1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CodeGenTBAA.h" 25 #include "CoverageMappingGen.h" 26 #include "TargetInfo.h" 27 #include "clang/AST/ASTContext.h" 28 #include "clang/AST/CharUnits.h" 29 #include "clang/AST/DeclCXX.h" 30 #include "clang/AST/DeclObjC.h" 31 #include "clang/AST/DeclTemplate.h" 32 #include "clang/AST/Mangle.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/RecursiveASTVisitor.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/CharInfo.h" 37 #include "clang/Basic/Diagnostic.h" 38 #include "clang/Basic/Module.h" 39 #include "clang/Basic/SourceManager.h" 40 #include "clang/Basic/TargetInfo.h" 41 #include "clang/Basic/Version.h" 42 #include "clang/Frontend/CodeGenOptions.h" 43 #include "clang/Sema/SemaDiagnostic.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/Triple.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/CallingConv.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/ProfileData/InstrProfReader.h" 53 #include "llvm/Support/ConvertUTF.h" 54 #include "llvm/Support/ErrorHandling.h" 55 56 using namespace clang; 57 using namespace CodeGen; 58 59 static const char AnnotationSection[] = "llvm.metadata"; 60 61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 62 switch (CGM.getTarget().getCXXABI().getKind()) { 63 case TargetCXXABI::GenericAArch64: 64 case TargetCXXABI::GenericARM: 65 case TargetCXXABI::iOS: 66 case TargetCXXABI::iOS64: 67 case TargetCXXABI::GenericMIPS: 68 case TargetCXXABI::GenericItanium: 69 return CreateItaniumCXXABI(CGM); 70 case TargetCXXABI::Microsoft: 71 return CreateMicrosoftCXXABI(CGM); 72 } 73 74 llvm_unreachable("invalid C++ ABI kind"); 75 } 76 77 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 78 const PreprocessorOptions &PPO, 79 const CodeGenOptions &CGO, llvm::Module &M, 80 DiagnosticsEngine &diags, 81 CoverageSourceInfo *CoverageInfo) 82 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 83 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 84 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 85 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 86 Types(*this), VTables(*this), ObjCRuntime(nullptr), 87 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 88 DebugInfo(nullptr), ARCData(nullptr), 89 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 90 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 91 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 92 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 93 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 94 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 95 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 96 97 // Initialize the type cache. 98 llvm::LLVMContext &LLVMContext = M.getContext(); 99 VoidTy = llvm::Type::getVoidTy(LLVMContext); 100 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 101 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 102 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 103 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 104 FloatTy = llvm::Type::getFloatTy(LLVMContext); 105 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 106 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 107 PointerAlignInBytes = 108 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 109 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 110 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 111 Int8PtrTy = Int8Ty->getPointerTo(0); 112 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 113 114 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 115 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 116 117 if (LangOpts.ObjC1) 118 createObjCRuntime(); 119 if (LangOpts.OpenCL) 120 createOpenCLRuntime(); 121 if (LangOpts.OpenMP) 122 createOpenMPRuntime(); 123 if (LangOpts.CUDA) 124 createCUDARuntime(); 125 126 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 127 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 128 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 129 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 130 getCXXABI().getMangleContext()); 131 132 // If debug info or coverage generation is enabled, create the CGDebugInfo 133 // object. 134 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 135 CodeGenOpts.EmitGcovArcs || 136 CodeGenOpts.EmitGcovNotes) 137 DebugInfo = new CGDebugInfo(*this); 138 139 Block.GlobalUniqueCount = 0; 140 141 if (C.getLangOpts().ObjCAutoRefCount) 142 ARCData = new ARCEntrypoints(); 143 RRData = new RREntrypoints(); 144 145 if (!CodeGenOpts.InstrProfileInput.empty()) { 146 auto ReaderOrErr = 147 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 148 if (std::error_code EC = ReaderOrErr.getError()) { 149 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 150 "Could not read profile %0: %1"); 151 getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput 152 << EC.message(); 153 } else 154 PGOReader = std::move(ReaderOrErr.get()); 155 } 156 157 // If coverage mapping generation is enabled, create the 158 // CoverageMappingModuleGen object. 159 if (CodeGenOpts.CoverageMapping) 160 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 161 } 162 163 CodeGenModule::~CodeGenModule() { 164 delete ObjCRuntime; 165 delete OpenCLRuntime; 166 delete OpenMPRuntime; 167 delete CUDARuntime; 168 delete TheTargetCodeGenInfo; 169 delete TBAA; 170 delete DebugInfo; 171 delete ARCData; 172 delete RRData; 173 } 174 175 void CodeGenModule::createObjCRuntime() { 176 // This is just isGNUFamily(), but we want to force implementors of 177 // new ABIs to decide how best to do this. 178 switch (LangOpts.ObjCRuntime.getKind()) { 179 case ObjCRuntime::GNUstep: 180 case ObjCRuntime::GCC: 181 case ObjCRuntime::ObjFW: 182 ObjCRuntime = CreateGNUObjCRuntime(*this); 183 return; 184 185 case ObjCRuntime::FragileMacOSX: 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 ObjCRuntime = CreateMacObjCRuntime(*this); 189 return; 190 } 191 llvm_unreachable("bad runtime kind"); 192 } 193 194 void CodeGenModule::createOpenCLRuntime() { 195 OpenCLRuntime = new CGOpenCLRuntime(*this); 196 } 197 198 void CodeGenModule::createOpenMPRuntime() { 199 OpenMPRuntime = new CGOpenMPRuntime(*this); 200 } 201 202 void CodeGenModule::createCUDARuntime() { 203 CUDARuntime = CreateNVCUDARuntime(*this); 204 } 205 206 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 207 Replacements[Name] = C; 208 } 209 210 void CodeGenModule::applyReplacements() { 211 for (auto &I : Replacements) { 212 StringRef MangledName = I.first(); 213 llvm::Constant *Replacement = I.second; 214 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 215 if (!Entry) 216 continue; 217 auto *OldF = cast<llvm::Function>(Entry); 218 auto *NewF = dyn_cast<llvm::Function>(Replacement); 219 if (!NewF) { 220 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 221 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 222 } else { 223 auto *CE = cast<llvm::ConstantExpr>(Replacement); 224 assert(CE->getOpcode() == llvm::Instruction::BitCast || 225 CE->getOpcode() == llvm::Instruction::GetElementPtr); 226 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 227 } 228 } 229 230 // Replace old with new, but keep the old order. 231 OldF->replaceAllUsesWith(Replacement); 232 if (NewF) { 233 NewF->removeFromParent(); 234 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 235 } 236 OldF->eraseFromParent(); 237 } 238 } 239 240 // This is only used in aliases that we created and we know they have a 241 // linear structure. 242 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 243 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 244 const llvm::Constant *C = &GA; 245 for (;;) { 246 C = C->stripPointerCasts(); 247 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 248 return GO; 249 // stripPointerCasts will not walk over weak aliases. 250 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 251 if (!GA2) 252 return nullptr; 253 if (!Visited.insert(GA2).second) 254 return nullptr; 255 C = GA2->getAliasee(); 256 } 257 } 258 259 void CodeGenModule::checkAliases() { 260 // Check if the constructed aliases are well formed. It is really unfortunate 261 // that we have to do this in CodeGen, but we only construct mangled names 262 // and aliases during codegen. 263 bool Error = false; 264 DiagnosticsEngine &Diags = getDiags(); 265 for (const GlobalDecl &GD : Aliases) { 266 const auto *D = cast<ValueDecl>(GD.getDecl()); 267 const AliasAttr *AA = D->getAttr<AliasAttr>(); 268 StringRef MangledName = getMangledName(GD); 269 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 270 auto *Alias = cast<llvm::GlobalAlias>(Entry); 271 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 272 if (!GV) { 273 Error = true; 274 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 275 } else if (GV->isDeclaration()) { 276 Error = true; 277 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 278 } 279 280 llvm::Constant *Aliasee = Alias->getAliasee(); 281 llvm::GlobalValue *AliaseeGV; 282 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 283 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 284 else 285 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 286 287 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 288 StringRef AliasSection = SA->getName(); 289 if (AliasSection != AliaseeGV->getSection()) 290 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 291 << AliasSection; 292 } 293 294 // We have to handle alias to weak aliases in here. LLVM itself disallows 295 // this since the object semantics would not match the IL one. For 296 // compatibility with gcc we implement it by just pointing the alias 297 // to its aliasee's aliasee. We also warn, since the user is probably 298 // expecting the link to be weak. 299 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 300 if (GA->mayBeOverridden()) { 301 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 302 << GV->getName() << GA->getName(); 303 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 304 GA->getAliasee(), Alias->getType()); 305 Alias->setAliasee(Aliasee); 306 } 307 } 308 } 309 if (!Error) 310 return; 311 312 for (const GlobalDecl &GD : Aliases) { 313 StringRef MangledName = getMangledName(GD); 314 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 315 auto *Alias = cast<llvm::GlobalAlias>(Entry); 316 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 317 Alias->eraseFromParent(); 318 } 319 } 320 321 void CodeGenModule::clear() { 322 DeferredDeclsToEmit.clear(); 323 if (OpenMPRuntime) 324 OpenMPRuntime->clear(); 325 } 326 327 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 328 StringRef MainFile) { 329 if (!hasDiagnostics()) 330 return; 331 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 332 if (MainFile.empty()) 333 MainFile = "<stdin>"; 334 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 335 } else 336 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 337 << Mismatched; 338 } 339 340 void CodeGenModule::Release() { 341 EmitDeferred(); 342 applyReplacements(); 343 checkAliases(); 344 EmitCXXGlobalInitFunc(); 345 EmitCXXGlobalDtorFunc(); 346 EmitCXXThreadLocalInitFunc(); 347 if (ObjCRuntime) 348 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 349 AddGlobalCtor(ObjCInitFunction); 350 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 351 CUDARuntime) { 352 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 353 AddGlobalCtor(CudaCtorFunction); 354 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 355 AddGlobalDtor(CudaDtorFunction); 356 } 357 if (PGOReader && PGOStats.hasDiagnostics()) 358 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 359 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 360 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 361 EmitGlobalAnnotations(); 362 EmitStaticExternCAliases(); 363 EmitDeferredUnusedCoverageMappings(); 364 if (CoverageMapping) 365 CoverageMapping->emit(); 366 emitLLVMUsed(); 367 368 if (CodeGenOpts.Autolink && 369 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 370 EmitModuleLinkOptions(); 371 } 372 if (CodeGenOpts.DwarfVersion) { 373 // We actually want the latest version when there are conflicts. 374 // We can change from Warning to Latest if such mode is supported. 375 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 376 CodeGenOpts.DwarfVersion); 377 } 378 if (CodeGenOpts.EmitCodeView) { 379 // Indicate that we want CodeView in the metadata. 380 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 381 } 382 if (DebugInfo) 383 // We support a single version in the linked module. The LLVM 384 // parser will drop debug info with a different version number 385 // (and warn about it, too). 386 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 387 llvm::DEBUG_METADATA_VERSION); 388 389 // We need to record the widths of enums and wchar_t, so that we can generate 390 // the correct build attributes in the ARM backend. 391 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 392 if ( Arch == llvm::Triple::arm 393 || Arch == llvm::Triple::armeb 394 || Arch == llvm::Triple::thumb 395 || Arch == llvm::Triple::thumbeb) { 396 // Width of wchar_t in bytes 397 uint64_t WCharWidth = 398 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 399 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 400 401 // The minimum width of an enum in bytes 402 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 403 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 404 } 405 406 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 407 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 408 switch (PLevel) { 409 case 0: break; 410 case 1: PL = llvm::PICLevel::Small; break; 411 case 2: PL = llvm::PICLevel::Large; break; 412 default: llvm_unreachable("Invalid PIC Level"); 413 } 414 415 getModule().setPICLevel(PL); 416 } 417 418 SimplifyPersonality(); 419 420 if (getCodeGenOpts().EmitDeclMetadata) 421 EmitDeclMetadata(); 422 423 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 424 EmitCoverageFile(); 425 426 if (DebugInfo) 427 DebugInfo->finalize(); 428 429 EmitVersionIdentMetadata(); 430 431 EmitTargetMetadata(); 432 } 433 434 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 435 // Make sure that this type is translated. 436 Types.UpdateCompletedType(TD); 437 } 438 439 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 440 if (!TBAA) 441 return nullptr; 442 return TBAA->getTBAAInfo(QTy); 443 } 444 445 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 446 if (!TBAA) 447 return nullptr; 448 return TBAA->getTBAAInfoForVTablePtr(); 449 } 450 451 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 452 if (!TBAA) 453 return nullptr; 454 return TBAA->getTBAAStructInfo(QTy); 455 } 456 457 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 458 if (!TBAA) 459 return nullptr; 460 return TBAA->getTBAAStructTypeInfo(QTy); 461 } 462 463 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 464 llvm::MDNode *AccessN, 465 uint64_t O) { 466 if (!TBAA) 467 return nullptr; 468 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 469 } 470 471 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 472 /// and struct-path aware TBAA, the tag has the same format: 473 /// base type, access type and offset. 474 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 475 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 476 llvm::MDNode *TBAAInfo, 477 bool ConvertTypeToTag) { 478 if (ConvertTypeToTag && TBAA) 479 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 480 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 481 else 482 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 483 } 484 485 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 486 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 487 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 488 } 489 490 /// ErrorUnsupported - Print out an error that codegen doesn't support the 491 /// specified stmt yet. 492 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 493 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 494 "cannot compile this %0 yet"); 495 std::string Msg = Type; 496 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 497 << Msg << S->getSourceRange(); 498 } 499 500 /// ErrorUnsupported - Print out an error that codegen doesn't support the 501 /// specified decl yet. 502 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 503 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 504 "cannot compile this %0 yet"); 505 std::string Msg = Type; 506 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 507 } 508 509 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 510 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 511 } 512 513 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 514 const NamedDecl *D) const { 515 // Internal definitions always have default visibility. 