1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Diagnostic.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/Basic/ConvertUTF.h" 34 #include "llvm/CallingConv.h" 35 #include "llvm/Module.h" 36 #include "llvm/Intrinsics.h" 37 #include "llvm/LLVMContext.h" 38 #include "llvm/ADT/Triple.h" 39 #include "llvm/Target/Mangler.h" 40 #include "llvm/Target/TargetData.h" 41 #include "llvm/Support/CallSite.h" 42 #include "llvm/Support/ErrorHandling.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 static const char AnnotationSection[] = "llvm.metadata"; 47 48 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 49 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 50 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 51 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 52 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 53 } 54 55 llvm_unreachable("invalid C++ ABI kind"); 56 return *CreateItaniumCXXABI(CGM); 57 } 58 59 60 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 61 llvm::Module &M, const llvm::TargetData &TD, 62 Diagnostic &diags) 63 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 64 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 65 ABI(createCXXABI(*this)), 66 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO), 67 TBAA(0), 68 VTables(*this), ObjCRuntime(0), DebugInfo(0), ARCData(0), RRData(0), 69 CFConstantStringClassRef(0), ConstantStringClassRef(0), 70 NSConstantStringType(0), 71 VMContext(M.getContext()), 72 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 73 BlockObjectAssign(0), BlockObjectDispose(0), 74 BlockDescriptorType(0), GenericBlockLiteralType(0) { 75 if (Features.ObjC1) 76 createObjCRuntime(); 77 78 // Enable TBAA unless it's suppressed. 79 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 80 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 81 ABI.getMangleContext()); 82 83 // If debug info or coverage generation is enabled, create the CGDebugInfo 84 // object. 85 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs || 86 CodeGenOpts.EmitGcovNotes) 87 DebugInfo = new CGDebugInfo(*this); 88 89 Block.GlobalUniqueCount = 0; 90 91 if (C.getLangOptions().ObjCAutoRefCount) 92 ARCData = new ARCEntrypoints(); 93 RRData = new RREntrypoints(); 94 95 // Initialize the type cache. 96 llvm::LLVMContext &LLVMContext = M.getContext(); 97 VoidTy = llvm::Type::getVoidTy(LLVMContext); 98 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 99 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 100 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 101 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 102 PointerAlignInBytes = 103 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 104 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 105 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 106 Int8PtrTy = Int8Ty->getPointerTo(0); 107 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 108 } 109 110 CodeGenModule::~CodeGenModule() { 111 delete ObjCRuntime; 112 delete &ABI; 113 delete TBAA; 114 delete DebugInfo; 115 delete ARCData; 116 delete RRData; 117 } 118 119 void CodeGenModule::createObjCRuntime() { 120 if (!Features.NeXTRuntime) 121 ObjCRuntime = CreateGNUObjCRuntime(*this); 122 else 123 ObjCRuntime = CreateMacObjCRuntime(*this); 124 } 125 126 void CodeGenModule::Release() { 127 EmitDeferred(); 128 EmitCXXGlobalInitFunc(); 129 EmitCXXGlobalDtorFunc(); 130 if (ObjCRuntime) 131 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 132 AddGlobalCtor(ObjCInitFunction); 133 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 134 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 135 EmitGlobalAnnotations(); 136 EmitLLVMUsed(); 137 138 SimplifyPersonality(); 139 140 if (getCodeGenOpts().EmitDeclMetadata) 141 EmitDeclMetadata(); 142 143 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 144 EmitCoverageFile(); 145 146 if (DebugInfo) 147 DebugInfo->finalize(); 148 } 149 150 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 151 // Make sure that this type is translated. 152 Types.UpdateCompletedType(TD); 153 if (DebugInfo) 154 DebugInfo->UpdateCompletedType(TD); 155 } 156 157 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 158 if (!TBAA) 159 return 0; 160 return TBAA->getTBAAInfo(QTy); 161 } 162 163 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 164 llvm::MDNode *TBAAInfo) { 165 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 166 } 167 168 bool CodeGenModule::isTargetDarwin() const { 169 return getContext().getTargetInfo().getTriple().isOSDarwin(); 170 } 171 172 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 173 unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error); 174 getDiags().Report(Context.getFullLoc(loc), diagID); 175 } 176 177 /// ErrorUnsupported - Print out an error that codegen doesn't support the 178 /// specified stmt yet. 179 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 180 bool OmitOnError) { 181 if (OmitOnError && getDiags().hasErrorOccurred()) 182 return; 183 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 184 "cannot compile this %0 yet"); 185 std::string Msg = Type; 186 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 187 << Msg << S->getSourceRange(); 188 } 189 190 /// ErrorUnsupported - Print out an error that codegen doesn't support the 191 /// specified decl yet. 192 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 193 bool OmitOnError) { 194 if (OmitOnError && getDiags().hasErrorOccurred()) 195 return; 196 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 197 "cannot compile this %0 yet"); 198 std::string Msg = Type; 199 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 200 } 201 202 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 203 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 204 } 205 206 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 207 const NamedDecl *D) const { 208 // Internal definitions always have default visibility. 209 if (GV->hasLocalLinkage()) { 210 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 211 return; 212 } 213 214 // Set visibility for definitions. 215 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 216 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 217 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 218 } 219 220 /// Set the symbol visibility of type information (vtable and RTTI) 221 /// associated with the given type. 222 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 223 const CXXRecordDecl *RD, 224 TypeVisibilityKind TVK) const { 225 setGlobalVisibility(GV, RD); 226 227 if (!CodeGenOpts.HiddenWeakVTables) 228 return; 229 230 // We never want to drop the visibility for RTTI names. 231 if (TVK == TVK_ForRTTIName) 232 return; 233 234 // We want to drop the visibility to hidden for weak type symbols. 235 // This isn't possible if there might be unresolved references 236 // elsewhere that rely on this symbol being visible. 237 238 // This should be kept roughly in sync with setThunkVisibility 239 // in CGVTables.cpp. 240 241 // Preconditions. 242 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 243 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 244 return; 245 246 // Don't override an explicit visibility attribute. 247 if (RD->getExplicitVisibility()) 248 return; 249 250 switch (RD->getTemplateSpecializationKind()) { 251 // We have to disable the optimization if this is an EI definition 252 // because there might be EI declarations in other shared objects. 253 case TSK_ExplicitInstantiationDefinition: 254 case TSK_ExplicitInstantiationDeclaration: 255 return; 256 257 // Every use of a non-template class's type information has to emit it. 258 case TSK_Undeclared: 259 break; 260 261 // In theory, implicit instantiations can ignore the possibility of 262 // an explicit instantiation declaration because there necessarily 263 // must be an EI definition somewhere with default visibility. In 264 // practice, it's possible to have an explicit instantiation for 265 // an arbitrary template class, and linkers aren't necessarily able 266 // to deal with mixed-visibility symbols. 267 case TSK_ExplicitSpecialization: 268 case TSK_ImplicitInstantiation: 269 if (!CodeGenOpts.HiddenWeakTemplateVTables) 270 return; 271 break; 272 } 273 274 // If there's a key function, there may be translation units 275 // that don't have the key function's definition. But ignore 276 // this if we're emitting RTTI under -fno-rtti. 277 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 278 if (Context.getKeyFunction(RD)) 279 return; 280 } 281 282 // Otherwise, drop the visibility to hidden. 283 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 284 GV->setUnnamedAddr(true); 285 } 286 287 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 288 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 289 290 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 291 if (!Str.empty()) 292 return Str; 293 294 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 295 IdentifierInfo *II = ND->getIdentifier(); 296 assert(II && "Attempt to mangle unnamed decl."); 297 298 Str = II->getName(); 299 return Str; 300 } 301 302 llvm::SmallString<256> Buffer; 303 llvm::raw_svector_ostream Out(Buffer); 304 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 305 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 306 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 307 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 308 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 309 getCXXABI().getMangleContext().mangleBlock(BD, Out); 310 else 311 getCXXABI().getMangleContext().mangleName(ND, Out); 312 313 // Allocate space for the mangled name. 314 Out.flush(); 315 size_t Length = Buffer.size(); 316 char *Name = MangledNamesAllocator.Allocate<char>(Length); 317 std::copy(Buffer.begin(), Buffer.end(), Name); 318 319 Str = StringRef(Name, Length); 320 321 return Str; 322 } 323 324 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 325 const BlockDecl *BD) { 326 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 327 const Decl *D = GD.getDecl(); 328 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 329 if (D == 0) 330 MangleCtx.mangleGlobalBlock(BD, Out); 331 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 332 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 333 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 334 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 335 else 336 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 337 } 338 339 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 340 return getModule().getNamedValue(Name); 341 } 342 343 /// AddGlobalCtor - Add a function to the list that will be called before 344 /// main() runs. 345 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 346 // FIXME: Type coercion of void()* types. 