xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 285271cb78f449f211bec34b4e954153feb0add9)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
127 
128   if (LangOpts.ObjC1)
129     createObjCRuntime();
130   if (LangOpts.OpenCL)
131     createOpenCLRuntime();
132   if (LangOpts.OpenMP)
133     createOpenMPRuntime();
134   if (LangOpts.CUDA)
135     createCUDARuntime();
136 
137   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
138   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
139       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
140     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
141                                getCXXABI().getMangleContext()));
142 
143   // If debug info or coverage generation is enabled, create the CGDebugInfo
144   // object.
145   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
146       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
147     DebugInfo.reset(new CGDebugInfo(*this));
148 
149   Block.GlobalUniqueCount = 0;
150 
151   if (C.getLangOpts().ObjC1)
152     ObjCData.reset(new ObjCEntrypoints());
153 
154   if (CodeGenOpts.hasProfileClangUse()) {
155     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
156         CodeGenOpts.ProfileInstrumentUsePath);
157     if (auto E = ReaderOrErr.takeError()) {
158       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
159                                               "Could not read profile %0: %1");
160       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
161         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
162                                   << EI.message();
163       });
164     } else
165       PGOReader = std::move(ReaderOrErr.get());
166   }
167 
168   // If coverage mapping generation is enabled, create the
169   // CoverageMappingModuleGen object.
170   if (CodeGenOpts.CoverageMapping)
171     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
172 }
173 
174 CodeGenModule::~CodeGenModule() {}
175 
176 void CodeGenModule::createObjCRuntime() {
177   // This is just isGNUFamily(), but we want to force implementors of
178   // new ABIs to decide how best to do this.
179   switch (LangOpts.ObjCRuntime.getKind()) {
180   case ObjCRuntime::GNUstep:
181   case ObjCRuntime::GCC:
182   case ObjCRuntime::ObjFW:
183     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
184     return;
185 
186   case ObjCRuntime::FragileMacOSX:
187   case ObjCRuntime::MacOSX:
188   case ObjCRuntime::iOS:
189   case ObjCRuntime::WatchOS:
190     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
191     return;
192   }
193   llvm_unreachable("bad runtime kind");
194 }
195 
196 void CodeGenModule::createOpenCLRuntime() {
197   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
198 }
199 
200 void CodeGenModule::createOpenMPRuntime() {
201   // Select a specialized code generation class based on the target, if any.
202   // If it does not exist use the default implementation.
203   switch (getTriple().getArch()) {
204   case llvm::Triple::nvptx:
205   case llvm::Triple::nvptx64:
206     assert(getLangOpts().OpenMPIsDevice &&
207            "OpenMP NVPTX is only prepared to deal with device code.");
208     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
209     break;
210   default:
211     if (LangOpts.OpenMPSimd)
212       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
213     else
214       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
215     break;
216   }
217 }
218 
219 void CodeGenModule::createCUDARuntime() {
220   CUDARuntime.reset(CreateNVCUDARuntime(*this));
221 }
222 
223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
224   Replacements[Name] = C;
225 }
226 
227 void CodeGenModule::applyReplacements() {
228   for (auto &I : Replacements) {
229     StringRef MangledName = I.first();
230     llvm::Constant *Replacement = I.second;
231     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
232     if (!Entry)
233       continue;
234     auto *OldF = cast<llvm::Function>(Entry);
235     auto *NewF = dyn_cast<llvm::Function>(Replacement);
236     if (!NewF) {
237       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
238         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
239       } else {
240         auto *CE = cast<llvm::ConstantExpr>(Replacement);
241         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
242                CE->getOpcode() == llvm::Instruction::GetElementPtr);
243         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
244       }
245     }
246 
247     // Replace old with new, but keep the old order.
248     OldF->replaceAllUsesWith(Replacement);
249     if (NewF) {
250       NewF->removeFromParent();
251       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
252                                                        NewF);
253     }
254     OldF->eraseFromParent();
255   }
256 }
257 
258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
259   GlobalValReplacements.push_back(std::make_pair(GV, C));
260 }
261 
262 void CodeGenModule::applyGlobalValReplacements() {
263   for (auto &I : GlobalValReplacements) {
264     llvm::GlobalValue *GV = I.first;
265     llvm::Constant *C = I.second;
266 
267     GV->replaceAllUsesWith(C);
268     GV->eraseFromParent();
269   }
270 }
271 
272 // This is only used in aliases that we created and we know they have a
273 // linear structure.
274 static const llvm::GlobalObject *getAliasedGlobal(
275     const llvm::GlobalIndirectSymbol &GIS) {
276   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
277   const llvm::Constant *C = &GIS;
278   for (;;) {
279     C = C->stripPointerCasts();
280     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
281       return GO;
282     // stripPointerCasts will not walk over weak aliases.
283     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
284     if (!GIS2)
285       return nullptr;
286     if (!Visited.insert(GIS2).second)
287       return nullptr;
288     C = GIS2->getIndirectSymbol();
289   }
290 }
291 
292 void CodeGenModule::checkAliases() {
293   // Check if the constructed aliases are well formed. It is really unfortunate
294   // that we have to do this in CodeGen, but we only construct mangled names
295   // and aliases during codegen.
296   bool Error = false;
297   DiagnosticsEngine &Diags = getDiags();
298   for (const GlobalDecl &GD : Aliases) {
299     const auto *D = cast<ValueDecl>(GD.getDecl());
300     SourceLocation Location;
301     bool IsIFunc = D->hasAttr<IFuncAttr>();
302     if (const Attr *A = D->getDefiningAttr())
303       Location = A->getLocation();
304     else
305       llvm_unreachable("Not an alias or ifunc?");
306     StringRef MangledName = getMangledName(GD);
307     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
308     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
309     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
310     if (!GV) {
311       Error = true;
312       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
313     } else if (GV->isDeclaration()) {
314       Error = true;
315       Diags.Report(Location, diag::err_alias_to_undefined)
316           << IsIFunc << IsIFunc;
317     } else if (IsIFunc) {
318       // Check resolver function type.
319       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
320           GV->getType()->getPointerElementType());
321       assert(FTy);
322       if (!FTy->getReturnType()->isPointerTy())
323         Diags.Report(Location, diag::err_ifunc_resolver_return);
324       if (FTy->getNumParams())
325         Diags.Report(Location, diag::err_ifunc_resolver_params);
326     }
327 
328     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329     llvm::GlobalValue *AliaseeGV;
330     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332     else
333       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334 
335     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336       StringRef AliasSection = SA->getName();
337       if (AliasSection != AliaseeGV->getSection())
338         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339             << AliasSection << IsIFunc << IsIFunc;
340     }
341 
342     // We have to handle alias to weak aliases in here. LLVM itself disallows
343     // this since the object semantics would not match the IL one. For
344     // compatibility with gcc we implement it by just pointing the alias
345     // to its aliasee's aliasee. We also warn, since the user is probably
346     // expecting the link to be weak.
347     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348       if (GA->isInterposable()) {
349         Diags.Report(Location, diag::warn_alias_to_weak_alias)
350             << GV->getName() << GA->getName() << IsIFunc;
351         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352             GA->getIndirectSymbol(), Alias->getType());
353         Alias->setIndirectSymbol(Aliasee);
354       }
355     }
356   }
357   if (!Error)
358     return;
359 
360   for (const GlobalDecl &GD : Aliases) {
361     StringRef MangledName = getMangledName(GD);
362     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365     Alias->eraseFromParent();
366   }
367 }
368 
369 void CodeGenModule::clear() {
370   DeferredDeclsToEmit.clear();
371   if (OpenMPRuntime)
372     OpenMPRuntime->clear();
373 }
374 
375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376                                        StringRef MainFile) {
377   if (!hasDiagnostics())
378     return;
379   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380     if (MainFile.empty())
381       MainFile = "<stdin>";
382     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383   } else {
384     if (Mismatched > 0)
385       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386 
387     if (Missing > 0)
388       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389   }
390 }
391 
392 void CodeGenModule::Release() {
393   EmitDeferred();
394   EmitVTablesOpportunistically();
395   applyGlobalValReplacements();
396   applyReplacements();
397   checkAliases();
398   emitMultiVersionFunctions();
399   EmitCXXGlobalInitFunc();
400   EmitCXXGlobalDtorFunc();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
408       AddGlobalCtor(CudaCtorFunction);
409     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
410       AddGlobalDtor(CudaDtorFunction);
411   }
412   if (OpenMPRuntime)
413     if (llvm::Function *OpenMPRegistrationFunction =
414             OpenMPRuntime->emitRegistrationFunction()) {
415       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
416         OpenMPRegistrationFunction : nullptr;
417       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
418     }
419   if (PGOReader) {
420     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
421     if (PGOStats.hasDiagnostics())
422       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
423   }
424   EmitCtorList(GlobalCtors, "llvm.global_ctors");
425   EmitCtorList(GlobalDtors, "llvm.global_dtors");
426   EmitGlobalAnnotations();
427   EmitStaticExternCAliases();
428   EmitDeferredUnusedCoverageMappings();
429   if (CoverageMapping)
430     CoverageMapping->emit();
431   if (CodeGenOpts.SanitizeCfiCrossDso) {
432     CodeGenFunction(*this).EmitCfiCheckFail();
433     CodeGenFunction(*this).EmitCfiCheckStub();
434   }
435   emitAtAvailableLinkGuard();
436   emitLLVMUsed();
437   if (SanStats)
438     SanStats->finish();
439 
440   if (CodeGenOpts.Autolink &&
441       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
442     EmitModuleLinkOptions();
443   }
444 
445   // Record mregparm value now so it is visible through rest of codegen.
446   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
447     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
448                               CodeGenOpts.NumRegisterParameters);
449 
450   if (CodeGenOpts.DwarfVersion) {
451     // We actually want the latest version when there are conflicts.
452     // We can change from Warning to Latest if such mode is supported.
453     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
454                               CodeGenOpts.DwarfVersion);
455   }
456   if (CodeGenOpts.EmitCodeView) {
457     // Indicate that we want CodeView in the metadata.
458     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
459   }
460   if (CodeGenOpts.ControlFlowGuard) {
461     // We want function ID tables for Control Flow Guard.
462     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
463   }
464   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
465     // We don't support LTO with 2 with different StrictVTablePointers
466     // FIXME: we could support it by stripping all the information introduced
467     // by StrictVTablePointers.
468 
469     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
470 
471     llvm::Metadata *Ops[2] = {
472               llvm::MDString::get(VMContext, "StrictVTablePointers"),
473               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
474                   llvm::Type::getInt32Ty(VMContext), 1))};
475 
476     getModule().addModuleFlag(llvm::Module::Require,
477                               "StrictVTablePointersRequirement",
478                               llvm::MDNode::get(VMContext, Ops));
479   }
480   if (DebugInfo)
481     // We support a single version in the linked module. The LLVM
482     // parser will drop debug info with a different version number
483     // (and warn about it, too).
484     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
485                               llvm::DEBUG_METADATA_VERSION);
486 
487   // We need to record the widths of enums and wchar_t, so that we can generate
488   // the correct build attributes in the ARM backend. wchar_size is also used by
489   // TargetLibraryInfo.
490   uint64_t WCharWidth =
491       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
492   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
493 
494   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
495   if (   Arch == llvm::Triple::arm
496       || Arch == llvm::Triple::armeb
497       || Arch == llvm::Triple::thumb
498       || Arch == llvm::Triple::thumbeb) {
499     // The minimum width of an enum in bytes
500     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
501     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
502   }
503 
504   if (CodeGenOpts.SanitizeCfiCrossDso) {
505     // Indicate that we want cross-DSO control flow integrity checks.
506     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
507   }
508 
509   if (CodeGenOpts.CFProtectionReturn &&
510       Target.checkCFProtectionReturnSupported(getDiags())) {
511     // Indicate that we want to instrument return control flow protection.
512     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
513                               1);
514   }
515 
516   if (CodeGenOpts.CFProtectionBranch &&
517       Target.checkCFProtectionBranchSupported(getDiags())) {
518     // Indicate that we want to instrument branch control flow protection.
519     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
520                               1);
521   }
522 
523   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
524     // Indicate whether __nvvm_reflect should be configured to flush denormal
525     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
526     // property.)
527     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
528                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
529   }
530 
531   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
532   if (LangOpts.OpenCL) {
533     EmitOpenCLMetadata();
534     // Emit SPIR version.
535     if (getTriple().getArch() == llvm::Triple::spir ||
536         getTriple().getArch() == llvm::Triple::spir64) {
537       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
538       // opencl.spir.version named metadata.
539       llvm::Metadata *SPIRVerElts[] = {
540           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
541               Int32Ty, LangOpts.OpenCLVersion / 100)),
542           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
543               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
544       llvm::NamedMDNode *SPIRVerMD =
545           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
546       llvm::LLVMContext &Ctx = TheModule.getContext();
547       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
548     }
549   }
550 
551   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
552     assert(PLevel < 3 && "Invalid PIC Level");
553     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
554     if (Context.getLangOpts().PIE)
555       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
556   }
557 
558   if (CodeGenOpts.NoPLT)
559     getModule().setRtLibUseGOT();
560 
561   SimplifyPersonality();
562 
563   if (getCodeGenOpts().EmitDeclMetadata)
564     EmitDeclMetadata();
565 
566   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
567     EmitCoverageFile();
568 
569   if (DebugInfo)
570     DebugInfo->finalize();
571 
572   EmitVersionIdentMetadata();
573 
574   EmitTargetMetadata();
575 }
576 
577 void CodeGenModule::EmitOpenCLMetadata() {
578   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
579   // opencl.ocl.version named metadata node.
580   llvm::Metadata *OCLVerElts[] = {
581       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
582           Int32Ty, LangOpts.OpenCLVersion / 100)),
583       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
584           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
585   llvm::NamedMDNode *OCLVerMD =
586       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
587   llvm::LLVMContext &Ctx = TheModule.getContext();
588   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
589 }
590 
591 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
592   // Make sure that this type is translated.
593   Types.UpdateCompletedType(TD);
594 }
595 
596 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
597   // Make sure that this type is translated.
598   Types.RefreshTypeCacheForClass(RD);
599 }
600 
601 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
602   if (!TBAA)
603     return nullptr;
604   return TBAA->getTypeInfo(QTy);
605 }
606 
607 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
608   if (!TBAA)
609     return TBAAAccessInfo();
610   return TBAA->getAccessInfo(AccessType);
611 }
612 
613 TBAAAccessInfo
614 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
615   if (!TBAA)
616     return TBAAAccessInfo();
617   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
618 }
619 
620 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
621   if (!TBAA)
622     return nullptr;
623   return TBAA->getTBAAStructInfo(QTy);
624 }
625 
626 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
627   if (!TBAA)
628     return nullptr;
629   return TBAA->getBaseTypeInfo(QTy);
630 }
631 
632 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
633   if (!TBAA)
634     return nullptr;
635   return TBAA->getAccessTagInfo(Info);
636 }
637 
638 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
639                                                    TBAAAccessInfo TargetInfo) {
640   if (!TBAA)
641     return TBAAAccessInfo();
642   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
643 }
644 
645 TBAAAccessInfo
646 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
647                                                    TBAAAccessInfo InfoB) {
648   if (!TBAA)
649     return TBAAAccessInfo();
650   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
651 }
652 
653 TBAAAccessInfo
654 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
655                                               TBAAAccessInfo SrcInfo) {
656   if (!TBAA)
657     return TBAAAccessInfo();
658   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
659 }
660 
661 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
662                                                 TBAAAccessInfo TBAAInfo) {
663   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
664     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
665 }
666 
667 void CodeGenModule::DecorateInstructionWithInvariantGroup(
668     llvm::Instruction *I, const CXXRecordDecl *RD) {
669   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
670                  llvm::MDNode::get(getLLVMContext(), {}));
671 }
672 
673 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
674   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
675   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
676 }
677 
678 /// ErrorUnsupported - Print out an error that codegen doesn't support the
679 /// specified stmt yet.
680 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
681   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
682                                                "cannot compile this %0 yet");
683   std::string Msg = Type;
684   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
685     << Msg << S->getSourceRange();
686 }
687 
688 /// ErrorUnsupported - Print out an error that codegen doesn't support the
689 /// specified decl yet.
690 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
691   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
692                                                "cannot compile this %0 yet");
693   std::string Msg = Type;
694   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
695 }
696 
697 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
698   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
699 }
700 
701 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
702                                         const NamedDecl *D) const {
703   if (GV->hasDLLImportStorageClass())
704     return;
705   // Internal definitions always have default visibility.
706   if (GV->hasLocalLinkage()) {
707     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
708     return;
709   }
710 
711   // Set visibility for definitions.
712   LinkageInfo LV = D->getLinkageAndVisibility();
713   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
714     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
715 }
716 
717 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
718                                  llvm::GlobalValue *GV) {
719   // DLLImport explicitly marks the GV as external.
720   if (GV->hasDLLImportStorageClass())
721     return false;
722 
723   const llvm::Triple &TT = CGM.getTriple();
724   // Every other GV is local on COFF.
725   // Make an exception for windows OS in the triple: Some firmware builds use
726   // *-win32-macho triples. This (accidentally?) produced windows relocations
727   // without GOT tables in older clang versions; Keep this behaviour.
728   // FIXME: even thread local variables?
729   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
730     return true;
731 
732   // Only handle COFF and ELF for now.
733   if (!TT.isOSBinFormatELF())
734     return false;
735 
736   // If this is not an executable, don't assume anything is local.
737   const auto &CGOpts = CGM.getCodeGenOpts();
738   llvm::Reloc::Model RM = CGOpts.RelocationModel;
739   const auto &LOpts = CGM.getLangOpts();
740   if (RM != llvm::Reloc::Static && !LOpts.PIE)
741     return false;
742 
743   // A definition cannot be preempted from an executable.
744   if (!GV->isDeclarationForLinker())
745     return true;
746 
747   // Most PIC code sequences that assume that a symbol is local cannot produce a
748   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
749   // depended, it seems worth it to handle it here.
750   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
751     return false;
752 
753   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
754   llvm::Triple::ArchType Arch = TT.getArch();
755   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
756       Arch == llvm::Triple::ppc64le)
757     return false;
758 
759   // If we can use copy relocations we can assume it is local.
760   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
761     if (!Var->isThreadLocal() &&
762         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
763       return true;
764 
765   // If we can use a plt entry as the symbol address we can assume it
766   // is local.
767   // FIXME: This should work for PIE, but the gold linker doesn't support it.
768   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
769     return true;
770 
771   // Otherwise don't assue it is local.