516 if (GV->hasLocalLinkage()) { 517 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 518 return; 519 } 520 521 // Set visibility for definitions. 522 LinkageInfo LV = D->getLinkageAndVisibility(); 523 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 524 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 525 } 526 527 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 528 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 529 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 530 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 531 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 532 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 533 } 534 535 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 536 CodeGenOptions::TLSModel M) { 537 switch (M) { 538 case CodeGenOptions::GeneralDynamicTLSModel: 539 return llvm::GlobalVariable::GeneralDynamicTLSModel; 540 case CodeGenOptions::LocalDynamicTLSModel: 541 return llvm::GlobalVariable::LocalDynamicTLSModel; 542 case CodeGenOptions::InitialExecTLSModel: 543 return llvm::GlobalVariable::InitialExecTLSModel; 544 case CodeGenOptions::LocalExecTLSModel: 545 return llvm::GlobalVariable::LocalExecTLSModel; 546 } 547 llvm_unreachable("Invalid TLS model!"); 548 } 549 550 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 551 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 552 553 llvm::GlobalValue::ThreadLocalMode TLM; 554 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 555 556 // Override the TLS model if it is explicitly specified. 557 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 558 TLM = GetLLVMTLSModel(Attr->getModel()); 559 } 560 561 GV->setThreadLocalMode(TLM); 562 } 563 564 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 565 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 566 if (!FoundStr.empty()) 567 return FoundStr; 568 569 const auto *ND = cast<NamedDecl>(GD.getDecl()); 570 SmallString<256> Buffer; 571 StringRef Str; 572 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 573 llvm::raw_svector_ostream Out(Buffer); 574 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 575 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 576 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 577 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 578 else 579 getCXXABI().getMangleContext().mangleName(ND, Out); 580 Str = Out.str(); 581 } else { 582 IdentifierInfo *II = ND->getIdentifier(); 583 assert(II && "Attempt to mangle unnamed decl."); 584 Str = II->getName(); 585 } 586 587 // Keep the first result in the case of a mangling collision. 588 auto Result = Manglings.insert(std::make_pair(Str, GD)); 589 return FoundStr = Result.first->first(); 590 } 591 592 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 593 const BlockDecl *BD) { 594 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 595 const Decl *D = GD.getDecl(); 596 597 SmallString<256> Buffer; 598 llvm::raw_svector_ostream Out(Buffer); 599 if (!D) 600 MangleCtx.mangleGlobalBlock(BD, 601 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 602 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 603 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 604 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 605 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 606 else 607 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 608 609 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 610 return Result.first->first(); 611 } 612 613 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 614 return getModule().getNamedValue(Name); 615 } 616 617 /// AddGlobalCtor - Add a function to the list that will be called before 618 /// main() runs. 619 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 620 llvm::Constant *AssociatedData) { 621 // FIXME: Type coercion of void()* types. 622 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 623 } 624 625 /// AddGlobalDtor - Add a function to the list that will be called 626 /// when the module is unloaded. 627 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 628 // FIXME: Type coercion of void()* types. 629 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 630 } 631 632 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 633 // Ctor function type is void()*. 634 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 635 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 636 637 // Get the type of a ctor entry, { i32, void ()*, i8* }. 638 llvm::StructType *CtorStructTy = llvm::StructType::get( 639 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 640 641 // Construct the constructor and destructor arrays. 642 SmallVector<llvm::Constant *, 8> Ctors; 643 for (const auto &I : Fns) { 644 llvm::Constant *S[] = { 645 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 646 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 647 (I.AssociatedData 648 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 649 : llvm::Constant::getNullValue(VoidPtrTy))}; 650 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 651 } 652 653 if (!Ctors.empty()) { 654 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 655 new llvm::GlobalVariable(TheModule, AT, false, 656 llvm::GlobalValue::AppendingLinkage, 657 llvm::ConstantArray::get(AT, Ctors), 658 GlobalName); 659 } 660 } 661 662 llvm::GlobalValue::LinkageTypes 663 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 664 const auto *D = cast<FunctionDecl>(GD.getDecl()); 665 666 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 667 668 if (isa<CXXDestructorDecl>(D) && 669 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 670 GD.getDtorType())) { 671 // Destructor variants in the Microsoft C++ ABI are always internal or 672 // linkonce_odr thunks emitted on an as-needed basis. 673 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 674 : llvm::GlobalValue::LinkOnceODRLinkage; 675 } 676 677 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 678 } 679 680 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 681 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 682 683 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 684 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 685 // Don't dllexport/import destructor thunks. 686 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 687 return; 688 } 689 } 690 691 if (FD->hasAttr<DLLImportAttr>()) 692 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 693 else if (FD->hasAttr<DLLExportAttr>()) 694 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 695 else 696 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 697 } 698 699 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 700 llvm::Function *F) { 701 setNonAliasAttributes(D, F); 702 } 703 704 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 705 const CGFunctionInfo &Info, 706 llvm::Function *F) { 707 unsigned CallingConv; 708 AttributeListType AttributeList; 709 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 710 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 711 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 712 } 713 714 /// Determines whether the language options require us to model 715 /// unwind exceptions. We treat -fexceptions as mandating this 716 /// except under the fragile ObjC ABI with only ObjC exceptions 717 /// enabled. This means, for example, that C with -fexceptions 718 /// enables this. 719 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 720 // If exceptions are completely disabled, obviously this is false. 721 if (!LangOpts.Exceptions) return false; 722 723 // If C++ exceptions are enabled, this is true. 724 if (LangOpts.CXXExceptions) return true; 725 726 // If ObjC exceptions are enabled, this depends on the ABI. 727 if (LangOpts.ObjCExceptions) { 728 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 729 } 730 731 return true; 732 } 733 734 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 735 llvm::Function *F) { 736 llvm::AttrBuilder B; 737 738 if (CodeGenOpts.UnwindTables) 739 B.addAttribute(llvm::Attribute::UWTable); 740 741 if (!hasUnwindExceptions(LangOpts)) 742 B.addAttribute(llvm::Attribute::NoUnwind); 743 744 if (D->hasAttr<NakedAttr>()) { 745 // Naked implies noinline: we should not be inlining such functions. 746 B.addAttribute(llvm::Attribute::Naked); 747 B.addAttribute(llvm::Attribute::NoInline); 748 } else if (D->hasAttr<NoDuplicateAttr>()) { 749 B.addAttribute(llvm::Attribute::NoDuplicate); 750 } else if (D->hasAttr<NoInlineAttr>()) { 751 B.addAttribute(llvm::Attribute::NoInline); 752 } else if (D->hasAttr<AlwaysInlineAttr>() && 753 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 754 llvm::Attribute::NoInline)) { 755 // (noinline wins over always_inline, and we can't specify both in IR) 756 B.addAttribute(llvm::Attribute::AlwaysInline); 757 } 758 759 if (D->hasAttr<ColdAttr>()) { 760 if (!D->hasAttr<OptimizeNoneAttr>()) 761 B.addAttribute(llvm::Attribute::OptimizeForSize); 762 B.addAttribute(llvm::Attribute::Cold); 763 } 764 765 if (D->hasAttr<MinSizeAttr>()) 766 B.addAttribute(llvm::Attribute::MinSize); 767 768 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 769 B.addAttribute(llvm::Attribute::StackProtect); 770 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 771 B.addAttribute(llvm::Attribute::StackProtectStrong); 772 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 773 B.addAttribute(llvm::Attribute::StackProtectReq); 774 775 F->addAttributes(llvm::AttributeSet::FunctionIndex, 776 llvm::AttributeSet::get( 777 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 778 779 if (D->hasAttr<OptimizeNoneAttr>()) { 780 // OptimizeNone implies noinline; we should not be inlining such functions. 781 F->addFnAttr(llvm::Attribute::OptimizeNone); 782 F->addFnAttr(llvm::Attribute::NoInline); 783 784 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 785 assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) && 786 "OptimizeNone and OptimizeForSize on same function!"); 787 assert(!F->hasFnAttribute(llvm::Attribute::MinSize) && 788 "OptimizeNone and MinSize on same function!"); 789 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 790 "OptimizeNone and AlwaysInline on same function!"); 791 792 // Attribute 'inlinehint' has no effect on 'optnone' functions. 793 // Explicitly remove it from the set of function attributes. 794 F->removeFnAttr(llvm::Attribute::InlineHint); 795 } 796 797 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 798 F->setUnnamedAddr(true); 799 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 800 if (MD->isVirtual()) 801 F->setUnnamedAddr(true); 802 803 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 804 if (alignment) 805 F->setAlignment(alignment); 806 807 // C++ ABI requires 2-byte alignment for member functions. 808 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 809 F->setAlignment(2); 810 } 811 812 void CodeGenModule::SetCommonAttributes(const Decl *D, 813 llvm::GlobalValue *GV) { 814 if (const auto *ND = dyn_cast<NamedDecl>(D)) 815 setGlobalVisibility(GV, ND); 816 else 817 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 818 819 if (D->hasAttr<UsedAttr>()) 820 addUsedGlobal(GV); 821 } 822 823 void CodeGenModule::setAliasAttributes(const Decl *D, 824 llvm::GlobalValue *GV) { 825 SetCommonAttributes(D, GV); 826 827 // Process the dllexport attribute based on whether the original definition 828 // (not necessarily the aliasee) was exported. 829 if (D->hasAttr<DLLExportAttr>()) 830 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 831 } 832 833 void CodeGenModule::setNonAliasAttributes(const Decl *D, 834 llvm::GlobalObject *GO) { 835 SetCommonAttributes(D, GO); 836 837 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 838 GO->setSection(SA->getName()); 839 840 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 841 } 842 843 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 844 llvm::Function *F, 845 const CGFunctionInfo &FI) { 846 SetLLVMFunctionAttributes(D, FI, F); 847 SetLLVMFunctionAttributesForDefinition(D, F); 848 849 F->setLinkage(llvm::Function::InternalLinkage); 850 851 setNonAliasAttributes(D, F); 852 } 853 854 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 855 const NamedDecl *ND) { 856 // Set linkage and visibility in case we never see a definition. 857 LinkageInfo LV = ND->getLinkageAndVisibility(); 858 if (LV.getLinkage() != ExternalLinkage) { 859 // Don't set internal linkage on declarations. 860 } else { 861 if (ND->hasAttr<DLLImportAttr>()) { 862 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 863 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 864 } else if (ND->hasAttr<DLLExportAttr>()) { 865 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 866 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 867 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 868 // "extern_weak" is overloaded in LLVM; we probably should have 869 // separate linkage types for this. 870 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 871 } 872 873 // Set visibility on a declaration only if it's explicit. 874 if (LV.isVisibilityExplicit()) 875 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 876 } 877 } 878 879 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 880 bool IsIncompleteFunction, 881 bool IsThunk) { 882 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 883 // If this is an intrinsic function, set the function's attributes 884 // to the intrinsic's attributes. 885 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 886 return; 887 } 888 889 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 890 891 if (!IsIncompleteFunction) 892 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 893 894 // Add the Returned attribute for "this", except for iOS 5 and earlier 895 // where substantial code, including the libstdc++ dylib, was compiled with 896 // GCC and does not actually return "this". 897 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 898 !(getTarget().getTriple().isiOS() && 899 getTarget().getTriple().isOSVersionLT(6))) { 900 assert(!F->arg_empty() && 901 F->arg_begin()->getType() 902 ->canLosslesslyBitCastTo(F->getReturnType()) && 903 "unexpected this return"); 904 F->addAttribute(1, llvm::Attribute::Returned); 905 } 906 907 // Only a few attributes are set on declarations; these may later be 908 // overridden by a definition. 909 910 setLinkageAndVisibilityForGV(F, FD); 911 912 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 913 F->setSection(SA->getName()); 914 915 // A replaceable global allocation function does not act like a builtin by 916 // default, only if it is invoked by a new-expression or delete-expression. 917 if (FD->isReplaceableGlobalAllocationFunction()) 918 F->addAttribute(llvm::AttributeSet::FunctionIndex, 919 llvm::Attribute::NoBuiltin); 920 } 921 922 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 923 assert(!GV->isDeclaration() && 924 "Only globals with definition can force usage."); 925 LLVMUsed.emplace_back(GV); 926 } 927 928 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 929 assert(!GV->isDeclaration() && 930 "Only globals with definition can force usage."); 931 LLVMCompilerUsed.emplace_back(GV); 932 } 933 934 static void emitUsed(CodeGenModule &CGM, StringRef Name, 935 std::vector<llvm::WeakVH> &List) { 936 // Don't create llvm.used if there is no need. 937 if (List.empty()) 938 return; 939 940 // Convert List to what ConstantArray needs. 941 SmallVector<llvm::Constant*, 8> UsedArray; 942 UsedArray.resize(List.size()); 943 for (unsigned i = 0, e = List.size(); i != e; ++i) { 944 UsedArray[i] = 945 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 946 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 947 } 948 949 if (UsedArray.empty()) 950 return; 951 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 952 953 auto *GV = new llvm::GlobalVariable( 954 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 955 llvm::ConstantArray::get(ATy, UsedArray), Name); 956 957 GV->setSection("llvm.metadata"); 958 } 959 960 void CodeGenModule::emitLLVMUsed() { 961 emitUsed(*this, "llvm.used", LLVMUsed); 962 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 963 } 964 965 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 966 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 967 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 968 } 969 970 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 971 llvm::SmallString<32> Opt; 972 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 973 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 974 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 975 } 976 977 void CodeGenModule::AddDependentLib(StringRef Lib) { 978 llvm::SmallString<24> Opt; 979 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 980 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 981 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 982 } 983 984 /// \brief Add link options implied by the given module, including modules 985 /// it depends on, using a postorder walk. 986 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 987 SmallVectorImpl<llvm::Metadata *> &Metadata, 988 llvm::SmallPtrSet<Module *, 16> &Visited) { 989 // Import this module's parent. 