xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 281d20b601c8a2a77b9eac458cafb0482fa94c88)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
127 
128   if (LangOpts.ObjC1)
129     createObjCRuntime();
130   if (LangOpts.OpenCL)
131     createOpenCLRuntime();
132   if (LangOpts.OpenMP)
133     createOpenMPRuntime();
134   if (LangOpts.CUDA)
135     createCUDARuntime();
136 
137   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
138   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
139       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
140     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
141                                getCXXABI().getMangleContext()));
142 
143   // If debug info or coverage generation is enabled, create the CGDebugInfo
144   // object.
145   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
146       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
147     DebugInfo.reset(new CGDebugInfo(*this));
148 
149   Block.GlobalUniqueCount = 0;
150 
151   if (C.getLangOpts().ObjC1)
152     ObjCData.reset(new ObjCEntrypoints());
153 
154   if (CodeGenOpts.hasProfileClangUse()) {
155     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
156         CodeGenOpts.ProfileInstrumentUsePath);
157     if (auto E = ReaderOrErr.takeError()) {
158       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
159                                               "Could not read profile %0: %1");
160       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
161         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
162                                   << EI.message();
163       });
164     } else
165       PGOReader = std::move(ReaderOrErr.get());
166   }
167 
168   // If coverage mapping generation is enabled, create the
169   // CoverageMappingModuleGen object.
170   if (CodeGenOpts.CoverageMapping)
171     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
172 }
173 
174 CodeGenModule::~CodeGenModule() {}
175 
176 void CodeGenModule::createObjCRuntime() {
177   // This is just isGNUFamily(), but we want to force implementors of
178   // new ABIs to decide how best to do this.
179   switch (LangOpts.ObjCRuntime.getKind()) {
180   case ObjCRuntime::GNUstep:
181   case ObjCRuntime::GCC:
182   case ObjCRuntime::ObjFW:
183     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
184     return;
185 
186   case ObjCRuntime::FragileMacOSX:
187   case ObjCRuntime::MacOSX:
188   case ObjCRuntime::iOS:
189   case ObjCRuntime::WatchOS:
190     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
191     return;
192   }
193   llvm_unreachable("bad runtime kind");
194 }
195 
196 void CodeGenModule::createOpenCLRuntime() {
197   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
198 }
199 
200 void CodeGenModule::createOpenMPRuntime() {
201   // Select a specialized code generation class based on the target, if any.
202   // If it does not exist use the default implementation.
203   switch (getTriple().getArch()) {
204   case llvm::Triple::nvptx:
205   case llvm::Triple::nvptx64:
206     assert(getLangOpts().OpenMPIsDevice &&
207            "OpenMP NVPTX is only prepared to deal with device code.");
208     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
209     break;
210   default:
211     if (LangOpts.OpenMPSimd)
212       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
213     else
214       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
215     break;
216   }
217 }
218 
219 void CodeGenModule::createCUDARuntime() {
220   CUDARuntime.reset(CreateNVCUDARuntime(*this));
221 }
222 
223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
224   Replacements[Name] = C;
225 }
226 
227 void CodeGenModule::applyReplacements() {
228   for (auto &I : Replacements) {
229     StringRef MangledName = I.first();
230     llvm::Constant *Replacement = I.second;
231     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
232     if (!Entry)
233       continue;
234     auto *OldF = cast<llvm::Function>(Entry);
235     auto *NewF = dyn_cast<llvm::Function>(Replacement);
236     if (!NewF) {
237       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
238         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
239       } else {
240         auto *CE = cast<llvm::ConstantExpr>(Replacement);
241         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
242                CE->getOpcode() == llvm::Instruction::GetElementPtr);
243         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
244       }
245     }
246 
247     // Replace old with new, but keep the old order.
248     OldF->replaceAllUsesWith(Replacement);
249     if (NewF) {
250       NewF->removeFromParent();
251       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
252                                                        NewF);
253     }
254     OldF->eraseFromParent();
255   }
256 }
257 
258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
259   GlobalValReplacements.push_back(std::make_pair(GV, C));
260 }
261 
262 void CodeGenModule::applyGlobalValReplacements() {
263   for (auto &I : GlobalValReplacements) {
264     llvm::GlobalValue *GV = I.first;
265     llvm::Constant *C = I.second;
266 
267     GV->replaceAllUsesWith(C);
268     GV->eraseFromParent();
269   }
270 }
271 
272 // This is only used in aliases that we created and we know they have a
273 // linear structure.
274 static const llvm::GlobalObject *getAliasedGlobal(
275     const llvm::GlobalIndirectSymbol &GIS) {
276   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
277   const llvm::Constant *C = &GIS;
278   for (;;) {
279     C = C->stripPointerCasts();
280     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
281       return GO;
282     // stripPointerCasts will not walk over weak aliases.
283     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
284     if (!GIS2)
285       return nullptr;
286     if (!Visited.insert(GIS2).second)
287       return nullptr;
288     C = GIS2->getIndirectSymbol();
289   }
290 }
291 
292 void CodeGenModule::checkAliases() {
293   // Check if the constructed aliases are well formed. It is really unfortunate
294   // that we have to do this in CodeGen, but we only construct mangled names
295   // and aliases during codegen.
296   bool Error = false;
297   DiagnosticsEngine &Diags = getDiags();
298   for (const GlobalDecl &GD : Aliases) {
299     const auto *D = cast<ValueDecl>(GD.getDecl());
300     SourceLocation Location;
301     bool IsIFunc = D->hasAttr<IFuncAttr>();
302     if (const Attr *A = D->getDefiningAttr())
303       Location = A->getLocation();
304     else
305       llvm_unreachable("Not an alias or ifunc?");
306     StringRef MangledName = getMangledName(GD);
307     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
308     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
309     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
310     if (!GV) {
311       Error = true;
312       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
313     } else if (GV->isDeclaration()) {
314       Error = true;
315       Diags.Report(Location, diag::err_alias_to_undefined)
316           << IsIFunc << IsIFunc;
317     } else if (IsIFunc) {
318       // Check resolver function type.
319       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
320           GV->getType()->getPointerElementType());
321       assert(FTy);
322       if (!FTy->getReturnType()->isPointerTy())
323         Diags.Report(Location, diag::err_ifunc_resolver_return);
324       if (FTy->getNumParams())
325         Diags.Report(Location, diag::err_ifunc_resolver_params);
326     }
327 
328     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329     llvm::GlobalValue *AliaseeGV;
330     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332     else
333       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334 
335     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336       StringRef AliasSection = SA->getName();
337       if (AliasSection != AliaseeGV->getSection())
338         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339             << AliasSection << IsIFunc << IsIFunc;
340     }
341 
342     // We have to handle alias to weak aliases in here. LLVM itself disallows
343     // this since the object semantics would not match the IL one. For
344     // compatibility with gcc we implement it by just pointing the alias
345     // to its aliasee's aliasee. We also warn, since the user is probably
346     // expecting the link to be weak.
347     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348       if (GA->isInterposable()) {
349         Diags.Report(Location, diag::warn_alias_to_weak_alias)
350             << GV->getName() << GA->getName() << IsIFunc;
351         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352             GA->getIndirectSymbol(), Alias->getType());
353         Alias->setIndirectSymbol(Aliasee);
354       }
355     }
356   }
357   if (!Error)
358     return;
359 
360   for (const GlobalDecl &GD : Aliases) {
361     StringRef MangledName = getMangledName(GD);
362     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365     Alias->eraseFromParent();
366   }
367 }
368 
369 void CodeGenModule::clear() {
370   DeferredDeclsToEmit.clear();
371   if (OpenMPRuntime)
372     OpenMPRuntime->clear();
373 }
374 
375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376                                        StringRef MainFile) {
377   if (!hasDiagnostics())
378     return;
379   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380     if (MainFile.empty())
381       MainFile = "<stdin>";
382     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383   } else {
384     if (Mismatched > 0)
385       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386 
387     if (Missing > 0)
388       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389   }
390 }
391 
392 void CodeGenModule::Release() {
393   EmitDeferred();
394   EmitVTablesOpportunistically();
395   applyGlobalValReplacements();
396   applyReplacements();
397   checkAliases();
398   emitMultiVersionFunctions();
399   EmitCXXGlobalInitFunc();
400   EmitCXXGlobalDtorFunc();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
408       AddGlobalCtor(CudaCtorFunction);
409     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
410       AddGlobalDtor(CudaDtorFunction);
411   }
412   if (OpenMPRuntime)
413     if (llvm::Function *OpenMPRegistrationFunction =
414             OpenMPRuntime->emitRegistrationFunction()) {
415       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
416         OpenMPRegistrationFunction : nullptr;
417       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
418     }
419   if (PGOReader) {
420     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
421     if (PGOStats.hasDiagnostics())
422       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
423   }
424   EmitCtorList(GlobalCtors, "llvm.global_ctors");
425   EmitCtorList(GlobalDtors, "llvm.global_dtors");
426   EmitGlobalAnnotations();
427   EmitStaticExternCAliases();
428   EmitDeferredUnusedCoverageMappings();
429   if (CoverageMapping)
430     CoverageMapping->emit();
431   if (CodeGenOpts.SanitizeCfiCrossDso) {
432     CodeGenFunction(*this).EmitCfiCheckFail();
433     CodeGenFunction(*this).EmitCfiCheckStub();
434   }
435   emitAtAvailableLinkGuard();
436   emitLLVMUsed();
437   if (SanStats)
438     SanStats->finish();
439 
440   if (CodeGenOpts.Autolink &&
441       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
442     EmitModuleLinkOptions();
443   }
444 
445   // Record mregparm value now so it is visible through rest of codegen.
446   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
447     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
448                               CodeGenOpts.NumRegisterParameters);
449 
450   if (CodeGenOpts.DwarfVersion) {
451     // We actually want the latest version when there are conflicts.
452     // We can change from Warning to Latest if such mode is supported.
453     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
454                               CodeGenOpts.DwarfVersion);
455   }
456   if (CodeGenOpts.EmitCodeView) {
457     // Indicate that we want CodeView in the metadata.
458     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
459   }
460   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
461     // We don't support LTO with 2 with different StrictVTablePointers
462     // FIXME: we could support it by stripping all the information introduced
463     // by StrictVTablePointers.
464 
465     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
466 
467     llvm::Metadata *Ops[2] = {
468               llvm::MDString::get(VMContext, "StrictVTablePointers"),
469               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
470                   llvm::Type::getInt32Ty(VMContext), 1))};
471 
472     getModule().addModuleFlag(llvm::Module::Require,
473                               "StrictVTablePointersRequirement",
474                               llvm::MDNode::get(VMContext, Ops));
475   }
476   if (DebugInfo)
477     // We support a single version in the linked module. The LLVM
478     // parser will drop debug info with a different version number
479     // (and warn about it, too).
480     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
481                               llvm::DEBUG_METADATA_VERSION);
482 
483   // We need to record the widths of enums and wchar_t, so that we can generate
484   // the correct build attributes in the ARM backend. wchar_size is also used by
485   // TargetLibraryInfo.
486   uint64_t WCharWidth =
487       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
488   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
489 
490   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
491   if (   Arch == llvm::Triple::arm
492       || Arch == llvm::Triple::armeb
493       || Arch == llvm::Triple::thumb
494       || Arch == llvm::Triple::thumbeb) {
495     // The minimum width of an enum in bytes
496     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
497     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
498   }
499 
500   if (CodeGenOpts.SanitizeCfiCrossDso) {
501     // Indicate that we want cross-DSO control flow integrity checks.
502     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
503   }
504 
505   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
506     // Indicate whether __nvvm_reflect should be configured to flush denormal
507     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
508     // property.)
509     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
510                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
511   }
512 
513   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
514   if (LangOpts.OpenCL) {
515     EmitOpenCLMetadata();
516     // Emit SPIR version.
517     if (getTriple().getArch() == llvm::Triple::spir ||
518         getTriple().getArch() == llvm::Triple::spir64) {
519       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
520       // opencl.spir.version named metadata.
521       llvm::Metadata *SPIRVerElts[] = {
522           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
523               Int32Ty, LangOpts.OpenCLVersion / 100)),
524           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
525               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
526       llvm::NamedMDNode *SPIRVerMD =
527           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
528       llvm::LLVMContext &Ctx = TheModule.getContext();
529       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
530     }
531   }
532 
533   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
534     assert(PLevel < 3 && "Invalid PIC Level");
535     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
536     if (Context.getLangOpts().PIE)
537       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
538   }
539 
540   SimplifyPersonality();
541 
542   if (getCodeGenOpts().EmitDeclMetadata)
543     EmitDeclMetadata();
544 
545   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
546     EmitCoverageFile();
547 
548   if (DebugInfo)
549     DebugInfo->finalize();
550 
551   EmitVersionIdentMetadata();
552 
553   EmitTargetMetadata();
554 }
555 
556 void CodeGenModule::EmitOpenCLMetadata() {
557   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
558   // opencl.ocl.version named metadata node.
559   llvm::Metadata *OCLVerElts[] = {
560       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
561           Int32Ty, LangOpts.OpenCLVersion / 100)),
562       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
563           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
564   llvm::NamedMDNode *OCLVerMD =
565       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
566   llvm::LLVMContext &Ctx = TheModule.getContext();
567   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
568 }
569 
570 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
571   // Make sure that this type is translated.
572   Types.UpdateCompletedType(TD);
573 }
574 
575 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
576   // Make sure that this type is translated.
577   Types.RefreshTypeCacheForClass(RD);
578 }
579 
580 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
581   if (!TBAA)
582     return nullptr;
583   return TBAA->getTypeInfo(QTy);
584 }
585 
586 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
587   // Pointee values may have incomplete types, but they shall never be
588   // dereferenced.
589   if (AccessType->isIncompleteType())
590     return TBAAAccessInfo::getIncompleteInfo();
591 
592   uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity();
593   return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size);
594 }
595 
596 TBAAAccessInfo
597 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
598   if (!TBAA)
599     return TBAAAccessInfo();
600   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
601 }
602 
603 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
604   if (!TBAA)
605     return nullptr;
606   return TBAA->getTBAAStructInfo(QTy);
607 }
608 
609 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
610   if (!TBAA)
611     return nullptr;
612   return TBAA->getBaseTypeInfo(QTy);
613 }
614 
615 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
616   if (!TBAA)
617     return nullptr;
618   return TBAA->getAccessTagInfo(Info);
619 }
620 
621 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
622                                                    TBAAAccessInfo TargetInfo) {
623   if (!TBAA)
624     return TBAAAccessInfo();
625   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
626 }
627 
628 TBAAAccessInfo
629 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
630                                                    TBAAAccessInfo InfoB) {
631   if (!TBAA)
632     return TBAAAccessInfo();
633   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
634 }
635 
636 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
637                                                 TBAAAccessInfo TBAAInfo) {
638   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
639     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
640 }
641 
642 void CodeGenModule::DecorateInstructionWithInvariantGroup(
643     llvm::Instruction *I, const CXXRecordDecl *RD) {
644   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
645                  llvm::MDNode::get(getLLVMContext(), {}));
646 }
647 
648 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
649   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
650   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
651 }
652 
653 /// ErrorUnsupported - Print out an error that codegen doesn't support the
654 /// specified stmt yet.
655 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
656   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
657                                                "cannot compile this %0 yet");
658   std::string Msg = Type;
659   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
660     << Msg << S->getSourceRange();
661 }
662 
663 /// ErrorUnsupported - Print out an error that codegen doesn't support the
664 /// specified decl yet.
665 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
666   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
667                                                "cannot compile this %0 yet");
668   std::string Msg = Type;
669   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
670 }
671 
672 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
673   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
674 }
675 
676 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
677                                         const NamedDecl *D,
678                                         ForDefinition_t IsForDefinition) const {
679   // Internal definitions always have default visibility.
680   if (GV->hasLocalLinkage()) {
681     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
682     return;
683   }
684 
685   // Set visibility for definitions.
686   LinkageInfo LV = D->getLinkageAndVisibility();
687   if (LV.isVisibilityExplicit() ||
688       (IsForDefinition && !GV->hasAvailableExternallyLinkage()))
689     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
690 }
691 
692 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
693   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
694       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
695       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
696       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
697       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
698 }
699 
700 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
701     CodeGenOptions::TLSModel M) {
702   switch (M) {
703   case CodeGenOptions::GeneralDynamicTLSModel:
704     return llvm::GlobalVariable::GeneralDynamicTLSModel;
705   case CodeGenOptions::LocalDynamicTLSModel:
706     return llvm::GlobalVariable::LocalDynamicTLSModel;
707   case CodeGenOptions::InitialExecTLSModel:
708     return llvm::GlobalVariable::InitialExecTLSModel;
709   case CodeGenOptions::LocalExecTLSModel:
710     return llvm::GlobalVariable::LocalExecTLSModel;
711   }
712   llvm_unreachable("Invalid TLS model!");
713 }
714 
715 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
716   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
717 
718   llvm::GlobalValue::ThreadLocalMode TLM;
719   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
720 
721   // Override the TLS model if it is explicitly specified.
722   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
723     TLM = GetLLVMTLSModel(Attr->getModel());
724   }
725 
726   GV->setThreadLocalMode(TLM);
727 }
728 
729 static void AppendTargetMangling(const CodeGenModule &CGM,
730                                  const TargetAttr *Attr, raw_ostream &Out) {
731   if (Attr->isDefaultVersion())
732     return;
733 
734   Out << '.';
735   const auto &Target = CGM.getTarget();
736   TargetAttr::ParsedTargetAttr Info =
737       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
738                     return Target.multiVersionSortPriority(LHS) >
739                            Target.multiVersionSortPriority(RHS);
740                   });
741 
742   bool IsFirst = true;
743 
744   if (!Info.Architecture.empty()) {
745     IsFirst = false;
746     Out << "arch_" << Info.Architecture;
747   }
748 
749   for (StringRef Feat : Info.Features) {
750     if (!IsFirst)
751       Out << '_';
752     IsFirst = false;
753     Out << Feat.substr(1);
754   }
755 }
756 
757 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
758                                       const NamedDecl *ND,
759                                       bool OmitTargetMangling = false) {
760   SmallString<256> Buffer;
761   llvm::raw_svector_ostream Out(Buffer);
762   MangleContext &MC = CGM.getCXXABI().getMangleContext();
763   if (MC.shouldMangleDeclName(ND)) {
764     llvm::raw_svector_ostream Out(Buffer);
765     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
766       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
767     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
768       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
769     else
770       MC.mangleName(ND, Out);
771   } else {
772     IdentifierInfo *II = ND->getIdentifier();
773     assert(II && "Attempt to mangle unnamed decl.");
774     const auto *FD = dyn_cast<FunctionDecl>(ND);
775 
776     if (FD &&
777         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
778       llvm::raw_svector_ostream Out(Buffer);
779       Out << "__regcall3__" << II->getName();
780     } else {
781       Out << II->getName();
782     }
783   }
784 
785   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
786     if (FD->isMultiVersion() && !OmitTargetMangling)
787       AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
788   return Out.str();
789 }
790 
791 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
792                                             const FunctionDecl *FD) {
793   if (!FD->isMultiVersion())
794     return;
795 
796   // Get the name of what this would be without the 'target' attribute.  This
797   // allows us to lookup the version that was emitted when this wasn't a
798   // multiversion function.
