xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 282da837565fcf8598a81b5f3b34bc25705917d3)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
55 #include "llvm/IR/AttributeMask.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/xxhash.h"
71 #include "llvm/TargetParser/Triple.h"
72 #include "llvm/TargetParser/X86TargetParser.h"
73 #include <optional>
74 
75 using namespace clang;
76 using namespace CodeGen;
77 
78 static llvm::cl::opt<bool> LimitedCoverage(
79     "limited-coverage-experimental", llvm::cl::Hidden,
80     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
81 
82 static const char AnnotationSection[] = "llvm.metadata";
83 
84 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
85   switch (CGM.getContext().getCXXABIKind()) {
86   case TargetCXXABI::AppleARM64:
87   case TargetCXXABI::Fuchsia:
88   case TargetCXXABI::GenericAArch64:
89   case TargetCXXABI::GenericARM:
90   case TargetCXXABI::iOS:
91   case TargetCXXABI::WatchOS:
92   case TargetCXXABI::GenericMIPS:
93   case TargetCXXABI::GenericItanium:
94   case TargetCXXABI::WebAssembly:
95   case TargetCXXABI::XL:
96     return CreateItaniumCXXABI(CGM);
97   case TargetCXXABI::Microsoft:
98     return CreateMicrosoftCXXABI(CGM);
99   }
100 
101   llvm_unreachable("invalid C++ ABI kind");
102 }
103 
104 static std::unique_ptr<TargetCodeGenInfo>
105 createTargetCodeGenInfo(CodeGenModule &CGM) {
106   const TargetInfo &Target = CGM.getTarget();
107   const llvm::Triple &Triple = Target.getTriple();
108   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
109 
110   switch (Triple.getArch()) {
111   default:
112     return createDefaultTargetCodeGenInfo(CGM);
113 
114   case llvm::Triple::le32:
115     return createPNaClTargetCodeGenInfo(CGM);
116   case llvm::Triple::m68k:
117     return createM68kTargetCodeGenInfo(CGM);
118   case llvm::Triple::mips:
119   case llvm::Triple::mipsel:
120     if (Triple.getOS() == llvm::Triple::NaCl)
121       return createPNaClTargetCodeGenInfo(CGM);
122     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
123 
124   case llvm::Triple::mips64:
125   case llvm::Triple::mips64el:
126     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
127 
128   case llvm::Triple::avr: {
129     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
130     // on avrtiny. For passing return value, R18~R25 are used on avr, and
131     // R22~R25 are used on avrtiny.
132     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
133     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
134     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
135   }
136 
137   case llvm::Triple::aarch64:
138   case llvm::Triple::aarch64_32:
139   case llvm::Triple::aarch64_be: {
140     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
141     if (Target.getABI() == "darwinpcs")
142       Kind = AArch64ABIKind::DarwinPCS;
143     else if (Triple.isOSWindows())
144       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
145 
146     return createAArch64TargetCodeGenInfo(CGM, Kind);
147   }
148 
149   case llvm::Triple::wasm32:
150   case llvm::Triple::wasm64: {
151     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
152     if (Target.getABI() == "experimental-mv")
153       Kind = WebAssemblyABIKind::ExperimentalMV;
154     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
155   }
156 
157   case llvm::Triple::arm:
158   case llvm::Triple::armeb:
159   case llvm::Triple::thumb:
160   case llvm::Triple::thumbeb: {
161     if (Triple.getOS() == llvm::Triple::Win32)
162       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
163 
164     ARMABIKind Kind = ARMABIKind::AAPCS;
165     StringRef ABIStr = Target.getABI();
166     if (ABIStr == "apcs-gnu")
167       Kind = ARMABIKind::APCS;
168     else if (ABIStr == "aapcs16")
169       Kind = ARMABIKind::AAPCS16_VFP;
170     else if (CodeGenOpts.FloatABI == "hard" ||
171              (CodeGenOpts.FloatABI != "soft" &&
172               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
173                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
174                Triple.getEnvironment() == llvm::Triple::EABIHF)))
175       Kind = ARMABIKind::AAPCS_VFP;
176 
177     return createARMTargetCodeGenInfo(CGM, Kind);
178   }
179 
180   case llvm::Triple::ppc: {
181     if (Triple.isOSAIX())
182       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
183 
184     bool IsSoftFloat =
185         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
186     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
187   }
188   case llvm::Triple::ppcle: {
189     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
190     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
191   }
192   case llvm::Triple::ppc64:
193     if (Triple.isOSAIX())
194       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
195 
196     if (Triple.isOSBinFormatELF()) {
197       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
198       if (Target.getABI() == "elfv2")
199         Kind = PPC64_SVR4_ABIKind::ELFv2;
200       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
201 
202       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
203     }
204     return createPPC64TargetCodeGenInfo(CGM);
205   case llvm::Triple::ppc64le: {
206     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
207     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
208     if (Target.getABI() == "elfv1")
209       Kind = PPC64_SVR4_ABIKind::ELFv1;
210     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
211 
212     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
213   }
214 
215   case llvm::Triple::nvptx:
216   case llvm::Triple::nvptx64:
217     return createNVPTXTargetCodeGenInfo(CGM);
218 
219   case llvm::Triple::msp430:
220     return createMSP430TargetCodeGenInfo(CGM);
221 
222   case llvm::Triple::riscv32:
223   case llvm::Triple::riscv64: {
224     StringRef ABIStr = Target.getABI();
225     unsigned XLen = Target.getPointerWidth(LangAS::Default);
226     unsigned ABIFLen = 0;
227     if (ABIStr.endswith("f"))
228       ABIFLen = 32;
229     else if (ABIStr.endswith("d"))
230       ABIFLen = 64;
231     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen);
232   }
233 
234   case llvm::Triple::systemz: {
235     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
236     bool HasVector = !SoftFloat && Target.getABI() == "vector";
237     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
238   }
239 
240   case llvm::Triple::tce:
241   case llvm::Triple::tcele:
242     return createTCETargetCodeGenInfo(CGM);
243 
244   case llvm::Triple::x86: {
245     bool IsDarwinVectorABI = Triple.isOSDarwin();
246     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
247 
248     if (Triple.getOS() == llvm::Triple::Win32) {
249       return createWinX86_32TargetCodeGenInfo(
250           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
251           CodeGenOpts.NumRegisterParameters);
252     }
253     return createX86_32TargetCodeGenInfo(
254         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
255         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
256   }
257 
258   case llvm::Triple::x86_64: {
259     StringRef ABI = Target.getABI();
260     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
261                                : ABI == "avx"  ? X86AVXABILevel::AVX
262                                                : X86AVXABILevel::None);
263 
264     switch (Triple.getOS()) {
265     case llvm::Triple::Win32:
266       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
267     default:
268       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
269     }
270   }
271   case llvm::Triple::hexagon:
272     return createHexagonTargetCodeGenInfo(CGM);
273   case llvm::Triple::lanai:
274     return createLanaiTargetCodeGenInfo(CGM);
275   case llvm::Triple::r600:
276     return createAMDGPUTargetCodeGenInfo(CGM);
277   case llvm::Triple::amdgcn:
278     return createAMDGPUTargetCodeGenInfo(CGM);
279   case llvm::Triple::sparc:
280     return createSparcV8TargetCodeGenInfo(CGM);
281   case llvm::Triple::sparcv9:
282     return createSparcV9TargetCodeGenInfo(CGM);
283   case llvm::Triple::xcore:
284     return createXCoreTargetCodeGenInfo(CGM);
285   case llvm::Triple::arc:
286     return createARCTargetCodeGenInfo(CGM);
287   case llvm::Triple::spir:
288   case llvm::Triple::spir64:
289     return createCommonSPIRTargetCodeGenInfo(CGM);
290   case llvm::Triple::spirv32:
291   case llvm::Triple::spirv64:
292     return createSPIRVTargetCodeGenInfo(CGM);
293   case llvm::Triple::ve:
294     return createVETargetCodeGenInfo(CGM);
295   case llvm::Triple::csky: {
296     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
297     bool hasFP64 =
298         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
299     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
300                                             : hasFP64   ? 64
301                                                         : 32);
302   }
303   case llvm::Triple::bpfeb:
304   case llvm::Triple::bpfel:
305     return createBPFTargetCodeGenInfo(CGM);
306   case llvm::Triple::loongarch32:
307   case llvm::Triple::loongarch64: {
308     StringRef ABIStr = Target.getABI();
309     unsigned ABIFRLen = 0;
310     if (ABIStr.endswith("f"))
311       ABIFRLen = 32;
312     else if (ABIStr.endswith("d"))
313       ABIFRLen = 64;
314     return createLoongArchTargetCodeGenInfo(
315         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
316   }
317   }
318 }
319 
320 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
321   if (!TheTargetCodeGenInfo)
322     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
323   return *TheTargetCodeGenInfo;
324 }
325 
326 CodeGenModule::CodeGenModule(ASTContext &C,
327                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
328                              const HeaderSearchOptions &HSO,
329                              const PreprocessorOptions &PPO,
330                              const CodeGenOptions &CGO, llvm::Module &M,
331                              DiagnosticsEngine &diags,
332                              CoverageSourceInfo *CoverageInfo)
333     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
334       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
335       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
336       VMContext(M.getContext()), Types(*this), VTables(*this),
337       SanitizerMD(new SanitizerMetadata(*this)) {
338 
339   // Initialize the type cache.
340   llvm::LLVMContext &LLVMContext = M.getContext();
341   VoidTy = llvm::Type::getVoidTy(LLVMContext);
342   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
343   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
344   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
345   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
346   HalfTy = llvm::Type::getHalfTy(LLVMContext);
347   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
348   FloatTy = llvm::Type::getFloatTy(LLVMContext);
349   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
350   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
351   PointerAlignInBytes =
352       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
353           .getQuantity();
354   SizeSizeInBytes =
355     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
356   IntAlignInBytes =
357     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
358   CharTy =
359     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
360   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
361   IntPtrTy = llvm::IntegerType::get(LLVMContext,
362     C.getTargetInfo().getMaxPointerWidth());
363   Int8PtrTy = Int8Ty->getPointerTo(0);
364   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
365   const llvm::DataLayout &DL = M.getDataLayout();
366   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
367   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
368   ConstGlobalsPtrTy = Int8Ty->getPointerTo(
369       C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
370   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
371 
372   // Build C++20 Module initializers.
373   // TODO: Add Microsoft here once we know the mangling required for the
374   // initializers.
375   CXX20ModuleInits =
376       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
377                                        ItaniumMangleContext::MK_Itanium;
378 
379   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
380 
381   if (LangOpts.ObjC)
382     createObjCRuntime();
383   if (LangOpts.OpenCL)
384     createOpenCLRuntime();
385   if (LangOpts.OpenMP)
386     createOpenMPRuntime();
387   if (LangOpts.CUDA)
388     createCUDARuntime();
389   if (LangOpts.HLSL)
390     createHLSLRuntime();
391 
392   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
393   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
394       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
395     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
396                                getCXXABI().getMangleContext()));
397 
398   // If debug info or coverage generation is enabled, create the CGDebugInfo
399   // object.
400   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
401       CodeGenOpts.CoverageNotesFile.size() ||
402       CodeGenOpts.CoverageDataFile.size())
403     DebugInfo.reset(new CGDebugInfo(*this));
404 
405   Block.GlobalUniqueCount = 0;
406 
407   if (C.getLangOpts().ObjC)
408     ObjCData.reset(new ObjCEntrypoints());
409 
410   if (CodeGenOpts.hasProfileClangUse()) {
411     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
412         CodeGenOpts.ProfileInstrumentUsePath, *FS,
413         CodeGenOpts.ProfileRemappingFile);
414     // We're checking for profile read errors in CompilerInvocation, so if
415     // there was an error it should've already been caught. If it hasn't been
416     // somehow, trip an assertion.
417     assert(ReaderOrErr);
418     PGOReader = std::move(ReaderOrErr.get());
419   }
420 
421   // If coverage mapping generation is enabled, create the
422   // CoverageMappingModuleGen object.
423   if (CodeGenOpts.CoverageMapping)
424     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
425 
426   // Generate the module name hash here if needed.
427   if (CodeGenOpts.UniqueInternalLinkageNames &&
428       !getModule().getSourceFileName().empty()) {
429     std::string Path = getModule().getSourceFileName();
430     // Check if a path substitution is needed from the MacroPrefixMap.
431     for (const auto &Entry : LangOpts.MacroPrefixMap)
432       if (Path.rfind(Entry.first, 0) != std::string::npos) {
433         Path = Entry.second + Path.substr(Entry.first.size());
434         break;
435       }
436     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
437   }
438 }
439 
440 CodeGenModule::~CodeGenModule() {}
441 
442 void CodeGenModule::createObjCRuntime() {
443   // This is just isGNUFamily(), but we want to force implementors of
444   // new ABIs to decide how best to do this.
445   switch (LangOpts.ObjCRuntime.getKind()) {
446   case ObjCRuntime::GNUstep:
447   case ObjCRuntime::GCC:
448   case ObjCRuntime::ObjFW:
449     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
450     return;
451 
452   case ObjCRuntime::FragileMacOSX:
453   case ObjCRuntime::MacOSX:
454   case ObjCRuntime::iOS:
455   case ObjCRuntime::WatchOS:
456     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
457     return;
458   }
459   llvm_unreachable("bad runtime kind");
460 }
461 
462 void CodeGenModule::createOpenCLRuntime() {
463   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
464 }
465 
466 void CodeGenModule::createOpenMPRuntime() {
467   // Select a specialized code generation class based on the target, if any.
468   // If it does not exist use the default implementation.
469   switch (getTriple().getArch()) {
470   case llvm::Triple::nvptx:
471   case llvm::Triple::nvptx64:
472   case llvm::Triple::amdgcn:
473     assert(getLangOpts().OpenMPIsTargetDevice &&
474            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
475     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
476     break;
477   default:
478     if (LangOpts.OpenMPSimd)
479       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
480     else
481       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
482     break;
483   }
484 }
485 
486 void CodeGenModule::createCUDARuntime() {
487   CUDARuntime.reset(CreateNVCUDARuntime(*this));
488 }
489 
490 void CodeGenModule::createHLSLRuntime() {
491   HLSLRuntime.reset(new CGHLSLRuntime(*this));
492 }
493 
494 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
495   Replacements[Name] = C;
496 }
497 
498 void CodeGenModule::applyReplacements() {
499   for (auto &I : Replacements) {
500     StringRef MangledName = I.first;
501     llvm::Constant *Replacement = I.second;
502     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
503     if (!Entry)
504       continue;
505     auto *OldF = cast<llvm::Function>(Entry);
506     auto *NewF = dyn_cast<llvm::Function>(Replacement);
507     if (!NewF) {
508       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
509         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
510       } else {
511         auto *CE = cast<llvm::ConstantExpr>(Replacement);
512         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
513                CE->getOpcode() == llvm::Instruction::GetElementPtr);
514         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
515       }
516     }
517 
518     // Replace old with new, but keep the old order.
519     OldF->replaceAllUsesWith(Replacement);
520     if (NewF) {
521       NewF->removeFromParent();
522       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
523                                                        NewF);
524     }
525     OldF->eraseFromParent();
526   }
527 }
528 
529 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
530   GlobalValReplacements.push_back(std::make_pair(GV, C));
531 }
532 
533 void CodeGenModule::applyGlobalValReplacements() {
534   for (auto &I : GlobalValReplacements) {
535     llvm::GlobalValue *GV = I.first;
536     llvm::Constant *C = I.second;
537 
538     GV->replaceAllUsesWith(C);
539     GV->eraseFromParent();
540   }
541 }
542 
543 // This is only used in aliases that we created and we know they have a
544 // linear structure.
545 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
546   const llvm::Constant *C;
547   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
548     C = GA->getAliasee();
549   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
550     C = GI->getResolver();
551   else
552     return GV;
553 
554   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
555   if (!AliaseeGV)
556     return nullptr;
557 
558   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
559   if (FinalGV == GV)
560     return nullptr;
561 
562   return FinalGV;
563 }
564 
565 static bool checkAliasedGlobal(
566     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
567     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
568     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
569     SourceRange AliasRange) {
570   GV = getAliasedGlobal(Alias);
571   if (!GV) {
572     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
573     return false;
574   }
575 
576   if (GV->hasCommonLinkage()) {
577     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
578     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
579       Diags.Report(Location, diag::err_alias_to_common);
580       return false;
581     }
582   }
583 
584   if (GV->isDeclaration()) {
585     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
586     Diags.Report(Location, diag::note_alias_requires_mangled_name)
587         << IsIFunc << IsIFunc;
588     // Provide a note if the given function is not found and exists as a
589     // mangled name.
590     for (const auto &[Decl, Name] : MangledDeclNames) {
591       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
592         if (ND->getName() == GV->getName()) {
593           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
594               << Name
595               << FixItHint::CreateReplacement(
596                      AliasRange,
597                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
598                          .str());
599         }
600       }
601     }
602     return false;
603   }
604 
605   if (IsIFunc) {
606     // Check resolver function type.
607     const auto *F = dyn_cast<llvm::Function>(GV);
608     if (!F) {
609       Diags.Report(Location, diag::err_alias_to_undefined)
610           << IsIFunc << IsIFunc;
611       return false;
612     }
613 
614     llvm::FunctionType *FTy = F->getFunctionType();
615     if (!FTy->getReturnType()->isPointerTy()) {
616       Diags.Report(Location, diag::err_ifunc_resolver_return);
617       return false;
618     }
619   }
620 
621   return true;
622 }
623 
624 void CodeGenModule::checkAliases() {
625   // Check if the constructed aliases are well formed. It is really unfortunate
626   // that we have to do this in CodeGen, but we only construct mangled names
627   // and aliases during codegen.
628   bool Error = false;
629   DiagnosticsEngine &Diags = getDiags();
630   for (const GlobalDecl &GD : Aliases) {
631     const auto *D = cast<ValueDecl>(GD.getDecl());
632     SourceLocation Location;
633     SourceRange Range;
634     bool IsIFunc = D->hasAttr<IFuncAttr>();
635     if (const Attr *A = D->getDefiningAttr()) {
636       Location = A->getLocation();
637       Range = A->getRange();
638     } else
639       llvm_unreachable("Not an alias or ifunc?");
640 
641     StringRef MangledName = getMangledName(GD);
642     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
643     const llvm::GlobalValue *GV = nullptr;
644     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
645                             MangledDeclNames, Range)) {
646       Error = true;
647       continue;
648     }
649 
650     llvm::Constant *Aliasee =
651         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
652                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
653 
654     llvm::GlobalValue *AliaseeGV;
655     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
656       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
657     else
658       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
659 
660     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
661       StringRef AliasSection = SA->getName();
662       if (AliasSection != AliaseeGV->getSection())
663         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
664             << AliasSection << IsIFunc << IsIFunc;
665     }
666 
667     // We have to handle alias to weak aliases in here. LLVM itself disallows
668     // this since the object semantics would not match the IL one. For
669     // compatibility with gcc we implement it by just pointing the alias
670     // to its aliasee's aliasee. We also warn, since the user is probably
671     // expecting the link to be weak.
672     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
673       if (GA->isInterposable()) {
674         Diags.Report(Location, diag::warn_alias_to_weak_alias)
675             << GV->getName() << GA->getName() << IsIFunc;
676         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
677             GA->getAliasee(), Alias->getType());
678 
679         if (IsIFunc)
680           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
681         else
682           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
683       }
684     }
685   }
686   if (!Error)
687     return;
688 
689   for (const GlobalDecl &GD : Aliases) {
690     StringRef MangledName = getMangledName(GD);
691     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
692     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
693     Alias->eraseFromParent();
694   }
695 }
696 
697 void CodeGenModule::clear() {
698   DeferredDeclsToEmit.clear();
699   EmittedDeferredDecls.clear();
700   if (OpenMPRuntime)
701     OpenMPRuntime->clear();
702 }
703 
704 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
705                                        StringRef MainFile) {
706   if (!hasDiagnostics())
707     return;
708   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
709     if (MainFile.empty())
710       MainFile = "<stdin>";
711     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
712   } else {
713     if (Mismatched > 0)
714       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
715 
716     if (Missing > 0)
717       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
718   }
719 }
720 
721 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
722                                              llvm::Module &M) {
723   if (!LO.VisibilityFromDLLStorageClass)
724     return;
725 
726   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
727       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
728   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
729       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
730   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
731       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
732   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
733       CodeGenModule::GetLLVMVisibility(
734           LO.getExternDeclNoDLLStorageClassVisibility());
735 
736   for (llvm::GlobalValue &GV : M.global_values()) {
737     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
738       continue;
739 
740     // Reset DSO locality before setting the visibility. This removes
741     // any effects that visibility options and annotations may have
742     // had on the DSO locality. Setting the visibility will implicitly set
743     // appropriate globals to DSO Local; however, this will be pessimistic
744     // w.r.t. to the normal compiler IRGen.
745     GV.setDSOLocal(false);
746 
747     if (GV.isDeclarationForLinker()) {
748       GV.setVisibility(GV.getDLLStorageClass() ==
749                                llvm::GlobalValue::DLLImportStorageClass
750                            ? ExternDeclDLLImportVisibility
751                            : ExternDeclNoDLLStorageClassVisibility);
752     } else {
753       GV.setVisibility(GV.getDLLStorageClass() ==
754                                llvm::GlobalValue::DLLExportStorageClass
755                            ? DLLExportVisibility
756                            : NoDLLStorageClassVisibility);
757     }
758 
759     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
760   }
761 }
762 
763 void CodeGenModule::Release() {
764   Module *Primary = getContext().getCurrentNamedModule();
765   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
766     EmitModuleInitializers(Primary);
767   EmitDeferred();
768   DeferredDecls.insert(EmittedDeferredDecls.begin(),
769                        EmittedDeferredDecls.end());
770   EmittedDeferredDecls.clear();
771   EmitVTablesOpportunistically();
772   applyGlobalValReplacements();
773   applyReplacements();
774   emitMultiVersionFunctions();
775 
776   if (Context.getLangOpts().IncrementalExtensions &&
777       GlobalTopLevelStmtBlockInFlight.first) {
778     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
779     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
780     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
781   }
782 
783   // Module implementations are initialized the same way as a regular TU that
784   // imports one or more modules.
785   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
786     EmitCXXModuleInitFunc(Primary);
787   else
788     EmitCXXGlobalInitFunc();
789   EmitCXXGlobalCleanUpFunc();
790   registerGlobalDtorsWithAtExit();
791   EmitCXXThreadLocalInitFunc();
792   if (ObjCRuntime)
793     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
794       AddGlobalCtor(ObjCInitFunction);
795   if (Context.getLangOpts().CUDA && CUDARuntime) {
796     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
797       AddGlobalCtor(CudaCtorFunction);
798   }
799   if (OpenMPRuntime) {
800     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
801             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
802       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
803     }
804     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
805     OpenMPRuntime->clear();
806   }
807   if (PGOReader) {
808     getModule().setProfileSummary(
809         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
810         llvm::ProfileSummary::PSK_Instr);
811     if (PGOStats.hasDiagnostics())
812       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
813   }
814   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
815     return L.LexOrder < R.LexOrder;
816   });
817   EmitCtorList(GlobalCtors, "llvm.global_ctors");
818   EmitCtorList(GlobalDtors, "llvm.global_dtors");
819   EmitGlobalAnnotations();
820   EmitStaticExternCAliases();
821   checkAliases();
822   EmitDeferredUnusedCoverageMappings();
823   CodeGenPGO(*this).setValueProfilingFlag(getModule());
824   if (CoverageMapping)
825     CoverageMapping->emit();
826   if (CodeGenOpts.SanitizeCfiCrossDso) {
827     CodeGenFunction(*this).EmitCfiCheckFail();
828     CodeGenFunction(*this).EmitCfiCheckStub();
829   }
830   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
831     finalizeKCFITypes();
832   emitAtAvailableLinkGuard();
833   if (Context.getTargetInfo().getTriple().isWasm())
834     EmitMainVoidAlias();
835 
836   if (getTriple().isAMDGPU()) {
837     // Emit amdgpu_code_object_version module flag, which is code object version
838     // times 100.
839     if (getTarget().getTargetOpts().CodeObjectVersion !=
840         TargetOptions::COV_None) {
841       getModule().addModuleFlag(llvm::Module::Error,
842                                 "amdgpu_code_object_version",
843                                 getTarget().getTargetOpts().CodeObjectVersion);
844     }
845 
846     // Currently, "-mprintf-kind" option is only supported for HIP
847     if (LangOpts.HIP) {
848       auto *MDStr = llvm::MDString::get(
849           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
850                              TargetOptions::AMDGPUPrintfKind::Hostcall)
851                                 ? "hostcall"
852                                 : "buffered");
853       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
854                                 MDStr);
855     }
856   }
857 
858   // Emit a global array containing all external kernels or device variables
859   // used by host functions and mark it as used for CUDA/HIP. This is necessary
860   // to get kernels or device variables in archives linked in even if these
861   // kernels or device variables are only used in host functions.
862   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
863     SmallVector<llvm::Constant *, 8> UsedArray;
864     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
865       GlobalDecl GD;
866       if (auto *FD = dyn_cast<FunctionDecl>(D))
867         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
868       else
869         GD = GlobalDecl(D);
870       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
871           GetAddrOfGlobal(GD), Int8PtrTy));
872     }
873 
874     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
875 
876     auto *GV = new llvm::GlobalVariable(
877         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
878         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
879     addCompilerUsedGlobal(GV);
880   }
881 
882   emitLLVMUsed();
883   if (SanStats)
884     SanStats->finish();
885 
886   if (CodeGenOpts.Autolink &&
887       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
888     EmitModuleLinkOptions();
889   }
890 
891   // On ELF we pass the dependent library specifiers directly to the linker
892   // without manipulating them. This is in contrast to other platforms where
893   // they are mapped to a specific linker option by the compiler. This
894   // difference is a result of the greater variety of ELF linkers and the fact
895   // that ELF linkers tend to handle libraries in a more complicated fashion
896   // than on other platforms. This forces us to defer handling the dependent
897   // libs to the linker.
898   //
899   // CUDA/HIP device and host libraries are different. Currently there is no
900   // way to differentiate dependent libraries for host or device. Existing
901   // usage of #pragma comment(lib, *) is intended for host libraries on
902   // Windows. Therefore emit llvm.dependent-libraries only for host.
903   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
904     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
905     for (auto *MD : ELFDependentLibraries)
906       NMD->addOperand(MD);
907   }
908 
909   // Record mregparm value now so it is visible through rest of codegen.
910   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
911     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
912                               CodeGenOpts.NumRegisterParameters);
913 
914   if (CodeGenOpts.DwarfVersion) {
915     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
916                               CodeGenOpts.DwarfVersion);
917   }
918 
919   if (CodeGenOpts.Dwarf64)
920     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
921 
922   if (Context.getLangOpts().SemanticInterposition)
923     // Require various optimization to respect semantic interposition.
924     getModule().setSemanticInterposition(true);
925 
926   if (CodeGenOpts.EmitCodeView) {
927     // Indicate that we want CodeView in the metadata.
928     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
929   }
930   if (CodeGenOpts.CodeViewGHash) {
931     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
932   }
933   if (CodeGenOpts.ControlFlowGuard) {
934     // Function ID tables and checks for Control Flow Guard (cfguard=2).
935     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
936   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
937     // Function ID tables for Control Flow Guard (cfguard=1).
938     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
939   }
940   if (CodeGenOpts.EHContGuard) {
941     // Function ID tables for EH Continuation Guard.
942     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
943   }
944   if (Context.getLangOpts().Kernel) {
945     // Note if we are compiling with /kernel.
946     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
947   }
948   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
949     // We don't support LTO with 2 with different StrictVTablePointers
950     // FIXME: we could support it by stripping all the information introduced
951     // by StrictVTablePointers.
952 
953     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
954 
955     llvm::Metadata *Ops[2] = {
956               llvm::MDString::get(VMContext, "StrictVTablePointers"),
957               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
958                   llvm::Type::getInt32Ty(VMContext), 1))};
959 
960     getModule().addModuleFlag(llvm::Module::Require,
961                               "StrictVTablePointersRequirement",
962                               llvm::MDNode::get(VMContext, Ops));
963   }
964   if (getModuleDebugInfo())
965     // We support a single version in the linked module. The LLVM
966     // parser will drop debug info with a different version number
967     // (and warn about it, too).
968     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
969                               llvm::DEBUG_METADATA_VERSION);
970 
971   // We need to record the widths of enums and wchar_t, so that we can generate
972   // the correct build attributes in the ARM backend. wchar_size is also used by
973   // TargetLibraryInfo.
974   uint64_t WCharWidth =
975       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
976   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
977 
978   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
979   if (   Arch == llvm::Triple::arm
980       || Arch == llvm::Triple::armeb
981       || Arch == llvm::Triple::thumb
982       || Arch == llvm::Triple::thumbeb) {
983     // The minimum width of an enum in bytes
984     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
985     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
986   }
987 
988   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
989     StringRef ABIStr = Target.getABI();
990     llvm::LLVMContext &Ctx = TheModule.getContext();
991     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
992                               llvm::MDString::get(Ctx, ABIStr));
993   }
994 
995   if (CodeGenOpts.SanitizeCfiCrossDso) {
996     // Indicate that we want cross-DSO control flow integrity checks.