347 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 348 } 349 350 /// AddGlobalDtor - Add a function to the list that will be called 351 /// when the module is unloaded. 352 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 353 // FIXME: Type coercion of void()* types. 354 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 355 } 356 357 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 358 // Ctor function type is void()*. 359 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 360 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 361 362 // Get the type of a ctor entry, { i32, void ()* }. 363 llvm::StructType *CtorStructTy = 364 llvm::StructType::get(llvm::Type::getInt32Ty(VMContext), 365 llvm::PointerType::getUnqual(CtorFTy), NULL); 366 367 // Construct the constructor and destructor arrays. 368 std::vector<llvm::Constant*> Ctors; 369 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 370 std::vector<llvm::Constant*> S; 371 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 372 I->second, false)); 373 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 374 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 375 } 376 377 if (!Ctors.empty()) { 378 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 379 new llvm::GlobalVariable(TheModule, AT, false, 380 llvm::GlobalValue::AppendingLinkage, 381 llvm::ConstantArray::get(AT, Ctors), 382 GlobalName); 383 } 384 } 385 386 llvm::GlobalValue::LinkageTypes 387 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 388 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 389 390 if (Linkage == GVA_Internal) 391 return llvm::Function::InternalLinkage; 392 393 if (D->hasAttr<DLLExportAttr>()) 394 return llvm::Function::DLLExportLinkage; 395 396 if (D->hasAttr<WeakAttr>()) 397 return llvm::Function::WeakAnyLinkage; 398 399 // In C99 mode, 'inline' functions are guaranteed to have a strong 400 // definition somewhere else, so we can use available_externally linkage. 401 if (Linkage == GVA_C99Inline) 402 return llvm::Function::AvailableExternallyLinkage; 403 404 // Note that Apple's kernel linker doesn't support symbol 405 // coalescing, so we need to avoid linkonce and weak linkages there. 406 // Normally, this means we just map to internal, but for explicit 407 // instantiations we'll map to external. 408 409 // In C++, the compiler has to emit a definition in every translation unit 410 // that references the function. We should use linkonce_odr because 411 // a) if all references in this translation unit are optimized away, we 412 // don't need to codegen it. b) if the function persists, it needs to be 413 // merged with other definitions. c) C++ has the ODR, so we know the 414 // definition is dependable. 415 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 416 return !Context.getLangOptions().AppleKext 417 ? llvm::Function::LinkOnceODRLinkage 418 : llvm::Function::InternalLinkage; 419 420 // An explicit instantiation of a template has weak linkage, since 421 // explicit instantiations can occur in multiple translation units 422 // and must all be equivalent. However, we are not allowed to 423 // throw away these explicit instantiations. 424 if (Linkage == GVA_ExplicitTemplateInstantiation) 425 return !Context.getLangOptions().AppleKext 426 ? llvm::Function::WeakODRLinkage 427 : llvm::Function::ExternalLinkage; 428 429 // Otherwise, we have strong external linkage. 430 assert(Linkage == GVA_StrongExternal); 431 return llvm::Function::ExternalLinkage; 432 } 433 434 435 /// SetFunctionDefinitionAttributes - Set attributes for a global. 436 /// 437 /// FIXME: This is currently only done for aliases and functions, but not for 438 /// variables (these details are set in EmitGlobalVarDefinition for variables). 439 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 440 llvm::GlobalValue *GV) { 441 SetCommonAttributes(D, GV); 442 } 443 444 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 445 const CGFunctionInfo &Info, 446 llvm::Function *F) { 447 unsigned CallingConv; 448 AttributeListType AttributeList; 449 ConstructAttributeList(Info, D, AttributeList, CallingConv); 450 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 451 AttributeList.size())); 452 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 453 } 454 455 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 456 llvm::Function *F) { 457 if (CodeGenOpts.UnwindTables) 458 F->setHasUWTable(); 459 460 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 461 F->addFnAttr(llvm::Attribute::NoUnwind); 462 463 if (D->hasAttr<NakedAttr>()) { 464 // Naked implies noinline: we should not be inlining such functions. 465 F->addFnAttr(llvm::Attribute::Naked); 466 F->addFnAttr(llvm::Attribute::NoInline); 467 } 468 469 if (D->hasAttr<NoInlineAttr>()) 470 F->addFnAttr(llvm::Attribute::NoInline); 471 472 // (noinline wins over always_inline, and we can't specify both in IR) 473 if (D->hasAttr<AlwaysInlineAttr>() && 474 !F->hasFnAttr(llvm::Attribute::NoInline)) 475 F->addFnAttr(llvm::Attribute::AlwaysInline); 476 477 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 478 F->setUnnamedAddr(true); 479 480 if (Features.getStackProtector() == LangOptions::SSPOn) 481 F->addFnAttr(llvm::Attribute::StackProtect); 482 else if (Features.getStackProtector() == LangOptions::SSPReq) 483 F->addFnAttr(llvm::Attribute::StackProtectReq); 484 485 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 486 if (alignment) 487 F->setAlignment(alignment); 488 489 // C++ ABI requires 2-byte alignment for member functions. 490 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 491 F->setAlignment(2); 492 } 493 494 void CodeGenModule::SetCommonAttributes(const Decl *D, 495 llvm::GlobalValue *GV) { 496 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 497 setGlobalVisibility(GV, ND); 498 else 499 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 500 501 if (D->hasAttr<UsedAttr>()) 502 AddUsedGlobal(GV); 503 504 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 505 GV->setSection(SA->getName()); 506 507 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 508 } 509 510 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 511 llvm::Function *F, 512 const CGFunctionInfo &FI) { 513 SetLLVMFunctionAttributes(D, FI, F); 514 SetLLVMFunctionAttributesForDefinition(D, F); 515 516 F->setLinkage(llvm::Function::InternalLinkage); 517 518 SetCommonAttributes(D, F); 519 } 520 521 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 522 llvm::Function *F, 523 bool IsIncompleteFunction) { 524 if (unsigned IID = F->getIntrinsicID()) { 525 // If this is an intrinsic function, set the function's attributes 526 // to the intrinsic's attributes. 527 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 528 return; 529 } 530 531 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 532 533 if (!IsIncompleteFunction) 534 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 535 536 // Only a few attributes are set on declarations; these may later be 537 // overridden by a definition. 538 539 if (FD->hasAttr<DLLImportAttr>()) { 540 F->setLinkage(llvm::Function::DLLImportLinkage); 541 } else if (FD->hasAttr<WeakAttr>() || 542 FD->isWeakImported()) { 543 // "extern_weak" is overloaded in LLVM; we probably should have 544 // separate linkage types for this. 545 F->setLinkage(llvm::Function::ExternalWeakLinkage); 546 } else { 547 F->setLinkage(llvm::Function::ExternalLinkage); 548 549 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 550 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 551 F->setVisibility(GetLLVMVisibility(LV.visibility())); 552 } 553 } 554 555 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 556 F->setSection(SA->getName()); 557 } 558 559 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 560 assert(!GV->isDeclaration() && 561 "Only globals with definition can force usage."); 562 LLVMUsed.push_back(GV); 563 } 564 565 void CodeGenModule::EmitLLVMUsed() { 566 // Don't create llvm.used if there is no need. 567 if (LLVMUsed.empty()) 568 return; 569 570 llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 571 572 // Convert LLVMUsed to what ConstantArray needs. 573 std::vector<llvm::Constant*> UsedArray; 574 UsedArray.resize(LLVMUsed.size()); 575 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 576 UsedArray[i] = 577 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 578 i8PTy); 579 } 580 581 if (UsedArray.empty()) 582 return; 583 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 584 585 llvm::GlobalVariable *GV = 586 new llvm::GlobalVariable(getModule(), ATy, false, 587 llvm::GlobalValue::AppendingLinkage, 588 llvm::ConstantArray::get(ATy, UsedArray), 589 "llvm.used"); 590 591 GV->setSection("llvm.metadata"); 592 } 593 594 void CodeGenModule::EmitDeferred() { 595 // Emit code for any potentially referenced deferred decls. Since a 596 // previously unused static decl may become used during the generation of code 597 // for a static function, iterate until no changes are made. 598 599 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 600 if (!DeferredVTables.empty()) { 601 const CXXRecordDecl *RD = DeferredVTables.back(); 602 DeferredVTables.pop_back(); 603 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 604 continue; 605 } 606 607 GlobalDecl D = DeferredDeclsToEmit.back(); 608 DeferredDeclsToEmit.pop_back(); 609 610 // Check to see if we've already emitted this. This is necessary 611 // for a couple of reasons: first, decls can end up in the 612 // deferred-decls queue multiple times, and second, decls can end 613 // up with definitions in unusual ways (e.g. by an extern inline 614 // function acquiring a strong function redefinition). Just 615 // ignore these cases. 616 // 617 // TODO: That said, looking this up multiple times is very wasteful. 618 StringRef Name = getMangledName(D); 619 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 620 assert(CGRef && "Deferred decl wasn't referenced?"); 621 622 if (!CGRef->isDeclaration()) 623 continue; 624 625 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 626 // purposes an alias counts as a definition. 