799   std::string NonTargetName =
800       getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
801   GlobalDecl OtherGD;
802   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
803     assert(OtherGD.getCanonicalDecl()
804                .getDecl()
805                ->getAsFunction()
806                ->isMultiVersion() &&
807            "Other GD should now be a multiversioned function");
808     // OtherFD is the version of this function that was mangled BEFORE
809     // becoming a MultiVersion function.  It potentially needs to be updated.
810     const FunctionDecl *OtherFD =
811         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
812     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
813     // This is so that if the initial version was already the 'default'
814     // version, we don't try to update it.
815     if (OtherName != NonTargetName) {
816       Manglings.erase(NonTargetName);
817       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
818       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
819       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
820         Entry->setName(OtherName);
821     }
822   }
823 }
824 
825 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
826   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
827 
828   // Some ABIs don't have constructor variants.  Make sure that base and
829   // complete constructors get mangled the same.
830   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
831     if (!getTarget().getCXXABI().hasConstructorVariants()) {
832       CXXCtorType OrigCtorType = GD.getCtorType();
833       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
834       if (OrigCtorType == Ctor_Base)
835         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
836     }
837   }
838 
839   auto FoundName = MangledDeclNames.find(CanonicalGD);
840   if (FoundName != MangledDeclNames.end())
841     return FoundName->second;
842 
843 
844   // Keep the first result in the case of a mangling collision.
845   const auto *ND = cast<NamedDecl>(GD.getDecl());
846   auto Result =
847       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
848   return MangledDeclNames[CanonicalGD] = Result.first->first();
849 }
850 
851 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
852                                              const BlockDecl *BD) {
853   MangleContext &MangleCtx = getCXXABI().getMangleContext();
854   const Decl *D = GD.getDecl();
855 
856   SmallString<256> Buffer;
857   llvm::raw_svector_ostream Out(Buffer);
858   if (!D)
859     MangleCtx.mangleGlobalBlock(BD,
860       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
861   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
862     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
863   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
864     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
865   else
866     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
867 
868   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
869   return Result.first->first();
870 }
871 
872 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
873   return getModule().getNamedValue(Name);
874 }
875 
876 /// AddGlobalCtor - Add a function to the list that will be called before
877 /// main() runs.
878 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
879                                   llvm::Constant *AssociatedData) {
880   // FIXME: Type coercion of void()* types.
881   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
882 }
883 
884 /// AddGlobalDtor - Add a function to the list that will be called
885 /// when the module is unloaded.
886 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
887   // FIXME: Type coercion of void()* types.
888   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
889 }
890 
891 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
892   if (Fns.empty()) return;
893 
894   // Ctor function type is void()*.
895   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
896   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
897 
898   // Get the type of a ctor entry, { i32, void ()*, i8* }.
899   llvm::StructType *CtorStructTy = llvm::StructType::get(
900       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
901 
902   // Construct the constructor and destructor arrays.
903   ConstantInitBuilder builder(*this);
904   auto ctors = builder.beginArray(CtorStructTy);
905   for (const auto &I : Fns) {
906     auto ctor = ctors.beginStruct(CtorStructTy);
907     ctor.addInt(Int32Ty, I.Priority);
908     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
909     if (I.AssociatedData)
910       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
911     else
912       ctor.addNullPointer(VoidPtrTy);
913     ctor.finishAndAddTo(ctors);
914   }
915 
916   auto list =
917     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
918                                 /*constant*/ false,
919                                 llvm::GlobalValue::AppendingLinkage);
920 
921   // The LTO linker doesn't seem to like it when we set an alignment
922   // on appending variables.  Take it off as a workaround.
923   list->setAlignment(0);
924 
925   Fns.clear();
926 }
927 
928 llvm::GlobalValue::LinkageTypes
929 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
930   const auto *D = cast<FunctionDecl>(GD.getDecl());
931 
932   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
933 
934   if (isa<CXXDestructorDecl>(D) &&
935       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
936                                          GD.getDtorType())) {
937     // Destructor variants in the Microsoft C++ ABI are always internal or
938     // linkonce_odr thunks emitted on an as-needed basis.
939     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
940                                    : llvm::GlobalValue::LinkOnceODRLinkage;
941   }
942 
943   if (isa<CXXConstructorDecl>(D) &&
944       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
945       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
946     // Our approach to inheriting constructors is fundamentally different from
947     // that used by the MS ABI, so keep our inheriting constructor thunks
948     // internal rather than trying to pick an unambiguous mangling for them.
949     return llvm::GlobalValue::InternalLinkage;
950   }
951 
952   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
953 }
954 
955 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
956   const auto *FD = cast<FunctionDecl>(GD.getDecl());
957 
958   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
959     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
960       // Don't dllexport/import destructor thunks.
961       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
962       return;
963     }
964   }
965 
966   if (FD->hasAttr<DLLImportAttr>())
967     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
968   else if (FD->hasAttr<DLLExportAttr>())
969     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
970   else
971     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
972 }
973 
974 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
975   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
976   if (!MDS) return nullptr;
977 
978   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
979 }
980 
981 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
982                                                     llvm::Function *F) {
983   setNonAliasAttributes(D, F);
984 }
985 
986 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
987                                               const CGFunctionInfo &Info,
988                                               llvm::Function *F) {
989   unsigned CallingConv;
990   llvm::AttributeList PAL;
991   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
992   F->setAttributes(PAL);
993   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
994 }
995 
996 /// Determines whether the language options require us to model
997 /// unwind exceptions.  We treat -fexceptions as mandating this
998 /// except under the fragile ObjC ABI with only ObjC exceptions
999 /// enabled.  This means, for example, that C with -fexceptions
1000 /// enables this.
1001 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1002   // If exceptions are completely disabled, obviously this is false.
1003   if (!LangOpts.Exceptions) return false;
1004 
1005   // If C++ exceptions are enabled, this is true.
1006   if (LangOpts.CXXExceptions) return true;
1007 
1008   // If ObjC exceptions are enabled, this depends on the ABI.
1009   if (LangOpts.ObjCExceptions) {
1010     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1011   }
1012 
1013   return true;
1014 }
1015 
1016 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1017                                                            llvm::Function *F) {
1018   llvm::AttrBuilder B;
1019 
1020   if (CodeGenOpts.UnwindTables)
1021     B.addAttribute(llvm::Attribute::UWTable);
1022 
1023   if (!hasUnwindExceptions(LangOpts))
1024     B.addAttribute(llvm::Attribute::NoUnwind);
1025 
1026   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1027     B.addAttribute(llvm::Attribute::StackProtect);
1028   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1029     B.addAttribute(llvm::Attribute::StackProtectStrong);
1030   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1031     B.addAttribute(llvm::Attribute::StackProtectReq);
1032 
1033   if (!D) {
1034     // If we don't have a declaration to control inlining, the function isn't
1035     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1036     // disabled, mark the function as noinline.
1037     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1038         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1039       B.addAttribute(llvm::Attribute::NoInline);
1040 
1041     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1042     return;
1043   }
1044 
1045   // Track whether we need to add the optnone LLVM attribute,
1046   // starting with the default for this optimization level.
1047   bool ShouldAddOptNone =
1048       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1049   // We can't add optnone in the following cases, it won't pass the verifier.
1050   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1051   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1052   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1053 
1054   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1055     B.addAttribute(llvm::Attribute::OptimizeNone);
1056 
1057     // OptimizeNone implies noinline; we should not be inlining such functions.
1058     B.addAttribute(llvm::Attribute::NoInline);
1059     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1060            "OptimizeNone and AlwaysInline on same function!");
1061 
1062     // We still need to handle naked functions even though optnone subsumes
1063     // much of their semantics.
1064     if (D->hasAttr<NakedAttr>())
1065       B.addAttribute(llvm::Attribute::Naked);
1066 
1067     // OptimizeNone wins over OptimizeForSize and MinSize.
1068     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1069     F->removeFnAttr(llvm::Attribute::MinSize);
1070   } else if (D->hasAttr<NakedAttr>()) {
1071     // Naked implies noinline: we should not be inlining such functions.
1072     B.addAttribute(llvm::Attribute::Naked);
1073     B.addAttribute(llvm::Attribute::NoInline);
1074   } else if (D->hasAttr<NoDuplicateAttr>()) {
1075     B.addAttribute(llvm::Attribute::NoDuplicate);
1076   } else if (D->hasAttr<NoInlineAttr>()) {
1077     B.addAttribute(llvm::Attribute::NoInline);
1078   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1079              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1080     // (noinline wins over always_inline, and we can't specify both in IR)
1081     B.addAttribute(llvm::Attribute::AlwaysInline);
1082   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1083     // If we're not inlining, then force everything that isn't always_inline to
1084     // carry an explicit noinline attribute.
1085     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1086       B.addAttribute(llvm::Attribute::NoInline);
1087   } else {
1088     // Otherwise, propagate the inline hint attribute and potentially use its
1089     // absence to mark things as noinline.
1090     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1091       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1092             return Redecl->isInlineSpecified();
1093           })) {
1094         B.addAttribute(llvm::Attribute::InlineHint);
1095       } else if (CodeGenOpts.getInlining() ==
1096                      CodeGenOptions::OnlyHintInlining &&
1097                  !FD->isInlined() &&
1098                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1099         B.addAttribute(llvm::Attribute::NoInline);
1100       }
1101     }
1102   }
1103 
1104   // Add other optimization related attributes if we are optimizing this
1105   // function.
1106   if (!D->hasAttr<OptimizeNoneAttr>()) {
1107     if (D->hasAttr<ColdAttr>()) {
1108       if (!ShouldAddOptNone)
1109         B.addAttribute(llvm::Attribute::OptimizeForSize);
1110       B.addAttribute(llvm::Attribute::Cold);
1111     }
1112 
1113     if (D->hasAttr<MinSizeAttr>())
1114       B.addAttribute(llvm::Attribute::MinSize);
1115   }
1116 
1117   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1118 
1119   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1120   if (alignment)
1121     F->setAlignment(alignment);
1122 
1123   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1124   // reserve a bit for differentiating between virtual and non-virtual member
1125   // functions. If the current target's C++ ABI requires this and this is a
1126   // member function, set its alignment accordingly.
1127   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1128     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1129       F->setAlignment(2);
1130   }
1131 
1132   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1133   if (CodeGenOpts.SanitizeCfiCrossDso)
1134     if (auto *FD = dyn_cast<FunctionDecl>(D))
1135       CreateFunctionTypeMetadata(FD, F);
1136 }
1137 
1138 void CodeGenModule::SetCommonAttributes(const Decl *D,
1139                                         llvm::GlobalValue *GV) {
1140   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
1141     setGlobalVisibility(GV, ND, ForDefinition);
1142   else
1143     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1144 
1145   if (D && D->hasAttr<UsedAttr>())
1146     addUsedGlobal(GV);
1147 }
1148 
1149 void CodeGenModule::setAliasAttributes(const Decl *D,
1150                                        llvm::GlobalValue *GV) {
1151   SetCommonAttributes(D, GV);
1152 
1153   // Process the dllexport attribute based on whether the original definition
1154   // (not necessarily the aliasee) was exported.
1155   if (D->hasAttr<DLLExportAttr>())
1156     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1157 }
1158 
1159 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1160                                           llvm::GlobalObject *GO) {
1161   SetCommonAttributes(D, GO);
1162 
1163   if (D) {
1164     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1165       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1166         GV->addAttribute("bss-section", SA->getName());
1167       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1168         GV->addAttribute("data-section", SA->getName());
1169       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1170         GV->addAttribute("rodata-section", SA->getName());
1171     }
1172 
1173     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1174       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1175        if (!D->getAttr<SectionAttr>())
1176          F->addFnAttr("implicit-section-name", SA->getName());
1177     }
1178 
1179     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1180       GO->setSection(SA->getName());
1181   }
1182 
1183   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition);
1184 }
1185 
1186 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1187                                                   llvm::Function *F,
1188                                                   const CGFunctionInfo &FI) {
1189   SetLLVMFunctionAttributes(D, FI, F);
1190   SetLLVMFunctionAttributesForDefinition(D, F);
1191 
1192   F->setLinkage(llvm::Function::InternalLinkage);
1193 
1194   setNonAliasAttributes(D, F);
1195 }
1196 
1197 static void setLinkageForGV(llvm::GlobalValue *GV,
1198                             const NamedDecl *ND) {
1199   // Set linkage and visibility in case we never see a definition.
1200   LinkageInfo LV = ND->getLinkageAndVisibility();
1201   if (!isExternallyVisible(LV.getLinkage())) {
1202     // Don't set internal linkage on declarations.
1203   } else {
1204     if (ND->hasAttr<DLLImportAttr>()) {
1205       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1206       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1207     } else if (ND->hasAttr<DLLExportAttr>()) {
1208       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1209     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1210       // "extern_weak" is overloaded in LLVM; we probably should have
1211       // separate linkage types for this.
1212       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1213     }
1214   }
1215 }
1216 
1217 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1218                                                llvm::Function *F) {
1219   // Only if we are checking indirect calls.
1220   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1221     return;
1222 
1223   // Non-static class methods are handled via vtable pointer checks elsewhere.
1224   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1225     return;
1226 
1227   // Additionally, if building with cross-DSO support...
1228   if (CodeGenOpts.SanitizeCfiCrossDso) {
1229     // Skip available_externally functions. They won't be codegen'ed in the
1230     // current module anyway.
1231     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1232       return;
1233   }
1234 
1235   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1236   F->addTypeMetadata(0, MD);
1237   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1238 
1239   // Emit a hash-based bit set entry for cross-DSO calls.
1240   if (CodeGenOpts.SanitizeCfiCrossDso)
1241     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1242       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1243 }
1244 
1245 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1246                                           bool IsIncompleteFunction,
1247                                           bool IsThunk,
1248                                           ForDefinition_t IsForDefinition) {
1249 
1250   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1251     // If this is an intrinsic function, set the function's attributes
1252     // to the intrinsic's attributes.
1253     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1254     return;
1255   }
1256 
1257   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1258 
1259   if (!IsIncompleteFunction) {
1260     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1261     // Setup target-specific attributes.
1262     if (!IsForDefinition)
1263       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this,
1264                                                  NotForDefinition);
1265   }
1266 
1267   // Add the Returned attribute for "this", except for iOS 5 and earlier
1268   // where substantial code, including the libstdc++ dylib, was compiled with
1269   // GCC and does not actually return "this".
1270   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1271       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1272     assert(!F->arg_empty() &&
1273            F->arg_begin()->getType()
1274              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1275            "unexpected this return");
1276     F->addAttribute(1, llvm::Attribute::Returned);
1277   }
1278 
1279   // Only a few attributes are set on declarations; these may later be
1280   // overridden by a definition.
1281 
1282   setLinkageForGV(F, FD);
1283   setGlobalVisibility(F, FD, NotForDefinition);
1284 
1285   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1286     F->addFnAttr("implicit-section-name");
1287   }
1288 
1289   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1290     F->setSection(SA->getName());
1291 
1292   if (FD->isReplaceableGlobalAllocationFunction()) {
1293     // A replaceable global allocation function does not act like a builtin by
1294     // default, only if it is invoked by a new-expression or delete-expression.
1295     F->addAttribute(llvm::AttributeList::FunctionIndex,
1296                     llvm::Attribute::NoBuiltin);
1297 
1298     // A sane operator new returns a non-aliasing pointer.
1299     // FIXME: Also add NonNull attribute to the return value
1300     // for the non-nothrow forms?
1301     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1302     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1303         (Kind == OO_New || Kind == OO_Array_New))
1304       F->addAttribute(llvm::AttributeList::ReturnIndex,
1305                       llvm::Attribute::NoAlias);
1306   }
1307 
1308   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1309     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1310   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1311     if (MD->isVirtual())
1312       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1313 
1314   // Don't emit entries for function declarations in the cross-DSO mode. This
1315   // is handled with better precision by the receiving DSO.
1316   if (!CodeGenOpts.SanitizeCfiCrossDso)
1317     CreateFunctionTypeMetadata(FD, F);
1318 
1319   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1320     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1321 }
1322 
1323 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1324   assert(!GV->isDeclaration() &&
1325          "Only globals with definition can force usage.");
1326   LLVMUsed.emplace_back(GV);
1327 }
1328 
1329 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1330   assert(!GV->isDeclaration() &&
1331          "Only globals with definition can force usage.");
1332   LLVMCompilerUsed.emplace_back(GV);
1333 }
1334 
1335 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1336                      std::vector<llvm::WeakTrackingVH> &List) {
1337   // Don't create llvm.used if there is no need.
1338   if (List.empty())
1339     return;
1340 
1341   // Convert List to what ConstantArray needs.
1342   SmallVector<llvm::Constant*, 8> UsedArray;
1343   UsedArray.resize(List.size());
1344   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1345     UsedArray[i] =
1346         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1347             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1348   }
1349 
1350   if (UsedArray.empty())
1351     return;
1352   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1353 
1354   auto *GV = new llvm::GlobalVariable(
1355       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1356       llvm::ConstantArray::get(ATy, UsedArray), Name);
1357 
1358   GV->setSection("llvm.metadata");
1359 }
1360 
1361 void CodeGenModule::emitLLVMUsed() {
1362   emitUsed(*this, "llvm.used", LLVMUsed);
1363   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1364 }
1365 
1366 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1367   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1368   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1369 }
1370 
1371 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1372   llvm::SmallString<32> Opt;
1373   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1374   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1375   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1376 }
1377 
1378 void CodeGenModule::AddDependentLib(StringRef Lib) {
1379   llvm::SmallString<24> Opt;
1380   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1381   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1382   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1383 }
1384 
1385 /// \brief Add link options implied by the given module, including modules
1386 /// it depends on, using a postorder walk.
