1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 127 128 if (LangOpts.ObjC1) 129 createObjCRuntime(); 130 if (LangOpts.OpenCL) 131 createOpenCLRuntime(); 132 if (LangOpts.OpenMP) 133 createOpenMPRuntime(); 134 if (LangOpts.CUDA) 135 createCUDARuntime(); 136 137 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 138 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 139 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 140 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 141 getCXXABI().getMangleContext())); 142 143 // If debug info or coverage generation is enabled, create the CGDebugInfo 144 // object. 145 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 146 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 147 DebugInfo.reset(new CGDebugInfo(*this)); 148 149 Block.GlobalUniqueCount = 0; 150 151 if (C.getLangOpts().ObjC1) 152 ObjCData.reset(new ObjCEntrypoints()); 153 154 if (CodeGenOpts.hasProfileClangUse()) { 155 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 156 CodeGenOpts.ProfileInstrumentUsePath); 157 if (auto E = ReaderOrErr.takeError()) { 158 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 159 "Could not read profile %0: %1"); 160 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 161 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 162 << EI.message(); 163 }); 164 } else 165 PGOReader = std::move(ReaderOrErr.get()); 166 } 167 168 // If coverage mapping generation is enabled, create the 169 // CoverageMappingModuleGen object. 170 if (CodeGenOpts.CoverageMapping) 171 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 172 } 173 174 CodeGenModule::~CodeGenModule() {} 175 176 void CodeGenModule::createObjCRuntime() { 177 // This is just isGNUFamily(), but we want to force implementors of 178 // new ABIs to decide how best to do this. 179 switch (LangOpts.ObjCRuntime.getKind()) { 180 case ObjCRuntime::GNUstep: 181 case ObjCRuntime::GCC: 182 case ObjCRuntime::ObjFW: 183 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 184 return; 185 186 case ObjCRuntime::FragileMacOSX: 187 case ObjCRuntime::MacOSX: 188 case ObjCRuntime::iOS: 189 case ObjCRuntime::WatchOS: 190 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 191 return; 192 } 193 llvm_unreachable("bad runtime kind"); 194 } 195 196 void CodeGenModule::createOpenCLRuntime() { 197 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 198 } 199 200 void CodeGenModule::createOpenMPRuntime() { 201 // Select a specialized code generation class based on the target, if any. 202 // If it does not exist use the default implementation. 203 switch (getTriple().getArch()) { 204 case llvm::Triple::nvptx: 205 case llvm::Triple::nvptx64: 206 assert(getLangOpts().OpenMPIsDevice && 207 "OpenMP NVPTX is only prepared to deal with device code."); 208 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 209 break; 210 default: 211 if (LangOpts.OpenMPSimd) 212 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 213 else 214 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 215 break; 216 } 217 } 218 219 void CodeGenModule::createCUDARuntime() { 220 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 221 } 222 223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 224 Replacements[Name] = C; 225 } 226 227 void CodeGenModule::applyReplacements() { 228 for (auto &I : Replacements) { 229 StringRef MangledName = I.first(); 230 llvm::Constant *Replacement = I.second; 231 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 232 if (!Entry) 233 continue; 234 auto *OldF = cast<llvm::Function>(Entry); 235 auto *NewF = dyn_cast<llvm::Function>(Replacement); 236 if (!NewF) { 237 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 238 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 239 } else { 240 auto *CE = cast<llvm::ConstantExpr>(Replacement); 241 assert(CE->getOpcode() == llvm::Instruction::BitCast || 242 CE->getOpcode() == llvm::Instruction::GetElementPtr); 243 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 244 } 245 } 246 247 // Replace old with new, but keep the old order. 248 OldF->replaceAllUsesWith(Replacement); 249 if (NewF) { 250 NewF->removeFromParent(); 251 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 252 NewF); 253 } 254 OldF->eraseFromParent(); 255 } 256 } 257 258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 259 GlobalValReplacements.push_back(std::make_pair(GV, C)); 260 } 261 262 void CodeGenModule::applyGlobalValReplacements() { 263 for (auto &I : GlobalValReplacements) { 264 llvm::GlobalValue *GV = I.first; 265 llvm::Constant *C = I.second; 266 267 GV->replaceAllUsesWith(C); 268 GV->eraseFromParent(); 269 } 270 } 271 272 // This is only used in aliases that we created and we know they have a 273 // linear structure. 274 static const llvm::GlobalObject *getAliasedGlobal( 275 const llvm::GlobalIndirectSymbol &GIS) { 276 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 277 const llvm::Constant *C = &GIS; 278 for (;;) { 279 C = C->stripPointerCasts(); 280 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 281 return GO; 282 // stripPointerCasts will not walk over weak aliases. 283 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 284 if (!GIS2) 285 return nullptr; 286 if (!Visited.insert(GIS2).second) 287 return nullptr; 288 C = GIS2->getIndirectSymbol(); 289 } 290 } 291 292 void CodeGenModule::checkAliases() { 293 // Check if the constructed aliases are well formed. It is really unfortunate 294 // that we have to do this in CodeGen, but we only construct mangled names 295 // and aliases during codegen. 