772   return false;
773 }
774 
775 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
776   if (shouldAssumeDSOLocal(*this, GV))
777     GV->setDSOLocal(true);
778 }
779 
780 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
781                                     const NamedDecl *D) const {
782   setGlobalVisibility(GV, D);
783   setDSOLocal(GV);
784 }
785 
786 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
787   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
788       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
789       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
790       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
791       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
792 }
793 
794 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
795     CodeGenOptions::TLSModel M) {
796   switch (M) {
797   case CodeGenOptions::GeneralDynamicTLSModel:
798     return llvm::GlobalVariable::GeneralDynamicTLSModel;
799   case CodeGenOptions::LocalDynamicTLSModel:
800     return llvm::GlobalVariable::LocalDynamicTLSModel;
801   case CodeGenOptions::InitialExecTLSModel:
802     return llvm::GlobalVariable::InitialExecTLSModel;
803   case CodeGenOptions::LocalExecTLSModel:
804     return llvm::GlobalVariable::LocalExecTLSModel;
805   }
806   llvm_unreachable("Invalid TLS model!");
807 }
808 
809 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
810   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
811 
812   llvm::GlobalValue::ThreadLocalMode TLM;
813   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
814 
815   // Override the TLS model if it is explicitly specified.
816   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
817     TLM = GetLLVMTLSModel(Attr->getModel());
818   }
819 
820   GV->setThreadLocalMode(TLM);
821 }
822 
823 static void AppendTargetMangling(const CodeGenModule &CGM,
824                                  const TargetAttr *Attr, raw_ostream &Out) {
825   if (Attr->isDefaultVersion())
826     return;
827 
828   Out << '.';
829   const auto &Target = CGM.getTarget();
830   TargetAttr::ParsedTargetAttr Info =
831       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
832                     // Multiversioning doesn't allow "no-${feature}", so we can
833                     // only have "+" prefixes here.
834                     assert(LHS.startswith("+") && RHS.startswith("+") &&
835                            "Features should always have a prefix.");
836                     return Target.multiVersionSortPriority(LHS.substr(1)) >
837                            Target.multiVersionSortPriority(RHS.substr(1));
838                   });
839 
840   bool IsFirst = true;
841 
842   if (!Info.Architecture.empty()) {
843     IsFirst = false;
844     Out << "arch_" << Info.Architecture;
845   }
846 
847   for (StringRef Feat : Info.Features) {
848     if (!IsFirst)
849       Out << '_';
850     IsFirst = false;
851     Out << Feat.substr(1);
852   }
853 }
854 
855 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
856                                       const NamedDecl *ND,
857                                       bool OmitTargetMangling = false) {
858   SmallString<256> Buffer;
859   llvm::raw_svector_ostream Out(Buffer);
860   MangleContext &MC = CGM.getCXXABI().getMangleContext();
861   if (MC.shouldMangleDeclName(ND)) {
862     llvm::raw_svector_ostream Out(Buffer);
863     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
864       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
865     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
866       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
867     else
868       MC.mangleName(ND, Out);
869   } else {
870     IdentifierInfo *II = ND->getIdentifier();
871     assert(II && "Attempt to mangle unnamed decl.");
872     const auto *FD = dyn_cast<FunctionDecl>(ND);
873 
874     if (FD &&
875         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
876       llvm::raw_svector_ostream Out(Buffer);
877       Out << "__regcall3__" << II->getName();
878     } else {
879       Out << II->getName();
880     }
881   }
882 
883   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
884     if (FD->isMultiVersion() && !OmitTargetMangling)
885       AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
886   return Out.str();
887 }
888 
889 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
890                                             const FunctionDecl *FD) {
891   if (!FD->isMultiVersion())
892     return;
893 
894   // Get the name of what this would be without the 'target' attribute.  This
895   // allows us to lookup the version that was emitted when this wasn't a
896   // multiversion function.
897   std::string NonTargetName =
898       getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
899   GlobalDecl OtherGD;
900   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
901     assert(OtherGD.getCanonicalDecl()
902                .getDecl()
903                ->getAsFunction()
904                ->isMultiVersion() &&
905            "Other GD should now be a multiversioned function");
906     // OtherFD is the version of this function that was mangled BEFORE
907     // becoming a MultiVersion function.  It potentially needs to be updated.
908     const FunctionDecl *OtherFD =
909         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
910     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
911     // This is so that if the initial version was already the 'default'
912     // version, we don't try to update it.
913     if (OtherName != NonTargetName) {
914       // Remove instead of erase, since others may have stored the StringRef
915       // to this.
916       const auto ExistingRecord = Manglings.find(NonTargetName);
917       if (ExistingRecord != std::end(Manglings))
918         Manglings.remove(&(*ExistingRecord));
919       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
920       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
921       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
922         Entry->setName(OtherName);
923     }
924   }
925 }
926 
927 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
928   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
929 
930   // Some ABIs don't have constructor variants.  Make sure that base and
931   // complete constructors get mangled the same.
932   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
933     if (!getTarget().getCXXABI().hasConstructorVariants()) {
934       CXXCtorType OrigCtorType = GD.getCtorType();
935       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
936       if (OrigCtorType == Ctor_Base)
937         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
938     }
939   }
940 
941   auto FoundName = MangledDeclNames.find(CanonicalGD);
942   if (FoundName != MangledDeclNames.end())
943     return FoundName->second;
944 
945 
946   // Keep the first result in the case of a mangling collision.
947   const auto *ND = cast<NamedDecl>(GD.getDecl());
948   auto Result =
949       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
950   return MangledDeclNames[CanonicalGD] = Result.first->first();
951 }
952 
953 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
954                                              const BlockDecl *BD) {
955   MangleContext &MangleCtx = getCXXABI().getMangleContext();
956   const Decl *D = GD.getDecl();
957 
958   SmallString<256> Buffer;
959   llvm::raw_svector_ostream Out(Buffer);
960   if (!D)
961     MangleCtx.mangleGlobalBlock(BD,
962       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
963   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
964     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
965   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
966     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
967   else
968     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
969 
970   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
971   return Result.first->first();
972 }
973 
974 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
975   return getModule().getNamedValue(Name);
976 }
977 
978 /// AddGlobalCtor - Add a function to the list that will be called before
979 /// main() runs.
980 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
981                                   llvm::Constant *AssociatedData) {
982   // FIXME: Type coercion of void()* types.
983   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
984 }
985 
986 /// AddGlobalDtor - Add a function to the list that will be called
987 /// when the module is unloaded.
988 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
989   // FIXME: Type coercion of void()* types.
990   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
991 }
992 
993 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
994   if (Fns.empty()) return;
995 
996   // Ctor function type is void()*.
997   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
998   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
999 
1000   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1001   llvm::StructType *CtorStructTy = llvm::StructType::get(
1002       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
1003 
1004   // Construct the constructor and destructor arrays.
1005   ConstantInitBuilder builder(*this);
1006   auto ctors = builder.beginArray(CtorStructTy);
1007   for (const auto &I : Fns) {
1008     auto ctor = ctors.beginStruct(CtorStructTy);
1009     ctor.addInt(Int32Ty, I.Priority);
1010     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1011     if (I.AssociatedData)
1012       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1013     else
1014       ctor.addNullPointer(VoidPtrTy);
1015     ctor.finishAndAddTo(ctors);
1016   }
1017 
1018   auto list =
1019     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1020                                 /*constant*/ false,
1021                                 llvm::GlobalValue::AppendingLinkage);
1022 
1023   // The LTO linker doesn't seem to like it when we set an alignment
1024   // on appending variables.  Take it off as a workaround.
1025   list->setAlignment(0);
1026 
1027   Fns.clear();
1028 }
1029 
1030 llvm::GlobalValue::LinkageTypes
1031 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1032   const auto *D = cast<FunctionDecl>(GD.getDecl());
1033 
1034   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1035 
1036   if (isa<CXXDestructorDecl>(D) &&
1037       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1038                                          GD.getDtorType())) {
1039     // Destructor variants in the Microsoft C++ ABI are always internal or
1040     // linkonce_odr thunks emitted on an as-needed basis.
1041     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
1042                                    : llvm::GlobalValue::LinkOnceODRLinkage;
1043   }
1044 
1045   if (isa<CXXConstructorDecl>(D) &&
1046       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1047       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1048     // Our approach to inheriting constructors is fundamentally different from
1049     // that used by the MS ABI, so keep our inheriting constructor thunks
1050     // internal rather than trying to pick an unambiguous mangling for them.
1051     return llvm::GlobalValue::InternalLinkage;
1052   }
1053 
1054   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1055 }
1056 
1057 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
1058   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1059 
1060   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
1061     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
1062       // Don't dllexport/import destructor thunks.
1063       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1064       return;
1065     }
1066   }
1067 
1068   if (FD->hasAttr<DLLImportAttr>())
1069     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1070   else if (FD->hasAttr<DLLExportAttr>())
1071     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1072   else
1073     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
1074 }
1075 
1076 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1077   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1078   if (!MDS) return nullptr;
1079 
1080   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1081 }
1082 
1083 void CodeGenModule::setFunctionDefinitionAttributes(GlobalDecl GD,
1084                                                     llvm::Function *F) {
1085   setNonAliasAttributes(GD, F);
1086 }
1087 
1088 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1089                                               const CGFunctionInfo &Info,
1090                                               llvm::Function *F) {
1091   unsigned CallingConv;
1092   llvm::AttributeList PAL;
1093   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1094   F->setAttributes(PAL);
1095   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1096 }
1097 
1098 /// Determines whether the language options require us to model
1099 /// unwind exceptions.  We treat -fexceptions as mandating this
1100 /// except under the fragile ObjC ABI with only ObjC exceptions
1101 /// enabled.  This means, for example, that C with -fexceptions
1102 /// enables this.
1103 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1104   // If exceptions are completely disabled, obviously this is false.
1105   if (!LangOpts.Exceptions) return false;
1106 
1107   // If C++ exceptions are enabled, this is true.
1108   if (LangOpts.CXXExceptions) return true;
1109 
1110   // If ObjC exceptions are enabled, this depends on the ABI.
1111   if (LangOpts.ObjCExceptions) {
1112     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1113   }
1114 
1115   return true;
1116 }
1117 
1118 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1119                                                            llvm::Function *F) {
1120   llvm::AttrBuilder B;
1121 
1122   if (CodeGenOpts.UnwindTables)
1123     B.addAttribute(llvm::Attribute::UWTable);
1124 
1125   if (!hasUnwindExceptions(LangOpts))
1126     B.addAttribute(llvm::Attribute::NoUnwind);
1127 
1128   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1129     B.addAttribute(llvm::Attribute::StackProtect);
1130   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1131     B.addAttribute(llvm::Attribute::StackProtectStrong);
1132   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1133     B.addAttribute(llvm::Attribute::StackProtectReq);
1134 
1135   if (!D) {
1136     // If we don't have a declaration to control inlining, the function isn't
1137     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1138     // disabled, mark the function as noinline.
1139     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1140         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1141       B.addAttribute(llvm::Attribute::NoInline);
1142 
1143     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1144     return;
1145   }
1146 
1147   // Track whether we need to add the optnone LLVM attribute,
1148   // starting with the default for this optimization level.
1149   bool ShouldAddOptNone =
1150       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1151   // We can't add optnone in the following cases, it won't pass the verifier.
1152   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1153   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1154   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1155 
1156   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1157     B.addAttribute(llvm::Attribute::OptimizeNone);
1158 
1159     // OptimizeNone implies noinline; we should not be inlining such functions.
1160     B.addAttribute(llvm::Attribute::NoInline);
1161     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1162            "OptimizeNone and AlwaysInline on same function!");
1163 
1164     // We still need to handle naked functions even though optnone subsumes
1165     // much of their semantics.
1166     if (D->hasAttr<NakedAttr>())
1167       B.addAttribute(llvm::Attribute::Naked);
1168 
1169     // OptimizeNone wins over OptimizeForSize and MinSize.
1170     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1171     F->removeFnAttr(llvm::Attribute::MinSize);
1172   } else if (D->hasAttr<NakedAttr>()) {
1173     // Naked implies noinline: we should not be inlining such functions.
1174     B.addAttribute(llvm::Attribute::Naked);
1175     B.addAttribute(llvm::Attribute::NoInline);
1176   } else if (D->hasAttr<NoDuplicateAttr>()) {
1177     B.addAttribute(llvm::Attribute::NoDuplicate);
1178   } else if (D->hasAttr<NoInlineAttr>()) {
1179     B.addAttribute(llvm::Attribute::NoInline);
1180   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1181              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1182     // (noinline wins over always_inline, and we can't specify both in IR)
1183     B.addAttribute(llvm::Attribute::AlwaysInline);
1184   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1185     // If we're not inlining, then force everything that isn't always_inline to
1186     // carry an explicit noinline attribute.
1187     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1188       B.addAttribute(llvm::Attribute::NoInline);
1189   } else {
1190     // Otherwise, propagate the inline hint attribute and potentially use its
1191     // absence to mark things as noinline.
1192     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1193       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1194             return Redecl->isInlineSpecified();
1195           })) {
1196         B.addAttribute(llvm::Attribute::InlineHint);
1197       } else if (CodeGenOpts.getInlining() ==
1198                      CodeGenOptions::OnlyHintInlining &&
1199                  !FD->isInlined() &&
1200                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1201         B.addAttribute(llvm::Attribute::NoInline);
1202       }
1203     }
1204   }
1205 
1206   // Add other optimization related attributes if we are optimizing this
1207   // function.
1208   if (!D->hasAttr<OptimizeNoneAttr>()) {
1209     if (D->hasAttr<ColdAttr>()) {
1210       if (!ShouldAddOptNone)
1211         B.addAttribute(llvm::Attribute::OptimizeForSize);
1212       B.addAttribute(llvm::Attribute::Cold);
1213     }
1214 
1215     if (D->hasAttr<MinSizeAttr>())
1216       B.addAttribute(llvm::Attribute::MinSize);
1217   }
1218 
1219   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1220 
1221   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1222   if (alignment)
1223     F->setAlignment(alignment);
1224 
1225   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1226   // reserve a bit for differentiating between virtual and non-virtual member
1227   // functions. If the current target's C++ ABI requires this and this is a
1228   // member function, set its alignment accordingly.
1229   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1230     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1231       F->setAlignment(2);
1232   }
1233 
1234   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1235   if (CodeGenOpts.SanitizeCfiCrossDso)
1236     if (auto *FD = dyn_cast<FunctionDecl>(D))
1237       CreateFunctionTypeMetadata(FD, F);
1238 }
1239 
1240 void CodeGenModule::SetCommonAttributes(const Decl *D,
1241                                         llvm::GlobalValue *GV) {
1242   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
1243     setGVProperties(GV, ND);
1244   else
1245     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1246 
1247   if (D && D->hasAttr<UsedAttr>())
1248     addUsedGlobal(GV);
1249 }
1250 
1251 void CodeGenModule::setAliasAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1252   const Decl *D = GD.getDecl();
1253   SetCommonAttributes(D, GV);
1254 
1255   // Process the dllexport attribute based on whether the original definition
1256   // (not necessarily the aliasee) was exported.
1257   if (D->hasAttr<DLLExportAttr>())
1258     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1259 }
1260 
1261 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1262                                                 llvm::AttrBuilder &Attrs) {
1263   // Add target-cpu and target-features attributes to functions. If
1264   // we have a decl for the function and it has a target attribute then
1265   // parse that and add it to the feature set.
1266   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1267   std::vector<std::string> Features;
1268   const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1269   FD = FD ? FD->getMostRecentDecl() : FD;
1270   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1271   bool AddedAttr = false;
1272   if (TD) {
1273     llvm::StringMap<bool> FeatureMap;
1274     getFunctionFeatureMap(FeatureMap, FD);
1275 
1276     // Produce the canonical string for this set of features.
1277     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1278       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1279 
1280     // Now add the target-cpu and target-features to the function.
1281     // While we populated the feature map above, we still need to
1282     // get and parse the target attribute so we can get the cpu for
1283     // the function.
1284     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1285     if (ParsedAttr.Architecture != "" &&
1286         getTarget().isValidCPUName(ParsedAttr.Architecture))
1287       TargetCPU = ParsedAttr.Architecture;
1288   } else {
1289     // Otherwise just add the existing target cpu and target features to the
1290     // function.
1291     Features = getTarget().getTargetOpts().Features;
1292   }
1293 
1294   if (TargetCPU != "") {
1295     Attrs.addAttribute("target-cpu", TargetCPU);
1296     AddedAttr = true;
1297   }
1298   if (!Features.empty()) {
1299     std::sort(Features.begin(), Features.end());
1300     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1301     AddedAttr = true;
1302   }
1303 
1304   return AddedAttr;
1305 }
1306 
1307 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1308                                           llvm::GlobalObject *GO) {
1309   const Decl *D = GD.getDecl();
1310   SetCommonAttributes(D, GO);
1311 
1312   if (D) {
1313     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1314       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1315         GV->addAttribute("bss-section", SA->getName());
1316       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1317         GV->addAttribute("data-section", SA->getName());
1318       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1319         GV->addAttribute("rodata-section", SA->getName());
1320     }
1321 
1322     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1323       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1324         if (!D->getAttr<SectionAttr>())
1325           F->addFnAttr("implicit-section-name", SA->getName());
1326 
1327       llvm::AttrBuilder Attrs;
1328       if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1329         // We know that GetCPUAndFeaturesAttributes will always have the
1330         // newest set, since it has the newest possible FunctionDecl, so the
1331         // new ones should replace the old.
1332         F->removeFnAttr("target-cpu");
1333         F->removeFnAttr("target-features");
1334         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1335       }
1336     }
1337 
1338     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1339       GO->setSection(SA->getName());
1340   }
1341 
1342   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1343 }
1344 
1345 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1346                                                   llvm::Function *F,
1347                                                   const CGFunctionInfo &FI) {
1348   const Decl *D = GD.getDecl();
1349   SetLLVMFunctionAttributes(D, FI, F);
1350   SetLLVMFunctionAttributesForDefinition(D, F);
1351 
1352   F->setLinkage(llvm::Function::InternalLinkage);
1353 
1354   setNonAliasAttributes(GD, F);
1355 }
1356 
1357 static void setLinkageForGV(llvm::GlobalValue *GV,
1358                             const NamedDecl *ND) {
1359   // Set linkage and visibility in case we never see a definition.
1360   LinkageInfo LV = ND->getLinkageAndVisibility();
1361   if (!isExternallyVisible(LV.getLinkage())) {
1362     // Don't set internal linkage on declarations.
1363   } else {
1364     if (ND->hasAttr<DLLImportAttr>()) {
1365       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1366       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1367     } else if (ND->hasAttr<DLLExportAttr>()) {
1368       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1369     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1370       // "extern_weak" is overloaded in LLVM; we probably should have
1371       // separate linkage types for this.
1372       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1373     }
1374   }
1375 }
1376 
1377 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1378                                                llvm::Function *F) {
1379   // Only if we are checking indirect calls.
1380   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1381     return;
1382 
1383   // Non-static class methods are handled via vtable pointer checks elsewhere.
1384   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1385     return;
1386 
1387   // Additionally, if building with cross-DSO support...
1388   if (CodeGenOpts.SanitizeCfiCrossDso) {
1389     // Skip available_externally functions. They won't be codegen'ed in the
1390     // current module anyway.