990 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 991 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 992 } 993 994 // Import this module's dependencies. 995 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 996 if (Visited.insert(Mod->Imports[I - 1]).second) 997 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 998 } 999 1000 // Add linker options to link against the libraries/frameworks 1001 // described by this module. 1002 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1003 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1004 // Link against a framework. Frameworks are currently Darwin only, so we 1005 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1006 if (Mod->LinkLibraries[I-1].IsFramework) { 1007 llvm::Metadata *Args[2] = { 1008 llvm::MDString::get(Context, "-framework"), 1009 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1010 1011 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1012 continue; 1013 } 1014 1015 // Link against a library. 1016 llvm::SmallString<24> Opt; 1017 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1018 Mod->LinkLibraries[I-1].Library, Opt); 1019 auto *OptString = llvm::MDString::get(Context, Opt); 1020 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1021 } 1022 } 1023 1024 void CodeGenModule::EmitModuleLinkOptions() { 1025 // Collect the set of all of the modules we want to visit to emit link 1026 // options, which is essentially the imported modules and all of their 1027 // non-explicit child modules. 1028 llvm::SetVector<clang::Module *> LinkModules; 1029 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1030 SmallVector<clang::Module *, 16> Stack; 1031 1032 // Seed the stack with imported modules. 1033 for (Module *M : ImportedModules) 1034 if (Visited.insert(M).second) 1035 Stack.push_back(M); 1036 1037 // Find all of the modules to import, making a little effort to prune 1038 // non-leaf modules. 1039 while (!Stack.empty()) { 1040 clang::Module *Mod = Stack.pop_back_val(); 1041 1042 bool AnyChildren = false; 1043 1044 // Visit the submodules of this module. 1045 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1046 SubEnd = Mod->submodule_end(); 1047 Sub != SubEnd; ++Sub) { 1048 // Skip explicit children; they need to be explicitly imported to be 1049 // linked against. 1050 if ((*Sub)->IsExplicit) 1051 continue; 1052 1053 if (Visited.insert(*Sub).second) { 1054 Stack.push_back(*Sub); 1055 AnyChildren = true; 1056 } 1057 } 1058 1059 // We didn't find any children, so add this module to the list of 1060 // modules to link against. 1061 if (!AnyChildren) { 1062 LinkModules.insert(Mod); 1063 } 1064 } 1065 1066 // Add link options for all of the imported modules in reverse topological 1067 // order. We don't do anything to try to order import link flags with respect 1068 // to linker options inserted by things like #pragma comment(). 1069 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1070 Visited.clear(); 1071 for (Module *M : LinkModules) 1072 if (Visited.insert(M).second) 1073 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1074 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1075 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1076 1077 // Add the linker options metadata flag. 1078 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1079 llvm::MDNode::get(getLLVMContext(), 1080 LinkerOptionsMetadata)); 1081 } 1082 1083 void CodeGenModule::EmitDeferred() { 1084 // Emit code for any potentially referenced deferred decls. Since a 1085 // previously unused static decl may become used during the generation of code 1086 // for a static function, iterate until no changes are made. 1087 1088 if (!DeferredVTables.empty()) { 1089 EmitDeferredVTables(); 1090 1091 // Emitting a v-table doesn't directly cause more v-tables to 1092 // become deferred, although it can cause functions to be 1093 // emitted that then need those v-tables. 1094 assert(DeferredVTables.empty()); 1095 } 1096 1097 // Stop if we're out of both deferred v-tables and deferred declarations. 1098 if (DeferredDeclsToEmit.empty()) 1099 return; 1100 1101 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1102 // work, it will not interfere with this. 1103 std::vector<DeferredGlobal> CurDeclsToEmit; 1104 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1105 1106 for (DeferredGlobal &G : CurDeclsToEmit) { 1107 GlobalDecl D = G.GD; 1108 llvm::GlobalValue *GV = G.GV; 1109 G.GV = nullptr; 1110 1111 assert(!GV || GV == GetGlobalValue(getMangledName(D))); 1112 if (!GV) 1113 GV = GetGlobalValue(getMangledName(D)); 1114 1115 // Check to see if we've already emitted this. This is necessary 1116 // for a couple of reasons: first, decls can end up in the 1117 // deferred-decls queue multiple times, and second, decls can end 1118 // up with definitions in unusual ways (e.g. by an extern inline 1119 // function acquiring a strong function redefinition). Just 1120 // ignore these cases. 1121 if (GV && !GV->isDeclaration()) 1122 continue; 1123 1124 // Otherwise, emit the definition and move on to the next one. 1125 EmitGlobalDefinition(D, GV); 1126 1127 // If we found out that we need to emit more decls, do that recursively. 1128 // This has the advantage that the decls are emitted in a DFS and related 1129 // ones are close together, which is convenient for testing. 1130 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1131 EmitDeferred(); 1132 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1133 } 1134 } 1135 } 1136 1137 void CodeGenModule::EmitGlobalAnnotations() { 1138 if (Annotations.empty()) 1139 return; 1140 1141 // Create a new global variable for the ConstantStruct in the Module. 1142 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1143 Annotations[0]->getType(), Annotations.size()), Annotations); 1144 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1145 llvm::GlobalValue::AppendingLinkage, 1146 Array, "llvm.global.annotations"); 1147 gv->setSection(AnnotationSection); 1148 } 1149 1150 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1151 llvm::Constant *&AStr = AnnotationStrings[Str]; 1152 if (AStr) 1153 return AStr; 1154 1155 // Not found yet, create a new global. 1156 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1157 auto *gv = 1158 new llvm::GlobalVariable(getModule(), s->getType(), true, 1159 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1160 gv->setSection(AnnotationSection); 1161 gv->setUnnamedAddr(true); 1162 AStr = gv; 1163 return gv; 1164 } 1165 1166 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1167 SourceManager &SM = getContext().getSourceManager(); 1168 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1169 if (PLoc.isValid()) 1170 return EmitAnnotationString(PLoc.getFilename()); 1171 return EmitAnnotationString(SM.getBufferName(Loc)); 1172 } 1173 1174 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1175 SourceManager &SM = getContext().getSourceManager(); 1176 PresumedLoc PLoc = SM.getPresumedLoc(L); 1177 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1178 SM.getExpansionLineNumber(L); 1179 return llvm::ConstantInt::get(Int32Ty, LineNo); 1180 } 1181 1182 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1183 const AnnotateAttr *AA, 1184 SourceLocation L) { 1185 // Get the globals for file name, annotation, and the line number. 1186 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1187 *UnitGV = EmitAnnotationUnit(L), 1188 *LineNoCst = EmitAnnotationLineNo(L); 1189 1190 // Create the ConstantStruct for the global annotation. 1191 llvm::Constant *Fields[4] = { 1192 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1193 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1194 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1195 LineNoCst 1196 }; 1197 return llvm::ConstantStruct::getAnon(Fields); 1198 } 1199 1200 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1201 llvm::GlobalValue *GV) { 1202 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1203 // Get the struct elements for these annotations. 1204 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1205 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1206 } 1207 1208 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1209 SourceLocation Loc) const { 1210 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1211 // Blacklist by function name. 1212 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1213 return true; 1214 // Blacklist by location. 1215 if (!Loc.isInvalid()) 1216 return SanitizerBL.isBlacklistedLocation(Loc); 1217 // If location is unknown, this may be a compiler-generated function. Assume 1218 // it's located in the main file. 1219 auto &SM = Context.getSourceManager(); 1220 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1221 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1222 } 1223 return false; 1224 } 1225 1226 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1227 SourceLocation Loc, QualType Ty, 1228 StringRef Category) const { 1229 // For now globals can be blacklisted only in ASan and KASan. 1230 if (!LangOpts.Sanitize.hasOneOf( 1231 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1232 return false; 1233 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1234 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1235 return true; 1236 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1237 return true; 1238 // Check global type. 1239 if (!Ty.isNull()) { 1240 // Drill down the array types: if global variable of a fixed type is 1241 // blacklisted, we also don't instrument arrays of them. 1242 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1243 Ty = AT->getElementType(); 1244 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1245 // We allow to blacklist only record types (classes, structs etc.) 1246 if (Ty->isRecordType()) { 1247 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1248 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1249 return true; 1250 } 1251 } 1252 return false; 1253 } 1254 1255 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1256 // Never defer when EmitAllDecls is specified. 1257 if (LangOpts.EmitAllDecls) 1258 return true; 1259 1260 return getContext().DeclMustBeEmitted(Global); 1261 } 1262 1263 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1264 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1265 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1266 // Implicit template instantiations may change linkage if they are later 1267 // explicitly instantiated, so they should not be emitted eagerly. 1268 return false; 1269 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1270 // codegen for global variables, because they may be marked as threadprivate. 1271 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1272 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1273 return false; 1274 1275 return true; 1276 } 1277 1278 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1279 const CXXUuidofExpr* E) { 1280 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1281 // well-formed. 1282 StringRef Uuid = E->getUuidAsStringRef(Context); 1283 std::string Name = "_GUID_" + Uuid.lower(); 1284 std::replace(Name.begin(), Name.end(), '-', '_'); 1285 1286 // Look for an existing global. 1287 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1288 return GV; 1289 1290 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1291 assert(Init && "failed to initialize as constant"); 1292 1293 auto *GV = new llvm::GlobalVariable( 1294 getModule(), Init->getType(), 1295 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1296 if (supportsCOMDAT()) 1297 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1298 return GV; 1299 } 1300 1301 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1302 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1303 assert(AA && "No alias?"); 1304 1305 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1306 1307 // See if there is already something with the target's name in the module. 1308 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1309 if (Entry) { 1310 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1311 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1312 } 1313 1314 llvm::Constant *Aliasee; 1315 if (isa<llvm::FunctionType>(DeclTy)) 1316 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1317 GlobalDecl(cast<FunctionDecl>(VD)), 1318 /*ForVTable=*/false); 1319 else 1320 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1321 llvm::PointerType::getUnqual(DeclTy), 1322 nullptr); 1323 1324 auto *F = cast<llvm::GlobalValue>(Aliasee); 1325 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1326 WeakRefReferences.insert(F); 1327 1328 return Aliasee; 1329 } 1330 1331 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1332 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1333 1334 // Weak references don't produce any output by themselves. 1335 if (Global->hasAttr<WeakRefAttr>()) 1336 return; 1337 1338 // If this is an alias definition (which otherwise looks like a declaration) 1339 // emit it now. 1340 if (Global->hasAttr<AliasAttr>()) 1341 return EmitAliasDefinition(GD); 1342 1343 // If this is CUDA, be selective about which declarations we emit. 1344 if (LangOpts.CUDA) { 1345 if (LangOpts.CUDAIsDevice) { 1346 if (!Global->hasAttr<CUDADeviceAttr>() && 1347 !Global->hasAttr<CUDAGlobalAttr>() && 1348 !Global->hasAttr<CUDAConstantAttr>() && 1349 !Global->hasAttr<CUDASharedAttr>()) 1350 return; 1351 } else { 1352 if (!Global->hasAttr<CUDAHostAttr>() && ( 1353 Global->hasAttr<CUDADeviceAttr>() || 1354 Global->hasAttr<CUDAConstantAttr>() || 1355 Global->hasAttr<CUDASharedAttr>())) 1356 return; 1357 } 1358 } 1359 1360 // Ignore declarations, they will be emitted on their first use. 1361 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1362 // Forward declarations are emitted lazily on first use. 1363 if (!FD->doesThisDeclarationHaveABody()) { 1364 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1365 return; 1366 1367 StringRef MangledName = getMangledName(GD); 1368 1369 // Compute the function info and LLVM type. 1370 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1371 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1372 1373 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1374 /*DontDefer=*/false); 1375 return; 1376 } 1377 } else { 1378 const auto *VD = cast<VarDecl>(Global); 1379 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1380 1381 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1382 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1383 return; 1384 } 1385 1386 // Defer code generation to first use when possible, e.g. if this is an inline 1387 // function. If the global must always be emitted, do it eagerly if possible 1388 // to benefit from cache locality. 1389 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1390 // Emit the definition if it can't be deferred. 1391 EmitGlobalDefinition(GD); 1392 return; 1393 } 1394 1395 // If we're deferring emission of a C++ variable with an 1396 // initializer, remember the order in which it appeared in the file. 1397 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1398 cast<VarDecl>(Global)->hasInit()) { 1399 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1400 CXXGlobalInits.push_back(nullptr); 1401 } 1402 1403 StringRef MangledName = getMangledName(GD); 1404 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1405 // The value has already been used and should therefore be emitted. 1406 addDeferredDeclToEmit(GV, GD); 1407 } else if (MustBeEmitted(Global)) { 1408 // The value must be emitted, but cannot be emitted eagerly. 1409 assert(!MayBeEmittedEagerly(Global)); 1410 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1411 } else { 1412 // Otherwise, remember that we saw a deferred decl with this name. The 1413 // first use of the mangled name will cause it to move into 1414 // DeferredDeclsToEmit. 