997     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
998   }
999 
1000   if (CodeGenOpts.WholeProgramVTables) {
1001     // Indicate whether VFE was enabled for this module, so that the
1002     // vcall_visibility metadata added under whole program vtables is handled
1003     // appropriately in the optimizer.
1004     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1005                               CodeGenOpts.VirtualFunctionElimination);
1006   }
1007 
1008   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1009     getModule().addModuleFlag(llvm::Module::Override,
1010                               "CFI Canonical Jump Tables",
1011                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1012   }
1013 
1014   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1015     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1016     // KCFI assumes patchable-function-prefix is the same for all indirectly
1017     // called functions. Store the expected offset for code generation.
1018     if (CodeGenOpts.PatchableFunctionEntryOffset)
1019       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1020                                 CodeGenOpts.PatchableFunctionEntryOffset);
1021   }
1022 
1023   if (CodeGenOpts.CFProtectionReturn &&
1024       Target.checkCFProtectionReturnSupported(getDiags())) {
1025     // Indicate that we want to instrument return control flow protection.
1026     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1027                               1);
1028   }
1029 
1030   if (CodeGenOpts.CFProtectionBranch &&
1031       Target.checkCFProtectionBranchSupported(getDiags())) {
1032     // Indicate that we want to instrument branch control flow protection.
1033     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1034                               1);
1035   }
1036 
1037   if (CodeGenOpts.FunctionReturnThunks)
1038     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1039 
1040   if (CodeGenOpts.IndirectBranchCSPrefix)
1041     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1042 
1043   // Add module metadata for return address signing (ignoring
1044   // non-leaf/all) and stack tagging. These are actually turned on by function
1045   // attributes, but we use module metadata to emit build attributes. This is
1046   // needed for LTO, where the function attributes are inside bitcode
1047   // serialised into a global variable by the time build attributes are
1048   // emitted, so we can't access them. LTO objects could be compiled with
1049   // different flags therefore module flags are set to "Min" behavior to achieve
1050   // the same end result of the normal build where e.g BTI is off if any object
1051   // doesn't support it.
1052   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1053       LangOpts.getSignReturnAddressScope() !=
1054           LangOptions::SignReturnAddressScopeKind::None)
1055     getModule().addModuleFlag(llvm::Module::Override,
1056                               "sign-return-address-buildattr", 1);
1057   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1058     getModule().addModuleFlag(llvm::Module::Override,
1059                               "tag-stack-memory-buildattr", 1);
1060 
1061   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
1062       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
1063       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
1064       Arch == llvm::Triple::aarch64_be) {
1065     if (LangOpts.BranchTargetEnforcement)
1066       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1067                                 1);
1068     if (LangOpts.hasSignReturnAddress())
1069       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1070     if (LangOpts.isSignReturnAddressScopeAll())
1071       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1072                                 1);
1073     if (!LangOpts.isSignReturnAddressWithAKey())
1074       getModule().addModuleFlag(llvm::Module::Min,
1075                                 "sign-return-address-with-bkey", 1);
1076   }
1077 
1078   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1079     llvm::LLVMContext &Ctx = TheModule.getContext();
1080     getModule().addModuleFlag(
1081         llvm::Module::Error, "MemProfProfileFilename",
1082         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1083   }
1084 
1085   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1086     // Indicate whether __nvvm_reflect should be configured to flush denormal
1087     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1088     // property.)
1089     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1090                               CodeGenOpts.FP32DenormalMode.Output !=
1091                                   llvm::DenormalMode::IEEE);
1092   }
1093 
1094   if (LangOpts.EHAsynch)
1095     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1096 
1097   // Indicate whether this Module was compiled with -fopenmp
1098   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1099     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1100   if (getLangOpts().OpenMPIsTargetDevice)
1101     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1102                               LangOpts.OpenMP);
1103 
1104   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1105   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1106     EmitOpenCLMetadata();
1107     // Emit SPIR version.
1108     if (getTriple().isSPIR()) {
1109       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1110       // opencl.spir.version named metadata.
1111       // C++ for OpenCL has a distinct mapping for version compatibility with
1112       // OpenCL.
1113       auto Version = LangOpts.getOpenCLCompatibleVersion();
1114       llvm::Metadata *SPIRVerElts[] = {
1115           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1116               Int32Ty, Version / 100)),
1117           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1118               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1119       llvm::NamedMDNode *SPIRVerMD =
1120           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1121       llvm::LLVMContext &Ctx = TheModule.getContext();
1122       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1123     }
1124   }
1125 
1126   // HLSL related end of code gen work items.
1127   if (LangOpts.HLSL)
1128     getHLSLRuntime().finishCodeGen();
1129 
1130   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1131     assert(PLevel < 3 && "Invalid PIC Level");
1132     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1133     if (Context.getLangOpts().PIE)
1134       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1135   }
1136 
1137   if (getCodeGenOpts().CodeModel.size() > 0) {
1138     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1139                   .Case("tiny", llvm::CodeModel::Tiny)
1140                   .Case("small", llvm::CodeModel::Small)
1141                   .Case("kernel", llvm::CodeModel::Kernel)
1142                   .Case("medium", llvm::CodeModel::Medium)
1143                   .Case("large", llvm::CodeModel::Large)
1144                   .Default(~0u);
1145     if (CM != ~0u) {
1146       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1147       getModule().setCodeModel(codeModel);
1148     }
1149   }
1150 
1151   if (CodeGenOpts.NoPLT)
1152     getModule().setRtLibUseGOT();
1153   if (getTriple().isOSBinFormatELF() &&
1154       CodeGenOpts.DirectAccessExternalData !=
1155           getModule().getDirectAccessExternalData()) {
1156     getModule().setDirectAccessExternalData(
1157         CodeGenOpts.DirectAccessExternalData);
1158   }
1159   if (CodeGenOpts.UnwindTables)
1160     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1161 
1162   switch (CodeGenOpts.getFramePointer()) {
1163   case CodeGenOptions::FramePointerKind::None:
1164     // 0 ("none") is the default.
1165     break;
1166   case CodeGenOptions::FramePointerKind::NonLeaf:
1167     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1168     break;
1169   case CodeGenOptions::FramePointerKind::All:
1170     getModule().setFramePointer(llvm::FramePointerKind::All);
1171     break;
1172   }
1173 
1174   SimplifyPersonality();
1175 
1176   if (getCodeGenOpts().EmitDeclMetadata)
1177     EmitDeclMetadata();
1178 
1179   if (getCodeGenOpts().CoverageNotesFile.size() ||
1180       getCodeGenOpts().CoverageDataFile.size())
1181     EmitCoverageFile();
1182 
1183   if (CGDebugInfo *DI = getModuleDebugInfo())
1184     DI->finalize();
1185 
1186   if (getCodeGenOpts().EmitVersionIdentMetadata)
1187     EmitVersionIdentMetadata();
1188 
1189   if (!getCodeGenOpts().RecordCommandLine.empty())
1190     EmitCommandLineMetadata();
1191 
1192   if (!getCodeGenOpts().StackProtectorGuard.empty())
1193     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1194   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1195     getModule().setStackProtectorGuardReg(
1196         getCodeGenOpts().StackProtectorGuardReg);
1197   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1198     getModule().setStackProtectorGuardSymbol(
1199         getCodeGenOpts().StackProtectorGuardSymbol);
1200   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1201     getModule().setStackProtectorGuardOffset(
1202         getCodeGenOpts().StackProtectorGuardOffset);
1203   if (getCodeGenOpts().StackAlignment)
1204     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1205   if (getCodeGenOpts().SkipRaxSetup)
1206     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1207   if (getLangOpts().RegCall4)
1208     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1209 
1210   if (getContext().getTargetInfo().getMaxTLSAlign())
1211     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1212                               getContext().getTargetInfo().getMaxTLSAlign());
1213 
1214   getTargetCodeGenInfo().emitTargetGlobals(*this);
1215 
1216   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1217 
1218   EmitBackendOptionsMetadata(getCodeGenOpts());
1219 
1220   // If there is device offloading code embed it in the host now.
1221   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1222 
1223   // Set visibility from DLL storage class
1224   // We do this at the end of LLVM IR generation; after any operation
1225   // that might affect the DLL storage class or the visibility, and
1226   // before anything that might act on these.
1227   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1228 }
1229 
1230 void CodeGenModule::EmitOpenCLMetadata() {
1231   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1232   // opencl.ocl.version named metadata node.
1233   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
1234   auto Version = LangOpts.getOpenCLCompatibleVersion();
1235   llvm::Metadata *OCLVerElts[] = {
1236       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1237           Int32Ty, Version / 100)),
1238       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1239           Int32Ty, (Version % 100) / 10))};
1240   llvm::NamedMDNode *OCLVerMD =
1241       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
1242   llvm::LLVMContext &Ctx = TheModule.getContext();
1243   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1244 }
1245 
1246 void CodeGenModule::EmitBackendOptionsMetadata(
1247     const CodeGenOptions &CodeGenOpts) {
1248   if (getTriple().isRISCV()) {
1249     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1250                               CodeGenOpts.SmallDataLimit);
1251   }
1252 }
1253 
1254 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1255   // Make sure that this type is translated.
1256   Types.UpdateCompletedType(TD);
1257 }
1258 
1259 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1260   // Make sure that this type is translated.
1261   Types.RefreshTypeCacheForClass(RD);
1262 }
1263 
1264 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1265   if (!TBAA)
1266     return nullptr;
1267   return TBAA->getTypeInfo(QTy);
1268 }
1269 
1270 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1271   if (!TBAA)
1272     return TBAAAccessInfo();
1273   if (getLangOpts().CUDAIsDevice) {
1274     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1275     // access info.
1276     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1277       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1278           nullptr)
1279         return TBAAAccessInfo();
1280     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1281       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1282           nullptr)
1283         return TBAAAccessInfo();
1284     }
1285   }
1286   return TBAA->getAccessInfo(AccessType);
1287 }
1288 
1289 TBAAAccessInfo
1290 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1291   if (!TBAA)
1292     return TBAAAccessInfo();
1293   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1294 }
1295 
1296 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1297   if (!TBAA)
1298     return nullptr;
1299   return TBAA->getTBAAStructInfo(QTy);
1300 }
1301 
1302 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1303   if (!TBAA)
1304     return nullptr;
1305   return TBAA->getBaseTypeInfo(QTy);
1306 }
1307 
1308 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1309   if (!TBAA)
1310     return nullptr;
1311   return TBAA->getAccessTagInfo(Info);
1312 }
1313 
1314 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1315                                                    TBAAAccessInfo TargetInfo) {
1316   if (!TBAA)
1317     return TBAAAccessInfo();
1318   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1319 }
1320 
1321 TBAAAccessInfo
1322 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1323                                                    TBAAAccessInfo InfoB) {
1324   if (!TBAA)
1325     return TBAAAccessInfo();
1326   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1327 }
1328 
1329 TBAAAccessInfo
1330 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1331                                               TBAAAccessInfo SrcInfo) {
1332   if (!TBAA)
1333     return TBAAAccessInfo();
1334   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1335 }
1336 
1337 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1338                                                 TBAAAccessInfo TBAAInfo) {
1339   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1340     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1341 }
1342 
1343 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1344     llvm::Instruction *I, const CXXRecordDecl *RD) {
1345   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1346                  llvm::MDNode::get(getLLVMContext(), {}));
1347 }
1348 
1349 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1350   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1351   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1352 }
1353 
1354 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1355 /// specified stmt yet.
1356 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1357   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1358                                                "cannot compile this %0 yet");
1359   std::string Msg = Type;
1360   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1361       << Msg << S->getSourceRange();
1362 }
1363 
1364 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1365 /// specified decl yet.
1366 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1367   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1368                                                "cannot compile this %0 yet");
1369   std::string Msg = Type;
1370   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1371 }
1372 
1373 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1374   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1375 }
1376 
1377 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1378                                         const NamedDecl *D) const {
1379   // Internal definitions always have default visibility.
1380   if (GV->hasLocalLinkage()) {
1381     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1382     return;
1383   }
1384   if (!D)
1385     return;
1386   // Set visibility for definitions, and for declarations if requested globally
1387   // or set explicitly.
1388   LinkageInfo LV = D->getLinkageAndVisibility();
1389   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1390     // Reject incompatible dlllstorage and visibility annotations.
1391     if (!LV.isVisibilityExplicit())
1392       return;
1393     if (GV->hasDLLExportStorageClass()) {
1394       if (LV.getVisibility() == HiddenVisibility)
1395         getDiags().Report(D->getLocation(),
1396                           diag::err_hidden_visibility_dllexport);
1397     } else if (LV.getVisibility() != DefaultVisibility) {
1398       getDiags().Report(D->getLocation(),
1399                         diag::err_non_default_visibility_dllimport);
1400     }
1401     return;
1402   }
1403 
1404   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1405       !GV->isDeclarationForLinker())
1406     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1407 }
1408 
1409 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1410                                  llvm::GlobalValue *GV) {
1411   if (GV->hasLocalLinkage())
1412     return true;
1413 
1414   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1415     return true;
1416 
1417   // DLLImport explicitly marks the GV as external.
1418   if (GV->hasDLLImportStorageClass())
1419     return false;
1420 
1421   const llvm::Triple &TT = CGM.getTriple();
1422   if (TT.isWindowsGNUEnvironment()) {
1423     // In MinGW, variables without DLLImport can still be automatically
1424     // imported from a DLL by the linker; don't mark variables that
1425     // potentially could come from another DLL as DSO local.
1426 
1427     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1428     // (and this actually happens in the public interface of libstdc++), so
1429     // such variables can't be marked as DSO local. (Native TLS variables
1430     // can't be dllimported at all, though.)
1431     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1432         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1433       return false;
1434   }
1435 
1436   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1437   // remain unresolved in the link, they can be resolved to zero, which is
1438   // outside the current DSO.
1439   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1440     return false;
1441 
1442   // Every other GV is local on COFF.
1443   // Make an exception for windows OS in the triple: Some firmware builds use
1444   // *-win32-macho triples. This (accidentally?) produced windows relocations
1445   // without GOT tables in older clang versions; Keep this behaviour.
1446   // FIXME: even thread local variables?
1447   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1448     return true;
1449 
1450   // Only handle COFF and ELF for now.
1451   if (!TT.isOSBinFormatELF())
1452     return false;
1453 
1454   // If this is not an executable, don't assume anything is local.
1455   const auto &CGOpts = CGM.getCodeGenOpts();
1456   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1457   const auto &LOpts = CGM.getLangOpts();
1458   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1459     // On ELF, if -fno-semantic-interposition is specified and the target
1460     // supports local aliases, there will be neither CC1
1461     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1462     // dso_local on the function if using a local alias is preferable (can avoid
1463     // PLT indirection).
1464     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1465       return false;
1466     return !(CGM.getLangOpts().SemanticInterposition ||
1467              CGM.getLangOpts().HalfNoSemanticInterposition);
1468   }
1469 
1470   // A definition cannot be preempted from an executable.
1471   if (!GV->isDeclarationForLinker())
1472     return true;
1473 
1474   // Most PIC code sequences that assume that a symbol is local cannot produce a
1475   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1476   // depended, it seems worth it to handle it here.
1477   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1478     return false;
1479 
1480   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1481   if (TT.isPPC64())
1482     return false;
1483 
1484   if (CGOpts.DirectAccessExternalData) {
1485     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1486     // for non-thread-local variables. If the symbol is not defined in the
1487     // executable, a copy relocation will be needed at link time. dso_local is
1488     // excluded for thread-local variables because they generally don't support
1489     // copy relocations.
1490     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1491       if (!Var->isThreadLocal())
1492         return true;
1493 
1494     // -fno-pic sets dso_local on a function declaration to allow direct
1495     // accesses when taking its address (similar to a data symbol). If the
1496     // function is not defined in the executable, a canonical PLT entry will be
1497     // needed at link time. -fno-direct-access-external-data can avoid the
1498     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1499     // it could just cause trouble without providing perceptible benefits.
1500     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1501       return true;
1502   }
1503 
1504   // If we can use copy relocations we can assume it is local.
1505 
1506   // Otherwise don't assume it is local.
1507   return false;
1508 }
1509 
1510 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1511   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1512 }
1513 
1514 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1515                                           GlobalDecl GD) const {
1516   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1517   // C++ destructors have a few C++ ABI specific special cases.
1518   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1519     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1520     return;
1521   }
1522   setDLLImportDLLExport(GV, D);
1523 }
1524 
1525 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1526                                           const NamedDecl *D) const {
1527   if (D && D->isExternallyVisible()) {
1528     if (D->hasAttr<DLLImportAttr>())
1529       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1530     else if ((D->hasAttr<DLLExportAttr>() ||
1531               shouldMapVisibilityToDLLExport(D)) &&
1532              !GV->isDeclarationForLinker())
1533       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1534   }
1535 }
1536 
1537 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1538                                     GlobalDecl GD) const {
1539   setDLLImportDLLExport(GV, GD);
1540   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1541 }
1542 
1543 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1544                                     const NamedDecl *D) const {
1545   setDLLImportDLLExport(GV, D);
1546   setGVPropertiesAux(GV, D);
1547 }
1548 
1549 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1550                                        const NamedDecl *D) const {
1551   setGlobalVisibility(GV, D);
1552   setDSOLocal(GV);
1553   GV->setPartition(CodeGenOpts.SymbolPartition);
1554 }
1555 
1556 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1557   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1558       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1559       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1560       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1561       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1562 }
1563 
1564 llvm::GlobalVariable::ThreadLocalMode
1565 CodeGenModule::GetDefaultLLVMTLSModel() const {
1566   switch (CodeGenOpts.getDefaultTLSModel()) {
1567   case CodeGenOptions::GeneralDynamicTLSModel:
1568     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1569   case CodeGenOptions::LocalDynamicTLSModel:
1570     return llvm::GlobalVariable::LocalDynamicTLSModel;
1571   case CodeGenOptions::InitialExecTLSModel:
1572     return llvm::GlobalVariable::InitialExecTLSModel;
1573   case CodeGenOptions::LocalExecTLSModel:
1574     return llvm::GlobalVariable::LocalExecTLSModel;
1575   }
1576   llvm_unreachable("Invalid TLS model!");
1577 }
1578 
1579 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1580   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1581 
1582   llvm::GlobalValue::ThreadLocalMode TLM;
1583   TLM = GetDefaultLLVMTLSModel();
1584 
1585   // Override the TLS model if it is explicitly specified.
1586   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1587     TLM = GetLLVMTLSModel(Attr->getModel());
1588   }
1589 
1590   GV->setThreadLocalMode(TLM);
1591 }
1592 
1593 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1594                                           StringRef Name) {
1595   const TargetInfo &Target = CGM.getTarget();
1596   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1597 }
1598 
1599 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1600                                                  const CPUSpecificAttr *Attr,
1601                                                  unsigned CPUIndex,
1602                                                  raw_ostream &Out) {
1603   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1604   // supported.
1605   if (Attr)
1606     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1607   else if (CGM.getTarget().supportsIFunc())
1608     Out << ".resolver";
1609 }
1610 
1611 static void AppendTargetVersionMangling(const CodeGenModule &CGM,
1612                                         const TargetVersionAttr *Attr,
1613                                         raw_ostream &Out) {
1614   if (Attr->isDefaultVersion())
1615     return;
1616   Out << "._";
1617   const TargetInfo &TI = CGM.getTarget();
1618   llvm::SmallVector<StringRef, 8> Feats;
1619   Attr->getFeatures(Feats);
1620   llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) {
1621     return TI.multiVersionSortPriority(FeatL) <
1622            TI.multiVersionSortPriority(FeatR);
1623   });
1624   for (const auto &Feat : Feats) {
1625     Out << 'M';
1626     Out << Feat;
1627   }
1628 }
1629 
1630 static void AppendTargetMangling(const CodeGenModule &CGM,
1631                                  const TargetAttr *Attr, raw_ostream &Out) {
1632   if (Attr->isDefaultVersion())
1633     return;
1634 
1635   Out << '.';
1636   const TargetInfo &Target = CGM.getTarget();
1637   ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
1638   llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
1639     // Multiversioning doesn't allow "no-${feature}", so we can
1640     // only have "+" prefixes here.
1641     assert(LHS.startswith("+") && RHS.startswith("+") &&
1642            "Features should always have a prefix.");
1643     return Target.multiVersionSortPriority(LHS.substr(1)) >
1644            Target.multiVersionSortPriority(RHS.substr(1));
1645   });
1646 
1647   bool IsFirst = true;
1648 
1649   if (!Info.CPU.empty()) {
1650     IsFirst = false;
1651     Out << "arch_" << Info.CPU;
1652   }
1653 
1654   for (StringRef Feat : Info.Features) {
1655     if (!IsFirst)
1656       Out << '_';
1657     IsFirst = false;
1658     Out << Feat.substr(1);
1659   }
1660 }
1661 
1662 // Returns true if GD is a function decl with internal linkage and
1663 // needs a unique suffix after the mangled name.
1664 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1665                                         CodeGenModule &CGM) {
1666   const Decl *D = GD.getDecl();
1667   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1668          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1669 }
1670 
1671 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1672                                        const TargetClonesAttr *Attr,
1673                                        unsigned VersionIndex,
1674                                        raw_ostream &Out) {
1675   const TargetInfo &TI = CGM.getTarget();
1676   if (TI.getTriple().isAArch64()) {
1677     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1678     if (FeatureStr == "default")
1679       return;
1680     Out << "._";
1681     SmallVector<StringRef, 8> Features;
1682     FeatureStr.split(Features, "+");
1683     llvm::stable_sort(Features,
1684                       [&TI](const StringRef FeatL, const StringRef FeatR) {
1685                         return TI.multiVersionSortPriority(FeatL) <
1686                                TI.multiVersionSortPriority(FeatR);
1687                       });
1688     for (auto &Feat : Features) {
1689       Out << 'M';
1690       Out << Feat;
1691     }
1692   } else {
1693     Out << '.';
1694     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1695     if (FeatureStr.startswith("arch="))
1696       Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1697     else
1698       Out << FeatureStr;
1699 
1700     Out << '.' << Attr->getMangledIndex(VersionIndex);
1701   }
1702 }
1703 
1704 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1705                                       const NamedDecl *ND,
1706                                       bool OmitMultiVersionMangling = false) {
1707   SmallString<256> Buffer;
1708   llvm::raw_svector_ostream Out(Buffer);
1709   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1710   if (!CGM.getModuleNameHash().empty())
1711     MC.needsUniqueInternalLinkageNames();
1712   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1713   if (ShouldMangle)
1714     MC.mangleName(GD.getWithDecl(ND), Out);
1715   else {
1716     IdentifierInfo *II = ND->getIdentifier();
1717     assert(II && "Attempt to mangle unnamed decl.");
1718     const auto *FD = dyn_cast<FunctionDecl>(ND);
1719 
1720     if (FD &&
1721         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1722       if (CGM.getLangOpts().RegCall4)
1723         Out << "__regcall4__" << II->getName();
1724       else
1725         Out << "__regcall3__" << II->getName();
1726     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1727                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1728       Out << "__device_stub__" << II->getName();
1729     } else {
1730       Out << II->getName();
1731     }
1732   }
1733 
1734   // Check if the module name hash should be appended for internal linkage
1735   // symbols.   This should come before multi-version target suffixes are
1736   // appended. This is to keep the name and module hash suffix of the
1737   // internal linkage function together.  The unique suffix should only be
1738   // added when name mangling is done to make sure that the final name can
1739   // be properly demangled.  For example, for C functions without prototypes,
1740   // name mangling is not done and the unique suffix should not be appeneded
1741   // then.
1742   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1743     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1744            "Hash computed when not explicitly requested");
1745     Out << CGM.getModuleNameHash();
1746   }
1747 
1748   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1749     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1750       switch (FD->getMultiVersionKind()) {
1751       case MultiVersionKind::CPUDispatch:
1752       case MultiVersionKind::CPUSpecific:
1753         AppendCPUSpecificCPUDispatchMangling(CGM,
1754                                              FD->getAttr<CPUSpecificAttr>(),
1755                                              GD.getMultiVersionIndex(), Out);
1756         break;
1757       case MultiVersionKind::Target:
1758         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1759         break;
1760       case MultiVersionKind::TargetVersion:
1761         AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out);
1762         break;
1763       case MultiVersionKind::TargetClones:
1764         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1765                                    GD.getMultiVersionIndex(), Out);
1766         break;
1767       case MultiVersionKind::None:
1768         llvm_unreachable("None multiversion type isn't valid here");
1769       }
1770     }
1771 
1772   // Make unique name for device side static file-scope variable for HIP.
1773   if (CGM.getContext().shouldExternalize(ND) &&
1774       CGM.getLangOpts().GPURelocatableDeviceCode &&
1775       CGM.getLangOpts().CUDAIsDevice)
1776     CGM.printPostfixForExternalizedDecl(Out, ND);
1777 
1778   return std::string(Out.str());
1779 }
1780 
1781 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1782                                             const FunctionDecl *FD,
1783                                             StringRef &CurName) {
1784   if (!FD->isMultiVersion())
1785     return;
1786 
1787   // Get the name of what this would be without the 'target' attribute.  This
1788   // allows us to lookup the version that was emitted when this wasn't a
1789   // multiversion function.
1790   std::string NonTargetName =
1791       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1792   GlobalDecl OtherGD;
1793   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1794     assert(OtherGD.getCanonicalDecl()
1795                .getDecl()
1796                ->getAsFunction()
1797                ->isMultiVersion() &&
1798            "Other GD should now be a multiversioned function");
1799     // OtherFD is the version of this function that was mangled BEFORE
1800     // becoming a MultiVersion function.  It potentially needs to be updated.
1801     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1802                                       .getDecl()
1803                                       ->getAsFunction()
1804                                       ->getMostRecentDecl();
1805     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1806     // This is so that if the initial version was already the 'default'
1807     // version, we don't try to update it.
1808     if (OtherName != NonTargetName) {
1809       // Remove instead of erase, since others may have stored the StringRef
1810       // to this.
1811       const auto ExistingRecord = Manglings.find(NonTargetName);
1812       if (ExistingRecord != std::end(Manglings))
1813         Manglings.remove(&(*ExistingRecord));
1814       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1815       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1816           Result.first->first();
1817       // If this is the current decl is being created, make sure we update the name.
1818       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1819         CurName = OtherNameRef;
1820       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1821         Entry->setName(OtherName);
1822     }
1823   }
1824 }
1825 
1826 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1827   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1828 
1829   // Some ABIs don't have constructor variants.  Make sure that base and
1830   // complete constructors get mangled the same.
1831   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1832     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1833       CXXCtorType OrigCtorType = GD.getCtorType();
1834       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1835       if (OrigCtorType == Ctor_Base)
1836         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1837     }
1838   }
1839 
1840   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1841   // static device variable depends on whether the variable is referenced by
1842   // a host or device host function. Therefore the mangled name cannot be
1843   // cached.
1844   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1845     auto FoundName = MangledDeclNames.find(CanonicalGD);
1846     if (FoundName != MangledDeclNames.end())
1847       return FoundName->second;
1848   }
1849 
1850   // Keep the first result in the case of a mangling collision.
1851   const auto *ND = cast<NamedDecl>(GD.getDecl());
1852   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1853 
1854   // Ensure either we have different ABIs between host and device compilations,
1855   // says host compilation following MSVC ABI but device compilation follows
1856   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1857   // mangling should be the same after name stubbing. The later checking is
1858   // very important as the device kernel name being mangled in host-compilation
1859   // is used to resolve the device binaries to be executed. Inconsistent naming
1860   // result in undefined behavior. Even though we cannot check that naming
1861   // directly between host- and device-compilations, the host- and
1862   // device-mangling in host compilation could help catching certain ones.
1863   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1864          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1865          (getContext().getAuxTargetInfo() &&
1866           (getContext().getAuxTargetInfo()->getCXXABI() !=
1867            getContext().getTargetInfo().getCXXABI())) ||
1868          getCUDARuntime().getDeviceSideName(ND) ==
1869              getMangledNameImpl(
1870                  *this,
1871                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1872                  ND));
1873 
1874   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1875   return MangledDeclNames[CanonicalGD] = Result.first->first();
1876 }
1877 
1878 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1879                                              const BlockDecl *BD) {
1880   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1881   const Decl *D = GD.getDecl();
1882 
1883   SmallString<256> Buffer;
1884   llvm::raw_svector_ostream Out(Buffer);
1885   if (!D)
1886     MangleCtx.mangleGlobalBlock(BD,
1887       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1888   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1889     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1890   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1891     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1892   else
1893     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1894 
1895   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1896   return Result.first->first();
1897 }
1898 
1899 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1900   auto it = MangledDeclNames.begin();
1901   while (it != MangledDeclNames.end()) {
1902     if (it->second == Name)
1903       return it->first;
1904     it++;
1905   }
1906   return GlobalDecl();
1907 }
1908 
1909 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1910   return getModule().getNamedValue(Name);
1911 }
1912 
1913 /// AddGlobalCtor - Add a function to the list that will be called before
1914 /// main() runs.
