(
5610             const_cast<ObjCImplementationDecl *>(D), PID);
5611       auto *Setter = PID->getSetterMethodDecl();
5612       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5613         CodeGenFunction(*this).GenerateObjCSetter(
5614                                  const_cast<ObjCImplementationDecl *>(D), PID);
5615     }
5616   }
5617 }
5618 
5619 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5620   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5621   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5622        ivar; ivar = ivar->getNextIvar())
5623     if (ivar->getType().isDestructedType())
5624       return true;
5625 
5626   return false;
5627 }
5628 
5629 static bool AllTrivialInitializers(CodeGenModule &CGM,
5630                                    ObjCImplementationDecl *D) {
5631   CodeGenFunction CGF(CGM);
5632   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5633        E = D->init_end(); B != E; ++B) {
5634     CXXCtorInitializer *CtorInitExp = *B;
5635     Expr *Init = CtorInitExp->getInit();
5636     if (!CGF.isTrivialInitializer(Init))
5637       return false;
5638   }
5639   return true;
5640 }
5641 
5642 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5643 /// for an implementation.
5644 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5645   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5646   if (needsDestructMethod(D)) {
5647     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5648     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5649     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5650         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5651         getContext().VoidTy, nullptr, D,
5652         /*isInstance=*/true, /*isVariadic=*/false,
5653         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5654         /*isImplicitlyDeclared=*/true,
5655         /*isDefined=*/false, ObjCMethodDecl::Required);
5656     D->addInstanceMethod(DTORMethod);
5657     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5658     D->setHasDestructors(true);
5659   }
5660 
5661   // If the implementation doesn't have any ivar initializers, we don't need
5662   // a .cxx_construct.
5663   if (D->getNumIvarInitializers() == 0 ||
5664       AllTrivialInitializers(*this, D))
5665     return;
5666 
5667   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5668   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5669   // The constructor returns 'self'.
5670   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5671       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5672       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5673       /*isVariadic=*/false,
5674       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5675       /*isImplicitlyDeclared=*/true,
5676       /*isDefined=*/false, ObjCMethodDecl::Required);
5677   D->addInstanceMethod(CTORMethod);
5678   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5679   D->setHasNonZeroConstructors(true);
5680 }
5681 
5682 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5683 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5684   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5685       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5686     ErrorUnsupported(LSD, "linkage spec");
5687     return;
5688   }
5689 
5690   EmitDeclContext(LSD);
5691 }
5692 
5693 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5694   for (auto *I : DC->decls()) {
5695     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5696     // are themselves considered "top-level", so EmitTopLevelDecl on an
5697     // ObjCImplDecl does not recursively visit them. We need to do that in
5698     // case they're nested inside another construct (LinkageSpecDecl /
5699     // ExportDecl) that does stop them from being considered "top-level".
5700     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5701       for (auto *M : OID->methods())
5702         EmitTopLevelDecl(M);
5703     }
5704 
5705     EmitTopLevelDecl(I);
5706   }
5707 }
5708 
5709 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5710 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5711   // Ignore dependent declarations.
5712   if (D->isTemplated())
5713     return;
5714 
5715   // Consteval function shouldn't be emitted.
5716   if (auto *FD = dyn_cast<FunctionDecl>(D))
5717     if (FD->isConsteval())
5718       return;
5719 
5720   switch (D->getKind()) {
5721   case Decl::CXXConversion:
5722   case Decl::CXXMethod:
5723   case Decl::Function:
5724     EmitGlobal(cast<FunctionDecl>(D));
5725     // Always provide some coverage mapping
5726     // even for the functions that aren't emitted.
5727     AddDeferredUnusedCoverageMapping(D);
5728     break;
5729 
5730   case Decl::CXXDeductionGuide:
5731     // Function-like, but does not result in code emission.