1391     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1392       return;
1393   }
1394 
1395   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1396   F->addTypeMetadata(0, MD);
1397   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1398 
1399   // Emit a hash-based bit set entry for cross-DSO calls.
1400   if (CodeGenOpts.SanitizeCfiCrossDso)
1401     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1402       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1403 }
1404 
1405 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1406                                           bool IsIncompleteFunction,
1407                                           bool IsThunk) {
1408 
1409   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1410     // If this is an intrinsic function, set the function's attributes
1411     // to the intrinsic's attributes.
1412     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1413     return;
1414   }
1415 
1416   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1417 
1418   if (!IsIncompleteFunction) {
1419     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1420     // Setup target-specific attributes.
1421     if (F->isDeclaration())
1422       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1423   }
1424 
1425   // Add the Returned attribute for "this", except for iOS 5 and earlier
1426   // where substantial code, including the libstdc++ dylib, was compiled with
1427   // GCC and does not actually return "this".
1428   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1429       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1430     assert(!F->arg_empty() &&
1431            F->arg_begin()->getType()
1432              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1433            "unexpected this return");
1434     F->addAttribute(1, llvm::Attribute::Returned);
1435   }
1436 
1437   // Only a few attributes are set on declarations; these may later be
1438   // overridden by a definition.
1439 
1440   setLinkageForGV(F, FD);
1441   setGVProperties(F, FD);
1442 
1443   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1444     F->addFnAttr("implicit-section-name");
1445   }
1446 
1447   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1448     F->setSection(SA->getName());
1449 
1450   if (FD->isReplaceableGlobalAllocationFunction()) {
1451     // A replaceable global allocation function does not act like a builtin by
1452     // default, only if it is invoked by a new-expression or delete-expression.
1453     F->addAttribute(llvm::AttributeList::FunctionIndex,
1454                     llvm::Attribute::NoBuiltin);
1455 
1456     // A sane operator new returns a non-aliasing pointer.
1457     // FIXME: Also add NonNull attribute to the return value
1458     // for the non-nothrow forms?
1459     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1460     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1461         (Kind == OO_New || Kind == OO_Array_New))
1462       F->addAttribute(llvm::AttributeList::ReturnIndex,
1463                       llvm::Attribute::NoAlias);
1464   }
1465 
1466   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1467     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1468   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1469     if (MD->isVirtual())
1470       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1471 
1472   // Don't emit entries for function declarations in the cross-DSO mode. This
1473   // is handled with better precision by the receiving DSO.
1474   if (!CodeGenOpts.SanitizeCfiCrossDso)
1475     CreateFunctionTypeMetadata(FD, F);
1476 
1477   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1478     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1479 }
1480 
1481 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1482   assert(!GV->isDeclaration() &&
1483          "Only globals with definition can force usage.");
1484   LLVMUsed.emplace_back(GV);
1485 }
1486 
1487 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1488   assert(!GV->isDeclaration() &&
1489          "Only globals with definition can force usage.");
1490   LLVMCompilerUsed.emplace_back(GV);
1491 }
1492 
1493 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1494                      std::vector<llvm::WeakTrackingVH> &List) {
1495   // Don't create llvm.used if there is no need.
1496   if (List.empty())
1497     return;
1498 
1499   // Convert List to what ConstantArray needs.
1500   SmallVector<llvm::Constant*, 8> UsedArray;
1501   UsedArray.resize(List.size());
1502   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1503     UsedArray[i] =
1504         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1505             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1506   }
1507 
1508   if (UsedArray.empty())
1509     return;
1510   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1511 
1512   auto *GV = new llvm::GlobalVariable(
1513       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1514       llvm::ConstantArray::get(ATy, UsedArray), Name);
1515 
1516   GV->setSection("llvm.metadata");
1517 }
1518 
1519 void CodeGenModule::emitLLVMUsed() {
1520   emitUsed(*this, "llvm.used", LLVMUsed);
1521   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1522 }
1523 
1524 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1525   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1526   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1527 }
1528 
1529 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1530   llvm::SmallString<32> Opt;
1531   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1532   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1533   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1534 }
1535 
1536 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1537   auto &C = getLLVMContext();
1538   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1539       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1540 }
1541 
1542 void CodeGenModule::AddDependentLib(StringRef Lib) {
1543   llvm::SmallString<24> Opt;
1544   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1545   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1546   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1547 }
1548 
1549 /// \brief Add link options implied by the given module, including modules
1550 /// it depends on, using a postorder walk.
1551 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1552                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1553                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1554   // Import this module's parent.
1555   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1556     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1557   }
1558 
1559   // Import this module's dependencies.
1560   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1561     if (Visited.insert(Mod->Imports[I - 1]).second)
1562       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1563   }
1564 
1565   // Add linker options to link against the libraries/frameworks
1566   // described by this module.
1567   llvm::LLVMContext &Context = CGM.getLLVMContext();
1568   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1569     // Link against a framework.  Frameworks are currently Darwin only, so we
1570     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1571     if (Mod->LinkLibraries[I-1].IsFramework) {
1572       llvm::Metadata *Args[2] = {
1573           llvm::MDString::get(Context, "-framework"),
1574           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1575 
1576       Metadata.push_back(llvm::MDNode::get(Context, Args));
1577       continue;
1578     }
1579 
1580     // Link against a library.
1581     llvm::SmallString<24> Opt;
1582     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1583       Mod->LinkLibraries[I-1].Library, Opt);
1584     auto *OptString = llvm::MDString::get(Context, Opt);
1585     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1586   }
1587 }
1588 
1589 void CodeGenModule::EmitModuleLinkOptions() {
1590   // Collect the set of all of the modules we want to visit to emit link
1591   // options, which is essentially the imported modules and all of their
1592   // non-explicit child modules.
1593   llvm::SetVector<clang::Module *> LinkModules;
1594   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1595   SmallVector<clang::Module *, 16> Stack;
1596 
1597   // Seed the stack with imported modules.
1598   for (Module *M : ImportedModules) {
1599     // Do not add any link flags when an implementation TU of a module imports
1600     // a header of that same module.
1601     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1602         !getLangOpts().isCompilingModule())
1603       continue;
1604     if (Visited.insert(M).second)
1605       Stack.push_back(M);
1606   }
1607 
1608   // Find all of the modules to import, making a little effort to prune
1609   // non-leaf modules.
1610   while (!Stack.empty()) {
1611     clang::Module *Mod = Stack.pop_back_val();
1612 
1613     bool AnyChildren = false;
1614 
1615     // Visit the submodules of this module.
1616     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1617                                         SubEnd = Mod->submodule_end();
1618          Sub != SubEnd; ++Sub) {
1619       // Skip explicit children; they need to be explicitly imported to be
1620       // linked against.
1621       if ((*Sub)->IsExplicit)
1622         continue;
1623 
1624       if (Visited.insert(*Sub).second) {
1625         Stack.push_back(*Sub);
1626         AnyChildren = true;
1627       }
1628     }
1629 
1630     // We didn't find any children, so add this module to the list of
1631     // modules to link against.
1632     if (!AnyChildren) {
1633       LinkModules.insert(Mod);
1634     }
1635   }
1636 
1637   // Add link options for all of the imported modules in reverse topological
1638   // order.  We don't do anything to try to order import link flags with respect
1639   // to linker options inserted by things like #pragma comment().
1640   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1641   Visited.clear();
1642   for (Module *M : LinkModules)
1643     if (Visited.insert(M).second)
1644       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1645   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1646   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1647 
1648   // Add the linker options metadata flag.
1649   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1650   for (auto *MD : LinkerOptionsMetadata)
1651     NMD->addOperand(MD);
1652 }
1653 
1654 void CodeGenModule::EmitDeferred() {
1655   // Emit code for any potentially referenced deferred decls.  Since a
1656   // previously unused static decl may become used during the generation of code
1657   // for a static function, iterate until no changes are made.
1658 
1659   if (!DeferredVTables.empty()) {
1660     EmitDeferredVTables();
1661 
1662     // Emitting a vtable doesn't directly cause more vtables to
1663     // become deferred, although it can cause functions to be
1664     // emitted that then need those vtables.
1665     assert(DeferredVTables.empty());
1666   }
1667 
1668   // Stop if we're out of both deferred vtables and deferred declarations.
1669   if (DeferredDeclsToEmit.empty())
1670     return;
1671 
1672   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1673   // work, it will not interfere with this.
1674   std::vector<GlobalDecl> CurDeclsToEmit;
1675   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1676 
1677   for (GlobalDecl &D : CurDeclsToEmit) {
1678     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1679     // to get GlobalValue with exactly the type we need, not something that
1680     // might had been created for another decl with the same mangled name but
1681     // different type.
1682     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1683         GetAddrOfGlobal(D, ForDefinition));
1684 
1685     // In case of different address spaces, we may still get a cast, even with
1686     // IsForDefinition equal to true. Query mangled names table to get
1687     // GlobalValue.
1688     if (!GV)
1689       GV = GetGlobalValue(getMangledName(D));
1690 
1691     // Make sure GetGlobalValue returned non-null.
1692     assert(GV);
1693 
1694     // Check to see if we've already emitted this.  This is necessary
1695     // for a couple of reasons: first, decls can end up in the
1696     // deferred-decls queue multiple times, and second, decls can end
1697     // up with definitions in unusual ways (e.g. by an extern inline
1698     // function acquiring a strong function redefinition).  Just
1699     // ignore these cases.
1700     if (!GV->isDeclaration())
1701       continue;
1702 
1703     // Otherwise, emit the definition and move on to the next one.
1704     EmitGlobalDefinition(D, GV);
1705 
1706     // If we found out that we need to emit more decls, do that recursively.
1707     // This has the advantage that the decls are emitted in a DFS and related
1708     // ones are close together, which is convenient for testing.
1709     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1710       EmitDeferred();
1711       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1712     }
1713   }
1714 }
1715 
1716 void CodeGenModule::EmitVTablesOpportunistically() {
1717   // Try to emit external vtables as available_externally if they have emitted
1718   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1719   // is not allowed to create new references to things that need to be emitted
1720   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1721 
1722   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1723          && "Only emit opportunistic vtables with optimizations");
1724 
1725   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1726     assert(getVTables().isVTableExternal(RD) &&
1727            "This queue should only contain external vtables");
1728     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1729       VTables.GenerateClassData(RD);
1730   }
1731   OpportunisticVTables.clear();
1732 }
1733 
1734 void CodeGenModule::EmitGlobalAnnotations() {
1735   if (Annotations.empty())
1736     return;
1737 
1738   // Create a new global variable for the ConstantStruct in the Module.
1739   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1740     Annotations[0]->getType(), Annotations.size()), Annotations);
1741   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1742                                       llvm::GlobalValue::AppendingLinkage,
1743                                       Array, "llvm.global.annotations");
1744   gv->setSection(AnnotationSection);
1745 }
1746 
1747 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1748   llvm::Constant *&AStr = AnnotationStrings[Str];
1749   if (AStr)
1750     return AStr;
1751 
1752   // Not found yet, create a new global.
1753   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1754   auto *gv =
1755       new llvm::GlobalVariable(getModule(), s->getType(), true,
1756                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1757   gv->setSection(AnnotationSection);
1758   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1759   AStr = gv;
1760   return gv;
1761 }
1762 
1763 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1764   SourceManager &SM = getContext().getSourceManager();
1765   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1766   if (PLoc.isValid())
1767     return EmitAnnotationString(PLoc.getFilename());
1768   return EmitAnnotationString(SM.getBufferName(Loc));
1769 }
1770 
1771 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1772   SourceManager &SM = getContext().getSourceManager();
1773   PresumedLoc PLoc = SM.getPresumedLoc(L);
1774   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1775     SM.getExpansionLineNumber(L);
1776   return llvm::ConstantInt::get(Int32Ty, LineNo);
1777 }
1778 
1779 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1780                                                 const AnnotateAttr *AA,
1781                                                 SourceLocation L) {
1782   // Get the globals for file name, annotation, and the line number.
1783   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1784                  *UnitGV = EmitAnnotationUnit(L),
1785                  *LineNoCst = EmitAnnotationLineNo(L);
1786 
1787   // Create the ConstantStruct for the global annotation.
1788   llvm::Constant *Fields[4] = {
1789     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1790     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1791     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1792     LineNoCst
1793   };
1794   return llvm::ConstantStruct::getAnon(Fields);
1795 }
1796 
1797 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1798                                          llvm::GlobalValue *GV) {
1799   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1800   // Get the struct elements for these annotations.
1801   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1802     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1803 }
1804 
1805 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1806                                            llvm::Function *Fn,
1807                                            SourceLocation Loc) const {
1808   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1809   // Blacklist by function name.
1810   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1811     return true;
1812   // Blacklist by location.
1813   if (Loc.isValid())
1814     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1815   // If location is unknown, this may be a compiler-generated function. Assume
1816   // it's located in the main file.
1817   auto &SM = Context.getSourceManager();
1818   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1819     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1820   }
1821   return false;
1822 }
1823 
1824 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1825                                            SourceLocation Loc, QualType Ty,
1826                                            StringRef Category) const {
1827   // For now globals can be blacklisted only in ASan and KASan.
1828   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1829       (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress);
1830   if (!EnabledAsanMask)
1831     return false;
1832   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1833   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1834     return true;
1835   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1836     return true;
1837   // Check global type.
1838   if (!Ty.isNull()) {
1839     // Drill down the array types: if global variable of a fixed type is
1840     // blacklisted, we also don't instrument arrays of them.
1841     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1842       Ty = AT->getElementType();
1843     Ty = Ty.getCanonicalType().getUnqualifiedType();
1844     // We allow to blacklist only record types (classes, structs etc.)
1845     if (Ty->isRecordType()) {
1846       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1847       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1848         return true;
1849     }
1850   }
1851   return false;
1852 }
1853 
1854 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1855                                    StringRef Category) const {
1856   if (!LangOpts.XRayInstrument)
1857     return false;
1858   const auto &XRayFilter = getContext().getXRayFilter();
1859   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1860   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1861   if (Loc.isValid())
1862     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1863   if (Attr == ImbueAttr::NONE)
1864     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1865   switch (Attr) {
1866   case ImbueAttr::NONE:
1867     return false;
1868   case ImbueAttr::ALWAYS:
1869     Fn->addFnAttr("function-instrument", "xray-always");
1870     break;
1871   case ImbueAttr::ALWAYS_ARG1:
1872     Fn->addFnAttr("function-instrument", "xray-always");
1873     Fn->addFnAttr("xray-log-args", "1");
1874     break;
1875   case ImbueAttr::NEVER:
1876     Fn->addFnAttr("function-instrument", "xray-never");
1877     break;
1878   }
1879   return true;
1880 }
1881 
1882 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1883   // Never defer when EmitAllDecls is specified.
1884   if (LangOpts.EmitAllDecls)
1885     return true;
1886 
1887   return getContext().DeclMustBeEmitted(Global);
1888 }
1889 
1890 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1891   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1892     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1893       // Implicit template instantiations may change linkage if they are later
1894       // explicitly instantiated, so they should not be emitted eagerly.
1895       return false;
1896   if (const auto *VD = dyn_cast<VarDecl>(Global))
1897     if (Context.getInlineVariableDefinitionKind(VD) ==
1898         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1899       // A definition of an inline constexpr static data member may change
1900       // linkage later if it's redeclared outside the class.
1901       return false;
1902   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1903   // codegen for global variables, because they may be marked as threadprivate.
1904   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1905       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1906     return false;
1907 
1908   return true;
1909 }
1910 
1911 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1912     const CXXUuidofExpr* E) {
1913   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1914   // well-formed.
1915   StringRef Uuid = E->getUuidStr();
1916   std::string Name = "_GUID_" + Uuid.lower();
1917   std::replace(Name.begin(), Name.end(), '-', '_');
1918 
1919   // The UUID descriptor should be pointer aligned.
1920   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1921 
1922   // Look for an existing global.
1923   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1924     return ConstantAddress(GV, Alignment);
1925 
1926   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1927   assert(Init && "failed to initialize as constant");
1928 
1929   auto *GV = new llvm::GlobalVariable(
1930       getModule(), Init->getType(),
1931       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1932   if (supportsCOMDAT())
1933     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1934   return ConstantAddress(GV, Alignment);
1935 }
1936 
1937 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1938   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1939   assert(AA && "No alias?");
1940 
1941   CharUnits Alignment = getContext().getDeclAlign(VD);
1942   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1943 
1944   // See if there is already something with the target's name in the module.
1945   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1946   if (Entry) {
1947     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1948     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1949     return ConstantAddress(Ptr, Alignment);
1950   }
1951 
1952   llvm::Constant *Aliasee;
1953   if (isa<llvm::FunctionType>(DeclTy))
1954     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1955                                       GlobalDecl(cast<FunctionDecl>(VD)),
1956                                       /*ForVTable=*/false);
1957   else
1958     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1959                                     llvm::PointerType::getUnqual(DeclTy),
1960                                     nullptr);
1961 
1962   auto *F = cast<llvm::GlobalValue>(Aliasee);
1963   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1964   WeakRefReferences.insert(F);
1965 
1966   return ConstantAddress(Aliasee, Alignment);
1967 }
1968 
1969 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1970   const auto *Global = cast<ValueDecl>(GD.getDecl());
1971 
1972   // Weak references don't produce any output by themselves.
1973   if (Global->hasAttr<WeakRefAttr>())
1974     return;
1975 
1976   // If this is an alias definition (which otherwise looks like a declaration)
1977   // emit it now.
1978   if (Global->hasAttr<AliasAttr>())
1979     return EmitAliasDefinition(GD);
1980 
1981   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1982   if (Global->hasAttr<IFuncAttr>())
1983     return emitIFuncDefinition(GD);
1984 
1985   // If this is CUDA, be selective about which declarations we emit.
1986   if (LangOpts.CUDA) {
1987     if (LangOpts.CUDAIsDevice) {
1988       if (!Global->hasAttr<CUDADeviceAttr>() &&
1989           !Global->hasAttr<CUDAGlobalAttr>() &&
1990           !Global->hasAttr<CUDAConstantAttr>() &&
1991           !Global->hasAttr<CUDASharedAttr>())
1992         return;
1993     } else {
1994       // We need to emit host-side 'shadows' for all global
1995       // device-side variables because the CUDA runtime needs their
1996       // size and host-side address in order to provide access to
1997       // their device-side incarnations.
1998 
1999       // So device-only functions are the only things we skip.
2000       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2001           Global->hasAttr<CUDADeviceAttr>())
2002         return;
2003 
2004       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2005              "Expected Variable or Function");
2006     }
2007   }
2008 
2009   if (LangOpts.OpenMP) {
2010     // If this is OpenMP device, check if it is legal to emit this global
2011     // normally.
2012     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2013       return;
2014     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2015       if (MustBeEmitted(Global))
2016         EmitOMPDeclareReduction(DRD);
2017       return;
2018     }
2019   }
2020 
2021   // Ignore declarations, they will be emitted on their first use.
2022   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2023     // Forward declarations are emitted lazily on first use.