296 bool Error = false; 297 DiagnosticsEngine &Diags = getDiags(); 298 for (const GlobalDecl &GD : Aliases) { 299 const auto *D = cast<ValueDecl>(GD.getDecl()); 300 SourceLocation Location; 301 bool IsIFunc = D->hasAttr<IFuncAttr>(); 302 if (const Attr *A = D->getDefiningAttr()) 303 Location = A->getLocation(); 304 else 305 llvm_unreachable("Not an alias or ifunc?"); 306 StringRef MangledName = getMangledName(GD); 307 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 308 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 309 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 310 if (!GV) { 311 Error = true; 312 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 313 } else if (GV->isDeclaration()) { 314 Error = true; 315 Diags.Report(Location, diag::err_alias_to_undefined) 316 << IsIFunc << IsIFunc; 317 } else if (IsIFunc) { 318 // Check resolver function type. 319 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 320 GV->getType()->getPointerElementType()); 321 assert(FTy); 322 if (!FTy->getReturnType()->isPointerTy()) 323 Diags.Report(Location, diag::err_ifunc_resolver_return); 324 if (FTy->getNumParams()) 325 Diags.Report(Location, diag::err_ifunc_resolver_params); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 408 AddGlobalCtor(CudaCtorFunction); 409 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 410 AddGlobalDtor(CudaDtorFunction); 411 } 412 if (OpenMPRuntime) 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 if (PGOReader) { 420 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 421 if (PGOStats.hasDiagnostics()) 422 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 423 } 424 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 425 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 426 EmitGlobalAnnotations(); 427 EmitStaticExternCAliases(); 428 EmitDeferredUnusedCoverageMappings(); 429 if (CoverageMapping) 430 CoverageMapping->emit(); 431 if (CodeGenOpts.SanitizeCfiCrossDso) { 432 CodeGenFunction(*this).EmitCfiCheckFail(); 433 CodeGenFunction(*this).EmitCfiCheckStub(); 434 } 435 emitAtAvailableLinkGuard(); 436 emitLLVMUsed(); 437 if (SanStats) 438 SanStats->finish(); 439 440 if (CodeGenOpts.Autolink && 441 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 442 EmitModuleLinkOptions(); 443 } 444 445 // Record mregparm value now so it is visible through rest of codegen. 446 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 447 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 448 CodeGenOpts.NumRegisterParameters); 449 450 if (CodeGenOpts.DwarfVersion) { 451 // We actually want the latest version when there are conflicts. 452 // We can change from Warning to Latest if such mode is supported. 453 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 454 CodeGenOpts.DwarfVersion); 455 } 456 if (CodeGenOpts.EmitCodeView) { 457 // Indicate that we want CodeView in the metadata. 458 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 459 } 460 if (CodeGenOpts.ControlFlowGuard) { 461 // We want function ID tables for Control Flow Guard. 462 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 463 } 464 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 465 // We don't support LTO with 2 with different StrictVTablePointers 466 // FIXME: we could support it by stripping all the information introduced 467 // by StrictVTablePointers. 468 469 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 470 471 llvm::Metadata *Ops[2] = { 472 llvm::MDString::get(VMContext, "StrictVTablePointers"), 473 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 474 llvm::Type::getInt32Ty(VMContext), 1))}; 475 476 getModule().addModuleFlag(llvm::Module::Require, 477 "StrictVTablePointersRequirement", 478 llvm::MDNode::get(VMContext, Ops)); 479 } 480 if (DebugInfo) 481 // We support a single version in the linked module. The LLVM 482 // parser will drop debug info with a different version number 483 // (and warn about it, too). 484 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 485 llvm::DEBUG_METADATA_VERSION); 486 487 // We need to record the widths of enums and wchar_t, so that we can generate 488 // the correct build attributes in the ARM backend. wchar_size is also used by 489 // TargetLibraryInfo. 490 uint64_t WCharWidth = 491 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 492 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 493 494 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 495 if ( Arch == llvm::Triple::arm 496 || Arch == llvm::Triple::armeb 497 || Arch == llvm::Triple::thumb 498 || Arch == llvm::Triple::thumbeb) { 499 // The minimum width of an enum in bytes 500 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 501 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 502 } 503 504 if (CodeGenOpts.SanitizeCfiCrossDso) { 505 // Indicate that we want cross-DSO control flow integrity checks. 506 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 507 } 508 509 if (CodeGenOpts.CFProtectionReturn && 510 Target.checkCFProtectionReturnSupported(getDiags())) { 511 // Indicate that we want to instrument return control flow protection. 512 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 513 1); 514 } 515 516 if (CodeGenOpts.CFProtectionBranch && 517 Target.checkCFProtectionBranchSupported(getDiags())) { 518 // Indicate that we want to instrument branch control flow protection. 519 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 520 1); 521 } 522 523 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 524 // Indicate whether __nvvm_reflect should be configured to flush denormal 525 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 526 // property.) 