5732     break;
5733 
5734   case Decl::Var:
5735   case Decl::Decomposition:
5736   case Decl::VarTemplateSpecialization:
5737     EmitGlobal(cast<VarDecl>(D));
5738     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5739       for (auto *B : DD->bindings())
5740         if (auto *HD = B->getHoldingVar())
5741           EmitGlobal(HD);
5742     break;
5743 
5744   // Indirect fields from global anonymous structs and unions can be
5745   // ignored; only the actual variable requires IR gen support.
5746   case Decl::IndirectField:
5747     break;
5748 
5749   // C++ Decls
5750   case Decl::Namespace:
5751     EmitDeclContext(cast<NamespaceDecl>(D));
5752     break;
5753   case Decl::ClassTemplateSpecialization: {
5754     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5755     if (CGDebugInfo *DI = getModuleDebugInfo())
5756       if (Spec->getSpecializationKind() ==
5757               TSK_ExplicitInstantiationDefinition &&
5758           Spec->hasDefinition())
5759         DI->completeTemplateDefinition(*Spec);
5760   } LLVM_FALLTHROUGH;
5761   case Decl::CXXRecord: {
5762     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5763     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5764       if (CRD->hasDefinition())
5765         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5766       if (auto *ES = D->getASTContext().getExternalSource())
5767         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5768           DI->completeUnusedClass(*CRD);
5769     }
5770     // Emit any static data members, they may be definitions.
5771     for (auto *I : CRD->decls())
5772       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5773         EmitTopLevelDecl(I);
5774     break;
5775   }
5776     // No code generation needed.
5777   case Decl::UsingShadow:
5778   case Decl::ClassTemplate:
5779   case Decl::VarTemplate:
5780   case Decl::Concept:
5781   case Decl::VarTemplatePartialSpecialization:
5782   case Decl::FunctionTemplate:
5783   case Decl::TypeAliasTemplate:
5784   case Decl::Block:
5785   case Decl::Empty:
5786   case Decl::Binding:
5787     break;
5788   case Decl::Using:          // using X; [C++]
5789     if (CGDebugInfo *DI = getModuleDebugInfo())
5790         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5791     break;
5792   case Decl::UsingEnum: // using enum X; [C++]
5793     if (CGDebugInfo *DI = getModuleDebugInfo())
5794       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
5795     break;
5796   case Decl::NamespaceAlias:
5797     if (CGDebugInfo *DI = getModuleDebugInfo())
5798         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5799     break;
5800   case Decl::UsingDirective: // using namespace X; [C++]
5801     if (CGDebugInfo *DI = getModuleDebugInfo())
5802       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5803     break;
5804   case Decl::CXXConstructor:
5805     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5806     break;
5807   case Decl::CXXDestructor:
5808     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5809     break;
5810 
5811   case Decl::StaticAssert:
5812     // Nothing to do.
5813     break;
5814 
5815   // Objective-C Decls
5816 
5817   // Forward declarations, no (immediate) code generation.
5818   case Decl::ObjCInterface:
5819   case Decl::ObjCCategory:
5820     break;
5821 
5822   case Decl::ObjCProtocol: {
5823     auto *Proto = cast<ObjCProtocolDecl>(D);
5824     if (Proto->isThisDeclarationADefinition())
5825       ObjCRuntime->GenerateProtocol(Proto);
5826     break;
5827   }
5828 
5829   case Decl::ObjCCategoryImpl:
5830     // Categories have properties but don't support synthesize so we
5831     // can ignore them here.
5832     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5833     break;
5834 
5835   case Decl::ObjCImplementation: {
5836     auto *OMD = cast<ObjCImplementationDecl>(D);
5837     EmitObjCPropertyImplementations(OMD);
5838     EmitObjCIvarInitializations(OMD);
5839     ObjCRuntime->GenerateClass(OMD);
5840     // Emit global variable debug information.