1415 DeferredDecls[MangledName] = GD; 1416 } 1417 } 1418 1419 namespace { 1420 struct FunctionIsDirectlyRecursive : 1421 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1422 const StringRef Name; 1423 const Builtin::Context &BI; 1424 bool Result; 1425 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1426 Name(N), BI(C), Result(false) { 1427 } 1428 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1429 1430 bool TraverseCallExpr(CallExpr *E) { 1431 const FunctionDecl *FD = E->getDirectCallee(); 1432 if (!FD) 1433 return true; 1434 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1435 if (Attr && Name == Attr->getLabel()) { 1436 Result = true; 1437 return false; 1438 } 1439 unsigned BuiltinID = FD->getBuiltinID(); 1440 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1441 return true; 1442 StringRef BuiltinName = BI.getName(BuiltinID); 1443 if (BuiltinName.startswith("__builtin_") && 1444 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1445 Result = true; 1446 return false; 1447 } 1448 return true; 1449 } 1450 }; 1451 } 1452 1453 // isTriviallyRecursive - Check if this function calls another 1454 // decl that, because of the asm attribute or the other decl being a builtin, 1455 // ends up pointing to itself. 1456 bool 1457 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1458 StringRef Name; 1459 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1460 // asm labels are a special kind of mangling we have to support. 1461 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1462 if (!Attr) 1463 return false; 1464 Name = Attr->getLabel(); 1465 } else { 1466 Name = FD->getName(); 1467 } 1468 1469 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1470 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1471 return Walker.Result; 1472 } 1473 1474 bool 1475 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1476 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1477 return true; 1478 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1479 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1480 return false; 1481 // PR9614. Avoid cases where the source code is lying to us. An available 1482 // externally function should have an equivalent function somewhere else, 1483 // but a function that calls itself is clearly not equivalent to the real 1484 // implementation. 1485 // This happens in glibc's btowc and in some configure checks. 1486 return !isTriviallyRecursive(F); 1487 } 1488 1489 /// If the type for the method's class was generated by 1490 /// CGDebugInfo::createContextChain(), the cache contains only a 1491 /// limited DIType without any declarations. Since EmitFunctionStart() 1492 /// needs to find the canonical declaration for each method, we need 1493 /// to construct the complete type prior to emitting the method. 1494 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1495 if (!D->isInstance()) 1496 return; 1497 1498 if (CGDebugInfo *DI = getModuleDebugInfo()) 1499 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1500 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1501 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1502 } 1503 } 1504 1505 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1506 const auto *D = cast<ValueDecl>(GD.getDecl()); 1507 1508 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1509 Context.getSourceManager(), 1510 "Generating code for declaration"); 1511 1512 if (isa<FunctionDecl>(D)) { 1513 // At -O0, don't generate IR for functions with available_externally 1514 // linkage. 1515 if (!shouldEmitFunction(GD)) 1516 return; 1517 1518 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1519 CompleteDIClassType(Method); 1520 // Make sure to emit the definition(s) before we emit the thunks. 1521 // This is necessary for the generation of certain thunks. 1522 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1523 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1524 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1525 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1526 else 1527 EmitGlobalFunctionDefinition(GD, GV); 1528 1529 if (Method->isVirtual()) 1530 getVTables().EmitThunks(GD); 1531 1532 return; 1533 } 1534 1535 return EmitGlobalFunctionDefinition(GD, GV); 1536 } 1537 1538 if (const auto *VD = dyn_cast<VarDecl>(D)) 1539 return EmitGlobalVarDefinition(VD); 1540 1541 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1542 } 1543 1544 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1545 /// module, create and return an llvm Function with the specified type. If there 1546 /// is something in the module with the specified name, return it potentially 1547 /// bitcasted to the right type. 1548 /// 1549 /// If D is non-null, it specifies a decl that correspond to this. This is used 1550 /// to set the attributes on the function when it is first created. 1551 llvm::Constant * 1552 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1553 llvm::Type *Ty, 1554 GlobalDecl GD, bool ForVTable, 1555 bool DontDefer, bool IsThunk, 1556 llvm::AttributeSet ExtraAttrs) { 1557 const Decl *D = GD.getDecl(); 1558 1559 // Lookup the entry, lazily creating it if necessary. 1560 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1561 if (Entry) { 1562 if (WeakRefReferences.erase(Entry)) { 1563 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1564 if (FD && !FD->hasAttr<WeakAttr>()) 1565 Entry->setLinkage(llvm::Function::ExternalLinkage); 1566 } 1567 1568 // Handle dropped DLL attributes. 1569 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1570 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1571 1572 if (Entry->getType()->getElementType() == Ty) 1573 return Entry; 1574 1575 // Make sure the result is of the correct type. 1576 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1577 } 1578 1579 // This function doesn't have a complete type (for example, the return 1580 // type is an incomplete struct). Use a fake type instead, and make 1581 // sure not to try to set attributes. 1582 bool IsIncompleteFunction = false; 1583 1584 llvm::FunctionType *FTy; 1585 if (isa<llvm::FunctionType>(Ty)) { 1586 FTy = cast<llvm::FunctionType>(Ty); 1587 } else { 1588 FTy = llvm::FunctionType::get(VoidTy, false); 1589 IsIncompleteFunction = true; 1590 } 1591 1592 llvm::Function *F = llvm::Function::Create(FTy, 1593 llvm::Function::ExternalLinkage, 1594 MangledName, &getModule()); 1595 assert(F->getName() == MangledName && "name was uniqued!"); 1596 if (D) 1597 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1598 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1599 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1600 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1601 llvm::AttributeSet::get(VMContext, 1602 llvm::AttributeSet::FunctionIndex, 1603 B)); 1604 } 1605 1606 if (!DontDefer) { 1607 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1608 // each other bottoming out with the base dtor. Therefore we emit non-base 1609 // dtors on usage, even if there is no dtor definition in the TU. 1610 if (D && isa<CXXDestructorDecl>(D) && 1611 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1612 GD.getDtorType())) 1613 addDeferredDeclToEmit(F, GD); 1614 1615 // This is the first use or definition of a mangled name. If there is a 1616 // deferred decl with this name, remember that we need to emit it at the end 1617 // of the file. 1618 auto DDI = DeferredDecls.find(MangledName); 1619 if (DDI != DeferredDecls.end()) { 1620 // Move the potentially referenced deferred decl to the 1621 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1622 // don't need it anymore). 1623 addDeferredDeclToEmit(F, DDI->second); 1624 DeferredDecls.erase(DDI); 1625 1626 // Otherwise, there are cases we have to worry about where we're 1627 // using a declaration for which we must emit a definition but where 1628 // we might not find a top-level definition: 1629 // - member functions defined inline in their classes 1630 // - friend functions defined inline in some class 1631 // - special member functions with implicit definitions 1632 // If we ever change our AST traversal to walk into class methods, 1633 // this will be unnecessary. 1634 // 1635 // We also don't emit a definition for a function if it's going to be an 1636 // entry in a vtable, unless it's already marked as used. 1637 } else if (getLangOpts().CPlusPlus && D) { 1638 // Look for a declaration that's lexically in a record. 1639 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1640 FD = FD->getPreviousDecl()) { 1641 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1642 if (FD->doesThisDeclarationHaveABody()) { 1643 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1644 break; 1645 } 1646 } 1647 } 1648 } 1649 } 1650 1651 // Make sure the result is of the requested type. 1652 if (!IsIncompleteFunction) { 1653 assert(F->getType()->getElementType() == Ty); 1654 return F; 1655 } 1656 1657 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1658 return llvm::ConstantExpr::getBitCast(F, PTy); 1659 } 1660 1661 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1662 /// non-null, then this function will use the specified type if it has to 1663 /// create it (this occurs when we see a definition of the function). 1664 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1665 llvm::Type *Ty, 1666 bool ForVTable, 1667 bool DontDefer) { 1668 // If there was no specific requested type, just convert it now. 1669 if (!Ty) 1670 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1671 1672 StringRef MangledName = getMangledName(GD); 1673 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1674 } 1675 1676 /// CreateRuntimeFunction - Create a new runtime function with the specified 1677 /// type and name. 1678 llvm::Constant * 1679 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1680 StringRef Name, 1681 llvm::AttributeSet ExtraAttrs) { 1682 llvm::Constant *C = 1683 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1684 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1685 if (auto *F = dyn_cast<llvm::Function>(C)) 1686 if (F->empty()) 1687 F->setCallingConv(getRuntimeCC()); 1688 return C; 1689 } 1690 1691 /// CreateBuiltinFunction - Create a new builtin function with the specified 1692 /// type and name. 1693 llvm::Constant * 1694 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1695 StringRef Name, 1696 llvm::AttributeSet ExtraAttrs) { 1697 llvm::Constant *C = 1698 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1699 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1700 if (auto *F = dyn_cast<llvm::Function>(C)) 1701 if (F->empty()) 1702 F->setCallingConv(getBuiltinCC()); 1703 return C; 1704 } 1705 1706 /// isTypeConstant - Determine whether an object of this type can be emitted 1707 /// as a constant. 1708 /// 1709 /// If ExcludeCtor is true, the duration when the object's constructor runs 1710 /// will not be considered. The caller will need to verify that the object is 1711 /// not written to during its construction. 1712 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1713 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1714 return false; 1715 1716 if (Context.getLangOpts().CPlusPlus) { 1717 if (const CXXRecordDecl *Record 1718 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1719 return ExcludeCtor && !Record->hasMutableFields() && 1720 Record->hasTrivialDestructor(); 1721 } 1722 1723 return true; 1724 } 1725 1726 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1727 /// create and return an llvm GlobalVariable with the specified type. If there 1728 /// is something in the module with the specified name, return it potentially 1729 /// bitcasted to the right type. 1730 /// 1731 /// If D is non-null, it specifies a decl that correspond to this. This is used 1732 /// to set the attributes on the global when it is first created. 1733 llvm::Constant * 1734 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1735 llvm::PointerType *Ty, 1736 const VarDecl *D) { 1737 // Lookup the entry, lazily creating it if necessary. 1738 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1739 if (Entry) { 1740 if (WeakRefReferences.erase(Entry)) { 1741 if (D && !D->hasAttr<WeakAttr>()) 1742 Entry->setLinkage(llvm::Function::ExternalLinkage); 1743 } 1744 1745 // Handle dropped DLL attributes. 1746 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1747 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1748 1749 if (Entry->getType() == Ty) 1750 return Entry; 1751 1752 // Make sure the result is of the correct type. 1753 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1754 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1755 1756 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1757 } 1758 1759 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1760 auto *GV = new llvm::GlobalVariable( 1761 getModule(), Ty->getElementType(), false, 1762 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1763 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1764 1765 // This is the first use or definition of a mangled name. If there is a 1766 // deferred decl with this name, remember that we need to emit it at the end 1767 // of the file. 1768 auto DDI = DeferredDecls.find(MangledName); 1769 if (DDI != DeferredDecls.end()) { 1770 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1771 // list, and remove it from DeferredDecls (since we don't need it anymore). 1772 addDeferredDeclToEmit(GV, DDI->second); 1773 DeferredDecls.erase(DDI); 1774 } 1775 1776 // Handle things which are present even on external declarations. 1777 if (D) { 1778 // FIXME: This code is overly simple and should be merged with other global 1779 // handling. 1780 GV->setConstant(isTypeConstant(D->getType(), false)); 1781 1782 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1783 1784 setLinkageAndVisibilityForGV(GV, D); 1785 1786 if (D->getTLSKind()) { 1787 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1788 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1789 setTLSMode(GV, *D); 1790 } 1791 1792 // If required by the ABI, treat declarations of static data members with 1793 // inline initializers as definitions. 1794 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1795 EmitGlobalVarDefinition(D); 1796 } 1797 1798 // Handle XCore specific ABI requirements. 1799 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1800 D->getLanguageLinkage() == CLanguageLinkage && 1801 D->getType().isConstant(Context) && 1802 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1803 GV->setSection(".cp.rodata"); 1804 } 1805 1806 if (AddrSpace != Ty->getAddressSpace()) 1807 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1808 1809 return GV; 1810 } 1811 1812 1813 llvm::GlobalVariable * 1814 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1815 llvm::Type *Ty, 1816 llvm::GlobalValue::LinkageTypes Linkage) { 1817 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1818 llvm::GlobalVariable *OldGV = nullptr; 1819 1820 if (GV) { 1821 // Check if the variable has the right type. 1822 if (GV->getType()->getElementType() == Ty) 1823 return GV; 1824 1825 // Because C++ name mangling, the only way we can end up with an already 1826 // existing global with the same name is if it has been declared extern "C". 1827 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1828 OldGV = GV; 1829 } 1830 1831 // Create a new variable. 1832 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1833 Linkage, nullptr, Name); 1834 1835 if (OldGV) { 1836 // Replace occurrences of the old variable if needed. 1837 GV->takeName(OldGV); 1838 1839 if (!OldGV->use_empty()) { 1840 llvm::Constant *NewPtrForOldDecl = 1841 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1842 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1843 } 1844 1845 OldGV->eraseFromParent(); 1846 } 1847 1848 if (supportsCOMDAT() && GV->isWeakForLinker() && 1849 !GV->hasAvailableExternallyLinkage()) 1850 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1851 1852 return GV; 1853 } 1854 1855 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1856 /// given global variable. If Ty is non-null and if the global doesn't exist, 1857 /// then it will be created with the specified type instead of whatever the 1858 /// normal requested type would be. 1859 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1860 llvm::Type *Ty) { 1861 assert(D->hasGlobalStorage() && "Not a global variable"); 1862 QualType ASTTy = D->getType(); 1863 if (!Ty) 1864 Ty = getTypes().ConvertTypeForMem(ASTTy); 1865 1866 llvm::PointerType *PTy = 1867 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1868 1869 StringRef MangledName = getMangledName(D); 1870 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1871 } 1872 1873 /// CreateRuntimeVariable - Create a new runtime global variable with the 1874 /// specified type and name. 1875 llvm::Constant * 1876 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1877 StringRef Name) { 1878 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1879 } 1880 1881 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1882 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1883 1884 if (!MustBeEmitted(D)) { 1885 // If we have not seen a reference to this variable yet, place it 1886 // into the deferred declarations table to be emitted if needed 1887 // later. 