1915 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1916                                   unsigned LexOrder,
1917                                   llvm::Constant *AssociatedData) {
1918   // FIXME: Type coercion of void()* types.
1919   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1920 }
1921 
1922 /// AddGlobalDtor - Add a function to the list that will be called
1923 /// when the module is unloaded.
1924 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1925                                   bool IsDtorAttrFunc) {
1926   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1927       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1928     DtorsUsingAtExit[Priority].push_back(Dtor);
1929     return;
1930   }
1931 
1932   // FIXME: Type coercion of void()* types.
1933   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1934 }
1935 
1936 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1937   if (Fns.empty()) return;
1938 
1939   // Ctor function type is void()*.
1940   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1941   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1942       TheModule.getDataLayout().getProgramAddressSpace());
1943 
1944   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1945   llvm::StructType *CtorStructTy = llvm::StructType::get(
1946       Int32Ty, CtorPFTy, VoidPtrTy);
1947 
1948   // Construct the constructor and destructor arrays.
1949   ConstantInitBuilder builder(*this);
1950   auto ctors = builder.beginArray(CtorStructTy);
1951   for (const auto &I : Fns) {
1952     auto ctor = ctors.beginStruct(CtorStructTy);
1953     ctor.addInt(Int32Ty, I.Priority);
1954     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1955     if (I.AssociatedData)
1956       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1957     else
1958       ctor.addNullPointer(VoidPtrTy);
1959     ctor.finishAndAddTo(ctors);
1960   }
1961 
1962   auto list =
1963     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1964                                 /*constant*/ false,
1965                                 llvm::GlobalValue::AppendingLinkage);
1966 
1967   // The LTO linker doesn't seem to like it when we set an alignment
1968   // on appending variables.  Take it off as a workaround.
1969   list->setAlignment(std::nullopt);
1970 
1971   Fns.clear();
1972 }
1973 
1974 llvm::GlobalValue::LinkageTypes
1975 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1976   const auto *D = cast<FunctionDecl>(GD.getDecl());
1977 
1978   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1979 
1980   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1981     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1982 
1983   return getLLVMLinkageForDeclarator(D, Linkage);
1984 }
1985 
1986 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1987   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1988   if (!MDS) return nullptr;
1989 
1990   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1991 }
1992 
1993 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1994   if (auto *FnType = T->getAs<FunctionProtoType>())
1995     T = getContext().getFunctionType(
1996         FnType->getReturnType(), FnType->getParamTypes(),
1997         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1998 
1999   std::string OutName;
2000   llvm::raw_string_ostream Out(OutName);
2001   getCXXABI().getMangleContext().mangleTypeName(
2002       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2003 
2004   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2005     Out << ".normalized";
2006 
2007   return llvm::ConstantInt::get(Int32Ty,
2008                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2009 }
2010 
2011 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2012                                               const CGFunctionInfo &Info,
2013                                               llvm::Function *F, bool IsThunk) {
2014   unsigned CallingConv;
2015   llvm::AttributeList PAL;
2016   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2017                          /*AttrOnCallSite=*/false, IsThunk);
2018   F->setAttributes(PAL);
2019   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2020 }
2021 
2022 static void removeImageAccessQualifier(std::string& TyName) {
2023   std::string ReadOnlyQual("__read_only");
2024   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2025   if (ReadOnlyPos != std::string::npos)
2026     // "+ 1" for the space after access qualifier.
2027     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2028   else {
2029     std::string WriteOnlyQual("__write_only");
2030     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2031     if (WriteOnlyPos != std::string::npos)
2032       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2033     else {
2034       std::string ReadWriteQual("__read_write");
2035       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2036       if (ReadWritePos != std::string::npos)
2037         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2038     }
2039   }
2040 }
2041 
2042 // Returns the address space id that should be produced to the
2043 // kernel_arg_addr_space metadata. This is always fixed to the ids
2044 // as specified in the SPIR 2.0 specification in order to differentiate
2045 // for example in clGetKernelArgInfo() implementation between the address
2046 // spaces with targets without unique mapping to the OpenCL address spaces
2047 // (basically all single AS CPUs).
2048 static unsigned ArgInfoAddressSpace(LangAS AS) {
2049   switch (AS) {
2050   case LangAS::opencl_global:
2051     return 1;
2052   case LangAS::opencl_constant:
2053     return 2;
2054   case LangAS::opencl_local:
2055     return 3;
2056   case LangAS::opencl_generic:
2057     return 4; // Not in SPIR 2.0 specs.
2058   case LangAS::opencl_global_device:
2059     return 5;
2060   case LangAS::opencl_global_host:
2061     return 6;
2062   default:
2063     return 0; // Assume private.
2064   }
2065 }
2066 
2067 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2068                                          const FunctionDecl *FD,
2069                                          CodeGenFunction *CGF) {
2070   assert(((FD && CGF) || (!FD && !CGF)) &&
2071          "Incorrect use - FD and CGF should either be both null or not!");
2072   // Create MDNodes that represent the kernel arg metadata.
2073   // Each MDNode is a list in the form of "key", N number of values which is
2074   // the same number of values as their are kernel arguments.
2075 
2076   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2077 
2078   // MDNode for the kernel argument address space qualifiers.
2079   SmallVector<llvm::Metadata *, 8> addressQuals;
2080 
2081   // MDNode for the kernel argument access qualifiers (images only).
2082   SmallVector<llvm::Metadata *, 8> accessQuals;
2083 
2084   // MDNode for the kernel argument type names.
2085   SmallVector<llvm::Metadata *, 8> argTypeNames;
2086 
2087   // MDNode for the kernel argument base type names.
2088   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2089 
2090   // MDNode for the kernel argument type qualifiers.
2091   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2092 
2093   // MDNode for the kernel argument names.
2094   SmallVector<llvm::Metadata *, 8> argNames;
2095 
2096   if (FD && CGF)
2097     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2098       const ParmVarDecl *parm = FD->getParamDecl(i);
2099       // Get argument name.
2100       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2101 
2102       if (!getLangOpts().OpenCL)
2103         continue;
2104       QualType ty = parm->getType();
2105       std::string typeQuals;
2106 
2107       // Get image and pipe access qualifier:
2108       if (ty->isImageType() || ty->isPipeType()) {
2109         const Decl *PDecl = parm;
2110         if (const auto *TD = ty->getAs<TypedefType>())
2111           PDecl = TD->getDecl();
2112         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2113         if (A && A->isWriteOnly())
2114           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2115         else if (A && A->isReadWrite())
2116           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2117         else
2118           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2119       } else
2120         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2121 
2122       auto getTypeSpelling = [&](QualType Ty) {
2123         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2124 
2125         if (Ty.isCanonical()) {
2126           StringRef typeNameRef = typeName;
2127           // Turn "unsigned type" to "utype"
2128           if (typeNameRef.consume_front("unsigned "))
2129             return std::string("u") + typeNameRef.str();
2130           if (typeNameRef.consume_front("signed "))
2131             return typeNameRef.str();
2132         }
2133 
2134         return typeName;
2135       };
2136 
2137       if (ty->isPointerType()) {
2138         QualType pointeeTy = ty->getPointeeType();
2139 
2140         // Get address qualifier.
2141         addressQuals.push_back(
2142             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2143                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2144 
2145         // Get argument type name.
2146         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2147         std::string baseTypeName =
2148             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2149         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2150         argBaseTypeNames.push_back(
2151             llvm::MDString::get(VMContext, baseTypeName));
2152 
2153         // Get argument type qualifiers:
2154         if (ty.isRestrictQualified())
2155           typeQuals = "restrict";
2156         if (pointeeTy.isConstQualified() ||
2157             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2158           typeQuals += typeQuals.empty() ? "const" : " const";
2159         if (pointeeTy.isVolatileQualified())
2160           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2161       } else {
2162         uint32_t AddrSpc = 0;
2163         bool isPipe = ty->isPipeType();
2164         if (ty->isImageType() || isPipe)
2165           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2166 
2167         addressQuals.push_back(
2168             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2169 
2170         // Get argument type name.
2171         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2172         std::string typeName = getTypeSpelling(ty);
2173         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2174 
2175         // Remove access qualifiers on images
2176         // (as they are inseparable from type in clang implementation,
2177         // but OpenCL spec provides a special query to get access qualifier
2178         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2179         if (ty->isImageType()) {
2180           removeImageAccessQualifier(typeName);
2181           removeImageAccessQualifier(baseTypeName);
2182         }
2183 
2184         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2185         argBaseTypeNames.push_back(
2186             llvm::MDString::get(VMContext, baseTypeName));
2187 
2188         if (isPipe)
2189           typeQuals = "pipe";
2190       }
2191       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2192     }
2193 
2194   if (getLangOpts().OpenCL) {
2195     Fn->setMetadata("kernel_arg_addr_space",
2196                     llvm::MDNode::get(VMContext, addressQuals));
2197     Fn->setMetadata("kernel_arg_access_qual",
2198                     llvm::MDNode::get(VMContext, accessQuals));
2199     Fn->setMetadata("kernel_arg_type",
2200                     llvm::MDNode::get(VMContext, argTypeNames));
2201     Fn->setMetadata("kernel_arg_base_type",
2202                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2203     Fn->setMetadata("kernel_arg_type_qual",
2204                     llvm::MDNode::get(VMContext, argTypeQuals));
2205   }
2206   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2207       getCodeGenOpts().HIPSaveKernelArgName)
2208     Fn->setMetadata("kernel_arg_name",
2209                     llvm::MDNode::get(VMContext, argNames));
2210 }
2211 
2212 /// Determines whether the language options require us to model
2213 /// unwind exceptions.  We treat -fexceptions as mandating this
2214 /// except under the fragile ObjC ABI with only ObjC exceptions
2215 /// enabled.  This means, for example, that C with -fexceptions
2216 /// enables this.
2217 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2218   // If exceptions are completely disabled, obviously this is false.
2219   if (!LangOpts.Exceptions) return false;
2220 
2221   // If C++ exceptions are enabled, this is true.
2222   if (LangOpts.CXXExceptions) return true;
2223 
2224   // If ObjC exceptions are enabled, this depends on the ABI.
2225   if (LangOpts.ObjCExceptions) {
2226     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2227   }
2228 
2229   return true;
2230 }
2231 
2232 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2233                                                       const CXXMethodDecl *MD) {
2234   // Check that the type metadata can ever actually be used by a call.
2235   if (!CGM.getCodeGenOpts().LTOUnit ||
2236       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2237     return false;
2238 
2239   // Only functions whose address can be taken with a member function pointer
2240   // need this sort of type metadata.
2241   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
2242          !isa<CXXDestructorDecl>(MD);
2243 }
2244 
2245 SmallVector<const CXXRecordDecl *, 0>
2246 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2247   llvm::SetVector<const CXXRecordDecl *> MostBases;
2248 
2249   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2250   CollectMostBases = [&](const CXXRecordDecl *RD) {
2251     if (RD->getNumBases() == 0)
2252       MostBases.insert(RD);
2253     for (const CXXBaseSpecifier &B : RD->bases())
2254       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2255   };
2256   CollectMostBases(RD);
2257   return MostBases.takeVector();
2258 }
2259 
2260 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2261                                                            llvm::Function *F) {
2262   llvm::AttrBuilder B(F->getContext());
2263 
2264   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2265     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2266 
2267   if (CodeGenOpts.StackClashProtector)
2268     B.addAttribute("probe-stack", "inline-asm");
2269 
2270   if (!hasUnwindExceptions(LangOpts))
2271     B.addAttribute(llvm::Attribute::NoUnwind);
2272 
2273   if (D && D->hasAttr<NoStackProtectorAttr>())
2274     ; // Do nothing.
2275   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2276            LangOpts.getStackProtector() == LangOptions::SSPOn)
2277     B.addAttribute(llvm::Attribute::StackProtectStrong);
2278   else if (LangOpts.getStackProtector() == LangOptions::SSPOn)
2279     B.addAttribute(llvm::Attribute::StackProtect);
2280   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
2281     B.addAttribute(llvm::Attribute::StackProtectStrong);
2282   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
2283     B.addAttribute(llvm::Attribute::StackProtectReq);
2284 
2285   if (!D) {
2286     // If we don't have a declaration to control inlining, the function isn't
2287     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2288     // disabled, mark the function as noinline.
2289     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2290         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2291       B.addAttribute(llvm::Attribute::NoInline);
2292 
2293     F->addFnAttrs(B);
2294     return;
2295   }
2296 
2297   // Handle SME attributes that apply to function definitions,
2298   // rather than to function prototypes.
2299   if (D->hasAttr<ArmLocallyStreamingAttr>())
2300     B.addAttribute("aarch64_pstate_sm_body");
2301 
2302   if (D->hasAttr<ArmNewZAAttr>())
2303     B.addAttribute("aarch64_pstate_za_new");
2304 
2305   // Track whether we need to add the optnone LLVM attribute,
2306   // starting with the default for this optimization level.
2307   bool ShouldAddOptNone =
2308       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2309   // We can't add optnone in the following cases, it won't pass the verifier.
2310   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2311   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2312 
2313   // Add optnone, but do so only if the function isn't always_inline.
2314   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2315       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2316     B.addAttribute(llvm::Attribute::OptimizeNone);
2317 
2318     // OptimizeNone implies noinline; we should not be inlining such functions.
2319     B.addAttribute(llvm::Attribute::NoInline);
2320 
2321     // We still need to handle naked functions even though optnone subsumes
2322     // much of their semantics.
2323     if (D->hasAttr<NakedAttr>())
2324       B.addAttribute(llvm::Attribute::Naked);
2325 
2326     // OptimizeNone wins over OptimizeForSize and MinSize.
2327     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2328     F->removeFnAttr(llvm::Attribute::MinSize);
2329   } else if (D->hasAttr<NakedAttr>()) {
2330     // Naked implies noinline: we should not be inlining such functions.
2331     B.addAttribute(llvm::Attribute::Naked);
2332     B.addAttribute(llvm::Attribute::NoInline);
2333   } else if (D->hasAttr<NoDuplicateAttr>()) {
2334     B.addAttribute(llvm::Attribute::NoDuplicate);
2335   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2336     // Add noinline if the function isn't always_inline.
2337     B.addAttribute(llvm::Attribute::NoInline);
2338   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2339              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2340     // (noinline wins over always_inline, and we can't specify both in IR)
2341     B.addAttribute(llvm::Attribute::AlwaysInline);
2342   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2343     // If we're not inlining, then force everything that isn't always_inline to
2344     // carry an explicit noinline attribute.
2345     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2346       B.addAttribute(llvm::Attribute::NoInline);
2347   } else {
2348     // Otherwise, propagate the inline hint attribute and potentially use its
2349     // absence to mark things as noinline.
2350     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2351       // Search function and template pattern redeclarations for inline.
2352       auto CheckForInline = [](const FunctionDecl *FD) {
2353         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2354           return Redecl->isInlineSpecified();
2355         };
2356         if (any_of(FD->redecls(), CheckRedeclForInline))
2357           return true;
2358         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2359         if (!Pattern)
2360           return false;
2361         return any_of(Pattern->redecls(), CheckRedeclForInline);
2362       };
2363       if (CheckForInline(FD)) {
2364         B.addAttribute(llvm::Attribute::InlineHint);
2365       } else if (CodeGenOpts.getInlining() ==
2366                      CodeGenOptions::OnlyHintInlining &&
2367                  !FD->isInlined() &&
2368                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2369         B.addAttribute(llvm::Attribute::NoInline);
2370       }
2371     }
2372   }
2373 
2374   // Add other optimization related attributes if we are optimizing this
2375   // function.
2376   if (!D->hasAttr<OptimizeNoneAttr>()) {
2377     if (D->hasAttr<ColdAttr>()) {
2378       if (!ShouldAddOptNone)
2379         B.addAttribute(llvm::Attribute::OptimizeForSize);
2380       B.addAttribute(llvm::Attribute::Cold);
2381     }
2382     if (D->hasAttr<HotAttr>())
2383       B.addAttribute(llvm::Attribute::Hot);
2384     if (D->hasAttr<MinSizeAttr>())
2385       B.addAttribute(llvm::Attribute::MinSize);
2386   }
2387 
2388   F->addFnAttrs(B);
2389 
2390   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2391   if (alignment)
2392     F->setAlignment(llvm::Align(alignment));
2393 
2394   if (!D->hasAttr<AlignedAttr>())
2395     if (LangOpts.FunctionAlignment)
2396       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2397 
2398   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2399   // reserve a bit for differentiating between virtual and non-virtual member
2400   // functions. If the current target's C++ ABI requires this and this is a
2401   // member function, set its alignment accordingly.
2402   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2403     if (F->getPointerAlignment(getDataLayout()) < 2 && isa<CXXMethodDecl>(D))
2404       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2405   }
2406 
2407   // In the cross-dso CFI mode with canonical jump tables, we want !type
2408   // attributes on definitions only.
2409   if (CodeGenOpts.SanitizeCfiCrossDso &&
2410       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2411     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2412       // Skip available_externally functions. They won't be codegen'ed in the
2413       // current module anyway.
2414       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2415         CreateFunctionTypeMetadataForIcall(FD, F);
2416     }
2417   }
2418 
2419   // Emit type metadata on member functions for member function pointer checks.
2420   // These are only ever necessary on definitions; we're guaranteed that the
2421   // definition will be present in the LTO unit as a result of LTO visibility.
2422   auto *MD = dyn_cast<CXXMethodDecl>(D);
2423   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2424     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2425       llvm::Metadata *Id =
2426           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2427               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2428       F->addTypeMetadata(0, Id);
2429     }
2430   }
2431 }
2432 
2433 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2434   const Decl *D = GD.getDecl();
2435   if (isa_and_nonnull<NamedDecl>(D))
2436     setGVProperties(GV, GD);
2437   else
2438     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2439 
2440   if (D && D->hasAttr<UsedAttr>())
2441     addUsedOrCompilerUsedGlobal(GV);
2442 
2443   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2444       VD &&
2445       ((CodeGenOpts.KeepPersistentStorageVariables &&
2446         (VD->getStorageDuration() == SD_Static ||
2447          VD->getStorageDuration() == SD_Thread)) ||
2448        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2449         VD->getType().isConstQualified())))
2450     addUsedOrCompilerUsedGlobal(GV);
2451 }
2452 
2453 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2454                                                 llvm::AttrBuilder &Attrs,
2455                                                 bool SetTargetFeatures) {
2456   // Add target-cpu and target-features attributes to functions. If
2457   // we have a decl for the function and it has a target attribute then
2458   // parse that and add it to the feature set.
2459   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2460   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2461   std::vector<std::string> Features;
2462   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2463   FD = FD ? FD->getMostRecentDecl() : FD;
2464   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2465   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2466   assert((!TD || !TV) && "both target_version and target specified");
2467   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2468   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2469   bool AddedAttr = false;
2470   if (TD || TV || SD || TC) {
2471     llvm::StringMap<bool> FeatureMap;
2472     getContext().getFunctionFeatureMap(FeatureMap, GD);
2473 
2474     // Produce the canonical string for this set of features.
2475     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2476       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2477 
2478     // Now add the target-cpu and target-features to the function.
2479     // While we populated the feature map above, we still need to
2480     // get and parse the target attribute so we can get the cpu for
2481     // the function.
2482     if (TD) {
2483       ParsedTargetAttr ParsedAttr =
2484           Target.parseTargetAttr(TD->getFeaturesStr());
2485       if (!ParsedAttr.CPU.empty() &&
2486           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2487         TargetCPU = ParsedAttr.CPU;
2488         TuneCPU = ""; // Clear the tune CPU.
2489       }
2490       if (!ParsedAttr.Tune.empty() &&
2491           getTarget().isValidCPUName(ParsedAttr.Tune))
2492         TuneCPU = ParsedAttr.Tune;
2493     }
2494 
2495     if (SD) {
2496       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2497       // favor this processor.
2498       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2499     }
2500   } else {
2501     // Otherwise just add the existing target cpu and target features to the
2502     // function.
2503     Features = getTarget().getTargetOpts().Features;
2504   }
2505 
2506   if (!TargetCPU.empty()) {
2507     Attrs.addAttribute("target-cpu", TargetCPU);
2508     AddedAttr = true;
2509   }
2510   if (!TuneCPU.empty()) {
2511     Attrs.addAttribute("tune-cpu", TuneCPU);
2512     AddedAttr = true;
2513   }
2514   if (!Features.empty() && SetTargetFeatures) {
2515     llvm::erase_if(Features, [&](const std::string& F) {
2516        return getTarget().isReadOnlyFeature(F.substr(1));
2517     });
2518     llvm::sort(Features);
2519     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2520     AddedAttr = true;
2521   }
2522 
2523   return AddedAttr;
2524 }
2525 
2526 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2527                                           llvm::GlobalObject *GO) {
2528   const Decl *D = GD.getDecl();
2529   SetCommonAttributes(GD, GO);
2530 
2531   if (D) {
2532     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2533       if (D->hasAttr<RetainAttr>())
2534         addUsedGlobal(GV);
2535       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2536         GV->addAttribute("bss-section", SA->getName());
2537       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2538         GV->addAttribute("data-section", SA->getName());
2539       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2540         GV->addAttribute("rodata-section", SA->getName());
2541       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2542         GV->addAttribute("relro-section", SA->getName());
2543     }
2544 
2545     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2546       if (D->hasAttr<RetainAttr>())
2547         addUsedGlobal(F);
2548       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2549         if (!D->getAttr<SectionAttr>())
2550           F->addFnAttr("implicit-section-name", SA->getName());
2551 
2552       llvm::AttrBuilder Attrs(F->getContext());
2553       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2554         // We know that GetCPUAndFeaturesAttributes will always have the
2555         // newest set, since it has the newest possible FunctionDecl, so the
2556         // new ones should replace the old.
2557         llvm::AttributeMask RemoveAttrs;
2558         RemoveAttrs.addAttribute("target-cpu");
2559         RemoveAttrs.addAttribute("target-features");
2560         RemoveAttrs.addAttribute("tune-cpu");
2561         F->removeFnAttrs(RemoveAttrs);
2562         F->addFnAttrs(Attrs);
2563       }
2564     }
2565 
2566     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2567       GO->setSection(CSA->getName());
2568     else if (const auto *SA = D->getAttr<SectionAttr>())
2569       GO->setSection(SA->getName());
2570   }
2571 
2572   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2573 }
2574 
2575 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2576                                                   llvm::Function *F,
2577                                                   const CGFunctionInfo &FI) {
2578   const Decl *D = GD.getDecl();
2579   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2580   SetLLVMFunctionAttributesForDefinition(D, F);
2581 
2582   F->setLinkage(llvm::Function::InternalLinkage);
2583 
2584   setNonAliasAttributes(GD, F);
2585 }
2586 
2587 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2588   // Set linkage and visibility in case we never see a definition.
2589   LinkageInfo LV = ND->getLinkageAndVisibility();
2590   // Don't set internal linkage on declarations.
2591   // "extern_weak" is overloaded in LLVM; we probably should have
2592   // separate linkage types for this.
2593   if (isExternallyVisible(LV.getLinkage()) &&
2594       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2595     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2596 }
2597 
2598 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2599                                                        llvm::Function *F) {
2600   // Only if we are checking indirect calls.
2601   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2602     return;
2603 
2604   // Non-static class methods are handled via vtable or member function pointer
2605   // checks elsewhere.
2606   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2607     return;
2608 
2609   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2610   F->addTypeMetadata(0, MD);
2611   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2612 
2613   // Emit a hash-based bit set entry for cross-DSO calls.
2614   if (CodeGenOpts.SanitizeCfiCrossDso)
2615     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2616       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2617 }
2618 
2619 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2620   llvm::LLVMContext &Ctx = F->getContext();
2621   llvm::MDBuilder MDB(Ctx);
2622   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2623                  llvm::MDNode::get(
2624                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2625 }
2626 
2627 static bool allowKCFIIdentifier(StringRef Name) {
2628   // KCFI type identifier constants are only necessary for external assembly
2629   // functions, which means it's safe to skip unusual names. Subset of
2630   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2631   return llvm::all_of(Name, [](const char &C) {
2632     return llvm::isAlnum(C) || C == '_' || C == '.';
2633   });
2634 }
2635 
2636 void CodeGenModule::finalizeKCFITypes() {
2637   llvm::Module &M = getModule();
2638   for (auto &F : M.functions()) {
2639     // Remove KCFI type metadata from non-address-taken local functions.
2640     bool AddressTaken = F.hasAddressTaken();
2641     if (!AddressTaken && F.hasLocalLinkage())
2642       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2643 
2644     // Generate a constant with the expected KCFI type identifier for all
2645     // address-taken function declarations to support annotating indirectly
2646     // called assembly functions.
2647     if (!AddressTaken || !F.isDeclaration())
2648       continue;
2649 
2650     const llvm::ConstantInt *Type;
2651     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2652       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2653     else
2654       continue;
2655 
2656     StringRef Name = F.getName();
2657     if (!allowKCFIIdentifier(Name))
2658       continue;
2659 
2660     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2661                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2662                           .str();
2663     M.appendModuleInlineAsm(Asm);
2664   }
2665 }
2666 
2667 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2668                                           bool IsIncompleteFunction,
2669                                           bool IsThunk) {
2670 
2671   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2672     // If this is an intrinsic function, set the function's attributes
2673     // to the intrinsic's attributes.
2674     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2675     return;
2676   }
2677 
2678   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2679 
2680   if (!IsIncompleteFunction)
2681     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2682                               IsThunk);
2683 
2684   // Add the Returned attribute for "this", except for iOS 5 and earlier
2685   // where substantial code, including the libstdc++ dylib, was compiled with
2686   // GCC and does not actually return "this".
2687   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2688       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2689     assert(!F->arg_empty() &&
2690            F->arg_begin()->getType()
2691              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2692            "unexpected this return");
2693     F->addParamAttr(0, llvm::Attribute::Returned);
2694   }
2695 
2696   // Only a few attributes are set on declarations; these may later be
2697   // overridden by a definition.
2698 
2699   setLinkageForGV(F, FD);
2700   setGVProperties(F, FD);
2701 
2702   // Setup target-specific attributes.
2703   if (!IsIncompleteFunction && F->isDeclaration())
2704     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2705 
2706   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2707     F->setSection(CSA->getName());
2708   else if (const auto *SA = FD->getAttr<SectionAttr>())
2709      F->setSection(SA->getName());
2710 
2711   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2712     if (EA->isError())
2713       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2714     else if (EA->isWarning())
2715       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2716   }
2717 
2718   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2719   if (FD->isInlineBuiltinDeclaration()) {
2720     const FunctionDecl *FDBody;
2721     bool HasBody = FD->hasBody(FDBody);
2722     (void)HasBody;
2723     assert(HasBody && "Inline builtin declarations should always have an "
2724                       "available body!");
2725     if (shouldEmitFunction(FDBody))
2726       F->addFnAttr(llvm::Attribute::NoBuiltin);
2727   }
2728 
2729   if (FD->isReplaceableGlobalAllocationFunction()) {
2730     // A replaceable global allocation function does not act like a builtin by
2731     // default, only if it is invoked by a new-expression or delete-expression.
2732     F->addFnAttr(llvm::Attribute::NoBuiltin);
2733   }
2734 
2735   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2736     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2737   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2738     if (MD->isVirtual())
2739       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2740 
2741   // Don't emit entries for function declarations in the cross-DSO mode. This
2742   // is handled with better precision by the receiving DSO. But if jump tables
2743   // are non-canonical then we need type metadata in order to produce the local
2744   // jump table.
2745   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2746       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2747     CreateFunctionTypeMetadataForIcall(FD, F);
2748 
2749   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2750     setKCFIType(FD, F);
2751 
2752   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2753     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2754 
2755   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2756     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2757 
2758   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2759     // Annotate the callback behavior as metadata:
2760     //  - The callback callee (as argument number).
2761     //  - The callback payloads (as argument numbers).
2762     llvm::LLVMContext &Ctx = F->getContext();
2763     llvm::MDBuilder MDB(Ctx);
2764 
2765     // The payload indices are all but the first one in the encoding. The first
2766     // identifies the callback callee.
2767     int CalleeIdx = *CB->encoding_begin();
2768     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2769     F->addMetadata(llvm::LLVMContext::MD_callback,
2770                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2771                                                CalleeIdx, PayloadIndices,
2772                                                /* VarArgsArePassed */ false)}));
2773   }
2774 }
2775 
2776 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2777   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2778          "Only globals with definition can force usage.");
2779   LLVMUsed.emplace_back(GV);
2780 }
2781 
2782 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2783   assert(!GV->isDeclaration() &&
2784          "Only globals with definition can force usage.");
2785   LLVMCompilerUsed.emplace_back(GV);
2786 }
2787 
2788 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2789   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2790          "Only globals with definition can force usage.");
2791   if (getTriple().isOSBinFormatELF())
2792     LLVMCompilerUsed.emplace_back(GV);
2793   else
2794     LLVMUsed.emplace_back(GV);
2795 }
2796 
2797 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2798                      std::vector<llvm::WeakTrackingVH> &List) {
2799   // Don't create llvm.used if there is no need.