5841     if (CGDebugInfo *DI = getModuleDebugInfo())
5842       if (getCodeGenOpts().hasReducedDebugInfo())
5843         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5844             OMD->getClassInterface()), OMD->getLocation());
5845     break;
5846   }
5847   case Decl::ObjCMethod: {
5848     auto *OMD = cast<ObjCMethodDecl>(D);
5849     // If this is not a prototype, emit the body.
5850     if (OMD->getBody())
5851       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5852     break;
5853   }
5854   case Decl::ObjCCompatibleAlias:
5855     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5856     break;
5857 
5858   case Decl::PragmaComment: {
5859     const auto *PCD = cast<PragmaCommentDecl>(D);
5860     switch (PCD->getCommentKind()) {
5861     case PCK_Unknown:
5862       llvm_unreachable("unexpected pragma comment kind");
5863     case PCK_Linker:
5864       AppendLinkerOptions(PCD->getArg());
5865       break;
5866     case PCK_Lib:
5867         AddDependentLib(PCD->getArg());
5868       break;
5869     case PCK_Compiler:
5870     case PCK_ExeStr:
5871     case PCK_User:
5872       break; // We ignore all of these.
5873     }
5874     break;
5875   }
5876 
5877   case Decl::PragmaDetectMismatch: {
5878     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5879     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5880     break;
5881   }
5882 
5883   case Decl::LinkageSpec:
5884     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5885     break;
5886 
5887   case Decl::FileScopeAsm: {
5888     // File-scope asm is ignored during device-side CUDA compilation.
5889     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5890       break;
5891     // File-scope asm is ignored during device-side OpenMP compilation.
5892     if (LangOpts.OpenMPIsDevice)
5893       break;
5894     // File-scope asm is ignored during device-side SYCL compilation.
5895     if (LangOpts.SYCLIsDevice)
5896       break;
5897     auto *AD = cast<FileScopeAsmDecl>(D);
5898     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5899     break;
5900   }
5901 
5902   case Decl::Import: {
5903     auto *Import = cast<ImportDecl>(D);
5904 
5905     // If we've already imported this module, we're done.
5906     if (!ImportedModules.insert(Import->getImportedModule()))
5907       break;
5908 
5909     // Emit debug information for direct imports.
5910     if (!Import->getImportedOwningModule()) {
5911       if (CGDebugInfo *DI = getModuleDebugInfo())
5912         DI->EmitImportDecl(*Import);
5913     }
5914 
5915     // Find all of the submodules and emit the module initializers.
5916     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5917     SmallVector<clang::Module *, 16> Stack;
5918     Visited.insert(Import->getImportedModule());
5919     Stack.push_back(Import->getImportedModule());
5920 
5921     while (!Stack.empty()) {
5922       clang::Module *Mod = Stack.pop_back_val();
5923       if (!EmittedModuleInitializers.insert(Mod).second)
5924         continue;
5925 
5926       for (auto *D : Context.getModuleInitializers(Mod))
5927         EmitTopLevelDecl(D);
5928 
5929       // Visit the submodules of this module.
5930       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5931                                              SubEnd = Mod->submodule_end();
5932            Sub != SubEnd; ++Sub) {
5933         // Skip explicit children; they need to be explicitly imported to emit
5934         // the initializers.