627 if (isa<llvm::GlobalAlias>(CGRef)) 628 continue; 629 630 // Otherwise, emit the definition and move on to the next one. 631 EmitGlobalDefinition(D); 632 } 633 } 634 635 void CodeGenModule::EmitGlobalAnnotations() { 636 if (Annotations.empty()) 637 return; 638 639 // Create a new global variable for the ConstantStruct in the Module. 640 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 641 Annotations[0]->getType(), Annotations.size()), Annotations); 642 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 643 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 644 "llvm.global.annotations"); 645 gv->setSection(AnnotationSection); 646 } 647 648 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 649 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 650 if (i != AnnotationStrings.end()) 651 return i->second; 652 653 // Not found yet, create a new global. 654 llvm::Constant *s = llvm::ConstantArray::get(getLLVMContext(), Str, true); 655 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 656 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 657 gv->setSection(AnnotationSection); 658 gv->setUnnamedAddr(true); 659 AnnotationStrings[Str] = gv; 660 return gv; 661 } 662 663 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 664 SourceManager &SM = getContext().getSourceManager(); 665 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 666 if (PLoc.isValid()) 667 return EmitAnnotationString(PLoc.getFilename()); 668 return EmitAnnotationString(SM.getBufferName(Loc)); 669 } 670 671 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 672 SourceManager &SM = getContext().getSourceManager(); 673 PresumedLoc PLoc = SM.getPresumedLoc(L); 674 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 675 SM.getExpansionLineNumber(L); 676 return llvm::ConstantInt::get(Int32Ty, LineNo); 677 } 678 679 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 680 const AnnotateAttr *AA, 681 SourceLocation L) { 682 // Get the globals for file name, annotation, and the line number. 683 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 684 *UnitGV = EmitAnnotationUnit(L), 685 *LineNoCst = EmitAnnotationLineNo(L); 686 687 // Create the ConstantStruct for the global annotation. 688 llvm::Constant *Fields[4] = { 689 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 690 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 691 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 692 LineNoCst 693 }; 694 return llvm::ConstantStruct::getAnon(Fields); 695 } 696 697 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 698 llvm::GlobalValue *GV) { 699 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 700 // Get the struct elements for these annotations. 701 for (specific_attr_iterator<AnnotateAttr> 702 ai = D->specific_attr_begin<AnnotateAttr>(), 703 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 704 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 705 } 706 707 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 708 // Never defer when EmitAllDecls is specified. 709 if (Features.EmitAllDecls) 710 return false; 711 712 return !getContext().DeclMustBeEmitted(Global); 713 } 714 715 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 716 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 717 assert(AA && "No alias?"); 718 719 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 720 721 // See if there is already something with the target's name in the module. 722 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 723 724 llvm::Constant *Aliasee; 725 if (isa<llvm::FunctionType>(DeclTy)) 726 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 727 /*ForVTable=*/false); 728 else 729 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 730 llvm::PointerType::getUnqual(DeclTy), 0); 731 if (!Entry) { 732 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 733 F->setLinkage(llvm::Function::ExternalWeakLinkage); 734 WeakRefReferences.insert(F); 735 } 736 737 return Aliasee; 738 } 739 740 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 741 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 742 743 // Weak references don't produce any output by themselves. 744 if (Global->hasAttr<WeakRefAttr>()) 745 return; 746 747 // If this is an alias definition (which otherwise looks like a declaration) 748 // emit it now. 749 if (Global->hasAttr<AliasAttr>()) 750 return EmitAliasDefinition(GD); 751 752 // Ignore declarations, they will be emitted on their first use. 753 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 754 // Forward declarations are emitted lazily on first use. 755 if (!FD->doesThisDeclarationHaveABody()) { 756 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 757 return; 758 759 const FunctionDecl *InlineDefinition = 0; 760 FD->getBody(InlineDefinition); 761 762 StringRef MangledName = getMangledName(GD); 763 llvm::StringMap<GlobalDecl>::iterator DDI = 764 DeferredDecls.find(MangledName); 765 if (DDI != DeferredDecls.end()) 766 DeferredDecls.erase(DDI); 767 EmitGlobalDefinition(InlineDefinition); 768 return; 769 } 770 } else { 771 const VarDecl *VD = cast<VarDecl>(Global); 772 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 773 774 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 775 return; 776 } 777 778 // Defer code generation when possible if this is a static definition, inline 779 // function etc. These we only want to emit if they are used. 780 if (!MayDeferGeneration(Global)) { 781 // Emit the definition if it can't be deferred. 782 EmitGlobalDefinition(GD); 783 return; 784 } 785 786 // If we're deferring emission of a C++ variable with an 787 // initializer, remember the order in which it appeared in the file. 788 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 789 cast<VarDecl>(Global)->hasInit()) { 790 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 791 CXXGlobalInits.push_back(0); 792 } 793 794 // If the value has already been used, add it directly to the 795 // DeferredDeclsToEmit list. 796 StringRef MangledName = getMangledName(GD); 797 if (GetGlobalValue(MangledName)) 798 DeferredDeclsToEmit.push_back(GD); 799 else { 800 // Otherwise, remember that we saw a deferred decl with this name. The 801 // first use of the mangled name will cause it to move into 802 // DeferredDeclsToEmit. 803 DeferredDecls[MangledName] = GD; 804 } 805 } 806 807 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 808 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 809 810 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 811 Context.getSourceManager(), 812 "Generating code for declaration"); 813 814 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 815 // At -O0, don't generate IR for functions with available_externally 816 // linkage. 817 if (CodeGenOpts.OptimizationLevel == 0 && 818 !Function->hasAttr<AlwaysInlineAttr>() && 819 getFunctionLinkage(Function) 820 == llvm::Function::AvailableExternallyLinkage) 821 return; 822 823 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 824 // Make sure to emit the definition(s) before we emit the thunks. 825 // This is necessary for the generation of certain thunks. 826 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 827 EmitCXXConstructor(CD, GD.getCtorType()); 828 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 829 EmitCXXDestructor(DD, GD.getDtorType()); 830 else 831 EmitGlobalFunctionDefinition(GD); 832 833 if (Method->isVirtual()) 834 getVTables().EmitThunks(GD); 835 836 return; 837 } 838 839 return EmitGlobalFunctionDefinition(GD); 840 } 841 842 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 843 return EmitGlobalVarDefinition(VD); 844 845 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 846 } 847 848 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 849 /// module, create and return an llvm Function with the specified type. If there 850 /// is something in the module with the specified name, return it potentially 851 /// bitcasted to the right type. 852 /// 853 /// If D is non-null, it specifies a decl that correspond to this. This is used 854 /// to set the attributes on the function when it is first created. 855 llvm::Constant * 856 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 857 llvm::Type *Ty, 858 GlobalDecl D, bool ForVTable, 859 llvm::Attributes ExtraAttrs) { 860 // Lookup the entry, lazily creating it if necessary. 861 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 862 if (Entry) { 863 if (WeakRefReferences.count(Entry)) { 864 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 865 if (FD && !FD->hasAttr<WeakAttr>()) 866 Entry->setLinkage(llvm::Function::ExternalLinkage); 867 868 WeakRefReferences.erase(Entry); 869 } 870 871 if (Entry->getType()->getElementType() == Ty) 872 return Entry; 873 874 // Make sure the result is of the correct type. 875 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 876 } 877 878 // This function doesn't have a complete type (for example, the return 879 // type is an incomplete struct). Use a fake type instead, and make 880 // sure not to try to set attributes. 881 bool IsIncompleteFunction = false; 882 883 llvm::FunctionType *FTy; 884 if (isa<llvm::FunctionType>(Ty)) { 885 FTy = cast<llvm::FunctionType>(Ty); 886 } else { 887 FTy = llvm::FunctionType::get(VoidTy, false); 888 IsIncompleteFunction = true; 889 } 890 891 llvm::Function *F = llvm::Function::Create(FTy, 892 llvm::Function::ExternalLinkage, 893 MangledName, &getModule()); 894 assert(F->getName() == MangledName && "name was uniqued!"); 895 if (D.getDecl()) 896 SetFunctionAttributes(D, F, IsIncompleteFunction); 897 if (ExtraAttrs != llvm::Attribute::None) 898 F->addFnAttr(ExtraAttrs); 899 900 // This is the first use or definition of a mangled name. If there is a 901 // deferred decl with this name, remember that we need to emit it at the end 902 // of the file. 903 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 904 if (DDI != DeferredDecls.end()) { 905 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 906 // list, and remove it from DeferredDecls (since we don't need it anymore). 907 DeferredDeclsToEmit.push_back(DDI->second); 908 DeferredDecls.erase(DDI); 909 910 // Otherwise, there are cases we have to worry about where we're 911 // using a declaration for which we must emit a definition but where 912 // we might not find a top-level definition: 913 // - member functions defined inline in their classes 914 // - friend functions defined inline in some class 915 // - special member functions with implicit definitions 916 // If we ever change our AST traversal to walk into class methods, 917 // this will be unnecessary. 