1387 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1388                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1389                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1390   // Import this module's parent.
1391   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1392     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1393   }
1394 
1395   // Import this module's dependencies.
1396   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1397     if (Visited.insert(Mod->Imports[I - 1]).second)
1398       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1399   }
1400 
1401   // Add linker options to link against the libraries/frameworks
1402   // described by this module.
1403   llvm::LLVMContext &Context = CGM.getLLVMContext();
1404   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1405     // Link against a framework.  Frameworks are currently Darwin only, so we
1406     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1407     if (Mod->LinkLibraries[I-1].IsFramework) {
1408       llvm::Metadata *Args[2] = {
1409           llvm::MDString::get(Context, "-framework"),
1410           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1411 
1412       Metadata.push_back(llvm::MDNode::get(Context, Args));
1413       continue;
1414     }
1415 
1416     // Link against a library.
1417     llvm::SmallString<24> Opt;
1418     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1419       Mod->LinkLibraries[I-1].Library, Opt);
1420     auto *OptString = llvm::MDString::get(Context, Opt);
1421     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1422   }
1423 }
1424 
1425 void CodeGenModule::EmitModuleLinkOptions() {
1426   // Collect the set of all of the modules we want to visit to emit link
1427   // options, which is essentially the imported modules and all of their
1428   // non-explicit child modules.
1429   llvm::SetVector<clang::Module *> LinkModules;
1430   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1431   SmallVector<clang::Module *, 16> Stack;
1432 
1433   // Seed the stack with imported modules.
1434   for (Module *M : ImportedModules) {
1435     // Do not add any link flags when an implementation TU of a module imports
1436     // a header of that same module.
1437     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1438         !getLangOpts().isCompilingModule())
1439       continue;
1440     if (Visited.insert(M).second)
1441       Stack.push_back(M);
1442   }
1443 
1444   // Find all of the modules to import, making a little effort to prune
1445   // non-leaf modules.
1446   while (!Stack.empty()) {
1447     clang::Module *Mod = Stack.pop_back_val();
1448 
1449     bool AnyChildren = false;
1450 
1451     // Visit the submodules of this module.
1452     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1453                                         SubEnd = Mod->submodule_end();
1454          Sub != SubEnd; ++Sub) {
1455       // Skip explicit children; they need to be explicitly imported to be
1456       // linked against.
1457       if ((*Sub)->IsExplicit)
1458         continue;
1459 
1460       if (Visited.insert(*Sub).second) {
1461         Stack.push_back(*Sub);
1462         AnyChildren = true;
1463       }
1464     }
1465 
1466     // We didn't find any children, so add this module to the list of
1467     // modules to link against.
1468     if (!AnyChildren) {
1469       LinkModules.insert(Mod);
1470     }
1471   }
1472 
1473   // Add link options for all of the imported modules in reverse topological
1474   // order.  We don't do anything to try to order import link flags with respect
1475   // to linker options inserted by things like #pragma comment().
1476   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1477   Visited.clear();
1478   for (Module *M : LinkModules)
1479     if (Visited.insert(M).second)
1480       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1481   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1482   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1483 
1484   // Add the linker options metadata flag.
1485   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1486   for (auto *MD : LinkerOptionsMetadata)
1487     NMD->addOperand(MD);
1488 }
1489 
1490 void CodeGenModule::EmitDeferred() {
1491   // Emit code for any potentially referenced deferred decls.  Since a
1492   // previously unused static decl may become used during the generation of code
1493   // for a static function, iterate until no changes are made.
1494 
1495   if (!DeferredVTables.empty()) {
1496     EmitDeferredVTables();
1497 
1498     // Emitting a vtable doesn't directly cause more vtables to
1499     // become deferred, although it can cause functions to be
1500     // emitted that then need those vtables.
1501     assert(DeferredVTables.empty());
1502   }
1503 
1504   // Stop if we're out of both deferred vtables and deferred declarations.
1505   if (DeferredDeclsToEmit.empty())
1506     return;
1507 
1508   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1509   // work, it will not interfere with this.
1510   std::vector<GlobalDecl> CurDeclsToEmit;
1511   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1512 
1513   for (GlobalDecl &D : CurDeclsToEmit) {
1514     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1515     // to get GlobalValue with exactly the type we need, not something that
1516     // might had been created for another decl with the same mangled name but
1517     // different type.
1518     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1519         GetAddrOfGlobal(D, ForDefinition));
1520 
1521     // In case of different address spaces, we may still get a cast, even with
1522     // IsForDefinition equal to true. Query mangled names table to get
1523     // GlobalValue.
1524     if (!GV)
1525       GV = GetGlobalValue(getMangledName(D));
1526 
1527     // Make sure GetGlobalValue returned non-null.
1528     assert(GV);
1529 
1530     // Check to see if we've already emitted this.  This is necessary
1531     // for a couple of reasons: first, decls can end up in the
1532     // deferred-decls queue multiple times, and second, decls can end
1533     // up with definitions in unusual ways (e.g. by an extern inline
1534     // function acquiring a strong function redefinition).  Just
1535     // ignore these cases.
1536     if (!GV->isDeclaration())
1537       continue;
1538 
1539     // Otherwise, emit the definition and move on to the next one.
1540     EmitGlobalDefinition(D, GV);
1541 
1542     // If we found out that we need to emit more decls, do that recursively.
1543     // This has the advantage that the decls are emitted in a DFS and related
1544     // ones are close together, which is convenient for testing.
1545     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1546       EmitDeferred();
1547       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1548     }
1549   }
1550 }
1551 
1552 void CodeGenModule::EmitVTablesOpportunistically() {
1553   // Try to emit external vtables as available_externally if they have emitted
1554   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1555   // is not allowed to create new references to things that need to be emitted
1556   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1557 
1558   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1559          && "Only emit opportunistic vtables with optimizations");
1560 
1561   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1562     assert(getVTables().isVTableExternal(RD) &&
1563            "This queue should only contain external vtables");
1564     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1565       VTables.GenerateClassData(RD);
1566   }
1567   OpportunisticVTables.clear();
1568 }
1569 
1570 void CodeGenModule::EmitGlobalAnnotations() {
1571   if (Annotations.empty())
1572     return;
1573 
1574   // Create a new global variable for the ConstantStruct in the Module.
1575   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1576     Annotations[0]->getType(), Annotations.size()), Annotations);
1577   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1578                                       llvm::GlobalValue::AppendingLinkage,
1579                                       Array, "llvm.global.annotations");
1580   gv->setSection(AnnotationSection);
1581 }
1582 
1583 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1584   llvm::Constant *&AStr = AnnotationStrings[Str];
1585   if (AStr)
1586     return AStr;
1587 
1588   // Not found yet, create a new global.
1589   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1590   auto *gv =
1591       new llvm::GlobalVariable(getModule(), s->getType(), true,
1592                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1593   gv->setSection(AnnotationSection);
1594   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1595   AStr = gv;
1596   return gv;
1597 }
1598 
1599 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1600   SourceManager &SM = getContext().getSourceManager();
1601   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1602   if (PLoc.isValid())
1603     return EmitAnnotationString(PLoc.getFilename());
1604   return EmitAnnotationString(SM.getBufferName(Loc));
1605 }
1606 
1607 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1608   SourceManager &SM = getContext().getSourceManager();
1609   PresumedLoc PLoc = SM.getPresumedLoc(L);
1610   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1611     SM.getExpansionLineNumber(L);
1612   return llvm::ConstantInt::get(Int32Ty, LineNo);
1613 }
1614 
1615 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1616                                                 const AnnotateAttr *AA,
1617                                                 SourceLocation L) {
1618   // Get the globals for file name, annotation, and the line number.
1619   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1620                  *UnitGV = EmitAnnotationUnit(L),
1621                  *LineNoCst = EmitAnnotationLineNo(L);
1622 
1623   // Create the ConstantStruct for the global annotation.
1624   llvm::Constant *Fields[4] = {
1625     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1626     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1627     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1628     LineNoCst
1629   };
1630   return llvm::ConstantStruct::getAnon(Fields);
1631 }
1632 
1633 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1634                                          llvm::GlobalValue *GV) {
1635   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1636   // Get the struct elements for these annotations.
1637   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1638     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1639 }
1640 
1641 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1642                                            llvm::Function *Fn,
1643                                            SourceLocation Loc) const {
1644   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1645   // Blacklist by function name.
1646   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1647     return true;
1648   // Blacklist by location.
1649   if (Loc.isValid())
1650     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1651   // If location is unknown, this may be a compiler-generated function. Assume
1652   // it's located in the main file.
1653   auto &SM = Context.getSourceManager();
1654   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1655     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1656   }
1657   return false;
1658 }
1659 
1660 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1661                                            SourceLocation Loc, QualType Ty,
1662                                            StringRef Category) const {
1663   // For now globals can be blacklisted only in ASan and KASan.
1664   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1665       (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress);
1666   if (!EnabledAsanMask)
1667     return false;
1668   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1669   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1670     return true;
1671   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1672     return true;
1673   // Check global type.
1674   if (!Ty.isNull()) {
1675     // Drill down the array types: if global variable of a fixed type is
1676     // blacklisted, we also don't instrument arrays of them.
1677     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1678       Ty = AT->getElementType();
1679     Ty = Ty.getCanonicalType().getUnqualifiedType();
1680     // We allow to blacklist only record types (classes, structs etc.)
1681     if (Ty->isRecordType()) {
1682       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1683       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1684         return true;
1685     }
1686   }
1687   return false;
1688 }
1689 
1690 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1691                                    StringRef Category) const {
1692   if (!LangOpts.XRayInstrument)
1693     return false;
1694   const auto &XRayFilter = getContext().getXRayFilter();
1695   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1696   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1697   if (Loc.isValid())
1698     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1699   if (Attr == ImbueAttr::NONE)
1700     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1701   switch (Attr) {
1702   case ImbueAttr::NONE:
1703     return false;
1704   case ImbueAttr::ALWAYS:
1705     Fn->addFnAttr("function-instrument", "xray-always");
1706     break;
1707   case ImbueAttr::ALWAYS_ARG1:
1708     Fn->addFnAttr("function-instrument", "xray-always");
1709     Fn->addFnAttr("xray-log-args", "1");
1710     break;
1711   case ImbueAttr::NEVER:
1712     Fn->addFnAttr("function-instrument", "xray-never");
1713     break;
1714   }
1715   return true;
1716 }
1717 
1718 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1719   // Never defer when EmitAllDecls is specified.
1720   if (LangOpts.EmitAllDecls)
1721     return true;
1722 
1723   return getContext().DeclMustBeEmitted(Global);
1724 }
1725 
1726 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1727   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1728     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1729       // Implicit template instantiations may change linkage if they are later
1730       // explicitly instantiated, so they should not be emitted eagerly.
1731       return false;
1732   if (const auto *VD = dyn_cast<VarDecl>(Global))
1733     if (Context.getInlineVariableDefinitionKind(VD) ==
1734         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1735       // A definition of an inline constexpr static data member may change
1736       // linkage later if it's redeclared outside the class.
1737       return false;
1738   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1739   // codegen for global variables, because they may be marked as threadprivate.
1740   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1741       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1742     return false;
1743 
1744   return true;
1745 }
1746 
1747 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1748     const CXXUuidofExpr* E) {
1749   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1750   // well-formed.
1751   StringRef Uuid = E->getUuidStr();
1752   std::string Name = "_GUID_" + Uuid.lower();
1753   std::replace(Name.begin(), Name.end(), '-', '_');
1754 
1755   // The UUID descriptor should be pointer aligned.
1756   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1757 
1758   // Look for an existing global.
1759   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1760     return ConstantAddress(GV, Alignment);
1761 
1762   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1763   assert(Init && "failed to initialize as constant");
1764 
1765   auto *GV = new llvm::GlobalVariable(
1766       getModule(), Init->getType(),
1767       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1768   if (supportsCOMDAT())
1769     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1770   return ConstantAddress(GV, Alignment);
1771 }
1772 
1773 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1774   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1775   assert(AA && "No alias?");
1776 
1777   CharUnits Alignment = getContext().getDeclAlign(VD);
1778   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1779 
1780   // See if there is already something with the target's name in the module.
1781   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1782   if (Entry) {
1783     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1784     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1785     return ConstantAddress(Ptr, Alignment);
1786   }
1787 
1788   llvm::Constant *Aliasee;
1789   if (isa<llvm::FunctionType>(DeclTy))
1790     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1791                                       GlobalDecl(cast<FunctionDecl>(VD)),
1792                                       /*ForVTable=*/false);
1793   else
1794     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1795                                     llvm::PointerType::getUnqual(DeclTy),
1796                                     nullptr);
1797 
1798   auto *F = cast<llvm::GlobalValue>(Aliasee);
1799   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1800   WeakRefReferences.insert(F);
1801 
1802   return ConstantAddress(Aliasee, Alignment);
1803 }
1804 
1805 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1806   const auto *Global = cast<ValueDecl>(GD.getDecl());
1807 
1808   // Weak references don't produce any output by themselves.
1809   if (Global->hasAttr<WeakRefAttr>())
1810     return;
1811 
1812   // If this is an alias definition (which otherwise looks like a declaration)
1813   // emit it now.
1814   if (Global->hasAttr<AliasAttr>())
1815     return EmitAliasDefinition(GD);
1816 
1817   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1818   if (Global->hasAttr<IFuncAttr>())
1819     return emitIFuncDefinition(GD);
1820 
1821   // If this is CUDA, be selective about which declarations we emit.
1822   if (LangOpts.CUDA) {
1823     if (LangOpts.CUDAIsDevice) {
1824       if (!Global->hasAttr<CUDADeviceAttr>() &&
1825           !Global->hasAttr<CUDAGlobalAttr>() &&
1826           !Global->hasAttr<CUDAConstantAttr>() &&
1827           !Global->hasAttr<CUDASharedAttr>())
1828         return;
1829     } else {
1830       // We need to emit host-side 'shadows' for all global
1831       // device-side variables because the CUDA runtime needs their
1832       // size and host-side address in order to provide access to
1833       // their device-side incarnations.
1834 
1835       // So device-only functions are the only things we skip.
1836       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1837           Global->hasAttr<CUDADeviceAttr>())
1838         return;
1839 
1840       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1841              "Expected Variable or Function");
1842     }
1843   }
1844 
1845   if (LangOpts.OpenMP) {
1846     // If this is OpenMP device, check if it is legal to emit this global
1847     // normally.
1848     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1849       return;
1850     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1851       if (MustBeEmitted(Global))
1852         EmitOMPDeclareReduction(DRD);
1853       return;
1854     }
1855   }
1856 
1857   // Ignore declarations, they will be emitted on their first use.
1858   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1859     // Forward declarations are emitted lazily on first use.
1860     if (!FD->doesThisDeclarationHaveABody()) {
1861       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1862         return;
1863 
1864       StringRef MangledName = getMangledName(GD);
1865 
1866       // Compute the function info and LLVM type.
1867       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1868       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1869 
1870       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1871                               /*DontDefer=*/false);
1872       return;
1873     }
1874   } else {
1875     const auto *VD = cast<VarDecl>(Global);
1876     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1877     // We need to emit device-side global CUDA variables even if a
1878     // variable does not have a definition -- we still need to define
1879     // host-side shadow for it.
1880     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1881                            !VD->hasDefinition() &&
1882                            (VD->hasAttr<CUDAConstantAttr>() ||
1883                             VD->hasAttr<CUDADeviceAttr>());
1884     if (!MustEmitForCuda &&
1885         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1886         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1887       // If this declaration may have caused an inline variable definition to
1888       // change linkage, make sure that it's emitted.
1889       if (Context.getInlineVariableDefinitionKind(VD) ==
1890           ASTContext::InlineVariableDefinitionKind::Strong)
1891         GetAddrOfGlobalVar(VD);
1892       return;
1893     }
1894   }
1895 
1896   // Defer code generation to first use when possible, e.g. if this is an inline
1897   // function. If the global must always be emitted, do it eagerly if possible
1898   // to benefit from cache locality.
1899   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1900     // Emit the definition if it can't be deferred.
1901     EmitGlobalDefinition(GD);
1902     return;
1903   }
1904 
1905   // If we're deferring emission of a C++ variable with an
1906   // initializer, remember the order in which it appeared in the file.
1907   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1908       cast<VarDecl>(Global)->hasInit()) {
1909     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1910     CXXGlobalInits.push_back(nullptr);
1911   }
1912 
1913   StringRef MangledName = getMangledName(GD);
1914   if (GetGlobalValue(MangledName) != nullptr) {
1915     // The value has already been used and should therefore be emitted.
1916     addDeferredDeclToEmit(GD);
1917   } else if (MustBeEmitted(Global)) {
1918     // The value must be emitted, but cannot be emitted eagerly.
1919     assert(!MayBeEmittedEagerly(Global));
1920     addDeferredDeclToEmit(GD);
1921   } else {
1922     // Otherwise, remember that we saw a deferred decl with this name.  The
1923     // first use of the mangled name will cause it to move into
1924     // DeferredDeclsToEmit.
1925     DeferredDecls[MangledName] = GD;
1926   }
1927 }
1928 
1929 // Check if T is a class type with a destructor that's not dllimport.
1930 static bool HasNonDllImportDtor(QualType T) {
1931   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
1932     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1933       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1934         return true;
1935 
1936   return false;
1937 }
1938 
1939 namespace {
1940   struct FunctionIsDirectlyRecursive :
1941     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1942     const StringRef Name;
1943     const Builtin::Context &BI;
1944     bool Result;
1945     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1946       Name(N), BI(C), Result(false) {
1947     }
1948     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1949 
1950     bool TraverseCallExpr(CallExpr *E) {
1951       const FunctionDecl *FD = E->getDirectCallee();
1952       if (!FD)
1953         return true;
1954       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1955       if (Attr && Name == Attr->getLabel()) {
1956         Result = true;
1957         return false;
1958       }
1959       unsigned BuiltinID = FD->getBuiltinID();
1960       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1961         return true;
1962       StringRef BuiltinName = BI.getName(BuiltinID);
1963       if (BuiltinName.startswith("__builtin_") &&
1964           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1965         Result = true;
1966         return false;
1967       }
1968       return true;
1969     }
1970   };
1971 
1972   // Make sure we're not referencing non-imported vars or functions.