5935         if ((*Sub)->IsExplicit)
5936           continue;
5937 
5938         if (Visited.insert(*Sub).second)
5939           Stack.push_back(*Sub);
5940       }
5941     }
5942     break;
5943   }
5944 
5945   case Decl::Export:
5946     EmitDeclContext(cast<ExportDecl>(D));
5947     break;
5948 
5949   case Decl::OMPThreadPrivate:
5950     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5951     break;
5952 
5953   case Decl::OMPAllocate:
5954     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
5955     break;
5956 
5957   case Decl::OMPDeclareReduction:
5958     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5959     break;
5960 
5961   case Decl::OMPDeclareMapper:
5962     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5963     break;
5964 
5965   case Decl::OMPRequires:
5966     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5967     break;
5968 
5969   case Decl::Typedef:
5970   case Decl::TypeAlias: // using foo = bar; [C++11]
5971     if (CGDebugInfo *DI = getModuleDebugInfo())
5972       DI->EmitAndRetainType(
5973           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5974     break;
5975 
5976   case Decl::Record:
5977     if (CGDebugInfo *DI = getModuleDebugInfo())
5978       if (cast<RecordDecl>(D)->getDefinition())
5979         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5980     break;
5981 
5982   case Decl::Enum:
5983     if (CGDebugInfo *DI = getModuleDebugInfo())
5984       if (cast<EnumDecl>(D)->getDefinition())
5985         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5986     break;
5987 
5988   default:
5989     // Make sure we handled everything we should, every other kind is a
5990     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5991     // function. Need to recode Decl::Kind to do that easily.
5992     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5993     break;
5994   }
5995 }
5996 
5997 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5998   // Do we need to generate coverage mapping?
5999   if (!CodeGenOpts.CoverageMapping)
6000     return;
6001   switch (D->getKind()) {
6002   case Decl::CXXConversion:
6003   case Decl::CXXMethod:
6004   case Decl::Function:
6005   case Decl::ObjCMethod:
6006   case Decl::CXXConstructor:
6007   case Decl::CXXDestructor: {
6008     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6009       break;
6010     SourceManager &SM = getContext().getSourceManager();
6011     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6012       break;
6013     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6014     if (I == DeferredEmptyCoverageMappingDecls.end())
6015       DeferredEmptyCoverageMappingDecls[D] = true;
6016     break;
6017   }
6018   default:
6019     break;
6020   };
6021 }
6022 
6023 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6024   // Do we need to generate coverage mapping?
6025   if (!CodeGenOpts.CoverageMapping)
6026     return;
6027   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6028     if (Fn->isTemplateInstantiation())
6029       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6030   }
6031   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6032   if (I == DeferredEmptyCoverageMappingDecls.end())
6033     DeferredEmptyCoverageMappingDecls[D] = false;
6034   else
6035     I->second = false;
6036 }
6037 
6038 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6039   // We call takeVector() here to avoid use-after-free.
6040   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6041   // we deserialize function bodies to emit coverage info for them, and that
6042   // deserializes more declarations. How should we handle that case?
6043   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6044     if (!Entry.second)
6045       continue;
6046     const Decl *D = Entry.first;
6047     switch (D->getKind()) {
6048     case Decl::CXXConversion:
6049     case Decl::CXXMethod:
6050     case Decl::Function:
6051     case Decl::ObjCMethod: {
6052       CodeGenPGO PGO(*this);
6053       GlobalDecl GD(cast<FunctionDecl>(D));
6054       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6055                                   getFunctionLinkage(GD));
6056       break;
6057     }
6058     case Decl::CXXConstructor: {
6059       CodeGenPGO PGO(*this);
6060       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6061       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6062                                   getFunctionLinkage(GD));
6063       break;
6064     }
6065     case Decl::CXXDestructor: {
6066       CodeGenPGO PGO(*this);
6067       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6068       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6069                                   getFunctionLinkage(GD));
6070       break;
6071     }
6072     default:
6073       break;
6074     };
6075   }
6076 }
6077 
6078 void CodeGenModule::EmitMainVoidAlias() {
6079   // In order to transition away from "__original_main" gracefully, emit an
6080   // alias for "main" in the no-argument case so that libc can detect when
6081   // new-style no-argument main is in used.
6082   if (llvm::Function *F = getModule().getFunction("main")) {
6083     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6084         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
6085       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
6086   }
6087 }
6088 
6089 /// Turns the given pointer into a constant.