918 // 919 // We also don't emit a definition for a function if it's going to be an entry 920 // in a vtable, unless it's already marked as used. 921 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 922 // Look for a declaration that's lexically in a record. 923 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 924 do { 925 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 926 if (FD->isImplicit() && !ForVTable) { 927 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 928 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 929 break; 930 } else if (FD->doesThisDeclarationHaveABody()) { 931 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 932 break; 933 } 934 } 935 FD = FD->getPreviousDeclaration(); 936 } while (FD); 937 } 938 939 // Make sure the result is of the requested type. 940 if (!IsIncompleteFunction) { 941 assert(F->getType()->getElementType() == Ty); 942 return F; 943 } 944 945 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 946 return llvm::ConstantExpr::getBitCast(F, PTy); 947 } 948 949 /// GetAddrOfFunction - Return the address of the given function. If Ty is 950 /// non-null, then this function will use the specified type if it has to 951 /// create it (this occurs when we see a definition of the function). 952 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 953 llvm::Type *Ty, 954 bool ForVTable) { 955 // If there was no specific requested type, just convert it now. 956 if (!Ty) 957 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 958 959 StringRef MangledName = getMangledName(GD); 960 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 961 } 962 963 /// CreateRuntimeFunction - Create a new runtime function with the specified 964 /// type and name. 965 llvm::Constant * 966 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 967 StringRef Name, 968 llvm::Attributes ExtraAttrs) { 969 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 970 ExtraAttrs); 971 } 972 973 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D, 974 bool ConstantInit) { 975 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 976 return false; 977 978 if (Context.getLangOptions().CPlusPlus) { 979 if (const RecordType *Record 980 = Context.getBaseElementType(D->getType())->getAs<RecordType>()) 981 return ConstantInit && 982 cast<CXXRecordDecl>(Record->getDecl())->isPOD() && 983 !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields(); 984 } 985 986 return true; 987 } 988 989 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 990 /// create and return an llvm GlobalVariable with the specified type. If there 991 /// is something in the module with the specified name, return it potentially 992 /// bitcasted to the right type. 993 /// 994 /// If D is non-null, it specifies a decl that correspond to this. This is used 995 /// to set the attributes on the global when it is first created. 996 llvm::Constant * 997 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 998 llvm::PointerType *Ty, 999 const VarDecl *D, 1000 bool UnnamedAddr) { 1001 // Lookup the entry, lazily creating it if necessary. 1002 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1003 if (Entry) { 1004 if (WeakRefReferences.count(Entry)) { 1005 if (D && !D->hasAttr<WeakAttr>()) 1006 Entry->setLinkage(llvm::Function::ExternalLinkage); 1007 1008 WeakRefReferences.erase(Entry); 1009 } 1010 1011 if (UnnamedAddr) 1012 Entry->setUnnamedAddr(true); 1013 1014 if (Entry->getType() == Ty) 1015 return Entry; 1016 1017 // Make sure the result is of the correct type. 1018 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1019 } 1020 1021 // This is the first use or definition of a mangled name. If there is a 1022 // deferred decl with this name, remember that we need to emit it at the end 1023 // of the file. 1024 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1025 if (DDI != DeferredDecls.end()) { 1026 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1027 // list, and remove it from DeferredDecls (since we don't need it anymore). 1028 DeferredDeclsToEmit.push_back(DDI->second); 1029 DeferredDecls.erase(DDI); 1030 } 1031 1032 llvm::GlobalVariable *GV = 1033 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1034 llvm::GlobalValue::ExternalLinkage, 1035 0, MangledName, 0, 1036 false, Ty->getAddressSpace()); 1037 1038 // Handle things which are present even on external declarations. 1039 if (D) { 1040 // FIXME: This code is overly simple and should be merged with other global 1041 // handling. 1042 GV->setConstant(DeclIsConstantGlobal(Context, D, false)); 1043 1044 // Set linkage and visibility in case we never see a definition. 1045 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1046 if (LV.linkage() != ExternalLinkage) { 1047 // Don't set internal linkage on declarations. 1048 } else { 1049 if (D->hasAttr<DLLImportAttr>()) 1050 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1051 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1052 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1053 1054 // Set visibility on a declaration only if it's explicit. 1055 if (LV.visibilityExplicit()) 1056 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1057 } 1058 1059 GV->setThreadLocal(D->isThreadSpecified()); 1060 } 1061 1062 return GV; 1063 } 1064 1065 1066 llvm::GlobalVariable * 1067 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1068 llvm::Type *Ty, 1069 llvm::GlobalValue::LinkageTypes Linkage) { 1070 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1071 llvm::GlobalVariable *OldGV = 0; 1072 1073 1074 if (GV) { 1075 // Check if the variable has the right type. 1076 if (GV->getType()->getElementType() == Ty) 1077 return GV; 1078 1079 // Because C++ name mangling, the only way we can end up with an already 1080 // existing global with the same name is if it has been declared extern "C". 1081 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1082 OldGV = GV; 1083 } 1084 1085 // Create a new variable. 1086 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1087 Linkage, 0, Name); 1088 1089 if (OldGV) { 1090 // Replace occurrences of the old variable if needed. 1091 GV->takeName(OldGV); 1092 1093 if (!OldGV->use_empty()) { 1094 llvm::Constant *NewPtrForOldDecl = 1095 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1096 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1097 } 1098 1099 OldGV->eraseFromParent(); 1100 } 1101 1102 return GV; 1103 } 1104 1105 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1106 /// given global variable. If Ty is non-null and if the global doesn't exist, 1107 /// then it will be greated with the specified type instead of whatever the 1108 /// normal requested type would be. 1109 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1110 llvm::Type *Ty) { 1111 assert(D->hasGlobalStorage() && "Not a global variable"); 1112 QualType ASTTy = D->getType(); 1113 if (Ty == 0) 1114 Ty = getTypes().ConvertTypeForMem(ASTTy); 1115 1116 llvm::PointerType *PTy = 1117 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1118 1119 StringRef MangledName = getMangledName(D); 1120 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1121 } 1122 1123 /// CreateRuntimeVariable - Create a new runtime global variable with the 1124 /// specified type and name. 1125 llvm::Constant * 1126 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1127 StringRef Name) { 1128 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1129 true); 1130 } 1131 1132 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1133 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1134 1135 if (MayDeferGeneration(D)) { 1136 // If we have not seen a reference to this variable yet, place it 1137 // into the deferred declarations table to be emitted if needed 1138 // later. 1139 StringRef MangledName = getMangledName(D); 1140 if (!GetGlobalValue(MangledName)) { 1141 DeferredDecls[MangledName] = D; 1142 return; 1143 } 1144 } 1145 1146 // The tentative definition is the only definition. 1147 EmitGlobalVarDefinition(D); 1148 } 1149 1150 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1151 if (DefinitionRequired) 1152 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1153 } 1154 1155 llvm::GlobalVariable::LinkageTypes 1156 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1157 if (RD->getLinkage() != ExternalLinkage) 1158 return llvm::GlobalVariable::InternalLinkage; 1159 1160 if (const CXXMethodDecl *KeyFunction 1161 = RD->getASTContext().getKeyFunction(RD)) { 1162 // If this class has a key function, use that to determine the linkage of 1163 // the vtable. 1164 const FunctionDecl *Def = 0; 1165 if (KeyFunction->hasBody(Def)) 1166 KeyFunction = cast<CXXMethodDecl>(Def); 1167 1168 switch (KeyFunction->getTemplateSpecializationKind()) { 1169 case TSK_Undeclared: 1170 case TSK_ExplicitSpecialization: 1171 // When compiling with optimizations turned on, we emit all vtables, 1172 // even if the key function is not defined in the current translation 1173 // unit. If this is the case, use available_externally linkage. 1174 if (!Def && CodeGenOpts.OptimizationLevel) 1175 return llvm::GlobalVariable::AvailableExternallyLinkage; 1176 1177 if (KeyFunction->isInlined()) 1178 return !Context.getLangOptions().AppleKext ? 1179 llvm::GlobalVariable::LinkOnceODRLinkage : 1180 llvm::Function::InternalLinkage; 1181 1182 return llvm::GlobalVariable::ExternalLinkage; 1183 1184 case TSK_ImplicitInstantiation: 1185 return !Context.getLangOptions().AppleKext ? 1186 llvm::GlobalVariable::LinkOnceODRLinkage : 1187 llvm::Function::InternalLinkage; 1188 1189 case TSK_ExplicitInstantiationDefinition: 1190 return !Context.getLangOptions().AppleKext ? 1191 llvm::GlobalVariable::WeakODRLinkage : 1192 llvm::Function::InternalLinkage; 1193 1194 case TSK_ExplicitInstantiationDeclaration: 1195 // FIXME: Use available_externally linkage. However, this currently 1196 // breaks LLVM's build due to undefined symbols. 1197 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1198 return !Context.getLangOptions().AppleKext ? 