2024     if (!FD->doesThisDeclarationHaveABody()) {
2025       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2026         return;
2027 
2028       StringRef MangledName = getMangledName(GD);
2029 
2030       // Compute the function info and LLVM type.
2031       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2032       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2033 
2034       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2035                               /*DontDefer=*/false);
2036       return;
2037     }
2038   } else {
2039     const auto *VD = cast<VarDecl>(Global);
2040     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2041     // We need to emit device-side global CUDA variables even if a
2042     // variable does not have a definition -- we still need to define
2043     // host-side shadow for it.
2044     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2045                            !VD->hasDefinition() &&
2046                            (VD->hasAttr<CUDAConstantAttr>() ||
2047                             VD->hasAttr<CUDADeviceAttr>());
2048     if (!MustEmitForCuda &&
2049         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2050         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2051       // If this declaration may have caused an inline variable definition to
2052       // change linkage, make sure that it's emitted.
2053       if (Context.getInlineVariableDefinitionKind(VD) ==
2054           ASTContext::InlineVariableDefinitionKind::Strong)
2055         GetAddrOfGlobalVar(VD);
2056       return;
2057     }
2058   }
2059 
2060   // Defer code generation to first use when possible, e.g. if this is an inline
2061   // function. If the global must always be emitted, do it eagerly if possible
2062   // to benefit from cache locality.
2063   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2064     // Emit the definition if it can't be deferred.
2065     EmitGlobalDefinition(GD);
2066     return;
2067   }
2068 
2069   // If we're deferring emission of a C++ variable with an
2070   // initializer, remember the order in which it appeared in the file.
2071   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2072       cast<VarDecl>(Global)->hasInit()) {
2073     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2074     CXXGlobalInits.push_back(nullptr);
2075   }
2076 
2077   StringRef MangledName = getMangledName(GD);
2078   if (GetGlobalValue(MangledName) != nullptr) {
2079     // The value has already been used and should therefore be emitted.
2080     addDeferredDeclToEmit(GD);
2081   } else if (MustBeEmitted(Global)) {
2082     // The value must be emitted, but cannot be emitted eagerly.
2083     assert(!MayBeEmittedEagerly(Global));
2084     addDeferredDeclToEmit(GD);
2085   } else {
2086     // Otherwise, remember that we saw a deferred decl with this name.  The
2087     // first use of the mangled name will cause it to move into
2088     // DeferredDeclsToEmit.
2089     DeferredDecls[MangledName] = GD;
2090   }
2091 }
2092 
2093 // Check if T is a class type with a destructor that's not dllimport.
2094 static bool HasNonDllImportDtor(QualType T) {
2095   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2096     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2097       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2098         return true;
2099 
2100   return false;
2101 }
2102 
2103 namespace {
2104   struct FunctionIsDirectlyRecursive :
2105     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2106     const StringRef Name;
2107     const Builtin::Context &BI;
2108     bool Result;
2109     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2110       Name(N), BI(C), Result(false) {
2111     }
2112     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2113 
2114     bool TraverseCallExpr(CallExpr *E) {
2115       const FunctionDecl *FD = E->getDirectCallee();
2116       if (!FD)
2117         return true;
2118       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2119       if (Attr && Name == Attr->getLabel()) {
2120         Result = true;
2121         return false;
2122       }
2123       unsigned BuiltinID = FD->getBuiltinID();
2124       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2125         return true;
2126       StringRef BuiltinName = BI.getName(BuiltinID);
2127       if (BuiltinName.startswith("__builtin_") &&
2128           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2129         Result = true;
2130         return false;
2131       }
2132       return true;
2133     }
2134   };
2135 
2136   // Make sure we're not referencing non-imported vars or functions.
2137   struct DLLImportFunctionVisitor
2138       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2139     bool SafeToInline = true;
2140 
2141     bool shouldVisitImplicitCode() const { return true; }
2142 
2143     bool VisitVarDecl(VarDecl *VD) {
2144       if (VD->getTLSKind()) {
2145         // A thread-local variable cannot be imported.
2146         SafeToInline = false;
2147         return SafeToInline;
2148       }
2149 
2150       // A variable definition might imply a destructor call.
2151       if (VD->isThisDeclarationADefinition())
2152         SafeToInline = !HasNonDllImportDtor(VD->getType());
2153 
2154       return SafeToInline;
2155     }
2156 
2157     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2158       if (const auto *D = E->getTemporary()->getDestructor())
2159         SafeToInline = D->hasAttr<DLLImportAttr>();
2160       return SafeToInline;
2161     }
2162 
2163     bool VisitDeclRefExpr(DeclRefExpr *E) {
2164       ValueDecl *VD = E->getDecl();
2165       if (isa<FunctionDecl>(VD))
2166         SafeToInline = VD->hasAttr<DLLImportAttr>();
2167       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2168         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2169       return SafeToInline;
2170     }
2171 
2172     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2173       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2174       return SafeToInline;
2175     }
2176 
2177     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2178       CXXMethodDecl *M = E->getMethodDecl();
2179       if (!M) {
2180         // Call through a pointer to member function. This is safe to inline.
2181         SafeToInline = true;
2182       } else {
2183         SafeToInline = M->hasAttr<DLLImportAttr>();
2184       }
2185       return SafeToInline;
2186     }
2187 
2188     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2189       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2190       return SafeToInline;
2191     }
2192 
2193     bool VisitCXXNewExpr(CXXNewExpr *E) {
2194       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2195       return SafeToInline;
2196     }
2197   };
2198 }
2199 
2200 // isTriviallyRecursive - Check if this function calls another
2201 // decl that, because of the asm attribute or the other decl being a builtin,
2202 // ends up pointing to itself.
2203 bool
2204 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2205   StringRef Name;
2206   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2207     // asm labels are a special kind of mangling we have to support.
2208     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2209     if (!Attr)
2210       return false;
2211     Name = Attr->getLabel();
2212   } else {
2213     Name = FD->getName();
2214   }
2215 
2216   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2217   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2218   return Walker.Result;
2219 }
2220 
2221 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2222   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2223     return true;
2224   const auto *F = cast<FunctionDecl>(GD.getDecl());
2225   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2226     return false;
2227 
2228   if (F->hasAttr<DLLImportAttr>()) {
2229     // Check whether it would be safe to inline this dllimport function.
2230     DLLImportFunctionVisitor Visitor;
2231     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2232     if (!Visitor.SafeToInline)
2233       return false;
2234 
2235     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2236       // Implicit destructor invocations aren't captured in the AST, so the
2237       // check above can't see them. Check for them manually here.
2238       for (const Decl *Member : Dtor->getParent()->decls())
2239         if (isa<FieldDecl>(Member))
2240           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2241             return false;
2242       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2243         if (HasNonDllImportDtor(B.getType()))
2244           return false;
2245     }
2246   }
2247 
2248   // PR9614. Avoid cases where the source code is lying to us. An available
2249   // externally function should have an equivalent function somewhere else,
2250   // but a function that calls itself is clearly not equivalent to the real
2251   // implementation.
2252   // This happens in glibc's btowc and in some configure checks.
2253   return !isTriviallyRecursive(F);
2254 }
2255 
2256 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2257   return CodeGenOpts.OptimizationLevel > 0;
2258 }
2259 
2260 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2261   const auto *D = cast<ValueDecl>(GD.getDecl());
2262 
2263   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2264                                  Context.getSourceManager(),
2265                                  "Generating code for declaration");
2266 
2267   if (isa<FunctionDecl>(D)) {
2268     // At -O0, don't generate IR for functions with available_externally
2269     // linkage.
2270     if (!shouldEmitFunction(GD))
2271       return;
2272 
2273     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2274       // Make sure to emit the definition(s) before we emit the thunks.
2275       // This is necessary for the generation of certain thunks.
2276       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2277         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2278       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2279         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2280       else
2281         EmitGlobalFunctionDefinition(GD, GV);
2282 
2283       if (Method->isVirtual())
2284         getVTables().EmitThunks(GD);
2285 
2286       return;
2287     }
2288 
2289     return EmitGlobalFunctionDefinition(GD, GV);
2290   }
2291 
2292   if (const auto *VD = dyn_cast<VarDecl>(D))
2293     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2294 
2295   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2296 }
2297 
2298 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2299                                                       llvm::Function *NewFn);
2300 
2301 void CodeGenModule::emitMultiVersionFunctions() {
2302   for (GlobalDecl GD : MultiVersionFuncs) {
2303     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2304     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2305     getContext().forEachMultiversionedFunctionVersion(
2306         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2307           GlobalDecl CurGD{
2308               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2309           StringRef MangledName = getMangledName(CurGD);
2310           llvm::Constant *Func = GetGlobalValue(MangledName);
2311           if (!Func) {
2312             if (CurFD->isDefined()) {
2313               EmitGlobalFunctionDefinition(CurGD, nullptr);
2314               Func = GetGlobalValue(MangledName);
2315             } else {
2316               const CGFunctionInfo &FI =
2317                   getTypes().arrangeGlobalDeclaration(GD);
2318               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2319               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2320                                        /*DontDefer=*/false, ForDefinition);
2321             }
2322             assert(Func && "This should have just been created");
2323           }
2324           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2325                                CurFD->getAttr<TargetAttr>()->parse());
2326         });
2327 
2328     llvm::Function *ResolverFunc = cast<llvm::Function>(
2329         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2330     if (supportsCOMDAT())
2331       ResolverFunc->setComdat(
2332           getModule().getOrInsertComdat(ResolverFunc->getName()));
2333     std::stable_sort(
2334         Options.begin(), Options.end(),
2335         std::greater<CodeGenFunction::MultiVersionResolverOption>());
2336     CodeGenFunction CGF(*this);
2337     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2338   }
2339 }
2340 
2341 /// If an ifunc for the specified mangled name is not in the module, create and
2342 /// return an llvm IFunc Function with the specified type.
2343 llvm::Constant *
2344 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2345                                             StringRef MangledName,
2346                                             const FunctionDecl *FD) {
2347   std::string IFuncName = (MangledName + ".ifunc").str();
2348   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2349     return IFuncGV;
2350 
2351   // Since this is the first time we've created this IFunc, make sure
2352   // that we put this multiversioned function into the list to be
2353   // replaced later.
2354   MultiVersionFuncs.push_back(GD);
2355 
2356   std::string ResolverName = (MangledName + ".resolver").str();
2357   llvm::Type *ResolverType = llvm::FunctionType::get(
2358       llvm::PointerType::get(DeclTy,
2359                              Context.getTargetAddressSpace(FD->getType())),
2360       false);
2361   llvm::Constant *Resolver =
2362       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2363                               /*ForVTable=*/false);
2364   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2365       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2366   GIF->setName(IFuncName);
2367   SetCommonAttributes(FD, GIF);
2368 
2369   return GIF;
2370 }
2371 
2372 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2373 /// module, create and return an llvm Function with the specified type. If there
2374 /// is something in the module with the specified name, return it potentially
2375 /// bitcasted to the right type.
2376 ///
2377 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2378 /// to set the attributes on the function when it is first created.
2379 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2380     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2381     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2382     ForDefinition_t IsForDefinition) {
2383   const Decl *D = GD.getDecl();
2384 
2385   // Any attempts to use a MultiVersion function should result in retrieving
2386   // the iFunc instead. Name Mangling will handle the rest of the changes.
2387   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2388     if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2389       UpdateMultiVersionNames(GD, FD);
2390       if (!IsForDefinition)
2391         return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2392     }
2393   }
2394 
2395   // Lookup the entry, lazily creating it if necessary.
2396   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2397   if (Entry) {
2398     if (WeakRefReferences.erase(Entry)) {
2399       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2400       if (FD && !FD->hasAttr<WeakAttr>())
2401         Entry->setLinkage(llvm::Function::ExternalLinkage);
2402     }
2403 
2404     // Handle dropped DLL attributes.
2405     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2406       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2407 
2408     // If there are two attempts to define the same mangled name, issue an
2409     // error.
2410     if (IsForDefinition && !Entry->isDeclaration()) {
2411       GlobalDecl OtherGD;
2412       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2413       // to make sure that we issue an error only once.
2414       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2415           (GD.getCanonicalDecl().getDecl() !=
2416            OtherGD.getCanonicalDecl().getDecl()) &&
2417           DiagnosedConflictingDefinitions.insert(GD).second) {
2418         getDiags().Report(D->getLocation(),
2419                           diag::err_duplicate_mangled_name);
2420         getDiags().Report(OtherGD.getDecl()->getLocation(),
2421                           diag::note_previous_definition);
2422       }
2423     }
2424 
2425     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2426         (Entry->getType()->getElementType() == Ty)) {
2427       return Entry;
2428     }
2429 
2430     // Make sure the result is of the correct type.
2431     // (If function is requested for a definition, we always need to create a new
2432     // function, not just return a bitcast.)
2433     if (!IsForDefinition)
2434       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2435   }
2436 
2437   // This function doesn't have a complete type (for example, the return
2438   // type is an incomplete struct). Use a fake type instead, and make
2439   // sure not to try to set attributes.
2440   bool IsIncompleteFunction = false;
2441 
2442   llvm::FunctionType *FTy;
2443   if (isa<llvm::FunctionType>(Ty)) {
2444     FTy = cast<llvm::FunctionType>(Ty);
2445   } else {
2446     FTy = llvm::FunctionType::get(VoidTy, false);
2447     IsIncompleteFunction = true;
2448   }
2449 
2450   llvm::Function *F =
2451       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2452                              Entry ? StringRef() : MangledName, &getModule());
2453 
2454   // If we already created a function with the same mangled name (but different
2455   // type) before, take its name and add it to the list of functions to be
2456   // replaced with F at the end of CodeGen.
2457   //
2458   // This happens if there is a prototype for a function (e.g. "int f()") and
2459   // then a definition of a different type (e.g. "int f(int x)").
2460   if (Entry) {
2461     F->takeName(Entry);
2462 
2463     // This might be an implementation of a function without a prototype, in
2464     // which case, try to do special replacement of calls which match the new
2465     // prototype.  The really key thing here is that we also potentially drop
2466     // arguments from the call site so as to make a direct call, which makes the
2467     // inliner happier and suppresses a number of optimizer warnings (!) about
2468     // dropping arguments.
2469     if (!Entry->use_empty()) {
2470       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2471       Entry->removeDeadConstantUsers();
2472     }
2473 
2474     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2475         F, Entry->getType()->getElementType()->getPointerTo());
2476     addGlobalValReplacement(Entry, BC);
2477   }
2478 
2479   assert(F->getName() == MangledName && "name was uniqued!");
2480   if (D)
2481     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2482   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2483     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2484     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2485   }
2486 
2487   if (!DontDefer) {
2488     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2489     // each other bottoming out with the base dtor.  Therefore we emit non-base
2490     // dtors on usage, even if there is no dtor definition in the TU.
2491     if (D && isa<CXXDestructorDecl>(D) &&
2492         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2493                                            GD.getDtorType()))
2494       addDeferredDeclToEmit(GD);
2495 
2496     // This is the first use or definition of a mangled name.  If there is a
2497     // deferred decl with this name, remember that we need to emit it at the end
2498     // of the file.
2499     auto DDI = DeferredDecls.find(MangledName);
2500     if (DDI != DeferredDecls.end()) {
2501       // Move the potentially referenced deferred decl to the
2502       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2503       // don't need it anymore).
2504       addDeferredDeclToEmit(DDI->second);
2505       DeferredDecls.erase(DDI);
2506 
2507       // Otherwise, there are cases we have to worry about where we're
2508       // using a declaration for which we must emit a definition but where
2509       // we might not find a top-level definition:
2510       //   - member functions defined inline in their classes
2511       //   - friend functions defined inline in some class
2512       //   - special member functions with implicit definitions
2513       // If we ever change our AST traversal to walk into class methods,
2514       // this will be unnecessary.
2515       //
2516       // We also don't emit a definition for a function if it's going to be an
2517       // entry in a vtable, unless it's already marked as used.
2518     } else if (getLangOpts().CPlusPlus && D) {
2519       // Look for a declaration that's lexically in a record.
2520       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2521            FD = FD->getPreviousDecl()) {
2522         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2523           if (FD->doesThisDeclarationHaveABody()) {
2524             addDeferredDeclToEmit(GD.getWithDecl(FD));
2525             break;
2526           }
2527         }
2528       }
2529     }
2530   }
2531 
2532   // Make sure the result is of the requested type.
2533   if (!IsIncompleteFunction) {
2534     assert(F->getType()->getElementType() == Ty);
2535     return F;
2536   }
2537 
2538   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2539   return llvm::ConstantExpr::getBitCast(F, PTy);
2540 }
2541 
2542 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2543 /// non-null, then this function will use the specified type if it has to
2544 /// create it (this occurs when we see a definition of the function).
2545 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2546                                                  llvm::Type *Ty,
2547                                                  bool ForVTable,
2548                                                  bool DontDefer,
2549                                               ForDefinition_t IsForDefinition) {
2550   // If there was no specific requested type, just convert it now.
2551   if (!Ty) {
2552     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2553     auto CanonTy = Context.getCanonicalType(FD->getType());
2554     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2555   }
2556 
2557   StringRef MangledName = getMangledName(GD);
2558   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2559                                  /*IsThunk=*/false, llvm::AttributeList(),
2560                                  IsForDefinition);
2561 }
2562 
2563 static const FunctionDecl *
2564 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2565   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2566   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2567 
2568   IdentifierInfo &CII = C.Idents.get(Name);
2569   for (const auto &Result : DC->lookup(&CII))
2570     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2571       return FD;
2572 
2573   if (!C.getLangOpts().CPlusPlus)
2574     return nullptr;
2575 
2576   // Demangle the premangled name from getTerminateFn()
2577   IdentifierInfo &CXXII =
2578       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2579           ? C.Idents.get("terminate")
2580           : C.Idents.get(Name);
2581 
2582   for (const auto &N : {"__cxxabiv1", "std"}) {
2583     IdentifierInfo &NS = C.Idents.get(N);
2584     for (const auto &Result : DC->lookup(&NS)) {
2585       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2586       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2587         for (const auto &Result : LSD->lookup(&NS))
2588           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2589             break;
2590 
2591       if (ND)
2592         for (const auto &Result : ND->lookup(&CXXII))
2593           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2594             return FD;
2595     }
2596   }
2597 
2598   return nullptr;
2599 }
2600 
2601 /// CreateRuntimeFunction - Create a new runtime function with the specified
2602 /// type and name.
2603 llvm::Constant *
2604 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2605                                      llvm::AttributeList ExtraAttrs,
2606                                      bool Local) {
2607   llvm::Constant *C =
2608       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2609                               /*DontDefer=*/false, /*IsThunk=*/false,
2610                               ExtraAttrs);
2611 
2612   if (auto *F = dyn_cast<llvm::Function>(C)) {
2613     if (F->empty()) {
2614       F->setCallingConv(getRuntimeCC());
2615 
2616       if (!Local && getTriple().isOSBinFormatCOFF() &&
2617           !getCodeGenOpts().LTOVisibilityPublicStd &&
2618           !getTriple().isWindowsGNUEnvironment()) {
2619         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2620         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2621           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2622           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2623         }
2624       }
2625     }
2626   }
2627 
2628   return C;
2629 }
2630 
2631 /// CreateBuiltinFunction - Create a new builtin function with the specified
2632 /// type and name.