1973   struct DLLImportFunctionVisitor
1974       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1975     bool SafeToInline = true;
1976 
1977     bool shouldVisitImplicitCode() const { return true; }
1978 
1979     bool VisitVarDecl(VarDecl *VD) {
1980       if (VD->getTLSKind()) {
1981         // A thread-local variable cannot be imported.
1982         SafeToInline = false;
1983         return SafeToInline;
1984       }
1985 
1986       // A variable definition might imply a destructor call.
1987       if (VD->isThisDeclarationADefinition())
1988         SafeToInline = !HasNonDllImportDtor(VD->getType());
1989 
1990       return SafeToInline;
1991     }
1992 
1993     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1994       if (const auto *D = E->getTemporary()->getDestructor())
1995         SafeToInline = D->hasAttr<DLLImportAttr>();
1996       return SafeToInline;
1997     }
1998 
1999     bool VisitDeclRefExpr(DeclRefExpr *E) {
2000       ValueDecl *VD = E->getDecl();
2001       if (isa<FunctionDecl>(VD))
2002         SafeToInline = VD->hasAttr<DLLImportAttr>();
2003       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2004         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2005       return SafeToInline;
2006     }
2007 
2008     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2009       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2010       return SafeToInline;
2011     }
2012 
2013     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2014       CXXMethodDecl *M = E->getMethodDecl();
2015       if (!M) {
2016         // Call through a pointer to member function. This is safe to inline.
2017         SafeToInline = true;
2018       } else {
2019         SafeToInline = M->hasAttr<DLLImportAttr>();
2020       }
2021       return SafeToInline;
2022     }
2023 
2024     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2025       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2026       return SafeToInline;
2027     }
2028 
2029     bool VisitCXXNewExpr(CXXNewExpr *E) {
2030       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2031       return SafeToInline;
2032     }
2033   };
2034 }
2035 
2036 // isTriviallyRecursive - Check if this function calls another
2037 // decl that, because of the asm attribute or the other decl being a builtin,
2038 // ends up pointing to itself.
2039 bool
2040 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2041   StringRef Name;
2042   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2043     // asm labels are a special kind of mangling we have to support.
2044     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2045     if (!Attr)
2046       return false;
2047     Name = Attr->getLabel();
2048   } else {
2049     Name = FD->getName();
2050   }
2051 
2052   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2053   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2054   return Walker.Result;
2055 }
2056 
2057 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2058   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2059     return true;
2060   const auto *F = cast<FunctionDecl>(GD.getDecl());
2061   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2062     return false;
2063 
2064   if (F->hasAttr<DLLImportAttr>()) {
2065     // Check whether it would be safe to inline this dllimport function.
2066     DLLImportFunctionVisitor Visitor;
2067     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2068     if (!Visitor.SafeToInline)
2069       return false;
2070 
2071     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2072       // Implicit destructor invocations aren't captured in the AST, so the
2073       // check above can't see them. Check for them manually here.
2074       for (const Decl *Member : Dtor->getParent()->decls())
2075         if (isa<FieldDecl>(Member))
2076           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2077             return false;
2078       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2079         if (HasNonDllImportDtor(B.getType()))
2080           return false;
2081     }
2082   }
2083 
2084   // PR9614. Avoid cases where the source code is lying to us. An available
2085   // externally function should have an equivalent function somewhere else,
2086   // but a function that calls itself is clearly not equivalent to the real
2087   // implementation.
2088   // This happens in glibc's btowc and in some configure checks.
2089   return !isTriviallyRecursive(F);
2090 }
2091 
2092 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2093   return CodeGenOpts.OptimizationLevel > 0;
2094 }
2095 
2096 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2097   const auto *D = cast<ValueDecl>(GD.getDecl());
2098 
2099   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2100                                  Context.getSourceManager(),
2101                                  "Generating code for declaration");
2102 
2103   if (isa<FunctionDecl>(D)) {
2104     // At -O0, don't generate IR for functions with available_externally
2105     // linkage.
2106     if (!shouldEmitFunction(GD))
2107       return;
2108 
2109     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2110       // Make sure to emit the definition(s) before we emit the thunks.
2111       // This is necessary for the generation of certain thunks.
2112       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2113         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2114       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2115         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2116       else
2117         EmitGlobalFunctionDefinition(GD, GV);
2118 
2119       if (Method->isVirtual())
2120         getVTables().EmitThunks(GD);
2121 
2122       return;
2123     }
2124 
2125     return EmitGlobalFunctionDefinition(GD, GV);
2126   }
2127 
2128   if (const auto *VD = dyn_cast<VarDecl>(D))
2129     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2130 
2131   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2132 }
2133 
2134 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2135                                                       llvm::Function *NewFn);
2136 
2137 void CodeGenModule::emitMultiVersionFunctions() {
2138   for (GlobalDecl GD : MultiVersionFuncs) {
2139     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2140     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2141     getContext().forEachMultiversionedFunctionVersion(
2142         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2143           GlobalDecl CurGD{
2144               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2145           StringRef MangledName = getMangledName(CurGD);
2146           llvm::Constant *Func = GetGlobalValue(MangledName);
2147           if (!Func) {
2148             if (CurFD->isDefined()) {
2149               EmitGlobalFunctionDefinition(CurGD, nullptr);
2150               Func = GetGlobalValue(MangledName);
2151             } else {
2152               const CGFunctionInfo &FI =
2153                   getTypes().arrangeGlobalDeclaration(GD);
2154               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2155               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2156                                        /*DontDefer=*/false, ForDefinition);
2157             }
2158             assert(Func && "This should have just been created");
2159           }
2160           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2161                                CurFD->getAttr<TargetAttr>()->parse());
2162         });
2163 
2164     llvm::Function *ResolverFunc = cast<llvm::Function>(
2165         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2166     std::stable_sort(
2167         Options.begin(), Options.end(),
2168         std::greater<CodeGenFunction::MultiVersionResolverOption>());
2169     CodeGenFunction CGF(*this);
2170     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2171   }
2172 }
2173 
2174 /// If an ifunc for the specified mangled name is not in the module, create and
2175 /// return an llvm IFunc Function with the specified type.
2176 llvm::Constant *
2177 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2178                                             StringRef MangledName,
2179                                             const FunctionDecl *FD) {
2180   std::string IFuncName = (MangledName + ".ifunc").str();
2181   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2182     return IFuncGV;
2183 
2184   // Since this is the first time we've created this IFunc, make sure
2185   // that we put this multiversioned function into the list to be
2186   // replaced later.
2187   MultiVersionFuncs.push_back(GD);
2188 
2189   std::string ResolverName = (MangledName + ".resolver").str();
2190   llvm::Type *ResolverType = llvm::FunctionType::get(
2191       llvm::PointerType::get(DeclTy,
2192                              Context.getTargetAddressSpace(FD->getType())),
2193       false);
2194   llvm::Constant *Resolver =
2195       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2196                               /*ForVTable=*/false);
2197   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2198       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2199   GIF->setName(IFuncName);
2200   SetCommonAttributes(FD, GIF);
2201 
2202   return GIF;
2203 }
2204 
2205 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2206 /// module, create and return an llvm Function with the specified type. If there
2207 /// is something in the module with the specified name, return it potentially
2208 /// bitcasted to the right type.
2209 ///
2210 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2211 /// to set the attributes on the function when it is first created.
2212 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2213     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2214     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2215     ForDefinition_t IsForDefinition) {
2216   const Decl *D = GD.getDecl();
2217 
2218   // Any attempts to use a MultiVersion function should result in retrieving
2219   // the iFunc instead. Name Mangling will handle the rest of the changes.
2220   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2221     if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2222       UpdateMultiVersionNames(GD, FD);
2223       if (!IsForDefinition)
2224         return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2225     }
2226   }
2227 
2228   // Lookup the entry, lazily creating it if necessary.
2229   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2230   if (Entry) {
2231     if (WeakRefReferences.erase(Entry)) {
2232       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2233       if (FD && !FD->hasAttr<WeakAttr>())
2234         Entry->setLinkage(llvm::Function::ExternalLinkage);
2235     }
2236 
2237     // Handle dropped DLL attributes.
2238     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2239       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2240 
2241     // If there are two attempts to define the same mangled name, issue an
2242     // error.
2243     if (IsForDefinition && !Entry->isDeclaration()) {
2244       GlobalDecl OtherGD;
2245       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2246       // to make sure that we issue an error only once.
2247       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2248           (GD.getCanonicalDecl().getDecl() !=
2249            OtherGD.getCanonicalDecl().getDecl()) &&
2250           DiagnosedConflictingDefinitions.insert(GD).second) {
2251         getDiags().Report(D->getLocation(),
2252                           diag::err_duplicate_mangled_name);
2253         getDiags().Report(OtherGD.getDecl()->getLocation(),
2254                           diag::note_previous_definition);
2255       }
2256     }
2257 
2258     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2259         (Entry->getType()->getElementType() == Ty)) {
2260       return Entry;
2261     }
2262 
2263     // Make sure the result is of the correct type.
2264     // (If function is requested for a definition, we always need to create a new
2265     // function, not just return a bitcast.)
2266     if (!IsForDefinition)
2267       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2268   }
2269 
2270   // This function doesn't have a complete type (for example, the return
2271   // type is an incomplete struct). Use a fake type instead, and make
2272   // sure not to try to set attributes.
2273   bool IsIncompleteFunction = false;
2274 
2275   llvm::FunctionType *FTy;
2276   if (isa<llvm::FunctionType>(Ty)) {
2277     FTy = cast<llvm::FunctionType>(Ty);
2278   } else {
2279     FTy = llvm::FunctionType::get(VoidTy, false);
2280     IsIncompleteFunction = true;
2281   }
2282 
2283   llvm::Function *F =
2284       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2285                              Entry ? StringRef() : MangledName, &getModule());
2286 
2287   // If we already created a function with the same mangled name (but different
2288   // type) before, take its name and add it to the list of functions to be
2289   // replaced with F at the end of CodeGen.
2290   //
2291   // This happens if there is a prototype for a function (e.g. "int f()") and
2292   // then a definition of a different type (e.g. "int f(int x)").
2293   if (Entry) {
2294     F->takeName(Entry);
2295 
2296     // This might be an implementation of a function without a prototype, in
2297     // which case, try to do special replacement of calls which match the new
2298     // prototype.  The really key thing here is that we also potentially drop
2299     // arguments from the call site so as to make a direct call, which makes the
2300     // inliner happier and suppresses a number of optimizer warnings (!) about
2301     // dropping arguments.
2302     if (!Entry->use_empty()) {
2303       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2304       Entry->removeDeadConstantUsers();
2305     }
2306 
2307     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2308         F, Entry->getType()->getElementType()->getPointerTo());
2309     addGlobalValReplacement(Entry, BC);
2310   }
2311 
2312   assert(F->getName() == MangledName && "name was uniqued!");
2313   if (D)
2314     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk,
2315                           IsForDefinition);
2316   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2317     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2318     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2319   }
2320 
2321   if (!DontDefer) {
2322     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2323     // each other bottoming out with the base dtor.  Therefore we emit non-base
2324     // dtors on usage, even if there is no dtor definition in the TU.
2325     if (D && isa<CXXDestructorDecl>(D) &&
2326         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2327                                            GD.getDtorType()))
2328       addDeferredDeclToEmit(GD);
2329 
2330     // This is the first use or definition of a mangled name.  If there is a
2331     // deferred decl with this name, remember that we need to emit it at the end
2332     // of the file.
2333     auto DDI = DeferredDecls.find(MangledName);
2334     if (DDI != DeferredDecls.end()) {
2335       // Move the potentially referenced deferred decl to the
2336       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2337       // don't need it anymore).
2338       addDeferredDeclToEmit(DDI->second);
2339       DeferredDecls.erase(DDI);
2340 
2341       // Otherwise, there are cases we have to worry about where we're
2342       // using a declaration for which we must emit a definition but where
2343       // we might not find a top-level definition:
2344       //   - member functions defined inline in their classes
2345       //   - friend functions defined inline in some class
2346       //   - special member functions with implicit definitions
2347       // If we ever change our AST traversal to walk into class methods,
2348       // this will be unnecessary.
2349       //
2350       // We also don't emit a definition for a function if it's going to be an
2351       // entry in a vtable, unless it's already marked as used.
2352     } else if (getLangOpts().CPlusPlus && D) {
2353       // Look for a declaration that's lexically in a record.
2354       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2355            FD = FD->getPreviousDecl()) {
2356         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2357           if (FD->doesThisDeclarationHaveABody()) {
2358             addDeferredDeclToEmit(GD.getWithDecl(FD));
2359             break;
2360           }
2361         }
2362       }
2363     }
2364   }
2365 
2366   // Make sure the result is of the requested type.
2367   if (!IsIncompleteFunction) {
2368     assert(F->getType()->getElementType() == Ty);
2369     return F;
2370   }
2371 
2372   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2373   return llvm::ConstantExpr::getBitCast(F, PTy);
2374 }
2375 
2376 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2377 /// non-null, then this function will use the specified type if it has to
2378 /// create it (this occurs when we see a definition of the function).
2379 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2380                                                  llvm::Type *Ty,
2381                                                  bool ForVTable,
2382                                                  bool DontDefer,
2383                                               ForDefinition_t IsForDefinition) {
2384   // If there was no specific requested type, just convert it now.
2385   if (!Ty) {
2386     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2387     auto CanonTy = Context.getCanonicalType(FD->getType());
2388     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2389   }
2390 
2391   StringRef MangledName = getMangledName(GD);
2392   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2393                                  /*IsThunk=*/false, llvm::AttributeList(),
2394                                  IsForDefinition);
2395 }
2396 
2397 static const FunctionDecl *
2398 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2399   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2400   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2401 
2402   IdentifierInfo &CII = C.Idents.get(Name);
2403   for (const auto &Result : DC->lookup(&CII))
2404     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2405       return FD;
2406 
2407   if (!C.getLangOpts().CPlusPlus)
2408     return nullptr;
2409 
2410   // Demangle the premangled name from getTerminateFn()
2411   IdentifierInfo &CXXII =
2412       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2413           ? C.Idents.get("terminate")
2414           : C.Idents.get(Name);
2415 
2416   for (const auto &N : {"__cxxabiv1", "std"}) {
2417     IdentifierInfo &NS = C.Idents.get(N);
2418     for (const auto &Result : DC->lookup(&NS)) {
2419       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2420       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2421         for (const auto &Result : LSD->lookup(&NS))
2422           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2423             break;
2424 
2425       if (ND)
2426         for (const auto &Result : ND->lookup(&CXXII))
2427           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2428             return FD;
2429     }
2430   }
2431 
2432   return nullptr;
2433 }
2434 
2435 /// CreateRuntimeFunction - Create a new runtime function with the specified
2436 /// type and name.
2437 llvm::Constant *
2438 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2439                                      llvm::AttributeList ExtraAttrs,
2440                                      bool Local) {
2441   llvm::Constant *C =
2442       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2443                               /*DontDefer=*/false, /*IsThunk=*/false,
2444                               ExtraAttrs);
2445 
2446   if (auto *F = dyn_cast<llvm::Function>(C)) {
2447     if (F->empty()) {
2448       F->setCallingConv(getRuntimeCC());
2449 
2450       if (!Local && getTriple().isOSBinFormatCOFF() &&
2451           !getCodeGenOpts().LTOVisibilityPublicStd &&
2452           !getTriple().isWindowsGNUEnvironment()) {
2453         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2454         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2455           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2456           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2457         }
2458       }
2459     }
2460   }
2461 
2462   return C;
2463 }
2464 
2465 /// CreateBuiltinFunction - Create a new builtin function with the specified
2466 /// type and name.
2467 llvm::Constant *
2468 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2469                                      llvm::AttributeList ExtraAttrs) {
2470   llvm::Constant *C =
2471       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2472                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2473   if (auto *F = dyn_cast<llvm::Function>(C))
2474     if (F->empty())
2475       F->setCallingConv(getBuiltinCC());
2476   return C;
2477 }
2478 
2479 /// isTypeConstant - Determine whether an object of this type can be emitted
2480 /// as a constant.
2481 ///
2482 /// If ExcludeCtor is true, the duration when the object's constructor runs
2483 /// will not be considered. The caller will need to verify that the object is
2484 /// not written to during its construction.
2485 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2486   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2487     return false;
2488 
2489   if (Context.getLangOpts().CPlusPlus) {
2490     if (const CXXRecordDecl *Record
2491           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2492       return ExcludeCtor && !Record->hasMutableFields() &&
2493              Record->hasTrivialDestructor();
2494   }
2495 
2496   return true;
2497 }
2498 
2499 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2500 /// create and return an llvm GlobalVariable with the specified type.  If there
2501 /// is something in the module with the specified name, return it potentially
2502 /// bitcasted to the right type.
2503 ///
2504 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2505 /// to set the attributes on the global when it is first created.
2506 ///
2507 /// If IsForDefinition is true, it is guranteed that an actual global with
2508 /// type Ty will be returned, not conversion of a variable with the same
2509 /// mangled name but some other type.
2510 llvm::Constant *
2511 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2512                                      llvm::PointerType *Ty,
2513                                      const VarDecl *D,
2514                                      ForDefinition_t IsForDefinition) {
2515   // Lookup the entry, lazily creating it if necessary.
2516   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2517   if (Entry) {
2518     if (WeakRefReferences.erase(Entry)) {
2519       if (D && !D->hasAttr<WeakAttr>())
2520         Entry->setLinkage(llvm::Function::ExternalLinkage);
2521     }
2522 
2523     // Handle dropped DLL attributes.
2524     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2525       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2526 
2527     if (Entry->getType() == Ty)
2528       return Entry;
2529 
2530     // If there are two attempts to define the same mangled name, issue an
2531     // error.
2532     if (IsForDefinition && !Entry->isDeclaration()) {
2533       GlobalDecl OtherGD;
2534       const VarDecl *OtherD;
2535 
2536       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2537       // to make sure that we issue an error only once.