1199 llvm::GlobalVariable::LinkOnceODRLinkage : 1200 llvm::Function::InternalLinkage; 1201 } 1202 } 1203 1204 if (Context.getLangOptions().AppleKext) 1205 return llvm::Function::InternalLinkage; 1206 1207 switch (RD->getTemplateSpecializationKind()) { 1208 case TSK_Undeclared: 1209 case TSK_ExplicitSpecialization: 1210 case TSK_ImplicitInstantiation: 1211 // FIXME: Use available_externally linkage. However, this currently 1212 // breaks LLVM's build due to undefined symbols. 1213 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1214 case TSK_ExplicitInstantiationDeclaration: 1215 return llvm::GlobalVariable::LinkOnceODRLinkage; 1216 1217 case TSK_ExplicitInstantiationDefinition: 1218 return llvm::GlobalVariable::WeakODRLinkage; 1219 } 1220 1221 // Silence GCC warning. 1222 return llvm::GlobalVariable::LinkOnceODRLinkage; 1223 } 1224 1225 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1226 return Context.toCharUnitsFromBits( 1227 TheTargetData.getTypeStoreSizeInBits(Ty)); 1228 } 1229 1230 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1231 llvm::Constant *Init = 0; 1232 QualType ASTTy = D->getType(); 1233 bool NonConstInit = false; 1234 1235 const Expr *InitExpr = D->getAnyInitializer(); 1236 1237 if (!InitExpr) { 1238 // This is a tentative definition; tentative definitions are 1239 // implicitly initialized with { 0 }. 1240 // 1241 // Note that tentative definitions are only emitted at the end of 1242 // a translation unit, so they should never have incomplete 1243 // type. In addition, EmitTentativeDefinition makes sure that we 1244 // never attempt to emit a tentative definition if a real one 1245 // exists. A use may still exists, however, so we still may need 1246 // to do a RAUW. 1247 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1248 Init = EmitNullConstant(D->getType()); 1249 } else { 1250 Init = EmitConstantExpr(InitExpr, D->getType()); 1251 if (!Init) { 1252 QualType T = InitExpr->getType(); 1253 if (D->getType()->isReferenceType()) 1254 T = D->getType(); 1255 1256 if (getLangOptions().CPlusPlus) { 1257 Init = EmitNullConstant(T); 1258 NonConstInit = true; 1259 } else { 1260 ErrorUnsupported(D, "static initializer"); 1261 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1262 } 1263 } else { 1264 // We don't need an initializer, so remove the entry for the delayed 1265 // initializer position (just in case this entry was delayed). 1266 if (getLangOptions().CPlusPlus) 1267 DelayedCXXInitPosition.erase(D); 1268 } 1269 } 1270 1271 llvm::Type* InitType = Init->getType(); 1272 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1273 1274 // Strip off a bitcast if we got one back. 1275 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1276 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1277 // all zero index gep. 1278 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1279 Entry = CE->getOperand(0); 1280 } 1281 1282 // Entry is now either a Function or GlobalVariable. 1283 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1284 1285 // We have a definition after a declaration with the wrong type. 1286 // We must make a new GlobalVariable* and update everything that used OldGV 1287 // (a declaration or tentative definition) with the new GlobalVariable* 1288 // (which will be a definition). 1289 // 1290 // This happens if there is a prototype for a global (e.g. 1291 // "extern int x[];") and then a definition of a different type (e.g. 1292 // "int x[10];"). This also happens when an initializer has a different type 1293 // from the type of the global (this happens with unions). 1294 if (GV == 0 || 1295 GV->getType()->getElementType() != InitType || 1296 GV->getType()->getAddressSpace() != 1297 getContext().getTargetAddressSpace(ASTTy)) { 1298 1299 // Move the old entry aside so that we'll create a new one. 1300 Entry->setName(StringRef()); 1301 1302 // Make a new global with the correct type, this is now guaranteed to work. 1303 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1304 1305 // Replace all uses of the old global with the new global 1306 llvm::Constant *NewPtrForOldDecl = 1307 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1308 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1309 1310 // Erase the old global, since it is no longer used. 1311 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1312 } 1313 1314 if (D->hasAttr<AnnotateAttr>()) 1315 AddGlobalAnnotations(D, GV); 1316 1317 GV->setInitializer(Init); 1318 1319 // If it is safe to mark the global 'constant', do so now. 1320 GV->setConstant(false); 1321 if (!NonConstInit && DeclIsConstantGlobal(Context, D, true)) 1322 GV->setConstant(true); 1323 1324 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1325 1326 // Set the llvm linkage type as appropriate. 1327 llvm::GlobalValue::LinkageTypes Linkage = 1328 GetLLVMLinkageVarDefinition(D, GV); 1329 GV->setLinkage(Linkage); 1330 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1331 // common vars aren't constant even if declared const. 1332 GV->setConstant(false); 1333 1334 SetCommonAttributes(D, GV); 1335 1336 // Emit the initializer function if necessary. 1337 if (NonConstInit) 1338 EmitCXXGlobalVarDeclInitFunc(D, GV); 1339 1340 // Emit global variable debug information. 1341 if (CGDebugInfo *DI = getModuleDebugInfo()) { 1342 DI->setLocation(D->getLocation()); 1343 DI->EmitGlobalVariable(GV, D); 1344 } 1345 } 1346 1347 llvm::GlobalValue::LinkageTypes 1348 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1349 llvm::GlobalVariable *GV) { 1350 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1351 if (Linkage == GVA_Internal) 1352 return llvm::Function::InternalLinkage; 1353 else if (D->hasAttr<DLLImportAttr>()) 1354 return llvm::Function::DLLImportLinkage; 1355 else if (D->hasAttr<DLLExportAttr>()) 1356 return llvm::Function::DLLExportLinkage; 1357 else if (D->hasAttr<WeakAttr>()) { 1358 if (GV->isConstant()) 1359 return llvm::GlobalVariable::WeakODRLinkage; 1360 else 1361 return llvm::GlobalVariable::WeakAnyLinkage; 1362 } else if (Linkage == GVA_TemplateInstantiation || 1363 Linkage == GVA_ExplicitTemplateInstantiation) 1364 return llvm::GlobalVariable::WeakODRLinkage; 1365 else if (!getLangOptions().CPlusPlus && 1366 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1367 D->getAttr<CommonAttr>()) && 1368 !D->hasExternalStorage() && !D->getInit() && 1369 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1370 !D->getAttr<WeakImportAttr>()) { 1371 // Thread local vars aren't considered common linkage. 1372 return llvm::GlobalVariable::CommonLinkage; 1373 } 1374 return llvm::GlobalVariable::ExternalLinkage; 1375 } 1376 1377 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1378 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1379 /// existing call uses of the old function in the module, this adjusts them to 1380 /// call the new function directly. 1381 /// 1382 /// This is not just a cleanup: the always_inline pass requires direct calls to 1383 /// functions to be able to inline them. If there is a bitcast in the way, it 1384 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1385 /// run at -O0. 1386 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1387 llvm::Function *NewFn) { 1388 // If we're redefining a global as a function, don't transform it. 1389 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1390 if (OldFn == 0) return; 1391 1392 llvm::Type *NewRetTy = NewFn->getReturnType(); 1393 SmallVector<llvm::Value*, 4> ArgList; 1394 1395 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1396 UI != E; ) { 1397 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1398 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1399 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1400 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1401 llvm::CallSite CS(CI); 1402 if (!CI || !CS.isCallee(I)) continue; 1403 1404 // If the return types don't match exactly, and if the call isn't dead, then 1405 // we can't transform this call. 1406 if (CI->getType() != NewRetTy && !CI->use_empty()) 1407 continue; 1408 1409 // Get the attribute list. 1410 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1411 llvm::AttrListPtr AttrList = CI->getAttributes(); 1412 1413 // Get any return attributes. 1414 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1415 1416 // Add the return attributes. 1417 if (RAttrs) 1418 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1419 1420 // If the function was passed too few arguments, don't transform. If extra 1421 // arguments were passed, we silently drop them. If any of the types 1422 // mismatch, we don't transform. 1423 unsigned ArgNo = 0; 1424 bool DontTransform = false; 1425 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1426 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1427 if (CS.arg_size() == ArgNo || 1428 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1429 DontTransform = true; 1430 break; 1431 } 1432 1433 // Add any parameter attributes. 1434 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1435 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1436 } 1437 if (DontTransform) 1438 continue; 1439 1440 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1441 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1442 1443 // Okay, we can transform this. Create the new call instruction and copy 1444 // over the required information. 1445 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1446 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1447 ArgList.clear(); 1448 if (!NewCall->getType()->isVoidTy()) 1449 NewCall->takeName(CI); 1450 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(), 1451 AttrVec.end())); 1452 NewCall->setCallingConv(CI->getCallingConv()); 1453 1454 // Finally, remove the old call, replacing any uses with the new one. 1455 if (!CI->use_empty()) 1456 CI->replaceAllUsesWith(NewCall); 1457 1458 // Copy debug location attached to CI. 1459 if (!CI->getDebugLoc().isUnknown()) 1460 NewCall->setDebugLoc(CI->getDebugLoc()); 1461 CI->eraseFromParent(); 1462 } 1463 } 1464 1465 1466 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1467 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1468 1469 // Compute the function info and LLVM type. 1470 const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD); 1471 bool variadic = false; 1472 if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>()) 1473 variadic = fpt->isVariadic(); 1474 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic); 1475 1476 // Get or create the prototype for the function. 