2800   if (List.empty())
2801     return;
2802 
2803   // Convert List to what ConstantArray needs.
2804   SmallVector<llvm::Constant*, 8> UsedArray;
2805   UsedArray.resize(List.size());
2806   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2807     UsedArray[i] =
2808         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2809             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2810   }
2811 
2812   if (UsedArray.empty())
2813     return;
2814   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2815 
2816   auto *GV = new llvm::GlobalVariable(
2817       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2818       llvm::ConstantArray::get(ATy, UsedArray), Name);
2819 
2820   GV->setSection("llvm.metadata");
2821 }
2822 
2823 void CodeGenModule::emitLLVMUsed() {
2824   emitUsed(*this, "llvm.used", LLVMUsed);
2825   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2826 }
2827 
2828 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2829   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2830   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2831 }
2832 
2833 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2834   llvm::SmallString<32> Opt;
2835   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2836   if (Opt.empty())
2837     return;
2838   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2839   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2840 }
2841 
2842 void CodeGenModule::AddDependentLib(StringRef Lib) {
2843   auto &C = getLLVMContext();
2844   if (getTarget().getTriple().isOSBinFormatELF()) {
2845       ELFDependentLibraries.push_back(
2846         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2847     return;
2848   }
2849 
2850   llvm::SmallString<24> Opt;
2851   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2852   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2853   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2854 }
2855 
2856 /// Add link options implied by the given module, including modules
2857 /// it depends on, using a postorder walk.
2858 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2859                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2860                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2861   // Import this module's parent.
2862   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2863     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2864   }
2865 
2866   // Import this module's dependencies.
2867   for (Module *Import : llvm::reverse(Mod->Imports)) {
2868     if (Visited.insert(Import).second)
2869       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2870   }
2871 
2872   // Add linker options to link against the libraries/frameworks
2873   // described by this module.
2874   llvm::LLVMContext &Context = CGM.getLLVMContext();
2875   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2876 
2877   // For modules that use export_as for linking, use that module
2878   // name instead.
2879   if (Mod->UseExportAsModuleLinkName)
2880     return;
2881 
2882   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2883     // Link against a framework.  Frameworks are currently Darwin only, so we
2884     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2885     if (LL.IsFramework) {
2886       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2887                                  llvm::MDString::get(Context, LL.Library)};
2888 
2889       Metadata.push_back(llvm::MDNode::get(Context, Args));
2890       continue;
2891     }
2892 
2893     // Link against a library.
2894     if (IsELF) {
2895       llvm::Metadata *Args[2] = {
2896           llvm::MDString::get(Context, "lib"),
2897           llvm::MDString::get(Context, LL.Library),
2898       };
2899       Metadata.push_back(llvm::MDNode::get(Context, Args));
2900     } else {
2901       llvm::SmallString<24> Opt;
2902       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2903       auto *OptString = llvm::MDString::get(Context, Opt);
2904       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2905     }
2906   }
2907 }
2908 
2909 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2910   // Emit the initializers in the order that sub-modules appear in the
2911   // source, first Global Module Fragments, if present.
2912   if (auto GMF = Primary->getGlobalModuleFragment()) {
2913     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2914       if (isa<ImportDecl>(D))
2915         continue;
2916       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2917       EmitTopLevelDecl(D);
2918     }
2919   }
2920   // Second any associated with the module, itself.
2921   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2922     // Skip import decls, the inits for those are called explicitly.
2923     if (isa<ImportDecl>(D))
2924       continue;
2925     EmitTopLevelDecl(D);
2926   }
2927   // Third any associated with the Privat eMOdule Fragment, if present.
2928   if (auto PMF = Primary->getPrivateModuleFragment()) {
2929     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2930       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2931       EmitTopLevelDecl(D);
2932     }
2933   }
2934 }
2935 
2936 void CodeGenModule::EmitModuleLinkOptions() {
2937   // Collect the set of all of the modules we want to visit to emit link
2938   // options, which is essentially the imported modules and all of their
2939   // non-explicit child modules.
2940   llvm::SetVector<clang::Module *> LinkModules;
2941   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2942   SmallVector<clang::Module *, 16> Stack;
2943 
2944   // Seed the stack with imported modules.
2945   for (Module *M : ImportedModules) {
2946     // Do not add any link flags when an implementation TU of a module imports
2947     // a header of that same module.
2948     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2949         !getLangOpts().isCompilingModule())
2950       continue;
2951     if (Visited.insert(M).second)
2952       Stack.push_back(M);
2953   }
2954 
2955   // Find all of the modules to import, making a little effort to prune
2956   // non-leaf modules.
2957   while (!Stack.empty()) {
2958     clang::Module *Mod = Stack.pop_back_val();
2959 
2960     bool AnyChildren = false;
2961 
2962     // Visit the submodules of this module.
2963     for (const auto &SM : Mod->submodules()) {
2964       // Skip explicit children; they need to be explicitly imported to be
2965       // linked against.
2966       if (SM->IsExplicit)
2967         continue;
2968 
2969       if (Visited.insert(SM).second) {
2970         Stack.push_back(SM);
2971         AnyChildren = true;
2972       }
2973     }
2974 
2975     // We didn't find any children, so add this module to the list of
2976     // modules to link against.
2977     if (!AnyChildren) {
2978       LinkModules.insert(Mod);
2979     }
2980   }
2981 
2982   // Add link options for all of the imported modules in reverse topological
2983   // order.  We don't do anything to try to order import link flags with respect
2984   // to linker options inserted by things like #pragma comment().
2985   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2986   Visited.clear();
2987   for (Module *M : LinkModules)
2988     if (Visited.insert(M).second)
2989       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2990   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2991   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2992 
2993   // Add the linker options metadata flag.
2994   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2995   for (auto *MD : LinkerOptionsMetadata)
2996     NMD->addOperand(MD);
2997 }
2998 
2999 void CodeGenModule::EmitDeferred() {
3000   // Emit deferred declare target declarations.
3001   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3002     getOpenMPRuntime().emitDeferredTargetDecls();
3003 
3004   // Emit code for any potentially referenced deferred decls.  Since a
3005   // previously unused static decl may become used during the generation of code
3006   // for a static function, iterate until no changes are made.
3007 
3008   if (!DeferredVTables.empty()) {
3009     EmitDeferredVTables();
3010 
3011     // Emitting a vtable doesn't directly cause more vtables to
3012     // become deferred, although it can cause functions to be
3013     // emitted that then need those vtables.
3014     assert(DeferredVTables.empty());
3015   }
3016 
3017   // Emit CUDA/HIP static device variables referenced by host code only.
3018   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3019   // needed for further handling.
3020   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3021     llvm::append_range(DeferredDeclsToEmit,
3022                        getContext().CUDADeviceVarODRUsedByHost);
3023 
3024   // Stop if we're out of both deferred vtables and deferred declarations.
3025   if (DeferredDeclsToEmit.empty())
3026     return;
3027 
3028   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3029   // work, it will not interfere with this.
3030   std::vector<GlobalDecl> CurDeclsToEmit;
3031   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3032 
3033   for (GlobalDecl &D : CurDeclsToEmit) {
3034     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3035     // to get GlobalValue with exactly the type we need, not something that
3036     // might had been created for another decl with the same mangled name but
3037     // different type.
3038     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3039         GetAddrOfGlobal(D, ForDefinition));
3040 
3041     // In case of different address spaces, we may still get a cast, even with
3042     // IsForDefinition equal to true. Query mangled names table to get
3043     // GlobalValue.
3044     if (!GV)
3045       GV = GetGlobalValue(getMangledName(D));
3046 
3047     // Make sure GetGlobalValue returned non-null.
3048     assert(GV);
3049 
3050     // Check to see if we've already emitted this.  This is necessary
3051     // for a couple of reasons: first, decls can end up in the
3052     // deferred-decls queue multiple times, and second, decls can end
3053     // up with definitions in unusual ways (e.g. by an extern inline
3054     // function acquiring a strong function redefinition).  Just
3055     // ignore these cases.
3056     if (!GV->isDeclaration())
3057       continue;
3058 
3059     // If this is OpenMP, check if it is legal to emit this global normally.
3060     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3061       continue;
3062 
3063     // Otherwise, emit the definition and move on to the next one.
3064     EmitGlobalDefinition(D, GV);
3065 
3066     // If we found out that we need to emit more decls, do that recursively.
3067     // This has the advantage that the decls are emitted in a DFS and related
3068     // ones are close together, which is convenient for testing.
3069     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3070       EmitDeferred();
3071       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3072     }
3073   }
3074 }
3075 
3076 void CodeGenModule::EmitVTablesOpportunistically() {
3077   // Try to emit external vtables as available_externally if they have emitted
3078   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3079   // is not allowed to create new references to things that need to be emitted
3080   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3081 
3082   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3083          && "Only emit opportunistic vtables with optimizations");
3084 
3085   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3086     assert(getVTables().isVTableExternal(RD) &&
3087            "This queue should only contain external vtables");
3088     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3089       VTables.GenerateClassData(RD);
3090   }
3091   OpportunisticVTables.clear();
3092 }
3093 
3094 void CodeGenModule::EmitGlobalAnnotations() {
3095   if (Annotations.empty())
3096     return;
3097 
3098   // Create a new global variable for the ConstantStruct in the Module.
3099   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3100     Annotations[0]->getType(), Annotations.size()), Annotations);
3101   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3102                                       llvm::GlobalValue::AppendingLinkage,
3103                                       Array, "llvm.global.annotations");
3104   gv->setSection(AnnotationSection);
3105 }
3106 
3107 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3108   llvm::Constant *&AStr = AnnotationStrings[Str];
3109   if (AStr)
3110     return AStr;
3111 
3112   // Not found yet, create a new global.
3113   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3114   auto *gv = new llvm::GlobalVariable(
3115       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3116       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3117       ConstGlobalsPtrTy->getAddressSpace());
3118   gv->setSection(AnnotationSection);
3119   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3120   AStr = gv;
3121   return gv;
3122 }
3123 
3124 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3125   SourceManager &SM = getContext().getSourceManager();
3126   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3127   if (PLoc.isValid())
3128     return EmitAnnotationString(PLoc.getFilename());
3129   return EmitAnnotationString(SM.getBufferName(Loc));
3130 }
3131 
3132 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3133   SourceManager &SM = getContext().getSourceManager();
3134   PresumedLoc PLoc = SM.getPresumedLoc(L);
3135   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3136     SM.getExpansionLineNumber(L);
3137   return llvm::ConstantInt::get(Int32Ty, LineNo);
3138 }
3139 
3140 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3141   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3142   if (Exprs.empty())
3143     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3144 
3145   llvm::FoldingSetNodeID ID;
3146   for (Expr *E : Exprs) {
3147     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3148   }
3149   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3150   if (Lookup)
3151     return Lookup;
3152 
3153   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3154   LLVMArgs.reserve(Exprs.size());
3155   ConstantEmitter ConstEmiter(*this);
3156   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3157     const auto *CE = cast<clang::ConstantExpr>(E);
3158     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3159                                     CE->getType());
3160   });
3161   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3162   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3163                                       llvm::GlobalValue::PrivateLinkage, Struct,
3164                                       ".args");
3165   GV->setSection(AnnotationSection);
3166   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3167   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
3168 
3169   Lookup = Bitcasted;
3170   return Bitcasted;
3171 }
3172 
3173 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3174                                                 const AnnotateAttr *AA,
3175                                                 SourceLocation L) {
3176   // Get the globals for file name, annotation, and the line number.
3177   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3178                  *UnitGV = EmitAnnotationUnit(L),
3179                  *LineNoCst = EmitAnnotationLineNo(L),
3180                  *Args = EmitAnnotationArgs(AA);
3181 
3182   llvm::Constant *GVInGlobalsAS = GV;
3183   if (GV->getAddressSpace() !=
3184       getDataLayout().getDefaultGlobalsAddressSpace()) {
3185     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3186         GV, GV->getValueType()->getPointerTo(
3187                 getDataLayout().getDefaultGlobalsAddressSpace()));
3188   }
3189 
3190   // Create the ConstantStruct for the global annotation.
3191   llvm::Constant *Fields[] = {
3192       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
3193       llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy),
3194       llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy),
3195       LineNoCst,
3196       Args,
3197   };
3198   return llvm::ConstantStruct::getAnon(Fields);
3199 }
3200 
3201 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3202                                          llvm::GlobalValue *GV) {
3203   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3204   // Get the struct elements for these annotations.
3205   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3206     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3207 }
3208 
3209 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3210                                        SourceLocation Loc) const {
3211   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3212   // NoSanitize by function name.
3213   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3214     return true;
3215   // NoSanitize by location. Check "mainfile" prefix.
3216   auto &SM = Context.getSourceManager();
3217   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
3218   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3219     return true;
3220 
3221   // Check "src" prefix.
3222   if (Loc.isValid())
3223     return NoSanitizeL.containsLocation(Kind, Loc);
3224   // If location is unknown, this may be a compiler-generated function. Assume
3225   // it's located in the main file.
3226   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3227 }
3228 
3229 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3230                                        llvm::GlobalVariable *GV,
3231                                        SourceLocation Loc, QualType Ty,
3232                                        StringRef Category) const {
3233   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3234   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3235     return true;
3236   auto &SM = Context.getSourceManager();
3237   if (NoSanitizeL.containsMainFile(
3238           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
3239     return true;
3240   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3241     return true;
3242 
3243   // Check global type.
3244   if (!Ty.isNull()) {
3245     // Drill down the array types: if global variable of a fixed type is
3246     // not sanitized, we also don't instrument arrays of them.
3247     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3248       Ty = AT->getElementType();
3249     Ty = Ty.getCanonicalType().getUnqualifiedType();
3250     // Only record types (classes, structs etc.) are ignored.
3251     if (Ty->isRecordType()) {
3252       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3253       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3254         return true;
3255     }
3256   }
3257   return false;
3258 }
3259 
3260 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3261                                    StringRef Category) const {
3262   const auto &XRayFilter = getContext().getXRayFilter();
3263   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3264   auto Attr = ImbueAttr::NONE;
3265   if (Loc.isValid())
3266     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3267   if (Attr == ImbueAttr::NONE)
3268     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3269   switch (Attr) {
3270   case ImbueAttr::NONE:
3271     return false;
3272   case ImbueAttr::ALWAYS:
3273     Fn->addFnAttr("function-instrument", "xray-always");
3274     break;
3275   case ImbueAttr::ALWAYS_ARG1:
3276     Fn->addFnAttr("function-instrument", "xray-always");
3277     Fn->addFnAttr("xray-log-args", "1");
3278     break;
3279   case ImbueAttr::NEVER:
3280     Fn->addFnAttr("function-instrument", "xray-never");
3281     break;
3282   }
3283   return true;
3284 }
3285 
3286 ProfileList::ExclusionType
3287 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3288                                               SourceLocation Loc) const {
3289   const auto &ProfileList = getContext().getProfileList();
3290   // If the profile list is empty, then instrument everything.
3291   if (ProfileList.isEmpty())
3292     return ProfileList::Allow;
3293   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3294   // First, check the function name.
3295   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3296     return *V;
3297   // Next, check the source location.
3298   if (Loc.isValid())
3299     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3300       return *V;
3301   // If location is unknown, this may be a compiler-generated function. Assume
3302   // it's located in the main file.
3303   auto &SM = Context.getSourceManager();
3304   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
3305     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3306       return *V;
3307   return ProfileList.getDefault(Kind);
3308 }
3309 
3310 ProfileList::ExclusionType
3311 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3312                                                  SourceLocation Loc) const {
3313   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3314   if (V != ProfileList::Allow)
3315     return V;
3316 
3317   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3318   if (NumGroups > 1) {
3319     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3320     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3321       return ProfileList::Skip;
3322   }
3323   return ProfileList::Allow;
3324 }
3325 
3326 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3327   // Never defer when EmitAllDecls is specified.
3328   if (LangOpts.EmitAllDecls)
3329     return true;
3330 
3331   const auto *VD = dyn_cast<VarDecl>(Global);
3332   if (VD &&
3333       ((CodeGenOpts.KeepPersistentStorageVariables &&
3334         (VD->getStorageDuration() == SD_Static ||
3335          VD->getStorageDuration() == SD_Thread)) ||
3336        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3337         VD->getType().isConstQualified())))
3338     return true;
3339 
3340   return getContext().DeclMustBeEmitted(Global);
3341 }
3342 
3343 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3344   // In OpenMP 5.0 variables and function may be marked as
3345   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3346   // that they must be emitted on the host/device. To be sure we need to have
3347   // seen a declare target with an explicit mentioning of the function, we know
3348   // we have if the level of the declare target attribute is -1. Note that we
3349   // check somewhere else if we should emit this at all.
3350   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3351     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3352         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3353     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3354       return false;
3355   }
3356 
3357   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3358     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3359       // Implicit template instantiations may change linkage if they are later
3360       // explicitly instantiated, so they should not be emitted eagerly.
3361       return false;
3362   }
3363   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3364     if (Context.getInlineVariableDefinitionKind(VD) ==
3365         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3366       // A definition of an inline constexpr static data member may change
3367       // linkage later if it's redeclared outside the class.
3368       return false;
3369     if (CXX20ModuleInits && VD->getOwningModule() &&
3370         !VD->getOwningModule()->isModuleMapModule()) {
3371       // For CXX20, module-owned initializers need to be deferred, since it is
3372       // not known at this point if they will be run for the current module or
3373       // as part of the initializer for an imported one.
3374       return false;
3375     }
3376   }
3377   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3378   // codegen for global variables, because they may be marked as threadprivate.
3379   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3380       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3381       !Global->getType().isConstantStorage(getContext(), false, false) &&
3382       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3383     return false;
3384 
3385   return true;
3386 }
3387 
3388 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3389   StringRef Name = getMangledName(GD);
3390 
3391   // The UUID descriptor should be pointer aligned.
3392   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3393 
3394   // Look for an existing global.
3395   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3396     return ConstantAddress(GV, GV->getValueType(), Alignment);
3397 
3398   ConstantEmitter Emitter(*this);
3399   llvm::Constant *Init;
3400 
3401   APValue &V = GD->getAsAPValue();
3402   if (!V.isAbsent()) {
3403     // If possible, emit the APValue version of the initializer. In particular,
3404     // this gets the type of the constant right.
3405     Init = Emitter.emitForInitializer(
3406         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3407   } else {
3408     // As a fallback, directly construct the constant.
3409     // FIXME: This may get padding wrong under esoteric struct layout rules.
3410     // MSVC appears to create a complete type 'struct __s_GUID' that it
3411     // presumably uses to represent these constants.
3412     MSGuidDecl::Parts Parts = GD->getParts();
3413     llvm::Constant *Fields[4] = {
3414         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3415         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3416         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3417         llvm::ConstantDataArray::getRaw(
3418             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3419             Int8Ty)};
3420     Init = llvm::ConstantStruct::getAnon(Fields);
3421   }
3422 
3423   auto *GV = new llvm::GlobalVariable(
3424       getModule(), Init->getType(),
3425       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3426   if (supportsCOMDAT())
3427     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3428   setDSOLocal(GV);
3429 
3430   if (!V.isAbsent()) {
3431     Emitter.finalize(GV);
3432     return ConstantAddress(GV, GV->getValueType(), Alignment);
3433   }
3434 
3435   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3436   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3437       GV, Ty->getPointerTo(GV->getAddressSpace()));
3438   return ConstantAddress(Addr, Ty, Alignment);
3439 }
3440 
3441 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3442     const UnnamedGlobalConstantDecl *GCD) {
3443   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3444 
3445   llvm::GlobalVariable **Entry = nullptr;
3446   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3447   if (*Entry)
3448     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3449 
3450   ConstantEmitter Emitter(*this);
3451   llvm::Constant *Init;
3452 
3453   const APValue &V = GCD->getValue();
3454 
3455   assert(!V.isAbsent());
3456   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3457                                     GCD->getType());
3458 
3459   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3460                                       /*isConstant=*/true,
3461                                       llvm::GlobalValue::PrivateLinkage, Init,
3462                                       ".constant");
3463   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3464   GV->setAlignment(Alignment.getAsAlign());
3465 
3466   Emitter.finalize(GV);
3467 
3468   *Entry = GV;
3469   return ConstantAddress(GV, GV->getValueType(), Alignment);
3470 }
3471 
3472 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3473     const TemplateParamObjectDecl *TPO) {
3474   StringRef Name = getMangledName(TPO);
3475   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3476 
3477   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3478     return ConstantAddress(GV, GV->getValueType(), Alignment);
3479 
3480   ConstantEmitter Emitter(*this);
3481   llvm::Constant *Init = Emitter.emitForInitializer(
3482         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3483 
3484   if (!Init) {
3485     ErrorUnsupported(TPO, "template parameter object");
3486     return ConstantAddress::invalid();
3487   }
3488 
3489   llvm::GlobalValue::LinkageTypes Linkage =
3490       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3491           ? llvm::GlobalValue::LinkOnceODRLinkage
3492           : llvm::GlobalValue::InternalLinkage;
3493   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3494                                       /*isConstant=*/true, Linkage, Init, Name);
3495   setGVProperties(GV, TPO);
3496   if (supportsCOMDAT())
3497     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3498   Emitter.finalize(GV);
3499 
3500   return ConstantAddress(GV, GV->getValueType(), Alignment);
3501 }
3502 
3503 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3504   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3505   assert(AA && "No alias?");
3506 
3507   CharUnits Alignment = getContext().getDeclAlign(VD);
3508   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3509 
3510   // See if there is already something with the target's name in the module.
3511   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3512   if (Entry) {
3513     unsigned AS = getTypes().getTargetAddressSpace(VD->getType());
3514     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3515     return ConstantAddress(Ptr, DeclTy, Alignment);
3516   }
3517 
3518   llvm::Constant *Aliasee;
3519   if (isa<llvm::FunctionType>(DeclTy))
3520     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3521                                       GlobalDecl(cast<FunctionDecl>(VD)),
3522                                       /*ForVTable=*/false);
3523   else
3524     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3525                                     nullptr);
3526 
3527   auto *F = cast<llvm::GlobalValue>(Aliasee);
3528   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3529   WeakRefReferences.insert(F);
3530 
3531   return ConstantAddress(Aliasee, DeclTy, Alignment);
3532 }
3533 
3534 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3535   const auto *Global = cast<ValueDecl>(GD.getDecl());
3536 
3537   // Weak references don't produce any output by themselves.
3538   if (Global->hasAttr<WeakRefAttr>())
3539     return;
3540 
3541   // If this is an alias definition (which otherwise looks like a declaration)
3542   // emit it now.
3543   if (Global->hasAttr<AliasAttr>())
3544     return EmitAliasDefinition(GD);
3545 
3546   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3547   if (Global->hasAttr<IFuncAttr>())
3548     return emitIFuncDefinition(GD);
3549 
3550   // If this is a cpu_dispatch multiversion function, emit the resolver.
3551   if (Global->hasAttr<CPUDispatchAttr>())
3552     return emitCPUDispatchDefinition(GD);
3553 
3554   // If this is CUDA, be selective about which declarations we emit.
3555   if (LangOpts.CUDA) {
3556     if (LangOpts.CUDAIsDevice) {
3557       if (!Global->hasAttr<CUDADeviceAttr>() &&
3558           !Global->hasAttr<CUDAGlobalAttr>() &&
3559           !Global->hasAttr<CUDAConstantAttr>() &&
3560           !Global->hasAttr<CUDASharedAttr>() &&
3561           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3562           !Global->getType()->isCUDADeviceBuiltinTextureType())
3563         return;
3564     } else {
3565       // We need to emit host-side 'shadows' for all global
3566       // device-side variables because the CUDA runtime needs their
3567       // size and host-side address in order to provide access to
3568       // their device-side incarnations.
3569 
3570       // So device-only functions are the only things we skip.
3571       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3572           Global->hasAttr<CUDADeviceAttr>())
3573         return;
3574 
3575       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3576              "Expected Variable or Function");
3577     }
3578   }
3579 
3580   if (LangOpts.OpenMP) {
3581     // If this is OpenMP, check if it is legal to emit this global normally.
3582     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3583       return;
3584     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3585       if (MustBeEmitted(Global))
3586         EmitOMPDeclareReduction(DRD);
3587       return;
3588     }
3589     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3590       if (MustBeEmitted(Global))
3591         EmitOMPDeclareMapper(DMD);
3592       return;
3593     }
3594   }
3595 
3596   // Ignore declarations, they will be emitted on their first use.
3597   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3598     // Forward declarations are emitted lazily on first use.
3599     if (!FD->doesThisDeclarationHaveABody()) {
3600       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3601         return;
3602 
3603       StringRef MangledName = getMangledName(GD);
3604 
3605       // Compute the function info and LLVM type.
3606       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3607       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3608 
3609       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3610                               /*DontDefer=*/false);
3611       return;
3612     }
3613   } else {
3614     const auto *VD = cast<VarDecl>(Global);
3615     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3616     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3617         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3618       if (LangOpts.OpenMP) {
3619         // Emit declaration of the must-be-emitted declare target variable.
3620         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3621                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3622 
3623           // If this variable has external storage and doesn't require special
3624           // link handling we defer to its canonical definition.
3625           if (VD->hasExternalStorage() &&
3626               Res != OMPDeclareTargetDeclAttr::MT_Link)
3627             return;
3628 
3629           bool UnifiedMemoryEnabled =
3630               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3631           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3632                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3633               !UnifiedMemoryEnabled) {
3634             (void)GetAddrOfGlobalVar(VD);
3635           } else {
3636             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3637                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3638                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3639                      UnifiedMemoryEnabled)) &&
3640                    "Link clause or to clause with unified memory expected.");
3641             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3642           }
3643 
3644           return;
3645         }
3646       }
3647       // If this declaration may have caused an inline variable definition to
3648       // change linkage, make sure that it's emitted.
3649       if (Context.getInlineVariableDefinitionKind(VD) ==
3650           ASTContext::InlineVariableDefinitionKind::Strong)
3651         GetAddrOfGlobalVar(VD);
3652       return;
3653     }
3654   }
3655 
3656   // Defer code generation to first use when possible, e.g. if this is an inline
3657   // function. If the global must always be emitted, do it eagerly if possible
3658   // to benefit from cache locality.
3659   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3660     // Emit the definition if it can't be deferred.
3661     EmitGlobalDefinition(GD);
3662     addEmittedDeferredDecl(GD);
3663     return;
3664   }
3665 
3666   // If we're deferring emission of a C++ variable with an
3667   // initializer, remember the order in which it appeared in the file.
3668   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3669       cast<VarDecl>(Global)->hasInit()) {
3670     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3671     CXXGlobalInits.push_back(nullptr);
3672   }
3673 
3674   StringRef MangledName = getMangledName(GD);
3675   if (GetGlobalValue(MangledName) != nullptr) {
3676     // The value has already been used and should therefore be emitted.
3677     addDeferredDeclToEmit(GD);
3678   } else if (MustBeEmitted(Global)) {
3679     // The value must be emitted, but cannot be emitted eagerly.
3680     assert(!MayBeEmittedEagerly(Global));
3681     addDeferredDeclToEmit(GD);
3682   } else {
3683     // Otherwise, remember that we saw a deferred decl with this name.  The
3684     // first use of the mangled name will cause it to move into
3685     // DeferredDeclsToEmit.
3686     DeferredDecls[MangledName] = GD;
3687   }
3688 }
3689 
3690 // Check if T is a class type with a destructor that's not dllimport.
3691 static bool HasNonDllImportDtor(QualType T) {
3692   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3693     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3694       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3695         return true;
3696 
3697   return false;
3698 }
3699 
3700 namespace {
3701   struct FunctionIsDirectlyRecursive
3702       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3703     const StringRef Name;
3704     const Builtin::Context &BI;
3705     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3706         : Name(N), BI(C) {}
3707 
3708     bool VisitCallExpr(const CallExpr *E) {
3709       const FunctionDecl *FD = E->getDirectCallee();
3710       if (!FD)
3711         return false;
3712       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3713       if (Attr && Name == Attr->getLabel())
3714         return true;
3715       unsigned BuiltinID = FD->getBuiltinID();
3716       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3717         return false;
3718       StringRef BuiltinName = BI.getName(BuiltinID);
3719       if (BuiltinName.startswith("__builtin_") &&
3720           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3721         return true;
3722       }
3723       return false;
3724     }
3725 
3726     bool VisitStmt(const Stmt *S) {
3727       for (const Stmt *Child : S->children())
3728         if (Child && this->Visit(Child))
3729           return true;
3730       return false;
3731     }
3732   };
3733 
3734   // Make sure we're not referencing non-imported vars or functions.
3735   struct DLLImportFunctionVisitor
3736       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3737     bool SafeToInline = true;
3738 
3739     bool shouldVisitImplicitCode() const { return true; }
3740 
3741     bool VisitVarDecl(VarDecl *VD) {
3742       if (VD->getTLSKind()) {
3743         // A thread-local variable cannot be imported.
3744         SafeToInline = false;
3745         return SafeToInline;
3746       }
3747 
3748       // A variable definition might imply a destructor call.
