1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "clang/Basic/ConvertUTF.h" 38 #include "llvm/CallingConv.h" 39 #include "llvm/Module.h" 40 #include "llvm/Intrinsics.h" 41 #include "llvm/LLVMContext.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/Target/Mangler.h" 45 #include "llvm/Target/TargetData.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ErrorHandling.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 static const char AnnotationSection[] = "llvm.metadata"; 52 53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 54 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 55 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 56 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 57 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 58 } 59 60 llvm_unreachable("invalid C++ ABI kind"); 61 } 62 63 64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 65 llvm::Module &M, const llvm::TargetData &TD, 66 DiagnosticsEngine &diags) 67 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 68 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 69 ABI(createCXXABI(*this)), 70 Types(*this), 71 TBAA(0), 72 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 73 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 74 RRData(0), CFConstantStringClassRef(0), 75 ConstantStringClassRef(0), NSConstantStringType(0), 76 VMContext(M.getContext()), 77 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 78 BlockObjectAssign(0), BlockObjectDispose(0), 79 BlockDescriptorType(0), GenericBlockLiteralType(0) { 80 81 // Initialize the type cache. 82 llvm::LLVMContext &LLVMContext = M.getContext(); 83 VoidTy = llvm::Type::getVoidTy(LLVMContext); 84 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 85 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 86 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 87 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 88 FloatTy = llvm::Type::getFloatTy(LLVMContext); 89 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 90 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 91 PointerAlignInBytes = 92 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 93 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 94 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 95 Int8PtrTy = Int8Ty->getPointerTo(0); 96 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 97 98 if (LangOpts.ObjC1) 99 createObjCRuntime(); 100 if (LangOpts.OpenCL) 101 createOpenCLRuntime(); 102 if (LangOpts.CUDA) 103 createCUDARuntime(); 104 105 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 106 if (LangOpts.ThreadSanitizer || 107 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 108 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 109 ABI.getMangleContext()); 110 111 // If debug info or coverage generation is enabled, create the CGDebugInfo 112 // object. 113 if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo || 114 CodeGenOpts.EmitGcovArcs || 115 CodeGenOpts.EmitGcovNotes) 116 DebugInfo = new CGDebugInfo(*this); 117 118 Block.GlobalUniqueCount = 0; 119 120 if (C.getLangOpts().ObjCAutoRefCount) 121 ARCData = new ARCEntrypoints(); 122 RRData = new RREntrypoints(); 123 } 124 125 CodeGenModule::~CodeGenModule() { 126 delete ObjCRuntime; 127 delete OpenCLRuntime; 128 delete CUDARuntime; 129 delete TheTargetCodeGenInfo; 130 delete &ABI; 131 delete TBAA; 132 delete DebugInfo; 133 delete ARCData; 134 delete RRData; 135 } 136 137 void CodeGenModule::createObjCRuntime() { 138 // This is just isGNUFamily(), but we want to force implementors of 139 // new ABIs to decide how best to do this. 140 switch (LangOpts.ObjCRuntime.getKind()) { 141 case ObjCRuntime::GNUstep: 142 case ObjCRuntime::GCC: 143 case ObjCRuntime::ObjFW: 144 ObjCRuntime = CreateGNUObjCRuntime(*this); 145 return; 146 147 case ObjCRuntime::FragileMacOSX: 148 case ObjCRuntime::MacOSX: 149 case ObjCRuntime::iOS: 150 ObjCRuntime = CreateMacObjCRuntime(*this); 151 return; 152 } 153 llvm_unreachable("bad runtime kind"); 154 } 155 156 void CodeGenModule::createOpenCLRuntime() { 157 OpenCLRuntime = new CGOpenCLRuntime(*this); 158 } 159 160 void CodeGenModule::createCUDARuntime() { 161 CUDARuntime = CreateNVCUDARuntime(*this); 162 } 163 164 void CodeGenModule::Release() { 165 EmitDeferred(); 166 EmitCXXGlobalInitFunc(); 167 EmitCXXGlobalDtorFunc(); 168 if (ObjCRuntime) 169 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 170 AddGlobalCtor(ObjCInitFunction); 171 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 172 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 173 EmitGlobalAnnotations(); 174 EmitLLVMUsed(); 175 176 SimplifyPersonality(); 177 178 if (getCodeGenOpts().EmitDeclMetadata) 179 EmitDeclMetadata(); 180 181 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 182 EmitCoverageFile(); 183 184 if (DebugInfo) 185 DebugInfo->finalize(); 186 } 187 188 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 189 // Make sure that this type is translated. 190 Types.UpdateCompletedType(TD); 191 } 192 193 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 194 if (!TBAA) 195 return 0; 196 return TBAA->getTBAAInfo(QTy); 197 } 198 199 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 200 if (!TBAA) 201 return 0; 202 return TBAA->getTBAAInfoForVTablePtr(); 203 } 204 205 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 206 llvm::MDNode *TBAAInfo) { 207 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 208 } 209 210 bool CodeGenModule::isTargetDarwin() const { 211 return getContext().getTargetInfo().getTriple().isOSDarwin(); 212 } 213 214 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 215 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 216 getDiags().Report(Context.getFullLoc(loc), diagID); 217 } 218 219 /// ErrorUnsupported - Print out an error that codegen doesn't support the 220 /// specified stmt yet. 221 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 222 bool OmitOnError) { 223 if (OmitOnError && getDiags().hasErrorOccurred()) 224 return; 225 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 226 "cannot compile this %0 yet"); 227 std::string Msg = Type; 228 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 229 << Msg << S->getSourceRange(); 230 } 231 232 /// ErrorUnsupported - Print out an error that codegen doesn't support the 233 /// specified decl yet. 234 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 235 bool OmitOnError) { 236 if (OmitOnError && getDiags().hasErrorOccurred()) 237 return; 238 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 239 "cannot compile this %0 yet"); 240 std::string Msg = Type; 241 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 242 } 243 244 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 245 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 246 } 247 248 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 249 const NamedDecl *D) const { 250 // Internal definitions always have default visibility. 251 if (GV->hasLocalLinkage()) { 252 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 253 return; 254 } 255 256 // Set visibility for definitions. 257 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 258 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 259 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 260 } 261 262 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 263 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 264 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 265 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 266 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 267 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 268 } 269 270 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 271 CodeGenOptions::TLSModel M) { 272 switch (M) { 273 case CodeGenOptions::GeneralDynamicTLSModel: 274 return llvm::GlobalVariable::GeneralDynamicTLSModel; 275 case CodeGenOptions::LocalDynamicTLSModel: 276 return llvm::GlobalVariable::LocalDynamicTLSModel; 277 case CodeGenOptions::InitialExecTLSModel: 278 return llvm::GlobalVariable::InitialExecTLSModel; 279 case CodeGenOptions::LocalExecTLSModel: 280 return llvm::GlobalVariable::LocalExecTLSModel; 281 } 282 llvm_unreachable("Invalid TLS model!"); 283 } 284 285 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 286 const VarDecl &D) const { 287 assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!"); 288 289 llvm::GlobalVariable::ThreadLocalMode TLM; 290 TLM = GetLLVMTLSModel(CodeGenOpts.DefaultTLSModel); 291 292 // Override the TLS model if it is explicitly specified. 293 if (D.hasAttr<TLSModelAttr>()) { 294 const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>(); 295 TLM = GetLLVMTLSModel(Attr->getModel()); 296 } 297 298 GV->setThreadLocalMode(TLM); 299 } 300 301 /// Set the symbol visibility of type information (vtable and RTTI) 302 /// associated with the given type. 303 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 304 const CXXRecordDecl *RD, 305 TypeVisibilityKind TVK) const { 306 setGlobalVisibility(GV, RD); 307 308 if (!CodeGenOpts.HiddenWeakVTables) 309 return; 310 311 // We never want to drop the visibility for RTTI names. 312 if (TVK == TVK_ForRTTIName) 313 return; 314 315 // We want to drop the visibility to hidden for weak type symbols. 316 // This isn't possible if there might be unresolved references 317 // elsewhere that rely on this symbol being visible. 318 319 // This should be kept roughly in sync with setThunkVisibility 320 // in CGVTables.cpp. 321 322 // Preconditions. 323 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 324 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 325 return; 326 327 // Don't override an explicit visibility attribute. 328 if (RD->getExplicitVisibility()) 329 return; 330 331 switch (RD->getTemplateSpecializationKind()) { 332 // We have to disable the optimization if this is an EI definition 333 // because there might be EI declarations in other shared objects. 334 case TSK_ExplicitInstantiationDefinition: 335 case TSK_ExplicitInstantiationDeclaration: 336 return; 337 338 // Every use of a non-template class's type information has to emit it. 339 case TSK_Undeclared: 340 break; 341 342 // In theory, implicit instantiations can ignore the possibility of 343 // an explicit instantiation declaration because there necessarily 344 // must be an EI definition somewhere with default visibility. In 345 // practice, it's possible to have an explicit instantiation for 346 // an arbitrary template class, and linkers aren't necessarily able 347 // to deal with mixed-visibility symbols. 348 case TSK_ExplicitSpecialization: 349 case TSK_ImplicitInstantiation: 350 if (!CodeGenOpts.HiddenWeakTemplateVTables) 351 return; 352 break; 353 } 354 355 // If there's a key function, there may be translation units 356 // that don't have the key function's definition. But ignore 357 // this if we're emitting RTTI under -fno-rtti. 358 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 359 if (Context.getKeyFunction(RD)) 360 return; 361 } 362 363 // Otherwise, drop the visibility to hidden. 