6090 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6091                                           const void *Ptr) {
6092   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6093   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6094   return llvm::ConstantInt::get(i64, PtrInt);
6095 }
6096 
6097 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6098                                    llvm::NamedMDNode *&GlobalMetadata,
6099                                    GlobalDecl D,
6100                                    llvm::GlobalValue *Addr) {
6101   if (!GlobalMetadata)
6102     GlobalMetadata =
6103       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6104 
6105   // TODO: should we report variant information for ctors/dtors?
6106   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6107                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6108                                CGM.getLLVMContext(), D.getDecl()))};
6109   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6110 }
6111 
6112 /// For each function which is declared within an extern "C" region and marked
6113 /// as 'used', but has internal linkage, create an alias from the unmangled
6114 /// name to the mangled name if possible. People expect to be able to refer
6115 /// to such functions with an unmangled name from inline assembly within the
6116 /// same translation unit.
6117 void CodeGenModule::EmitStaticExternCAliases() {
6118   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6119     return;
6120   for (auto &I : StaticExternCValues) {
6121     IdentifierInfo *Name = I.first;
6122     llvm::GlobalValue *Val = I.second;
6123     if (Val && !getModule().getNamedValue(Name->getName()))
6124       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6125   }
6126 }
6127 
6128 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6129                                              GlobalDecl &Result) const {
6130   auto Res = Manglings.find(MangledName);
6131   if (Res == Manglings.end())
6132     return false;
6133   Result = Res->getValue();
6134   return true;
6135 }
6136 
6137 /// Emits metadata nodes associating all the global values in the
6138 /// current module with the Decls they came from.  This is useful for
6139 /// projects using IR gen as a subroutine.
6140 ///
6141 /// Since there's currently no way to associate an MDNode directly
6142 /// with an llvm::GlobalValue, we create a global named metadata
6143 /// with the name 'clang.global.decl.ptrs'.
6144 void CodeGenModule::EmitDeclMetadata() {
6145   llvm::NamedMDNode *GlobalMetadata = nullptr;
6146 
6147   for (auto &I : MangledDeclNames) {
6148     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6149     // Some mangled names don't necessarily have an associated GlobalValue
6150     // in this module, e.g. if we mangled it for DebugInfo.
6151     if (Addr)
6152       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6153   }
6154 }
6155 
6156 /// Emits metadata nodes for all the local variables in the current
6157 /// function.
6158 void CodeGenFunction::EmitDeclMetadata() {
6159   if (LocalDeclMap.empty()) return;
6160 
6161   llvm::LLVMContext &Context = getLLVMContext();
6162 
6163   // Find the unique metadata ID for this name.
6164   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6165 
6166   llvm::NamedMDNode *GlobalMetadata = nullptr;
6167 
6168   for (auto &I : LocalDeclMap) {
6169     const Decl *D = I.first;
6170     llvm::Value *Addr = I.second.getPointer();
6171     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6172       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6173       Alloca->setMetadata(
6174           DeclPtrKind, llvm::MDNode::get(
6175                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6176     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6177       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6178       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6179     }
6180   }
6181 }
6182 
6183 void CodeGenModule::EmitVersionIdentMetadata() {
6184   llvm::NamedMDNode *IdentMetadata =
6185     TheModule.getOrInsertNamedMetadata("llvm.ident");
6186   std::string Version = getClangFullVersion();
6187   llvm::LLVMContext &Ctx = TheModule.getContext();
6188 
6189   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6190   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6191 }
6192 
6193 void CodeGenModule::EmitCommandLineMetadata() {
6194   llvm::NamedMDNode *CommandLineMetadata =
6195     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6196   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6197   llvm::LLVMContext &Ctx = TheModule.getContext();
6198 
6199   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6200   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6201 }
6202 
6203 void CodeGenModule::EmitCoverageFile() {
6204   if (getCodeGenOpts().CoverageDataFile.empty() &&
6205       getCodeGenOpts().CoverageNotesFile.empty())
6206     return;
6207 
6208   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6209   if (!CUNode)
6210     return;
6211 
6212   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6213   llvm::LLVMContext &Ctx = TheModule.getContext();
6214   auto *CoverageDataFile =
6215       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6216   auto *CoverageNotesFile =
6217       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6218   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6219     llvm::MDNode *CU = CUNode->getOperand(i);
6220     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6221     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6222   }
6223 }
6224 
6225 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6226                                                        bool ForEH) {
6227   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6228   // FIXME: should we even be calling this method if RTTI is disabled
6229   // and it's not for EH?