2633 llvm::Constant *
2634 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2635                                      llvm::AttributeList ExtraAttrs) {
2636   llvm::Constant *C =
2637       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2638                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2639   if (auto *F = dyn_cast<llvm::Function>(C))
2640     if (F->empty())
2641       F->setCallingConv(getBuiltinCC());
2642   return C;
2643 }
2644 
2645 /// isTypeConstant - Determine whether an object of this type can be emitted
2646 /// as a constant.
2647 ///
2648 /// If ExcludeCtor is true, the duration when the object's constructor runs
2649 /// will not be considered. The caller will need to verify that the object is
2650 /// not written to during its construction.
2651 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2652   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2653     return false;
2654 
2655   if (Context.getLangOpts().CPlusPlus) {
2656     if (const CXXRecordDecl *Record
2657           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2658       return ExcludeCtor && !Record->hasMutableFields() &&
2659              Record->hasTrivialDestructor();
2660   }
2661 
2662   return true;
2663 }
2664 
2665 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2666 /// create and return an llvm GlobalVariable with the specified type.  If there
2667 /// is something in the module with the specified name, return it potentially
2668 /// bitcasted to the right type.
2669 ///
2670 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2671 /// to set the attributes on the global when it is first created.
2672 ///
2673 /// If IsForDefinition is true, it is guranteed that an actual global with
2674 /// type Ty will be returned, not conversion of a variable with the same
2675 /// mangled name but some other type.
2676 llvm::Constant *
2677 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2678                                      llvm::PointerType *Ty,
2679                                      const VarDecl *D,
2680                                      ForDefinition_t IsForDefinition) {
2681   // Lookup the entry, lazily creating it if necessary.
2682   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2683   if (Entry) {
2684     if (WeakRefReferences.erase(Entry)) {
2685       if (D && !D->hasAttr<WeakAttr>())
2686         Entry->setLinkage(llvm::Function::ExternalLinkage);
2687     }
2688 
2689     // Handle dropped DLL attributes.
2690     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2691       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2692 
2693     if (Entry->getType() == Ty)
2694       return Entry;
2695 
2696     // If there are two attempts to define the same mangled name, issue an
2697     // error.
2698     if (IsForDefinition && !Entry->isDeclaration()) {
2699       GlobalDecl OtherGD;
2700       const VarDecl *OtherD;
2701 
2702       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2703       // to make sure that we issue an error only once.
2704       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2705           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2706           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2707           OtherD->hasInit() &&
2708           DiagnosedConflictingDefinitions.insert(D).second) {
2709         getDiags().Report(D->getLocation(),
2710                           diag::err_duplicate_mangled_name);
2711         getDiags().Report(OtherGD.getDecl()->getLocation(),
2712                           diag::note_previous_definition);
2713       }
2714     }
2715 
2716     // Make sure the result is of the correct type.
2717     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2718       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2719 
2720     // (If global is requested for a definition, we always need to create a new
2721     // global, not just return a bitcast.)
2722     if (!IsForDefinition)
2723       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2724   }
2725 
2726   auto AddrSpace = GetGlobalVarAddressSpace(D);
2727   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2728 
2729   auto *GV = new llvm::GlobalVariable(
2730       getModule(), Ty->getElementType(), false,
2731       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2732       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2733 
2734   // If we already created a global with the same mangled name (but different
2735   // type) before, take its name and remove it from its parent.
2736   if (Entry) {
2737     GV->takeName(Entry);
2738 
2739     if (!Entry->use_empty()) {
2740       llvm::Constant *NewPtrForOldDecl =
2741           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2742       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2743     }
2744 
2745     Entry->eraseFromParent();
2746   }
2747 
2748   // This is the first use or definition of a mangled name.  If there is a
2749   // deferred decl with this name, remember that we need to emit it at the end
2750   // of the file.
2751   auto DDI = DeferredDecls.find(MangledName);
2752   if (DDI != DeferredDecls.end()) {
2753     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2754     // list, and remove it from DeferredDecls (since we don't need it anymore).
2755     addDeferredDeclToEmit(DDI->second);
2756     DeferredDecls.erase(DDI);
2757   }
2758 
2759   // Handle things which are present even on external declarations.
2760   if (D) {
2761     // FIXME: This code is overly simple and should be merged with other global
2762     // handling.
2763     GV->setConstant(isTypeConstant(D->getType(), false));
2764 
2765     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2766 
2767     setLinkageForGV(GV, D);
2768 
2769     if (D->getTLSKind()) {
2770       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2771         CXXThreadLocals.push_back(D);
2772       setTLSMode(GV, *D);
2773     }
2774 
2775     setGVProperties(GV, D);
2776 
2777     // If required by the ABI, treat declarations of static data members with
2778     // inline initializers as definitions.
2779     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2780       EmitGlobalVarDefinition(D);
2781     }
2782 
2783     // Emit section information for extern variables.
2784     if (D->hasExternalStorage()) {
2785       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2786         GV->setSection(SA->getName());
2787     }
2788 
2789     // Handle XCore specific ABI requirements.
2790     if (getTriple().getArch() == llvm::Triple::xcore &&
2791         D->getLanguageLinkage() == CLanguageLinkage &&
2792         D->getType().isConstant(Context) &&
2793         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2794       GV->setSection(".cp.rodata");
2795 
2796     // Check if we a have a const declaration with an initializer, we may be
2797     // able to emit it as available_externally to expose it's value to the
2798     // optimizer.
2799     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2800         D->getType().isConstQualified() && !GV->hasInitializer() &&
2801         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2802       const auto *Record =
2803           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2804       bool HasMutableFields = Record && Record->hasMutableFields();
2805       if (!HasMutableFields) {
2806         const VarDecl *InitDecl;
2807         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2808         if (InitExpr) {
2809           ConstantEmitter emitter(*this);
2810           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2811           if (Init) {
2812             auto *InitType = Init->getType();
2813             if (GV->getType()->getElementType() != InitType) {
2814               // The type of the initializer does not match the definition.
2815               // This happens when an initializer has a different type from
2816               // the type of the global (because of padding at the end of a
2817               // structure for instance).
2818               GV->setName(StringRef());
2819               // Make a new global with the correct type, this is now guaranteed
2820               // to work.
2821               auto *NewGV = cast<llvm::GlobalVariable>(
2822                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2823 
2824               // Erase the old global, since it is no longer used.
2825               cast<llvm::GlobalValue>(GV)->eraseFromParent();
2826               GV = NewGV;
2827             } else {
2828               GV->setInitializer(Init);
2829               GV->setConstant(true);
2830               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2831             }
2832             emitter.finalize(GV);
2833           }
2834         }
2835       }
2836     }
2837   }
2838 
2839   LangAS ExpectedAS =
2840       D ? D->getType().getAddressSpace()
2841         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2842   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2843          Ty->getPointerAddressSpace());
2844   if (AddrSpace != ExpectedAS)
2845     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2846                                                        ExpectedAS, Ty);
2847 
2848   return GV;
2849 }
2850 
2851 llvm::Constant *
2852 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2853                                ForDefinition_t IsForDefinition) {
2854   const Decl *D = GD.getDecl();
2855   if (isa<CXXConstructorDecl>(D))
2856     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2857                                 getFromCtorType(GD.getCtorType()),
2858                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2859                                 /*DontDefer=*/false, IsForDefinition);
2860   else if (isa<CXXDestructorDecl>(D))
2861     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2862                                 getFromDtorType(GD.getDtorType()),
2863                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2864                                 /*DontDefer=*/false, IsForDefinition);
2865   else if (isa<CXXMethodDecl>(D)) {
2866     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2867         cast<CXXMethodDecl>(D));
2868     auto Ty = getTypes().GetFunctionType(*FInfo);
2869     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2870                              IsForDefinition);
2871   } else if (isa<FunctionDecl>(D)) {
2872     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2873     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2874     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2875                              IsForDefinition);
2876   } else
2877     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2878                               IsForDefinition);
2879 }
2880 
2881 llvm::GlobalVariable *
2882 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2883                                       llvm::Type *Ty,
2884                                       llvm::GlobalValue::LinkageTypes Linkage) {
2885   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2886   llvm::GlobalVariable *OldGV = nullptr;
2887 
2888   if (GV) {
2889     // Check if the variable has the right type.
2890     if (GV->getType()->getElementType() == Ty)
2891       return GV;
2892 
2893     // Because C++ name mangling, the only way we can end up with an already
2894     // existing global with the same name is if it has been declared extern "C".
2895     assert(GV->isDeclaration() && "Declaration has wrong type!");
2896     OldGV = GV;
2897   }
2898 
2899   // Create a new variable.
2900   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2901                                 Linkage, nullptr, Name);
2902 
2903   if (OldGV) {
2904     // Replace occurrences of the old variable if needed.
2905     GV->takeName(OldGV);
2906 
2907     if (!OldGV->use_empty()) {
2908       llvm::Constant *NewPtrForOldDecl =
2909       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2910       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2911     }
2912 
2913     OldGV->eraseFromParent();
2914   }
2915 
2916   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2917       !GV->hasAvailableExternallyLinkage())
2918     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2919 
2920   return GV;
2921 }
2922 
2923 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2924 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2925 /// then it will be created with the specified type instead of whatever the
2926 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2927 /// that an actual global with type Ty will be returned, not conversion of a
2928 /// variable with the same mangled name but some other type.
2929 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2930                                                   llvm::Type *Ty,
2931                                            ForDefinition_t IsForDefinition) {
2932   assert(D->hasGlobalStorage() && "Not a global variable");
2933   QualType ASTTy = D->getType();
2934   if (!Ty)
2935     Ty = getTypes().ConvertTypeForMem(ASTTy);
2936 
2937   llvm::PointerType *PTy =
2938     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2939 
2940   StringRef MangledName = getMangledName(D);
2941   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2942 }
2943 
2944 /// CreateRuntimeVariable - Create a new runtime global variable with the
2945 /// specified type and name.
2946 llvm::Constant *
2947 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2948                                      StringRef Name) {
2949   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2950 }
2951 
2952 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2953   assert(!D->getInit() && "Cannot emit definite definitions here!");
2954 
2955   StringRef MangledName = getMangledName(D);
2956   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2957 
2958   // We already have a definition, not declaration, with the same mangled name.
2959   // Emitting of declaration is not required (and actually overwrites emitted
2960   // definition).
2961   if (GV && !GV->isDeclaration())
2962     return;
2963 
2964   // If we have not seen a reference to this variable yet, place it into the
2965   // deferred declarations table to be emitted if needed later.
2966   if (!MustBeEmitted(D) && !GV) {
2967       DeferredDecls[MangledName] = D;
2968       return;
2969   }
2970 
2971   // The tentative definition is the only definition.
2972   EmitGlobalVarDefinition(D);
2973 }
2974 
2975 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2976   return Context.toCharUnitsFromBits(
2977       getDataLayout().getTypeStoreSizeInBits(Ty));
2978 }
2979 
2980 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2981   LangAS AddrSpace = LangAS::Default;
2982   if (LangOpts.OpenCL) {
2983     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
2984     assert(AddrSpace == LangAS::opencl_global ||
2985            AddrSpace == LangAS::opencl_constant ||
2986            AddrSpace == LangAS::opencl_local ||
2987            AddrSpace >= LangAS::FirstTargetAddressSpace);
2988     return AddrSpace;
2989   }
2990 
2991   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2992     if (D && D->hasAttr<CUDAConstantAttr>())
2993       return LangAS::cuda_constant;
2994     else if (D && D->hasAttr<CUDASharedAttr>())
2995       return LangAS::cuda_shared;
2996     else
2997       return LangAS::cuda_device;
2998   }
2999 
3000   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3001 }
3002 
3003 template<typename SomeDecl>
3004 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3005                                                llvm::GlobalValue *GV) {
3006   if (!getLangOpts().CPlusPlus)
3007     return;
3008 
3009   // Must have 'used' attribute, or else inline assembly can't rely on
3010   // the name existing.
3011   if (!D->template hasAttr<UsedAttr>())
3012     return;
3013 
3014   // Must have internal linkage and an ordinary name.
3015   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3016     return;
3017 
3018   // Must be in an extern "C" context. Entities declared directly within
3019   // a record are not extern "C" even if the record is in such a context.
3020   const SomeDecl *First = D->getFirstDecl();
3021   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3022     return;
3023 
3024   // OK, this is an internal linkage entity inside an extern "C" linkage
3025   // specification. Make a note of that so we can give it the "expected"
3026   // mangled name if nothing else is using that name.
3027   std::pair<StaticExternCMap::iterator, bool> R =
3028       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3029 
3030   // If we have multiple internal linkage entities with the same name
3031   // in extern "C" regions, none of them gets that name.
3032   if (!R.second)
3033     R.first->second = nullptr;
3034 }
3035 
3036 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3037   if (!CGM.supportsCOMDAT())
3038     return false;
3039 
3040   if (D.hasAttr<SelectAnyAttr>())
3041     return true;
3042 
3043   GVALinkage Linkage;
3044   if (auto *VD = dyn_cast<VarDecl>(&D))
3045     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3046   else
3047     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3048 
3049   switch (Linkage) {
3050   case GVA_Internal:
3051   case GVA_AvailableExternally:
3052   case GVA_StrongExternal:
3053     return false;
3054   case GVA_DiscardableODR:
3055   case GVA_StrongODR:
3056     return true;
3057   }
3058   llvm_unreachable("No such linkage");
3059 }
3060 
3061 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3062                                           llvm::GlobalObject &GO) {
3063   if (!shouldBeInCOMDAT(*this, D))
3064     return;
3065   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3066 }
3067 
3068 /// Pass IsTentative as true if you want to create a tentative definition.
3069 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3070                                             bool IsTentative) {
3071   // OpenCL global variables of sampler type are translated to function calls,
3072   // therefore no need to be translated.
3073   QualType ASTTy = D->getType();
3074   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3075     return;
3076 
3077   llvm::Constant *Init = nullptr;
3078   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3079   bool NeedsGlobalCtor = false;
3080   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3081 
3082   const VarDecl *InitDecl;
3083   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3084 
3085   Optional<ConstantEmitter> emitter;
3086 
3087   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3088   // as part of their declaration."  Sema has already checked for
3089   // error cases, so we just need to set Init to UndefValue.
3090   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3091       D->hasAttr<CUDASharedAttr>())
3092     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3093   else if (!InitExpr) {
3094     // This is a tentative definition; tentative definitions are
3095     // implicitly initialized with { 0 }.
3096     //
3097     // Note that tentative definitions are only emitted at the end of
3098     // a translation unit, so they should never have incomplete
3099     // type. In addition, EmitTentativeDefinition makes sure that we
3100     // never attempt to emit a tentative definition if a real one
3101     // exists. A use may still exists, however, so we still may need
3102     // to do a RAUW.
3103     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3104     Init = EmitNullConstant(D->getType());
3105   } else {
3106     initializedGlobalDecl = GlobalDecl(D);
3107     emitter.emplace(*this);
3108     Init = emitter->tryEmitForInitializer(*InitDecl);
3109 
3110     if (!Init) {
3111       QualType T = InitExpr->getType();
3112       if (D->getType()->isReferenceType())
3113         T = D->getType();
3114 
3115       if (getLangOpts().CPlusPlus) {
3116         Init = EmitNullConstant(T);
3117         NeedsGlobalCtor = true;
3118       } else {
3119         ErrorUnsupported(D, "static initializer");
3120         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3121       }
3122     } else {
3123       // We don't need an initializer, so remove the entry for the delayed
3124       // initializer position (just in case this entry was delayed) if we
3125       // also don't need to register a destructor.
3126       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3127         DelayedCXXInitPosition.erase(D);
3128     }
3129   }
3130 
3131   llvm::Type* InitType = Init->getType();
3132   llvm::Constant *Entry =
3133       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3134 
3135   // Strip off a bitcast if we got one back.
3136   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3137     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3138            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3139            // All zero index gep.
3140            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3141     Entry = CE->getOperand(0);
3142   }
3143 
3144   // Entry is now either a Function or GlobalVariable.
3145   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3146 
3147   // We have a definition after a declaration with the wrong type.
3148   // We must make a new GlobalVariable* and update everything that used OldGV
3149   // (a declaration or tentative definition) with the new GlobalVariable*
3150   // (which will be a definition).
3151   //
3152   // This happens if there is a prototype for a global (e.g.
3153   // "extern int x[];") and then a definition of a different type (e.g.
3154   // "int x[10];"). This also happens when an initializer has a different type
3155   // from the type of the global (this happens with unions).
3156   if (!GV || GV->getType()->getElementType() != InitType ||
3157       GV->getType()->getAddressSpace() !=
3158           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3159 
3160     // Move the old entry aside so that we'll create a new one.
3161     Entry->setName(StringRef());
3162 
3163     // Make a new global with the correct type, this is now guaranteed to work.
3164     GV = cast<llvm::GlobalVariable>(
3165         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3166 
3167     // Replace all uses of the old global with the new global
3168     llvm::Constant *NewPtrForOldDecl =
3169         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3170     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3171 
3172     // Erase the old global, since it is no longer used.
3173     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3174   }
3175 
3176   MaybeHandleStaticInExternC(D, GV);
3177 
3178   if (D->hasAttr<AnnotateAttr>())
3179     AddGlobalAnnotations(D, GV);
3180 
3181   // Set the llvm linkage type as appropriate.
3182   llvm::GlobalValue::LinkageTypes Linkage =
3183       getLLVMLinkageVarDefinition(D, GV->isConstant());
3184 
3185   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3186   // the device. [...]"
3187   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3188   // __device__, declares a variable that: [...]
3189   // Is accessible from all the threads within the grid and from the host
3190   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3191   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3192   if (GV && LangOpts.CUDA) {
3193     if (LangOpts.CUDAIsDevice) {
3194       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3195         GV->setExternallyInitialized(true);
3196     } else {
3197       // Host-side shadows of external declarations of device-side
3198       // global variables become internal definitions. These have to
3199       // be internal in order to prevent name conflicts with global
3200       // host variables with the same name in a different TUs.
3201       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3202         Linkage = llvm::GlobalValue::InternalLinkage;
3203 
3204         // Shadow variables and their properties must be registered
3205         // with CUDA runtime.
3206         unsigned Flags = 0;
3207         if (!D->hasDefinition())
3208           Flags |= CGCUDARuntime::ExternDeviceVar;
3209         if (D->hasAttr<CUDAConstantAttr>())
3210           Flags |= CGCUDARuntime::ConstantDeviceVar;
3211         getCUDARuntime().registerDeviceVar(*GV, Flags);
3212       } else if (D->hasAttr<CUDASharedAttr>())
3213         // __shared__ variables are odd. Shadows do get created, but
3214         // they are not registered with the CUDA runtime, so they
3215         // can't really be used to access their device-side
3216         // counterparts. It's not clear yet whether it's nvcc's bug or
3217         // a feature, but we've got to do the same for compatibility.