364 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 365 GV->setUnnamedAddr(true); 366 } 367 368 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 369 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 370 371 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 372 if (!Str.empty()) 373 return Str; 374 375 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 376 IdentifierInfo *II = ND->getIdentifier(); 377 assert(II && "Attempt to mangle unnamed decl."); 378 379 Str = II->getName(); 380 return Str; 381 } 382 383 SmallString<256> Buffer; 384 llvm::raw_svector_ostream Out(Buffer); 385 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 386 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 387 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 388 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 389 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 390 getCXXABI().getMangleContext().mangleBlock(BD, Out, 391 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl())); 392 else 393 getCXXABI().getMangleContext().mangleName(ND, Out); 394 395 // Allocate space for the mangled name. 396 Out.flush(); 397 size_t Length = Buffer.size(); 398 char *Name = MangledNamesAllocator.Allocate<char>(Length); 399 std::copy(Buffer.begin(), Buffer.end(), Name); 400 401 Str = StringRef(Name, Length); 402 403 return Str; 404 } 405 406 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 407 const BlockDecl *BD) { 408 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 409 const Decl *D = GD.getDecl(); 410 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 411 if (D == 0) 412 MangleCtx.mangleGlobalBlock(BD, 413 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 414 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 415 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 416 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 417 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 418 else 419 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 420 } 421 422 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 423 return getModule().getNamedValue(Name); 424 } 425 426 /// AddGlobalCtor - Add a function to the list that will be called before 427 /// main() runs. 428 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 429 // FIXME: Type coercion of void()* types. 430 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 431 } 432 433 /// AddGlobalDtor - Add a function to the list that will be called 434 /// when the module is unloaded. 435 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 436 // FIXME: Type coercion of void()* types. 437 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 438 } 439 440 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 441 // Ctor function type is void()*. 442 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 443 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 444 445 // Get the type of a ctor entry, { i32, void ()* }. 446 llvm::StructType *CtorStructTy = 447 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 448 449 // Construct the constructor and destructor arrays. 450 SmallVector<llvm::Constant*, 8> Ctors; 451 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 452 llvm::Constant *S[] = { 453 llvm::ConstantInt::get(Int32Ty, I->second, false), 454 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 455 }; 456 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 457 } 458 459 if (!Ctors.empty()) { 460 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 461 new llvm::GlobalVariable(TheModule, AT, false, 462 llvm::GlobalValue::AppendingLinkage, 463 llvm::ConstantArray::get(AT, Ctors), 464 GlobalName); 465 } 466 } 467 468 llvm::GlobalValue::LinkageTypes 469 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 470 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 471 472 if (Linkage == GVA_Internal) 473 return llvm::Function::InternalLinkage; 474 475 if (D->hasAttr<DLLExportAttr>()) 476 return llvm::Function::DLLExportLinkage; 477 478 if (D->hasAttr<WeakAttr>()) 479 return llvm::Function::WeakAnyLinkage; 480 481 // In C99 mode, 'inline' functions are guaranteed to have a strong 482 // definition somewhere else, so we can use available_externally linkage. 483 if (Linkage == GVA_C99Inline) 484 return llvm::Function::AvailableExternallyLinkage; 485 486 // Note that Apple's kernel linker doesn't support symbol 487 // coalescing, so we need to avoid linkonce and weak linkages there. 488 // Normally, this means we just map to internal, but for explicit 489 // instantiations we'll map to external. 490 491 // In C++, the compiler has to emit a definition in every translation unit 492 // that references the function. We should use linkonce_odr because 493 // a) if all references in this translation unit are optimized away, we 494 // don't need to codegen it. b) if the function persists, it needs to be 495 // merged with other definitions. c) C++ has the ODR, so we know the 496 // definition is dependable. 497 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 498 return !Context.getLangOpts().AppleKext 499 ? llvm::Function::LinkOnceODRLinkage 500 : llvm::Function::InternalLinkage; 501 502 // An explicit instantiation of a template has weak linkage, since 503 // explicit instantiations can occur in multiple translation units 504 // and must all be equivalent. However, we are not allowed to 505 // throw away these explicit instantiations. 506 if (Linkage == GVA_ExplicitTemplateInstantiation) 507 return !Context.getLangOpts().AppleKext 508 ? llvm::Function::WeakODRLinkage 509 : llvm::Function::ExternalLinkage; 510 511 // Otherwise, we have strong external linkage. 512 assert(Linkage == GVA_StrongExternal); 513 return llvm::Function::ExternalLinkage; 514 } 515 516 517 /// SetFunctionDefinitionAttributes - Set attributes for a global. 518 /// 519 /// FIXME: This is currently only done for aliases and functions, but not for 520 /// variables (these details are set in EmitGlobalVarDefinition for variables). 521 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 522 llvm::GlobalValue *GV) { 523 SetCommonAttributes(D, GV); 524 } 525 526 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 527 const CGFunctionInfo &Info, 528 llvm::Function *F) { 529 unsigned CallingConv; 530 AttributeListType AttributeList; 531 ConstructAttributeList(Info, D, AttributeList, CallingConv); 532 F->setAttributes(llvm::AttrListPtr::get(AttributeList)); 533 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 534 } 535 536 /// Determines whether the language options require us to model 537 /// unwind exceptions. We treat -fexceptions as mandating this 538 /// except under the fragile ObjC ABI with only ObjC exceptions 539 /// enabled. This means, for example, that C with -fexceptions 540 /// enables this. 541 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 542 // If exceptions are completely disabled, obviously this is false. 543 if (!LangOpts.Exceptions) return false; 544 545 // If C++ exceptions are enabled, this is true. 546 if (LangOpts.CXXExceptions) return true; 547 548 // If ObjC exceptions are enabled, this depends on the ABI. 549 if (LangOpts.ObjCExceptions) { 550 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 551 } 552 553 return true; 554 } 555 556 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 557 llvm::Function *F) { 558 if (CodeGenOpts.UnwindTables) 559 F->setHasUWTable(); 560 561 if (!hasUnwindExceptions(LangOpts)) 562 F->addFnAttr(llvm::Attribute::NoUnwind); 563 564 if (D->hasAttr<NakedAttr>()) { 565 // Naked implies noinline: we should not be inlining such functions. 566 F->addFnAttr(llvm::Attribute::Naked); 567 F->addFnAttr(llvm::Attribute::NoInline); 568 } 569 570 if (D->hasAttr<NoInlineAttr>()) 571 F->addFnAttr(llvm::Attribute::NoInline); 572 573 // (noinline wins over always_inline, and we can't specify both in IR) 574 if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) && 575 !F->hasFnAttr(llvm::Attribute::NoInline)) 576 F->addFnAttr(llvm::Attribute::AlwaysInline); 577 578 // FIXME: Communicate hot and cold attributes to LLVM more directly. 579 if (D->hasAttr<ColdAttr>()) 580 F->addFnAttr(llvm::Attribute::OptimizeForSize); 581 582 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 583 F->setUnnamedAddr(true); 584 585 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 586 F->addFnAttr(llvm::Attribute::StackProtect); 587 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 588 F->addFnAttr(llvm::Attribute::StackProtectReq); 589 590 if (LangOpts.AddressSanitizer) { 591 // When AddressSanitizer is enabled, set AddressSafety attribute 592 // unless __attribute__((no_address_safety_analysis)) is used. 593 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 594 F->addFnAttr(llvm::Attribute::AddressSafety); 595 } 596 597 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 598 if (alignment) 599 F->setAlignment(alignment); 600 601 // C++ ABI requires 2-byte alignment for member functions. 602 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 603 F->setAlignment(2); 604 } 605 606 void CodeGenModule::SetCommonAttributes(const Decl *D, 607 llvm::GlobalValue *GV) { 608 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 609 setGlobalVisibility(GV, ND); 610 else 611 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 612 613 if (D->hasAttr<UsedAttr>()) 614 AddUsedGlobal(GV); 615 616 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 617 GV->setSection(SA->getName()); 618 619 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 620 } 621 622 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 623 llvm::Function *F, 624 const CGFunctionInfo &FI) { 625 SetLLVMFunctionAttributes(D, FI, F); 626 SetLLVMFunctionAttributesForDefinition(D, F); 627 628 F->setLinkage(llvm::Function::InternalLinkage); 629 630 SetCommonAttributes(D, F); 631 } 632 633 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 634 llvm::Function *F, 635 bool IsIncompleteFunction) { 636 if (unsigned IID = F->getIntrinsicID()) { 637 // If this is an intrinsic function, set the function's attributes 638 // to the intrinsic's attributes. 639 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 640 return; 641 } 642 643 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 644 645 if (!IsIncompleteFunction) 646 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 647 648 // Only a few attributes are set on declarations; these may later be 649 // overridden by a definition. 650 651 if (FD->hasAttr<DLLImportAttr>()) { 652 F->setLinkage(llvm::Function::DLLImportLinkage); 653 } else if (FD->hasAttr<WeakAttr>() || 654 FD->isWeakImported()) { 655 // "extern_weak" is overloaded in LLVM; we probably should have 656 // separate linkage types for this. 657 F->setLinkage(llvm::Function::ExternalWeakLinkage); 658 } else { 659 F->setLinkage(llvm::Function::ExternalLinkage); 660 661 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 662 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 663 F->setVisibility(GetLLVMVisibility(LV.visibility())); 664 } 665 } 666 667 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 668 F->setSection(SA->getName()); 669 } 670 671 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 672 assert(!GV->isDeclaration() && 673 "Only globals with definition can force usage."); 674 LLVMUsed.push_back(GV); 675 } 676 677 void CodeGenModule::EmitLLVMUsed() { 678 // Don't create llvm.used if there is no need. 679 if (LLVMUsed.empty()) 680 return; 681 682 // Convert LLVMUsed to what ConstantArray needs. 683 SmallVector<llvm::Constant*, 8> UsedArray; 684 UsedArray.resize(LLVMUsed.size()); 685 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 686 UsedArray[i] = 687 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 688 Int8PtrTy); 689 } 690 691 if (UsedArray.empty()) 692 return; 693 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 694 695 llvm::GlobalVariable *GV = 696 new llvm::GlobalVariable(getModule(), ATy, false, 697 llvm::GlobalValue::AppendingLinkage, 698 llvm::ConstantArray::get(ATy, UsedArray), 699 "llvm.used"); 700 701 GV->setSection("llvm.metadata"); 702 } 703 704 void CodeGenModule::EmitDeferred() { 705 // Emit code for any potentially referenced deferred decls. Since a 706 // previously unused static decl may become used during the generation of code 707 // for a static function, iterate until no changes are made. 708 709 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 710 if (!DeferredVTables.empty()) { 711 const CXXRecordDecl *RD = DeferredVTables.back(); 712 DeferredVTables.pop_back(); 713 getCXXABI().EmitVTables(RD); 714 continue; 715 } 716 717 GlobalDecl D = DeferredDeclsToEmit.back(); 718 DeferredDeclsToEmit.pop_back(); 719 720 // Check to see if we've already emitted this. This is necessary 721 // for a couple of reasons: first, decls can end up in the 722 // deferred-decls queue multiple times, and second, decls can end 723 // up with definitions in unusual ways (e.g. by an extern inline 724 // function acquiring a strong function redefinition). Just 725 // ignore these cases. 726 // 727 // TODO: That said, looking this up multiple times is very wasteful. 