1477 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1478 1479 // Strip off a bitcast if we got one back. 1480 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1481 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1482 Entry = CE->getOperand(0); 1483 } 1484 1485 1486 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1487 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1488 1489 // If the types mismatch then we have to rewrite the definition. 1490 assert(OldFn->isDeclaration() && 1491 "Shouldn't replace non-declaration"); 1492 1493 // F is the Function* for the one with the wrong type, we must make a new 1494 // Function* and update everything that used F (a declaration) with the new 1495 // Function* (which will be a definition). 1496 // 1497 // This happens if there is a prototype for a function 1498 // (e.g. "int f()") and then a definition of a different type 1499 // (e.g. "int f(int x)"). Move the old function aside so that it 1500 // doesn't interfere with GetAddrOfFunction. 1501 OldFn->setName(StringRef()); 1502 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1503 1504 // If this is an implementation of a function without a prototype, try to 1505 // replace any existing uses of the function (which may be calls) with uses 1506 // of the new function 1507 if (D->getType()->isFunctionNoProtoType()) { 1508 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1509 OldFn->removeDeadConstantUsers(); 1510 } 1511 1512 // Replace uses of F with the Function we will endow with a body. 1513 if (!Entry->use_empty()) { 1514 llvm::Constant *NewPtrForOldDecl = 1515 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1516 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1517 } 1518 1519 // Ok, delete the old function now, which is dead. 1520 OldFn->eraseFromParent(); 1521 1522 Entry = NewFn; 1523 } 1524 1525 // We need to set linkage and visibility on the function before 1526 // generating code for it because various parts of IR generation 1527 // want to propagate this information down (e.g. to local static 1528 // declarations). 1529 llvm::Function *Fn = cast<llvm::Function>(Entry); 1530 setFunctionLinkage(D, Fn); 1531 1532 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1533 setGlobalVisibility(Fn, D); 1534 1535 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1536 1537 SetFunctionDefinitionAttributes(D, Fn); 1538 SetLLVMFunctionAttributesForDefinition(D, Fn); 1539 1540 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1541 AddGlobalCtor(Fn, CA->getPriority()); 1542 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1543 AddGlobalDtor(Fn, DA->getPriority()); 1544 if (D->hasAttr<AnnotateAttr>()) 1545 AddGlobalAnnotations(D, Fn); 1546 } 1547 1548 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1549 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1550 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1551 assert(AA && "Not an alias?"); 1552 1553 StringRef MangledName = getMangledName(GD); 1554 1555 // If there is a definition in the module, then it wins over the alias. 1556 // This is dubious, but allow it to be safe. Just ignore the alias. 1557 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1558 if (Entry && !Entry->isDeclaration()) 1559 return; 1560 1561 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1562 1563 // Create a reference to the named value. This ensures that it is emitted 1564 // if a deferred decl. 1565 llvm::Constant *Aliasee; 1566 if (isa<llvm::FunctionType>(DeclTy)) 1567 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1568 /*ForVTable=*/false); 1569 else 1570 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1571 llvm::PointerType::getUnqual(DeclTy), 0); 1572 1573 // Create the new alias itself, but don't set a name yet. 1574 llvm::GlobalValue *GA = 1575 new llvm::GlobalAlias(Aliasee->getType(), 1576 llvm::Function::ExternalLinkage, 1577 "", Aliasee, &getModule()); 1578 1579 if (Entry) { 1580 assert(Entry->isDeclaration()); 1581 1582 // If there is a declaration in the module, then we had an extern followed 1583 // by the alias, as in: 1584 // extern int test6(); 1585 // ... 1586 // int test6() __attribute__((alias("test7"))); 1587 // 1588 // Remove it and replace uses of it with the alias. 1589 GA->takeName(Entry); 1590 1591 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1592 Entry->getType())); 1593 Entry->eraseFromParent(); 1594 } else { 1595 GA->setName(MangledName); 1596 } 1597 1598 // Set attributes which are particular to an alias; this is a 1599 // specialization of the attributes which may be set on a global 1600 // variable/function. 1601 if (D->hasAttr<DLLExportAttr>()) { 1602 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1603 // The dllexport attribute is ignored for undefined symbols. 1604 if (FD->hasBody()) 1605 GA->setLinkage(llvm::Function::DLLExportLinkage); 1606 } else { 1607 GA->setLinkage(llvm::Function::DLLExportLinkage); 1608 } 1609 } else if (D->hasAttr<WeakAttr>() || 1610 D->hasAttr<WeakRefAttr>() || 1611 D->isWeakImported()) { 1612 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1613 } 1614 1615 SetCommonAttributes(D, GA); 1616 } 1617 1618 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1619 ArrayRef<llvm::Type*> Tys) { 1620 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1621 Tys); 1622 } 1623 1624 static llvm::StringMapEntry<llvm::Constant*> & 1625 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1626 const StringLiteral *Literal, 1627 bool TargetIsLSB, 1628 bool &IsUTF16, 1629 unsigned &StringLength) { 1630 StringRef String = Literal->getString(); 1631 unsigned NumBytes = String.size(); 1632 1633 // Check for simple case. 1634 if (!Literal->containsNonAsciiOrNull()) { 1635 StringLength = NumBytes; 1636 return Map.GetOrCreateValue(String); 1637 } 1638 1639 // Otherwise, convert the UTF8 literals into a byte string. 1640 SmallVector<UTF16, 128> ToBuf(NumBytes); 1641 const UTF8 *FromPtr = (UTF8 *)String.data(); 1642 UTF16 *ToPtr = &ToBuf[0]; 1643 1644 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1645 &ToPtr, ToPtr + NumBytes, 1646 strictConversion); 1647 1648 // ConvertUTF8toUTF16 returns the length in ToPtr. 1649 StringLength = ToPtr - &ToBuf[0]; 1650 1651 // Render the UTF-16 string into a byte array and convert to the target byte 1652 // order. 1653 // 1654 // FIXME: This isn't something we should need to do here. 1655 llvm::SmallString<128> AsBytes; 1656 AsBytes.reserve(StringLength * 2); 1657 for (unsigned i = 0; i != StringLength; ++i) { 1658 unsigned short Val = ToBuf[i]; 1659 if (TargetIsLSB) { 1660 AsBytes.push_back(Val & 0xFF); 1661 AsBytes.push_back(Val >> 8); 1662 } else { 1663 AsBytes.push_back(Val >> 8); 1664 AsBytes.push_back(Val & 0xFF); 1665 } 1666 } 1667 // Append one extra null character, the second is automatically added by our 1668 // caller. 1669 AsBytes.push_back(0); 1670 1671 IsUTF16 = true; 1672 return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size())); 1673 } 1674 1675 static llvm::StringMapEntry<llvm::Constant*> & 1676 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1677 const StringLiteral *Literal, 1678 unsigned &StringLength) 1679 { 1680 StringRef String = Literal->getString(); 1681 StringLength = String.size(); 1682 return Map.GetOrCreateValue(String); 1683 } 1684 1685 llvm::Constant * 1686 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1687 unsigned StringLength = 0; 1688 bool isUTF16 = false; 1689 llvm::StringMapEntry<llvm::Constant*> &Entry = 1690 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1691 getTargetData().isLittleEndian(), 1692 isUTF16, StringLength); 1693 1694 if (llvm::Constant *C = Entry.getValue()) 1695 return C; 1696 1697 llvm::Constant *Zero = 1698 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1699 llvm::Constant *Zeros[] = { Zero, Zero }; 1700 1701 // If we don't already have it, get __CFConstantStringClassReference. 1702 if (!CFConstantStringClassRef) { 1703 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1704 Ty = llvm::ArrayType::get(Ty, 0); 1705 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1706 "__CFConstantStringClassReference"); 1707 // Decay array -> ptr 1708 CFConstantStringClassRef = 1709 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1710 } 1711 1712 QualType CFTy = getContext().getCFConstantStringType(); 1713 1714 llvm::StructType *STy = 1715 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1716 1717 std::vector<llvm::Constant*> Fields(4); 1718 1719 // Class pointer. 1720 Fields[0] = CFConstantStringClassRef; 1721 1722 // Flags. 1723 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1724 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1725 llvm::ConstantInt::get(Ty, 0x07C8); 1726 1727 // String pointer. 1728 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1729 1730 llvm::GlobalValue::LinkageTypes Linkage; 1731 bool isConstant; 1732 if (isUTF16) { 1733 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1734 Linkage = llvm::GlobalValue::InternalLinkage; 1735 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1736 // does make plain ascii ones writable. 1737 isConstant = true; 1738 } else { 1739 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1740 // when using private linkage. It is not clear if this is a bug in ld 1741 // or a reasonable new restriction. 1742 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1743 isConstant = !Features.WritableStrings; 1744 } 1745 1746 llvm::GlobalVariable *GV = 1747 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1748 ".str"); 1749 GV->setUnnamedAddr(true); 1750 if (isUTF16) { 1751 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1752 GV->setAlignment(Align.getQuantity()); 1753 } else { 1754 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1755 GV->setAlignment(Align.getQuantity()); 1756 } 1757 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1758 1759 // String length. 1760 Ty = getTypes().ConvertType(getContext().LongTy); 1761 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1762 1763 // The struct. 