3749       if (VD->isThisDeclarationADefinition())
3750         SafeToInline = !HasNonDllImportDtor(VD->getType());
3751 
3752       return SafeToInline;
3753     }
3754 
3755     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3756       if (const auto *D = E->getTemporary()->getDestructor())
3757         SafeToInline = D->hasAttr<DLLImportAttr>();
3758       return SafeToInline;
3759     }
3760 
3761     bool VisitDeclRefExpr(DeclRefExpr *E) {
3762       ValueDecl *VD = E->getDecl();
3763       if (isa<FunctionDecl>(VD))
3764         SafeToInline = VD->hasAttr<DLLImportAttr>();
3765       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3766         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3767       return SafeToInline;
3768     }
3769 
3770     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3771       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3772       return SafeToInline;
3773     }
3774 
3775     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3776       CXXMethodDecl *M = E->getMethodDecl();
3777       if (!M) {
3778         // Call through a pointer to member function. This is safe to inline.
3779         SafeToInline = true;
3780       } else {
3781         SafeToInline = M->hasAttr<DLLImportAttr>();
3782       }
3783       return SafeToInline;
3784     }
3785 
3786     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3787       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3788       return SafeToInline;
3789     }
3790 
3791     bool VisitCXXNewExpr(CXXNewExpr *E) {
3792       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3793       return SafeToInline;
3794     }
3795   };
3796 }
3797 
3798 // isTriviallyRecursive - Check if this function calls another
3799 // decl that, because of the asm attribute or the other decl being a builtin,
3800 // ends up pointing to itself.
3801 bool
3802 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3803   StringRef Name;
3804   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3805     // asm labels are a special kind of mangling we have to support.
3806     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3807     if (!Attr)
3808       return false;
3809     Name = Attr->getLabel();
3810   } else {
3811     Name = FD->getName();
3812   }
3813 
3814   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3815   const Stmt *Body = FD->getBody();
3816   return Body ? Walker.Visit(Body) : false;
3817 }
3818 
3819 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3820   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3821     return true;
3822   const auto *F = cast<FunctionDecl>(GD.getDecl());
3823   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3824     return false;
3825 
3826   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3827     // Check whether it would be safe to inline this dllimport function.
3828     DLLImportFunctionVisitor Visitor;
3829     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3830     if (!Visitor.SafeToInline)
3831       return false;
3832 
3833     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3834       // Implicit destructor invocations aren't captured in the AST, so the
3835       // check above can't see them. Check for them manually here.
3836       for (const Decl *Member : Dtor->getParent()->decls())
3837         if (isa<FieldDecl>(Member))
3838           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3839             return false;
3840       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3841         if (HasNonDllImportDtor(B.getType()))
3842           return false;
3843     }
3844   }
3845 
3846   // Inline builtins declaration must be emitted. They often are fortified
3847   // functions.
3848   if (F->isInlineBuiltinDeclaration())
3849     return true;
3850 
3851   // PR9614. Avoid cases where the source code is lying to us. An available
3852   // externally function should have an equivalent function somewhere else,
3853   // but a function that calls itself through asm label/`__builtin_` trickery is
3854   // clearly not equivalent to the real implementation.
3855   // This happens in glibc's btowc and in some configure checks.
3856   return !isTriviallyRecursive(F);
3857 }
3858 
3859 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3860   return CodeGenOpts.OptimizationLevel > 0;
3861 }
3862 
3863 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3864                                                        llvm::GlobalValue *GV) {
3865   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3866 
3867   if (FD->isCPUSpecificMultiVersion()) {
3868     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3869     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3870       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3871   } else if (FD->isTargetClonesMultiVersion()) {
3872     auto *Clone = FD->getAttr<TargetClonesAttr>();
3873     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3874       if (Clone->isFirstOfVersion(I))
3875         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3876     // Ensure that the resolver function is also emitted.
3877     GetOrCreateMultiVersionResolver(GD);
3878   } else
3879     EmitGlobalFunctionDefinition(GD, GV);
3880 }
3881 
3882 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3883   const auto *D = cast<ValueDecl>(GD.getDecl());
3884 
3885   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3886                                  Context.getSourceManager(),
3887                                  "Generating code for declaration");
3888 
3889   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3890     // At -O0, don't generate IR for functions with available_externally
3891     // linkage.
3892     if (!shouldEmitFunction(GD))
3893       return;
3894 
3895     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3896       std::string Name;
3897       llvm::raw_string_ostream OS(Name);
3898       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3899                                /*Qualified=*/true);
3900       return Name;
3901     });
3902 
3903     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3904       // Make sure to emit the definition(s) before we emit the thunks.
3905       // This is necessary for the generation of certain thunks.
3906       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3907         ABI->emitCXXStructor(GD);
3908       else if (FD->isMultiVersion())
3909         EmitMultiVersionFunctionDefinition(GD, GV);
3910       else
3911         EmitGlobalFunctionDefinition(GD, GV);
3912 
3913       if (Method->isVirtual())
3914         getVTables().EmitThunks(GD);
3915 
3916       return;
3917     }
3918 
3919     if (FD->isMultiVersion())
3920       return EmitMultiVersionFunctionDefinition(GD, GV);
3921     return EmitGlobalFunctionDefinition(GD, GV);
3922   }
3923 
3924   if (const auto *VD = dyn_cast<VarDecl>(D))
3925     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3926 
3927   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3928 }
3929 
3930 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3931                                                       llvm::Function *NewFn);
3932 
3933 static unsigned
3934 TargetMVPriority(const TargetInfo &TI,
3935                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3936   unsigned Priority = 0;
3937   unsigned NumFeatures = 0;
3938   for (StringRef Feat : RO.Conditions.Features) {
3939     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3940     NumFeatures++;
3941   }
3942 
3943   if (!RO.Conditions.Architecture.empty())
3944     Priority = std::max(
3945         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3946 
3947   Priority += TI.multiVersionFeatureCost() * NumFeatures;
3948 
3949   return Priority;
3950 }
3951 
3952 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3953 // TU can forward declare the function without causing problems.  Particularly
3954 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3955 // work with internal linkage functions, so that the same function name can be
3956 // used with internal linkage in multiple TUs.
3957 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3958                                                        GlobalDecl GD) {
3959   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3960   if (FD->getFormalLinkage() == InternalLinkage)
3961     return llvm::GlobalValue::InternalLinkage;
3962   return llvm::GlobalValue::WeakODRLinkage;
3963 }
3964 
3965 void CodeGenModule::emitMultiVersionFunctions() {
3966   std::vector<GlobalDecl> MVFuncsToEmit;
3967   MultiVersionFuncs.swap(MVFuncsToEmit);
3968   for (GlobalDecl GD : MVFuncsToEmit) {
3969     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3970     assert(FD && "Expected a FunctionDecl");
3971 
3972     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3973     if (FD->isTargetMultiVersion()) {
3974       getContext().forEachMultiversionedFunctionVersion(
3975           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3976             GlobalDecl CurGD{
3977                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3978             StringRef MangledName = getMangledName(CurGD);
3979             llvm::Constant *Func = GetGlobalValue(MangledName);
3980             if (!Func) {
3981               if (CurFD->isDefined()) {
3982                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3983                 Func = GetGlobalValue(MangledName);
3984               } else {
3985                 const CGFunctionInfo &FI =
3986                     getTypes().arrangeGlobalDeclaration(GD);
3987                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3988                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3989                                          /*DontDefer=*/false, ForDefinition);
3990               }
3991               assert(Func && "This should have just been created");
3992             }
3993             if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) {
3994               const auto *TA = CurFD->getAttr<TargetAttr>();
3995               llvm::SmallVector<StringRef, 8> Feats;
3996               TA->getAddedFeatures(Feats);
3997               Options.emplace_back(cast<llvm::Function>(Func),
3998                                    TA->getArchitecture(), Feats);
3999             } else {
4000               const auto *TVA = CurFD->getAttr<TargetVersionAttr>();
4001               llvm::SmallVector<StringRef, 8> Feats;
4002               TVA->getFeatures(Feats);
4003               Options.emplace_back(cast<llvm::Function>(Func),
4004                                    /*Architecture*/ "", Feats);
4005             }
4006           });
4007     } else if (FD->isTargetClonesMultiVersion()) {
4008       const auto *TC = FD->getAttr<TargetClonesAttr>();
4009       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
4010            ++VersionIndex) {
4011         if (!TC->isFirstOfVersion(VersionIndex))
4012           continue;
4013         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
4014                          VersionIndex};
4015         StringRef Version = TC->getFeatureStr(VersionIndex);
4016         StringRef MangledName = getMangledName(CurGD);
4017         llvm::Constant *Func = GetGlobalValue(MangledName);
4018         if (!Func) {
4019           if (FD->isDefined()) {
4020             EmitGlobalFunctionDefinition(CurGD, nullptr);
4021             Func = GetGlobalValue(MangledName);
4022           } else {
4023             const CGFunctionInfo &FI =
4024                 getTypes().arrangeGlobalDeclaration(CurGD);
4025             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4026             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4027                                      /*DontDefer=*/false, ForDefinition);
4028           }
4029           assert(Func && "This should have just been created");
4030         }
4031 
4032         StringRef Architecture;
4033         llvm::SmallVector<StringRef, 1> Feature;
4034 
4035         if (getTarget().getTriple().isAArch64()) {
4036           if (Version != "default") {
4037             llvm::SmallVector<StringRef, 8> VerFeats;
4038             Version.split(VerFeats, "+");
4039             for (auto &CurFeat : VerFeats)
4040               Feature.push_back(CurFeat.trim());
4041           }
4042         } else {
4043           if (Version.startswith("arch="))
4044             Architecture = Version.drop_front(sizeof("arch=") - 1);
4045           else if (Version != "default")
4046             Feature.push_back(Version);
4047         }
4048 
4049         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
4050       }
4051     } else {
4052       assert(0 && "Expected a target or target_clones multiversion function");
4053       continue;
4054     }
4055 
4056     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4057     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
4058       ResolverConstant = IFunc->getResolver();
4059     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4060 
4061     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4062 
4063     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4064       ResolverFunc->setComdat(
4065           getModule().getOrInsertComdat(ResolverFunc->getName()));
4066 
4067     const TargetInfo &TI = getTarget();
4068     llvm::stable_sort(
4069         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4070                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4071           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4072         });
4073     CodeGenFunction CGF(*this);
4074     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4075   }
4076 
4077   // Ensure that any additions to the deferred decls list caused by emitting a
4078   // variant are emitted.  This can happen when the variant itself is inline and
4079   // calls a function without linkage.
4080   if (!MVFuncsToEmit.empty())
4081     EmitDeferred();
4082 
4083   // Ensure that any additions to the multiversion funcs list from either the
4084   // deferred decls or the multiversion functions themselves are emitted.
4085   if (!MultiVersionFuncs.empty())
4086     emitMultiVersionFunctions();
4087 }
4088 
4089 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4090   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4091   assert(FD && "Not a FunctionDecl?");
4092   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4093   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4094   assert(DD && "Not a cpu_dispatch Function?");
4095 
4096   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4097   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4098 
4099   StringRef ResolverName = getMangledName(GD);
4100   UpdateMultiVersionNames(GD, FD, ResolverName);
4101 
4102   llvm::Type *ResolverType;
4103   GlobalDecl ResolverGD;
4104   if (getTarget().supportsIFunc()) {
4105     ResolverType = llvm::FunctionType::get(
4106         llvm::PointerType::get(DeclTy,
4107                                getTypes().getTargetAddressSpace(FD->getType())),
4108         false);
4109   }
4110   else {
4111     ResolverType = DeclTy;
4112     ResolverGD = GD;
4113   }
4114 
4115   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4116       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4117   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4118   if (supportsCOMDAT())
4119     ResolverFunc->setComdat(
4120         getModule().getOrInsertComdat(ResolverFunc->getName()));
4121 
4122   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4123   const TargetInfo &Target = getTarget();
4124   unsigned Index = 0;
4125   for (const IdentifierInfo *II : DD->cpus()) {
4126     // Get the name of the target function so we can look it up/create it.
4127     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4128                               getCPUSpecificMangling(*this, II->getName());
4129 
4130     llvm::Constant *Func = GetGlobalValue(MangledName);
4131 
4132     if (!Func) {
4133       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4134       if (ExistingDecl.getDecl() &&
4135           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4136         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4137         Func = GetGlobalValue(MangledName);
4138       } else {
4139         if (!ExistingDecl.getDecl())
4140           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4141 
4142       Func = GetOrCreateLLVMFunction(
4143           MangledName, DeclTy, ExistingDecl,
4144           /*ForVTable=*/false, /*DontDefer=*/true,
4145           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4146       }
4147     }
4148 
4149     llvm::SmallVector<StringRef, 32> Features;
4150     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4151     llvm::transform(Features, Features.begin(),
4152                     [](StringRef Str) { return Str.substr(1); });
4153     llvm::erase_if(Features, [&Target](StringRef Feat) {
4154       return !Target.validateCpuSupports(Feat);
4155     });
4156     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4157     ++Index;
4158   }
4159 
4160   llvm::stable_sort(
4161       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4162                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4163         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4164                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4165       });
4166 
4167   // If the list contains multiple 'default' versions, such as when it contains
4168   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4169   // always run on at least a 'pentium'). We do this by deleting the 'least
4170   // advanced' (read, lowest mangling letter).
4171   while (Options.size() > 1 &&
4172          llvm::all_of(llvm::X86::getCpuSupportsMask(
4173                           (Options.end() - 2)->Conditions.Features),
4174                       [](auto X) { return X == 0; })) {
4175     StringRef LHSName = (Options.end() - 2)->Function->getName();
4176     StringRef RHSName = (Options.end() - 1)->Function->getName();
4177     if (LHSName.compare(RHSName) < 0)
4178       Options.erase(Options.end() - 2);
4179     else
4180       Options.erase(Options.end() - 1);
4181   }
4182 
4183   CodeGenFunction CGF(*this);
4184   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4185 
4186   if (getTarget().supportsIFunc()) {
4187     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4188     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4189 
4190     // Fix up function declarations that were created for cpu_specific before
4191     // cpu_dispatch was known
4192     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4193       assert(cast<llvm::Function>(IFunc)->isDeclaration());
4194       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4195                                            &getModule());
4196       GI->takeName(IFunc);
4197       IFunc->replaceAllUsesWith(GI);
4198       IFunc->eraseFromParent();
4199       IFunc = GI;
4200     }
4201 
4202     std::string AliasName = getMangledNameImpl(
4203         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4204     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4205     if (!AliasFunc) {
4206       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4207                                            &getModule());
4208       SetCommonAttributes(GD, GA);
4209     }
4210   }
4211 }
4212 
4213 /// If a dispatcher for the specified mangled name is not in the module, create
4214 /// and return an llvm Function with the specified type.
4215 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4216   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4217   assert(FD && "Not a FunctionDecl?");
4218 
4219   std::string MangledName =
4220       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4221 
4222   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4223   // a separate resolver).
4224   std::string ResolverName = MangledName;
4225   if (getTarget().supportsIFunc())
4226     ResolverName += ".ifunc";
4227   else if (FD->isTargetMultiVersion())
4228     ResolverName += ".resolver";
4229 
4230   // If the resolver has already been created, just return it.
4231   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
4232     return ResolverGV;
4233 
4234   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4235   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4236 
4237   // The resolver needs to be created. For target and target_clones, defer
4238   // creation until the end of the TU.
4239   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4240     MultiVersionFuncs.push_back(GD);
4241 
4242   // For cpu_specific, don't create an ifunc yet because we don't know if the
4243   // cpu_dispatch will be emitted in this translation unit.
4244   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4245     llvm::Type *ResolverType = llvm::FunctionType::get(
4246         llvm::PointerType::get(DeclTy,
4247                                getTypes().getTargetAddressSpace(FD->getType())),
4248         false);
4249     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4250         MangledName + ".resolver", ResolverType, GlobalDecl{},
4251         /*ForVTable=*/false);
4252     llvm::GlobalIFunc *GIF =
4253         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4254                                   "", Resolver, &getModule());
4255     GIF->setName(ResolverName);
4256     SetCommonAttributes(FD, GIF);
4257 
4258     return GIF;
4259   }
4260 
4261   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4262       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4263   assert(isa<llvm::GlobalValue>(Resolver) &&
4264          "Resolver should be created for the first time");
4265   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4266   return Resolver;
4267 }
4268 
4269 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4270 /// module, create and return an llvm Function with the specified type. If there
4271 /// is something in the module with the specified name, return it potentially
4272 /// bitcasted to the right type.
4273 ///
4274 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4275 /// to set the attributes on the function when it is first created.
4276 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4277     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4278     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4279     ForDefinition_t IsForDefinition) {
4280   const Decl *D = GD.getDecl();
4281 
4282   // Any attempts to use a MultiVersion function should result in retrieving
4283   // the iFunc instead. Name Mangling will handle the rest of the changes.
4284   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4285     // For the device mark the function as one that should be emitted.
4286     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4287         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4288         !DontDefer && !IsForDefinition) {
4289       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4290         GlobalDecl GDDef;
4291         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4292           GDDef = GlobalDecl(CD, GD.getCtorType());
4293         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4294           GDDef = GlobalDecl(DD, GD.getDtorType());
4295         else
4296           GDDef = GlobalDecl(FDDef);
4297         EmitGlobal(GDDef);
4298       }
4299     }
4300 
4301     if (FD->isMultiVersion()) {
4302       UpdateMultiVersionNames(GD, FD, MangledName);
4303       if (!IsForDefinition)
4304         return GetOrCreateMultiVersionResolver(GD);
4305     }
4306   }
4307 
4308   // Lookup the entry, lazily creating it if necessary.
4309   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4310   if (Entry) {
4311     if (WeakRefReferences.erase(Entry)) {
4312       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4313       if (FD && !FD->hasAttr<WeakAttr>())
4314         Entry->setLinkage(llvm::Function::ExternalLinkage);
4315     }
4316 
4317     // Handle dropped DLL attributes.
4318     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4319         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4320       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4321       setDSOLocal(Entry);
4322     }
4323 
4324     // If there are two attempts to define the same mangled name, issue an
4325     // error.
4326     if (IsForDefinition && !Entry->isDeclaration()) {
4327       GlobalDecl OtherGD;
4328       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4329       // to make sure that we issue an error only once.
4330       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4331           (GD.getCanonicalDecl().getDecl() !=
4332            OtherGD.getCanonicalDecl().getDecl()) &&
4333           DiagnosedConflictingDefinitions.insert(GD).second) {
4334         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4335             << MangledName;
4336         getDiags().Report(OtherGD.getDecl()->getLocation(),
4337                           diag::note_previous_definition);
4338       }
4339     }
4340 
4341     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4342         (Entry->getValueType() == Ty)) {
4343       return Entry;
4344     }
4345 
4346     // Make sure the result is of the correct type.
4347     // (If function is requested for a definition, we always need to create a new
4348     // function, not just return a bitcast.)
4349     if (!IsForDefinition)
4350       return llvm::ConstantExpr::getBitCast(
4351           Entry, Ty->getPointerTo(Entry->getAddressSpace()));
4352   }
4353 
4354   // This function doesn't have a complete type (for example, the return
4355   // type is an incomplete struct). Use a fake type instead, and make
4356   // sure not to try to set attributes.
4357   bool IsIncompleteFunction = false;
4358 
4359   llvm::FunctionType *FTy;
4360   if (isa<llvm::FunctionType>(Ty)) {
4361     FTy = cast<llvm::FunctionType>(Ty);
4362   } else {
4363     FTy = llvm::FunctionType::get(VoidTy, false);
4364     IsIncompleteFunction = true;
4365   }
4366 
4367   llvm::Function *F =
4368       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4369                              Entry ? StringRef() : MangledName, &getModule());
4370 
4371   // If we already created a function with the same mangled name (but different
4372   // type) before, take its name and add it to the list of functions to be
4373   // replaced with F at the end of CodeGen.
4374   //
4375   // This happens if there is a prototype for a function (e.g. "int f()") and
4376   // then a definition of a different type (e.g. "int f(int x)").
4377   if (Entry) {
4378     F->takeName(Entry);
4379 
4380     // This might be an implementation of a function without a prototype, in
4381     // which case, try to do special replacement of calls which match the new
4382     // prototype.  The really key thing here is that we also potentially drop
4383     // arguments from the call site so as to make a direct call, which makes the
4384     // inliner happier and suppresses a number of optimizer warnings (!) about
4385     // dropping arguments.
4386     if (!Entry->use_empty()) {
4387       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4388       Entry->removeDeadConstantUsers();
4389     }
4390 
4391     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4392         F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace()));
4393     addGlobalValReplacement(Entry, BC);
4394   }
4395 
4396   assert(F->getName() == MangledName && "name was uniqued!");
4397   if (D)
4398     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4399   if (ExtraAttrs.hasFnAttrs()) {
4400     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4401     F->addFnAttrs(B);
4402   }
4403 
4404   if (!DontDefer) {
4405     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4406     // each other bottoming out with the base dtor.  Therefore we emit non-base
4407     // dtors on usage, even if there is no dtor definition in the TU.
4408     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4409         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4410                                            GD.getDtorType()))
4411       addDeferredDeclToEmit(GD);
4412 
4413     // This is the first use or definition of a mangled name.  If there is a
4414     // deferred decl with this name, remember that we need to emit it at the end
4415     // of the file.
4416     auto DDI = DeferredDecls.find(MangledName);
4417     if (DDI != DeferredDecls.end()) {
4418       // Move the potentially referenced deferred decl to the
4419       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4420       // don't need it anymore).
4421       addDeferredDeclToEmit(DDI->second);
4422       DeferredDecls.erase(DDI);
4423 
4424       // Otherwise, there are cases we have to worry about where we're
4425       // using a declaration for which we must emit a definition but where
4426       // we might not find a top-level definition:
4427       //   - member functions defined inline in their classes
4428       //   - friend functions defined inline in some class
4429       //   - special member functions with implicit definitions
4430       // If we ever change our AST traversal to walk into class methods,
4431       // this will be unnecessary.
4432       //
4433       // We also don't emit a definition for a function if it's going to be an
4434       // entry in a vtable, unless it's already marked as used.
4435     } else if (getLangOpts().CPlusPlus && D) {
4436       // Look for a declaration that's lexically in a record.
4437       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4438            FD = FD->getPreviousDecl()) {
4439         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4440           if (FD->doesThisDeclarationHaveABody()) {
4441             addDeferredDeclToEmit(GD.getWithDecl(FD));
4442             break;
4443           }
4444         }
4445       }
4446     }
4447   }
4448 
4449   // Make sure the result is of the requested type.
4450   if (!IsIncompleteFunction) {
4451     assert(F->getFunctionType() == Ty);
4452     return F;
4453   }
4454 
4455   return llvm::ConstantExpr::getBitCast(F,
4456                                         Ty->getPointerTo(F->getAddressSpace()));
4457 }
4458 
4459 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4460 /// non-null, then this function will use the specified type if it has to
4461 /// create it (this occurs when we see a definition of the function).
4462 llvm::Constant *
4463 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4464                                  bool DontDefer,
4465                                  ForDefinition_t IsForDefinition) {
4466   // If there was no specific requested type, just convert it now.
4467   if (!Ty) {
4468     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4469     Ty = getTypes().ConvertType(FD->getType());
4470   }
4471 
4472   // Devirtualized destructor calls may come through here instead of via
4473   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4474   // of the complete destructor when necessary.
4475   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4476     if (getTarget().getCXXABI().isMicrosoft() &&
4477         GD.getDtorType() == Dtor_Complete &&
4478         DD->getParent()->getNumVBases() == 0)
4479       GD = GlobalDecl(DD, Dtor_Base);
4480   }
4481 
4482   StringRef MangledName = getMangledName(GD);
4483   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4484                                     /*IsThunk=*/false, llvm::AttributeList(),
4485                                     IsForDefinition);
4486   // Returns kernel handle for HIP kernel stub function.
4487   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4488       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4489     auto *Handle = getCUDARuntime().getKernelHandle(
4490         cast<llvm::Function>(F->stripPointerCasts()), GD);
4491     if (IsForDefinition)
4492       return F;
4493     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4494   }
4495   return F;
4496 }
4497 
4498 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4499   llvm::GlobalValue *F =
4500       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4501 
4502   return llvm::ConstantExpr::getBitCast(
4503       llvm::NoCFIValue::get(F),
4504       llvm::PointerType::get(VMContext, F->getAddressSpace()));
4505 }
4506 
4507 static const FunctionDecl *
4508 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4509   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4510   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4511 
4512   IdentifierInfo &CII = C.Idents.get(Name);
4513   for (const auto *Result : DC->lookup(&CII))
4514     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4515       return FD;
4516 
4517   if (!C.getLangOpts().CPlusPlus)
4518     return nullptr;
4519 
4520   // Demangle the premangled name from getTerminateFn()
4521   IdentifierInfo &CXXII =
4522       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4523           ? C.Idents.get("terminate")
4524           : C.Idents.get(Name);
4525 
4526   for (const auto &N : {"__cxxabiv1", "std"}) {
4527     IdentifierInfo &NS = C.Idents.get(N);
4528     for (const auto *Result : DC->lookup(&NS)) {
4529       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4530       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4531         for (const auto *Result : LSD->lookup(&NS))
4532           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4533             break;
4534 
4535       if (ND)
4536         for (const auto *Result : ND->lookup(&CXXII))
4537           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4538             return FD;
4539     }
4540   }
4541 
4542   return nullptr;
4543 }
4544 
4545 /// CreateRuntimeFunction - Create a new runtime function with the specified
4546 /// type and name.
4547 llvm::FunctionCallee
4548 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4549                                      llvm::AttributeList ExtraAttrs, bool Local,
4550                                      bool AssumeConvergent) {
4551   if (AssumeConvergent) {
4552     ExtraAttrs =
4553         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4554   }
4555 
4556   llvm::Constant *C =
4557       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4558                               /*DontDefer=*/false, /*IsThunk=*/false,
4559                               ExtraAttrs);
4560 
4561   if (auto *F = dyn_cast<llvm::Function>(C)) {
4562     if (F->empty()) {
4563       F->setCallingConv(getRuntimeCC());
4564 
4565       // In Windows Itanium environments, try to mark runtime functions
4566       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4567       // will link their standard library statically or dynamically. Marking
4568       // functions imported when they are not imported can cause linker errors
4569       // and warnings.
4570       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4571           !getCodeGenOpts().LTOVisibilityPublicStd) {
4572         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4573         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4574           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4575           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4576         }
4577       }
4578       setDSOLocal(F);
4579     }
4580   }
4581 
4582   return {FTy, C};
4583 }
4584 
4585 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4586 /// create and return an llvm GlobalVariable with the specified type and address
4587 /// space. If there is something in the module with the specified name, return
4588 /// it potentially bitcasted to the right type.
4589 ///
4590 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4591 /// to set the attributes on the global when it is first created.
4592 ///
4593 /// If IsForDefinition is true, it is guaranteed that an actual global with
4594 /// type Ty will be returned, not conversion of a variable with the same
4595 /// mangled name but some other type.
4596 llvm::Constant *
4597 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4598                                      LangAS AddrSpace, const VarDecl *D,
4599                                      ForDefinition_t IsForDefinition) {
4600   // Lookup the entry, lazily creating it if necessary.
4601   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4602   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4603   if (Entry) {
4604     if (WeakRefReferences.erase(Entry)) {
4605       if (D && !D->hasAttr<WeakAttr>())
4606         Entry->setLinkage(llvm::Function::ExternalLinkage);
4607     }
4608 
4609     // Handle dropped DLL attributes.
4610     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4611         !shouldMapVisibilityToDLLExport(D))
4612       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4613 
4614     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4615       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4616 
4617     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4618       return Entry;
4619 
4620     // If there are two attempts to define the same mangled name, issue an
4621     // error.
4622     if (IsForDefinition && !Entry->isDeclaration()) {
4623       GlobalDecl OtherGD;
4624       const VarDecl *OtherD;
4625 
4626       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4627       // to make sure that we issue an error only once.
4628       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4629           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4630           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4631           OtherD->hasInit() &&
4632           DiagnosedConflictingDefinitions.insert(D).second) {
4633         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4634             << MangledName;
4635         getDiags().Report(OtherGD.getDecl()->getLocation(),
4636                           diag::note_previous_definition);
4637       }
4638     }
4639 
4640     // Make sure the result is of the correct type.
4641     if (Entry->getType()->getAddressSpace() != TargetAS) {
4642       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4643                                                   Ty->getPointerTo(TargetAS));
4644     }
4645 
4646     // (If global is requested for a definition, we always need to create a new
4647     // global, not just return a bitcast.)
4648     if (!IsForDefinition)
4649       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4650   }
4651 
4652   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4653 
4654   auto *GV = new llvm::GlobalVariable(
4655       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4656       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4657       getContext().getTargetAddressSpace(DAddrSpace));
4658 
4659   // If we already created a global with the same mangled name (but different
4660   // type) before, take its name and remove it from its parent.