728 StringRef Name = getMangledName(D); 729 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 730 assert(CGRef && "Deferred decl wasn't referenced?"); 731 732 if (!CGRef->isDeclaration()) 733 continue; 734 735 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 736 // purposes an alias counts as a definition. 737 if (isa<llvm::GlobalAlias>(CGRef)) 738 continue; 739 740 // Otherwise, emit the definition and move on to the next one. 741 EmitGlobalDefinition(D); 742 } 743 } 744 745 void CodeGenModule::EmitGlobalAnnotations() { 746 if (Annotations.empty()) 747 return; 748 749 // Create a new global variable for the ConstantStruct in the Module. 750 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 751 Annotations[0]->getType(), Annotations.size()), Annotations); 752 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 753 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 754 "llvm.global.annotations"); 755 gv->setSection(AnnotationSection); 756 } 757 758 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 759 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 760 if (i != AnnotationStrings.end()) 761 return i->second; 762 763 // Not found yet, create a new global. 764 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 765 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 766 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 767 gv->setSection(AnnotationSection); 768 gv->setUnnamedAddr(true); 769 AnnotationStrings[Str] = gv; 770 return gv; 771 } 772 773 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 774 SourceManager &SM = getContext().getSourceManager(); 775 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 776 if (PLoc.isValid()) 777 return EmitAnnotationString(PLoc.getFilename()); 778 return EmitAnnotationString(SM.getBufferName(Loc)); 779 } 780 781 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 782 SourceManager &SM = getContext().getSourceManager(); 783 PresumedLoc PLoc = SM.getPresumedLoc(L); 784 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 785 SM.getExpansionLineNumber(L); 786 return llvm::ConstantInt::get(Int32Ty, LineNo); 787 } 788 789 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 790 const AnnotateAttr *AA, 791 SourceLocation L) { 792 // Get the globals for file name, annotation, and the line number. 793 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 794 *UnitGV = EmitAnnotationUnit(L), 795 *LineNoCst = EmitAnnotationLineNo(L); 796 797 // Create the ConstantStruct for the global annotation. 798 llvm::Constant *Fields[4] = { 799 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 800 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 801 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 802 LineNoCst 803 }; 804 return llvm::ConstantStruct::getAnon(Fields); 805 } 806 807 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 808 llvm::GlobalValue *GV) { 809 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 810 // Get the struct elements for these annotations. 811 for (specific_attr_iterator<AnnotateAttr> 812 ai = D->specific_attr_begin<AnnotateAttr>(), 813 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 814 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 815 } 816 817 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 818 // Never defer when EmitAllDecls is specified. 819 if (LangOpts.EmitAllDecls) 820 return false; 821 822 return !getContext().DeclMustBeEmitted(Global); 823 } 824 825 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 826 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 827 assert(AA && "No alias?"); 828 829 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 830 831 // See if there is already something with the target's name in the module. 832 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 833 834 llvm::Constant *Aliasee; 835 if (isa<llvm::FunctionType>(DeclTy)) 836 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 837 /*ForVTable=*/false); 838 else 839 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 840 llvm::PointerType::getUnqual(DeclTy), 0); 841 if (!Entry) { 842 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 843 F->setLinkage(llvm::Function::ExternalWeakLinkage); 844 WeakRefReferences.insert(F); 845 } 846 847 return Aliasee; 848 } 849 850 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 851 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 852 853 // Weak references don't produce any output by themselves. 854 if (Global->hasAttr<WeakRefAttr>()) 855 return; 856 857 // If this is an alias definition (which otherwise looks like a declaration) 858 // emit it now. 859 if (Global->hasAttr<AliasAttr>()) 860 return EmitAliasDefinition(GD); 861 862 // If this is CUDA, be selective about which declarations we emit. 863 if (LangOpts.CUDA) { 864 if (CodeGenOpts.CUDAIsDevice) { 865 if (!Global->hasAttr<CUDADeviceAttr>() && 866 !Global->hasAttr<CUDAGlobalAttr>() && 867 !Global->hasAttr<CUDAConstantAttr>() && 868 !Global->hasAttr<CUDASharedAttr>()) 869 return; 870 } else { 871 if (!Global->hasAttr<CUDAHostAttr>() && ( 872 Global->hasAttr<CUDADeviceAttr>() || 873 Global->hasAttr<CUDAConstantAttr>() || 874 Global->hasAttr<CUDASharedAttr>())) 875 return; 876 } 877 } 878 879 // Ignore declarations, they will be emitted on their first use. 880 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 881 // Forward declarations are emitted lazily on first use. 882 if (!FD->doesThisDeclarationHaveABody()) { 883 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 884 return; 885 886 const FunctionDecl *InlineDefinition = 0; 887 FD->getBody(InlineDefinition); 888 889 StringRef MangledName = getMangledName(GD); 890 DeferredDecls.erase(MangledName); 891 EmitGlobalDefinition(InlineDefinition); 892 return; 893 } 894 } else { 895 const VarDecl *VD = cast<VarDecl>(Global); 896 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 897 898 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 899 return; 900 } 901 902 // Defer code generation when possible if this is a static definition, inline 903 // function etc. These we only want to emit if they are used. 904 if (!MayDeferGeneration(Global)) { 905 // Emit the definition if it can't be deferred. 906 EmitGlobalDefinition(GD); 907 return; 908 } 909 910 // If we're deferring emission of a C++ variable with an 911 // initializer, remember the order in which it appeared in the file. 912 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 913 cast<VarDecl>(Global)->hasInit()) { 914 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 915 CXXGlobalInits.push_back(0); 916 } 917 918 // If the value has already been used, add it directly to the 919 // DeferredDeclsToEmit list. 920 StringRef MangledName = getMangledName(GD); 921 if (GetGlobalValue(MangledName)) 922 DeferredDeclsToEmit.push_back(GD); 923 else { 924 // Otherwise, remember that we saw a deferred decl with this name. The 925 // first use of the mangled name will cause it to move into 926 // DeferredDeclsToEmit. 927 DeferredDecls[MangledName] = GD; 928 } 929 } 930 931 namespace { 932 struct FunctionIsDirectlyRecursive : 933 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 934 const StringRef Name; 935 const Builtin::Context &BI; 936 bool Result; 937 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 938 Name(N), BI(C), Result(false) { 939 } 940 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 941 942 bool TraverseCallExpr(CallExpr *E) { 943 const FunctionDecl *FD = E->getDirectCallee(); 944 if (!FD) 945 return true; 946 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 947 if (Attr && Name == Attr->getLabel()) { 948 Result = true; 949 return false; 950 } 951 unsigned BuiltinID = FD->getBuiltinID(); 952 if (!BuiltinID) 953 return true; 954 StringRef BuiltinName = BI.GetName(BuiltinID); 955 if (BuiltinName.startswith("__builtin_") && 956 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 957 Result = true; 958 return false; 959 } 960 return true; 961 } 962 }; 963 } 964 965 // isTriviallyRecursive - Check if this function calls another 966 // decl that, because of the asm attribute or the other decl being a builtin, 967 // ends up pointing to itself. 968 bool 969 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 970 StringRef Name; 971 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 972 // asm labels are a special kind of mangling we have to support. 973 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 974 if (!Attr) 975 return false; 976 Name = Attr->getLabel(); 977 } else { 978 Name = FD->getName(); 979 } 980 981 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 982 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 983 return Walker.Result; 984 } 985 986 bool 987 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 988 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 989 return true; 990 if (CodeGenOpts.OptimizationLevel == 0 && 991 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 992 return false; 993 // PR9614. Avoid cases where the source code is lying to us. An available 994 // externally function should have an equivalent function somewhere else, 995 // but a function that calls itself is clearly not equivalent to the real 996 // implementation. 997 // This happens in glibc's btowc and in some configure checks. 998 return !isTriviallyRecursive(F); 999 } 1000 1001 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 1002 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1003 1004 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1005 Context.getSourceManager(), 1006 "Generating code for declaration"); 1007 1008 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 1009 // At -O0, don't generate IR for functions with available_externally 1010 // linkage. 1011 if (!shouldEmitFunction(Function)) 1012 return; 1013 1014 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1015 // Make sure to emit the definition(s) before we emit the thunks. 1016 // This is necessary for the generation of certain thunks. 1017 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1018 EmitCXXConstructor(CD, GD.getCtorType()); 1019 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1020 EmitCXXDestructor(DD, GD.getDtorType()); 1021 else 1022 EmitGlobalFunctionDefinition(GD); 1023 1024 if (Method->isVirtual()) 1025 getVTables().EmitThunks(GD); 1026 1027 return; 1028 } 1029 1030 return EmitGlobalFunctionDefinition(GD); 1031 } 1032 1033 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1034 return EmitGlobalVarDefinition(VD); 1035 1036 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1037 } 1038 1039 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1040 /// module, create and return an llvm Function with the specified type. If there 1041 /// is something in the module with the specified name, return it potentially 1042 /// bitcasted to the right type. 1043 /// 1044 /// If D is non-null, it specifies a decl that correspond to this. This is used 1045 /// to set the attributes on the function when it is first created. 1046 llvm::Constant * 1047 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1048 llvm::Type *Ty, 1049 GlobalDecl D, bool ForVTable, 1050 llvm::Attributes ExtraAttrs) { 1051 // Lookup the entry, lazily creating it if necessary. 1052 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1053 if (Entry) { 1054 if (WeakRefReferences.count(Entry)) { 1055 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 1056 if (FD && !FD->hasAttr<WeakAttr>()) 1057 Entry->setLinkage(llvm::Function::ExternalLinkage); 1058 1059 WeakRefReferences.erase(Entry); 1060 } 1061 1062 if (Entry->getType()->getElementType() == Ty) 1063 return Entry; 1064 1065 // Make sure the result is of the correct type. 1066 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1067 } 1068 1069 // This function doesn't have a complete type (for example, the return 1070 // type is an incomplete struct). Use a fake type instead, and make 1071 // sure not to try to set attributes. 