2538       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2539           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2540           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2541           OtherD->hasInit() &&
2542           DiagnosedConflictingDefinitions.insert(D).second) {
2543         getDiags().Report(D->getLocation(),
2544                           diag::err_duplicate_mangled_name);
2545         getDiags().Report(OtherGD.getDecl()->getLocation(),
2546                           diag::note_previous_definition);
2547       }
2548     }
2549 
2550     // Make sure the result is of the correct type.
2551     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2552       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2553 
2554     // (If global is requested for a definition, we always need to create a new
2555     // global, not just return a bitcast.)
2556     if (!IsForDefinition)
2557       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2558   }
2559 
2560   auto AddrSpace = GetGlobalVarAddressSpace(D);
2561   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2562 
2563   auto *GV = new llvm::GlobalVariable(
2564       getModule(), Ty->getElementType(), false,
2565       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2566       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2567 
2568   // If we already created a global with the same mangled name (but different
2569   // type) before, take its name and remove it from its parent.
2570   if (Entry) {
2571     GV->takeName(Entry);
2572 
2573     if (!Entry->use_empty()) {
2574       llvm::Constant *NewPtrForOldDecl =
2575           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2576       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2577     }
2578 
2579     Entry->eraseFromParent();
2580   }
2581 
2582   // This is the first use or definition of a mangled name.  If there is a
2583   // deferred decl with this name, remember that we need to emit it at the end
2584   // of the file.
2585   auto DDI = DeferredDecls.find(MangledName);
2586   if (DDI != DeferredDecls.end()) {
2587     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2588     // list, and remove it from DeferredDecls (since we don't need it anymore).
2589     addDeferredDeclToEmit(DDI->second);
2590     DeferredDecls.erase(DDI);
2591   }
2592 
2593   // Handle things which are present even on external declarations.
2594   if (D) {
2595     // FIXME: This code is overly simple and should be merged with other global
2596     // handling.
2597     GV->setConstant(isTypeConstant(D->getType(), false));
2598 
2599     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2600 
2601     setLinkageForGV(GV, D);
2602     setGlobalVisibility(GV, D, NotForDefinition);
2603 
2604     if (D->getTLSKind()) {
2605       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2606         CXXThreadLocals.push_back(D);
2607       setTLSMode(GV, *D);
2608     }
2609 
2610     // If required by the ABI, treat declarations of static data members with
2611     // inline initializers as definitions.
2612     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2613       EmitGlobalVarDefinition(D);
2614     }
2615 
2616     // Emit section information for extern variables.
2617     if (D->hasExternalStorage()) {
2618       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2619         GV->setSection(SA->getName());
2620     }
2621 
2622     // Handle XCore specific ABI requirements.
2623     if (getTriple().getArch() == llvm::Triple::xcore &&
2624         D->getLanguageLinkage() == CLanguageLinkage &&
2625         D->getType().isConstant(Context) &&
2626         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2627       GV->setSection(".cp.rodata");
2628 
2629     // Check if we a have a const declaration with an initializer, we may be
2630     // able to emit it as available_externally to expose it's value to the
2631     // optimizer.
2632     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2633         D->getType().isConstQualified() && !GV->hasInitializer() &&
2634         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2635       const auto *Record =
2636           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2637       bool HasMutableFields = Record && Record->hasMutableFields();
2638       if (!HasMutableFields) {
2639         const VarDecl *InitDecl;
2640         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2641         if (InitExpr) {
2642           ConstantEmitter emitter(*this);
2643           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2644           if (Init) {
2645             auto *InitType = Init->getType();
2646             if (GV->getType()->getElementType() != InitType) {
2647               // The type of the initializer does not match the definition.
2648               // This happens when an initializer has a different type from
2649               // the type of the global (because of padding at the end of a
2650               // structure for instance).
2651               GV->setName(StringRef());
2652               // Make a new global with the correct type, this is now guaranteed
2653               // to work.
2654               auto *NewGV = cast<llvm::GlobalVariable>(
2655                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2656 
2657               // Erase the old global, since it is no longer used.
2658               cast<llvm::GlobalValue>(GV)->eraseFromParent();
2659               GV = NewGV;
2660             } else {
2661               GV->setInitializer(Init);
2662               GV->setConstant(true);
2663               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2664             }
2665             emitter.finalize(GV);
2666           }
2667         }
2668       }
2669     }
2670   }
2671 
2672   LangAS ExpectedAS =
2673       D ? D->getType().getAddressSpace()
2674         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2675   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2676          Ty->getPointerAddressSpace());
2677   if (AddrSpace != ExpectedAS)
2678     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2679                                                        ExpectedAS, Ty);
2680 
2681   return GV;
2682 }
2683 
2684 llvm::Constant *
2685 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2686                                ForDefinition_t IsForDefinition) {
2687   const Decl *D = GD.getDecl();
2688   if (isa<CXXConstructorDecl>(D))
2689     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2690                                 getFromCtorType(GD.getCtorType()),
2691                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2692                                 /*DontDefer=*/false, IsForDefinition);
2693   else if (isa<CXXDestructorDecl>(D))
2694     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2695                                 getFromDtorType(GD.getDtorType()),
2696                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2697                                 /*DontDefer=*/false, IsForDefinition);
2698   else if (isa<CXXMethodDecl>(D)) {
2699     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2700         cast<CXXMethodDecl>(D));
2701     auto Ty = getTypes().GetFunctionType(*FInfo);
2702     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2703                              IsForDefinition);
2704   } else if (isa<FunctionDecl>(D)) {
2705     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2706     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2707     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2708                              IsForDefinition);
2709   } else
2710     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2711                               IsForDefinition);
2712 }
2713 
2714 llvm::GlobalVariable *
2715 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2716                                       llvm::Type *Ty,
2717                                       llvm::GlobalValue::LinkageTypes Linkage) {
2718   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2719   llvm::GlobalVariable *OldGV = nullptr;
2720 
2721   if (GV) {
2722     // Check if the variable has the right type.
2723     if (GV->getType()->getElementType() == Ty)
2724       return GV;
2725 
2726     // Because C++ name mangling, the only way we can end up with an already
2727     // existing global with the same name is if it has been declared extern "C".
2728     assert(GV->isDeclaration() && "Declaration has wrong type!");
2729     OldGV = GV;
2730   }
2731 
2732   // Create a new variable.
2733   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2734                                 Linkage, nullptr, Name);
2735 
2736   if (OldGV) {
2737     // Replace occurrences of the old variable if needed.
2738     GV->takeName(OldGV);
2739 
2740     if (!OldGV->use_empty()) {
2741       llvm::Constant *NewPtrForOldDecl =
2742       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2743       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2744     }
2745 
2746     OldGV->eraseFromParent();
2747   }
2748 
2749   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2750       !GV->hasAvailableExternallyLinkage())
2751     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2752 
2753   return GV;
2754 }
2755 
2756 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2757 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2758 /// then it will be created with the specified type instead of whatever the
2759 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2760 /// that an actual global with type Ty will be returned, not conversion of a
2761 /// variable with the same mangled name but some other type.
2762 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2763                                                   llvm::Type *Ty,
2764                                            ForDefinition_t IsForDefinition) {
2765   assert(D->hasGlobalStorage() && "Not a global variable");
2766   QualType ASTTy = D->getType();
2767   if (!Ty)
2768     Ty = getTypes().ConvertTypeForMem(ASTTy);
2769 
2770   llvm::PointerType *PTy =
2771     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2772 
2773   StringRef MangledName = getMangledName(D);
2774   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2775 }
2776 
2777 /// CreateRuntimeVariable - Create a new runtime global variable with the
2778 /// specified type and name.
2779 llvm::Constant *
2780 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2781                                      StringRef Name) {
2782   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2783 }
2784 
2785 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2786   assert(!D->getInit() && "Cannot emit definite definitions here!");
2787 
2788   StringRef MangledName = getMangledName(D);
2789   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2790 
2791   // We already have a definition, not declaration, with the same mangled name.
2792   // Emitting of declaration is not required (and actually overwrites emitted
2793   // definition).
2794   if (GV && !GV->isDeclaration())
2795     return;
2796 
2797   // If we have not seen a reference to this variable yet, place it into the
2798   // deferred declarations table to be emitted if needed later.
2799   if (!MustBeEmitted(D) && !GV) {
2800       DeferredDecls[MangledName] = D;
2801       return;
2802   }
2803 
2804   // The tentative definition is the only definition.
2805   EmitGlobalVarDefinition(D);
2806 }
2807 
2808 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2809   return Context.toCharUnitsFromBits(
2810       getDataLayout().getTypeStoreSizeInBits(Ty));
2811 }
2812 
2813 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2814   LangAS AddrSpace = LangAS::Default;
2815   if (LangOpts.OpenCL) {
2816     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
2817     assert(AddrSpace == LangAS::opencl_global ||
2818            AddrSpace == LangAS::opencl_constant ||
2819            AddrSpace == LangAS::opencl_local ||
2820            AddrSpace >= LangAS::FirstTargetAddressSpace);
2821     return AddrSpace;
2822   }
2823 
2824   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2825     if (D && D->hasAttr<CUDAConstantAttr>())
2826       return LangAS::cuda_constant;
2827     else if (D && D->hasAttr<CUDASharedAttr>())
2828       return LangAS::cuda_shared;
2829     else
2830       return LangAS::cuda_device;
2831   }
2832 
2833   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
2834 }
2835 
2836 template<typename SomeDecl>
2837 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2838                                                llvm::GlobalValue *GV) {
2839   if (!getLangOpts().CPlusPlus)
2840     return;
2841 
2842   // Must have 'used' attribute, or else inline assembly can't rely on
2843   // the name existing.
2844   if (!D->template hasAttr<UsedAttr>())
2845     return;
2846 
2847   // Must have internal linkage and an ordinary name.
2848   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2849     return;
2850 
2851   // Must be in an extern "C" context. Entities declared directly within
2852   // a record are not extern "C" even if the record is in such a context.
2853   const SomeDecl *First = D->getFirstDecl();
2854   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2855     return;
2856 
2857   // OK, this is an internal linkage entity inside an extern "C" linkage
2858   // specification. Make a note of that so we can give it the "expected"
2859   // mangled name if nothing else is using that name.
2860   std::pair<StaticExternCMap::iterator, bool> R =
2861       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2862 
2863   // If we have multiple internal linkage entities with the same name
2864   // in extern "C" regions, none of them gets that name.
2865   if (!R.second)
2866     R.first->second = nullptr;
2867 }
2868 
2869 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2870   if (!CGM.supportsCOMDAT())
2871     return false;
2872 
2873   if (D.hasAttr<SelectAnyAttr>())
2874     return true;
2875 
2876   GVALinkage Linkage;
2877   if (auto *VD = dyn_cast<VarDecl>(&D))
2878     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2879   else
2880     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2881 
2882   switch (Linkage) {
2883   case GVA_Internal:
2884   case GVA_AvailableExternally:
2885   case GVA_StrongExternal:
2886     return false;
2887   case GVA_DiscardableODR:
2888   case GVA_StrongODR:
2889     return true;
2890   }
2891   llvm_unreachable("No such linkage");
2892 }
2893 
2894 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2895                                           llvm::GlobalObject &GO) {
2896   if (!shouldBeInCOMDAT(*this, D))
2897     return;
2898   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2899 }
2900 
2901 /// Pass IsTentative as true if you want to create a tentative definition.
2902 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2903                                             bool IsTentative) {
2904   // OpenCL global variables of sampler type are translated to function calls,
2905   // therefore no need to be translated.
2906   QualType ASTTy = D->getType();
2907   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2908     return;
2909 
2910   llvm::Constant *Init = nullptr;
2911   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2912   bool NeedsGlobalCtor = false;
2913   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2914 
2915   const VarDecl *InitDecl;
2916   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2917 
2918   Optional<ConstantEmitter> emitter;
2919 
2920   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2921   // as part of their declaration."  Sema has already checked for
2922   // error cases, so we just need to set Init to UndefValue.
2923   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2924       D->hasAttr<CUDASharedAttr>())
2925     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2926   else if (!InitExpr) {
2927     // This is a tentative definition; tentative definitions are
2928     // implicitly initialized with { 0 }.
2929     //
2930     // Note that tentative definitions are only emitted at the end of
2931     // a translation unit, so they should never have incomplete
2932     // type. In addition, EmitTentativeDefinition makes sure that we
2933     // never attempt to emit a tentative definition if a real one
2934     // exists. A use may still exists, however, so we still may need
2935     // to do a RAUW.
2936     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2937     Init = EmitNullConstant(D->getType());
2938   } else {
2939     initializedGlobalDecl = GlobalDecl(D);
2940     emitter.emplace(*this);
2941     Init = emitter->tryEmitForInitializer(*InitDecl);
2942 
2943     if (!Init) {
2944       QualType T = InitExpr->getType();
2945       if (D->getType()->isReferenceType())
2946         T = D->getType();
2947 
2948       if (getLangOpts().CPlusPlus) {
2949         Init = EmitNullConstant(T);
2950         NeedsGlobalCtor = true;
2951       } else {
2952         ErrorUnsupported(D, "static initializer");
2953         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2954       }
2955     } else {
2956       // We don't need an initializer, so remove the entry for the delayed
2957       // initializer position (just in case this entry was delayed) if we
2958       // also don't need to register a destructor.
2959       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2960         DelayedCXXInitPosition.erase(D);
2961     }
2962   }
2963 
2964   llvm::Type* InitType = Init->getType();
2965   llvm::Constant *Entry =
2966       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
2967 
2968   // Strip off a bitcast if we got one back.
2969   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2970     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2971            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2972            // All zero index gep.
2973            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2974     Entry = CE->getOperand(0);
2975   }
2976 
2977   // Entry is now either a Function or GlobalVariable.
2978   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2979 
2980   // We have a definition after a declaration with the wrong type.
2981   // We must make a new GlobalVariable* and update everything that used OldGV
2982   // (a declaration or tentative definition) with the new GlobalVariable*
2983   // (which will be a definition).
2984   //
2985   // This happens if there is a prototype for a global (e.g.
2986   // "extern int x[];") and then a definition of a different type (e.g.
2987   // "int x[10];"). This also happens when an initializer has a different type
2988   // from the type of the global (this happens with unions).
2989   if (!GV || GV->getType()->getElementType() != InitType ||
2990       GV->getType()->getAddressSpace() !=
2991           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
2992 
2993     // Move the old entry aside so that we'll create a new one.
2994     Entry->setName(StringRef());
2995 
2996     // Make a new global with the correct type, this is now guaranteed to work.
2997     GV = cast<llvm::GlobalVariable>(
2998         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
2999 
3000     // Replace all uses of the old global with the new global
3001     llvm::Constant *NewPtrForOldDecl =
3002         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3003     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3004 
3005     // Erase the old global, since it is no longer used.
3006     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3007   }
3008 
3009   MaybeHandleStaticInExternC(D, GV);
3010 
3011   if (D->hasAttr<AnnotateAttr>())
3012     AddGlobalAnnotations(D, GV);
3013 
3014   // Set the llvm linkage type as appropriate.
3015   llvm::GlobalValue::LinkageTypes Linkage =
3016       getLLVMLinkageVarDefinition(D, GV->isConstant());
3017 
3018   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3019   // the device. [...]"
3020   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3021   // __device__, declares a variable that: [...]
3022   // Is accessible from all the threads within the grid and from the host
3023   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3024   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3025   if (GV && LangOpts.CUDA) {
3026     if (LangOpts.CUDAIsDevice) {
3027       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3028         GV->setExternallyInitialized(true);
3029     } else {
3030       // Host-side shadows of external declarations of device-side
3031       // global variables become internal definitions. These have to
3032       // be internal in order to prevent name conflicts with global
3033       // host variables with the same name in a different TUs.
3034       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3035         Linkage = llvm::GlobalValue::InternalLinkage;
3036 
3037         // Shadow variables and their properties must be registered
3038         // with CUDA runtime.
3039         unsigned Flags = 0;
3040         if (!D->hasDefinition())
3041           Flags |= CGCUDARuntime::ExternDeviceVar;
3042         if (D->hasAttr<CUDAConstantAttr>())
3043           Flags |= CGCUDARuntime::ConstantDeviceVar;
3044         getCUDARuntime().registerDeviceVar(*GV, Flags);
3045       } else if (D->hasAttr<CUDASharedAttr>())
3046         // __shared__ variables are odd. Shadows do get created, but
3047         // they are not registered with the CUDA runtime, so they
3048         // can't really be used to access their device-side
3049         // counterparts. It's not clear yet whether it's nvcc's bug or
3050         // a feature, but we've got to do the same for compatibility.
3051         Linkage = llvm::GlobalValue::InternalLinkage;
3052     }
3053   }
3054 
3055   GV->setInitializer(Init);
3056   if (emitter) emitter->finalize(GV);
3057 
3058   // If it is safe to mark the global 'constant', do so now.
3059   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3060                   isTypeConstant(D->getType(), true));
3061 
3062   // If it is in a read-only section, mark it 'constant'.
3063   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3064     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3065     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3066       GV->setConstant(true);
3067   }
3068 
3069   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3070 
3071 
3072   // On Darwin, if the normal linkage of a C++ thread_local variable is
3073   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3074   // copies within a linkage unit; otherwise, the backing variable has
3075   // internal linkage and all accesses should just be calls to the
3076   // Itanium-specified entry point, which has the normal linkage of the
3077   // variable. This is to preserve the ability to change the implementation
3078   // behind the scenes.
3079   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3080       Context.getTargetInfo().getTriple().isOSDarwin() &&
3081       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3082       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3083     Linkage = llvm::GlobalValue::InternalLinkage;
3084 
3085   GV->setLinkage(Linkage);
3086   if (D->hasAttr<DLLImportAttr>())
3087     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3088   else if (D->hasAttr<DLLExportAttr>())
3089     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3090   else
3091     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3092 
3093   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3094     // common vars aren't constant even if declared const.
3095     GV->setConstant(false);
3096     // Tentative definition of global variables may be initialized with
3097     // non-zero null pointers. In this case they should have weak linkage
3098     // since common linkage must have zero initializer and must not have
3099     // explicit section therefore cannot have non-zero initial value.
3100     if (!GV->getInitializer()->isNullValue())
3101       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3102   }
3103 
3104   setNonAliasAttributes(D, GV);
3105 
3106   if (D->getTLSKind() && !GV->isThreadLocal()) {
3107     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3108       CXXThreadLocals.push_back(D);
3109     setTLSMode(GV, *D);
3110   }
3111 
3112   maybeSetTrivialComdat(*D, *GV);
3113 
3114   // Emit the initializer function if necessary.