1888 StringRef MangledName = getMangledName(D); 1889 if (!GetGlobalValue(MangledName)) { 1890 DeferredDecls[MangledName] = D; 1891 return; 1892 } 1893 } 1894 1895 // The tentative definition is the only definition. 1896 EmitGlobalVarDefinition(D); 1897 } 1898 1899 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1900 return Context.toCharUnitsFromBits( 1901 getDataLayout().getTypeStoreSizeInBits(Ty)); 1902 } 1903 1904 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1905 unsigned AddrSpace) { 1906 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 1907 if (D->hasAttr<CUDAConstantAttr>()) 1908 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1909 else if (D->hasAttr<CUDASharedAttr>()) 1910 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1911 else 1912 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1913 } 1914 1915 return AddrSpace; 1916 } 1917 1918 template<typename SomeDecl> 1919 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1920 llvm::GlobalValue *GV) { 1921 if (!getLangOpts().CPlusPlus) 1922 return; 1923 1924 // Must have 'used' attribute, or else inline assembly can't rely on 1925 // the name existing. 1926 if (!D->template hasAttr<UsedAttr>()) 1927 return; 1928 1929 // Must have internal linkage and an ordinary name. 1930 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1931 return; 1932 1933 // Must be in an extern "C" context. Entities declared directly within 1934 // a record are not extern "C" even if the record is in such a context. 1935 const SomeDecl *First = D->getFirstDecl(); 1936 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1937 return; 1938 1939 // OK, this is an internal linkage entity inside an extern "C" linkage 1940 // specification. Make a note of that so we can give it the "expected" 1941 // mangled name if nothing else is using that name. 1942 std::pair<StaticExternCMap::iterator, bool> R = 1943 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1944 1945 // If we have multiple internal linkage entities with the same name 1946 // in extern "C" regions, none of them gets that name. 1947 if (!R.second) 1948 R.first->second = nullptr; 1949 } 1950 1951 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 1952 if (!CGM.supportsCOMDAT()) 1953 return false; 1954 1955 if (D.hasAttr<SelectAnyAttr>()) 1956 return true; 1957 1958 GVALinkage Linkage; 1959 if (auto *VD = dyn_cast<VarDecl>(&D)) 1960 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 1961 else 1962 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 1963 1964 switch (Linkage) { 1965 case GVA_Internal: 1966 case GVA_AvailableExternally: 1967 case GVA_StrongExternal: 1968 return false; 1969 case GVA_DiscardableODR: 1970 case GVA_StrongODR: 1971 return true; 1972 } 1973 llvm_unreachable("No such linkage"); 1974 } 1975 1976 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 1977 llvm::GlobalObject &GO) { 1978 if (!shouldBeInCOMDAT(*this, D)) 1979 return; 1980 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 1981 } 1982 1983 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1984 llvm::Constant *Init = nullptr; 1985 QualType ASTTy = D->getType(); 1986 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1987 bool NeedsGlobalCtor = false; 1988 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1989 1990 const VarDecl *InitDecl; 1991 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1992 1993 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part 1994 // of their declaration." 1995 if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice 1996 && D->hasAttr<CUDASharedAttr>()) { 1997 if (InitExpr) { 1998 Error(D->getLocation(), 1999 "__shared__ variable cannot have an initialization."); 2000 } 2001 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2002 } else if (!InitExpr) { 2003 // This is a tentative definition; tentative definitions are 2004 // implicitly initialized with { 0 }. 2005 // 2006 // Note that tentative definitions are only emitted at the end of 2007 // a translation unit, so they should never have incomplete 2008 // type. In addition, EmitTentativeDefinition makes sure that we 2009 // never attempt to emit a tentative definition if a real one 2010 // exists. A use may still exists, however, so we still may need 2011 // to do a RAUW. 2012 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2013 Init = EmitNullConstant(D->getType()); 2014 } else { 2015 initializedGlobalDecl = GlobalDecl(D); 2016 Init = EmitConstantInit(*InitDecl); 2017 2018 if (!Init) { 2019 QualType T = InitExpr->getType(); 2020 if (D->getType()->isReferenceType()) 2021 T = D->getType(); 2022 2023 if (getLangOpts().CPlusPlus) { 2024 Init = EmitNullConstant(T); 2025 NeedsGlobalCtor = true; 2026 } else { 2027 ErrorUnsupported(D, "static initializer"); 2028 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2029 } 2030 } else { 2031 // We don't need an initializer, so remove the entry for the delayed 2032 // initializer position (just in case this entry was delayed) if we 2033 // also don't need to register a destructor. 2034 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2035 DelayedCXXInitPosition.erase(D); 2036 } 2037 } 2038 2039 llvm::Type* InitType = Init->getType(); 2040 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2041 2042 // Strip off a bitcast if we got one back. 2043 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2044 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2045 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2046 // All zero index gep. 2047 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2048 Entry = CE->getOperand(0); 2049 } 2050 2051 // Entry is now either a Function or GlobalVariable. 2052 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2053 2054 // We have a definition after a declaration with the wrong type. 2055 // We must make a new GlobalVariable* and update everything that used OldGV 2056 // (a declaration or tentative definition) with the new GlobalVariable* 2057 // (which will be a definition). 2058 // 2059 // This happens if there is a prototype for a global (e.g. 2060 // "extern int x[];") and then a definition of a different type (e.g. 2061 // "int x[10];"). This also happens when an initializer has a different type 2062 // from the type of the global (this happens with unions). 2063 if (!GV || 2064 GV->getType()->getElementType() != InitType || 2065 GV->getType()->getAddressSpace() != 2066 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2067 2068 // Move the old entry aside so that we'll create a new one. 2069 Entry->setName(StringRef()); 2070 2071 // Make a new global with the correct type, this is now guaranteed to work. 2072 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2073 2074 // Replace all uses of the old global with the new global 2075 llvm::Constant *NewPtrForOldDecl = 2076 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2077 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2078 2079 // Erase the old global, since it is no longer used. 2080 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2081 } 2082 2083 MaybeHandleStaticInExternC(D, GV); 2084 2085 if (D->hasAttr<AnnotateAttr>()) 2086 AddGlobalAnnotations(D, GV); 2087 2088 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2089 // the device. [...]" 2090 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2091 // __device__, declares a variable that: [...] 2092 // Is accessible from all the threads within the grid and from the host 2093 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2094 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2095 if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice && 2096 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) { 2097 GV->setExternallyInitialized(true); 2098 } 2099 GV->setInitializer(Init); 2100 2101 // If it is safe to mark the global 'constant', do so now. 2102 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2103 isTypeConstant(D->getType(), true)); 2104 2105 // If it is in a read-only section, mark it 'constant'. 2106 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2107 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2108 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2109 GV->setConstant(true); 2110 } 2111 2112 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2113 2114 // Set the llvm linkage type as appropriate. 2115 llvm::GlobalValue::LinkageTypes Linkage = 2116 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2117 2118 // On Darwin, the backing variable for a C++11 thread_local variable always 2119 // has internal linkage; all accesses should just be calls to the 2120 // Itanium-specified entry point, which has the normal linkage of the 2121 // variable. 2122 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2123 Context.getTargetInfo().getTriple().isMacOSX()) 2124 Linkage = llvm::GlobalValue::InternalLinkage; 2125 2126 GV->setLinkage(Linkage); 2127 if (D->hasAttr<DLLImportAttr>()) 2128 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2129 else if (D->hasAttr<DLLExportAttr>()) 2130 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2131 else 2132 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2133 2134 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2135 // common vars aren't constant even if declared const. 2136 GV->setConstant(false); 2137 2138 setNonAliasAttributes(D, GV); 2139 2140 if (D->getTLSKind() && !GV->isThreadLocal()) { 2141 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2142 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2143 setTLSMode(GV, *D); 2144 } 2145 2146 maybeSetTrivialComdat(*D, *GV); 2147 2148 // Emit the initializer function if necessary. 2149 if (NeedsGlobalCtor || NeedsGlobalDtor) 2150 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2151 2152 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2153 2154 // Emit global variable debug information. 2155 if (CGDebugInfo *DI = getModuleDebugInfo()) 2156 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2157 DI->EmitGlobalVariable(GV, D); 2158 } 2159 2160 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2161 CodeGenModule &CGM, const VarDecl *D, 2162 bool NoCommon) { 2163 // Don't give variables common linkage if -fno-common was specified unless it 2164 // was overridden by a NoCommon attribute. 2165 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2166 return true; 2167 2168 // C11 6.9.2/2: 2169 // A declaration of an identifier for an object that has file scope without 2170 // an initializer, and without a storage-class specifier or with the 2171 // storage-class specifier static, constitutes a tentative definition. 2172 if (D->getInit() || D->hasExternalStorage()) 2173 return true; 2174 2175 // A variable cannot be both common and exist in a section. 2176 if (D->hasAttr<SectionAttr>()) 2177 return true; 2178 2179 // Thread local vars aren't considered common linkage. 2180 if (D->getTLSKind()) 2181 return true; 2182 2183 // Tentative definitions marked with WeakImportAttr are true definitions. 2184 if (D->hasAttr<WeakImportAttr>()) 2185 return true; 2186 2187 // A variable cannot be both common and exist in a comdat. 2188 if (shouldBeInCOMDAT(CGM, *D)) 2189 return true; 2190 2191 // Declarations with a required alignment do not have common linakge in MSVC 2192 // mode. 2193 if (Context.getLangOpts().MSVCCompat) { 2194 if (D->hasAttr<AlignedAttr>()) 2195 return true; 2196 QualType VarType = D->getType(); 2197 if (Context.isAlignmentRequired(VarType)) 2198 return true; 2199 2200 if (const auto *RT = VarType->getAs<RecordType>()) { 2201 const RecordDecl *RD = RT->getDecl(); 2202 for (const FieldDecl *FD : RD->fields()) { 2203 if (FD->isBitField()) 2204 continue; 2205 if (FD->hasAttr<AlignedAttr>()) 2206 return true; 2207 if (Context.isAlignmentRequired(FD->getType())) 2208 return true; 2209 } 2210 } 2211 } 2212 2213 return false; 2214 } 2215 2216 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2217 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2218 if (Linkage == GVA_Internal) 2219 return llvm::Function::InternalLinkage; 2220 2221 if (D->hasAttr<WeakAttr>()) { 2222 if (IsConstantVariable) 2223 return llvm::GlobalVariable::WeakODRLinkage; 2224 else 2225 return llvm::GlobalVariable::WeakAnyLinkage; 2226 } 2227 2228 // We are guaranteed to have a strong definition somewhere else, 2229 // so we can use available_externally linkage. 2230 if (Linkage == GVA_AvailableExternally) 2231 return llvm::Function::AvailableExternallyLinkage; 2232 2233 // Note that Apple's kernel linker doesn't support symbol 2234 // coalescing, so we need to avoid linkonce and weak linkages there. 2235 // Normally, this means we just map to internal, but for explicit 2236 // instantiations we'll map to external. 2237 2238 // In C++, the compiler has to emit a definition in every translation unit 2239 // that references the function. We should use linkonce_odr because 2240 // a) if all references in this translation unit are optimized away, we 2241 // don't need to codegen it. b) if the function persists, it needs to be 2242 // merged with other definitions. c) C++ has the ODR, so we know the 2243 // definition is dependable. 2244 if (Linkage == GVA_DiscardableODR) 2245 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2246 : llvm::Function::InternalLinkage; 2247 2248 // An explicit instantiation of a template has weak linkage, since 2249 // explicit instantiations can occur in multiple translation units 2250 // and must all be equivalent. However, we are not allowed to 2251 // throw away these explicit instantiations. 2252 if (Linkage == GVA_StrongODR) 2253 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2254 : llvm::Function::ExternalLinkage; 2255 2256 // C++ doesn't have tentative definitions and thus cannot have common 2257 // linkage. 2258 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2259 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2260 CodeGenOpts.NoCommon)) 2261 return llvm::GlobalVariable::CommonLinkage; 2262 2263 // selectany symbols are externally visible, so use weak instead of 2264 // linkonce. MSVC optimizes away references to const selectany globals, so 2265 // all definitions should be the same and ODR linkage should be used. 2266 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2267 if (D->hasAttr<SelectAnyAttr>()) 2268 return llvm::GlobalVariable::WeakODRLinkage; 2269 2270 // Otherwise, we have strong external linkage. 2271 assert(Linkage == GVA_StrongExternal); 2272 return llvm::GlobalVariable::ExternalLinkage; 2273 } 2274 2275 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2276 const VarDecl *VD, bool IsConstant) { 2277 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2278 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2279 } 2280 2281 /// Replace the uses of a function that was declared with a non-proto type. 2282 /// We want to silently drop extra arguments from call sites 2283 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2284 llvm::Function *newFn) { 2285 // Fast path. 2286 if (old->use_empty()) return; 2287 2288 llvm::Type *newRetTy = newFn->getReturnType(); 2289 SmallVector<llvm::Value*, 4> newArgs; 2290 2291 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2292 ui != ue; ) { 2293 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2294 llvm::User *user = use->getUser(); 2295 2296 // Recognize and replace uses of bitcasts. Most calls to 2297 // unprototyped functions will use bitcasts. 2298 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2299 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2300 replaceUsesOfNonProtoConstant(bitcast, newFn); 2301 continue; 2302 } 2303 2304 // Recognize calls to the function. 