1072 bool IsIncompleteFunction = false; 1073 1074 llvm::FunctionType *FTy; 1075 if (isa<llvm::FunctionType>(Ty)) { 1076 FTy = cast<llvm::FunctionType>(Ty); 1077 } else { 1078 FTy = llvm::FunctionType::get(VoidTy, false); 1079 IsIncompleteFunction = true; 1080 } 1081 1082 llvm::Function *F = llvm::Function::Create(FTy, 1083 llvm::Function::ExternalLinkage, 1084 MangledName, &getModule()); 1085 assert(F->getName() == MangledName && "name was uniqued!"); 1086 if (D.getDecl()) 1087 SetFunctionAttributes(D, F, IsIncompleteFunction); 1088 if (ExtraAttrs != llvm::Attribute::None) 1089 F->addFnAttr(ExtraAttrs); 1090 1091 // This is the first use or definition of a mangled name. If there is a 1092 // deferred decl with this name, remember that we need to emit it at the end 1093 // of the file. 1094 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1095 if (DDI != DeferredDecls.end()) { 1096 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1097 // list, and remove it from DeferredDecls (since we don't need it anymore). 1098 DeferredDeclsToEmit.push_back(DDI->second); 1099 DeferredDecls.erase(DDI); 1100 1101 // Otherwise, there are cases we have to worry about where we're 1102 // using a declaration for which we must emit a definition but where 1103 // we might not find a top-level definition: 1104 // - member functions defined inline in their classes 1105 // - friend functions defined inline in some class 1106 // - special member functions with implicit definitions 1107 // If we ever change our AST traversal to walk into class methods, 1108 // this will be unnecessary. 1109 // 1110 // We also don't emit a definition for a function if it's going to be an entry 1111 // in a vtable, unless it's already marked as used. 1112 } else if (getLangOpts().CPlusPlus && D.getDecl()) { 1113 // Look for a declaration that's lexically in a record. 1114 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1115 FD = FD->getMostRecentDecl(); 1116 do { 1117 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1118 if (FD->isImplicit() && !ForVTable) { 1119 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1120 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1121 break; 1122 } else if (FD->doesThisDeclarationHaveABody()) { 1123 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1124 break; 1125 } 1126 } 1127 FD = FD->getPreviousDecl(); 1128 } while (FD); 1129 } 1130 1131 // Make sure the result is of the requested type. 1132 if (!IsIncompleteFunction) { 1133 assert(F->getType()->getElementType() == Ty); 1134 return F; 1135 } 1136 1137 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1138 return llvm::ConstantExpr::getBitCast(F, PTy); 1139 } 1140 1141 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1142 /// non-null, then this function will use the specified type if it has to 1143 /// create it (this occurs when we see a definition of the function). 1144 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1145 llvm::Type *Ty, 1146 bool ForVTable) { 1147 // If there was no specific requested type, just convert it now. 1148 if (!Ty) 1149 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1150 1151 StringRef MangledName = getMangledName(GD); 1152 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1153 } 1154 1155 /// CreateRuntimeFunction - Create a new runtime function with the specified 1156 /// type and name. 1157 llvm::Constant * 1158 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1159 StringRef Name, 1160 llvm::Attributes ExtraAttrs) { 1161 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1162 ExtraAttrs); 1163 } 1164 1165 /// isTypeConstant - Determine whether an object of this type can be emitted 1166 /// as a constant. 1167 /// 1168 /// If ExcludeCtor is true, the duration when the object's constructor runs 1169 /// will not be considered. The caller will need to verify that the object is 1170 /// not written to during its construction. 1171 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1172 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1173 return false; 1174 1175 if (Context.getLangOpts().CPlusPlus) { 1176 if (const CXXRecordDecl *Record 1177 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1178 return ExcludeCtor && !Record->hasMutableFields() && 1179 Record->hasTrivialDestructor(); 1180 } 1181 1182 return true; 1183 } 1184 1185 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1186 /// create and return an llvm GlobalVariable with the specified type. If there 1187 /// is something in the module with the specified name, return it potentially 1188 /// bitcasted to the right type. 1189 /// 1190 /// If D is non-null, it specifies a decl that correspond to this. This is used 1191 /// to set the attributes on the global when it is first created. 1192 llvm::Constant * 1193 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1194 llvm::PointerType *Ty, 1195 const VarDecl *D, 1196 bool UnnamedAddr) { 1197 // Lookup the entry, lazily creating it if necessary. 1198 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1199 if (Entry) { 1200 if (WeakRefReferences.count(Entry)) { 1201 if (D && !D->hasAttr<WeakAttr>()) 1202 Entry->setLinkage(llvm::Function::ExternalLinkage); 1203 1204 WeakRefReferences.erase(Entry); 1205 } 1206 1207 if (UnnamedAddr) 1208 Entry->setUnnamedAddr(true); 1209 1210 if (Entry->getType() == Ty) 1211 return Entry; 1212 1213 // Make sure the result is of the correct type. 1214 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1215 } 1216 1217 // This is the first use or definition of a mangled name. If there is a 1218 // deferred decl with this name, remember that we need to emit it at the end 1219 // of the file. 1220 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1221 if (DDI != DeferredDecls.end()) { 1222 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1223 // list, and remove it from DeferredDecls (since we don't need it anymore). 1224 DeferredDeclsToEmit.push_back(DDI->second); 1225 DeferredDecls.erase(DDI); 1226 } 1227 1228 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1229 llvm::GlobalVariable *GV = 1230 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1231 llvm::GlobalValue::ExternalLinkage, 1232 0, MangledName, 0, 1233 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1234 1235 // Handle things which are present even on external declarations. 1236 if (D) { 1237 // FIXME: This code is overly simple and should be merged with other global 1238 // handling. 1239 GV->setConstant(isTypeConstant(D->getType(), false)); 1240 1241 // Set linkage and visibility in case we never see a definition. 1242 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1243 if (LV.linkage() != ExternalLinkage) { 1244 // Don't set internal linkage on declarations. 1245 } else { 1246 if (D->hasAttr<DLLImportAttr>()) 1247 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1248 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1249 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1250 1251 // Set visibility on a declaration only if it's explicit. 1252 if (LV.visibilityExplicit()) 1253 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1254 } 1255 1256 if (D->isThreadSpecified()) 1257 setTLSMode(GV, *D); 1258 } 1259 1260 if (AddrSpace != Ty->getAddressSpace()) 1261 return llvm::ConstantExpr::getBitCast(GV, Ty); 1262 else 1263 return GV; 1264 } 1265 1266 1267 llvm::GlobalVariable * 1268 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1269 llvm::Type *Ty, 1270 llvm::GlobalValue::LinkageTypes Linkage) { 1271 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1272 llvm::GlobalVariable *OldGV = 0; 1273 1274 1275 if (GV) { 1276 // Check if the variable has the right type. 1277 if (GV->getType()->getElementType() == Ty) 1278 return GV; 1279 1280 // Because C++ name mangling, the only way we can end up with an already 1281 // existing global with the same name is if it has been declared extern "C". 1282 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1283 OldGV = GV; 1284 } 1285 1286 // Create a new variable. 1287 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1288 Linkage, 0, Name); 1289 1290 if (OldGV) { 1291 // Replace occurrences of the old variable if needed. 1292 GV->takeName(OldGV); 1293 1294 if (!OldGV->use_empty()) { 1295 llvm::Constant *NewPtrForOldDecl = 1296 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1297 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1298 } 1299 1300 OldGV->eraseFromParent(); 1301 } 1302 1303 return GV; 1304 } 1305 1306 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1307 /// given global variable. If Ty is non-null and if the global doesn't exist, 1308 /// then it will be created with the specified type instead of whatever the 1309 /// normal requested type would be. 1310 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1311 llvm::Type *Ty) { 1312 assert(D->hasGlobalStorage() && "Not a global variable"); 1313 QualType ASTTy = D->getType(); 1314 if (Ty == 0) 1315 Ty = getTypes().ConvertTypeForMem(ASTTy); 1316 1317 llvm::PointerType *PTy = 1318 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1319 1320 StringRef MangledName = getMangledName(D); 1321 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1322 } 1323 1324 /// CreateRuntimeVariable - Create a new runtime global variable with the 1325 /// specified type and name. 1326 llvm::Constant * 1327 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1328 StringRef Name) { 1329 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1330 true); 1331 } 1332 1333 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1334 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1335 1336 if (MayDeferGeneration(D)) { 1337 // If we have not seen a reference to this variable yet, place it 1338 // into the deferred declarations table to be emitted if needed 1339 // later. 1340 StringRef MangledName = getMangledName(D); 1341 if (!GetGlobalValue(MangledName)) { 1342 DeferredDecls[MangledName] = D; 1343 return; 1344 } 1345 } 1346 1347 // The tentative definition is the only definition. 1348 EmitGlobalVarDefinition(D); 1349 } 1350 1351 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1352 if (DefinitionRequired) 1353 getCXXABI().EmitVTables(Class); 1354 } 1355 1356 llvm::GlobalVariable::LinkageTypes 1357 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1358 if (RD->getLinkage() != ExternalLinkage) 1359 return llvm::GlobalVariable::InternalLinkage; 1360 1361 if (const CXXMethodDecl *KeyFunction 1362 = RD->getASTContext().getKeyFunction(RD)) { 1363 // If this class has a key function, use that to determine the linkage of 1364 // the vtable. 1365 const FunctionDecl *Def = 0; 1366 if (KeyFunction->hasBody(Def)) 1367 KeyFunction = cast<CXXMethodDecl>(Def); 1368 1369 switch (KeyFunction->getTemplateSpecializationKind()) { 1370 case TSK_Undeclared: 1371 case TSK_ExplicitSpecialization: 1372 // When compiling with optimizations turned on, we emit all vtables, 1373 // even if the key function is not defined in the current translation 1374 // unit. If this is the case, use available_externally linkage. 1375 if (!Def && CodeGenOpts.OptimizationLevel) 1376 return llvm::GlobalVariable::AvailableExternallyLinkage; 1377 1378 if (KeyFunction->isInlined()) 1379 return !Context.getLangOpts().AppleKext ? 1380 llvm::GlobalVariable::LinkOnceODRLinkage : 1381 llvm::Function::InternalLinkage; 1382 1383 return llvm::GlobalVariable::ExternalLinkage; 1384 1385 case TSK_ImplicitInstantiation: 1386 return !Context.getLangOpts().AppleKext ? 1387 llvm::GlobalVariable::LinkOnceODRLinkage : 1388 llvm::Function::InternalLinkage; 1389 1390 case TSK_ExplicitInstantiationDefinition: 1391 return !Context.getLangOpts().AppleKext ? 1392 llvm::GlobalVariable::WeakODRLinkage : 1393 llvm::Function::InternalLinkage; 1394 1395 case TSK_ExplicitInstantiationDeclaration: 1396 // FIXME: Use available_externally linkage. However, this currently 1397 // breaks LLVM's build due to undefined symbols. 1398 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1399 return !Context.getLangOpts().AppleKext ? 