1764 C = llvm::ConstantStruct::get(STy, Fields); 1765 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1766 llvm::GlobalVariable::PrivateLinkage, C, 1767 "_unnamed_cfstring_"); 1768 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 1769 GV->setSection(Sect); 1770 Entry.setValue(GV); 1771 1772 return GV; 1773 } 1774 1775 static RecordDecl * 1776 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 1777 DeclContext *DC, IdentifierInfo *Id) { 1778 SourceLocation Loc; 1779 if (Ctx.getLangOptions().CPlusPlus) 1780 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1781 else 1782 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1783 } 1784 1785 llvm::Constant * 1786 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1787 unsigned StringLength = 0; 1788 llvm::StringMapEntry<llvm::Constant*> &Entry = 1789 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 1790 1791 if (llvm::Constant *C = Entry.getValue()) 1792 return C; 1793 1794 llvm::Constant *Zero = 1795 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1796 llvm::Constant *Zeros[] = { Zero, Zero }; 1797 1798 // If we don't already have it, get _NSConstantStringClassReference. 1799 if (!ConstantStringClassRef) { 1800 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1801 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1802 llvm::Constant *GV; 1803 if (Features.ObjCNonFragileABI) { 1804 std::string str = 1805 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1806 : "OBJC_CLASS_$_" + StringClass; 1807 GV = getObjCRuntime().GetClassGlobal(str); 1808 // Make sure the result is of the correct type. 1809 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1810 ConstantStringClassRef = 1811 llvm::ConstantExpr::getBitCast(GV, PTy); 1812 } else { 1813 std::string str = 1814 StringClass.empty() ? "_NSConstantStringClassReference" 1815 : "_" + StringClass + "ClassReference"; 1816 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 1817 GV = CreateRuntimeVariable(PTy, str); 1818 // Decay array -> ptr 1819 ConstantStringClassRef = 1820 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1821 } 1822 } 1823 1824 if (!NSConstantStringType) { 1825 // Construct the type for a constant NSString. 1826 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 1827 Context.getTranslationUnitDecl(), 1828 &Context.Idents.get("__builtin_NSString")); 1829 D->startDefinition(); 1830 1831 QualType FieldTypes[3]; 1832 1833 // const int *isa; 1834 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 1835 // const char *str; 1836 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 1837 // unsigned int length; 1838 FieldTypes[2] = Context.UnsignedIntTy; 1839 1840 // Create fields 1841 for (unsigned i = 0; i < 3; ++i) { 1842 FieldDecl *Field = FieldDecl::Create(Context, D, 1843 SourceLocation(), 1844 SourceLocation(), 0, 1845 FieldTypes[i], /*TInfo=*/0, 1846 /*BitWidth=*/0, 1847 /*Mutable=*/false, 1848 /*HasInit=*/false); 1849 Field->setAccess(AS_public); 1850 D->addDecl(Field); 1851 } 1852 1853 D->completeDefinition(); 1854 QualType NSTy = Context.getTagDeclType(D); 1855 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1856 } 1857 1858 std::vector<llvm::Constant*> Fields(3); 1859 1860 // Class pointer. 1861 Fields[0] = ConstantStringClassRef; 1862 1863 // String pointer. 1864 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1865 1866 llvm::GlobalValue::LinkageTypes Linkage; 1867 bool isConstant; 1868 Linkage = llvm::GlobalValue::PrivateLinkage; 1869 isConstant = !Features.WritableStrings; 1870 1871 llvm::GlobalVariable *GV = 1872 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1873 ".str"); 1874 GV->setUnnamedAddr(true); 1875 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1876 GV->setAlignment(Align.getQuantity()); 1877 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1878 1879 // String length. 1880 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1881 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1882 1883 // The struct. 1884 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 1885 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1886 llvm::GlobalVariable::PrivateLinkage, C, 1887 "_unnamed_nsstring_"); 1888 // FIXME. Fix section. 1889 if (const char *Sect = 1890 Features.ObjCNonFragileABI 1891 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 1892 : getContext().getTargetInfo().getNSStringSection()) 1893 GV->setSection(Sect); 1894 Entry.setValue(GV); 1895 1896 return GV; 1897 } 1898 1899 QualType CodeGenModule::getObjCFastEnumerationStateType() { 1900 if (ObjCFastEnumerationStateType.isNull()) { 1901 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 1902 Context.getTranslationUnitDecl(), 1903 &Context.Idents.get("__objcFastEnumerationState")); 1904 D->startDefinition(); 1905 1906 QualType FieldTypes[] = { 1907 Context.UnsignedLongTy, 1908 Context.getPointerType(Context.getObjCIdType()), 1909 Context.getPointerType(Context.UnsignedLongTy), 1910 Context.getConstantArrayType(Context.UnsignedLongTy, 1911 llvm::APInt(32, 5), ArrayType::Normal, 0) 1912 }; 1913 1914 for (size_t i = 0; i < 4; ++i) { 1915 FieldDecl *Field = FieldDecl::Create(Context, 1916 D, 1917 SourceLocation(), 1918 SourceLocation(), 0, 1919 FieldTypes[i], /*TInfo=*/0, 1920 /*BitWidth=*/0, 1921 /*Mutable=*/false, 1922 /*HasInit=*/false); 1923 Field->setAccess(AS_public); 1924 D->addDecl(Field); 1925 } 1926 1927 D->completeDefinition(); 1928 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 1929 } 1930 1931 return ObjCFastEnumerationStateType; 1932 } 1933 1934 /// GetStringForStringLiteral - Return the appropriate bytes for a 1935 /// string literal, properly padded to match the literal type. 1936 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1937 const ASTContext &Context = getContext(); 1938 const ConstantArrayType *CAT = 1939 Context.getAsConstantArrayType(E->getType()); 1940 assert(CAT && "String isn't pointer or array!"); 1941 1942 // Resize the string to the right size. 1943 uint64_t RealLen = CAT->getSize().getZExtValue(); 1944 1945 switch (E->getKind()) { 1946 case StringLiteral::Ascii: 1947 case StringLiteral::UTF8: 1948 break; 1949 case StringLiteral::Wide: 1950 RealLen *= Context.getTargetInfo().getWCharWidth() / Context.getCharWidth(); 1951 break; 1952 case StringLiteral::UTF16: 1953 RealLen *= Context.getTargetInfo().getChar16Width() / Context.getCharWidth(); 1954 break; 1955 case StringLiteral::UTF32: 1956 RealLen *= Context.getTargetInfo().getChar32Width() / Context.getCharWidth(); 1957 break; 1958 } 1959 1960 std::string Str = E->getString().str(); 1961 Str.resize(RealLen, '\0'); 1962 1963 return Str; 1964 } 1965 1966 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1967 /// constant array for the given string literal. 1968 llvm::Constant * 1969 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1970 // FIXME: This can be more efficient. 1971 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1972 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 1973 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S), 1974 /* GlobalName */ 0, 1975 Align.getQuantity()); 1976 if (S->isWide() || S->isUTF16() || S->isUTF32()) { 1977 llvm::Type *DestTy = 1978 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1979 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1980 } 1981 return C; 1982 } 1983 1984 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1985 /// array for the given ObjCEncodeExpr node. 1986 llvm::Constant * 1987 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1988 std::string Str; 1989 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1990 1991 return GetAddrOfConstantCString(Str); 1992 } 1993 1994 1995 /// GenerateWritableString -- Creates storage for a string literal. 1996 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 1997 bool constant, 1998 CodeGenModule &CGM, 1999 const char *GlobalName, 2000 unsigned Alignment) { 2001 // Create Constant for this string literal. Don't add a '\0'. 2002 llvm::Constant *C = 2003 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 2004 2005 // Create a global variable for this string 2006 llvm::GlobalVariable *GV = 2007 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2008 llvm::GlobalValue::PrivateLinkage, 2009 C, GlobalName); 2010 GV->setAlignment(Alignment); 2011 GV->setUnnamedAddr(true); 2012 return GV; 2013 } 2014 2015 /// GetAddrOfConstantString - Returns a pointer to a character array 2016 /// containing the literal. This contents are exactly that of the 2017 /// given string, i.e. it will not be null terminated automatically; 2018 /// see GetAddrOfConstantCString. Note that whether the result is 2019 /// actually a pointer to an LLVM constant depends on 2020 /// Feature.WriteableStrings. 2021 /// 2022 /// The result has pointer to array type. 2023 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2024 const char *GlobalName, 2025 unsigned Alignment) { 2026 bool IsConstant = !Features.WritableStrings; 2027 2028 // Get the default prefix if a name wasn't specified. 2029 if (!GlobalName) 2030 GlobalName = ".str"; 2031 2032 // Don't share any string literals if strings aren't constant. 2033 if (!IsConstant) 2034 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2035 2036 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2037 ConstantStringMap.GetOrCreateValue(Str); 2038 2039 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2040 if (Alignment > GV->getAlignment()) { 2041 GV->setAlignment(Alignment); 2042 } 2043 return GV; 2044 } 2045 2046 // Create a global variable for this. 2047 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, Alignment); 2048 Entry.setValue(GV); 2049 return GV; 2050 } 2051 2052 /// GetAddrOfConstantCString - Returns a pointer to a character 2053 /// array containing the literal and a terminating '\0' 2054 /// character. The result has pointer to array type. 2055 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2056 const char *GlobalName, 2057 unsigned Alignment) { 2058 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2059 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2060 } 2061 2062 /// EmitObjCPropertyImplementations - Emit information for synthesized 2063 /// properties for an implementation. 2064 void CodeGenModule::EmitObjCPropertyImplementations(const 2065 ObjCImplementationDecl *D) { 2066 for (ObjCImplementationDecl::propimpl_iterator 2067 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2068 ObjCPropertyImplDecl *PID = *i; 2069 2070 // Dynamic is just for type-checking. 2071 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2072 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2073 2074 // Determine which methods need to be implemented, some may have 2075 // been overridden. Note that ::isSynthesized is not the method 2076 // we want, that just indicates if the decl came from a 2077 // property. What we want to know is if the method is defined in 2078 // this implementation. 