3115   if (NeedsGlobalCtor || NeedsGlobalDtor)
3116     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3117 
3118   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3119 
3120   // Emit global variable debug information.
3121   if (CGDebugInfo *DI = getModuleDebugInfo())
3122     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3123       DI->EmitGlobalVariable(GV, D);
3124 }
3125 
3126 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3127                                       CodeGenModule &CGM, const VarDecl *D,
3128                                       bool NoCommon) {
3129   // Don't give variables common linkage if -fno-common was specified unless it
3130   // was overridden by a NoCommon attribute.
3131   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3132     return true;
3133 
3134   // C11 6.9.2/2:
3135   //   A declaration of an identifier for an object that has file scope without
3136   //   an initializer, and without a storage-class specifier or with the
3137   //   storage-class specifier static, constitutes a tentative definition.
3138   if (D->getInit() || D->hasExternalStorage())
3139     return true;
3140 
3141   // A variable cannot be both common and exist in a section.
3142   if (D->hasAttr<SectionAttr>())
3143     return true;
3144 
3145   // A variable cannot be both common and exist in a section.
3146   // We dont try to determine which is the right section in the front-end.
3147   // If no specialized section name is applicable, it will resort to default.
3148   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3149       D->hasAttr<PragmaClangDataSectionAttr>() ||
3150       D->hasAttr<PragmaClangRodataSectionAttr>())
3151     return true;
3152 
3153   // Thread local vars aren't considered common linkage.
3154   if (D->getTLSKind())
3155     return true;
3156 
3157   // Tentative definitions marked with WeakImportAttr are true definitions.
3158   if (D->hasAttr<WeakImportAttr>())
3159     return true;
3160 
3161   // A variable cannot be both common and exist in a comdat.
3162   if (shouldBeInCOMDAT(CGM, *D))
3163     return true;
3164 
3165   // Declarations with a required alignment do not have common linkage in MSVC
3166   // mode.
3167   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3168     if (D->hasAttr<AlignedAttr>())
3169       return true;
3170     QualType VarType = D->getType();
3171     if (Context.isAlignmentRequired(VarType))
3172       return true;
3173 
3174     if (const auto *RT = VarType->getAs<RecordType>()) {
3175       const RecordDecl *RD = RT->getDecl();
3176       for (const FieldDecl *FD : RD->fields()) {
3177         if (FD->isBitField())
3178           continue;
3179         if (FD->hasAttr<AlignedAttr>())
3180           return true;
3181         if (Context.isAlignmentRequired(FD->getType()))
3182           return true;
3183       }
3184     }
3185   }
3186 
3187   return false;
3188 }
3189 
3190 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3191     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3192   if (Linkage == GVA_Internal)
3193     return llvm::Function::InternalLinkage;
3194 
3195   if (D->hasAttr<WeakAttr>()) {
3196     if (IsConstantVariable)
3197       return llvm::GlobalVariable::WeakODRLinkage;
3198     else
3199       return llvm::GlobalVariable::WeakAnyLinkage;
3200   }
3201 
3202   // We are guaranteed to have a strong definition somewhere else,
3203   // so we can use available_externally linkage.
3204   if (Linkage == GVA_AvailableExternally)
3205     return llvm::GlobalValue::AvailableExternallyLinkage;
3206 
3207   // Note that Apple's kernel linker doesn't support symbol
3208   // coalescing, so we need to avoid linkonce and weak linkages there.
3209   // Normally, this means we just map to internal, but for explicit
3210   // instantiations we'll map to external.
3211 
3212   // In C++, the compiler has to emit a definition in every translation unit
3213   // that references the function.  We should use linkonce_odr because
3214   // a) if all references in this translation unit are optimized away, we
3215   // don't need to codegen it.  b) if the function persists, it needs to be
3216   // merged with other definitions. c) C++ has the ODR, so we know the
3217   // definition is dependable.
3218   if (Linkage == GVA_DiscardableODR)
3219     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3220                                             : llvm::Function::InternalLinkage;
3221 
3222   // An explicit instantiation of a template has weak linkage, since
3223   // explicit instantiations can occur in multiple translation units
3224   // and must all be equivalent. However, we are not allowed to
3225   // throw away these explicit instantiations.
3226   //
3227   // We don't currently support CUDA device code spread out across multiple TUs,
3228   // so say that CUDA templates are either external (for kernels) or internal.
3229   // This lets llvm perform aggressive inter-procedural optimizations.
3230   if (Linkage == GVA_StrongODR) {
3231     if (Context.getLangOpts().AppleKext)
3232       return llvm::Function::ExternalLinkage;
3233     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3234       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3235                                           : llvm::Function::InternalLinkage;
3236     return llvm::Function::WeakODRLinkage;
3237   }
3238 
3239   // C++ doesn't have tentative definitions and thus cannot have common
3240   // linkage.
3241   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3242       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3243                                  CodeGenOpts.NoCommon))
3244     return llvm::GlobalVariable::CommonLinkage;
3245 
3246   // selectany symbols are externally visible, so use weak instead of
3247   // linkonce.  MSVC optimizes away references to const selectany globals, so
3248   // all definitions should be the same and ODR linkage should be used.
3249   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3250   if (D->hasAttr<SelectAnyAttr>())
3251     return llvm::GlobalVariable::WeakODRLinkage;
3252 
3253   // Otherwise, we have strong external linkage.
3254   assert(Linkage == GVA_StrongExternal);
3255   return llvm::GlobalVariable::ExternalLinkage;
3256 }
3257 
3258 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3259     const VarDecl *VD, bool IsConstant) {
3260   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3261   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3262 }
3263 
3264 /// Replace the uses of a function that was declared with a non-proto type.
3265 /// We want to silently drop extra arguments from call sites
3266 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3267                                           llvm::Function *newFn) {
3268   // Fast path.
3269   if (old->use_empty()) return;
3270 
3271   llvm::Type *newRetTy = newFn->getReturnType();
3272   SmallVector<llvm::Value*, 4> newArgs;
3273   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3274 
3275   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3276          ui != ue; ) {
3277     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3278     llvm::User *user = use->getUser();
3279 
3280     // Recognize and replace uses of bitcasts.  Most calls to
3281     // unprototyped functions will use bitcasts.
3282     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3283       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3284         replaceUsesOfNonProtoConstant(bitcast, newFn);
3285       continue;
3286     }
3287 
3288     // Recognize calls to the function.
3289     llvm::CallSite callSite(user);
3290     if (!callSite) continue;
3291     if (!callSite.isCallee(&*use)) continue;
3292 
3293     // If the return types don't match exactly, then we can't
3294     // transform this call unless it's dead.
3295     if (callSite->getType() != newRetTy && !callSite->use_empty())
3296       continue;
3297 
3298     // Get the call site's attribute list.
3299     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3300     llvm::AttributeList oldAttrs = callSite.getAttributes();
3301 
3302     // If the function was passed too few arguments, don't transform.
3303     unsigned newNumArgs = newFn->arg_size();
3304     if (callSite.arg_size() < newNumArgs) continue;
3305 
3306     // If extra arguments were passed, we silently drop them.
3307     // If any of the types mismatch, we don't transform.
3308     unsigned argNo = 0;
3309     bool dontTransform = false;
3310     for (llvm::Argument &A : newFn->args()) {
3311       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3312         dontTransform = true;
3313         break;
3314       }
3315 
3316       // Add any parameter attributes.
3317       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3318       argNo++;
3319     }
3320     if (dontTransform)
3321       continue;
3322 
3323     // Okay, we can transform this.  Create the new call instruction and copy
3324     // over the required information.
3325     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3326 
3327     // Copy over any operand bundles.
3328     callSite.getOperandBundlesAsDefs(newBundles);
3329 
3330     llvm::CallSite newCall;
3331     if (callSite.isCall()) {
3332       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3333                                        callSite.getInstruction());
3334     } else {
3335       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3336       newCall = llvm::InvokeInst::Create(newFn,
3337                                          oldInvoke->getNormalDest(),
3338                                          oldInvoke->getUnwindDest(),
3339                                          newArgs, newBundles, "",
3340                                          callSite.getInstruction());
3341     }
3342     newArgs.clear(); // for the next iteration
3343 
3344     if (!newCall->getType()->isVoidTy())
3345       newCall->takeName(callSite.getInstruction());
3346     newCall.setAttributes(llvm::AttributeList::get(
3347         newFn->getContext(), oldAttrs.getFnAttributes(),
3348         oldAttrs.getRetAttributes(), newArgAttrs));
3349     newCall.setCallingConv(callSite.getCallingConv());
3350 
3351     // Finally, remove the old call, replacing any uses with the new one.
3352     if (!callSite->use_empty())
3353       callSite->replaceAllUsesWith(newCall.getInstruction());
3354 
3355     // Copy debug location attached to CI.
3356     if (callSite->getDebugLoc())
3357       newCall->setDebugLoc(callSite->getDebugLoc());
3358 
3359     callSite->eraseFromParent();
3360   }
3361 }
3362 
3363 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3364 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3365 /// existing call uses of the old function in the module, this adjusts them to
3366 /// call the new function directly.
3367 ///
3368 /// This is not just a cleanup: the always_inline pass requires direct calls to
3369 /// functions to be able to inline them.  If there is a bitcast in the way, it
3370 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3371 /// run at -O0.
3372 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3373                                                       llvm::Function *NewFn) {
3374   // If we're redefining a global as a function, don't transform it.
3375   if (!isa<llvm::Function>(Old)) return;
3376 
3377   replaceUsesOfNonProtoConstant(Old, NewFn);
3378 }
3379 
3380 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3381   auto DK = VD->isThisDeclarationADefinition();
3382   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3383     return;
3384 
3385   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3386   // If we have a definition, this might be a deferred decl. If the
3387   // instantiation is explicit, make sure we emit it at the end.
3388   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3389     GetAddrOfGlobalVar(VD);
3390 
3391   EmitTopLevelDecl(VD);
3392 }
3393 
3394 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3395                                                  llvm::GlobalValue *GV) {
3396   const auto *D = cast<FunctionDecl>(GD.getDecl());
3397 
3398   // Compute the function info and LLVM type.
3399   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3400   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3401 
3402   // Get or create the prototype for the function.
3403   if (!GV || (GV->getType()->getElementType() != Ty))
3404     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3405                                                    /*DontDefer=*/true,
3406                                                    ForDefinition));
3407 
3408   // Already emitted.
3409   if (!GV->isDeclaration())
3410     return;
3411 
3412   // We need to set linkage and visibility on the function before
3413   // generating code for it because various parts of IR generation
3414   // want to propagate this information down (e.g. to local static
3415   // declarations).
3416   auto *Fn = cast<llvm::Function>(GV);
3417   setFunctionLinkage(GD, Fn);
3418   setFunctionDLLStorageClass(GD, Fn);
3419 
3420   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3421   setGlobalVisibility(Fn, D, ForDefinition);
3422 
3423   MaybeHandleStaticInExternC(D, Fn);
3424 
3425   maybeSetTrivialComdat(*D, *Fn);
3426 
3427   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3428 
3429   setFunctionDefinitionAttributes(D, Fn);
3430   SetLLVMFunctionAttributesForDefinition(D, Fn);
3431 
3432   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3433     AddGlobalCtor(Fn, CA->getPriority());
3434   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3435     AddGlobalDtor(Fn, DA->getPriority());
3436   if (D->hasAttr<AnnotateAttr>())
3437     AddGlobalAnnotations(D, Fn);
3438 }
3439 
3440 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3441   const auto *D = cast<ValueDecl>(GD.getDecl());
3442   const AliasAttr *AA = D->getAttr<AliasAttr>();
3443   assert(AA && "Not an alias?");
3444 
3445   StringRef MangledName = getMangledName(GD);
3446 
3447   if (AA->getAliasee() == MangledName) {
3448     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3449     return;
3450   }
3451 
3452   // If there is a definition in the module, then it wins over the alias.
3453   // This is dubious, but allow it to be safe.  Just ignore the alias.
3454   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3455   if (Entry && !Entry->isDeclaration())
3456     return;
3457 
3458   Aliases.push_back(GD);
3459 
3460   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3461 
3462   // Create a reference to the named value.  This ensures that it is emitted
3463   // if a deferred decl.
3464   llvm::Constant *Aliasee;
3465   if (isa<llvm::FunctionType>(DeclTy))
3466     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3467                                       /*ForVTable=*/false);
3468   else
3469     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3470                                     llvm::PointerType::getUnqual(DeclTy),
3471                                     /*D=*/nullptr);
3472 
3473   // Create the new alias itself, but don't set a name yet.
3474   auto *GA = llvm::GlobalAlias::create(
3475       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3476 
3477   if (Entry) {
3478     if (GA->getAliasee() == Entry) {
3479       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3480       return;
3481     }
3482 
3483     assert(Entry->isDeclaration());
3484 
3485     // If there is a declaration in the module, then we had an extern followed
3486     // by the alias, as in:
3487     //   extern int test6();
3488     //   ...
3489     //   int test6() __attribute__((alias("test7")));
3490     //
3491     // Remove it and replace uses of it with the alias.
3492     GA->takeName(Entry);
3493 
3494     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3495                                                           Entry->getType()));
3496     Entry->eraseFromParent();
3497   } else {
3498     GA->setName(MangledName);
3499   }
3500 
3501   // Set attributes which are particular to an alias; this is a
3502   // specialization of the attributes which may be set on a global
3503   // variable/function.
3504   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3505       D->isWeakImported()) {
3506     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3507   }
3508 
3509   if (const auto *VD = dyn_cast<VarDecl>(D))
3510     if (VD->getTLSKind())
3511       setTLSMode(GA, *VD);
3512 
3513   setAliasAttributes(D, GA);
3514 }
3515 
3516 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3517   const auto *D = cast<ValueDecl>(GD.getDecl());
3518   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3519   assert(IFA && "Not an ifunc?");
3520 
3521   StringRef MangledName = getMangledName(GD);
3522 
3523   if (IFA->getResolver() == MangledName) {
3524     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3525     return;
3526   }
3527 
3528   // Report an error if some definition overrides ifunc.
3529   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3530   if (Entry && !Entry->isDeclaration()) {
3531     GlobalDecl OtherGD;
3532     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3533         DiagnosedConflictingDefinitions.insert(GD).second) {
3534       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3535       Diags.Report(OtherGD.getDecl()->getLocation(),
3536                    diag::note_previous_definition);
3537     }
3538     return;
3539   }
3540 
3541   Aliases.push_back(GD);
3542 
3543   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3544   llvm::Constant *Resolver =
3545       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3546                               /*ForVTable=*/false);
3547   llvm::GlobalIFunc *GIF =
3548       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3549                                 "", Resolver, &getModule());
3550   if (Entry) {
3551     if (GIF->getResolver() == Entry) {
3552       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3553       return;
3554     }
3555     assert(Entry->isDeclaration());
3556 
3557     // If there is a declaration in the module, then we had an extern followed
3558     // by the ifunc, as in:
3559     //   extern int test();
3560     //   ...
3561     //   int test() __attribute__((ifunc("resolver")));
3562     //
3563     // Remove it and replace uses of it with the ifunc.
3564     GIF->takeName(Entry);
3565 
3566     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3567                                                           Entry->getType()));
3568     Entry->eraseFromParent();
3569   } else
3570     GIF->setName(MangledName);
3571 
3572   SetCommonAttributes(D, GIF);
3573 }
3574 
3575 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3576                                             ArrayRef<llvm::Type*> Tys) {
3577   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3578                                          Tys);
3579 }
3580 
3581 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3582 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3583                          const StringLiteral *Literal, bool TargetIsLSB,
3584                          bool &IsUTF16, unsigned &StringLength) {
3585   StringRef String = Literal->getString();
3586   unsigned NumBytes = String.size();
3587 
3588   // Check for simple case.
3589   if (!Literal->containsNonAsciiOrNull()) {
3590     StringLength = NumBytes;
3591     return *Map.insert(std::make_pair(String, nullptr)).first;
3592   }
3593 
3594   // Otherwise, convert the UTF8 literals into a string of shorts.
3595   IsUTF16 = true;
3596 
3597   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3598   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3599   llvm::UTF16 *ToPtr = &ToBuf[0];
3600 
3601   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3602                                  ToPtr + NumBytes, llvm::strictConversion);
3603 
3604   // ConvertUTF8toUTF16 returns the length in ToPtr.
3605   StringLength = ToPtr - &ToBuf[0];
3606 
3607   // Add an explicit null.
3608   *ToPtr = 0;
3609   return *Map.insert(std::make_pair(
3610                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3611                                    (StringLength + 1) * 2),
3612                          nullptr)).first;
3613 }
3614 
3615 ConstantAddress
3616 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3617   unsigned StringLength = 0;
3618   bool isUTF16 = false;
3619   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3620       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3621                                getDataLayout().isLittleEndian(), isUTF16,
3622                                StringLength);
3623 
3624   if (auto *C = Entry.second)
3625     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3626 
3627   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3628   llvm::Constant *Zeros[] = { Zero, Zero };
3629 
3630   // If we don't already have it, get __CFConstantStringClassReference.
3631   if (!CFConstantStringClassRef) {
3632     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3633     Ty = llvm::ArrayType::get(Ty, 0);
3634     llvm::Constant *GV =
3635         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3636 
3637     if (getTriple().isOSBinFormatCOFF()) {
3638       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3639       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3640       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3641       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3642 
3643       const VarDecl *VD = nullptr;
3644       for (const auto &Result : DC->lookup(&II))
3645         if ((VD = dyn_cast<VarDecl>(Result)))
3646           break;
3647 
3648       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3649         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3650         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3651       } else {
3652         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3653         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3654       }
3655     }
3656 
3657     // Decay array -> ptr
3658     CFConstantStringClassRef =
3659         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3660   }
3661 
3662   QualType CFTy = getContext().getCFConstantStringType();
3663 
3664   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3665 
3666   ConstantInitBuilder Builder(*this);
3667   auto Fields = Builder.beginStruct(STy);
3668 
3669   // Class pointer.
3670   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3671 
3672   // Flags.
3673   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3674 
3675   // String pointer.