1400 llvm::GlobalVariable::LinkOnceODRLinkage : 1401 llvm::Function::InternalLinkage; 1402 } 1403 } 1404 1405 if (Context.getLangOpts().AppleKext) 1406 return llvm::Function::InternalLinkage; 1407 1408 switch (RD->getTemplateSpecializationKind()) { 1409 case TSK_Undeclared: 1410 case TSK_ExplicitSpecialization: 1411 case TSK_ImplicitInstantiation: 1412 // FIXME: Use available_externally linkage. However, this currently 1413 // breaks LLVM's build due to undefined symbols. 1414 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1415 case TSK_ExplicitInstantiationDeclaration: 1416 return llvm::GlobalVariable::LinkOnceODRLinkage; 1417 1418 case TSK_ExplicitInstantiationDefinition: 1419 return llvm::GlobalVariable::WeakODRLinkage; 1420 } 1421 1422 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1423 } 1424 1425 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1426 return Context.toCharUnitsFromBits( 1427 TheTargetData.getTypeStoreSizeInBits(Ty)); 1428 } 1429 1430 llvm::Constant * 1431 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, 1432 const Expr *rawInit) { 1433 ArrayRef<ExprWithCleanups::CleanupObject> cleanups; 1434 if (const ExprWithCleanups *withCleanups = 1435 dyn_cast<ExprWithCleanups>(rawInit)) { 1436 cleanups = withCleanups->getObjects(); 1437 rawInit = withCleanups->getSubExpr(); 1438 } 1439 1440 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); 1441 if (!init || !init->initializesStdInitializerList() || 1442 init->getNumInits() == 0) 1443 return 0; 1444 1445 ASTContext &ctx = getContext(); 1446 unsigned numInits = init->getNumInits(); 1447 // FIXME: This check is here because we would otherwise silently miscompile 1448 // nested global std::initializer_lists. Better would be to have a real 1449 // implementation. 1450 for (unsigned i = 0; i < numInits; ++i) { 1451 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); 1452 if (inner && inner->initializesStdInitializerList()) { 1453 ErrorUnsupported(inner, "nested global std::initializer_list"); 1454 return 0; 1455 } 1456 } 1457 1458 // Synthesize a fake VarDecl for the array and initialize that. 1459 QualType elementType = init->getInit(0)->getType(); 1460 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); 1461 QualType arrayType = ctx.getConstantArrayType(elementType, numElements, 1462 ArrayType::Normal, 0); 1463 1464 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); 1465 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( 1466 arrayType, D->getLocation()); 1467 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( 1468 D->getDeclContext()), 1469 D->getLocStart(), D->getLocation(), 1470 name, arrayType, sourceInfo, 1471 SC_Static, SC_Static); 1472 1473 // Now clone the InitListExpr to initialize the array instead. 1474 // Incredible hack: we want to use the existing InitListExpr here, so we need 1475 // to tell it that it no longer initializes a std::initializer_list. 1476 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), 1477 const_cast<InitListExpr*>(init)->getInits(), 1478 init->getNumInits(), 1479 init->getRBraceLoc()); 1480 arrayInit->setType(arrayType); 1481 1482 if (!cleanups.empty()) 1483 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); 1484 1485 backingArray->setInit(arrayInit); 1486 1487 // Emit the definition of the array. 1488 EmitGlobalVarDefinition(backingArray); 1489 1490 // Inspect the initializer list to validate it and determine its type. 1491 // FIXME: doing this every time is probably inefficient; caching would be nice 1492 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); 1493 RecordDecl::field_iterator field = record->field_begin(); 1494 if (field == record->field_end()) { 1495 ErrorUnsupported(D, "weird std::initializer_list"); 1496 return 0; 1497 } 1498 QualType elementPtr = ctx.getPointerType(elementType.withConst()); 1499 // Start pointer. 1500 if (!ctx.hasSameType(field->getType(), elementPtr)) { 1501 ErrorUnsupported(D, "weird std::initializer_list"); 1502 return 0; 1503 } 1504 ++field; 1505 if (field == record->field_end()) { 1506 ErrorUnsupported(D, "weird std::initializer_list"); 1507 return 0; 1508 } 1509 bool isStartEnd = false; 1510 if (ctx.hasSameType(field->getType(), elementPtr)) { 1511 // End pointer. 1512 isStartEnd = true; 1513 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { 1514 ErrorUnsupported(D, "weird std::initializer_list"); 1515 return 0; 1516 } 1517 1518 // Now build an APValue representing the std::initializer_list. 1519 APValue initListValue(APValue::UninitStruct(), 0, 2); 1520 APValue &startField = initListValue.getStructField(0); 1521 APValue::LValuePathEntry startOffsetPathEntry; 1522 startOffsetPathEntry.ArrayIndex = 0; 1523 startField = APValue(APValue::LValueBase(backingArray), 1524 CharUnits::fromQuantity(0), 1525 llvm::makeArrayRef(startOffsetPathEntry), 1526 /*IsOnePastTheEnd=*/false, 0); 1527 1528 if (isStartEnd) { 1529 APValue &endField = initListValue.getStructField(1); 1530 APValue::LValuePathEntry endOffsetPathEntry; 1531 endOffsetPathEntry.ArrayIndex = numInits; 1532 endField = APValue(APValue::LValueBase(backingArray), 1533 ctx.getTypeSizeInChars(elementType) * numInits, 1534 llvm::makeArrayRef(endOffsetPathEntry), 1535 /*IsOnePastTheEnd=*/true, 0); 1536 } else { 1537 APValue &sizeField = initListValue.getStructField(1); 1538 sizeField = APValue(llvm::APSInt(numElements)); 1539 } 1540 1541 // Emit the constant for the initializer_list. 1542 llvm::Constant *llvmInit = 1543 EmitConstantValueForMemory(initListValue, D->getType()); 1544 assert(llvmInit && "failed to initialize as constant"); 1545 return llvmInit; 1546 } 1547 1548 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1549 unsigned AddrSpace) { 1550 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1551 if (D->hasAttr<CUDAConstantAttr>()) 1552 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1553 else if (D->hasAttr<CUDASharedAttr>()) 1554 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1555 else 1556 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1557 } 1558 1559 return AddrSpace; 1560 } 1561 1562 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1563 llvm::Constant *Init = 0; 1564 QualType ASTTy = D->getType(); 1565 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1566 bool NeedsGlobalCtor = false; 1567 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1568 1569 const VarDecl *InitDecl; 1570 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1571 1572 if (!InitExpr) { 1573 // This is a tentative definition; tentative definitions are 1574 // implicitly initialized with { 0 }. 1575 // 1576 // Note that tentative definitions are only emitted at the end of 1577 // a translation unit, so they should never have incomplete 1578 // type. In addition, EmitTentativeDefinition makes sure that we 1579 // never attempt to emit a tentative definition if a real one 1580 // exists. A use may still exists, however, so we still may need 1581 // to do a RAUW. 1582 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1583 Init = EmitNullConstant(D->getType()); 1584 } else { 1585 // If this is a std::initializer_list, emit the special initializer. 1586 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); 1587 // An empty init list will perform zero-initialization, which happens 1588 // to be exactly what we want. 1589 // FIXME: It does so in a global constructor, which is *not* what we 1590 // want. 1591 1592 if (!Init) { 1593 initializedGlobalDecl = GlobalDecl(D); 1594 Init = EmitConstantInit(*InitDecl); 1595 } 1596 if (!Init) { 1597 QualType T = InitExpr->getType(); 1598 if (D->getType()->isReferenceType()) 1599 T = D->getType(); 1600 1601 if (getLangOpts().CPlusPlus) { 1602 Init = EmitNullConstant(T); 1603 NeedsGlobalCtor = true; 1604 } else { 1605 ErrorUnsupported(D, "static initializer"); 1606 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1607 } 1608 } else { 1609 // We don't need an initializer, so remove the entry for the delayed 1610 // initializer position (just in case this entry was delayed) if we 1611 // also don't need to register a destructor. 1612 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1613 DelayedCXXInitPosition.erase(D); 1614 } 1615 } 1616 1617 llvm::Type* InitType = Init->getType(); 1618 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1619 1620 // Strip off a bitcast if we got one back. 1621 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1622 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1623 // all zero index gep. 1624 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1625 Entry = CE->getOperand(0); 1626 } 1627 1628 // Entry is now either a Function or GlobalVariable. 1629 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1630 1631 // We have a definition after a declaration with the wrong type. 1632 // We must make a new GlobalVariable* and update everything that used OldGV 1633 // (a declaration or tentative definition) with the new GlobalVariable* 1634 // (which will be a definition). 1635 // 1636 // This happens if there is a prototype for a global (e.g. 1637 // "extern int x[];") and then a definition of a different type (e.g. 1638 // "int x[10];"). This also happens when an initializer has a different type 1639 // from the type of the global (this happens with unions). 1640 if (GV == 0 || 1641 GV->getType()->getElementType() != InitType || 1642 GV->getType()->getAddressSpace() != 1643 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1644 1645 // Move the old entry aside so that we'll create a new one. 1646 Entry->setName(StringRef()); 1647 1648 // Make a new global with the correct type, this is now guaranteed to work. 1649 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1650 1651 // Replace all uses of the old global with the new global 1652 llvm::Constant *NewPtrForOldDecl = 1653 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1654 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1655 1656 // Erase the old global, since it is no longer used. 1657 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1658 } 1659 1660 if (D->hasAttr<AnnotateAttr>()) 1661 AddGlobalAnnotations(D, GV); 1662 1663 GV->setInitializer(Init); 1664 1665 // If it is safe to mark the global 'constant', do so now. 1666 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1667 isTypeConstant(D->getType(), true)); 1668 1669 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1670 1671 // Set the llvm linkage type as appropriate. 1672 llvm::GlobalValue::LinkageTypes Linkage = 1673 GetLLVMLinkageVarDefinition(D, GV); 1674 GV->setLinkage(Linkage); 1675 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1676 // common vars aren't constant even if declared const. 1677 GV->setConstant(false); 1678 1679 SetCommonAttributes(D, GV); 1680 1681 // Emit the initializer function if necessary. 1682 if (NeedsGlobalCtor || NeedsGlobalDtor) 1683 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1684 1685 // If we are compiling with ASan, add metadata indicating dynamically 1686 // initialized globals. 1687 if (LangOpts.AddressSanitizer && NeedsGlobalCtor) { 1688 llvm::Module &M = getModule(); 1689 1690 llvm::NamedMDNode *DynamicInitializers = 1691 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1692 llvm::Value *GlobalToAdd[] = { GV }; 1693 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1694 DynamicInitializers->addOperand(ThisGlobal); 1695 } 1696 1697 // Emit global variable debug information. 1698 if (CGDebugInfo *DI = getModuleDebugInfo()) 1699 if (getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo) 1700 DI->EmitGlobalVariable(GV, D); 1701 } 1702 1703 llvm::GlobalValue::LinkageTypes 1704 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1705 llvm::GlobalVariable *GV) { 1706 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1707 if (Linkage == GVA_Internal) 1708 return llvm::Function::InternalLinkage; 1709 else if (D->hasAttr<DLLImportAttr>()) 1710 return llvm::Function::DLLImportLinkage; 1711 else if (D->hasAttr<DLLExportAttr>()) 1712 return llvm::Function::DLLExportLinkage; 1713 else if (D->hasAttr<WeakAttr>()) { 1714 if (GV->isConstant()) 1715 return llvm::GlobalVariable::WeakODRLinkage; 1716 else 1717 return llvm::GlobalVariable::WeakAnyLinkage; 1718 } else if (Linkage == GVA_TemplateInstantiation || 1719 Linkage == GVA_ExplicitTemplateInstantiation) 1720 return llvm::GlobalVariable::WeakODRLinkage; 1721 else if (!getLangOpts().CPlusPlus && 1722 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1723 D->getAttr<CommonAttr>()) && 1724 !D->hasExternalStorage() && !D->getInit() && 1725 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1726 !D->getAttr<WeakImportAttr>()) { 1727 // Thread local vars aren't considered common linkage. 