4661   if (Entry) {
4662     GV->takeName(Entry);
4663 
4664     if (!Entry->use_empty()) {
4665       llvm::Constant *NewPtrForOldDecl =
4666           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4667       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4668     }
4669 
4670     Entry->eraseFromParent();
4671   }
4672 
4673   // This is the first use or definition of a mangled name.  If there is a
4674   // deferred decl with this name, remember that we need to emit it at the end
4675   // of the file.
4676   auto DDI = DeferredDecls.find(MangledName);
4677   if (DDI != DeferredDecls.end()) {
4678     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4679     // list, and remove it from DeferredDecls (since we don't need it anymore).
4680     addDeferredDeclToEmit(DDI->second);
4681     DeferredDecls.erase(DDI);
4682   }
4683 
4684   // Handle things which are present even on external declarations.
4685   if (D) {
4686     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4687       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4688 
4689     // FIXME: This code is overly simple and should be merged with other global
4690     // handling.
4691     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
4692 
4693     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4694 
4695     setLinkageForGV(GV, D);
4696 
4697     if (D->getTLSKind()) {
4698       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4699         CXXThreadLocals.push_back(D);
4700       setTLSMode(GV, *D);
4701     }
4702 
4703     setGVProperties(GV, D);
4704 
4705     // If required by the ABI, treat declarations of static data members with
4706     // inline initializers as definitions.
4707     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4708       EmitGlobalVarDefinition(D);
4709     }
4710 
4711     // Emit section information for extern variables.
4712     if (D->hasExternalStorage()) {
4713       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4714         GV->setSection(SA->getName());
4715     }
4716 
4717     // Handle XCore specific ABI requirements.
4718     if (getTriple().getArch() == llvm::Triple::xcore &&
4719         D->getLanguageLinkage() == CLanguageLinkage &&
4720         D->getType().isConstant(Context) &&
4721         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4722       GV->setSection(".cp.rodata");
4723 
4724     // Check if we a have a const declaration with an initializer, we may be
4725     // able to emit it as available_externally to expose it's value to the
4726     // optimizer.
4727     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4728         D->getType().isConstQualified() && !GV->hasInitializer() &&
4729         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4730       const auto *Record =
4731           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4732       bool HasMutableFields = Record && Record->hasMutableFields();
4733       if (!HasMutableFields) {
4734         const VarDecl *InitDecl;
4735         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4736         if (InitExpr) {
4737           ConstantEmitter emitter(*this);
4738           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4739           if (Init) {
4740             auto *InitType = Init->getType();
4741             if (GV->getValueType() != InitType) {
4742               // The type of the initializer does not match the definition.
4743               // This happens when an initializer has a different type from
4744               // the type of the global (because of padding at the end of a
4745               // structure for instance).
4746               GV->setName(StringRef());
4747               // Make a new global with the correct type, this is now guaranteed
4748               // to work.
4749               auto *NewGV = cast<llvm::GlobalVariable>(
4750                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4751                       ->stripPointerCasts());
4752 
4753               // Erase the old global, since it is no longer used.
4754               GV->eraseFromParent();
4755               GV = NewGV;
4756             } else {
4757               GV->setInitializer(Init);
4758               GV->setConstant(true);
4759               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4760             }
4761             emitter.finalize(GV);
4762           }
4763         }
4764       }
4765     }
4766   }
4767 
4768   if (D &&
4769       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
4770     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4771     // External HIP managed variables needed to be recorded for transformation
4772     // in both device and host compilations.
4773     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4774         D->hasExternalStorage())
4775       getCUDARuntime().handleVarRegistration(D, *GV);
4776   }
4777 
4778   if (D)
4779     SanitizerMD->reportGlobal(GV, *D);
4780 
4781   LangAS ExpectedAS =
4782       D ? D->getType().getAddressSpace()
4783         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4784   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4785   if (DAddrSpace != ExpectedAS) {
4786     return getTargetCodeGenInfo().performAddrSpaceCast(
4787         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4788   }
4789 
4790   return GV;
4791 }
4792 
4793 llvm::Constant *
4794 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4795   const Decl *D = GD.getDecl();
4796 
4797   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4798     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4799                                 /*DontDefer=*/false, IsForDefinition);
4800 
4801   if (isa<CXXMethodDecl>(D)) {
4802     auto FInfo =
4803         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4804     auto Ty = getTypes().GetFunctionType(*FInfo);
4805     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4806                              IsForDefinition);
4807   }
4808 
4809   if (isa<FunctionDecl>(D)) {
4810     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4811     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4812     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4813                              IsForDefinition);
4814   }
4815 
4816   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4817 }
4818 
4819 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4820     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4821     llvm::Align Alignment) {
4822   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4823   llvm::GlobalVariable *OldGV = nullptr;
4824 
4825   if (GV) {
4826     // Check if the variable has the right type.
4827     if (GV->getValueType() == Ty)
4828       return GV;
4829 
4830     // Because C++ name mangling, the only way we can end up with an already
4831     // existing global with the same name is if it has been declared extern "C".
4832     assert(GV->isDeclaration() && "Declaration has wrong type!");
4833     OldGV = GV;
4834   }
4835 
4836   // Create a new variable.
4837   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4838                                 Linkage, nullptr, Name);
4839 
4840   if (OldGV) {
4841     // Replace occurrences of the old variable if needed.
4842     GV->takeName(OldGV);
4843 
4844     if (!OldGV->use_empty()) {
4845       llvm::Constant *NewPtrForOldDecl =
4846       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4847       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4848     }
4849 
4850     OldGV->eraseFromParent();
4851   }
4852 
4853   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4854       !GV->hasAvailableExternallyLinkage())
4855     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4856 
4857   GV->setAlignment(Alignment);
4858 
4859   return GV;
4860 }
4861 
4862 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4863 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4864 /// then it will be created with the specified type instead of whatever the
4865 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4866 /// that an actual global with type Ty will be returned, not conversion of a
4867 /// variable with the same mangled name but some other type.
4868 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4869                                                   llvm::Type *Ty,
4870                                            ForDefinition_t IsForDefinition) {
4871   assert(D->hasGlobalStorage() && "Not a global variable");
4872   QualType ASTTy = D->getType();
4873   if (!Ty)
4874     Ty = getTypes().ConvertTypeForMem(ASTTy);
4875 
4876   StringRef MangledName = getMangledName(D);
4877   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4878                                IsForDefinition);
4879 }
4880 
4881 /// CreateRuntimeVariable - Create a new runtime global variable with the
4882 /// specified type and name.
4883 llvm::Constant *
4884 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4885                                      StringRef Name) {
4886   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4887                                                        : LangAS::Default;
4888   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4889   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4890   return Ret;
4891 }
4892 
4893 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4894   assert(!D->getInit() && "Cannot emit definite definitions here!");
4895 
4896   StringRef MangledName = getMangledName(D);
4897   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4898 
4899   // We already have a definition, not declaration, with the same mangled name.
4900   // Emitting of declaration is not required (and actually overwrites emitted
4901   // definition).
4902   if (GV && !GV->isDeclaration())
4903     return;
4904 
4905   // If we have not seen a reference to this variable yet, place it into the
4906   // deferred declarations table to be emitted if needed later.
4907   if (!MustBeEmitted(D) && !GV) {
4908       DeferredDecls[MangledName] = D;
4909       return;
4910   }
4911 
4912   // The tentative definition is the only definition.
4913   EmitGlobalVarDefinition(D);
4914 }
4915 
4916 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4917   EmitExternalVarDeclaration(D);
4918 }
4919 
4920 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4921   return Context.toCharUnitsFromBits(
4922       getDataLayout().getTypeStoreSizeInBits(Ty));
4923 }
4924 
4925 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4926   if (LangOpts.OpenCL) {
4927     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4928     assert(AS == LangAS::opencl_global ||
4929            AS == LangAS::opencl_global_device ||
4930            AS == LangAS::opencl_global_host ||
4931            AS == LangAS::opencl_constant ||
4932            AS == LangAS::opencl_local ||
4933            AS >= LangAS::FirstTargetAddressSpace);
4934     return AS;
4935   }
4936 
4937   if (LangOpts.SYCLIsDevice &&
4938       (!D || D->getType().getAddressSpace() == LangAS::Default))
4939     return LangAS::sycl_global;
4940 
4941   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4942     if (D) {
4943       if (D->hasAttr<CUDAConstantAttr>())
4944         return LangAS::cuda_constant;
4945       if (D->hasAttr<CUDASharedAttr>())
4946         return LangAS::cuda_shared;
4947       if (D->hasAttr<CUDADeviceAttr>())
4948         return LangAS::cuda_device;
4949       if (D->getType().isConstQualified())
4950         return LangAS::cuda_constant;
4951     }
4952     return LangAS::cuda_device;
4953   }
4954 
4955   if (LangOpts.OpenMP) {
4956     LangAS AS;
4957     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4958       return AS;
4959   }
4960   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4961 }
4962 
4963 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4964   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4965   if (LangOpts.OpenCL)
4966     return LangAS::opencl_constant;
4967   if (LangOpts.SYCLIsDevice)
4968     return LangAS::sycl_global;
4969   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4970     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4971     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4972     // with OpVariable instructions with Generic storage class which is not
4973     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4974     // UniformConstant storage class is not viable as pointers to it may not be
4975     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4976     return LangAS::cuda_device;
4977   if (auto AS = getTarget().getConstantAddressSpace())
4978     return *AS;
4979   return LangAS::Default;
4980 }
4981 
4982 // In address space agnostic languages, string literals are in default address
4983 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4984 // emitted in constant address space in LLVM IR. To be consistent with other
4985 // parts of AST, string literal global variables in constant address space
4986 // need to be casted to default address space before being put into address
4987 // map and referenced by other part of CodeGen.
4988 // In OpenCL, string literals are in constant address space in AST, therefore
4989 // they should not be casted to default address space.
4990 static llvm::Constant *
4991 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4992                                        llvm::GlobalVariable *GV) {
4993   llvm::Constant *Cast = GV;
4994   if (!CGM.getLangOpts().OpenCL) {
4995     auto AS = CGM.GetGlobalConstantAddressSpace();
4996     if (AS != LangAS::Default)
4997       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4998           CGM, GV, AS, LangAS::Default,
4999           GV->getValueType()->getPointerTo(
5000               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5001   }
5002   return Cast;
5003 }
5004 
5005 template<typename SomeDecl>
5006 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5007                                                llvm::GlobalValue *GV) {
5008   if (!getLangOpts().CPlusPlus)
5009     return;
5010 
5011   // Must have 'used' attribute, or else inline assembly can't rely on
5012   // the name existing.
5013   if (!D->template hasAttr<UsedAttr>())
5014     return;
5015 
5016   // Must have internal linkage and an ordinary name.
5017   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
5018     return;
5019 
5020   // Must be in an extern "C" context. Entities declared directly within
5021   // a record are not extern "C" even if the record is in such a context.
5022   const SomeDecl *First = D->getFirstDecl();
5023   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5024     return;
5025 
5026   // OK, this is an internal linkage entity inside an extern "C" linkage
5027   // specification. Make a note of that so we can give it the "expected"
5028   // mangled name if nothing else is using that name.
5029   std::pair<StaticExternCMap::iterator, bool> R =
5030       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5031 
5032   // If we have multiple internal linkage entities with the same name
5033   // in extern "C" regions, none of them gets that name.
5034   if (!R.second)
5035     R.first->second = nullptr;
5036 }
5037 
5038 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5039   if (!CGM.supportsCOMDAT())
5040     return false;
5041 
5042   if (D.hasAttr<SelectAnyAttr>())
5043     return true;
5044 
5045   GVALinkage Linkage;
5046   if (auto *VD = dyn_cast<VarDecl>(&D))
5047     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5048   else
5049     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5050 
5051   switch (Linkage) {
5052   case GVA_Internal:
5053   case GVA_AvailableExternally:
5054   case GVA_StrongExternal:
5055     return false;
5056   case GVA_DiscardableODR:
5057   case GVA_StrongODR:
5058     return true;
5059   }
5060   llvm_unreachable("No such linkage");
5061 }
5062 
5063 bool CodeGenModule::supportsCOMDAT() const {
5064   return getTriple().supportsCOMDAT();
5065 }
5066 
5067 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5068                                           llvm::GlobalObject &GO) {
5069   if (!shouldBeInCOMDAT(*this, D))
5070     return;
5071   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5072 }
5073 
5074 /// Pass IsTentative as true if you want to create a tentative definition.
5075 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5076                                             bool IsTentative) {
5077   // OpenCL global variables of sampler type are translated to function calls,
5078   // therefore no need to be translated.
5079   QualType ASTTy = D->getType();
5080   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5081     return;
5082 
5083   // If this is OpenMP device, check if it is legal to emit this global
5084   // normally.
5085   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5086       OpenMPRuntime->emitTargetGlobalVariable(D))
5087     return;
5088 
5089   llvm::TrackingVH<llvm::Constant> Init;
5090   bool NeedsGlobalCtor = false;
5091   // Whether the definition of the variable is available externally.
5092   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5093   // since this is the job for its original source.
5094   bool IsDefinitionAvailableExternally =
5095       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5096   bool NeedsGlobalDtor =
5097       !IsDefinitionAvailableExternally &&
5098       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5099 
5100   const VarDecl *InitDecl;
5101   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5102 
5103   std::optional<ConstantEmitter> emitter;
5104 
5105   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5106   // as part of their declaration."  Sema has already checked for
5107   // error cases, so we just need to set Init to UndefValue.
5108   bool IsCUDASharedVar =
5109       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5110   // Shadows of initialized device-side global variables are also left
5111   // undefined.
5112   // Managed Variables should be initialized on both host side and device side.
5113   bool IsCUDAShadowVar =
5114       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5115       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5116        D->hasAttr<CUDASharedAttr>());
5117   bool IsCUDADeviceShadowVar =
5118       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5119       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5120        D->getType()->isCUDADeviceBuiltinTextureType());
5121   if (getLangOpts().CUDA &&
5122       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5123     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5124   else if (D->hasAttr<LoaderUninitializedAttr>())
5125     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5126   else if (!InitExpr) {
5127     // This is a tentative definition; tentative definitions are
5128     // implicitly initialized with { 0 }.
5129     //
5130     // Note that tentative definitions are only emitted at the end of
5131     // a translation unit, so they should never have incomplete
5132     // type. In addition, EmitTentativeDefinition makes sure that we
5133     // never attempt to emit a tentative definition if a real one
5134     // exists. A use may still exists, however, so we still may need
5135     // to do a RAUW.
5136     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5137     Init = EmitNullConstant(D->getType());
5138   } else {
5139     initializedGlobalDecl = GlobalDecl(D);
5140     emitter.emplace(*this);
5141     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5142     if (!Initializer) {
5143       QualType T = InitExpr->getType();
5144       if (D->getType()->isReferenceType())
5145         T = D->getType();
5146 
5147       if (getLangOpts().CPlusPlus) {
5148         if (InitDecl->hasFlexibleArrayInit(getContext()))
5149           ErrorUnsupported(D, "flexible array initializer");
5150         Init = EmitNullConstant(T);
5151 
5152         if (!IsDefinitionAvailableExternally)
5153           NeedsGlobalCtor = true;
5154       } else {
5155         ErrorUnsupported(D, "static initializer");
5156         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5157       }
5158     } else {
5159       Init = Initializer;
5160       // We don't need an initializer, so remove the entry for the delayed
5161       // initializer position (just in case this entry was delayed) if we
5162       // also don't need to register a destructor.
5163       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5164         DelayedCXXInitPosition.erase(D);
5165 
5166 #ifndef NDEBUG
5167       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5168                           InitDecl->getFlexibleArrayInitChars(getContext());
5169       CharUnits CstSize = CharUnits::fromQuantity(
5170           getDataLayout().getTypeAllocSize(Init->getType()));
5171       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5172 #endif
5173     }
5174   }
5175 
5176   llvm::Type* InitType = Init->getType();
5177   llvm::Constant *Entry =
5178       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5179 
5180   // Strip off pointer casts if we got them.
5181   Entry = Entry->stripPointerCasts();
5182 
5183   // Entry is now either a Function or GlobalVariable.
5184   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5185 
5186   // We have a definition after a declaration with the wrong type.
5187   // We must make a new GlobalVariable* and update everything that used OldGV
5188   // (a declaration or tentative definition) with the new GlobalVariable*
5189   // (which will be a definition).
5190   //
5191   // This happens if there is a prototype for a global (e.g.
5192   // "extern int x[];") and then a definition of a different type (e.g.
5193   // "int x[10];"). This also happens when an initializer has a different type
5194   // from the type of the global (this happens with unions).
5195   if (!GV || GV->getValueType() != InitType ||
5196       GV->getType()->getAddressSpace() !=
5197           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5198 
5199     // Move the old entry aside so that we'll create a new one.
5200     Entry->setName(StringRef());
5201 
5202     // Make a new global with the correct type, this is now guaranteed to work.
5203     GV = cast<llvm::GlobalVariable>(
5204         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5205             ->stripPointerCasts());
5206 
5207     // Replace all uses of the old global with the new global
5208     llvm::Constant *NewPtrForOldDecl =
5209         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5210                                                              Entry->getType());
5211     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5212 
5213     // Erase the old global, since it is no longer used.
5214     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5215   }
5216 
5217   MaybeHandleStaticInExternC(D, GV);
5218 
5219   if (D->hasAttr<AnnotateAttr>())
5220     AddGlobalAnnotations(D, GV);
5221 
5222   // Set the llvm linkage type as appropriate.
5223   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5224 
5225   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5226   // the device. [...]"
5227   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5228   // __device__, declares a variable that: [...]
5229   // Is accessible from all the threads within the grid and from the host
5230   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5231   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5232   if (LangOpts.CUDA) {
5233     if (LangOpts.CUDAIsDevice) {
5234       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5235           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5236            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5237            D->getType()->isCUDADeviceBuiltinTextureType()))
5238         GV->setExternallyInitialized(true);
5239     } else {
5240       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5241     }
5242     getCUDARuntime().handleVarRegistration(D, *GV);
5243   }
5244 
5245   GV->setInitializer(Init);
5246   if (emitter)
5247     emitter->finalize(GV);
5248 
5249   // If it is safe to mark the global 'constant', do so now.
5250   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5251                   D->getType().isConstantStorage(getContext(), true, true));
5252 
5253   // If it is in a read-only section, mark it 'constant'.
5254   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5255     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5256     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5257       GV->setConstant(true);
5258   }
5259 
5260   CharUnits AlignVal = getContext().getDeclAlign(D);
5261   // Check for alignment specifed in an 'omp allocate' directive.
5262   if (std::optional<CharUnits> AlignValFromAllocate =
5263           getOMPAllocateAlignment(D))
5264     AlignVal = *AlignValFromAllocate;
5265   GV->setAlignment(AlignVal.getAsAlign());
5266 
5267   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5268   // function is only defined alongside the variable, not also alongside
5269   // callers. Normally, all accesses to a thread_local go through the
5270   // thread-wrapper in order to ensure initialization has occurred, underlying
5271   // variable will never be used other than the thread-wrapper, so it can be
5272   // converted to internal linkage.
5273   //
5274   // However, if the variable has the 'constinit' attribute, it _can_ be
5275   // referenced directly, without calling the thread-wrapper, so the linkage
5276   // must not be changed.
5277   //
5278   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5279   // weak or linkonce, the de-duplication semantics are important to preserve,
5280   // so we don't change the linkage.
5281   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5282       Linkage == llvm::GlobalValue::ExternalLinkage &&
5283       Context.getTargetInfo().getTriple().isOSDarwin() &&
5284       !D->hasAttr<ConstInitAttr>())
5285     Linkage = llvm::GlobalValue::InternalLinkage;
5286 
5287   GV->setLinkage(Linkage);
5288   if (D->hasAttr<DLLImportAttr>())
5289     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5290   else if (D->hasAttr<DLLExportAttr>())
5291     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5292   else
5293     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5294 
5295   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5296     // common vars aren't constant even if declared const.
5297     GV->setConstant(false);
5298     // Tentative definition of global variables may be initialized with
5299     // non-zero null pointers. In this case they should have weak linkage
5300     // since common linkage must have zero initializer and must not have
5301     // explicit section therefore cannot have non-zero initial value.
5302     if (!GV->getInitializer()->isNullValue())
5303       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5304   }
5305 
5306   setNonAliasAttributes(D, GV);
5307 
5308   if (D->getTLSKind() && !GV->isThreadLocal()) {
5309     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5310       CXXThreadLocals.push_back(D);
5311     setTLSMode(GV, *D);
5312   }
5313 
5314   maybeSetTrivialComdat(*D, *GV);
5315 
5316   // Emit the initializer function if necessary.
5317   if (NeedsGlobalCtor || NeedsGlobalDtor)
5318     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5319 
5320   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5321 
5322   // Emit global variable debug information.
5323   if (CGDebugInfo *DI = getModuleDebugInfo())
5324     if (getCodeGenOpts().hasReducedDebugInfo())
5325       DI->EmitGlobalVariable(GV, D);
5326 }
5327 
5328 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5329   if (CGDebugInfo *DI = getModuleDebugInfo())
5330     if (getCodeGenOpts().hasReducedDebugInfo()) {
5331       QualType ASTTy = D->getType();
5332       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5333       llvm::Constant *GV =
5334           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5335       DI->EmitExternalVariable(
5336           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5337     }
5338 }
5339 
5340 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5341                                       CodeGenModule &CGM, const VarDecl *D,
5342                                       bool NoCommon) {
5343   // Don't give variables common linkage if -fno-common was specified unless it
5344   // was overridden by a NoCommon attribute.
5345   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5346     return true;
5347 
5348   // C11 6.9.2/2:
5349   //   A declaration of an identifier for an object that has file scope without
5350   //   an initializer, and without a storage-class specifier or with the
5351   //   storage-class specifier static, constitutes a tentative definition.
5352   if (D->getInit() || D->hasExternalStorage())
5353     return true;
5354 
5355   // A variable cannot be both common and exist in a section.
5356   if (D->hasAttr<SectionAttr>())
5357     return true;
5358 
5359   // A variable cannot be both common and exist in a section.
5360   // We don't try to determine which is the right section in the front-end.
5361   // If no specialized section name is applicable, it will resort to default.
5362   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5363       D->hasAttr<PragmaClangDataSectionAttr>() ||
5364       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5365       D->hasAttr<PragmaClangRodataSectionAttr>())
5366     return true;
5367 
5368   // Thread local vars aren't considered common linkage.
5369   if (D->getTLSKind())
5370     return true;
5371 
5372   // Tentative definitions marked with WeakImportAttr are true definitions.
5373   if (D->hasAttr<WeakImportAttr>())
5374     return true;
5375 
5376   // A variable cannot be both common and exist in a comdat.
5377   if (shouldBeInCOMDAT(CGM, *D))
5378     return true;
5379 
5380   // Declarations with a required alignment do not have common linkage in MSVC
5381   // mode.
5382   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5383     if (D->hasAttr<AlignedAttr>())
5384       return true;
5385     QualType VarType = D->getType();
5386     if (Context.isAlignmentRequired(VarType))
5387       return true;
5388 
5389     if (const auto *RT = VarType->getAs<RecordType>()) {
5390       const RecordDecl *RD = RT->getDecl();
5391       for (const FieldDecl *FD : RD->fields()) {
5392         if (FD->isBitField())
5393           continue;
5394         if (FD->hasAttr<AlignedAttr>())
5395           return true;
5396         if (Context.isAlignmentRequired(FD->getType()))
5397           return true;
5398       }
5399     }
5400   }
5401 
5402   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5403   // common symbols, so symbols with greater alignment requirements cannot be
5404   // common.
5405   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5406   // alignments for common symbols via the aligncomm directive, so this
5407   // restriction only applies to MSVC environments.
5408   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5409       Context.getTypeAlignIfKnown(D->getType()) >
5410           Context.toBits(CharUnits::fromQuantity(32)))
5411     return true;
5412 
5413   return false;
5414 }
5415 
5416 llvm::GlobalValue::LinkageTypes
5417 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5418                                            GVALinkage Linkage) {
5419   if (Linkage == GVA_Internal)
5420     return llvm::Function::InternalLinkage;
5421 
5422   if (D->hasAttr<WeakAttr>())
5423     return llvm::GlobalVariable::WeakAnyLinkage;
5424 
5425   if (const auto *FD = D->getAsFunction())
5426     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5427       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5428 
5429   // We are guaranteed to have a strong definition somewhere else,
5430   // so we can use available_externally linkage.
5431   if (Linkage == GVA_AvailableExternally)
5432     return llvm::GlobalValue::AvailableExternallyLinkage;
5433 
5434   // Note that Apple's kernel linker doesn't support symbol
5435   // coalescing, so we need to avoid linkonce and weak linkages there.
5436   // Normally, this means we just map to internal, but for explicit
5437   // instantiations we'll map to external.
5438 
5439   // In C++, the compiler has to emit a definition in every translation unit
5440   // that references the function.  We should use linkonce_odr because
5441   // a) if all references in this translation unit are optimized away, we
5442   // don't need to codegen it.  b) if the function persists, it needs to be
5443   // merged with other definitions. c) C++ has the ODR, so we know the
5444   // definition is dependable.
5445   if (Linkage == GVA_DiscardableODR)
5446     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5447                                             : llvm::Function::InternalLinkage;
5448 
5449   // An explicit instantiation of a template has weak linkage, since
5450   // explicit instantiations can occur in multiple translation units
5451   // and must all be equivalent. However, we are not allowed to
5452   // throw away these explicit instantiations.
5453   //
5454   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5455   // so say that CUDA templates are either external (for kernels) or internal.
5456   // This lets llvm perform aggressive inter-procedural optimizations. For
5457   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5458   // therefore we need to follow the normal linkage paradigm.
5459   if (Linkage == GVA_StrongODR) {
5460     if (getLangOpts().AppleKext)
5461       return llvm::Function::ExternalLinkage;
5462     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5463         !getLangOpts().GPURelocatableDeviceCode)
5464       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5465                                           : llvm::Function::InternalLinkage;
5466     return llvm::Function::WeakODRLinkage;
5467   }
5468 
5469   // C++ doesn't have tentative definitions and thus cannot have common
5470   // linkage.
5471   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5472       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5473                                  CodeGenOpts.NoCommon))
5474     return llvm::GlobalVariable::CommonLinkage;
5475 
5476   // selectany symbols are externally visible, so use weak instead of
5477   // linkonce.  MSVC optimizes away references to const selectany globals, so
5478   // all definitions should be the same and ODR linkage should be used.
5479   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5480   if (D->hasAttr<SelectAnyAttr>())
5481     return llvm::GlobalVariable::WeakODRLinkage;
5482 
5483   // Otherwise, we have strong external linkage.
5484   assert(Linkage == GVA_StrongExternal);
5485   return llvm::GlobalVariable::ExternalLinkage;
5486 }
5487 
5488 llvm::GlobalValue::LinkageTypes
5489 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5490   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5491   return getLLVMLinkageForDeclarator(VD, Linkage);
5492 }
5493 
5494 /// Replace the uses of a function that was declared with a non-proto type.
5495 /// We want to silently drop extra arguments from call sites
5496 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5497                                           llvm::Function *newFn) {
5498   // Fast path.
5499   if (old->use_empty()) return;
5500 
5501   llvm::Type *newRetTy = newFn->getReturnType();
5502   SmallVector<llvm::Value*, 4> newArgs;
5503 
5504   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5505          ui != ue; ) {
5506     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5507     llvm::User *user = use->getUser();
5508 
5509     // Recognize and replace uses of bitcasts.  Most calls to
5510     // unprototyped functions will use bitcasts.
5511     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5512       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5513         replaceUsesOfNonProtoConstant(bitcast, newFn);
5514       continue;
5515     }
5516 
5517     // Recognize calls to the function.
5518     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5519     if (!callSite) continue;
5520     if (!callSite->isCallee(&*use))
5521       continue;
5522 
5523     // If the return types don't match exactly, then we can't
5524     // transform this call unless it's dead.
5525     if (callSite->getType() != newRetTy && !callSite->use_empty())
5526       continue;
5527 
5528     // Get the call site's attribute list.
5529     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5530     llvm::AttributeList oldAttrs = callSite->getAttributes();
5531 
5532     // If the function was passed too few arguments, don't transform.
5533     unsigned newNumArgs = newFn->arg_size();
5534     if (callSite->arg_size() < newNumArgs)
5535       continue;
5536 
5537     // If extra arguments were passed, we silently drop them.
5538     // If any of the types mismatch, we don't transform.
5539     unsigned argNo = 0;
5540     bool dontTransform = false;
5541     for (llvm::Argument &A : newFn->args()) {
5542       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5543         dontTransform = true;
5544         break;
5545       }
5546 
5547       // Add any parameter attributes.
5548       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5549       argNo++;
5550     }
5551     if (dontTransform)
5552       continue;
5553 
5554     // Okay, we can transform this.  Create the new call instruction and copy
5555     // over the required information.
5556     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5557 
5558     // Copy over any operand bundles.