2079 if (!D->getInstanceMethod(PD->getGetterName())) 2080 CodeGenFunction(*this).GenerateObjCGetter( 2081 const_cast<ObjCImplementationDecl *>(D), PID); 2082 if (!PD->isReadOnly() && 2083 !D->getInstanceMethod(PD->getSetterName())) 2084 CodeGenFunction(*this).GenerateObjCSetter( 2085 const_cast<ObjCImplementationDecl *>(D), PID); 2086 } 2087 } 2088 } 2089 2090 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2091 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2092 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2093 ivar; ivar = ivar->getNextIvar()) 2094 if (ivar->getType().isDestructedType()) 2095 return true; 2096 2097 return false; 2098 } 2099 2100 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2101 /// for an implementation. 2102 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2103 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2104 if (needsDestructMethod(D)) { 2105 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2106 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2107 ObjCMethodDecl *DTORMethod = 2108 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2109 cxxSelector, getContext().VoidTy, 0, D, 2110 /*isInstance=*/true, /*isVariadic=*/false, 2111 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2112 /*isDefined=*/false, ObjCMethodDecl::Required); 2113 D->addInstanceMethod(DTORMethod); 2114 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2115 D->setHasCXXStructors(true); 2116 } 2117 2118 // If the implementation doesn't have any ivar initializers, we don't need 2119 // a .cxx_construct. 2120 if (D->getNumIvarInitializers() == 0) 2121 return; 2122 2123 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2124 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2125 // The constructor returns 'self'. 2126 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2127 D->getLocation(), 2128 D->getLocation(), cxxSelector, 2129 getContext().getObjCIdType(), 0, 2130 D, /*isInstance=*/true, 2131 /*isVariadic=*/false, 2132 /*isSynthesized=*/true, 2133 /*isImplicitlyDeclared=*/true, 2134 /*isDefined=*/false, 2135 ObjCMethodDecl::Required); 2136 D->addInstanceMethod(CTORMethod); 2137 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2138 D->setHasCXXStructors(true); 2139 } 2140 2141 /// EmitNamespace - Emit all declarations in a namespace. 2142 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2143 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2144 I != E; ++I) 2145 EmitTopLevelDecl(*I); 2146 } 2147 2148 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2149 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2150 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2151 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2152 ErrorUnsupported(LSD, "linkage spec"); 2153 return; 2154 } 2155 2156 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2157 I != E; ++I) 2158 EmitTopLevelDecl(*I); 2159 } 2160 2161 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2162 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2163 // If an error has occurred, stop code generation, but continue 2164 // parsing and semantic analysis (to ensure all warnings and errors 2165 // are emitted). 2166 if (Diags.hasErrorOccurred()) 2167 return; 2168 2169 // Ignore dependent declarations. 2170 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2171 return; 2172 2173 switch (D->getKind()) { 2174 case Decl::CXXConversion: 2175 case Decl::CXXMethod: 2176 case Decl::Function: 2177 // Skip function templates 2178 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2179 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2180 return; 2181 2182 EmitGlobal(cast<FunctionDecl>(D)); 2183 break; 2184 2185 case Decl::Var: 2186 EmitGlobal(cast<VarDecl>(D)); 2187 break; 2188 2189 // Indirect fields from global anonymous structs and unions can be 2190 // ignored; only the actual variable requires IR gen support. 2191 case Decl::IndirectField: 2192 break; 2193 2194 // C++ Decls 2195 case Decl::Namespace: 2196 EmitNamespace(cast<NamespaceDecl>(D)); 2197 break; 2198 // No code generation needed. 2199 case Decl::UsingShadow: 2200 case Decl::Using: 2201 case Decl::UsingDirective: 2202 case Decl::ClassTemplate: 2203 case Decl::FunctionTemplate: 2204 case Decl::TypeAliasTemplate: 2205 case Decl::NamespaceAlias: 2206 case Decl::Block: 2207 break; 2208 case Decl::CXXConstructor: 2209 // Skip function templates 2210 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2211 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2212 return; 2213 2214 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2215 break; 2216 case Decl::CXXDestructor: 2217 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2218 return; 2219 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2220 break; 2221 2222 case Decl::StaticAssert: 2223 // Nothing to do. 2224 break; 2225 2226 // Objective-C Decls 2227 2228 // Forward declarations, no (immediate) code generation. 2229 case Decl::ObjCClass: 2230 case Decl::ObjCForwardProtocol: 2231 case Decl::ObjCInterface: 2232 break; 2233 2234 case Decl::ObjCCategory: { 2235 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2236 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2237 Context.ResetObjCLayout(CD->getClassInterface()); 2238 break; 2239 } 2240 2241 case Decl::ObjCProtocol: 2242 ObjCRuntime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2243 break; 2244 2245 case Decl::ObjCCategoryImpl: 2246 // Categories have properties but don't support synthesize so we 2247 // can ignore them here. 2248 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2249 break; 2250 2251 case Decl::ObjCImplementation: { 2252 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2253 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2254 Context.ResetObjCLayout(OMD->getClassInterface()); 2255 EmitObjCPropertyImplementations(OMD); 2256 EmitObjCIvarInitializations(OMD); 2257 ObjCRuntime->GenerateClass(OMD); 2258 break; 2259 } 2260 case Decl::ObjCMethod: { 2261 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2262 // If this is not a prototype, emit the body. 2263 if (OMD->getBody()) 2264 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2265 break; 2266 } 2267 case Decl::ObjCCompatibleAlias: 2268 // compatibility-alias is a directive and has no code gen. 2269 break; 2270 2271 case Decl::LinkageSpec: 2272 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2273 break; 2274 2275 case Decl::FileScopeAsm: { 2276 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2277 StringRef AsmString = AD->getAsmString()->getString(); 2278 2279 const std::string &S = getModule().getModuleInlineAsm(); 2280 if (S.empty()) 2281 getModule().setModuleInlineAsm(AsmString); 2282 else if (*--S.end() == '\n') 2283 getModule().setModuleInlineAsm(S + AsmString.str()); 2284 else 2285 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2286 break; 2287 } 2288 2289 default: 2290 // Make sure we handled everything we should, every other kind is a 2291 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2292 // function. Need to recode Decl::Kind to do that easily. 2293 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2294 } 2295 } 2296 2297 /// Turns the given pointer into a constant. 2298 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2299 const void *Ptr) { 2300 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2301 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2302 return llvm::ConstantInt::get(i64, PtrInt); 2303 } 2304 2305 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2306 llvm::NamedMDNode *&GlobalMetadata, 2307 GlobalDecl D, 2308 llvm::GlobalValue *Addr) { 2309 if (!GlobalMetadata) 2310 GlobalMetadata = 2311 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2312 2313 // TODO: should we report variant information for ctors/dtors? 2314 llvm::Value *Ops[] = { 2315 Addr, 2316 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2317 }; 2318 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2319 } 2320 2321 /// Emits metadata nodes associating all the global values in the 2322 /// current module with the Decls they came from. This is useful for 2323 /// projects using IR gen as a subroutine. 2324 /// 2325 /// Since there's currently no way to associate an MDNode directly 2326 /// with an llvm::GlobalValue, we create a global named metadata 2327 /// with the name 'clang.global.decl.ptrs'. 2328 void CodeGenModule::EmitDeclMetadata() { 2329 llvm::NamedMDNode *GlobalMetadata = 0; 2330 2331 // StaticLocalDeclMap 2332 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2333 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2334 I != E; ++I) { 2335 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2336 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2337 } 2338 } 2339 2340 /// Emits metadata nodes for all the local variables in the current 2341 /// function. 2342 void CodeGenFunction::EmitDeclMetadata() { 2343 if (LocalDeclMap.empty()) return; 2344 2345 llvm::LLVMContext &Context = getLLVMContext(); 2346 2347 // Find the unique metadata ID for this name. 2348 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2349 2350 llvm::NamedMDNode *GlobalMetadata = 0; 2351 2352 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2353 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2354 const Decl *D = I->first; 2355 llvm::Value *Addr = I->second; 2356 2357 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2358 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2359 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2360 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2361 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2362 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2363 } 2364 } 2365 } 2366 2367 void CodeGenModule::EmitCoverageFile() { 2368 if (!getCodeGenOpts().CoverageFile.empty()) { 2369 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2370 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2371 llvm::LLVMContext &Ctx = TheModule.getContext(); 2372 llvm::MDString *CoverageFile = 2373 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2374 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2375 llvm::MDNode *CU = CUNode->getOperand(i); 2376 llvm::Value *node[] = { CoverageFile, CU }; 2377 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2378 GCov->addOperand(N); 2379 } 2380 } 2381 } 2382 } 2383