1728 return llvm::GlobalVariable::CommonLinkage; 1729 } 1730 return llvm::GlobalVariable::ExternalLinkage; 1731 } 1732 1733 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1734 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1735 /// existing call uses of the old function in the module, this adjusts them to 1736 /// call the new function directly. 1737 /// 1738 /// This is not just a cleanup: the always_inline pass requires direct calls to 1739 /// functions to be able to inline them. If there is a bitcast in the way, it 1740 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1741 /// run at -O0. 1742 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1743 llvm::Function *NewFn) { 1744 // If we're redefining a global as a function, don't transform it. 1745 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1746 if (OldFn == 0) return; 1747 1748 llvm::Type *NewRetTy = NewFn->getReturnType(); 1749 SmallVector<llvm::Value*, 4> ArgList; 1750 1751 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1752 UI != E; ) { 1753 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1754 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1755 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1756 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1757 llvm::CallSite CS(CI); 1758 if (!CI || !CS.isCallee(I)) continue; 1759 1760 // If the return types don't match exactly, and if the call isn't dead, then 1761 // we can't transform this call. 1762 if (CI->getType() != NewRetTy && !CI->use_empty()) 1763 continue; 1764 1765 // Get the attribute list. 1766 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1767 llvm::AttrListPtr AttrList = CI->getAttributes(); 1768 1769 // Get any return attributes. 1770 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1771 1772 // Add the return attributes. 1773 if (RAttrs) 1774 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1775 1776 // If the function was passed too few arguments, don't transform. If extra 1777 // arguments were passed, we silently drop them. If any of the types 1778 // mismatch, we don't transform. 1779 unsigned ArgNo = 0; 1780 bool DontTransform = false; 1781 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1782 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1783 if (CS.arg_size() == ArgNo || 1784 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1785 DontTransform = true; 1786 break; 1787 } 1788 1789 // Add any parameter attributes. 1790 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1791 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1792 } 1793 if (DontTransform) 1794 continue; 1795 1796 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1797 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1798 1799 // Okay, we can transform this. Create the new call instruction and copy 1800 // over the required information. 1801 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1802 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1803 ArgList.clear(); 1804 if (!NewCall->getType()->isVoidTy()) 1805 NewCall->takeName(CI); 1806 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec)); 1807 NewCall->setCallingConv(CI->getCallingConv()); 1808 1809 // Finally, remove the old call, replacing any uses with the new one. 1810 if (!CI->use_empty()) 1811 CI->replaceAllUsesWith(NewCall); 1812 1813 // Copy debug location attached to CI. 1814 if (!CI->getDebugLoc().isUnknown()) 1815 NewCall->setDebugLoc(CI->getDebugLoc()); 1816 CI->eraseFromParent(); 1817 } 1818 } 1819 1820 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1821 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1822 // If we have a definition, this might be a deferred decl. If the 1823 // instantiation is explicit, make sure we emit it at the end. 1824 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1825 GetAddrOfGlobalVar(VD); 1826 } 1827 1828 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1829 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1830 1831 // Compute the function info and LLVM type. 1832 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1833 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1834 1835 // Get or create the prototype for the function. 1836 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1837 1838 // Strip off a bitcast if we got one back. 1839 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1840 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1841 Entry = CE->getOperand(0); 1842 } 1843 1844 1845 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1846 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1847 1848 // If the types mismatch then we have to rewrite the definition. 1849 assert(OldFn->isDeclaration() && 1850 "Shouldn't replace non-declaration"); 1851 1852 // F is the Function* for the one with the wrong type, we must make a new 1853 // Function* and update everything that used F (a declaration) with the new 1854 // Function* (which will be a definition). 1855 // 1856 // This happens if there is a prototype for a function 1857 // (e.g. "int f()") and then a definition of a different type 1858 // (e.g. "int f(int x)"). Move the old function aside so that it 1859 // doesn't interfere with GetAddrOfFunction. 1860 OldFn->setName(StringRef()); 1861 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1862 1863 // If this is an implementation of a function without a prototype, try to 1864 // replace any existing uses of the function (which may be calls) with uses 1865 // of the new function 1866 if (D->getType()->isFunctionNoProtoType()) { 1867 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1868 OldFn->removeDeadConstantUsers(); 1869 } 1870 1871 // Replace uses of F with the Function we will endow with a body. 1872 if (!Entry->use_empty()) { 1873 llvm::Constant *NewPtrForOldDecl = 1874 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1875 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1876 } 1877 1878 // Ok, delete the old function now, which is dead. 1879 OldFn->eraseFromParent(); 1880 1881 Entry = NewFn; 1882 } 1883 1884 // We need to set linkage and visibility on the function before 1885 // generating code for it because various parts of IR generation 1886 // want to propagate this information down (e.g. to local static 1887 // declarations). 1888 llvm::Function *Fn = cast<llvm::Function>(Entry); 1889 setFunctionLinkage(D, Fn); 1890 1891 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1892 setGlobalVisibility(Fn, D); 1893 1894 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1895 1896 SetFunctionDefinitionAttributes(D, Fn); 1897 SetLLVMFunctionAttributesForDefinition(D, Fn); 1898 1899 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1900 AddGlobalCtor(Fn, CA->getPriority()); 1901 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1902 AddGlobalDtor(Fn, DA->getPriority()); 1903 if (D->hasAttr<AnnotateAttr>()) 1904 AddGlobalAnnotations(D, Fn); 1905 } 1906 1907 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1908 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1909 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1910 assert(AA && "Not an alias?"); 1911 1912 StringRef MangledName = getMangledName(GD); 1913 1914 // If there is a definition in the module, then it wins over the alias. 1915 // This is dubious, but allow it to be safe. Just ignore the alias. 1916 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1917 if (Entry && !Entry->isDeclaration()) 1918 return; 1919 1920 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1921 1922 // Create a reference to the named value. This ensures that it is emitted 1923 // if a deferred decl. 1924 llvm::Constant *Aliasee; 1925 if (isa<llvm::FunctionType>(DeclTy)) 1926 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1927 /*ForVTable=*/false); 1928 else 1929 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1930 llvm::PointerType::getUnqual(DeclTy), 0); 1931 1932 // Create the new alias itself, but don't set a name yet. 1933 llvm::GlobalValue *GA = 1934 new llvm::GlobalAlias(Aliasee->getType(), 1935 llvm::Function::ExternalLinkage, 1936 "", Aliasee, &getModule()); 1937 1938 if (Entry) { 1939 assert(Entry->isDeclaration()); 1940 1941 // If there is a declaration in the module, then we had an extern followed 1942 // by the alias, as in: 1943 // extern int test6(); 1944 // ... 1945 // int test6() __attribute__((alias("test7"))); 1946 // 1947 // Remove it and replace uses of it with the alias. 1948 GA->takeName(Entry); 1949 1950 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1951 Entry->getType())); 1952 Entry->eraseFromParent(); 1953 } else { 1954 GA->setName(MangledName); 1955 } 1956 1957 // Set attributes which are particular to an alias; this is a 1958 // specialization of the attributes which may be set on a global 1959 // variable/function. 1960 if (D->hasAttr<DLLExportAttr>()) { 1961 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1962 // The dllexport attribute is ignored for undefined symbols. 1963 if (FD->hasBody()) 1964 GA->setLinkage(llvm::Function::DLLExportLinkage); 1965 } else { 1966 GA->setLinkage(llvm::Function::DLLExportLinkage); 1967 } 1968 } else if (D->hasAttr<WeakAttr>() || 1969 D->hasAttr<WeakRefAttr>() || 1970 D->isWeakImported()) { 1971 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1972 } 1973 1974 SetCommonAttributes(D, GA); 1975 } 1976 1977 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1978 ArrayRef<llvm::Type*> Tys) { 1979 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1980 Tys); 1981 } 1982 1983 static llvm::StringMapEntry<llvm::Constant*> & 1984 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1985 const StringLiteral *Literal, 1986 bool TargetIsLSB, 1987 bool &IsUTF16, 1988 unsigned &StringLength) { 1989 StringRef String = Literal->getString(); 1990 unsigned NumBytes = String.size(); 1991 1992 // Check for simple case. 1993 if (!Literal->containsNonAsciiOrNull()) { 1994 StringLength = NumBytes; 1995 return Map.GetOrCreateValue(String); 1996 } 1997 1998 // Otherwise, convert the UTF8 literals into a string of shorts. 1999 IsUTF16 = true; 2000 2001 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2002 const UTF8 *FromPtr = (UTF8 *)String.data(); 2003 UTF16 *ToPtr = &ToBuf[0]; 2004 2005 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2006 &ToPtr, ToPtr + NumBytes, 2007 strictConversion); 2008 2009 // ConvertUTF8toUTF16 returns the length in ToPtr. 2010 StringLength = ToPtr - &ToBuf[0]; 2011 2012 // Add an explicit null. 2013 *ToPtr = 0; 2014 return Map. 2015 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2016 (StringLength + 1) * 2)); 2017 } 2018 2019 static llvm::StringMapEntry<llvm::Constant*> & 2020 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2021 const StringLiteral *Literal, 2022 unsigned &StringLength) { 2023 StringRef String = Literal->getString(); 2024 StringLength = String.size(); 2025 return Map.GetOrCreateValue(String); 2026 } 2027 2028 llvm::Constant * 2029 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2030 unsigned StringLength = 0; 2031 bool isUTF16 = false; 2032 llvm::StringMapEntry<llvm::Constant*> &Entry = 2033 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2034 getTargetData().isLittleEndian(), 2035 isUTF16, StringLength); 2036 2037 if (llvm::Constant *C = Entry.getValue()) 2038 return C; 2039 2040 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2041 llvm::Constant *Zeros[] = { Zero, Zero }; 2042 2043 // If we don't already have it, get __CFConstantStringClassReference. 