3218         Linkage = llvm::GlobalValue::InternalLinkage;
3219     }
3220   }
3221 
3222   GV->setInitializer(Init);
3223   if (emitter) emitter->finalize(GV);
3224 
3225   // If it is safe to mark the global 'constant', do so now.
3226   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3227                   isTypeConstant(D->getType(), true));
3228 
3229   // If it is in a read-only section, mark it 'constant'.
3230   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3231     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3232     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3233       GV->setConstant(true);
3234   }
3235 
3236   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3237 
3238 
3239   // On Darwin, if the normal linkage of a C++ thread_local variable is
3240   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3241   // copies within a linkage unit; otherwise, the backing variable has
3242   // internal linkage and all accesses should just be calls to the
3243   // Itanium-specified entry point, which has the normal linkage of the
3244   // variable. This is to preserve the ability to change the implementation
3245   // behind the scenes.
3246   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3247       Context.getTargetInfo().getTriple().isOSDarwin() &&
3248       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3249       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3250     Linkage = llvm::GlobalValue::InternalLinkage;
3251 
3252   GV->setLinkage(Linkage);
3253   if (D->hasAttr<DLLImportAttr>())
3254     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3255   else if (D->hasAttr<DLLExportAttr>())
3256     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3257   else
3258     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3259 
3260   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3261     // common vars aren't constant even if declared const.
3262     GV->setConstant(false);
3263     // Tentative definition of global variables may be initialized with
3264     // non-zero null pointers. In this case they should have weak linkage
3265     // since common linkage must have zero initializer and must not have
3266     // explicit section therefore cannot have non-zero initial value.
3267     if (!GV->getInitializer()->isNullValue())
3268       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3269   }
3270 
3271   setNonAliasAttributes(D, GV);
3272 
3273   if (D->getTLSKind() && !GV->isThreadLocal()) {
3274     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3275       CXXThreadLocals.push_back(D);
3276     setTLSMode(GV, *D);
3277   }
3278 
3279   maybeSetTrivialComdat(*D, *GV);
3280 
3281   // Emit the initializer function if necessary.
3282   if (NeedsGlobalCtor || NeedsGlobalDtor)
3283     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3284 
3285   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3286 
3287   // Emit global variable debug information.
3288   if (CGDebugInfo *DI = getModuleDebugInfo())
3289     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3290       DI->EmitGlobalVariable(GV, D);
3291 }
3292 
3293 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3294                                       CodeGenModule &CGM, const VarDecl *D,
3295                                       bool NoCommon) {
3296   // Don't give variables common linkage if -fno-common was specified unless it
3297   // was overridden by a NoCommon attribute.
3298   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3299     return true;
3300 
3301   // C11 6.9.2/2:
3302   //   A declaration of an identifier for an object that has file scope without
3303   //   an initializer, and without a storage-class specifier or with the
3304   //   storage-class specifier static, constitutes a tentative definition.
3305   if (D->getInit() || D->hasExternalStorage())
3306     return true;
3307 
3308   // A variable cannot be both common and exist in a section.
3309   if (D->hasAttr<SectionAttr>())
3310     return true;
3311 
3312   // A variable cannot be both common and exist in a section.
3313   // We dont try to determine which is the right section in the front-end.
3314   // If no specialized section name is applicable, it will resort to default.
3315   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3316       D->hasAttr<PragmaClangDataSectionAttr>() ||
3317       D->hasAttr<PragmaClangRodataSectionAttr>())
3318     return true;
3319 
3320   // Thread local vars aren't considered common linkage.
3321   if (D->getTLSKind())
3322     return true;
3323 
3324   // Tentative definitions marked with WeakImportAttr are true definitions.
3325   if (D->hasAttr<WeakImportAttr>())
3326     return true;
3327 
3328   // A variable cannot be both common and exist in a comdat.
3329   if (shouldBeInCOMDAT(CGM, *D))
3330     return true;
3331 
3332   // Declarations with a required alignment do not have common linkage in MSVC
3333   // mode.
3334   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3335     if (D->hasAttr<AlignedAttr>())
3336       return true;
3337     QualType VarType = D->getType();
3338     if (Context.isAlignmentRequired(VarType))
3339       return true;
3340 
3341     if (const auto *RT = VarType->getAs<RecordType>()) {
3342       const RecordDecl *RD = RT->getDecl();
3343       for (const FieldDecl *FD : RD->fields()) {
3344         if (FD->isBitField())
3345           continue;
3346         if (FD->hasAttr<AlignedAttr>())
3347           return true;
3348         if (Context.isAlignmentRequired(FD->getType()))
3349           return true;
3350       }
3351     }
3352   }
3353 
3354   return false;
3355 }
3356 
3357 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3358     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3359   if (Linkage == GVA_Internal)
3360     return llvm::Function::InternalLinkage;
3361 
3362   if (D->hasAttr<WeakAttr>()) {
3363     if (IsConstantVariable)
3364       return llvm::GlobalVariable::WeakODRLinkage;
3365     else
3366       return llvm::GlobalVariable::WeakAnyLinkage;
3367   }
3368 
3369   // We are guaranteed to have a strong definition somewhere else,
3370   // so we can use available_externally linkage.
3371   if (Linkage == GVA_AvailableExternally)
3372     return llvm::GlobalValue::AvailableExternallyLinkage;
3373 
3374   // Note that Apple's kernel linker doesn't support symbol
3375   // coalescing, so we need to avoid linkonce and weak linkages there.
3376   // Normally, this means we just map to internal, but for explicit
3377   // instantiations we'll map to external.
3378 
3379   // In C++, the compiler has to emit a definition in every translation unit
3380   // that references the function.  We should use linkonce_odr because
3381   // a) if all references in this translation unit are optimized away, we
3382   // don't need to codegen it.  b) if the function persists, it needs to be
3383   // merged with other definitions. c) C++ has the ODR, so we know the
3384   // definition is dependable.
3385   if (Linkage == GVA_DiscardableODR)
3386     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3387                                             : llvm::Function::InternalLinkage;
3388 
3389   // An explicit instantiation of a template has weak linkage, since
3390   // explicit instantiations can occur in multiple translation units
3391   // and must all be equivalent. However, we are not allowed to
3392   // throw away these explicit instantiations.
3393   //
3394   // We don't currently support CUDA device code spread out across multiple TUs,
3395   // so say that CUDA templates are either external (for kernels) or internal.
3396   // This lets llvm perform aggressive inter-procedural optimizations.
3397   if (Linkage == GVA_StrongODR) {
3398     if (Context.getLangOpts().AppleKext)
3399       return llvm::Function::ExternalLinkage;
3400     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3401       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3402                                           : llvm::Function::InternalLinkage;
3403     return llvm::Function::WeakODRLinkage;
3404   }
3405 
3406   // C++ doesn't have tentative definitions and thus cannot have common
3407   // linkage.
3408   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3409       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3410                                  CodeGenOpts.NoCommon))
3411     return llvm::GlobalVariable::CommonLinkage;
3412 
3413   // selectany symbols are externally visible, so use weak instead of
3414   // linkonce.  MSVC optimizes away references to const selectany globals, so
3415   // all definitions should be the same and ODR linkage should be used.
3416   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3417   if (D->hasAttr<SelectAnyAttr>())
3418     return llvm::GlobalVariable::WeakODRLinkage;
3419 
3420   // Otherwise, we have strong external linkage.
3421   assert(Linkage == GVA_StrongExternal);
3422   return llvm::GlobalVariable::ExternalLinkage;
3423 }
3424 
3425 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3426     const VarDecl *VD, bool IsConstant) {
3427   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3428   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3429 }
3430 
3431 /// Replace the uses of a function that was declared with a non-proto type.
3432 /// We want to silently drop extra arguments from call sites
3433 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3434                                           llvm::Function *newFn) {
3435   // Fast path.
3436   if (old->use_empty()) return;
3437 
3438   llvm::Type *newRetTy = newFn->getReturnType();
3439   SmallVector<llvm::Value*, 4> newArgs;
3440   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3441 
3442   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3443          ui != ue; ) {
3444     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3445     llvm::User *user = use->getUser();
3446 
3447     // Recognize and replace uses of bitcasts.  Most calls to
3448     // unprototyped functions will use bitcasts.
3449     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3450       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3451         replaceUsesOfNonProtoConstant(bitcast, newFn);
3452       continue;
3453     }
3454 
3455     // Recognize calls to the function.
3456     llvm::CallSite callSite(user);
3457     if (!callSite) continue;
3458     if (!callSite.isCallee(&*use)) continue;
3459 
3460     // If the return types don't match exactly, then we can't
3461     // transform this call unless it's dead.
3462     if (callSite->getType() != newRetTy && !callSite->use_empty())
3463       continue;
3464 
3465     // Get the call site's attribute list.
3466     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3467     llvm::AttributeList oldAttrs = callSite.getAttributes();
3468 
3469     // If the function was passed too few arguments, don't transform.
3470     unsigned newNumArgs = newFn->arg_size();
3471     if (callSite.arg_size() < newNumArgs) continue;
3472 
3473     // If extra arguments were passed, we silently drop them.
3474     // If any of the types mismatch, we don't transform.
3475     unsigned argNo = 0;
3476     bool dontTransform = false;
3477     for (llvm::Argument &A : newFn->args()) {
3478       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3479         dontTransform = true;
3480         break;
3481       }
3482 
3483       // Add any parameter attributes.
3484       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3485       argNo++;
3486     }
3487     if (dontTransform)
3488       continue;
3489 
3490     // Okay, we can transform this.  Create the new call instruction and copy
3491     // over the required information.
3492     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3493 
3494     // Copy over any operand bundles.
3495     callSite.getOperandBundlesAsDefs(newBundles);
3496 
3497     llvm::CallSite newCall;
3498     if (callSite.isCall()) {
3499       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3500                                        callSite.getInstruction());
3501     } else {
3502       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3503       newCall = llvm::InvokeInst::Create(newFn,
3504                                          oldInvoke->getNormalDest(),
3505                                          oldInvoke->getUnwindDest(),
3506                                          newArgs, newBundles, "",
3507                                          callSite.getInstruction());
3508     }
3509     newArgs.clear(); // for the next iteration
3510 
3511     if (!newCall->getType()->isVoidTy())
3512       newCall->takeName(callSite.getInstruction());
3513     newCall.setAttributes(llvm::AttributeList::get(
3514         newFn->getContext(), oldAttrs.getFnAttributes(),
3515         oldAttrs.getRetAttributes(), newArgAttrs));
3516     newCall.setCallingConv(callSite.getCallingConv());
3517 
3518     // Finally, remove the old call, replacing any uses with the new one.
3519     if (!callSite->use_empty())
3520       callSite->replaceAllUsesWith(newCall.getInstruction());
3521 
3522     // Copy debug location attached to CI.
3523     if (callSite->getDebugLoc())
3524       newCall->setDebugLoc(callSite->getDebugLoc());
3525 
3526     callSite->eraseFromParent();
3527   }
3528 }
3529 
3530 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3531 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3532 /// existing call uses of the old function in the module, this adjusts them to
3533 /// call the new function directly.
3534 ///
3535 /// This is not just a cleanup: the always_inline pass requires direct calls to
3536 /// functions to be able to inline them.  If there is a bitcast in the way, it
3537 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3538 /// run at -O0.
3539 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3540                                                       llvm::Function *NewFn) {
3541   // If we're redefining a global as a function, don't transform it.
3542   if (!isa<llvm::Function>(Old)) return;
3543 
3544   replaceUsesOfNonProtoConstant(Old, NewFn);
3545 }
3546 
3547 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3548   auto DK = VD->isThisDeclarationADefinition();
3549   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3550     return;
3551 
3552   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3553   // If we have a definition, this might be a deferred decl. If the
3554   // instantiation is explicit, make sure we emit it at the end.
3555   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3556     GetAddrOfGlobalVar(VD);
3557 
3558   EmitTopLevelDecl(VD);
3559 }
3560 
3561 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3562                                                  llvm::GlobalValue *GV) {
3563   const auto *D = cast<FunctionDecl>(GD.getDecl());
3564 
3565   // Compute the function info and LLVM type.
3566   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3567   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3568 
3569   // Get or create the prototype for the function.
3570   if (!GV || (GV->getType()->getElementType() != Ty))
3571     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3572                                                    /*DontDefer=*/true,
3573                                                    ForDefinition));
3574 
3575   // Already emitted.
3576   if (!GV->isDeclaration())
3577     return;
3578 
3579   // We need to set linkage and visibility on the function before
3580   // generating code for it because various parts of IR generation
3581   // want to propagate this information down (e.g. to local static
3582   // declarations).
3583   auto *Fn = cast<llvm::Function>(GV);
3584   setFunctionLinkage(GD, Fn);
3585   setFunctionDLLStorageClass(GD, Fn);
3586 
3587   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3588   setGVProperties(Fn, D);
3589 
3590   MaybeHandleStaticInExternC(D, Fn);
3591 
3592   maybeSetTrivialComdat(*D, *Fn);
3593 
3594   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3595 
3596   setFunctionDefinitionAttributes(GD, Fn);
3597   SetLLVMFunctionAttributesForDefinition(D, Fn);
3598 
3599   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3600     AddGlobalCtor(Fn, CA->getPriority());
3601   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3602     AddGlobalDtor(Fn, DA->getPriority());
3603   if (D->hasAttr<AnnotateAttr>())
3604     AddGlobalAnnotations(D, Fn);
3605 }
3606 
3607 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3608   const auto *D = cast<ValueDecl>(GD.getDecl());
3609   const AliasAttr *AA = D->getAttr<AliasAttr>();
3610   assert(AA && "Not an alias?");
3611 
3612   StringRef MangledName = getMangledName(GD);
3613 
3614   if (AA->getAliasee() == MangledName) {
3615     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3616     return;
3617   }
3618 
3619   // If there is a definition in the module, then it wins over the alias.
3620   // This is dubious, but allow it to be safe.  Just ignore the alias.
3621   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3622   if (Entry && !Entry->isDeclaration())
3623     return;
3624 
3625   Aliases.push_back(GD);
3626 
3627   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3628 
3629   // Create a reference to the named value.  This ensures that it is emitted
3630   // if a deferred decl.
3631   llvm::Constant *Aliasee;
3632   if (isa<llvm::FunctionType>(DeclTy))
3633     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3634                                       /*ForVTable=*/false);
3635   else
3636     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3637                                     llvm::PointerType::getUnqual(DeclTy),
3638                                     /*D=*/nullptr);
3639 
3640   // Create the new alias itself, but don't set a name yet.
3641   auto *GA = llvm::GlobalAlias::create(
3642       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3643 
3644   if (Entry) {
3645     if (GA->getAliasee() == Entry) {
3646       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3647       return;
3648     }
3649 
3650     assert(Entry->isDeclaration());
3651 
3652     // If there is a declaration in the module, then we had an extern followed
3653     // by the alias, as in:
3654     //   extern int test6();
3655     //   ...
3656     //   int test6() __attribute__((alias("test7")));
3657     //
3658     // Remove it and replace uses of it with the alias.
3659     GA->takeName(Entry);
3660 
3661     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3662                                                           Entry->getType()));
3663     Entry->eraseFromParent();
3664   } else {
3665     GA->setName(MangledName);
3666   }
3667 
3668   // Set attributes which are particular to an alias; this is a
3669   // specialization of the attributes which may be set on a global
3670   // variable/function.
3671   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3672       D->isWeakImported()) {
3673     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3674   }
3675 
3676   if (const auto *VD = dyn_cast<VarDecl>(D))
3677     if (VD->getTLSKind())
3678       setTLSMode(GA, *VD);
3679 
3680   setAliasAttributes(GD, GA);
3681 }
3682 
3683 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3684   const auto *D = cast<ValueDecl>(GD.getDecl());
3685   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3686   assert(IFA && "Not an ifunc?");
3687 
3688   StringRef MangledName = getMangledName(GD);
3689 
3690   if (IFA->getResolver() == MangledName) {
3691     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3692     return;
3693   }
3694 
3695   // Report an error if some definition overrides ifunc.
3696   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3697   if (Entry && !Entry->isDeclaration()) {
3698     GlobalDecl OtherGD;
3699     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3700         DiagnosedConflictingDefinitions.insert(GD).second) {
3701       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3702       Diags.Report(OtherGD.getDecl()->getLocation(),
3703                    diag::note_previous_definition);
3704     }
3705     return;
3706   }
3707 
3708   Aliases.push_back(GD);
3709 
3710   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3711   llvm::Constant *Resolver =
3712       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3713                               /*ForVTable=*/false);
3714   llvm::GlobalIFunc *GIF =
3715       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3716                                 "", Resolver, &getModule());
3717   if (Entry) {
3718     if (GIF->getResolver() == Entry) {
3719       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3720       return;
3721     }
3722     assert(Entry->isDeclaration());
3723 
3724     // If there is a declaration in the module, then we had an extern followed
3725     // by the ifunc, as in:
3726     //   extern int test();
3727     //   ...
3728     //   int test() __attribute__((ifunc("resolver")));
3729     //
3730     // Remove it and replace uses of it with the ifunc.
3731     GIF->takeName(Entry);
3732 
3733     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3734                                                           Entry->getType()));
3735     Entry->eraseFromParent();
3736   } else
3737     GIF->setName(MangledName);
3738 
3739   SetCommonAttributes(D, GIF);
3740 }
3741 
3742 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3743                                             ArrayRef<llvm::Type*> Tys) {
3744   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3745                                          Tys);
3746 }
3747 
3748 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3749 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3750                          const StringLiteral *Literal, bool TargetIsLSB,
3751                          bool &IsUTF16, unsigned &StringLength) {
3752   StringRef String = Literal->getString();
3753   unsigned NumBytes = String.size();
3754 
3755   // Check for simple case.
3756   if (!Literal->containsNonAsciiOrNull()) {
3757     StringLength = NumBytes;
3758     return *Map.insert(std::make_pair(String, nullptr)).first;
3759   }
3760 
3761   // Otherwise, convert the UTF8 literals into a string of shorts.
3762   IsUTF16 = true;
3763 
3764   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3765   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3766   llvm::UTF16 *ToPtr = &ToBuf[0];
3767 
3768   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3769                                  ToPtr + NumBytes, llvm::strictConversion);
3770 
3771   // ConvertUTF8toUTF16 returns the length in ToPtr.
3772   StringLength = ToPtr - &ToBuf[0];
3773 
3774   // Add an explicit null.