5559     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5560     callSite->getOperandBundlesAsDefs(newBundles);
5561 
5562     llvm::CallBase *newCall;
5563     if (isa<llvm::CallInst>(callSite)) {
5564       newCall =
5565           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5566     } else {
5567       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5568       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5569                                          oldInvoke->getUnwindDest(), newArgs,
5570                                          newBundles, "", callSite);
5571     }
5572     newArgs.clear(); // for the next iteration
5573 
5574     if (!newCall->getType()->isVoidTy())
5575       newCall->takeName(callSite);
5576     newCall->setAttributes(
5577         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5578                                  oldAttrs.getRetAttrs(), newArgAttrs));
5579     newCall->setCallingConv(callSite->getCallingConv());
5580 
5581     // Finally, remove the old call, replacing any uses with the new one.
5582     if (!callSite->use_empty())
5583       callSite->replaceAllUsesWith(newCall);
5584 
5585     // Copy debug location attached to CI.
5586     if (callSite->getDebugLoc())
5587       newCall->setDebugLoc(callSite->getDebugLoc());
5588 
5589     callSite->eraseFromParent();
5590   }
5591 }
5592 
5593 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5594 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5595 /// existing call uses of the old function in the module, this adjusts them to
5596 /// call the new function directly.
5597 ///
5598 /// This is not just a cleanup: the always_inline pass requires direct calls to
5599 /// functions to be able to inline them.  If there is a bitcast in the way, it
5600 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5601 /// run at -O0.
5602 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5603                                                       llvm::Function *NewFn) {
5604   // If we're redefining a global as a function, don't transform it.
5605   if (!isa<llvm::Function>(Old)) return;
5606 
5607   replaceUsesOfNonProtoConstant(Old, NewFn);
5608 }
5609 
5610 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5611   auto DK = VD->isThisDeclarationADefinition();
5612   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5613     return;
5614 
5615   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5616   // If we have a definition, this might be a deferred decl. If the
5617   // instantiation is explicit, make sure we emit it at the end.
5618   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5619     GetAddrOfGlobalVar(VD);
5620 
5621   EmitTopLevelDecl(VD);
5622 }
5623 
5624 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5625                                                  llvm::GlobalValue *GV) {
5626   const auto *D = cast<FunctionDecl>(GD.getDecl());
5627 
5628   // Compute the function info and LLVM type.
5629   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5630   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5631 
5632   // Get or create the prototype for the function.
5633   if (!GV || (GV->getValueType() != Ty))
5634     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5635                                                    /*DontDefer=*/true,
5636                                                    ForDefinition));
5637 
5638   // Already emitted.
5639   if (!GV->isDeclaration())
5640     return;
5641 
5642   // We need to set linkage and visibility on the function before
5643   // generating code for it because various parts of IR generation
5644   // want to propagate this information down (e.g. to local static
5645   // declarations).
5646   auto *Fn = cast<llvm::Function>(GV);
5647   setFunctionLinkage(GD, Fn);
5648 
5649   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5650   setGVProperties(Fn, GD);
5651 
5652   MaybeHandleStaticInExternC(D, Fn);
5653 
5654   maybeSetTrivialComdat(*D, *Fn);
5655 
5656   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5657 
5658   setNonAliasAttributes(GD, Fn);
5659   SetLLVMFunctionAttributesForDefinition(D, Fn);
5660 
5661   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5662     AddGlobalCtor(Fn, CA->getPriority());
5663   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5664     AddGlobalDtor(Fn, DA->getPriority(), true);
5665   if (D->hasAttr<AnnotateAttr>())
5666     AddGlobalAnnotations(D, Fn);
5667   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
5668     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
5669 }
5670 
5671 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5672   const auto *D = cast<ValueDecl>(GD.getDecl());
5673   const AliasAttr *AA = D->getAttr<AliasAttr>();
5674   assert(AA && "Not an alias?");
5675 
5676   StringRef MangledName = getMangledName(GD);
5677 
5678   if (AA->getAliasee() == MangledName) {
5679     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5680     return;
5681   }
5682 
5683   // If there is a definition in the module, then it wins over the alias.
5684   // This is dubious, but allow it to be safe.  Just ignore the alias.
5685   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5686   if (Entry && !Entry->isDeclaration())
5687     return;
5688 
5689   Aliases.push_back(GD);
5690 
5691   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5692 
5693   // Create a reference to the named value.  This ensures that it is emitted
5694   // if a deferred decl.
5695   llvm::Constant *Aliasee;
5696   llvm::GlobalValue::LinkageTypes LT;
5697   if (isa<llvm::FunctionType>(DeclTy)) {
5698     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5699                                       /*ForVTable=*/false);
5700     LT = getFunctionLinkage(GD);
5701   } else {
5702     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5703                                     /*D=*/nullptr);
5704     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5705       LT = getLLVMLinkageVarDefinition(VD);
5706     else
5707       LT = getFunctionLinkage(GD);
5708   }
5709 
5710   // Create the new alias itself, but don't set a name yet.
5711   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5712   auto *GA =
5713       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5714 
5715   if (Entry) {
5716     if (GA->getAliasee() == Entry) {
5717       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5718       return;
5719     }
5720 
5721     assert(Entry->isDeclaration());
5722 
5723     // If there is a declaration in the module, then we had an extern followed
5724     // by the alias, as in:
5725     //   extern int test6();
5726     //   ...
5727     //   int test6() __attribute__((alias("test7")));
5728     //
5729     // Remove it and replace uses of it with the alias.
5730     GA->takeName(Entry);
5731 
5732     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5733                                                           Entry->getType()));
5734     Entry->eraseFromParent();
5735   } else {
5736     GA->setName(MangledName);
5737   }
5738 
5739   // Set attributes which are particular to an alias; this is a
5740   // specialization of the attributes which may be set on a global
5741   // variable/function.
5742   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5743       D->isWeakImported()) {
5744     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5745   }
5746 
5747   if (const auto *VD = dyn_cast<VarDecl>(D))
5748     if (VD->getTLSKind())
5749       setTLSMode(GA, *VD);
5750 
5751   SetCommonAttributes(GD, GA);
5752 
5753   // Emit global alias debug information.
5754   if (isa<VarDecl>(D))
5755     if (CGDebugInfo *DI = getModuleDebugInfo())
5756       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5757 }
5758 
5759 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5760   const auto *D = cast<ValueDecl>(GD.getDecl());
5761   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5762   assert(IFA && "Not an ifunc?");
5763 
5764   StringRef MangledName = getMangledName(GD);
5765 
5766   if (IFA->getResolver() == MangledName) {
5767     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5768     return;
5769   }
5770 
5771   // Report an error if some definition overrides ifunc.
5772   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5773   if (Entry && !Entry->isDeclaration()) {
5774     GlobalDecl OtherGD;
5775     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5776         DiagnosedConflictingDefinitions.insert(GD).second) {
5777       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5778           << MangledName;
5779       Diags.Report(OtherGD.getDecl()->getLocation(),
5780                    diag::note_previous_definition);
5781     }
5782     return;
5783   }
5784 
5785   Aliases.push_back(GD);
5786 
5787   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5788   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5789   llvm::Constant *Resolver =
5790       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5791                               /*ForVTable=*/false);
5792   llvm::GlobalIFunc *GIF =
5793       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5794                                 "", Resolver, &getModule());
5795   if (Entry) {
5796     if (GIF->getResolver() == Entry) {
5797       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5798       return;
5799     }
5800     assert(Entry->isDeclaration());
5801 
5802     // If there is a declaration in the module, then we had an extern followed
5803     // by the ifunc, as in:
5804     //   extern int test();
5805     //   ...
5806     //   int test() __attribute__((ifunc("resolver")));
5807     //
5808     // Remove it and replace uses of it with the ifunc.
5809     GIF->takeName(Entry);
5810 
5811     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5812                                                           Entry->getType()));
5813     Entry->eraseFromParent();
5814   } else
5815     GIF->setName(MangledName);
5816   if (auto *F = dyn_cast<llvm::Function>(Resolver)) {
5817     F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
5818   }
5819   SetCommonAttributes(GD, GIF);
5820 }
5821 
5822 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5823                                             ArrayRef<llvm::Type*> Tys) {
5824   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5825                                          Tys);
5826 }
5827 
5828 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5829 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5830                          const StringLiteral *Literal, bool TargetIsLSB,
5831                          bool &IsUTF16, unsigned &StringLength) {
5832   StringRef String = Literal->getString();
5833   unsigned NumBytes = String.size();
5834 
5835   // Check for simple case.
5836   if (!Literal->containsNonAsciiOrNull()) {
5837     StringLength = NumBytes;
5838     return *Map.insert(std::make_pair(String, nullptr)).first;
5839   }
5840 
5841   // Otherwise, convert the UTF8 literals into a string of shorts.
5842   IsUTF16 = true;
5843 
5844   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5845   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5846   llvm::UTF16 *ToPtr = &ToBuf[0];
5847 
5848   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5849                                  ToPtr + NumBytes, llvm::strictConversion);
5850 
5851   // ConvertUTF8toUTF16 returns the length in ToPtr.
5852   StringLength = ToPtr - &ToBuf[0];
5853 
5854   // Add an explicit null.
5855   *ToPtr = 0;
5856   return *Map.insert(std::make_pair(
5857                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5858                                    (StringLength + 1) * 2),
5859                          nullptr)).first;
5860 }
5861 
5862 ConstantAddress
5863 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5864   unsigned StringLength = 0;
5865   bool isUTF16 = false;
5866   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5867       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5868                                getDataLayout().isLittleEndian(), isUTF16,
5869                                StringLength);
5870 
5871   if (auto *C = Entry.second)
5872     return ConstantAddress(
5873         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5874 
5875   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5876   llvm::Constant *Zeros[] = { Zero, Zero };
5877 
5878   const ASTContext &Context = getContext();
5879   const llvm::Triple &Triple = getTriple();
5880 
5881   const auto CFRuntime = getLangOpts().CFRuntime;
5882   const bool IsSwiftABI =
5883       static_cast<unsigned>(CFRuntime) >=
5884       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5885   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5886 
5887   // If we don't already have it, get __CFConstantStringClassReference.
5888   if (!CFConstantStringClassRef) {
5889     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5890     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5891     Ty = llvm::ArrayType::get(Ty, 0);
5892 
5893     switch (CFRuntime) {
5894     default: break;
5895     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5896     case LangOptions::CoreFoundationABI::Swift5_0:
5897       CFConstantStringClassName =
5898           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5899                               : "$s10Foundation19_NSCFConstantStringCN";
5900       Ty = IntPtrTy;
5901       break;
5902     case LangOptions::CoreFoundationABI::Swift4_2:
5903       CFConstantStringClassName =
5904           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5905                               : "$S10Foundation19_NSCFConstantStringCN";
5906       Ty = IntPtrTy;
5907       break;
5908     case LangOptions::CoreFoundationABI::Swift4_1:
5909       CFConstantStringClassName =
5910           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5911                               : "__T010Foundation19_NSCFConstantStringCN";
5912       Ty = IntPtrTy;
5913       break;
5914     }
5915 
5916     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5917 
5918     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5919       llvm::GlobalValue *GV = nullptr;
5920 
5921       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5922         IdentifierInfo &II = Context.Idents.get(GV->getName());
5923         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5924         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5925 
5926         const VarDecl *VD = nullptr;
5927         for (const auto *Result : DC->lookup(&II))
5928           if ((VD = dyn_cast<VarDecl>(Result)))
5929             break;
5930 
5931         if (Triple.isOSBinFormatELF()) {
5932           if (!VD)
5933             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5934         } else {
5935           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5936           if (!VD || !VD->hasAttr<DLLExportAttr>())
5937             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5938           else
5939             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5940         }
5941 
5942         setDSOLocal(GV);
5943       }
5944     }
5945 
5946     // Decay array -> ptr
5947     CFConstantStringClassRef =
5948         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5949                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5950   }
5951 
5952   QualType CFTy = Context.getCFConstantStringType();
5953 
5954   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5955 
5956   ConstantInitBuilder Builder(*this);
5957   auto Fields = Builder.beginStruct(STy);
5958 
5959   // Class pointer.
5960   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5961 
5962   // Flags.
5963   if (IsSwiftABI) {
5964     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5965     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5966   } else {
5967     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5968   }
5969 
5970   // String pointer.
5971   llvm::Constant *C = nullptr;
5972   if (isUTF16) {
5973     auto Arr = llvm::ArrayRef(
5974         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5975         Entry.first().size() / 2);
5976     C = llvm::ConstantDataArray::get(VMContext, Arr);
5977   } else {
5978     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5979   }
5980 
5981   // Note: -fwritable-strings doesn't make the backing store strings of
5982   // CFStrings writable.
5983   auto *GV =
5984       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5985                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5986   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5987   // Don't enforce the target's minimum global alignment, since the only use
5988   // of the string is via this class initializer.
5989   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5990                             : Context.getTypeAlignInChars(Context.CharTy);
5991   GV->setAlignment(Align.getAsAlign());
5992 
5993   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5994   // Without it LLVM can merge the string with a non unnamed_addr one during
5995   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5996   if (Triple.isOSBinFormatMachO())
5997     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5998                            : "__TEXT,__cstring,cstring_literals");
5999   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6000   // the static linker to adjust permissions to read-only later on.
6001   else if (Triple.isOSBinFormatELF())
6002     GV->setSection(".rodata");
6003 
6004   // String.
6005   llvm::Constant *Str =
6006       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
6007 
6008   if (isUTF16)
6009     // Cast the UTF16 string to the correct type.
6010     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
6011   Fields.add(Str);
6012 
6013   // String length.
6014   llvm::IntegerType *LengthTy =
6015       llvm::IntegerType::get(getModule().getContext(),
6016                              Context.getTargetInfo().getLongWidth());
6017   if (IsSwiftABI) {
6018     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6019         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6020       LengthTy = Int32Ty;
6021     else
6022       LengthTy = IntPtrTy;
6023   }
6024   Fields.addInt(LengthTy, StringLength);
6025 
6026   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6027   // properly aligned on 32-bit platforms.
6028   CharUnits Alignment =
6029       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6030 
6031   // The struct.
6032   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6033                                     /*isConstant=*/false,
6034                                     llvm::GlobalVariable::PrivateLinkage);
6035   GV->addAttribute("objc_arc_inert");
6036   switch (Triple.getObjectFormat()) {
6037   case llvm::Triple::UnknownObjectFormat:
6038     llvm_unreachable("unknown file format");
6039   case llvm::Triple::DXContainer:
6040   case llvm::Triple::GOFF:
6041   case llvm::Triple::SPIRV:
6042   case llvm::Triple::XCOFF:
6043     llvm_unreachable("unimplemented");
6044   case llvm::Triple::COFF:
6045   case llvm::Triple::ELF:
6046   case llvm::Triple::Wasm:
6047     GV->setSection("cfstring");
6048     break;
6049   case llvm::Triple::MachO:
6050     GV->setSection("__DATA,__cfstring");
6051     break;
6052   }
6053   Entry.second = GV;
6054 
6055   return ConstantAddress(GV, GV->getValueType(), Alignment);
6056 }
6057 
6058 bool CodeGenModule::getExpressionLocationsEnabled() const {
6059   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6060 }
6061 
6062 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6063   if (ObjCFastEnumerationStateType.isNull()) {
6064     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6065     D->startDefinition();
6066 
6067     QualType FieldTypes[] = {
6068       Context.UnsignedLongTy,
6069       Context.getPointerType(Context.getObjCIdType()),
6070       Context.getPointerType(Context.UnsignedLongTy),
6071       Context.getConstantArrayType(Context.UnsignedLongTy,
6072                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
6073     };
6074 
6075     for (size_t i = 0; i < 4; ++i) {
6076       FieldDecl *Field = FieldDecl::Create(Context,
6077                                            D,
6078                                            SourceLocation(),
6079                                            SourceLocation(), nullptr,
6080                                            FieldTypes[i], /*TInfo=*/nullptr,
6081                                            /*BitWidth=*/nullptr,
6082                                            /*Mutable=*/false,
6083                                            ICIS_NoInit);
6084       Field->setAccess(AS_public);
6085       D->addDecl(Field);
6086     }
6087 
6088     D->completeDefinition();
6089     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6090   }
6091 
6092   return ObjCFastEnumerationStateType;
6093 }
6094 
6095 llvm::Constant *
6096 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6097   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6098 
6099   // Don't emit it as the address of the string, emit the string data itself
6100   // as an inline array.
6101   if (E->getCharByteWidth() == 1) {
6102     SmallString<64> Str(E->getString());
6103 
6104     // Resize the string to the right size, which is indicated by its type.
6105     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6106     assert(CAT && "String literal not of constant array type!");
6107     Str.resize(CAT->getSize().getZExtValue());
6108     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6109   }
6110 
6111   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6112   llvm::Type *ElemTy = AType->getElementType();
6113   unsigned NumElements = AType->getNumElements();
6114 
6115   // Wide strings have either 2-byte or 4-byte elements.
6116   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6117     SmallVector<uint16_t, 32> Elements;
6118     Elements.reserve(NumElements);
6119 
6120     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6121       Elements.push_back(E->getCodeUnit(i));
6122     Elements.resize(NumElements);
6123     return llvm::ConstantDataArray::get(VMContext, Elements);
6124   }
6125 
6126   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6127   SmallVector<uint32_t, 32> Elements;
6128   Elements.reserve(NumElements);
6129 
6130   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6131     Elements.push_back(E->getCodeUnit(i));
6132   Elements.resize(NumElements);
6133   return llvm::ConstantDataArray::get(VMContext, Elements);
6134 }
6135 
6136 static llvm::GlobalVariable *
6137 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6138                       CodeGenModule &CGM, StringRef GlobalName,
6139                       CharUnits Alignment) {
6140   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6141       CGM.GetGlobalConstantAddressSpace());
6142 
6143   llvm::Module &M = CGM.getModule();
6144   // Create a global variable for this string
6145   auto *GV = new llvm::GlobalVariable(
6146       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6147       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6148   GV->setAlignment(Alignment.getAsAlign());
6149   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6150   if (GV->isWeakForLinker()) {
6151     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6152     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6153   }
6154   CGM.setDSOLocal(GV);
6155 
6156   return GV;
6157 }
6158 
6159 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6160 /// constant array for the given string literal.
6161 ConstantAddress
6162 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6163                                                   StringRef Name) {
6164   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
6165 
6166   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6167   llvm::GlobalVariable **Entry = nullptr;
6168   if (!LangOpts.WritableStrings) {
6169     Entry = &ConstantStringMap[C];
6170     if (auto GV = *Entry) {
6171       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6172         GV->setAlignment(Alignment.getAsAlign());
6173       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6174                              GV->getValueType(), Alignment);
6175     }
6176   }
6177 
6178   SmallString<256> MangledNameBuffer;
6179   StringRef GlobalVariableName;
6180   llvm::GlobalValue::LinkageTypes LT;
6181 
6182   // Mangle the string literal if that's how the ABI merges duplicate strings.
6183   // Don't do it if they are writable, since we don't want writes in one TU to
6184   // affect strings in another.
6185   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6186       !LangOpts.WritableStrings) {
6187     llvm::raw_svector_ostream Out(MangledNameBuffer);
6188     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6189     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6190     GlobalVariableName = MangledNameBuffer;
6191   } else {
6192     LT = llvm::GlobalValue::PrivateLinkage;
6193     GlobalVariableName = Name;
6194   }
6195 
6196   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6197 
6198   CGDebugInfo *DI = getModuleDebugInfo();
6199   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6200     DI->AddStringLiteralDebugInfo(GV, S);
6201 
6202   if (Entry)
6203     *Entry = GV;
6204 
6205   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6206 
6207   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6208                          GV->getValueType(), Alignment);
6209 }
6210 
6211 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6212 /// array for the given ObjCEncodeExpr node.
6213 ConstantAddress
6214 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6215   std::string Str;
6216   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6217 
6218   return GetAddrOfConstantCString(Str);
6219 }
6220 
6221 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6222 /// the literal and a terminating '\0' character.
6223 /// The result has pointer to array type.
6224 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6225     const std::string &Str, const char *GlobalName) {
6226   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6227   CharUnits Alignment =
6228     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
6229 
6230   llvm::Constant *C =
6231       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6232 
6233   // Don't share any string literals if strings aren't constant.
6234   llvm::GlobalVariable **Entry = nullptr;
6235   if (!LangOpts.WritableStrings) {
6236     Entry = &ConstantStringMap[C];
6237     if (auto GV = *Entry) {
6238       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6239         GV->setAlignment(Alignment.getAsAlign());
6240       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6241                              GV->getValueType(), Alignment);
6242     }
6243   }
6244 
6245   // Get the default prefix if a name wasn't specified.
6246   if (!GlobalName)
6247     GlobalName = ".str";
6248   // Create a global variable for this.
6249   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6250                                   GlobalName, Alignment);
6251   if (Entry)
6252     *Entry = GV;
6253 
6254   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6255                          GV->getValueType(), Alignment);
6256 }
6257 
6258 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6259     const MaterializeTemporaryExpr *E, const Expr *Init) {
6260   assert((E->getStorageDuration() == SD_Static ||
6261           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6262   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6263 
6264   // If we're not materializing a subobject of the temporary, keep the
6265   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6266   QualType MaterializedType = Init->getType();
6267   if (Init == E->getSubExpr())
6268     MaterializedType = E->getType();
6269 
6270   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6271 
6272   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6273   if (!InsertResult.second) {
6274     // We've seen this before: either we already created it or we're in the
6275     // process of doing so.
6276     if (!InsertResult.first->second) {
6277       // We recursively re-entered this function, probably during emission of
6278       // the initializer. Create a placeholder. We'll clean this up in the
6279       // outer call, at the end of this function.
6280       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6281       InsertResult.first->second = new llvm::GlobalVariable(
6282           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6283           nullptr);
6284     }
6285     return ConstantAddress(InsertResult.first->second,
6286                            llvm::cast<llvm::GlobalVariable>(
6287                                InsertResult.first->second->stripPointerCasts())
6288                                ->getValueType(),
6289                            Align);
6290   }
6291 
6292   // FIXME: If an externally-visible declaration extends multiple temporaries,
6293   // we need to give each temporary the same name in every translation unit (and
6294   // we also need to make the temporaries externally-visible).
6295   SmallString<256> Name;
6296   llvm::raw_svector_ostream Out(Name);
6297   getCXXABI().getMangleContext().mangleReferenceTemporary(
6298       VD, E->getManglingNumber(), Out);
6299 
6300   APValue *Value = nullptr;
6301   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
6302     // If the initializer of the extending declaration is a constant
6303     // initializer, we should have a cached constant initializer for this
6304     // temporary. Note that this might have a different value from the value
6305     // computed by evaluating the initializer if the surrounding constant
6306     // expression modifies the temporary.
6307     Value = E->getOrCreateValue(false);
6308   }
6309 
6310   // Try evaluating it now, it might have a constant initializer.
6311   Expr::EvalResult EvalResult;
6312   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6313       !EvalResult.hasSideEffects())
6314     Value = &EvalResult.Val;
6315 
6316   LangAS AddrSpace =
6317       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
6318 
6319   std::optional<ConstantEmitter> emitter;
6320   llvm::Constant *InitialValue = nullptr;
6321   bool Constant = false;
6322   llvm::Type *Type;
6323   if (Value) {
6324     // The temporary has a constant initializer, use it.
6325     emitter.emplace(*this);
6326     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6327                                                MaterializedType);
6328     Constant =
6329         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6330                                            /*ExcludeDtor*/ false);
6331     Type = InitialValue->getType();
6332   } else {
6333     // No initializer, the initialization will be provided when we
6334     // initialize the declaration which performed lifetime extension.
6335     Type = getTypes().ConvertTypeForMem(MaterializedType);
6336   }
6337 
6338   // Create a global variable for this lifetime-extended temporary.
6339   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6340   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6341     const VarDecl *InitVD;
6342     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6343         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6344       // Temporaries defined inside a class get linkonce_odr linkage because the
6345       // class can be defined in multiple translation units.
6346       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6347     } else {
6348       // There is no need for this temporary to have external linkage if the
6349       // VarDecl has external linkage.
6350       Linkage = llvm::GlobalVariable::InternalLinkage;
6351     }
6352   }
6353   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6354   auto *GV = new llvm::GlobalVariable(
6355       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6356       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6357   if (emitter) emitter->finalize(GV);
6358   // Don't assign dllimport or dllexport to local linkage globals.
6359   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6360     setGVProperties(GV, VD);
6361     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6362       // The reference temporary should never be dllexport.
6363       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6364   }
6365   GV->setAlignment(Align.getAsAlign());
6366   if (supportsCOMDAT() && GV->isWeakForLinker())
6367     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6368   if (VD->getTLSKind())
6369     setTLSMode(GV, *VD);
6370   llvm::Constant *CV = GV;
6371   if (AddrSpace != LangAS::Default)
6372     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6373         *this, GV, AddrSpace, LangAS::Default,
6374         Type->getPointerTo(
6375             getContext().getTargetAddressSpace(LangAS::Default)));
6376 
6377   // Update the map with the new temporary. If we created a placeholder above,
6378   // replace it with the new global now.
6379   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6380   if (Entry) {
6381     Entry->replaceAllUsesWith(
6382         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
6383     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6384   }
6385   Entry = CV;
6386 
6387   return ConstantAddress(CV, Type, Align);
6388 }
6389 
6390 /// EmitObjCPropertyImplementations - Emit information for synthesized
6391 /// properties for an implementation.
6392 void CodeGenModule::EmitObjCPropertyImplementations(const
6393                                                     ObjCImplementationDecl *D) {
6394   for (const auto *PID : D->property_impls()) {
6395     // Dynamic is just for type-checking.
6396     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6397       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6398 
6399       // Determine which methods need to be implemented, some may have
6400       // been overridden. Note that ::isPropertyAccessor is not the method
6401       // we want, that just indicates if the decl came from a
6402       // property. What we want to know is if the method is defined in
6403       // this implementation.
6404       auto *Getter = PID->getGetterMethodDecl();
6405       if (!Getter || Getter->isSynthesizedAccessorStub())
6406         CodeGenFunction(*this).GenerateObjCGetter(
6407             const_cast<ObjCImplementationDecl *>(D), PID);
6408       auto *Setter = PID->getSetterMethodDecl();
6409       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6410         CodeGenFunction(*this).GenerateObjCSetter(
6411                                  const_cast<ObjCImplementationDecl *>(D), PID);
6412     }
6413   }
6414 }
6415 
6416 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6417   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6418   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6419        ivar; ivar = ivar->getNextIvar())
6420     if (ivar->getType().isDestructedType())
6421       return true;
6422 
6423   return false;
6424 }
6425 
6426 static bool AllTrivialInitializers(CodeGenModule &CGM,
6427                                    ObjCImplementationDecl *D) {
6428   CodeGenFunction CGF(CGM);
6429   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6430        E = D->init_end(); B != E; ++B) {
6431     CXXCtorInitializer *CtorInitExp = *B;
6432     Expr *Init = CtorInitExp->getInit();
6433     if (!CGF.isTrivialInitializer(Init))
6434       return false;
6435   }
6436   return true;
6437 }
6438 
6439 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6440 /// for an implementation.
6441 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6442   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6443   if (needsDestructMethod(D)) {
6444     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6445     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6446     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6447         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6448         getContext().VoidTy, nullptr, D,
6449         /*isInstance=*/true, /*isVariadic=*/false,
6450         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6451         /*isImplicitlyDeclared=*/true,
6452         /*isDefined=*/false, ObjCMethodDecl::Required);
6453     D->addInstanceMethod(DTORMethod);
6454     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6455     D->setHasDestructors(true);
6456   }
6457 
6458   // If the implementation doesn't have any ivar initializers, we don't need
6459   // a .cxx_construct.
6460   if (D->getNumIvarInitializers() == 0 ||
6461       AllTrivialInitializers(*this, D))
6462     return;
6463 
6464   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6465   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6466   // The constructor returns 'self'.
6467   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6468       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6469       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6470       /*isVariadic=*/false,
6471       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6472       /*isImplicitlyDeclared=*/true,
6473       /*isDefined=*/false, ObjCMethodDecl::Required);
6474   D->addInstanceMethod(CTORMethod);
6475   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6476   D->setHasNonZeroConstructors(true);
6477 }
6478 
6479 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6480 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6481   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6482       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6483     ErrorUnsupported(LSD, "linkage spec");
6484     return;
6485   }
6486 
6487   EmitDeclContext(LSD);
6488 }
6489 
6490 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6491   // Device code should not be at top level.
6492   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6493     return;
6494 
6495   std::unique_ptr<CodeGenFunction> &CurCGF =
6496       GlobalTopLevelStmtBlockInFlight.first;
6497 
6498   // We emitted a top-level stmt but after it there is initialization.
6499   // Stop squashing the top-level stmts into a single function.
6500   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6501     CurCGF->FinishFunction(D->getEndLoc());
6502     CurCGF = nullptr;
6503   }
6504 
6505   if (!CurCGF) {
6506     // void __stmts__N(void)
6507     // FIXME: Ask the ABI name mangler to pick a name.