2305 llvm::CallSite callSite(user); 2306 if (!callSite) continue; 2307 if (!callSite.isCallee(&*use)) continue; 2308 2309 // If the return types don't match exactly, then we can't 2310 // transform this call unless it's dead. 2311 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2312 continue; 2313 2314 // Get the call site's attribute list. 2315 SmallVector<llvm::AttributeSet, 8> newAttrs; 2316 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2317 2318 // Collect any return attributes from the call. 2319 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2320 newAttrs.push_back( 2321 llvm::AttributeSet::get(newFn->getContext(), 2322 oldAttrs.getRetAttributes())); 2323 2324 // If the function was passed too few arguments, don't transform. 2325 unsigned newNumArgs = newFn->arg_size(); 2326 if (callSite.arg_size() < newNumArgs) continue; 2327 2328 // If extra arguments were passed, we silently drop them. 2329 // If any of the types mismatch, we don't transform. 2330 unsigned argNo = 0; 2331 bool dontTransform = false; 2332 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2333 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2334 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2335 dontTransform = true; 2336 break; 2337 } 2338 2339 // Add any parameter attributes. 2340 if (oldAttrs.hasAttributes(argNo + 1)) 2341 newAttrs. 2342 push_back(llvm:: 2343 AttributeSet::get(newFn->getContext(), 2344 oldAttrs.getParamAttributes(argNo + 1))); 2345 } 2346 if (dontTransform) 2347 continue; 2348 2349 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2350 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2351 oldAttrs.getFnAttributes())); 2352 2353 // Okay, we can transform this. Create the new call instruction and copy 2354 // over the required information. 2355 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2356 2357 llvm::CallSite newCall; 2358 if (callSite.isCall()) { 2359 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2360 callSite.getInstruction()); 2361 } else { 2362 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2363 newCall = llvm::InvokeInst::Create(newFn, 2364 oldInvoke->getNormalDest(), 2365 oldInvoke->getUnwindDest(), 2366 newArgs, "", 2367 callSite.getInstruction()); 2368 } 2369 newArgs.clear(); // for the next iteration 2370 2371 if (!newCall->getType()->isVoidTy()) 2372 newCall->takeName(callSite.getInstruction()); 2373 newCall.setAttributes( 2374 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2375 newCall.setCallingConv(callSite.getCallingConv()); 2376 2377 // Finally, remove the old call, replacing any uses with the new one. 2378 if (!callSite->use_empty()) 2379 callSite->replaceAllUsesWith(newCall.getInstruction()); 2380 2381 // Copy debug location attached to CI. 2382 if (callSite->getDebugLoc()) 2383 newCall->setDebugLoc(callSite->getDebugLoc()); 2384 callSite->eraseFromParent(); 2385 } 2386 } 2387 2388 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2389 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2390 /// existing call uses of the old function in the module, this adjusts them to 2391 /// call the new function directly. 2392 /// 2393 /// This is not just a cleanup: the always_inline pass requires direct calls to 2394 /// functions to be able to inline them. If there is a bitcast in the way, it 2395 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2396 /// run at -O0. 2397 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2398 llvm::Function *NewFn) { 2399 // If we're redefining a global as a function, don't transform it. 2400 if (!isa<llvm::Function>(Old)) return; 2401 2402 replaceUsesOfNonProtoConstant(Old, NewFn); 2403 } 2404 2405 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2406 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2407 // If we have a definition, this might be a deferred decl. If the 2408 // instantiation is explicit, make sure we emit it at the end. 2409 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2410 GetAddrOfGlobalVar(VD); 2411 2412 EmitTopLevelDecl(VD); 2413 } 2414 2415 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2416 llvm::GlobalValue *GV) { 2417 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2418 2419 // Compute the function info and LLVM type. 2420 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2421 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2422 2423 // Get or create the prototype for the function. 2424 if (!GV) { 2425 llvm::Constant *C = 2426 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2427 2428 // Strip off a bitcast if we got one back. 2429 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2430 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2431 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2432 } else { 2433 GV = cast<llvm::GlobalValue>(C); 2434 } 2435 } 2436 2437 if (!GV->isDeclaration()) { 2438 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2439 GlobalDecl OldGD = Manglings.lookup(GV->getName()); 2440 if (auto *Prev = OldGD.getDecl()) 2441 getDiags().Report(Prev->getLocation(), diag::note_previous_definition); 2442 return; 2443 } 2444 2445 if (GV->getType()->getElementType() != Ty) { 2446 // If the types mismatch then we have to rewrite the definition. 2447 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2448 2449 // F is the Function* for the one with the wrong type, we must make a new 2450 // Function* and update everything that used F (a declaration) with the new 2451 // Function* (which will be a definition). 2452 // 2453 // This happens if there is a prototype for a function 2454 // (e.g. "int f()") and then a definition of a different type 2455 // (e.g. "int f(int x)"). Move the old function aside so that it 2456 // doesn't interfere with GetAddrOfFunction. 2457 GV->setName(StringRef()); 2458 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2459 2460 // This might be an implementation of a function without a 2461 // prototype, in which case, try to do special replacement of 2462 // calls which match the new prototype. The really key thing here 2463 // is that we also potentially drop arguments from the call site 2464 // so as to make a direct call, which makes the inliner happier 2465 // and suppresses a number of optimizer warnings (!) about 2466 // dropping arguments. 2467 if (!GV->use_empty()) { 2468 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2469 GV->removeDeadConstantUsers(); 2470 } 2471 2472 // Replace uses of F with the Function we will endow with a body. 2473 if (!GV->use_empty()) { 2474 llvm::Constant *NewPtrForOldDecl = 2475 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2476 GV->replaceAllUsesWith(NewPtrForOldDecl); 2477 } 2478 2479 // Ok, delete the old function now, which is dead. 2480 GV->eraseFromParent(); 2481 2482 GV = NewFn; 2483 } 2484 2485 // We need to set linkage and visibility on the function before 2486 // generating code for it because various parts of IR generation 2487 // want to propagate this information down (e.g. to local static 2488 // declarations). 2489 auto *Fn = cast<llvm::Function>(GV); 2490 setFunctionLinkage(GD, Fn); 2491 setFunctionDLLStorageClass(GD, Fn); 2492 2493 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2494 setGlobalVisibility(Fn, D); 2495 2496 MaybeHandleStaticInExternC(D, Fn); 2497 2498 maybeSetTrivialComdat(*D, *Fn); 2499 2500 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2501 2502 setFunctionDefinitionAttributes(D, Fn); 2503 SetLLVMFunctionAttributesForDefinition(D, Fn); 2504 2505 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2506 AddGlobalCtor(Fn, CA->getPriority()); 2507 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2508 AddGlobalDtor(Fn, DA->getPriority()); 2509 if (D->hasAttr<AnnotateAttr>()) 2510 AddGlobalAnnotations(D, Fn); 2511 } 2512 2513 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2514 const auto *D = cast<ValueDecl>(GD.getDecl()); 2515 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2516 assert(AA && "Not an alias?"); 2517 2518 StringRef MangledName = getMangledName(GD); 2519 2520 // If there is a definition in the module, then it wins over the alias. 2521 // This is dubious, but allow it to be safe. Just ignore the alias. 2522 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2523 if (Entry && !Entry->isDeclaration()) 2524 return; 2525 2526 Aliases.push_back(GD); 2527 2528 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2529 2530 // Create a reference to the named value. This ensures that it is emitted 2531 // if a deferred decl. 2532 llvm::Constant *Aliasee; 2533 if (isa<llvm::FunctionType>(DeclTy)) 2534 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2535 /*ForVTable=*/false); 2536 else 2537 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2538 llvm::PointerType::getUnqual(DeclTy), 2539 /*D=*/nullptr); 2540 2541 // Create the new alias itself, but don't set a name yet. 2542 auto *GA = llvm::GlobalAlias::create( 2543 cast<llvm::PointerType>(Aliasee->getType()), 2544 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2545 2546 if (Entry) { 2547 if (GA->getAliasee() == Entry) { 2548 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2549 return; 2550 } 2551 2552 assert(Entry->isDeclaration()); 2553 2554 // If there is a declaration in the module, then we had an extern followed 2555 // by the alias, as in: 2556 // extern int test6(); 2557 // ... 2558 // int test6() __attribute__((alias("test7"))); 2559 // 2560 // Remove it and replace uses of it with the alias. 2561 GA->takeName(Entry); 2562 2563 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2564 Entry->getType())); 2565 Entry->eraseFromParent(); 2566 } else { 2567 GA->setName(MangledName); 2568 } 2569 2570 // Set attributes which are particular to an alias; this is a 2571 // specialization of the attributes which may be set on a global 2572 // variable/function. 2573 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2574 D->isWeakImported()) { 2575 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2576 } 2577 2578 if (const auto *VD = dyn_cast<VarDecl>(D)) 2579 if (VD->getTLSKind()) 2580 setTLSMode(GA, *VD); 2581 2582 setAliasAttributes(D, GA); 2583 } 2584 2585 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2586 ArrayRef<llvm::Type*> Tys) { 2587 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2588 Tys); 2589 } 2590 2591 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2592 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2593 const StringLiteral *Literal, bool TargetIsLSB, 2594 bool &IsUTF16, unsigned &StringLength) { 2595 StringRef String = Literal->getString(); 2596 unsigned NumBytes = String.size(); 2597 2598 // Check for simple case. 2599 if (!Literal->containsNonAsciiOrNull()) { 2600 StringLength = NumBytes; 2601 return *Map.insert(std::make_pair(String, nullptr)).first; 2602 } 2603 2604 // Otherwise, convert the UTF8 literals into a string of shorts. 2605 IsUTF16 = true; 2606 2607 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2608 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2609 UTF16 *ToPtr = &ToBuf[0]; 2610 2611 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2612 &ToPtr, ToPtr + NumBytes, 2613 strictConversion); 2614 2615 // ConvertUTF8toUTF16 returns the length in ToPtr. 2616 StringLength = ToPtr - &ToBuf[0]; 2617 2618 // Add an explicit null. 2619 *ToPtr = 0; 2620 return *Map.insert(std::make_pair( 2621 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2622 (StringLength + 1) * 2), 2623 nullptr)).first; 2624 } 2625 2626 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2627 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2628 const StringLiteral *Literal, unsigned &StringLength) { 2629 StringRef String = Literal->getString(); 2630 StringLength = String.size(); 2631 return *Map.insert(std::make_pair(String, nullptr)).first; 2632 } 2633 2634 llvm::Constant * 2635 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2636 unsigned StringLength = 0; 2637 bool isUTF16 = false; 2638 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2639 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2640 getDataLayout().isLittleEndian(), isUTF16, 2641 StringLength); 2642 2643 if (auto *C = Entry.second) 2644 return C; 2645 2646 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2647 llvm::Constant *Zeros[] = { Zero, Zero }; 2648 llvm::Value *V; 2649 2650 // If we don't already have it, get __CFConstantStringClassReference. 2651 if (!CFConstantStringClassRef) { 2652 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2653 Ty = llvm::ArrayType::get(Ty, 0); 2654 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2655 "__CFConstantStringClassReference"); 2656 // Decay array -> ptr 2657 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2658 CFConstantStringClassRef = V; 2659 } 2660 else 2661 V = CFConstantStringClassRef; 2662 2663 QualType CFTy = getContext().getCFConstantStringType(); 2664 2665 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2666 2667 llvm::Constant *Fields[4]; 2668 2669 // Class pointer. 2670 Fields[0] = cast<llvm::ConstantExpr>(V); 2671 2672 // Flags. 2673 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2674 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2675 llvm::ConstantInt::get(Ty, 0x07C8); 2676 2677 // String pointer. 2678 llvm::Constant *C = nullptr; 2679 if (isUTF16) { 2680 ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>( 2681 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2682 Entry.first().size() / 2); 2683 C = llvm::ConstantDataArray::get(VMContext, Arr); 2684 } else { 2685 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2686 } 2687 2688 // Note: -fwritable-strings doesn't make the backing store strings of 2689 // CFStrings writable. (See <rdar://problem/10657500>) 2690 auto *GV = 2691 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2692 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2693 GV->setUnnamedAddr(true); 2694 // Don't enforce the target's minimum global alignment, since the only use 2695 // of the string is via this class initializer. 2696 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2697 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2698 // that changes the section it ends in, which surprises ld64. 2699 if (isUTF16) { 2700 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2701 GV->setAlignment(Align.getQuantity()); 2702 GV->setSection("__TEXT,__ustring"); 2703 } else { 2704 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2705 GV->setAlignment(Align.getQuantity()); 2706 GV->setSection("__TEXT,__cstring,cstring_literals"); 2707 } 2708 2709 // String. 2710 Fields[2] = 2711 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2712 2713 if (isUTF16) 2714 // Cast the UTF16 string to the correct type. 2715 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2716 2717 // String length. 2718 Ty = getTypes().ConvertType(getContext().LongTy); 2719 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2720 2721 // The struct. 2722 C = llvm::ConstantStruct::get(STy, Fields); 2723 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2724 llvm::GlobalVariable::PrivateLinkage, C, 2725 "_unnamed_cfstring_"); 2726 GV->setSection("__DATA,__cfstring"); 2727 Entry.second = GV; 2728 2729 return GV; 2730 } 2731 2732 llvm::GlobalVariable * 2733 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2734 unsigned StringLength = 0; 2735 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2736 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2737 2738 if (auto *C = Entry.second) 2739 return C; 2740 2741 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2742 llvm::Constant *Zeros[] = { Zero, Zero }; 2743 llvm::Value *V; 2744 // If we don't already have it, get _NSConstantStringClassReference. 2745 if (!ConstantStringClassRef) { 2746 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2747 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2748 llvm::Constant *GV; 2749 if (LangOpts.ObjCRuntime.isNonFragile()) { 2750 std::string str = 2751 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2752 : "OBJC_CLASS_$_" + StringClass; 2753 GV = getObjCRuntime().GetClassGlobal(str); 2754 // Make sure the result is of the correct type. 2755 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2756 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2757 ConstantStringClassRef = V; 2758 } else { 2759 std::string str = 2760 StringClass.empty() ? "_NSConstantStringClassReference" 2761 : "_" + StringClass + "ClassReference"; 2762 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2763 GV = CreateRuntimeVariable(PTy, str); 2764 // Decay array -> ptr 2765 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2766 ConstantStringClassRef = V; 2767 } 2768 } else 2769 V = ConstantStringClassRef; 2770 2771 if (!NSConstantStringType) { 2772 // Construct the type for a constant NSString. 