3775   *ToPtr = 0;
3776   return *Map.insert(std::make_pair(
3777                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3778                                    (StringLength + 1) * 2),
3779                          nullptr)).first;
3780 }
3781 
3782 ConstantAddress
3783 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3784   unsigned StringLength = 0;
3785   bool isUTF16 = false;
3786   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3787       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3788                                getDataLayout().isLittleEndian(), isUTF16,
3789                                StringLength);
3790 
3791   if (auto *C = Entry.second)
3792     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3793 
3794   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3795   llvm::Constant *Zeros[] = { Zero, Zero };
3796 
3797   // If we don't already have it, get __CFConstantStringClassReference.
3798   if (!CFConstantStringClassRef) {
3799     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3800     Ty = llvm::ArrayType::get(Ty, 0);
3801     llvm::Constant *GV =
3802         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3803 
3804     if (getTriple().isOSBinFormatCOFF()) {
3805       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3806       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3807       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3808       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3809 
3810       const VarDecl *VD = nullptr;
3811       for (const auto &Result : DC->lookup(&II))
3812         if ((VD = dyn_cast<VarDecl>(Result)))
3813           break;
3814 
3815       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3816         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3817         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3818       } else {
3819         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3820         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3821       }
3822     }
3823 
3824     // Decay array -> ptr
3825     CFConstantStringClassRef =
3826         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3827   }
3828 
3829   QualType CFTy = getContext().getCFConstantStringType();
3830 
3831   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3832 
3833   ConstantInitBuilder Builder(*this);
3834   auto Fields = Builder.beginStruct(STy);
3835 
3836   // Class pointer.
3837   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3838 
3839   // Flags.
3840   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3841 
3842   // String pointer.
3843   llvm::Constant *C = nullptr;
3844   if (isUTF16) {
3845     auto Arr = llvm::makeArrayRef(
3846         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3847         Entry.first().size() / 2);
3848     C = llvm::ConstantDataArray::get(VMContext, Arr);
3849   } else {
3850     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3851   }
3852 
3853   // Note: -fwritable-strings doesn't make the backing store strings of
3854   // CFStrings writable. (See <rdar://problem/10657500>)
3855   auto *GV =
3856       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3857                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3858   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3859   // Don't enforce the target's minimum global alignment, since the only use
3860   // of the string is via this class initializer.
3861   CharUnits Align = isUTF16
3862                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3863                         : getContext().getTypeAlignInChars(getContext().CharTy);
3864   GV->setAlignment(Align.getQuantity());
3865 
3866   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3867   // Without it LLVM can merge the string with a non unnamed_addr one during
3868   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3869   if (getTriple().isOSBinFormatMachO())
3870     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3871                            : "__TEXT,__cstring,cstring_literals");
3872 
3873   // String.
3874   llvm::Constant *Str =
3875       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3876 
3877   if (isUTF16)
3878     // Cast the UTF16 string to the correct type.
3879     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3880   Fields.add(Str);
3881 
3882   // String length.
3883   auto Ty = getTypes().ConvertType(getContext().LongTy);
3884   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3885 
3886   CharUnits Alignment = getPointerAlign();
3887 
3888   // The struct.
3889   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3890                                     /*isConstant=*/false,
3891                                     llvm::GlobalVariable::PrivateLinkage);
3892   switch (getTriple().getObjectFormat()) {
3893   case llvm::Triple::UnknownObjectFormat:
3894     llvm_unreachable("unknown file format");
3895   case llvm::Triple::COFF:
3896   case llvm::Triple::ELF:
3897   case llvm::Triple::Wasm:
3898     GV->setSection("cfstring");
3899     break;
3900   case llvm::Triple::MachO:
3901     GV->setSection("__DATA,__cfstring");
3902     break;
3903   }
3904   Entry.second = GV;
3905 
3906   return ConstantAddress(GV, Alignment);
3907 }
3908 
3909 bool CodeGenModule::getExpressionLocationsEnabled() const {
3910   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3911 }
3912 
3913 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3914   if (ObjCFastEnumerationStateType.isNull()) {
3915     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3916     D->startDefinition();
3917 
3918     QualType FieldTypes[] = {
3919       Context.UnsignedLongTy,
3920       Context.getPointerType(Context.getObjCIdType()),
3921       Context.getPointerType(Context.UnsignedLongTy),
3922       Context.getConstantArrayType(Context.UnsignedLongTy,
3923                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3924     };
3925 
3926     for (size_t i = 0; i < 4; ++i) {
3927       FieldDecl *Field = FieldDecl::Create(Context,
3928                                            D,
3929                                            SourceLocation(),
3930                                            SourceLocation(), nullptr,
3931                                            FieldTypes[i], /*TInfo=*/nullptr,
3932                                            /*BitWidth=*/nullptr,
3933                                            /*Mutable=*/false,
3934                                            ICIS_NoInit);
3935       Field->setAccess(AS_public);
3936       D->addDecl(Field);
3937     }
3938 
3939     D->completeDefinition();
3940     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3941   }
3942 
3943   return ObjCFastEnumerationStateType;
3944 }
3945 
3946 llvm::Constant *
3947 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3948   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3949 
3950   // Don't emit it as the address of the string, emit the string data itself
3951   // as an inline array.
3952   if (E->getCharByteWidth() == 1) {
3953     SmallString<64> Str(E->getString());
3954 
3955     // Resize the string to the right size, which is indicated by its type.
3956     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3957     Str.resize(CAT->getSize().getZExtValue());
3958     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3959   }
3960 
3961   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3962   llvm::Type *ElemTy = AType->getElementType();
3963   unsigned NumElements = AType->getNumElements();
3964 
3965   // Wide strings have either 2-byte or 4-byte elements.
3966   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3967     SmallVector<uint16_t, 32> Elements;
3968     Elements.reserve(NumElements);
3969 
3970     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3971       Elements.push_back(E->getCodeUnit(i));
3972     Elements.resize(NumElements);
3973     return llvm::ConstantDataArray::get(VMContext, Elements);
3974   }
3975 
3976   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3977   SmallVector<uint32_t, 32> Elements;
3978   Elements.reserve(NumElements);
3979 
3980   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3981     Elements.push_back(E->getCodeUnit(i));
3982   Elements.resize(NumElements);
3983   return llvm::ConstantDataArray::get(VMContext, Elements);
3984 }
3985 
3986 static llvm::GlobalVariable *
3987 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3988                       CodeGenModule &CGM, StringRef GlobalName,
3989                       CharUnits Alignment) {
3990   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3991   unsigned AddrSpace = 0;
3992   if (CGM.getLangOpts().OpenCL)
3993     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3994 
3995   llvm::Module &M = CGM.getModule();
3996   // Create a global variable for this string
3997   auto *GV = new llvm::GlobalVariable(
3998       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3999       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4000   GV->setAlignment(Alignment.getQuantity());
4001   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4002   if (GV->isWeakForLinker()) {
4003     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4004     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4005   }
4006 
4007   return GV;
4008 }
4009 
4010 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4011 /// constant array for the given string literal.
4012 ConstantAddress
4013 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4014                                                   StringRef Name) {
4015   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4016 
4017   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4018   llvm::GlobalVariable **Entry = nullptr;
4019   if (!LangOpts.WritableStrings) {
4020     Entry = &ConstantStringMap[C];
4021     if (auto GV = *Entry) {
4022       if (Alignment.getQuantity() > GV->getAlignment())
4023         GV->setAlignment(Alignment.getQuantity());
4024       return ConstantAddress(GV, Alignment);
4025     }
4026   }
4027 
4028   SmallString<256> MangledNameBuffer;
4029   StringRef GlobalVariableName;
4030   llvm::GlobalValue::LinkageTypes LT;
4031 
4032   // Mangle the string literal if the ABI allows for it.  However, we cannot
4033   // do this if  we are compiling with ASan or -fwritable-strings because they
4034   // rely on strings having normal linkage.
4035   if (!LangOpts.WritableStrings &&
4036       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
4037       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
4038     llvm::raw_svector_ostream Out(MangledNameBuffer);
4039     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4040 
4041     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4042     GlobalVariableName = MangledNameBuffer;
4043   } else {
4044     LT = llvm::GlobalValue::PrivateLinkage;
4045     GlobalVariableName = Name;
4046   }
4047 
4048   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4049   if (Entry)
4050     *Entry = GV;
4051 
4052   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4053                                   QualType());
4054   return ConstantAddress(GV, Alignment);
4055 }
4056 
4057 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4058 /// array for the given ObjCEncodeExpr node.
4059 ConstantAddress
4060 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4061   std::string Str;
4062   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4063 
4064   return GetAddrOfConstantCString(Str);
4065 }
4066 
4067 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4068 /// the literal and a terminating '\0' character.
4069 /// The result has pointer to array type.
4070 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4071     const std::string &Str, const char *GlobalName) {
4072   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4073   CharUnits Alignment =
4074     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4075 
4076   llvm::Constant *C =
4077       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4078 
4079   // Don't share any string literals if strings aren't constant.
4080   llvm::GlobalVariable **Entry = nullptr;
4081   if (!LangOpts.WritableStrings) {
4082     Entry = &ConstantStringMap[C];
4083     if (auto GV = *Entry) {
4084       if (Alignment.getQuantity() > GV->getAlignment())
4085         GV->setAlignment(Alignment.getQuantity());
4086       return ConstantAddress(GV, Alignment);
4087     }
4088   }
4089 
4090   // Get the default prefix if a name wasn't specified.
4091   if (!GlobalName)
4092     GlobalName = ".str";
4093   // Create a global variable for this.
4094   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4095                                   GlobalName, Alignment);
4096   if (Entry)
4097     *Entry = GV;
4098   return ConstantAddress(GV, Alignment);
4099 }
4100 
4101 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4102     const MaterializeTemporaryExpr *E, const Expr *Init) {
4103   assert((E->getStorageDuration() == SD_Static ||
4104           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4105   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4106 
4107   // If we're not materializing a subobject of the temporary, keep the
4108   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4109   QualType MaterializedType = Init->getType();
4110   if (Init == E->GetTemporaryExpr())
4111     MaterializedType = E->getType();
4112 
4113   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4114 
4115   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4116     return ConstantAddress(Slot, Align);
4117 
4118   // FIXME: If an externally-visible declaration extends multiple temporaries,
4119   // we need to give each temporary the same name in every translation unit (and
4120   // we also need to make the temporaries externally-visible).
4121   SmallString<256> Name;
4122   llvm::raw_svector_ostream Out(Name);
4123   getCXXABI().getMangleContext().mangleReferenceTemporary(
4124       VD, E->getManglingNumber(), Out);
4125 
4126   APValue *Value = nullptr;
4127   if (E->getStorageDuration() == SD_Static) {
4128     // We might have a cached constant initializer for this temporary. Note
4129     // that this might have a different value from the value computed by
4130     // evaluating the initializer if the surrounding constant expression
4131     // modifies the temporary.
4132     Value = getContext().getMaterializedTemporaryValue(E, false);
4133     if (Value && Value->isUninit())
4134       Value = nullptr;
4135   }
4136 
4137   // Try evaluating it now, it might have a constant initializer.
4138   Expr::EvalResult EvalResult;
4139   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4140       !EvalResult.hasSideEffects())
4141     Value = &EvalResult.Val;
4142 
4143   LangAS AddrSpace =
4144       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4145 
4146   Optional<ConstantEmitter> emitter;
4147   llvm::Constant *InitialValue = nullptr;
4148   bool Constant = false;
4149   llvm::Type *Type;
4150   if (Value) {
4151     // The temporary has a constant initializer, use it.
4152     emitter.emplace(*this);
4153     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4154                                                MaterializedType);
4155     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4156     Type = InitialValue->getType();
4157   } else {
4158     // No initializer, the initialization will be provided when we
4159     // initialize the declaration which performed lifetime extension.
4160     Type = getTypes().ConvertTypeForMem(MaterializedType);
4161   }
4162 
4163   // Create a global variable for this lifetime-extended temporary.
4164   llvm::GlobalValue::LinkageTypes Linkage =
4165       getLLVMLinkageVarDefinition(VD, Constant);
4166   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4167     const VarDecl *InitVD;
4168     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4169         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4170       // Temporaries defined inside a class get linkonce_odr linkage because the
4171       // class can be defined in multipe translation units.
4172       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4173     } else {
4174       // There is no need for this temporary to have external linkage if the
4175       // VarDecl has external linkage.
4176       Linkage = llvm::GlobalVariable::InternalLinkage;
4177     }
4178   }
4179   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4180   auto *GV = new llvm::GlobalVariable(
4181       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4182       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4183   if (emitter) emitter->finalize(GV);
4184   setGVProperties(GV, VD);
4185   GV->setAlignment(Align.getQuantity());
4186   if (supportsCOMDAT() && GV->isWeakForLinker())
4187     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4188   if (VD->getTLSKind())
4189     setTLSMode(GV, *VD);
4190   llvm::Constant *CV = GV;
4191   if (AddrSpace != LangAS::Default)
4192     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4193         *this, GV, AddrSpace, LangAS::Default,
4194         Type->getPointerTo(
4195             getContext().getTargetAddressSpace(LangAS::Default)));
4196   MaterializedGlobalTemporaryMap[E] = CV;
4197   return ConstantAddress(CV, Align);
4198 }
4199 
4200 /// EmitObjCPropertyImplementations - Emit information for synthesized
4201 /// properties for an implementation.
4202 void CodeGenModule::EmitObjCPropertyImplementations(const
4203                                                     ObjCImplementationDecl *D) {
4204   for (const auto *PID : D->property_impls()) {
4205     // Dynamic is just for type-checking.
4206     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4207       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4208 
4209       // Determine which methods need to be implemented, some may have
4210       // been overridden. Note that ::isPropertyAccessor is not the method
4211       // we want, that just indicates if the decl came from a
4212       // property. What we want to know is if the method is defined in
4213       // this implementation.
4214       if (!D->getInstanceMethod(PD->getGetterName()))
4215         CodeGenFunction(*this).GenerateObjCGetter(
4216                                  const_cast<ObjCImplementationDecl *>(D), PID);
4217       if (!PD->isReadOnly() &&
4218           !D->getInstanceMethod(PD->getSetterName()))
4219         CodeGenFunction(*this).GenerateObjCSetter(
4220                                  const_cast<ObjCImplementationDecl *>(D), PID);
4221     }
4222   }
4223 }
4224 
4225 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4226   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4227   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4228        ivar; ivar = ivar->getNextIvar())
4229     if (ivar->getType().isDestructedType())
4230       return true;
4231 
4232   return false;
4233 }
4234 
4235 static bool AllTrivialInitializers(CodeGenModule &CGM,
4236                                    ObjCImplementationDecl *D) {
4237   CodeGenFunction CGF(CGM);
4238   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4239        E = D->init_end(); B != E; ++B) {
4240     CXXCtorInitializer *CtorInitExp = *B;
4241     Expr *Init = CtorInitExp->getInit();
4242     if (!CGF.isTrivialInitializer(Init))
4243       return false;
4244   }
4245   return true;
4246 }
4247 
4248 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4249 /// for an implementation.
4250 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4251   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4252   if (needsDestructMethod(D)) {
4253     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4254     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4255     ObjCMethodDecl *DTORMethod =
4256       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4257                              cxxSelector, getContext().VoidTy, nullptr, D,
4258                              /*isInstance=*/true, /*isVariadic=*/false,
4259                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4260                              /*isDefined=*/false, ObjCMethodDecl::Required);
4261     D->addInstanceMethod(DTORMethod);
4262     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4263     D->setHasDestructors(true);
4264   }
4265 
4266   // If the implementation doesn't have any ivar initializers, we don't need
4267   // a .cxx_construct.
4268   if (D->getNumIvarInitializers() == 0 ||
4269       AllTrivialInitializers(*this, D))
4270     return;
4271 
4272   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4273   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4274   // The constructor returns 'self'.
4275   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4276                                                 D->getLocation(),
4277                                                 D->getLocation(),
4278                                                 cxxSelector,
4279                                                 getContext().getObjCIdType(),
4280                                                 nullptr, D, /*isInstance=*/true,
4281                                                 /*isVariadic=*/false,
4282                                                 /*isPropertyAccessor=*/true,
4283                                                 /*isImplicitlyDeclared=*/true,
4284                                                 /*isDefined=*/false,
4285                                                 ObjCMethodDecl::Required);
4286   D->addInstanceMethod(CTORMethod);
4287   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4288   D->setHasNonZeroConstructors(true);
4289 }
4290 
4291 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4292 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4293   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4294       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4295     ErrorUnsupported(LSD, "linkage spec");
4296     return;
4297   }
4298 
4299   EmitDeclContext(LSD);
4300 }
4301 
4302 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4303   for (auto *I : DC->decls()) {
4304     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4305     // are themselves considered "top-level", so EmitTopLevelDecl on an
4306     // ObjCImplDecl does not recursively visit them. We need to do that in
4307     // case they're nested inside another construct (LinkageSpecDecl /
4308     // ExportDecl) that does stop them from being considered "top-level".
4309     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4310       for (auto *M : OID->methods())
4311         EmitTopLevelDecl(M);
4312     }
4313 
4314     EmitTopLevelDecl(I);
4315   }
4316 }
4317 
4318 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4319 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4320   // Ignore dependent declarations.
4321   if (D->isTemplated())
4322     return;
4323 
4324   switch (D->getKind()) {
4325   case Decl::CXXConversion:
4326   case Decl::CXXMethod:
4327   case Decl::Function:
4328     EmitGlobal(cast<FunctionDecl>(D));
4329     // Always provide some coverage mapping
4330     // even for the functions that aren't emitted.
4331     AddDeferredUnusedCoverageMapping(D);
4332     break;
4333 
4334   case Decl::CXXDeductionGuide:
4335     // Function-like, but does not result in code emission.
4336     break;
4337 
4338   case Decl::Var:
4339   case Decl::Decomposition:
4340   case Decl::VarTemplateSpecialization:
4341     EmitGlobal(cast<VarDecl>(D));
4342     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4343       for (auto *B : DD->bindings())
4344         if (auto *HD = B->getHoldingVar())
4345           EmitGlobal(HD);
4346     break;
4347 
4348   // Indirect fields from global anonymous structs and unions can be
4349   // ignored; only the actual variable requires IR gen support.
4350   case Decl::IndirectField:
4351     break;
4352 
4353   // C++ Decls
4354   case Decl::Namespace:
4355     EmitDeclContext(cast<NamespaceDecl>(D));
4356     break;
4357   case Decl::ClassTemplateSpecialization: {
4358     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4359     if (DebugInfo &&
4360         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4361         Spec->hasDefinition())
4362       DebugInfo->completeTemplateDefinition(*Spec);
4363   } LLVM_FALLTHROUGH;
4364   case Decl::CXXRecord:
4365     if (DebugInfo) {
4366       if (auto *ES = D->getASTContext().getExternalSource())
4367         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4368           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4369     }
4370     // Emit any static data members, they may be definitions.
4371     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4372       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4373         EmitTopLevelDecl(I);
4374     break;
4375     // No code generation needed.