6230   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6231       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6232        getTriple().isNVPTX()))
6233     return llvm::Constant::getNullValue(Int8PtrTy);
6234 
6235   if (ForEH && Ty->isObjCObjectPointerType() &&
6236       LangOpts.ObjCRuntime.isGNUFamily())
6237     return ObjCRuntime->GetEHType(Ty);
6238 
6239   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6240 }
6241 
6242 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6243   // Do not emit threadprivates in simd-only mode.
6244   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6245     return;
6246   for (auto RefExpr : D->varlists()) {
6247     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6248     bool PerformInit =
6249         VD->getAnyInitializer() &&
6250         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6251                                                         /*ForRef=*/false);
6252 
6253     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6254     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6255             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6256       CXXGlobalInits.push_back(InitFunction);
6257   }
6258 }
6259 
6260 llvm::Metadata *
6261 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6262                                             StringRef Suffix) {
6263   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6264   if (InternalId)
6265     return InternalId;
6266 
6267   if (isExternallyVisible(T->getLinkage())) {
6268     std::string OutName;
6269     llvm::raw_string_ostream Out(OutName);
6270     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6271     Out << Suffix;
6272 
6273     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6274   } else {
6275     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6276                                            llvm::ArrayRef<llvm::Metadata *>());
6277   }
6278 
6279   return InternalId;
6280 }
6281 
6282 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6283   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6284 }
6285 
6286 llvm::Metadata *
6287 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6288   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6289 }
6290 
6291 // Generalize pointer types to a void pointer with the qualifiers of the
6292 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6293 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6294 // 'void *'.
6295 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6296   if (!Ty->isPointerType())
6297     return Ty;
6298 
6299   return Ctx.getPointerType(
6300       QualType(Ctx.VoidTy).withCVRQualifiers(
6301           Ty->getPointeeType().getCVRQualifiers()));
6302 }
6303 
6304 // Apply type generalization to a FunctionType's return and argument types
6305 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6306   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6307     SmallVector<QualType, 8> GeneralizedParams;
6308     for (auto &Param : FnType->param_types())
6309       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6310 
6311     return Ctx.getFunctionType(
6312         GeneralizeType(Ctx, FnType->getReturnType()),
6313         GeneralizedParams, FnType->getExtProtoInfo());
6314   }
6315 
6316   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6317     return Ctx.getFunctionNoProtoType(
6318         GeneralizeType(Ctx, FnType->getReturnType()));
6319 
6320   llvm_unreachable("Encountered unknown FunctionType");
6321 }
6322 
6323 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6324   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6325                                       GeneralizedMetadataIdMap, ".generalized");
6326 }
6327 
6328 /// Returns whether this module needs the "all-vtables" type identifier.
6329 bool CodeGenModule::NeedAllVtablesTypeId() const {
6330   // Returns true if at least one of vtable-based CFI checkers is enabled and
6331   // is not in the trapping mode.