3676   llvm::Constant *C = nullptr;
3677   if (isUTF16) {
3678     auto Arr = llvm::makeArrayRef(
3679         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3680         Entry.first().size() / 2);
3681     C = llvm::ConstantDataArray::get(VMContext, Arr);
3682   } else {
3683     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3684   }
3685 
3686   // Note: -fwritable-strings doesn't make the backing store strings of
3687   // CFStrings writable. (See <rdar://problem/10657500>)
3688   auto *GV =
3689       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3690                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3691   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3692   // Don't enforce the target's minimum global alignment, since the only use
3693   // of the string is via this class initializer.
3694   CharUnits Align = isUTF16
3695                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3696                         : getContext().getTypeAlignInChars(getContext().CharTy);
3697   GV->setAlignment(Align.getQuantity());
3698 
3699   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3700   // Without it LLVM can merge the string with a non unnamed_addr one during
3701   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3702   if (getTriple().isOSBinFormatMachO())
3703     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3704                            : "__TEXT,__cstring,cstring_literals");
3705 
3706   // String.
3707   llvm::Constant *Str =
3708       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3709 
3710   if (isUTF16)
3711     // Cast the UTF16 string to the correct type.
3712     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3713   Fields.add(Str);
3714 
3715   // String length.
3716   auto Ty = getTypes().ConvertType(getContext().LongTy);
3717   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3718 
3719   CharUnits Alignment = getPointerAlign();
3720 
3721   // The struct.
3722   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3723                                     /*isConstant=*/false,
3724                                     llvm::GlobalVariable::PrivateLinkage);
3725   switch (getTriple().getObjectFormat()) {
3726   case llvm::Triple::UnknownObjectFormat:
3727     llvm_unreachable("unknown file format");
3728   case llvm::Triple::COFF:
3729   case llvm::Triple::ELF:
3730   case llvm::Triple::Wasm:
3731     GV->setSection("cfstring");
3732     break;
3733   case llvm::Triple::MachO:
3734     GV->setSection("__DATA,__cfstring");
3735     break;
3736   }
3737   Entry.second = GV;
3738 
3739   return ConstantAddress(GV, Alignment);
3740 }
3741 
3742 bool CodeGenModule::getExpressionLocationsEnabled() const {
3743   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3744 }
3745 
3746 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3747   if (ObjCFastEnumerationStateType.isNull()) {
3748     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3749     D->startDefinition();
3750 
3751     QualType FieldTypes[] = {
3752       Context.UnsignedLongTy,
3753       Context.getPointerType(Context.getObjCIdType()),
3754       Context.getPointerType(Context.UnsignedLongTy),
3755       Context.getConstantArrayType(Context.UnsignedLongTy,
3756                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3757     };
3758 
3759     for (size_t i = 0; i < 4; ++i) {
3760       FieldDecl *Field = FieldDecl::Create(Context,
3761                                            D,
3762                                            SourceLocation(),
3763                                            SourceLocation(), nullptr,
3764                                            FieldTypes[i], /*TInfo=*/nullptr,
3765                                            /*BitWidth=*/nullptr,
3766                                            /*Mutable=*/false,
3767                                            ICIS_NoInit);
3768       Field->setAccess(AS_public);
3769       D->addDecl(Field);
3770     }
3771 
3772     D->completeDefinition();
3773     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3774   }
3775 
3776   return ObjCFastEnumerationStateType;
3777 }
3778 
3779 llvm::Constant *
3780 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3781   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3782 
3783   // Don't emit it as the address of the string, emit the string data itself
3784   // as an inline array.
3785   if (E->getCharByteWidth() == 1) {
3786     SmallString<64> Str(E->getString());
3787 
3788     // Resize the string to the right size, which is indicated by its type.
3789     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3790     Str.resize(CAT->getSize().getZExtValue());
3791     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3792   }
3793 
3794   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3795   llvm::Type *ElemTy = AType->getElementType();
3796   unsigned NumElements = AType->getNumElements();
3797 
3798   // Wide strings have either 2-byte or 4-byte elements.
3799   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3800     SmallVector<uint16_t, 32> Elements;
3801     Elements.reserve(NumElements);
3802 
3803     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3804       Elements.push_back(E->getCodeUnit(i));
3805     Elements.resize(NumElements);
3806     return llvm::ConstantDataArray::get(VMContext, Elements);
3807   }
3808 
3809   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3810   SmallVector<uint32_t, 32> Elements;
3811   Elements.reserve(NumElements);
3812 
3813   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3814     Elements.push_back(E->getCodeUnit(i));
3815   Elements.resize(NumElements);
3816   return llvm::ConstantDataArray::get(VMContext, Elements);
3817 }
3818 
3819 static llvm::GlobalVariable *
3820 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3821                       CodeGenModule &CGM, StringRef GlobalName,
3822                       CharUnits Alignment) {
3823   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3824   unsigned AddrSpace = 0;
3825   if (CGM.getLangOpts().OpenCL)
3826     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3827 
3828   llvm::Module &M = CGM.getModule();
3829   // Create a global variable for this string
3830   auto *GV = new llvm::GlobalVariable(
3831       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3832       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3833   GV->setAlignment(Alignment.getQuantity());
3834   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3835   if (GV->isWeakForLinker()) {
3836     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3837     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3838   }
3839 
3840   return GV;
3841 }
3842 
3843 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3844 /// constant array for the given string literal.
3845 ConstantAddress
3846 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3847                                                   StringRef Name) {
3848   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3849 
3850   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3851   llvm::GlobalVariable **Entry = nullptr;
3852   if (!LangOpts.WritableStrings) {
3853     Entry = &ConstantStringMap[C];
3854     if (auto GV = *Entry) {
3855       if (Alignment.getQuantity() > GV->getAlignment())
3856         GV->setAlignment(Alignment.getQuantity());
3857       return ConstantAddress(GV, Alignment);
3858     }
3859   }
3860 
3861   SmallString<256> MangledNameBuffer;
3862   StringRef GlobalVariableName;
3863   llvm::GlobalValue::LinkageTypes LT;
3864 
3865   // Mangle the string literal if the ABI allows for it.  However, we cannot
3866   // do this if  we are compiling with ASan or -fwritable-strings because they
3867   // rely on strings having normal linkage.
3868   if (!LangOpts.WritableStrings &&
3869       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3870       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3871     llvm::raw_svector_ostream Out(MangledNameBuffer);
3872     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3873 
3874     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3875     GlobalVariableName = MangledNameBuffer;
3876   } else {
3877     LT = llvm::GlobalValue::PrivateLinkage;
3878     GlobalVariableName = Name;
3879   }
3880 
3881   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3882   if (Entry)
3883     *Entry = GV;
3884 
3885   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3886                                   QualType());
3887   return ConstantAddress(GV, Alignment);
3888 }
3889 
3890 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3891 /// array for the given ObjCEncodeExpr node.
3892 ConstantAddress
3893 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3894   std::string Str;
3895   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3896 
3897   return GetAddrOfConstantCString(Str);
3898 }
3899 
3900 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3901 /// the literal and a terminating '\0' character.
3902 /// The result has pointer to array type.
3903 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3904     const std::string &Str, const char *GlobalName) {
3905   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3906   CharUnits Alignment =
3907     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3908 
3909   llvm::Constant *C =
3910       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3911 
3912   // Don't share any string literals if strings aren't constant.
3913   llvm::GlobalVariable **Entry = nullptr;
3914   if (!LangOpts.WritableStrings) {
3915     Entry = &ConstantStringMap[C];
3916     if (auto GV = *Entry) {
3917       if (Alignment.getQuantity() > GV->getAlignment())
3918         GV->setAlignment(Alignment.getQuantity());
3919       return ConstantAddress(GV, Alignment);
3920     }
3921   }
3922 
3923   // Get the default prefix if a name wasn't specified.
3924   if (!GlobalName)
3925     GlobalName = ".str";
3926   // Create a global variable for this.
3927   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3928                                   GlobalName, Alignment);
3929   if (Entry)
3930     *Entry = GV;
3931   return ConstantAddress(GV, Alignment);
3932 }
3933 
3934 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3935     const MaterializeTemporaryExpr *E, const Expr *Init) {
3936   assert((E->getStorageDuration() == SD_Static ||
3937           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3938   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3939 
3940   // If we're not materializing a subobject of the temporary, keep the
3941   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3942   QualType MaterializedType = Init->getType();
3943   if (Init == E->GetTemporaryExpr())
3944     MaterializedType = E->getType();
3945 
3946   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3947 
3948   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3949     return ConstantAddress(Slot, Align);
3950 
3951   // FIXME: If an externally-visible declaration extends multiple temporaries,
3952   // we need to give each temporary the same name in every translation unit (and
3953   // we also need to make the temporaries externally-visible).
3954   SmallString<256> Name;
3955   llvm::raw_svector_ostream Out(Name);
3956   getCXXABI().getMangleContext().mangleReferenceTemporary(
3957       VD, E->getManglingNumber(), Out);
3958 
3959   APValue *Value = nullptr;
3960   if (E->getStorageDuration() == SD_Static) {
3961     // We might have a cached constant initializer for this temporary. Note
3962     // that this might have a different value from the value computed by
3963     // evaluating the initializer if the surrounding constant expression
3964     // modifies the temporary.
3965     Value = getContext().getMaterializedTemporaryValue(E, false);
3966     if (Value && Value->isUninit())
3967       Value = nullptr;
3968   }
3969 
3970   // Try evaluating it now, it might have a constant initializer.
3971   Expr::EvalResult EvalResult;
3972   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3973       !EvalResult.hasSideEffects())
3974     Value = &EvalResult.Val;
3975 
3976   LangAS AddrSpace =
3977       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
3978 
3979   Optional<ConstantEmitter> emitter;
3980   llvm::Constant *InitialValue = nullptr;
3981   bool Constant = false;
3982   llvm::Type *Type;
3983   if (Value) {
3984     // The temporary has a constant initializer, use it.
3985     emitter.emplace(*this);
3986     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
3987                                                MaterializedType);
3988     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3989     Type = InitialValue->getType();
3990   } else {
3991     // No initializer, the initialization will be provided when we
3992     // initialize the declaration which performed lifetime extension.
3993     Type = getTypes().ConvertTypeForMem(MaterializedType);
3994   }
3995 
3996   // Create a global variable for this lifetime-extended temporary.
3997   llvm::GlobalValue::LinkageTypes Linkage =
3998       getLLVMLinkageVarDefinition(VD, Constant);
3999   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4000     const VarDecl *InitVD;
4001     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4002         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4003       // Temporaries defined inside a class get linkonce_odr linkage because the
4004       // class can be defined in multipe translation units.
4005       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4006     } else {
4007       // There is no need for this temporary to have external linkage if the
4008       // VarDecl has external linkage.
4009       Linkage = llvm::GlobalVariable::InternalLinkage;
4010     }
4011   }
4012   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4013   auto *GV = new llvm::GlobalVariable(
4014       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4015       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4016   if (emitter) emitter->finalize(GV);
4017   setGlobalVisibility(GV, VD, ForDefinition);
4018   GV->setAlignment(Align.getQuantity());
4019   if (supportsCOMDAT() && GV->isWeakForLinker())
4020     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4021   if (VD->getTLSKind())
4022     setTLSMode(GV, *VD);
4023   llvm::Constant *CV = GV;
4024   if (AddrSpace != LangAS::Default)
4025     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4026         *this, GV, AddrSpace, LangAS::Default,
4027         Type->getPointerTo(
4028             getContext().getTargetAddressSpace(LangAS::Default)));
4029   MaterializedGlobalTemporaryMap[E] = CV;
4030   return ConstantAddress(CV, Align);
4031 }
4032 
4033 /// EmitObjCPropertyImplementations - Emit information for synthesized
4034 /// properties for an implementation.
4035 void CodeGenModule::EmitObjCPropertyImplementations(const
4036                                                     ObjCImplementationDecl *D) {
4037   for (const auto *PID : D->property_impls()) {
4038     // Dynamic is just for type-checking.
4039     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4040       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4041 
4042       // Determine which methods need to be implemented, some may have
4043       // been overridden. Note that ::isPropertyAccessor is not the method
4044       // we want, that just indicates if the decl came from a
4045       // property. What we want to know is if the method is defined in
4046       // this implementation.
4047       if (!D->getInstanceMethod(PD->getGetterName()))
4048         CodeGenFunction(*this).GenerateObjCGetter(
4049                                  const_cast<ObjCImplementationDecl *>(D), PID);
4050       if (!PD->isReadOnly() &&
4051           !D->getInstanceMethod(PD->getSetterName()))
4052         CodeGenFunction(*this).GenerateObjCSetter(
4053                                  const_cast<ObjCImplementationDecl *>(D), PID);
4054     }
4055   }
4056 }
4057 
4058 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4059   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4060   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4061        ivar; ivar = ivar->getNextIvar())
4062     if (ivar->getType().isDestructedType())
4063       return true;
4064 
4065   return false;
4066 }
4067 
4068 static bool AllTrivialInitializers(CodeGenModule &CGM,
4069                                    ObjCImplementationDecl *D) {
4070   CodeGenFunction CGF(CGM);
4071   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4072        E = D->init_end(); B != E; ++B) {
4073     CXXCtorInitializer *CtorInitExp = *B;
4074     Expr *Init = CtorInitExp->getInit();
4075     if (!CGF.isTrivialInitializer(Init))
4076       return false;
4077   }
4078   return true;
4079 }
4080 
4081 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4082 /// for an implementation.
4083 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4084   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4085   if (needsDestructMethod(D)) {
4086     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4087     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4088     ObjCMethodDecl *DTORMethod =
4089       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4090                              cxxSelector, getContext().VoidTy, nullptr, D,
4091                              /*isInstance=*/true, /*isVariadic=*/false,
4092                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4093                              /*isDefined=*/false, ObjCMethodDecl::Required);
4094     D->addInstanceMethod(DTORMethod);
4095     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4096     D->setHasDestructors(true);
4097   }
4098 
4099   // If the implementation doesn't have any ivar initializers, we don't need
4100   // a .cxx_construct.
4101   if (D->getNumIvarInitializers() == 0 ||
4102       AllTrivialInitializers(*this, D))
4103     return;
4104 
4105   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4106   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4107   // The constructor returns 'self'.
4108   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4109                                                 D->getLocation(),
4110                                                 D->getLocation(),
4111                                                 cxxSelector,
4112                                                 getContext().getObjCIdType(),
4113                                                 nullptr, D, /*isInstance=*/true,
4114                                                 /*isVariadic=*/false,
4115                                                 /*isPropertyAccessor=*/true,
4116                                                 /*isImplicitlyDeclared=*/true,
4117                                                 /*isDefined=*/false,
4118                                                 ObjCMethodDecl::Required);
4119   D->addInstanceMethod(CTORMethod);
4120   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4121   D->setHasNonZeroConstructors(true);
4122 }
4123 
4124 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4125 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4126   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4127       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4128     ErrorUnsupported(LSD, "linkage spec");
4129     return;
4130   }
4131 
4132   EmitDeclContext(LSD);
4133 }
4134 
4135 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4136   for (auto *I : DC->decls()) {
4137     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4138     // are themselves considered "top-level", so EmitTopLevelDecl on an
4139     // ObjCImplDecl does not recursively visit them. We need to do that in
4140     // case they're nested inside another construct (LinkageSpecDecl /
4141     // ExportDecl) that does stop them from being considered "top-level".
4142     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4143       for (auto *M : OID->methods())
4144         EmitTopLevelDecl(M);
4145     }
4146 
4147     EmitTopLevelDecl(I);
4148   }
4149 }
4150 
4151 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4152 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4153   // Ignore dependent declarations.
4154   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
4155     return;
4156 
4157   switch (D->getKind()) {
4158   case Decl::CXXConversion:
4159   case Decl::CXXMethod:
4160   case Decl::Function:
4161     // Skip function templates
4162     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
4163         cast<FunctionDecl>(D)->isLateTemplateParsed())
4164       return;
4165 
4166     EmitGlobal(cast<FunctionDecl>(D));
4167     // Always provide some coverage mapping
4168     // even for the functions that aren't emitted.
4169     AddDeferredUnusedCoverageMapping(D);
4170     break;
4171 
4172   case Decl::CXXDeductionGuide:
4173     // Function-like, but does not result in code emission.
4174     break;
4175 
4176   case Decl::Var:
4177   case Decl::Decomposition:
4178     // Skip variable templates
4179     if (cast<VarDecl>(D)->getDescribedVarTemplate())
4180       return;
4181     LLVM_FALLTHROUGH;
4182   case Decl::VarTemplateSpecialization:
4183     EmitGlobal(cast<VarDecl>(D));
4184     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4185       for (auto *B : DD->bindings())
4186         if (auto *HD = B->getHoldingVar())
4187           EmitGlobal(HD);
4188     break;
4189 
4190   // Indirect fields from global anonymous structs and unions can be
4191   // ignored; only the actual variable requires IR gen support.
4192   case Decl::IndirectField:
4193     break;
4194 
4195   // C++ Decls
4196   case Decl::Namespace:
4197     EmitDeclContext(cast<NamespaceDecl>(D));
4198     break;
4199   case Decl::ClassTemplateSpecialization: {
4200     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4201     if (DebugInfo &&
4202         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4203         Spec->hasDefinition())
4204       DebugInfo->completeTemplateDefinition(*Spec);
4205   } LLVM_FALLTHROUGH;
4206   case Decl::CXXRecord:
4207     if (DebugInfo) {
4208       if (auto *ES = D->getASTContext().getExternalSource())
4209         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4210           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4211     }
4212     // Emit any static data members, they may be definitions.
4213     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4214       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4215         EmitTopLevelDecl(I);
4216     break;
4217     // No code generation needed.
4218   case Decl::UsingShadow:
4219   case Decl::ClassTemplate:
4220   case Decl::VarTemplate:
4221   case Decl::VarTemplatePartialSpecialization:
4222   case Decl::FunctionTemplate:
4223   case Decl::TypeAliasTemplate:
4224   case Decl::Block:
4225   case Decl::Empty:
4226     break;
4227   case Decl::Using:          // using X; [C++]
4228     if (CGDebugInfo *DI = getModuleDebugInfo())
4229         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4230     return;
4231   case Decl::NamespaceAlias:
4232     if (CGDebugInfo *DI = getModuleDebugInfo())
4233         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4234     return;
4235   case Decl::UsingDirective: // using namespace X; [C++]
4236     if (CGDebugInfo *DI = getModuleDebugInfo())
4237       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4238     return;
4239   case Decl::CXXConstructor:
4240     // Skip function templates
4241     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
4242         cast<FunctionDecl>(D)->isLateTemplateParsed())
4243       return;
4244 
4245     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4246     break;
4247   case Decl::CXXDestructor:
4248     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
4249       return;
4250     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4251     break;
4252 
4253   case Decl::StaticAssert:
4254     // Nothing to do.