2044 if (!CFConstantStringClassRef) { 2045 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2046 Ty = llvm::ArrayType::get(Ty, 0); 2047 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2048 "__CFConstantStringClassReference"); 2049 // Decay array -> ptr 2050 CFConstantStringClassRef = 2051 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2052 } 2053 2054 QualType CFTy = getContext().getCFConstantStringType(); 2055 2056 llvm::StructType *STy = 2057 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2058 2059 llvm::Constant *Fields[4]; 2060 2061 // Class pointer. 2062 Fields[0] = CFConstantStringClassRef; 2063 2064 // Flags. 2065 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2066 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2067 llvm::ConstantInt::get(Ty, 0x07C8); 2068 2069 // String pointer. 2070 llvm::Constant *C = 0; 2071 if (isUTF16) { 2072 ArrayRef<uint16_t> Arr = 2073 llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(), 2074 Entry.getKey().size() / 2); 2075 C = llvm::ConstantDataArray::get(VMContext, Arr); 2076 } else { 2077 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2078 } 2079 2080 llvm::GlobalValue::LinkageTypes Linkage; 2081 if (isUTF16) 2082 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2083 Linkage = llvm::GlobalValue::InternalLinkage; 2084 else 2085 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2086 // when using private linkage. It is not clear if this is a bug in ld 2087 // or a reasonable new restriction. 2088 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2089 2090 // Note: -fwritable-strings doesn't make the backing store strings of 2091 // CFStrings writable. (See <rdar://problem/10657500>) 2092 llvm::GlobalVariable *GV = 2093 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2094 Linkage, C, ".str"); 2095 GV->setUnnamedAddr(true); 2096 if (isUTF16) { 2097 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2098 GV->setAlignment(Align.getQuantity()); 2099 } else { 2100 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2101 GV->setAlignment(Align.getQuantity()); 2102 } 2103 2104 // String. 2105 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2106 2107 if (isUTF16) 2108 // Cast the UTF16 string to the correct type. 2109 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2110 2111 // String length. 2112 Ty = getTypes().ConvertType(getContext().LongTy); 2113 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2114 2115 // The struct. 2116 C = llvm::ConstantStruct::get(STy, Fields); 2117 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2118 llvm::GlobalVariable::PrivateLinkage, C, 2119 "_unnamed_cfstring_"); 2120 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 2121 GV->setSection(Sect); 2122 Entry.setValue(GV); 2123 2124 return GV; 2125 } 2126 2127 static RecordDecl * 2128 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2129 DeclContext *DC, IdentifierInfo *Id) { 2130 SourceLocation Loc; 2131 if (Ctx.getLangOpts().CPlusPlus) 2132 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2133 else 2134 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2135 } 2136 2137 llvm::Constant * 2138 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2139 unsigned StringLength = 0; 2140 llvm::StringMapEntry<llvm::Constant*> &Entry = 2141 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2142 2143 if (llvm::Constant *C = Entry.getValue()) 2144 return C; 2145 2146 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2147 llvm::Constant *Zeros[] = { Zero, Zero }; 2148 2149 // If we don't already have it, get _NSConstantStringClassReference. 2150 if (!ConstantStringClassRef) { 2151 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2152 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2153 llvm::Constant *GV; 2154 if (LangOpts.ObjCRuntime.isNonFragile()) { 2155 std::string str = 2156 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2157 : "OBJC_CLASS_$_" + StringClass; 2158 GV = getObjCRuntime().GetClassGlobal(str); 2159 // Make sure the result is of the correct type. 2160 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2161 ConstantStringClassRef = 2162 llvm::ConstantExpr::getBitCast(GV, PTy); 2163 } else { 2164 std::string str = 2165 StringClass.empty() ? "_NSConstantStringClassReference" 2166 : "_" + StringClass + "ClassReference"; 2167 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2168 GV = CreateRuntimeVariable(PTy, str); 2169 // Decay array -> ptr 2170 ConstantStringClassRef = 2171 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2172 } 2173 } 2174 2175 if (!NSConstantStringType) { 2176 // Construct the type for a constant NSString. 2177 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2178 Context.getTranslationUnitDecl(), 2179 &Context.Idents.get("__builtin_NSString")); 2180 D->startDefinition(); 2181 2182 QualType FieldTypes[3]; 2183 2184 // const int *isa; 2185 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2186 // const char *str; 2187 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2188 // unsigned int length; 2189 FieldTypes[2] = Context.UnsignedIntTy; 2190 2191 // Create fields 2192 for (unsigned i = 0; i < 3; ++i) { 2193 FieldDecl *Field = FieldDecl::Create(Context, D, 2194 SourceLocation(), 2195 SourceLocation(), 0, 2196 FieldTypes[i], /*TInfo=*/0, 2197 /*BitWidth=*/0, 2198 /*Mutable=*/false, 2199 ICIS_NoInit); 2200 Field->setAccess(AS_public); 2201 D->addDecl(Field); 2202 } 2203 2204 D->completeDefinition(); 2205 QualType NSTy = Context.getTagDeclType(D); 2206 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2207 } 2208 2209 llvm::Constant *Fields[3]; 2210 2211 // Class pointer. 2212 Fields[0] = ConstantStringClassRef; 2213 2214 // String pointer. 2215 llvm::Constant *C = 2216 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2217 2218 llvm::GlobalValue::LinkageTypes Linkage; 2219 bool isConstant; 2220 Linkage = llvm::GlobalValue::PrivateLinkage; 2221 isConstant = !LangOpts.WritableStrings; 2222 2223 llvm::GlobalVariable *GV = 2224 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2225 ".str"); 2226 GV->setUnnamedAddr(true); 2227 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2228 GV->setAlignment(Align.getQuantity()); 2229 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2230 2231 // String length. 2232 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2233 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2234 2235 // The struct. 2236 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2237 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2238 llvm::GlobalVariable::PrivateLinkage, C, 2239 "_unnamed_nsstring_"); 2240 // FIXME. Fix section. 2241 if (const char *Sect = 2242 LangOpts.ObjCRuntime.isNonFragile() 2243 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2244 : getContext().getTargetInfo().getNSStringSection()) 2245 GV->setSection(Sect); 2246 Entry.setValue(GV); 2247 2248 return GV; 2249 } 2250 2251 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2252 if (ObjCFastEnumerationStateType.isNull()) { 2253 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2254 Context.getTranslationUnitDecl(), 2255 &Context.Idents.get("__objcFastEnumerationState")); 2256 D->startDefinition(); 2257 2258 QualType FieldTypes[] = { 2259 Context.UnsignedLongTy, 2260 Context.getPointerType(Context.getObjCIdType()), 2261 Context.getPointerType(Context.UnsignedLongTy), 2262 Context.getConstantArrayType(Context.UnsignedLongTy, 2263 llvm::APInt(32, 5), ArrayType::Normal, 0) 2264 }; 2265 2266 for (size_t i = 0; i < 4; ++i) { 2267 FieldDecl *Field = FieldDecl::Create(Context, 2268 D, 2269 SourceLocation(), 2270 SourceLocation(), 0, 2271 FieldTypes[i], /*TInfo=*/0, 2272 /*BitWidth=*/0, 2273 /*Mutable=*/false, 2274 ICIS_NoInit); 2275 Field->setAccess(AS_public); 2276 D->addDecl(Field); 2277 } 2278 2279 D->completeDefinition(); 2280 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2281 } 2282 2283 return ObjCFastEnumerationStateType; 2284 } 2285 2286 llvm::Constant * 2287 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2288 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2289 2290 // Don't emit it as the address of the string, emit the string data itself 2291 // as an inline array. 2292 if (E->getCharByteWidth() == 1) { 2293 SmallString<64> Str(E->getString()); 2294 2295 // Resize the string to the right size, which is indicated by its type. 2296 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2297 Str.resize(CAT->getSize().getZExtValue()); 2298 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2299 } 2300 2301 llvm::ArrayType *AType = 2302 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2303 llvm::Type *ElemTy = AType->getElementType(); 2304 unsigned NumElements = AType->getNumElements(); 2305 2306 // Wide strings have either 2-byte or 4-byte elements. 2307 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2308 SmallVector<uint16_t, 32> Elements; 2309 Elements.reserve(NumElements); 2310 2311 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2312 Elements.push_back(E->getCodeUnit(i)); 2313 Elements.resize(NumElements); 2314 return llvm::ConstantDataArray::get(VMContext, Elements); 2315 } 2316 2317 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2318 SmallVector<uint32_t, 32> Elements; 2319 Elements.reserve(NumElements); 2320 2321 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2322 Elements.push_back(E->getCodeUnit(i)); 2323 Elements.resize(NumElements); 2324 return llvm::ConstantDataArray::get(VMContext, Elements); 2325 } 2326 2327 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2328 /// constant array for the given string literal. 2329 llvm::Constant * 2330 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2331 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2332 if (S->isAscii() || S->isUTF8()) { 2333 SmallString<64> Str(S->getString()); 2334 2335 // Resize the string to the right size, which is indicated by its type. 2336 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2337 Str.resize(CAT->getSize().getZExtValue()); 2338 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2339 } 2340 2341 // FIXME: the following does not memoize wide strings. 2342 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2343 llvm::GlobalVariable *GV = 2344 new llvm::GlobalVariable(getModule(),C->getType(), 2345 !LangOpts.WritableStrings, 2346 llvm::GlobalValue::PrivateLinkage, 2347 C,".str"); 2348 2349 GV->setAlignment(Align.getQuantity()); 2350 GV->setUnnamedAddr(true); 2351 return GV; 2352 } 2353 2354 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2355 /// array for the given ObjCEncodeExpr node. 2356 llvm::Constant * 2357 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2358 std::string Str; 2359 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2360 2361 return GetAddrOfConstantCString(Str); 2362 } 2363 2364 2365 /// GenerateWritableString -- Creates storage for a string literal. 2366 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2367 bool constant, 2368 CodeGenModule &CGM, 2369 const char *GlobalName, 2370 unsigned Alignment) { 2371 // Create Constant for this string literal. Don't add a '\0'. 2372 llvm::Constant *C = 2373 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2374 2375 // Create a global variable for this string 2376 llvm::GlobalVariable *GV = 2377 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2378 llvm::GlobalValue::PrivateLinkage, 2379 C, GlobalName); 2380 GV->setAlignment(Alignment); 2381 GV->setUnnamedAddr(true); 2382 return GV; 2383 } 2384 2385 /// GetAddrOfConstantString - Returns a pointer to a character array 2386 /// containing the literal. This contents are exactly that of the 2387 /// given string, i.e. it will not be null terminated automatically; 2388 /// see GetAddrOfConstantCString. Note that whether the result is 2389 /// actually a pointer to an LLVM constant depends on 2390 /// Feature.WriteableStrings. 2391 /// 2392 /// The result has pointer to array type. 2393 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2394 const char *GlobalName, 2395 unsigned Alignment) { 2396 // Get the default prefix if a name wasn't specified. 2397 if (!GlobalName) 2398 GlobalName = ".str"; 2399 2400 // Don't share any string literals if strings aren't constant. 