4376   case Decl::UsingShadow:
4377   case Decl::ClassTemplate:
4378   case Decl::VarTemplate:
4379   case Decl::VarTemplatePartialSpecialization:
4380   case Decl::FunctionTemplate:
4381   case Decl::TypeAliasTemplate:
4382   case Decl::Block:
4383   case Decl::Empty:
4384     break;
4385   case Decl::Using:          // using X; [C++]
4386     if (CGDebugInfo *DI = getModuleDebugInfo())
4387         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4388     return;
4389   case Decl::NamespaceAlias:
4390     if (CGDebugInfo *DI = getModuleDebugInfo())
4391         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4392     return;
4393   case Decl::UsingDirective: // using namespace X; [C++]
4394     if (CGDebugInfo *DI = getModuleDebugInfo())
4395       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4396     return;
4397   case Decl::CXXConstructor:
4398     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4399     break;
4400   case Decl::CXXDestructor:
4401     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4402     break;
4403 
4404   case Decl::StaticAssert:
4405     // Nothing to do.
4406     break;
4407 
4408   // Objective-C Decls
4409 
4410   // Forward declarations, no (immediate) code generation.
4411   case Decl::ObjCInterface:
4412   case Decl::ObjCCategory:
4413     break;
4414 
4415   case Decl::ObjCProtocol: {
4416     auto *Proto = cast<ObjCProtocolDecl>(D);
4417     if (Proto->isThisDeclarationADefinition())
4418       ObjCRuntime->GenerateProtocol(Proto);
4419     break;
4420   }
4421 
4422   case Decl::ObjCCategoryImpl:
4423     // Categories have properties but don't support synthesize so we
4424     // can ignore them here.
4425     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4426     break;
4427 
4428   case Decl::ObjCImplementation: {
4429     auto *OMD = cast<ObjCImplementationDecl>(D);
4430     EmitObjCPropertyImplementations(OMD);
4431     EmitObjCIvarInitializations(OMD);
4432     ObjCRuntime->GenerateClass(OMD);
4433     // Emit global variable debug information.
4434     if (CGDebugInfo *DI = getModuleDebugInfo())
4435       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4436         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4437             OMD->getClassInterface()), OMD->getLocation());
4438     break;
4439   }
4440   case Decl::ObjCMethod: {
4441     auto *OMD = cast<ObjCMethodDecl>(D);
4442     // If this is not a prototype, emit the body.
4443     if (OMD->getBody())
4444       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4445     break;
4446   }
4447   case Decl::ObjCCompatibleAlias:
4448     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4449     break;
4450 
4451   case Decl::PragmaComment: {
4452     const auto *PCD = cast<PragmaCommentDecl>(D);
4453     switch (PCD->getCommentKind()) {
4454     case PCK_Unknown:
4455       llvm_unreachable("unexpected pragma comment kind");
4456     case PCK_Linker:
4457       AppendLinkerOptions(PCD->getArg());
4458       break;
4459     case PCK_Lib:
4460       if (getTarget().getTriple().isOSBinFormatELF() &&
4461           !getTarget().getTriple().isPS4())
4462         AddELFLibDirective(PCD->getArg());
4463       else
4464         AddDependentLib(PCD->getArg());
4465       break;
4466     case PCK_Compiler:
4467     case PCK_ExeStr:
4468     case PCK_User:
4469       break; // We ignore all of these.
4470     }
4471     break;
4472   }
4473 
4474   case Decl::PragmaDetectMismatch: {
4475     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4476     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4477     break;
4478   }
4479 
4480   case Decl::LinkageSpec:
4481     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4482     break;
4483 
4484   case Decl::FileScopeAsm: {
4485     // File-scope asm is ignored during device-side CUDA compilation.
4486     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4487       break;
4488     // File-scope asm is ignored during device-side OpenMP compilation.
4489     if (LangOpts.OpenMPIsDevice)
4490       break;
4491     auto *AD = cast<FileScopeAsmDecl>(D);
4492     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4493     break;
4494   }
4495 
4496   case Decl::Import: {
4497     auto *Import = cast<ImportDecl>(D);
4498 
4499     // If we've already imported this module, we're done.
4500     if (!ImportedModules.insert(Import->getImportedModule()))
4501       break;
4502 
4503     // Emit debug information for direct imports.
4504     if (!Import->getImportedOwningModule()) {
4505       if (CGDebugInfo *DI = getModuleDebugInfo())
4506         DI->EmitImportDecl(*Import);
4507     }
4508 
4509     // Find all of the submodules and emit the module initializers.
4510     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4511     SmallVector<clang::Module *, 16> Stack;
4512     Visited.insert(Import->getImportedModule());
4513     Stack.push_back(Import->getImportedModule());
4514 
4515     while (!Stack.empty()) {
4516       clang::Module *Mod = Stack.pop_back_val();
4517       if (!EmittedModuleInitializers.insert(Mod).second)
4518         continue;
4519 
4520       for (auto *D : Context.getModuleInitializers(Mod))
4521         EmitTopLevelDecl(D);
4522 
4523       // Visit the submodules of this module.
4524       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4525                                              SubEnd = Mod->submodule_end();
4526            Sub != SubEnd; ++Sub) {
4527         // Skip explicit children; they need to be explicitly imported to emit
4528         // the initializers.
4529         if ((*Sub)->IsExplicit)
4530           continue;
4531 
4532         if (Visited.insert(*Sub).second)
4533           Stack.push_back(*Sub);
4534       }
4535     }
4536     break;
4537   }
4538 
4539   case Decl::Export:
4540     EmitDeclContext(cast<ExportDecl>(D));
4541     break;
4542 
4543   case Decl::OMPThreadPrivate:
4544     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4545     break;
4546 
4547   case Decl::OMPDeclareReduction:
4548     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4549     break;
4550 
4551   default:
4552     // Make sure we handled everything we should, every other kind is a
4553     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4554     // function. Need to recode Decl::Kind to do that easily.
4555     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4556     break;
4557   }
4558 }
4559 
4560 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4561   // Do we need to generate coverage mapping?
4562   if (!CodeGenOpts.CoverageMapping)
4563     return;
4564   switch (D->getKind()) {
4565   case Decl::CXXConversion:
4566   case Decl::CXXMethod:
4567   case Decl::Function:
4568   case Decl::ObjCMethod:
4569   case Decl::CXXConstructor:
4570   case Decl::CXXDestructor: {
4571     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4572       return;
4573     SourceManager &SM = getContext().getSourceManager();
4574     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4575       return;
4576     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4577     if (I == DeferredEmptyCoverageMappingDecls.end())
4578       DeferredEmptyCoverageMappingDecls[D] = true;
4579     break;
4580   }
4581   default:
4582     break;
4583   };
4584 }
4585 
4586 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4587   // Do we need to generate coverage mapping?
4588   if (!CodeGenOpts.CoverageMapping)
4589     return;
4590   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4591     if (Fn->isTemplateInstantiation())
4592       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4593   }
4594   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4595   if (I == DeferredEmptyCoverageMappingDecls.end())
4596     DeferredEmptyCoverageMappingDecls[D] = false;
4597   else
4598     I->second = false;
4599 }
4600 
4601 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4602   // We call takeVector() here to avoid use-after-free.
4603   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4604   // we deserialize function bodies to emit coverage info for them, and that
4605   // deserializes more declarations. How should we handle that case?
4606   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4607     if (!Entry.second)
4608       continue;
4609     const Decl *D = Entry.first;
4610     switch (D->getKind()) {
4611     case Decl::CXXConversion:
4612     case Decl::CXXMethod:
4613     case Decl::Function:
4614     case Decl::ObjCMethod: {
4615       CodeGenPGO PGO(*this);
4616       GlobalDecl GD(cast<FunctionDecl>(D));
4617       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4618                                   getFunctionLinkage(GD));
4619       break;
4620     }
4621     case Decl::CXXConstructor: {
4622       CodeGenPGO PGO(*this);
4623       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4624       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4625                                   getFunctionLinkage(GD));
4626       break;
4627     }
4628     case Decl::CXXDestructor: {
4629       CodeGenPGO PGO(*this);
4630       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4631       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4632                                   getFunctionLinkage(GD));
4633       break;
4634     }
4635     default:
4636       break;
4637     };
4638   }
4639 }
4640 
4641 /// Turns the given pointer into a constant.
4642 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4643                                           const void *Ptr) {
4644   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4645   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4646   return llvm::ConstantInt::get(i64, PtrInt);
4647 }
4648 
4649 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4650                                    llvm::NamedMDNode *&GlobalMetadata,
4651                                    GlobalDecl D,
4652                                    llvm::GlobalValue *Addr) {
4653   if (!GlobalMetadata)
4654     GlobalMetadata =
4655       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4656 
4657   // TODO: should we report variant information for ctors/dtors?
4658   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4659                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4660                                CGM.getLLVMContext(), D.getDecl()))};
4661   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4662 }
4663 
4664 /// For each function which is declared within an extern "C" region and marked
4665 /// as 'used', but has internal linkage, create an alias from the unmangled
4666 /// name to the mangled name if possible. People expect to be able to refer
4667 /// to such functions with an unmangled name from inline assembly within the
4668 /// same translation unit.
4669 void CodeGenModule::EmitStaticExternCAliases() {
4670   // Don't do anything if we're generating CUDA device code -- the NVPTX
4671   // assembly target doesn't support aliases.
4672   if (Context.getTargetInfo().getTriple().isNVPTX())
4673     return;
4674   for (auto &I : StaticExternCValues) {
4675     IdentifierInfo *Name = I.first;
4676     llvm::GlobalValue *Val = I.second;
4677     if (Val && !getModule().getNamedValue(Name->getName()))
4678       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4679   }
4680 }
4681 
4682 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4683                                              GlobalDecl &Result) const {
4684   auto Res = Manglings.find(MangledName);
4685   if (Res == Manglings.end())
4686     return false;
4687   Result = Res->getValue();
4688   return true;
4689 }
4690 
4691 /// Emits metadata nodes associating all the global values in the
4692 /// current module with the Decls they came from.  This is useful for
4693 /// projects using IR gen as a subroutine.
4694 ///
4695 /// Since there's currently no way to associate an MDNode directly
4696 /// with an llvm::GlobalValue, we create a global named metadata
4697 /// with the name 'clang.global.decl.ptrs'.
4698 void CodeGenModule::EmitDeclMetadata() {
4699   llvm::NamedMDNode *GlobalMetadata = nullptr;
4700 
4701   for (auto &I : MangledDeclNames) {
4702     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4703     // Some mangled names don't necessarily have an associated GlobalValue
4704     // in this module, e.g. if we mangled it for DebugInfo.
4705     if (Addr)
4706       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4707   }
4708 }
4709 
4710 /// Emits metadata nodes for all the local variables in the current
4711 /// function.
4712 void CodeGenFunction::EmitDeclMetadata() {
4713   if (LocalDeclMap.empty()) return;
4714 
4715   llvm::LLVMContext &Context = getLLVMContext();
4716 
4717   // Find the unique metadata ID for this name.
4718   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4719 
4720   llvm::NamedMDNode *GlobalMetadata = nullptr;
4721 
4722   for (auto &I : LocalDeclMap) {
4723     const Decl *D = I.first;
4724     llvm::Value *Addr = I.second.getPointer();
4725     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4726       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4727       Alloca->setMetadata(
4728           DeclPtrKind, llvm::MDNode::get(
4729                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4730     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4731       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4732       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4733     }
4734   }
4735 }
4736 
4737 void CodeGenModule::EmitVersionIdentMetadata() {
4738   llvm::NamedMDNode *IdentMetadata =
4739     TheModule.getOrInsertNamedMetadata("llvm.ident");
4740   std::string Version = getClangFullVersion();
4741   llvm::LLVMContext &Ctx = TheModule.getContext();
4742 
4743   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4744   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4745 }
4746 
4747 void CodeGenModule::EmitTargetMetadata() {
4748   // Warning, new MangledDeclNames may be appended within this loop.
4749   // We rely on MapVector insertions adding new elements to the end
4750   // of the container.
4751   // FIXME: Move this loop into the one target that needs it, and only
4752   // loop over those declarations for which we couldn't emit the target
4753   // metadata when we emitted the declaration.
4754   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4755     auto Val = *(MangledDeclNames.begin() + I);
4756     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4757     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4758     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4759   }
4760 }
4761 
4762 void CodeGenModule::EmitCoverageFile() {
4763   if (getCodeGenOpts().CoverageDataFile.empty() &&
4764       getCodeGenOpts().CoverageNotesFile.empty())
4765     return;
4766 
4767   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4768   if (!CUNode)
4769     return;
4770 
4771   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4772   llvm::LLVMContext &Ctx = TheModule.getContext();
4773   auto *CoverageDataFile =
4774       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4775   auto *CoverageNotesFile =
4776       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4777   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4778     llvm::MDNode *CU = CUNode->getOperand(i);
4779     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4780     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4781   }
4782 }
4783 
4784 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4785   // Sema has checked that all uuid strings are of the form
4786   // "12345678-1234-1234-1234-1234567890ab".
4787   assert(Uuid.size() == 36);
4788   for (unsigned i = 0; i < 36; ++i) {
4789     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4790     else                                         assert(isHexDigit(Uuid[i]));
4791   }
4792 
4793   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4794   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4795 
4796   llvm::Constant *Field3[8];
4797   for (unsigned Idx = 0; Idx < 8; ++Idx)
4798     Field3[Idx] = llvm::ConstantInt::get(
4799         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4800 
4801   llvm::Constant *Fields[4] = {
4802     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4803     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4804     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4805     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4806   };
4807 
4808   return llvm::ConstantStruct::getAnon(Fields);
4809 }
4810 
4811 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4812                                                        bool ForEH) {
4813   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4814   // FIXME: should we even be calling this method if RTTI is disabled
4815   // and it's not for EH?
4816   if (!ForEH && !getLangOpts().RTTI)
4817     return llvm::Constant::getNullValue(Int8PtrTy);
4818 
4819   if (ForEH && Ty->isObjCObjectPointerType() &&
4820       LangOpts.ObjCRuntime.isGNUFamily())
4821     return ObjCRuntime->GetEHType(Ty);
4822 
4823   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4824 }
4825 
4826 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4827   // Do not emit threadprivates in simd-only mode.
4828   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4829     return;
4830   for (auto RefExpr : D->varlists()) {
4831     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4832     bool PerformInit =
4833         VD->getAnyInitializer() &&
4834         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4835                                                         /*ForRef=*/false);
4836 
4837     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4838     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4839             VD, Addr, RefExpr->getLocStart(), PerformInit))
4840       CXXGlobalInits.push_back(InitFunction);
4841   }
4842 }
4843 
4844 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4845   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4846   if (InternalId)
4847     return InternalId;
4848 
4849   if (isExternallyVisible(T->getLinkage())) {
4850     std::string OutName;
4851     llvm::raw_string_ostream Out(OutName);
4852     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4853 
4854     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4855   } else {
4856     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4857                                            llvm::ArrayRef<llvm::Metadata *>());
4858   }
4859 
4860   return InternalId;
4861 }
4862 
4863 // Generalize pointer types to a void pointer with the qualifiers of the
4864 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
4865 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
4866 // 'void *'.
4867 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4868   if (!Ty->isPointerType())
4869     return Ty;
4870 
4871   return Ctx.getPointerType(
4872       QualType(Ctx.VoidTy).withCVRQualifiers(
4873           Ty->getPointeeType().getCVRQualifiers()));
4874 }
4875 
4876 // Apply type generalization to a FunctionType's return and argument types
4877 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4878   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4879     SmallVector<QualType, 8> GeneralizedParams;
4880     for (auto &Param : FnType->param_types())
4881       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4882 
4883     return Ctx.getFunctionType(
4884         GeneralizeType(Ctx, FnType->getReturnType()),
4885         GeneralizedParams, FnType->getExtProtoInfo());
4886   }
4887 
4888   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4889     return Ctx.getFunctionNoProtoType(
4890         GeneralizeType(Ctx, FnType->getReturnType()));
4891 
4892   llvm_unreachable("Encountered unknown FunctionType");
4893 }
4894 
4895 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4896   T = GeneralizeFunctionType(getContext(), T);
4897 
4898   llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4899   if (InternalId)
4900     return InternalId;
4901 
4902   if (isExternallyVisible(T->getLinkage())) {
4903     std::string OutName;
4904     llvm::raw_string_ostream Out(OutName);
4905     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4906     Out << ".generalized";
4907 
4908     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4909   } else {
4910     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4911                                            llvm::ArrayRef<llvm::Metadata *>());
4912   }
4913 
4914   return InternalId;
4915 }
4916 
4917 /// Returns whether this module needs the "all-vtables" type identifier.
4918 bool CodeGenModule::NeedAllVtablesTypeId() const {
4919   // Returns true if at least one of vtable-based CFI checkers is enabled and
4920   // is not in the trapping mode.
4921   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4922            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4923           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4924            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4925           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4926            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4927           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4928            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4929 }
4930 
4931 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4932                                           CharUnits Offset,
4933                                           const CXXRecordDecl *RD) {
4934   llvm::Metadata *MD =
4935       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4936   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4937 
4938   if (CodeGenOpts.SanitizeCfiCrossDso)
4939     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4940       VTable->addTypeMetadata(Offset.getQuantity(),
4941                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4942 
4943   if (NeedAllVtablesTypeId()) {
4944     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4945     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4946   }
4947 }
4948 
4949 // Fills in the supplied string map with the set of target features for the
4950 // passed in function.
4951 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4952                                           const FunctionDecl *FD) {
4953   StringRef TargetCPU = Target.getTargetOpts().CPU;
4954   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4955     // If we have a TargetAttr build up the feature map based on that.
4956     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4957 
4958     ParsedAttr.Features.erase(
4959         llvm::remove_if(ParsedAttr.Features,
4960                         [&](const std::string &Feat) {
4961                           return !Target.isValidFeatureName(
4962                               StringRef{Feat}.substr(1));
4963                         }),
4964         ParsedAttr.Features.end());
4965 
4966     // Make a copy of the features as passed on the command line into the
4967     // beginning of the additional features from the function to override.
4968     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4969                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4970                             Target.getTargetOpts().FeaturesAsWritten.end());
4971 
4972     if (ParsedAttr.Architecture != "" &&
4973         Target.isValidCPUName(ParsedAttr.Architecture))
4974       TargetCPU = ParsedAttr.Architecture;
4975 
4976     // Now populate the feature map, first with the TargetCPU which is either
4977     // the default or a new one from the target attribute string. Then we'll use
4978     // the passed in features (FeaturesAsWritten) along with the new ones from
4979     // the attribute.
4980     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4981                           ParsedAttr.Features);
4982   } else {
4983     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4984                           Target.getTargetOpts().Features);
4985   }
4986 }
4987 
4988 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4989   if (!SanStats)
4990     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4991 
4992   return *SanStats;
4993 }
4994 llvm::Value *
4995 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4996                                                   CodeGenFunction &CGF) {
4997   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
4998   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
4999   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5000   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5001                                 "__translate_sampler_initializer"),
5002                                 {C});
5003 }
5004