2773 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2774 D->startDefinition(); 2775 2776 QualType FieldTypes[3]; 2777 2778 // const int *isa; 2779 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2780 // const char *str; 2781 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2782 // unsigned int length; 2783 FieldTypes[2] = Context.UnsignedIntTy; 2784 2785 // Create fields 2786 for (unsigned i = 0; i < 3; ++i) { 2787 FieldDecl *Field = FieldDecl::Create(Context, D, 2788 SourceLocation(), 2789 SourceLocation(), nullptr, 2790 FieldTypes[i], /*TInfo=*/nullptr, 2791 /*BitWidth=*/nullptr, 2792 /*Mutable=*/false, 2793 ICIS_NoInit); 2794 Field->setAccess(AS_public); 2795 D->addDecl(Field); 2796 } 2797 2798 D->completeDefinition(); 2799 QualType NSTy = Context.getTagDeclType(D); 2800 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2801 } 2802 2803 llvm::Constant *Fields[3]; 2804 2805 // Class pointer. 2806 Fields[0] = cast<llvm::ConstantExpr>(V); 2807 2808 // String pointer. 2809 llvm::Constant *C = 2810 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2811 2812 llvm::GlobalValue::LinkageTypes Linkage; 2813 bool isConstant; 2814 Linkage = llvm::GlobalValue::PrivateLinkage; 2815 isConstant = !LangOpts.WritableStrings; 2816 2817 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2818 Linkage, C, ".str"); 2819 GV->setUnnamedAddr(true); 2820 // Don't enforce the target's minimum global alignment, since the only use 2821 // of the string is via this class initializer. 2822 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2823 GV->setAlignment(Align.getQuantity()); 2824 Fields[1] = 2825 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2826 2827 // String length. 2828 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2829 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2830 2831 // The struct. 2832 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2833 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2834 llvm::GlobalVariable::PrivateLinkage, C, 2835 "_unnamed_nsstring_"); 2836 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2837 const char *NSStringNonFragileABISection = 2838 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2839 // FIXME. Fix section. 2840 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2841 ? NSStringNonFragileABISection 2842 : NSStringSection); 2843 Entry.second = GV; 2844 2845 return GV; 2846 } 2847 2848 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2849 if (ObjCFastEnumerationStateType.isNull()) { 2850 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2851 D->startDefinition(); 2852 2853 QualType FieldTypes[] = { 2854 Context.UnsignedLongTy, 2855 Context.getPointerType(Context.getObjCIdType()), 2856 Context.getPointerType(Context.UnsignedLongTy), 2857 Context.getConstantArrayType(Context.UnsignedLongTy, 2858 llvm::APInt(32, 5), ArrayType::Normal, 0) 2859 }; 2860 2861 for (size_t i = 0; i < 4; ++i) { 2862 FieldDecl *Field = FieldDecl::Create(Context, 2863 D, 2864 SourceLocation(), 2865 SourceLocation(), nullptr, 2866 FieldTypes[i], /*TInfo=*/nullptr, 2867 /*BitWidth=*/nullptr, 2868 /*Mutable=*/false, 2869 ICIS_NoInit); 2870 Field->setAccess(AS_public); 2871 D->addDecl(Field); 2872 } 2873 2874 D->completeDefinition(); 2875 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2876 } 2877 2878 return ObjCFastEnumerationStateType; 2879 } 2880 2881 llvm::Constant * 2882 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2883 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2884 2885 // Don't emit it as the address of the string, emit the string data itself 2886 // as an inline array. 2887 if (E->getCharByteWidth() == 1) { 2888 SmallString<64> Str(E->getString()); 2889 2890 // Resize the string to the right size, which is indicated by its type. 2891 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2892 Str.resize(CAT->getSize().getZExtValue()); 2893 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2894 } 2895 2896 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2897 llvm::Type *ElemTy = AType->getElementType(); 2898 unsigned NumElements = AType->getNumElements(); 2899 2900 // Wide strings have either 2-byte or 4-byte elements. 2901 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2902 SmallVector<uint16_t, 32> Elements; 2903 Elements.reserve(NumElements); 2904 2905 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2906 Elements.push_back(E->getCodeUnit(i)); 2907 Elements.resize(NumElements); 2908 return llvm::ConstantDataArray::get(VMContext, Elements); 2909 } 2910 2911 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2912 SmallVector<uint32_t, 32> Elements; 2913 Elements.reserve(NumElements); 2914 2915 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2916 Elements.push_back(E->getCodeUnit(i)); 2917 Elements.resize(NumElements); 2918 return llvm::ConstantDataArray::get(VMContext, Elements); 2919 } 2920 2921 static llvm::GlobalVariable * 2922 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2923 CodeGenModule &CGM, StringRef GlobalName, 2924 unsigned Alignment) { 2925 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2926 unsigned AddrSpace = 0; 2927 if (CGM.getLangOpts().OpenCL) 2928 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2929 2930 llvm::Module &M = CGM.getModule(); 2931 // Create a global variable for this string 2932 auto *GV = new llvm::GlobalVariable( 2933 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 2934 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2935 GV->setAlignment(Alignment); 2936 GV->setUnnamedAddr(true); 2937 if (GV->isWeakForLinker()) { 2938 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 2939 GV->setComdat(M.getOrInsertComdat(GV->getName())); 2940 } 2941 2942 return GV; 2943 } 2944 2945 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2946 /// constant array for the given string literal. 2947 llvm::GlobalVariable * 2948 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 2949 StringRef Name) { 2950 auto Alignment = 2951 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2952 2953 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2954 llvm::GlobalVariable **Entry = nullptr; 2955 if (!LangOpts.WritableStrings) { 2956 Entry = &ConstantStringMap[C]; 2957 if (auto GV = *Entry) { 2958 if (Alignment > GV->getAlignment()) 2959 GV->setAlignment(Alignment); 2960 return GV; 2961 } 2962 } 2963 2964 SmallString<256> MangledNameBuffer; 2965 StringRef GlobalVariableName; 2966 llvm::GlobalValue::LinkageTypes LT; 2967 2968 // Mangle the string literal if the ABI allows for it. However, we cannot 2969 // do this if we are compiling with ASan or -fwritable-strings because they 2970 // rely on strings having normal linkage. 2971 if (!LangOpts.WritableStrings && 2972 !LangOpts.Sanitize.has(SanitizerKind::Address) && 2973 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2974 llvm::raw_svector_ostream Out(MangledNameBuffer); 2975 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2976 2977 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2978 GlobalVariableName = MangledNameBuffer; 2979 } else { 2980 LT = llvm::GlobalValue::PrivateLinkage; 2981 GlobalVariableName = Name; 2982 } 2983 2984 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2985 if (Entry) 2986 *Entry = GV; 2987 2988 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 2989 QualType()); 2990 return GV; 2991 } 2992 2993 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2994 /// array for the given ObjCEncodeExpr node. 2995 llvm::GlobalVariable * 2996 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2997 std::string Str; 2998 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2999 3000 return GetAddrOfConstantCString(Str); 3001 } 3002 3003 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3004 /// the literal and a terminating '\0' character. 3005 /// The result has pointer to array type. 3006 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 3007 const std::string &Str, const char *GlobalName, unsigned Alignment) { 3008 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3009 if (Alignment == 0) { 3010 Alignment = getContext() 3011 .getAlignOfGlobalVarInChars(getContext().CharTy) 3012 .getQuantity(); 3013 } 3014 3015 llvm::Constant *C = 3016 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3017 3018 // Don't share any string literals if strings aren't constant. 3019 llvm::GlobalVariable **Entry = nullptr; 3020 if (!LangOpts.WritableStrings) { 3021 Entry = &ConstantStringMap[C]; 3022 if (auto GV = *Entry) { 3023 if (Alignment > GV->getAlignment()) 3024 GV->setAlignment(Alignment); 3025 return GV; 3026 } 3027 } 3028 3029 // Get the default prefix if a name wasn't specified. 3030 if (!GlobalName) 3031 GlobalName = ".str"; 3032 // Create a global variable for this. 3033 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3034 GlobalName, Alignment); 3035 if (Entry) 3036 *Entry = GV; 3037 return GV; 3038 } 3039 3040 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 3041 const MaterializeTemporaryExpr *E, const Expr *Init) { 3042 assert((E->getStorageDuration() == SD_Static || 3043 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3044 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3045 3046 // If we're not materializing a subobject of the temporary, keep the 3047 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3048 QualType MaterializedType = Init->getType(); 3049 if (Init == E->GetTemporaryExpr()) 3050 MaterializedType = E->getType(); 3051 3052 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3053 return Slot; 3054 3055 // FIXME: If an externally-visible declaration extends multiple temporaries, 3056 // we need to give each temporary the same name in every translation unit (and 3057 // we also need to make the temporaries externally-visible). 3058 SmallString<256> Name; 3059 llvm::raw_svector_ostream Out(Name); 3060 getCXXABI().getMangleContext().mangleReferenceTemporary( 3061 VD, E->getManglingNumber(), Out); 3062 3063 APValue *Value = nullptr; 3064 if (E->getStorageDuration() == SD_Static) { 3065 // We might have a cached constant initializer for this temporary. Note 3066 // that this might have a different value from the value computed by 3067 // evaluating the initializer if the surrounding constant expression 3068 // modifies the temporary. 3069 Value = getContext().getMaterializedTemporaryValue(E, false); 3070 if (Value && Value->isUninit()) 3071 Value = nullptr; 3072 } 3073 3074 // Try evaluating it now, it might have a constant initializer. 3075 Expr::EvalResult EvalResult; 3076 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3077 !EvalResult.hasSideEffects()) 3078 Value = &EvalResult.Val; 3079 3080 llvm::Constant *InitialValue = nullptr; 3081 bool Constant = false; 3082 llvm::Type *Type; 3083 if (Value) { 3084 // The temporary has a constant initializer, use it. 3085 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3086 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3087 Type = InitialValue->getType(); 3088 } else { 3089 // No initializer, the initialization will be provided when we 3090 // initialize the declaration which performed lifetime extension. 3091 Type = getTypes().ConvertTypeForMem(MaterializedType); 3092 } 3093 3094 // Create a global variable for this lifetime-extended temporary. 3095 llvm::GlobalValue::LinkageTypes Linkage = 3096 getLLVMLinkageVarDefinition(VD, Constant); 3097 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3098 const VarDecl *InitVD; 3099 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3100 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3101 // Temporaries defined inside a class get linkonce_odr linkage because the 3102 // class can be defined in multipe translation units. 3103 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3104 } else { 3105 // There is no need for this temporary to have external linkage if the 3106 // VarDecl has external linkage. 3107 Linkage = llvm::GlobalVariable::InternalLinkage; 3108 } 3109 } 3110 unsigned AddrSpace = GetGlobalVarAddressSpace( 3111 VD, getContext().getTargetAddressSpace(MaterializedType)); 3112 auto *GV = new llvm::GlobalVariable( 3113 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3114 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3115 AddrSpace); 3116 setGlobalVisibility(GV, VD); 3117 GV->setAlignment( 3118 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 3119 if (supportsCOMDAT() && GV->isWeakForLinker()) 3120 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3121 if (VD->getTLSKind()) 3122 setTLSMode(GV, *VD); 3123 MaterializedGlobalTemporaryMap[E] = GV; 3124 return GV; 3125 } 3126 3127 /// EmitObjCPropertyImplementations - Emit information for synthesized 3128 /// properties for an implementation. 3129 void CodeGenModule::EmitObjCPropertyImplementations(const 3130 ObjCImplementationDecl *D) { 3131 for (const auto *PID : D->property_impls()) { 3132 // Dynamic is just for type-checking. 3133 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3134 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3135 3136 // Determine which methods need to be implemented, some may have 3137 // been overridden. Note that ::isPropertyAccessor is not the method 3138 // we want, that just indicates if the decl came from a 3139 // property. What we want to know is if the method is defined in 3140 // this implementation. 3141 if (!D->getInstanceMethod(PD->getGetterName())) 3142 CodeGenFunction(*this).GenerateObjCGetter( 3143 const_cast<ObjCImplementationDecl *>(D), PID); 3144 if (!PD->isReadOnly() && 3145 !D->getInstanceMethod(PD->getSetterName())) 3146 CodeGenFunction(*this).GenerateObjCSetter( 3147 const_cast<ObjCImplementationDecl *>(D), PID); 3148 } 3149 } 3150 } 3151 3152 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3153 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3154 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3155 ivar; ivar = ivar->getNextIvar()) 3156 if (ivar->getType().isDestructedType()) 3157 return true; 3158 3159 return false; 3160 } 3161 3162 static bool AllTrivialInitializers(CodeGenModule &CGM, 3163 ObjCImplementationDecl *D) { 3164 CodeGenFunction CGF(CGM); 3165 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3166 E = D->init_end(); B != E; ++B) { 3167 CXXCtorInitializer *CtorInitExp = *B; 3168 Expr *Init = CtorInitExp->getInit(); 3169 if (!CGF.isTrivialInitializer(Init)) 3170 return false; 3171 } 3172 return true; 3173 } 3174 3175 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3176 /// for an implementation. 3177 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3178 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3179 if (needsDestructMethod(D)) { 3180 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3181 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3182 ObjCMethodDecl *DTORMethod = 3183 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3184 cxxSelector, getContext().VoidTy, nullptr, D, 3185 /*isInstance=*/true, /*isVariadic=*/false, 3186 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3187 /*isDefined=*/false, ObjCMethodDecl::Required); 3188 D->addInstanceMethod(DTORMethod); 3189 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3190 D->setHasDestructors(true); 3191 } 3192 3193 // If the implementation doesn't have any ivar initializers, we don't need 3194 // a .cxx_construct. 3195 if (D->getNumIvarInitializers() == 0 || 3196 AllTrivialInitializers(*this, D)) 3197 return; 3198 3199 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3200 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3201 // The constructor returns 'self'. 3202 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3203 D->getLocation(), 3204 D->getLocation(), 3205 cxxSelector, 3206 getContext().getObjCIdType(), 3207 nullptr, D, /*isInstance=*/true, 3208 /*isVariadic=*/false, 3209 /*isPropertyAccessor=*/true, 3210 /*isImplicitlyDeclared=*/true, 3211 /*isDefined=*/false, 3212 ObjCMethodDecl::Required); 3213 D->addInstanceMethod(CTORMethod); 3214 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3215 D->setHasNonZeroConstructors(true); 3216 } 3217 3218 /// EmitNamespace - Emit all declarations in a namespace. 3219 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3220 for (auto *I : ND->decls()) { 3221 if (const auto *VD = dyn_cast<VarDecl>(I)) 3222 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3223 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3224 continue; 3225 EmitTopLevelDecl(I); 3226 } 3227 } 3228 3229 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3230 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3231 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3232 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3233 ErrorUnsupported(LSD, "linkage spec"); 3234 return; 3235 } 3236 3237 for (auto *I : LSD->decls()) { 3238 // Meta-data for ObjC class includes references to implemented methods. 