4255     break;
4256 
4257   // Objective-C Decls
4258 
4259   // Forward declarations, no (immediate) code generation.
4260   case Decl::ObjCInterface:
4261   case Decl::ObjCCategory:
4262     break;
4263 
4264   case Decl::ObjCProtocol: {
4265     auto *Proto = cast<ObjCProtocolDecl>(D);
4266     if (Proto->isThisDeclarationADefinition())
4267       ObjCRuntime->GenerateProtocol(Proto);
4268     break;
4269   }
4270 
4271   case Decl::ObjCCategoryImpl:
4272     // Categories have properties but don't support synthesize so we
4273     // can ignore them here.
4274     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4275     break;
4276 
4277   case Decl::ObjCImplementation: {
4278     auto *OMD = cast<ObjCImplementationDecl>(D);
4279     EmitObjCPropertyImplementations(OMD);
4280     EmitObjCIvarInitializations(OMD);
4281     ObjCRuntime->GenerateClass(OMD);
4282     // Emit global variable debug information.
4283     if (CGDebugInfo *DI = getModuleDebugInfo())
4284       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4285         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4286             OMD->getClassInterface()), OMD->getLocation());
4287     break;
4288   }
4289   case Decl::ObjCMethod: {
4290     auto *OMD = cast<ObjCMethodDecl>(D);
4291     // If this is not a prototype, emit the body.
4292     if (OMD->getBody())
4293       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4294     break;
4295   }
4296   case Decl::ObjCCompatibleAlias:
4297     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4298     break;
4299 
4300   case Decl::PragmaComment: {
4301     const auto *PCD = cast<PragmaCommentDecl>(D);
4302     switch (PCD->getCommentKind()) {
4303     case PCK_Unknown:
4304       llvm_unreachable("unexpected pragma comment kind");
4305     case PCK_Linker:
4306       AppendLinkerOptions(PCD->getArg());
4307       break;
4308     case PCK_Lib:
4309       AddDependentLib(PCD->getArg());
4310       break;
4311     case PCK_Compiler:
4312     case PCK_ExeStr:
4313     case PCK_User:
4314       break; // We ignore all of these.
4315     }
4316     break;
4317   }
4318 
4319   case Decl::PragmaDetectMismatch: {
4320     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4321     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4322     break;
4323   }
4324 
4325   case Decl::LinkageSpec:
4326     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4327     break;
4328 
4329   case Decl::FileScopeAsm: {
4330     // File-scope asm is ignored during device-side CUDA compilation.
4331     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4332       break;
4333     // File-scope asm is ignored during device-side OpenMP compilation.
4334     if (LangOpts.OpenMPIsDevice)
4335       break;
4336     auto *AD = cast<FileScopeAsmDecl>(D);
4337     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4338     break;
4339   }
4340 
4341   case Decl::Import: {
4342     auto *Import = cast<ImportDecl>(D);
4343 
4344     // If we've already imported this module, we're done.
4345     if (!ImportedModules.insert(Import->getImportedModule()))
4346       break;
4347 
4348     // Emit debug information for direct imports.
4349     if (!Import->getImportedOwningModule()) {
4350       if (CGDebugInfo *DI = getModuleDebugInfo())
4351         DI->EmitImportDecl(*Import);
4352     }
4353 
4354     // Find all of the submodules and emit the module initializers.
4355     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4356     SmallVector<clang::Module *, 16> Stack;
4357     Visited.insert(Import->getImportedModule());
4358     Stack.push_back(Import->getImportedModule());
4359 
4360     while (!Stack.empty()) {
4361       clang::Module *Mod = Stack.pop_back_val();
4362       if (!EmittedModuleInitializers.insert(Mod).second)
4363         continue;
4364 
4365       for (auto *D : Context.getModuleInitializers(Mod))
4366         EmitTopLevelDecl(D);
4367 
4368       // Visit the submodules of this module.
4369       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4370                                              SubEnd = Mod->submodule_end();
4371            Sub != SubEnd; ++Sub) {
4372         // Skip explicit children; they need to be explicitly imported to emit
4373         // the initializers.
4374         if ((*Sub)->IsExplicit)
4375           continue;
4376 
4377         if (Visited.insert(*Sub).second)
4378           Stack.push_back(*Sub);
4379       }
4380     }
4381     break;
4382   }
4383 
4384   case Decl::Export:
4385     EmitDeclContext(cast<ExportDecl>(D));
4386     break;
4387 
4388   case Decl::OMPThreadPrivate:
4389     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4390     break;
4391 
4392   case Decl::OMPDeclareReduction:
4393     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4394     break;
4395 
4396   default:
4397     // Make sure we handled everything we should, every other kind is a
4398     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4399     // function. Need to recode Decl::Kind to do that easily.
4400     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4401     break;
4402   }
4403 }
4404 
4405 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4406   // Do we need to generate coverage mapping?
4407   if (!CodeGenOpts.CoverageMapping)
4408     return;
4409   switch (D->getKind()) {
4410   case Decl::CXXConversion:
4411   case Decl::CXXMethod:
4412   case Decl::Function:
4413   case Decl::ObjCMethod:
4414   case Decl::CXXConstructor:
4415   case Decl::CXXDestructor: {
4416     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4417       return;
4418     SourceManager &SM = getContext().getSourceManager();
4419     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4420       return;
4421     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4422     if (I == DeferredEmptyCoverageMappingDecls.end())
4423       DeferredEmptyCoverageMappingDecls[D] = true;
4424     break;
4425   }
4426   default:
4427     break;
4428   };
4429 }
4430 
4431 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4432   // Do we need to generate coverage mapping?
4433   if (!CodeGenOpts.CoverageMapping)
4434     return;
4435   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4436     if (Fn->isTemplateInstantiation())
4437       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4438   }
4439   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4440   if (I == DeferredEmptyCoverageMappingDecls.end())
4441     DeferredEmptyCoverageMappingDecls[D] = false;
4442   else
4443     I->second = false;
4444 }
4445 
4446 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4447   // We call takeVector() here to avoid use-after-free.
4448   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4449   // we deserialize function bodies to emit coverage info for them, and that
4450   // deserializes more declarations. How should we handle that case?
4451   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4452     if (!Entry.second)
4453       continue;
4454     const Decl *D = Entry.first;
4455     switch (D->getKind()) {
4456     case Decl::CXXConversion:
4457     case Decl::CXXMethod:
4458     case Decl::Function:
4459     case Decl::ObjCMethod: {
4460       CodeGenPGO PGO(*this);
4461       GlobalDecl GD(cast<FunctionDecl>(D));
4462       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4463                                   getFunctionLinkage(GD));
4464       break;
4465     }
4466     case Decl::CXXConstructor: {
4467       CodeGenPGO PGO(*this);
4468       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4469       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4470                                   getFunctionLinkage(GD));
4471       break;
4472     }
4473     case Decl::CXXDestructor: {
4474       CodeGenPGO PGO(*this);
4475       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4476       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4477                                   getFunctionLinkage(GD));
4478       break;
4479     }
4480     default:
4481       break;
4482     };
4483   }
4484 }
4485 
4486 /// Turns the given pointer into a constant.
4487 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4488                                           const void *Ptr) {
4489   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4490   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4491   return llvm::ConstantInt::get(i64, PtrInt);
4492 }
4493 
4494 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4495                                    llvm::NamedMDNode *&GlobalMetadata,
4496                                    GlobalDecl D,
4497                                    llvm::GlobalValue *Addr) {
4498   if (!GlobalMetadata)
4499     GlobalMetadata =
4500       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4501 
4502   // TODO: should we report variant information for ctors/dtors?
4503   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4504                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4505                                CGM.getLLVMContext(), D.getDecl()))};
4506   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4507 }
4508 
4509 /// For each function which is declared within an extern "C" region and marked
4510 /// as 'used', but has internal linkage, create an alias from the unmangled
4511 /// name to the mangled name if possible. People expect to be able to refer
4512 /// to such functions with an unmangled name from inline assembly within the
4513 /// same translation unit.
4514 void CodeGenModule::EmitStaticExternCAliases() {
4515   // Don't do anything if we're generating CUDA device code -- the NVPTX
4516   // assembly target doesn't support aliases.
4517   if (Context.getTargetInfo().getTriple().isNVPTX())
4518     return;
4519   for (auto &I : StaticExternCValues) {
4520     IdentifierInfo *Name = I.first;
4521     llvm::GlobalValue *Val = I.second;
4522     if (Val && !getModule().getNamedValue(Name->getName()))
4523       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4524   }
4525 }
4526 
4527 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4528                                              GlobalDecl &Result) const {
4529   auto Res = Manglings.find(MangledName);
4530   if (Res == Manglings.end())
4531     return false;
4532   Result = Res->getValue();
4533   return true;
4534 }
4535 
4536 /// Emits metadata nodes associating all the global values in the
4537 /// current module with the Decls they came from.  This is useful for
4538 /// projects using IR gen as a subroutine.
4539 ///
4540 /// Since there's currently no way to associate an MDNode directly
4541 /// with an llvm::GlobalValue, we create a global named metadata
4542 /// with the name 'clang.global.decl.ptrs'.
4543 void CodeGenModule::EmitDeclMetadata() {
4544   llvm::NamedMDNode *GlobalMetadata = nullptr;
4545 
4546   for (auto &I : MangledDeclNames) {
4547     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4548     // Some mangled names don't necessarily have an associated GlobalValue
4549     // in this module, e.g. if we mangled it for DebugInfo.
4550     if (Addr)
4551       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4552   }
4553 }
4554 
4555 /// Emits metadata nodes for all the local variables in the current
4556 /// function.
4557 void CodeGenFunction::EmitDeclMetadata() {
4558   if (LocalDeclMap.empty()) return;
4559 
4560   llvm::LLVMContext &Context = getLLVMContext();
4561 
4562   // Find the unique metadata ID for this name.
4563   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4564 
4565   llvm::NamedMDNode *GlobalMetadata = nullptr;
4566 
4567   for (auto &I : LocalDeclMap) {
4568     const Decl *D = I.first;
4569     llvm::Value *Addr = I.second.getPointer();
4570     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4571       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4572       Alloca->setMetadata(
4573           DeclPtrKind, llvm::MDNode::get(
4574                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4575     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4576       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4577       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4578     }
4579   }
4580 }
4581 
4582 void CodeGenModule::EmitVersionIdentMetadata() {
4583   llvm::NamedMDNode *IdentMetadata =
4584     TheModule.getOrInsertNamedMetadata("llvm.ident");
4585   std::string Version = getClangFullVersion();
4586   llvm::LLVMContext &Ctx = TheModule.getContext();
4587 
4588   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4589   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4590 }
4591 
4592 void CodeGenModule::EmitTargetMetadata() {
4593   // Warning, new MangledDeclNames may be appended within this loop.
4594   // We rely on MapVector insertions adding new elements to the end
4595   // of the container.
4596   // FIXME: Move this loop into the one target that needs it, and only
4597   // loop over those declarations for which we couldn't emit the target
4598   // metadata when we emitted the declaration.
4599   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4600     auto Val = *(MangledDeclNames.begin() + I);
4601     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4602     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4603     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4604   }
4605 }
4606 
4607 void CodeGenModule::EmitCoverageFile() {
4608   if (getCodeGenOpts().CoverageDataFile.empty() &&
4609       getCodeGenOpts().CoverageNotesFile.empty())
4610     return;
4611 
4612   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4613   if (!CUNode)
4614     return;
4615 
4616   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4617   llvm::LLVMContext &Ctx = TheModule.getContext();
4618   auto *CoverageDataFile =
4619       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4620   auto *CoverageNotesFile =
4621       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4622   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4623     llvm::MDNode *CU = CUNode->getOperand(i);
4624     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4625     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4626   }
4627 }
4628 
4629 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4630   // Sema has checked that all uuid strings are of the form
4631   // "12345678-1234-1234-1234-1234567890ab".
4632   assert(Uuid.size() == 36);
4633   for (unsigned i = 0; i < 36; ++i) {
4634     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4635     else                                         assert(isHexDigit(Uuid[i]));
4636   }
4637 
4638   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4639   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4640 
4641   llvm::Constant *Field3[8];
4642   for (unsigned Idx = 0; Idx < 8; ++Idx)
4643     Field3[Idx] = llvm::ConstantInt::get(
4644         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4645 
4646   llvm::Constant *Fields[4] = {
4647     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4648     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4649     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4650     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4651   };
4652 
4653   return llvm::ConstantStruct::getAnon(Fields);
4654 }
4655 
4656 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4657                                                        bool ForEH) {
4658   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4659   // FIXME: should we even be calling this method if RTTI is disabled
4660   // and it's not for EH?
4661   if (!ForEH && !getLangOpts().RTTI)
4662     return llvm::Constant::getNullValue(Int8PtrTy);
4663 
4664   if (ForEH && Ty->isObjCObjectPointerType() &&
4665       LangOpts.ObjCRuntime.isGNUFamily())
4666     return ObjCRuntime->GetEHType(Ty);
4667 
4668   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4669 }
4670 
4671 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4672   // Do not emit threadprivates in simd-only mode.
4673   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4674     return;
4675   for (auto RefExpr : D->varlists()) {
4676     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4677     bool PerformInit =
4678         VD->getAnyInitializer() &&
4679         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4680                                                         /*ForRef=*/false);
4681 
4682     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4683     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4684             VD, Addr, RefExpr->getLocStart(), PerformInit))
4685       CXXGlobalInits.push_back(InitFunction);
4686   }
4687 }
4688 
4689 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4690   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4691   if (InternalId)
4692     return InternalId;
4693 
4694   if (isExternallyVisible(T->getLinkage())) {
4695     std::string OutName;
4696     llvm::raw_string_ostream Out(OutName);
4697     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4698 
4699     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4700   } else {
4701     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4702                                            llvm::ArrayRef<llvm::Metadata *>());
4703   }
4704 
4705   return InternalId;
4706 }
4707 
4708 // Generalize pointer types to a void pointer with the qualifiers of the
4709 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
4710 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
4711 // 'void *'.
4712 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4713   if (!Ty->isPointerType())
4714     return Ty;
4715 
4716   return Ctx.getPointerType(
4717       QualType(Ctx.VoidTy).withCVRQualifiers(
4718           Ty->getPointeeType().getCVRQualifiers()));
4719 }
4720 
4721 // Apply type generalization to a FunctionType's return and argument types
4722 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4723   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4724     SmallVector<QualType, 8> GeneralizedParams;
4725     for (auto &Param : FnType->param_types())
4726       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4727 
4728     return Ctx.getFunctionType(
4729         GeneralizeType(Ctx, FnType->getReturnType()),
4730         GeneralizedParams, FnType->getExtProtoInfo());
4731   }
4732 
4733   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4734     return Ctx.getFunctionNoProtoType(
4735         GeneralizeType(Ctx, FnType->getReturnType()));
4736 
4737   llvm_unreachable("Encountered unknown FunctionType");
4738 }
4739 
4740 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4741   T = GeneralizeFunctionType(getContext(), T);
4742 
4743   llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4744   if (InternalId)
4745     return InternalId;
4746 
4747   if (isExternallyVisible(T->getLinkage())) {
4748     std::string OutName;
4749     llvm::raw_string_ostream Out(OutName);
4750     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4751     Out << ".generalized";
4752 
4753     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4754   } else {
4755     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4756                                            llvm::ArrayRef<llvm::Metadata *>());
4757   }
4758 
4759   return InternalId;
4760 }
4761 
4762 /// Returns whether this module needs the "all-vtables" type identifier.
4763 bool CodeGenModule::NeedAllVtablesTypeId() const {
4764   // Returns true if at least one of vtable-based CFI checkers is enabled and
4765   // is not in the trapping mode.
4766   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4767            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4768           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4769            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4770           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4771            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4772           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4773            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4774 }
4775 
4776 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4777                                           CharUnits Offset,
4778                                           const CXXRecordDecl *RD) {
4779   llvm::Metadata *MD =
4780       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4781   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4782 
4783   if (CodeGenOpts.SanitizeCfiCrossDso)
4784     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4785       VTable->addTypeMetadata(Offset.getQuantity(),
4786                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4787 
4788   if (NeedAllVtablesTypeId()) {
4789     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4790     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4791   }
4792 }
4793 
4794 // Fills in the supplied string map with the set of target features for the
4795 // passed in function.
4796 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4797                                           const FunctionDecl *FD) {
4798   StringRef TargetCPU = Target.getTargetOpts().CPU;
4799   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4800     // If we have a TargetAttr build up the feature map based on that.
4801     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4802 
4803     ParsedAttr.Features.erase(
4804         llvm::remove_if(ParsedAttr.Features,
4805                         [&](const std::string &Feat) {
4806                           return !Target.isValidFeatureName(
4807                               StringRef{Feat}.substr(1));
4808                         }),
4809         ParsedAttr.Features.end());
4810 
4811     // Make a copy of the features as passed on the command line into the
4812     // beginning of the additional features from the function to override.
4813     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4814                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4815                             Target.getTargetOpts().FeaturesAsWritten.end());
4816 
4817     if (ParsedAttr.Architecture != "" &&
4818         Target.isValidCPUName(ParsedAttr.Architecture))
4819       TargetCPU = ParsedAttr.Architecture;
4820 
4821     // Now populate the feature map, first with the TargetCPU which is either
4822     // the default or a new one from the target attribute string. Then we'll use
4823     // the passed in features (FeaturesAsWritten) along with the new ones from
4824     // the attribute.
4825     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4826                           ParsedAttr.Features);
4827   } else {
4828     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4829                           Target.getTargetOpts().Features);
4830   }
4831 }
4832 
4833 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4834   if (!SanStats)
4835     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4836 
4837   return *SanStats;
4838 }
4839 llvm::Value *
4840 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4841                                                   CodeGenFunction &CGF) {
4842   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
4843   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
4844   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4845   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4846                                 "__translate_sampler_initializer"),
4847                                 {C});
4848 }
4849