6332   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6333            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6334           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6335            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6336           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6337            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6338           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6339            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6340 }
6341 
6342 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6343                                           CharUnits Offset,
6344                                           const CXXRecordDecl *RD) {
6345   llvm::Metadata *MD =
6346       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6347   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6348 
6349   if (CodeGenOpts.SanitizeCfiCrossDso)
6350     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6351       VTable->addTypeMetadata(Offset.getQuantity(),
6352                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6353 
6354   if (NeedAllVtablesTypeId()) {
6355     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6356     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6357   }
6358 }
6359 
6360 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6361   if (!SanStats)
6362     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6363 
6364   return *SanStats;
6365 }
6366 
6367 llvm::Value *
6368 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6369                                                   CodeGenFunction &CGF) {
6370   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6371   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6372   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6373   auto *Call = CGF.EmitRuntimeCall(
6374       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6375   return Call;
6376 }
6377 
6378 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6379     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6380   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6381                                  /* forPointeeType= */ true);
6382 }
6383 
6384 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6385                                                  LValueBaseInfo *BaseInfo,
6386                                                  TBAAAccessInfo *TBAAInfo,
6387                                                  bool forPointeeType) {
6388   if (TBAAInfo)
6389     *TBAAInfo = getTBAAAccessInfo(T);
6390 
6391   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6392   // that doesn't return the information we need to compute BaseInfo.
6393 
6394   // Honor alignment typedef attributes even on incomplete types.
6395   // We also honor them straight for C++ class types, even as pointees;
6396   // there's an expressivity gap here.
6397   if (auto TT = T->getAs<TypedefType>()) {
6398     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6399       if (BaseInfo)
6400         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6401       return getContext().toCharUnitsFromBits(Align);
6402     }
6403   }
6404 
6405   bool AlignForArray = T->isArrayType();
6406 
6407   // Analyze the base element type, so we don't get confused by incomplete
6408   // array types.
6409   T = getContext().getBaseElementType(T);
6410 
6411   if (T->isIncompleteType()) {
6412     // We could try to replicate the logic from
6413     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6414     // type is incomplete, so it's impossible to test. We could try to reuse
6415     // getTypeAlignIfKnown, but that doesn't return the information we need
6416     // to set BaseInfo.  So just ignore the possibility that the alignment is
6417     // greater than one.
6418     if (BaseInfo)
6419       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6420     return CharUnits::One();
6421   }
6422 
6423   if (BaseInfo)
6424     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6425 
6426   CharUnits Alignment;
6427   const CXXRecordDecl *RD;
6428   if (T.getQualifiers().hasUnaligned()) {
6429     Alignment = CharUnits::One();
6430   } else if (forPointeeType && !AlignForArray &&
6431              (RD = T->getAsCXXRecordDecl())) {
6432     // For C++ class pointees, we don't know whether we're pointing at a
6433     // base or a complete object, so we generally need to use the
6434     // non-virtual alignment.
6435     Alignment = getClassPointerAlignment(RD);
6436   } else {
6437     Alignment = getContext().getTypeAlignInChars(T);
6438   }
6439 
6440   // Cap to the global maximum type alignment unless the alignment
6441   // was somehow explicit on the type.
6442   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6443     if (Alignment.getQuantity() > MaxAlign &&
6444         !getContext().isAlignmentRequired(T))
6445       Alignment = CharUnits::fromQuantity(MaxAlign);
6446   }
6447   return Alignment;
6448 }
6449 
6450 bool CodeGenModule::stopAutoInit() {
6451   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6452   if (StopAfter) {
6453     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6454     // used
6455     if (NumAutoVarInit >= StopAfter) {
6456       return true;
6457     }
6458     if (!NumAutoVarInit) {
6459       unsigned DiagID = getDiags().getCustomDiagID(
6460           DiagnosticsEngine::Warning,
6461           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6462           "number of times ftrivial-auto-var-init=%1 gets applied.");
6463       getDiags().Report(DiagID)
6464           << StopAfter
6465           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6466                       LangOptions::TrivialAutoVarInitKind::Zero
6467                   ? "zero"
6468                   : "pattern");
6469     }
6470     ++NumAutoVarInit;
6471   }
6472   return false;
6473 }
6474 
6475 void CodeGenModule::printPostfixForExternalizedStaticVar(
6476     llvm::raw_ostream &OS) const {
6477   OS << "__static__" << getContext().getCUIDHash();
6478 }
6479