3239 // Generate class's method definitions first. 3240 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3241 for (auto *M : OID->methods()) 3242 EmitTopLevelDecl(M); 3243 } 3244 EmitTopLevelDecl(I); 3245 } 3246 } 3247 3248 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3249 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3250 // Ignore dependent declarations. 3251 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3252 return; 3253 3254 switch (D->getKind()) { 3255 case Decl::CXXConversion: 3256 case Decl::CXXMethod: 3257 case Decl::Function: 3258 // Skip function templates 3259 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3260 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3261 return; 3262 3263 EmitGlobal(cast<FunctionDecl>(D)); 3264 // Always provide some coverage mapping 3265 // even for the functions that aren't emitted. 3266 AddDeferredUnusedCoverageMapping(D); 3267 break; 3268 3269 case Decl::Var: 3270 // Skip variable templates 3271 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3272 return; 3273 case Decl::VarTemplateSpecialization: 3274 EmitGlobal(cast<VarDecl>(D)); 3275 break; 3276 3277 // Indirect fields from global anonymous structs and unions can be 3278 // ignored; only the actual variable requires IR gen support. 3279 case Decl::IndirectField: 3280 break; 3281 3282 // C++ Decls 3283 case Decl::Namespace: 3284 EmitNamespace(cast<NamespaceDecl>(D)); 3285 break; 3286 // No code generation needed. 3287 case Decl::UsingShadow: 3288 case Decl::ClassTemplate: 3289 case Decl::VarTemplate: 3290 case Decl::VarTemplatePartialSpecialization: 3291 case Decl::FunctionTemplate: 3292 case Decl::TypeAliasTemplate: 3293 case Decl::Block: 3294 case Decl::Empty: 3295 break; 3296 case Decl::Using: // using X; [C++] 3297 if (CGDebugInfo *DI = getModuleDebugInfo()) 3298 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3299 return; 3300 case Decl::NamespaceAlias: 3301 if (CGDebugInfo *DI = getModuleDebugInfo()) 3302 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3303 return; 3304 case Decl::UsingDirective: // using namespace X; [C++] 3305 if (CGDebugInfo *DI = getModuleDebugInfo()) 3306 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3307 return; 3308 case Decl::CXXConstructor: 3309 // Skip function templates 3310 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3311 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3312 return; 3313 3314 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3315 break; 3316 case Decl::CXXDestructor: 3317 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3318 return; 3319 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3320 break; 3321 3322 case Decl::StaticAssert: 3323 // Nothing to do. 3324 break; 3325 3326 // Objective-C Decls 3327 3328 // Forward declarations, no (immediate) code generation. 3329 case Decl::ObjCInterface: 3330 case Decl::ObjCCategory: 3331 break; 3332 3333 case Decl::ObjCProtocol: { 3334 auto *Proto = cast<ObjCProtocolDecl>(D); 3335 if (Proto->isThisDeclarationADefinition()) 3336 ObjCRuntime->GenerateProtocol(Proto); 3337 break; 3338 } 3339 3340 case Decl::ObjCCategoryImpl: 3341 // Categories have properties but don't support synthesize so we 3342 // can ignore them here. 3343 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3344 break; 3345 3346 case Decl::ObjCImplementation: { 3347 auto *OMD = cast<ObjCImplementationDecl>(D); 3348 EmitObjCPropertyImplementations(OMD); 3349 EmitObjCIvarInitializations(OMD); 3350 ObjCRuntime->GenerateClass(OMD); 3351 // Emit global variable debug information. 3352 if (CGDebugInfo *DI = getModuleDebugInfo()) 3353 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3354 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3355 OMD->getClassInterface()), OMD->getLocation()); 3356 break; 3357 } 3358 case Decl::ObjCMethod: { 3359 auto *OMD = cast<ObjCMethodDecl>(D); 3360 // If this is not a prototype, emit the body. 3361 if (OMD->getBody()) 3362 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3363 break; 3364 } 3365 case Decl::ObjCCompatibleAlias: 3366 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3367 break; 3368 3369 case Decl::LinkageSpec: 3370 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3371 break; 3372 3373 case Decl::FileScopeAsm: { 3374 // File-scope asm is ignored during device-side CUDA compilation. 3375 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3376 break; 3377 auto *AD = cast<FileScopeAsmDecl>(D); 3378 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3379 break; 3380 } 3381 3382 case Decl::Import: { 3383 auto *Import = cast<ImportDecl>(D); 3384 3385 // Ignore import declarations that come from imported modules. 3386 if (Import->getImportedOwningModule()) 3387 break; 3388 if (CGDebugInfo *DI = getModuleDebugInfo()) 3389 DI->EmitImportDecl(*Import); 3390 3391 ImportedModules.insert(Import->getImportedModule()); 3392 break; 3393 } 3394 3395 case Decl::OMPThreadPrivate: 3396 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3397 break; 3398 3399 case Decl::ClassTemplateSpecialization: { 3400 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3401 if (DebugInfo && 3402 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3403 Spec->hasDefinition()) 3404 DebugInfo->completeTemplateDefinition(*Spec); 3405 break; 3406 } 3407 3408 default: 3409 // Make sure we handled everything we should, every other kind is a 3410 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3411 // function. Need to recode Decl::Kind to do that easily. 3412 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3413 break; 3414 } 3415 } 3416 3417 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3418 // Do we need to generate coverage mapping? 3419 if (!CodeGenOpts.CoverageMapping) 3420 return; 3421 switch (D->getKind()) { 3422 case Decl::CXXConversion: 3423 case Decl::CXXMethod: 3424 case Decl::Function: 3425 case Decl::ObjCMethod: 3426 case Decl::CXXConstructor: 3427 case Decl::CXXDestructor: { 3428 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3429 return; 3430 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3431 if (I == DeferredEmptyCoverageMappingDecls.end()) 3432 DeferredEmptyCoverageMappingDecls[D] = true; 3433 break; 3434 } 3435 default: 3436 break; 3437 }; 3438 } 3439 3440 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3441 // Do we need to generate coverage mapping? 3442 if (!CodeGenOpts.CoverageMapping) 3443 return; 3444 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3445 if (Fn->isTemplateInstantiation()) 3446 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3447 } 3448 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3449 if (I == DeferredEmptyCoverageMappingDecls.end()) 3450 DeferredEmptyCoverageMappingDecls[D] = false; 3451 else 3452 I->second = false; 3453 } 3454 3455 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3456 std::vector<const Decl *> DeferredDecls; 3457 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3458 if (!I.second) 3459 continue; 3460 DeferredDecls.push_back(I.first); 3461 } 3462 // Sort the declarations by their location to make sure that the tests get a 3463 // predictable order for the coverage mapping for the unused declarations. 3464 if (CodeGenOpts.DumpCoverageMapping) 3465 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3466 [] (const Decl *LHS, const Decl *RHS) { 3467 return LHS->getLocStart() < RHS->getLocStart(); 3468 }); 3469 for (const auto *D : DeferredDecls) { 3470 switch (D->getKind()) { 3471 case Decl::CXXConversion: 3472 case Decl::CXXMethod: 3473 case Decl::Function: 3474 case Decl::ObjCMethod: { 3475 CodeGenPGO PGO(*this); 3476 GlobalDecl GD(cast<FunctionDecl>(D)); 3477 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3478 getFunctionLinkage(GD)); 3479 break; 3480 } 3481 case Decl::CXXConstructor: { 3482 CodeGenPGO PGO(*this); 3483 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3484 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3485 getFunctionLinkage(GD)); 3486 break; 3487 } 3488 case Decl::CXXDestructor: { 3489 CodeGenPGO PGO(*this); 3490 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3491 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3492 getFunctionLinkage(GD)); 3493 break; 3494 } 3495 default: 3496 break; 3497 }; 3498 } 3499 } 3500 3501 /// Turns the given pointer into a constant. 3502 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3503 const void *Ptr) { 3504 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3505 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3506 return llvm::ConstantInt::get(i64, PtrInt); 3507 } 3508 3509 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3510 llvm::NamedMDNode *&GlobalMetadata, 3511 GlobalDecl D, 3512 llvm::GlobalValue *Addr) { 3513 if (!GlobalMetadata) 3514 GlobalMetadata = 3515 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3516 3517 // TODO: should we report variant information for ctors/dtors? 3518 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3519 llvm::ConstantAsMetadata::get(GetPointerConstant( 3520 CGM.getLLVMContext(), D.getDecl()))}; 3521 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3522 } 3523 3524 /// For each function which is declared within an extern "C" region and marked 3525 /// as 'used', but has internal linkage, create an alias from the unmangled 3526 /// name to the mangled name if possible. People expect to be able to refer 3527 /// to such functions with an unmangled name from inline assembly within the 3528 /// same translation unit. 3529 void CodeGenModule::EmitStaticExternCAliases() { 3530 for (auto &I : StaticExternCValues) { 3531 IdentifierInfo *Name = I.first; 3532 llvm::GlobalValue *Val = I.second; 3533 if (Val && !getModule().getNamedValue(Name->getName())) 3534 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3535 } 3536 } 3537 3538 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3539 GlobalDecl &Result) const { 3540 auto Res = Manglings.find(MangledName); 3541 if (Res == Manglings.end()) 3542 return false; 3543 Result = Res->getValue(); 3544 return true; 3545 } 3546 3547 /// Emits metadata nodes associating all the global values in the 3548 /// current module with the Decls they came from. This is useful for 3549 /// projects using IR gen as a subroutine. 3550 /// 3551 /// Since there's currently no way to associate an MDNode directly 3552 /// with an llvm::GlobalValue, we create a global named metadata 3553 /// with the name 'clang.global.decl.ptrs'. 3554 void CodeGenModule::EmitDeclMetadata() { 3555 llvm::NamedMDNode *GlobalMetadata = nullptr; 3556 3557 // StaticLocalDeclMap 3558 for (auto &I : MangledDeclNames) { 3559 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3560 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3561 } 3562 } 3563 3564 /// Emits metadata nodes for all the local variables in the current 3565 /// function. 3566 void CodeGenFunction::EmitDeclMetadata() { 3567 if (LocalDeclMap.empty()) return; 3568 3569 llvm::LLVMContext &Context = getLLVMContext(); 3570 3571 // Find the unique metadata ID for this name. 3572 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3573 3574 llvm::NamedMDNode *GlobalMetadata = nullptr; 3575 3576 for (auto &I : LocalDeclMap) { 3577 const Decl *D = I.first; 3578 llvm::Value *Addr = I.second; 3579 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3580 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3581 Alloca->setMetadata( 3582 DeclPtrKind, llvm::MDNode::get( 3583 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3584 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3585 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3586 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3587 } 3588 } 3589 } 3590 3591 void CodeGenModule::EmitVersionIdentMetadata() { 3592 llvm::NamedMDNode *IdentMetadata = 3593 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3594 std::string Version = getClangFullVersion(); 3595 llvm::LLVMContext &Ctx = TheModule.getContext(); 3596 3597 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3598 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3599 } 3600 3601 void CodeGenModule::EmitTargetMetadata() { 3602 // Warning, new MangledDeclNames may be appended within this loop. 3603 // We rely on MapVector insertions adding new elements to the end 3604 // of the container. 3605 // FIXME: Move this loop into the one target that needs it, and only 3606 // loop over those declarations for which we couldn't emit the target 3607 // metadata when we emitted the declaration. 3608 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3609 auto Val = *(MangledDeclNames.begin() + I); 3610 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3611 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3612 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3613 } 3614 } 3615 3616 void CodeGenModule::EmitCoverageFile() { 3617 if (!getCodeGenOpts().CoverageFile.empty()) { 3618 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3619 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3620 llvm::LLVMContext &Ctx = TheModule.getContext(); 3621 llvm::MDString *CoverageFile = 3622 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3623 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3624 llvm::MDNode *CU = CUNode->getOperand(i); 3625 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3626 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3627 } 3628 } 3629 } 3630 } 3631 3632 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3633 // Sema has checked that all uuid strings are of the form 3634 // "12345678-1234-1234-1234-1234567890ab". 3635 assert(Uuid.size() == 36); 3636 for (unsigned i = 0; i < 36; ++i) { 3637 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3638 else assert(isHexDigit(Uuid[i])); 3639 } 3640 3641 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3642 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3643 3644 llvm::Constant *Field3[8]; 3645 for (unsigned Idx = 0; Idx < 8; ++Idx) 3646 Field3[Idx] = llvm::ConstantInt::get( 3647 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3648 3649 llvm::Constant *Fields[4] = { 3650 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3651 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3652 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3653 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3654 }; 3655 3656 return llvm::ConstantStruct::getAnon(Fields); 3657 } 3658 3659 llvm::Constant * 3660 CodeGenModule::getAddrOfCXXCatchHandlerType(QualType Ty, 3661 QualType CatchHandlerType) { 3662 return getCXXABI().getAddrOfCXXCatchHandlerType(Ty, CatchHandlerType); 3663 } 3664 3665 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3666 bool ForEH) { 3667 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3668 // FIXME: should we even be calling this method if RTTI is disabled 3669 // and it's not for EH? 3670 if (!ForEH && !getLangOpts().RTTI) 3671 return llvm::Constant::getNullValue(Int8PtrTy); 3672 3673 if (ForEH && Ty->isObjCObjectPointerType() && 3674 LangOpts.ObjCRuntime.isGNUFamily()) 3675 return ObjCRuntime->GetEHType(Ty); 3676 3677 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3678 } 3679 3680 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3681 for (auto RefExpr : D->varlists()) { 3682 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3683 bool PerformInit = 3684 VD->getAnyInitializer() && 3685 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3686 /*ForRef=*/false); 3687 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3688 VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), PerformInit)) 3689 CXXGlobalInits.push_back(InitFunction); 3690 } 3691 } 3692 3693 llvm::MDTuple *CodeGenModule::CreateVTableBitSetEntry( 3694 llvm::GlobalVariable *VTable, CharUnits Offset, const CXXRecordDecl *RD) { 3695 std::string OutName; 3696 llvm::raw_string_ostream Out(OutName); 3697 getCXXABI().getMangleContext().mangleCXXVTableBitSet(RD, Out); 3698 3699 llvm::Metadata *BitsetOps[] = { 3700 llvm::MDString::get(getLLVMContext(), Out.str()), 3701 llvm::ConstantAsMetadata::get(VTable), 3702 llvm::ConstantAsMetadata::get( 3703 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 3704 return llvm::MDTuple::get(getLLVMContext(), BitsetOps); 3705 } 3706