6508     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6509     FunctionArgList Args;
6510     QualType RetTy = getContext().VoidTy;
6511     const CGFunctionInfo &FnInfo =
6512         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6513     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6514     llvm::Function *Fn = llvm::Function::Create(
6515         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6516 
6517     CurCGF.reset(new CodeGenFunction(*this));
6518     GlobalTopLevelStmtBlockInFlight.second = D;
6519     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6520                           D->getBeginLoc(), D->getBeginLoc());
6521     CXXGlobalInits.push_back(Fn);
6522   }
6523 
6524   CurCGF->EmitStmt(D->getStmt());
6525 }
6526 
6527 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6528   for (auto *I : DC->decls()) {
6529     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6530     // are themselves considered "top-level", so EmitTopLevelDecl on an
6531     // ObjCImplDecl does not recursively visit them. We need to do that in
6532     // case they're nested inside another construct (LinkageSpecDecl /
6533     // ExportDecl) that does stop them from being considered "top-level".
6534     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6535       for (auto *M : OID->methods())
6536         EmitTopLevelDecl(M);
6537     }
6538 
6539     EmitTopLevelDecl(I);
6540   }
6541 }
6542 
6543 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6544 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6545   // Ignore dependent declarations.
6546   if (D->isTemplated())
6547     return;
6548 
6549   // Consteval function shouldn't be emitted.
6550   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6551     return;
6552 
6553   switch (D->getKind()) {
6554   case Decl::CXXConversion:
6555   case Decl::CXXMethod:
6556   case Decl::Function:
6557     EmitGlobal(cast<FunctionDecl>(D));
6558     // Always provide some coverage mapping
6559     // even for the functions that aren't emitted.
6560     AddDeferredUnusedCoverageMapping(D);
6561     break;
6562 
6563   case Decl::CXXDeductionGuide:
6564     // Function-like, but does not result in code emission.
6565     break;
6566 
6567   case Decl::Var:
6568   case Decl::Decomposition:
6569   case Decl::VarTemplateSpecialization:
6570     EmitGlobal(cast<VarDecl>(D));
6571     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6572       for (auto *B : DD->bindings())
6573         if (auto *HD = B->getHoldingVar())
6574           EmitGlobal(HD);
6575     break;
6576 
6577   // Indirect fields from global anonymous structs and unions can be
6578   // ignored; only the actual variable requires IR gen support.
6579   case Decl::IndirectField:
6580     break;
6581 
6582   // C++ Decls
6583   case Decl::Namespace:
6584     EmitDeclContext(cast<NamespaceDecl>(D));
6585     break;
6586   case Decl::ClassTemplateSpecialization: {
6587     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6588     if (CGDebugInfo *DI = getModuleDebugInfo())
6589       if (Spec->getSpecializationKind() ==
6590               TSK_ExplicitInstantiationDefinition &&
6591           Spec->hasDefinition())
6592         DI->completeTemplateDefinition(*Spec);
6593   } [[fallthrough]];
6594   case Decl::CXXRecord: {
6595     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6596     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6597       if (CRD->hasDefinition())
6598         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6599       if (auto *ES = D->getASTContext().getExternalSource())
6600         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6601           DI->completeUnusedClass(*CRD);
6602     }
6603     // Emit any static data members, they may be definitions.
6604     for (auto *I : CRD->decls())
6605       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6606         EmitTopLevelDecl(I);
6607     break;
6608   }
6609     // No code generation needed.
6610   case Decl::UsingShadow:
6611   case Decl::ClassTemplate:
6612   case Decl::VarTemplate:
6613   case Decl::Concept:
6614   case Decl::VarTemplatePartialSpecialization:
6615   case Decl::FunctionTemplate:
6616   case Decl::TypeAliasTemplate:
6617   case Decl::Block:
6618   case Decl::Empty:
6619   case Decl::Binding:
6620     break;
6621   case Decl::Using:          // using X; [C++]
6622     if (CGDebugInfo *DI = getModuleDebugInfo())
6623         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6624     break;
6625   case Decl::UsingEnum: // using enum X; [C++]
6626     if (CGDebugInfo *DI = getModuleDebugInfo())
6627       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6628     break;
6629   case Decl::NamespaceAlias:
6630     if (CGDebugInfo *DI = getModuleDebugInfo())
6631         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6632     break;
6633   case Decl::UsingDirective: // using namespace X; [C++]
6634     if (CGDebugInfo *DI = getModuleDebugInfo())
6635       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6636     break;
6637   case Decl::CXXConstructor:
6638     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6639     break;
6640   case Decl::CXXDestructor:
6641     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6642     break;
6643 
6644   case Decl::StaticAssert:
6645     // Nothing to do.
6646     break;
6647 
6648   // Objective-C Decls
6649 
6650   // Forward declarations, no (immediate) code generation.
6651   case Decl::ObjCInterface:
6652   case Decl::ObjCCategory:
6653     break;
6654 
6655   case Decl::ObjCProtocol: {
6656     auto *Proto = cast<ObjCProtocolDecl>(D);
6657     if (Proto->isThisDeclarationADefinition())
6658       ObjCRuntime->GenerateProtocol(Proto);
6659     break;
6660   }
6661 
6662   case Decl::ObjCCategoryImpl:
6663     // Categories have properties but don't support synthesize so we
6664     // can ignore them here.
6665     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6666     break;
6667 
6668   case Decl::ObjCImplementation: {
6669     auto *OMD = cast<ObjCImplementationDecl>(D);
6670     EmitObjCPropertyImplementations(OMD);
6671     EmitObjCIvarInitializations(OMD);
6672     ObjCRuntime->GenerateClass(OMD);
6673     // Emit global variable debug information.
6674     if (CGDebugInfo *DI = getModuleDebugInfo())
6675       if (getCodeGenOpts().hasReducedDebugInfo())
6676         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6677             OMD->getClassInterface()), OMD->getLocation());
6678     break;
6679   }
6680   case Decl::ObjCMethod: {
6681     auto *OMD = cast<ObjCMethodDecl>(D);
6682     // If this is not a prototype, emit the body.
6683     if (OMD->getBody())
6684       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6685     break;
6686   }
6687   case Decl::ObjCCompatibleAlias:
6688     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6689     break;
6690 
6691   case Decl::PragmaComment: {
6692     const auto *PCD = cast<PragmaCommentDecl>(D);
6693     switch (PCD->getCommentKind()) {
6694     case PCK_Unknown:
6695       llvm_unreachable("unexpected pragma comment kind");
6696     case PCK_Linker:
6697       AppendLinkerOptions(PCD->getArg());
6698       break;
6699     case PCK_Lib:
6700         AddDependentLib(PCD->getArg());
6701       break;
6702     case PCK_Compiler:
6703     case PCK_ExeStr:
6704     case PCK_User:
6705       break; // We ignore all of these.
6706     }
6707     break;
6708   }
6709 
6710   case Decl::PragmaDetectMismatch: {
6711     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6712     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6713     break;
6714   }
6715 
6716   case Decl::LinkageSpec:
6717     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6718     break;
6719 
6720   case Decl::FileScopeAsm: {
6721     // File-scope asm is ignored during device-side CUDA compilation.
6722     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6723       break;
6724     // File-scope asm is ignored during device-side OpenMP compilation.
6725     if (LangOpts.OpenMPIsTargetDevice)
6726       break;
6727     // File-scope asm is ignored during device-side SYCL compilation.
6728     if (LangOpts.SYCLIsDevice)
6729       break;
6730     auto *AD = cast<FileScopeAsmDecl>(D);
6731     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6732     break;
6733   }
6734 
6735   case Decl::TopLevelStmt:
6736     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
6737     break;
6738 
6739   case Decl::Import: {
6740     auto *Import = cast<ImportDecl>(D);
6741 
6742     // If we've already imported this module, we're done.
6743     if (!ImportedModules.insert(Import->getImportedModule()))
6744       break;
6745 
6746     // Emit debug information for direct imports.
6747     if (!Import->getImportedOwningModule()) {
6748       if (CGDebugInfo *DI = getModuleDebugInfo())
6749         DI->EmitImportDecl(*Import);
6750     }
6751 
6752     // For C++ standard modules we are done - we will call the module
6753     // initializer for imported modules, and that will likewise call those for
6754     // any imports it has.
6755     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6756         !Import->getImportedOwningModule()->isModuleMapModule())
6757       break;
6758 
6759     // For clang C++ module map modules the initializers for sub-modules are
6760     // emitted here.
6761 
6762     // Find all of the submodules and emit the module initializers.
6763     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6764     SmallVector<clang::Module *, 16> Stack;
6765     Visited.insert(Import->getImportedModule());
6766     Stack.push_back(Import->getImportedModule());
6767 
6768     while (!Stack.empty()) {
6769       clang::Module *Mod = Stack.pop_back_val();
6770       if (!EmittedModuleInitializers.insert(Mod).second)
6771         continue;
6772 
6773       for (auto *D : Context.getModuleInitializers(Mod))
6774         EmitTopLevelDecl(D);
6775 
6776       // Visit the submodules of this module.
6777       for (auto *Submodule : Mod->submodules()) {
6778         // Skip explicit children; they need to be explicitly imported to emit
6779         // the initializers.
6780         if (Submodule->IsExplicit)
6781           continue;
6782 
6783         if (Visited.insert(Submodule).second)
6784           Stack.push_back(Submodule);
6785       }
6786     }
6787     break;
6788   }
6789 
6790   case Decl::Export:
6791     EmitDeclContext(cast<ExportDecl>(D));
6792     break;
6793 
6794   case Decl::OMPThreadPrivate:
6795     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6796     break;
6797 
6798   case Decl::OMPAllocate:
6799     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6800     break;
6801 
6802   case Decl::OMPDeclareReduction:
6803     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6804     break;
6805 
6806   case Decl::OMPDeclareMapper:
6807     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6808     break;
6809 
6810   case Decl::OMPRequires:
6811     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6812     break;
6813 
6814   case Decl::Typedef:
6815   case Decl::TypeAlias: // using foo = bar; [C++11]
6816     if (CGDebugInfo *DI = getModuleDebugInfo())
6817       DI->EmitAndRetainType(
6818           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6819     break;
6820 
6821   case Decl::Record:
6822     if (CGDebugInfo *DI = getModuleDebugInfo())
6823       if (cast<RecordDecl>(D)->getDefinition())
6824         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6825     break;
6826 
6827   case Decl::Enum:
6828     if (CGDebugInfo *DI = getModuleDebugInfo())
6829       if (cast<EnumDecl>(D)->getDefinition())
6830         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6831     break;
6832 
6833   case Decl::HLSLBuffer:
6834     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
6835     break;
6836 
6837   default:
6838     // Make sure we handled everything we should, every other kind is a
6839     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6840     // function. Need to recode Decl::Kind to do that easily.
6841     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6842     break;
6843   }
6844 }
6845 
6846 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6847   // Do we need to generate coverage mapping?
6848   if (!CodeGenOpts.CoverageMapping)
6849     return;
6850   switch (D->getKind()) {
6851   case Decl::CXXConversion:
6852   case Decl::CXXMethod:
6853   case Decl::Function:
6854   case Decl::ObjCMethod:
6855   case Decl::CXXConstructor:
6856   case Decl::CXXDestructor: {
6857     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6858       break;
6859     SourceManager &SM = getContext().getSourceManager();
6860     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6861       break;
6862     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6863     if (I == DeferredEmptyCoverageMappingDecls.end())
6864       DeferredEmptyCoverageMappingDecls[D] = true;
6865     break;
6866   }
6867   default:
6868     break;
6869   };
6870 }
6871 
6872 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6873   // Do we need to generate coverage mapping?
6874   if (!CodeGenOpts.CoverageMapping)
6875     return;
6876   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6877     if (Fn->isTemplateInstantiation())
6878       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6879   }
6880   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6881   if (I == DeferredEmptyCoverageMappingDecls.end())
6882     DeferredEmptyCoverageMappingDecls[D] = false;
6883   else
6884     I->second = false;
6885 }
6886 
6887 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6888   // We call takeVector() here to avoid use-after-free.
6889   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6890   // we deserialize function bodies to emit coverage info for them, and that
6891   // deserializes more declarations. How should we handle that case?
6892   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6893     if (!Entry.second)
6894       continue;
6895     const Decl *D = Entry.first;
6896     switch (D->getKind()) {
6897     case Decl::CXXConversion:
6898     case Decl::CXXMethod:
6899     case Decl::Function:
6900     case Decl::ObjCMethod: {
6901       CodeGenPGO PGO(*this);
6902       GlobalDecl GD(cast<FunctionDecl>(D));
6903       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6904                                   getFunctionLinkage(GD));
6905       break;
6906     }
6907     case Decl::CXXConstructor: {
6908       CodeGenPGO PGO(*this);
6909       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6910       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6911                                   getFunctionLinkage(GD));
6912       break;
6913     }
6914     case Decl::CXXDestructor: {
6915       CodeGenPGO PGO(*this);
6916       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6917       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6918                                   getFunctionLinkage(GD));
6919       break;
6920     }
6921     default:
6922       break;
6923     };
6924   }
6925 }
6926 
6927 void CodeGenModule::EmitMainVoidAlias() {
6928   // In order to transition away from "__original_main" gracefully, emit an
6929   // alias for "main" in the no-argument case so that libc can detect when
6930   // new-style no-argument main is in used.
6931   if (llvm::Function *F = getModule().getFunction("main")) {
6932     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6933         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6934       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6935       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6936     }
6937   }
6938 }
6939 
6940 /// Turns the given pointer into a constant.
6941 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6942                                           const void *Ptr) {
6943   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6944   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6945   return llvm::ConstantInt::get(i64, PtrInt);
6946 }
6947 
6948 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6949                                    llvm::NamedMDNode *&GlobalMetadata,
6950                                    GlobalDecl D,
6951                                    llvm::GlobalValue *Addr) {
6952   if (!GlobalMetadata)
6953     GlobalMetadata =
6954       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6955 
6956   // TODO: should we report variant information for ctors/dtors?
6957   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6958                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6959                                CGM.getLLVMContext(), D.getDecl()))};
6960   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6961 }
6962 
6963 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6964                                                  llvm::GlobalValue *CppFunc) {
6965   // Store the list of ifuncs we need to replace uses in.
6966   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6967   // List of ConstantExprs that we should be able to delete when we're done
6968   // here.
6969   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6970 
6971   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6972   if (Elem == CppFunc)
6973     return false;
6974 
6975   // First make sure that all users of this are ifuncs (or ifuncs via a
6976   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6977   // later.
6978   for (llvm::User *User : Elem->users()) {
6979     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6980     // ifunc directly. In any other case, just give up, as we don't know what we
6981     // could break by changing those.
6982     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6983       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6984         return false;
6985 
6986       for (llvm::User *CEUser : ConstExpr->users()) {
6987         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6988           IFuncs.push_back(IFunc);
6989         } else {
6990           return false;
6991         }
6992       }
6993       CEs.push_back(ConstExpr);
6994     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6995       IFuncs.push_back(IFunc);
6996     } else {
6997       // This user is one we don't know how to handle, so fail redirection. This
6998       // will result in an ifunc retaining a resolver name that will ultimately
6999       // fail to be resolved to a defined function.
7000       return false;
7001     }
7002   }
7003 
7004   // Now we know this is a valid case where we can do this alias replacement, we
7005   // need to remove all of the references to Elem (and the bitcasts!) so we can
7006   // delete it.
7007   for (llvm::GlobalIFunc *IFunc : IFuncs)
7008     IFunc->setResolver(nullptr);
7009   for (llvm::ConstantExpr *ConstExpr : CEs)
7010     ConstExpr->destroyConstant();
7011 
7012   // We should now be out of uses for the 'old' version of this function, so we
7013   // can erase it as well.
7014   Elem->eraseFromParent();
7015 
7016   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7017     // The type of the resolver is always just a function-type that returns the
7018     // type of the IFunc, so create that here. If the type of the actual
7019     // resolver doesn't match, it just gets bitcast to the right thing.
7020     auto *ResolverTy =
7021         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7022     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7023         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7024     IFunc->setResolver(Resolver);
7025   }
7026   return true;
7027 }
7028 
7029 /// For each function which is declared within an extern "C" region and marked
7030 /// as 'used', but has internal linkage, create an alias from the unmangled
7031 /// name to the mangled name if possible. People expect to be able to refer
7032 /// to such functions with an unmangled name from inline assembly within the
7033 /// same translation unit.
7034 void CodeGenModule::EmitStaticExternCAliases() {
7035   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7036     return;
7037   for (auto &I : StaticExternCValues) {
7038     IdentifierInfo *Name = I.first;
7039     llvm::GlobalValue *Val = I.second;
7040 
7041     // If Val is null, that implies there were multiple declarations that each
7042     // had a claim to the unmangled name. In this case, generation of the alias
7043     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7044     if (!Val)
7045       break;
7046 
7047     llvm::GlobalValue *ExistingElem =
7048         getModule().getNamedValue(Name->getName());
7049 
7050     // If there is either not something already by this name, or we were able to
7051     // replace all uses from IFuncs, create the alias.
7052     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7053       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7054   }
7055 }
7056 
7057 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7058                                              GlobalDecl &Result) const {
7059   auto Res = Manglings.find(MangledName);
7060   if (Res == Manglings.end())
7061     return false;
7062   Result = Res->getValue();
7063   return true;
7064 }
7065 
7066 /// Emits metadata nodes associating all the global values in the
7067 /// current module with the Decls they came from.  This is useful for
7068 /// projects using IR gen as a subroutine.
7069 ///
7070 /// Since there's currently no way to associate an MDNode directly
7071 /// with an llvm::GlobalValue, we create a global named metadata
7072 /// with the name 'clang.global.decl.ptrs'.
7073 void CodeGenModule::EmitDeclMetadata() {
7074   llvm::NamedMDNode *GlobalMetadata = nullptr;
7075 
7076   for (auto &I : MangledDeclNames) {
7077     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7078     // Some mangled names don't necessarily have an associated GlobalValue
7079     // in this module, e.g. if we mangled it for DebugInfo.
7080     if (Addr)
7081       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7082   }
7083 }
7084 
7085 /// Emits metadata nodes for all the local variables in the current
7086 /// function.
7087 void CodeGenFunction::EmitDeclMetadata() {
7088   if (LocalDeclMap.empty()) return;
7089 
7090   llvm::LLVMContext &Context = getLLVMContext();
7091 
7092   // Find the unique metadata ID for this name.
7093   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7094 
7095   llvm::NamedMDNode *GlobalMetadata = nullptr;
7096 
7097   for (auto &I : LocalDeclMap) {
7098     const Decl *D = I.first;
7099     llvm::Value *Addr = I.second.getPointer();
7100     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7101       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7102       Alloca->setMetadata(
7103           DeclPtrKind, llvm::MDNode::get(
7104                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7105     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7106       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7107       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7108     }
7109   }
7110 }
7111 
7112 void CodeGenModule::EmitVersionIdentMetadata() {
7113   llvm::NamedMDNode *IdentMetadata =
7114     TheModule.getOrInsertNamedMetadata("llvm.ident");
7115   std::string Version = getClangFullVersion();
7116   llvm::LLVMContext &Ctx = TheModule.getContext();
7117 
7118   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7119   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7120 }
7121 
7122 void CodeGenModule::EmitCommandLineMetadata() {
7123   llvm::NamedMDNode *CommandLineMetadata =
7124     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7125   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7126   llvm::LLVMContext &Ctx = TheModule.getContext();
7127 
7128   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7129   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7130 }
7131 
7132 void CodeGenModule::EmitCoverageFile() {
7133   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7134   if (!CUNode)
7135     return;
7136 
7137   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7138   llvm::LLVMContext &Ctx = TheModule.getContext();
7139   auto *CoverageDataFile =
7140       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7141   auto *CoverageNotesFile =
7142       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7143   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7144     llvm::MDNode *CU = CUNode->getOperand(i);
7145     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7146     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7147   }
7148 }
7149 
7150 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7151                                                        bool ForEH) {
7152   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7153   // FIXME: should we even be calling this method if RTTI is disabled
7154   // and it's not for EH?
7155   if (!shouldEmitRTTI(ForEH))
7156     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7157 
7158   if (ForEH && Ty->isObjCObjectPointerType() &&
7159       LangOpts.ObjCRuntime.isGNUFamily())
7160     return ObjCRuntime->GetEHType(Ty);
7161 
7162   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7163 }
7164 
7165 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7166   // Do not emit threadprivates in simd-only mode.
7167   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7168     return;
7169   for (auto RefExpr : D->varlists()) {
7170     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7171     bool PerformInit =
7172         VD->getAnyInitializer() &&
7173         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7174                                                         /*ForRef=*/false);
7175 
7176     Address Addr(GetAddrOfGlobalVar(VD),
7177                  getTypes().ConvertTypeForMem(VD->getType()),
7178                  getContext().getDeclAlign(VD));
7179     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7180             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7181       CXXGlobalInits.push_back(InitFunction);
7182   }
7183 }
7184 
7185 llvm::Metadata *
7186 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7187                                             StringRef Suffix) {
7188   if (auto *FnType = T->getAs<FunctionProtoType>())
7189     T = getContext().getFunctionType(
7190         FnType->getReturnType(), FnType->getParamTypes(),
7191         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7192 
7193   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7194   if (InternalId)
7195     return InternalId;
7196 
7197   if (isExternallyVisible(T->getLinkage())) {
7198     std::string OutName;
7199     llvm::raw_string_ostream Out(OutName);
7200     getCXXABI().getMangleContext().mangleTypeName(
7201         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7202 
7203     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7204       Out << ".normalized";
7205 
7206     Out << Suffix;
7207 
7208     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7209   } else {
7210     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7211                                            llvm::ArrayRef<llvm::Metadata *>());
7212   }
7213 
7214   return InternalId;
7215 }
7216 
7217 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7218   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7219 }
7220 
7221 llvm::Metadata *
7222 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7223   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7224 }
7225 
7226 // Generalize pointer types to a void pointer with the qualifiers of the
7227 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7228 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7229 // 'void *'.
7230 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7231   if (!Ty->isPointerType())
7232     return Ty;
7233 
7234   return Ctx.getPointerType(
7235       QualType(Ctx.VoidTy).withCVRQualifiers(
7236           Ty->getPointeeType().getCVRQualifiers()));
7237 }
7238 
7239 // Apply type generalization to a FunctionType's return and argument types
7240 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7241   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7242     SmallVector<QualType, 8> GeneralizedParams;
7243     for (auto &Param : FnType->param_types())
7244       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7245 
7246     return Ctx.getFunctionType(
7247         GeneralizeType(Ctx, FnType->getReturnType()),
7248         GeneralizedParams, FnType->getExtProtoInfo());
7249   }
7250 
7251   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7252     return Ctx.getFunctionNoProtoType(
7253         GeneralizeType(Ctx, FnType->getReturnType()));
7254 
7255   llvm_unreachable("Encountered unknown FunctionType");
7256 }
7257 
7258 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7259   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7260                                       GeneralizedMetadataIdMap, ".generalized");
7261 }
7262 
7263 /// Returns whether this module needs the "all-vtables" type identifier.
7264 bool CodeGenModule::NeedAllVtablesTypeId() const {
7265   // Returns true if at least one of vtable-based CFI checkers is enabled and
7266   // is not in the trapping mode.
7267   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7268            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7269           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7270            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7271           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7272            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7273           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7274            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7275 }
7276 
7277 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7278                                           CharUnits Offset,
7279                                           const CXXRecordDecl *RD) {
7280   llvm::Metadata *MD =
7281       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7282   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7283 
7284   if (CodeGenOpts.SanitizeCfiCrossDso)
7285     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7286       VTable->addTypeMetadata(Offset.getQuantity(),
7287                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7288 
7289   if (NeedAllVtablesTypeId()) {
7290     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7291     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7292   }
7293 }
7294 
7295 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7296   if (!SanStats)
7297     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7298 
7299   return *SanStats;
7300 }
7301 
7302 llvm::Value *
7303 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7304                                                   CodeGenFunction &CGF) {
7305   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7306   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7307   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7308   auto *Call = CGF.EmitRuntimeCall(
7309       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7310   return Call;
7311 }
7312 
7313 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7314     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7315   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7316                                  /* forPointeeType= */ true);
7317 }
7318 
7319 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7320                                                  LValueBaseInfo *BaseInfo,
7321                                                  TBAAAccessInfo *TBAAInfo,
7322                                                  bool forPointeeType) {
7323   if (TBAAInfo)
7324     *TBAAInfo = getTBAAAccessInfo(T);
7325 
7326   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7327   // that doesn't return the information we need to compute BaseInfo.
7328 
7329   // Honor alignment typedef attributes even on incomplete types.
7330   // We also honor them straight for C++ class types, even as pointees;
7331   // there's an expressivity gap here.
7332   if (auto TT = T->getAs<TypedefType>()) {
7333     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7334       if (BaseInfo)
7335         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7336       return getContext().toCharUnitsFromBits(Align);
7337     }
7338   }
7339 
7340   bool AlignForArray = T->isArrayType();
7341 
7342   // Analyze the base element type, so we don't get confused by incomplete
7343   // array types.
7344   T = getContext().getBaseElementType(T);
7345 
7346   if (T->isIncompleteType()) {
7347     // We could try to replicate the logic from
7348     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7349     // type is incomplete, so it's impossible to test. We could try to reuse
7350     // getTypeAlignIfKnown, but that doesn't return the information we need
7351     // to set BaseInfo.  So just ignore the possibility that the alignment is
7352     // greater than one.
7353     if (BaseInfo)
7354       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7355     return CharUnits::One();
7356   }
7357 
7358   if (BaseInfo)
7359     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7360 
7361   CharUnits Alignment;
7362   const CXXRecordDecl *RD;
7363   if (T.getQualifiers().hasUnaligned()) {
7364     Alignment = CharUnits::One();
7365   } else if (forPointeeType && !AlignForArray &&
7366              (RD = T->getAsCXXRecordDecl())) {
7367     // For C++ class pointees, we don't know whether we're pointing at a
7368     // base or a complete object, so we generally need to use the
7369     // non-virtual alignment.
7370     Alignment = getClassPointerAlignment(RD);
7371   } else {
7372     Alignment = getContext().getTypeAlignInChars(T);
7373   }
7374 
7375   // Cap to the global maximum type alignment unless the alignment
7376   // was somehow explicit on the type.
7377   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7378     if (Alignment.getQuantity() > MaxAlign &&
7379         !getContext().isAlignmentRequired(T))
7380       Alignment = CharUnits::fromQuantity(MaxAlign);
7381   }
7382   return Alignment;
7383 }
7384 
7385 bool CodeGenModule::stopAutoInit() {
7386   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7387   if (StopAfter) {
7388     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7389     // used
7390     if (NumAutoVarInit >= StopAfter) {
7391       return true;
7392     }
7393     if (!NumAutoVarInit) {
7394       unsigned DiagID = getDiags().getCustomDiagID(
7395           DiagnosticsEngine::Warning,
7396           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7397           "number of times ftrivial-auto-var-init=%1 gets applied.");
7398       getDiags().Report(DiagID)
7399           << StopAfter
7400           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7401                       LangOptions::TrivialAutoVarInitKind::Zero
7402                   ? "zero"
7403                   : "pattern");
7404     }
7405     ++NumAutoVarInit;
7406   }
7407   return false;
7408 }
7409 
7410 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7411                                                     const Decl *D) const {
7412   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7413   // postfix beginning with '.' since the symbol name can be demangled.
7414   if (LangOpts.HIP)
7415     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7416   else
7417     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7418 
7419   // If the CUID is not specified we try to generate a unique postfix.
7420   if (getLangOpts().CUID.empty()) {
7421     SourceManager &SM = getContext().getSourceManager();
7422     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7423     assert(PLoc.isValid() && "Source location is expected to be valid.");
7424 
7425     // Get the hash of the user defined macros.
7426     llvm::MD5 Hash;
7427     llvm::MD5::MD5Result Result;
7428     for (const auto &Arg : PreprocessorOpts.Macros)
7429       Hash.update(Arg.first);
7430     Hash.final(Result);
7431 
7432     // Get the UniqueID for the file containing the decl.
7433     llvm::sys::fs::UniqueID ID;
7434     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7435       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7436       assert(PLoc.isValid() && "Source location is expected to be valid.");
7437       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7438         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7439             << PLoc.getFilename() << EC.message();
7440     }
7441     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7442        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7443   } else {
7444     OS << getContext().getCUIDHash();
7445   }
7446 }
7447 
7448 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7449   assert(DeferredDeclsToEmit.empty() &&
7450          "Should have emitted all decls deferred to emit.");
7451   assert(NewBuilder->DeferredDecls.empty() &&
7452          "Newly created module should not have deferred decls");
7453   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7454   assert(EmittedDeferredDecls.empty() &&
7455          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7456 
7457   assert(NewBuilder->DeferredVTables.empty() &&
7458          "Newly created module should not have deferred vtables");
7459   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7460 
7461   assert(NewBuilder->MangledDeclNames.empty() &&
7462          "Newly created module should not have mangled decl names");
7463   assert(NewBuilder->Manglings.empty() &&
7464          "Newly created module should not have manglings");
7465   NewBuilder->Manglings = std::move(Manglings);
7466 
7467   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7468 
7469   NewBuilder->TBAA = std::move(TBAA);
7470 
7471   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7472 }
7473