2401 if (LangOpts.WritableStrings) 2402 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2403 2404 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2405 ConstantStringMap.GetOrCreateValue(Str); 2406 2407 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2408 if (Alignment > GV->getAlignment()) { 2409 GV->setAlignment(Alignment); 2410 } 2411 return GV; 2412 } 2413 2414 // Create a global variable for this. 2415 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2416 Alignment); 2417 Entry.setValue(GV); 2418 return GV; 2419 } 2420 2421 /// GetAddrOfConstantCString - Returns a pointer to a character 2422 /// array containing the literal and a terminating '\0' 2423 /// character. The result has pointer to array type. 2424 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2425 const char *GlobalName, 2426 unsigned Alignment) { 2427 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2428 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2429 } 2430 2431 /// EmitObjCPropertyImplementations - Emit information for synthesized 2432 /// properties for an implementation. 2433 void CodeGenModule::EmitObjCPropertyImplementations(const 2434 ObjCImplementationDecl *D) { 2435 for (ObjCImplementationDecl::propimpl_iterator 2436 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2437 ObjCPropertyImplDecl *PID = *i; 2438 2439 // Dynamic is just for type-checking. 2440 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2441 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2442 2443 // Determine which methods need to be implemented, some may have 2444 // been overridden. Note that ::isSynthesized is not the method 2445 // we want, that just indicates if the decl came from a 2446 // property. What we want to know is if the method is defined in 2447 // this implementation. 2448 if (!D->getInstanceMethod(PD->getGetterName())) 2449 CodeGenFunction(*this).GenerateObjCGetter( 2450 const_cast<ObjCImplementationDecl *>(D), PID); 2451 if (!PD->isReadOnly() && 2452 !D->getInstanceMethod(PD->getSetterName())) 2453 CodeGenFunction(*this).GenerateObjCSetter( 2454 const_cast<ObjCImplementationDecl *>(D), PID); 2455 } 2456 } 2457 } 2458 2459 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2460 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2461 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2462 ivar; ivar = ivar->getNextIvar()) 2463 if (ivar->getType().isDestructedType()) 2464 return true; 2465 2466 return false; 2467 } 2468 2469 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2470 /// for an implementation. 2471 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2472 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2473 if (needsDestructMethod(D)) { 2474 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2475 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2476 ObjCMethodDecl *DTORMethod = 2477 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2478 cxxSelector, getContext().VoidTy, 0, D, 2479 /*isInstance=*/true, /*isVariadic=*/false, 2480 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2481 /*isDefined=*/false, ObjCMethodDecl::Required); 2482 D->addInstanceMethod(DTORMethod); 2483 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2484 D->setHasCXXStructors(true); 2485 } 2486 2487 // If the implementation doesn't have any ivar initializers, we don't need 2488 // a .cxx_construct. 2489 if (D->getNumIvarInitializers() == 0) 2490 return; 2491 2492 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2493 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2494 // The constructor returns 'self'. 2495 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2496 D->getLocation(), 2497 D->getLocation(), 2498 cxxSelector, 2499 getContext().getObjCIdType(), 0, 2500 D, /*isInstance=*/true, 2501 /*isVariadic=*/false, 2502 /*isSynthesized=*/true, 2503 /*isImplicitlyDeclared=*/true, 2504 /*isDefined=*/false, 2505 ObjCMethodDecl::Required); 2506 D->addInstanceMethod(CTORMethod); 2507 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2508 D->setHasCXXStructors(true); 2509 } 2510 2511 /// EmitNamespace - Emit all declarations in a namespace. 2512 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2513 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2514 I != E; ++I) 2515 EmitTopLevelDecl(*I); 2516 } 2517 2518 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2519 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2520 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2521 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2522 ErrorUnsupported(LSD, "linkage spec"); 2523 return; 2524 } 2525 2526 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2527 I != E; ++I) 2528 EmitTopLevelDecl(*I); 2529 } 2530 2531 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2532 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2533 // If an error has occurred, stop code generation, but continue 2534 // parsing and semantic analysis (to ensure all warnings and errors 2535 // are emitted). 2536 if (Diags.hasErrorOccurred()) 2537 return; 2538 2539 // Ignore dependent declarations. 2540 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2541 return; 2542 2543 switch (D->getKind()) { 2544 case Decl::CXXConversion: 2545 case Decl::CXXMethod: 2546 case Decl::Function: 2547 // Skip function templates 2548 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2549 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2550 return; 2551 2552 EmitGlobal(cast<FunctionDecl>(D)); 2553 break; 2554 2555 case Decl::Var: 2556 EmitGlobal(cast<VarDecl>(D)); 2557 break; 2558 2559 // Indirect fields from global anonymous structs and unions can be 2560 // ignored; only the actual variable requires IR gen support. 2561 case Decl::IndirectField: 2562 break; 2563 2564 // C++ Decls 2565 case Decl::Namespace: 2566 EmitNamespace(cast<NamespaceDecl>(D)); 2567 break; 2568 // No code generation needed. 2569 case Decl::UsingShadow: 2570 case Decl::Using: 2571 case Decl::UsingDirective: 2572 case Decl::ClassTemplate: 2573 case Decl::FunctionTemplate: 2574 case Decl::TypeAliasTemplate: 2575 case Decl::NamespaceAlias: 2576 case Decl::Block: 2577 case Decl::Import: 2578 break; 2579 case Decl::CXXConstructor: 2580 // Skip function templates 2581 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2582 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2583 return; 2584 2585 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2586 break; 2587 case Decl::CXXDestructor: 2588 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2589 return; 2590 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2591 break; 2592 2593 case Decl::StaticAssert: 2594 // Nothing to do. 2595 break; 2596 2597 // Objective-C Decls 2598 2599 // Forward declarations, no (immediate) code generation. 2600 case Decl::ObjCInterface: 2601 case Decl::ObjCCategory: 2602 break; 2603 2604 case Decl::ObjCProtocol: { 2605 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2606 if (Proto->isThisDeclarationADefinition()) 2607 ObjCRuntime->GenerateProtocol(Proto); 2608 break; 2609 } 2610 2611 case Decl::ObjCCategoryImpl: 2612 // Categories have properties but don't support synthesize so we 2613 // can ignore them here. 2614 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2615 break; 2616 2617 case Decl::ObjCImplementation: { 2618 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2619 EmitObjCPropertyImplementations(OMD); 2620 EmitObjCIvarInitializations(OMD); 2621 ObjCRuntime->GenerateClass(OMD); 2622 // Emit global variable debug information. 2623 if (CGDebugInfo *DI = getModuleDebugInfo()) 2624 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()), 2625 OMD->getLocation()); 2626 2627 break; 2628 } 2629 case Decl::ObjCMethod: { 2630 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2631 // If this is not a prototype, emit the body. 2632 if (OMD->getBody()) 2633 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2634 break; 2635 } 2636 case Decl::ObjCCompatibleAlias: 2637 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2638 break; 2639 2640 case Decl::LinkageSpec: 2641 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2642 break; 2643 2644 case Decl::FileScopeAsm: { 2645 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2646 StringRef AsmString = AD->getAsmString()->getString(); 2647 2648 const std::string &S = getModule().getModuleInlineAsm(); 2649 if (S.empty()) 2650 getModule().setModuleInlineAsm(AsmString); 2651 else if (S.end()[-1] == '\n') 2652 getModule().setModuleInlineAsm(S + AsmString.str()); 2653 else 2654 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2655 break; 2656 } 2657 2658 default: 2659 // Make sure we handled everything we should, every other kind is a 2660 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2661 // function. Need to recode Decl::Kind to do that easily. 2662 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2663 } 2664 } 2665 2666 /// Turns the given pointer into a constant. 2667 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2668 const void *Ptr) { 2669 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2670 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2671 return llvm::ConstantInt::get(i64, PtrInt); 2672 } 2673 2674 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2675 llvm::NamedMDNode *&GlobalMetadata, 2676 GlobalDecl D, 2677 llvm::GlobalValue *Addr) { 2678 if (!GlobalMetadata) 2679 GlobalMetadata = 2680 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2681 2682 // TODO: should we report variant information for ctors/dtors? 2683 llvm::Value *Ops[] = { 2684 Addr, 2685 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2686 }; 2687 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2688 } 2689 2690 /// Emits metadata nodes associating all the global values in the 2691 /// current module with the Decls they came from. This is useful for 2692 /// projects using IR gen as a subroutine. 2693 /// 2694 /// Since there's currently no way to associate an MDNode directly 2695 /// with an llvm::GlobalValue, we create a global named metadata 2696 /// with the name 'clang.global.decl.ptrs'. 2697 void CodeGenModule::EmitDeclMetadata() { 2698 llvm::NamedMDNode *GlobalMetadata = 0; 2699 2700 // StaticLocalDeclMap 2701 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2702 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2703 I != E; ++I) { 2704 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2705 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2706 } 2707 } 2708 2709 /// Emits metadata nodes for all the local variables in the current 2710 /// function. 2711 void CodeGenFunction::EmitDeclMetadata() { 2712 if (LocalDeclMap.empty()) return; 2713 2714 llvm::LLVMContext &Context = getLLVMContext(); 2715 2716 // Find the unique metadata ID for this name. 2717 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2718 2719 llvm::NamedMDNode *GlobalMetadata = 0; 2720 2721 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2722 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2723 const Decl *D = I->first; 2724 llvm::Value *Addr = I->second; 2725 2726 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2727 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2728 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2729 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2730 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2731 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2732 } 2733 } 2734 } 2735 2736 void CodeGenModule::EmitCoverageFile() { 2737 if (!getCodeGenOpts().CoverageFile.empty()) { 2738 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2739 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2740 llvm::LLVMContext &Ctx = TheModule.getContext(); 2741 llvm::MDString *CoverageFile = 2742 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2743 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2744 llvm::MDNode *CU = CUNode->getOperand(i); 2745 llvm::Value *node[] = { CoverageFile, CU }; 2746 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2747 GCov->addOperand(N); 2748 } 2749 } 2750 } 2751 } 2752