527 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 528 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 529 } 530 531 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 532 if (LangOpts.OpenCL) { 533 EmitOpenCLMetadata(); 534 // Emit SPIR version. 535 if (getTriple().getArch() == llvm::Triple::spir || 536 getTriple().getArch() == llvm::Triple::spir64) { 537 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 538 // opencl.spir.version named metadata. 539 llvm::Metadata *SPIRVerElts[] = { 540 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 541 Int32Ty, LangOpts.OpenCLVersion / 100)), 542 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 543 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 544 llvm::NamedMDNode *SPIRVerMD = 545 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 546 llvm::LLVMContext &Ctx = TheModule.getContext(); 547 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 548 } 549 } 550 551 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 552 assert(PLevel < 3 && "Invalid PIC Level"); 553 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 554 if (Context.getLangOpts().PIE) 555 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 556 } 557 558 if (CodeGenOpts.NoPLT) 559 getModule().setRtLibUseGOT(); 560 561 SimplifyPersonality(); 562 563 if (getCodeGenOpts().EmitDeclMetadata) 564 EmitDeclMetadata(); 565 566 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 567 EmitCoverageFile(); 568 569 if (DebugInfo) 570 DebugInfo->finalize(); 571 572 EmitVersionIdentMetadata(); 573 574 EmitTargetMetadata(); 575 } 576 577 void CodeGenModule::EmitOpenCLMetadata() { 578 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 579 // opencl.ocl.version named metadata node. 580 llvm::Metadata *OCLVerElts[] = { 581 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 582 Int32Ty, LangOpts.OpenCLVersion / 100)), 583 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 584 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 585 llvm::NamedMDNode *OCLVerMD = 586 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 587 llvm::LLVMContext &Ctx = TheModule.getContext(); 588 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 589 } 590 591 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 592 // Make sure that this type is translated. 593 Types.UpdateCompletedType(TD); 594 } 595 596 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 597 // Make sure that this type is translated. 598 Types.RefreshTypeCacheForClass(RD); 599 } 600 601 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 602 if (!TBAA) 603 return nullptr; 604 return TBAA->getTypeInfo(QTy); 605 } 606 607 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 608 if (!TBAA) 609 return TBAAAccessInfo(); 610 return TBAA->getAccessInfo(AccessType); 611 } 612 613 TBAAAccessInfo 614 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 615 if (!TBAA) 616 return TBAAAccessInfo(); 617 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 618 } 619 620 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 621 if (!TBAA) 622 return nullptr; 623 return TBAA->getTBAAStructInfo(QTy); 624 } 625 626 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 627 if (!TBAA) 628 return nullptr; 629 return TBAA->getBaseTypeInfo(QTy); 630 } 631 632 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 633 if (!TBAA) 634 return nullptr; 635 return TBAA->getAccessTagInfo(Info); 636 } 637 638 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 639 TBAAAccessInfo TargetInfo) { 640 if (!TBAA) 641 return TBAAAccessInfo(); 642 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 643 } 644 645 TBAAAccessInfo 646 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 647 TBAAAccessInfo InfoB) { 648 if (!TBAA) 649 return TBAAAccessInfo(); 650 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 651 } 652 653 TBAAAccessInfo 654 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 655 TBAAAccessInfo SrcInfo) { 656 if (!TBAA) 657 return TBAAAccessInfo(); 658 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 659 } 660 661 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 662 TBAAAccessInfo TBAAInfo) { 663 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 664 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 665 } 666 667 void CodeGenModule::DecorateInstructionWithInvariantGroup( 668 llvm::Instruction *I, const CXXRecordDecl *RD) { 669 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 670 llvm::MDNode::get(getLLVMContext(), {})); 671 } 672 673 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 674 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 675 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 676 } 677 678 /// ErrorUnsupported - Print out an error that codegen doesn't support the 679 /// specified stmt yet. 680 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 681 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 682 "cannot compile this %0 yet"); 683 std::string Msg = Type; 684 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 685 << Msg << S->getSourceRange(); 686 } 687 688 /// ErrorUnsupported - Print out an error that codegen doesn't support the 689 /// specified decl yet. 690 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 691 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 692 "cannot compile this %0 yet"); 693 std::string Msg = Type; 694 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 695 } 696 697 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 698 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 699 } 700 701 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 702 const NamedDecl *D) const { 703 if (GV->hasDLLImportStorageClass()) 704 return; 705 // Internal definitions always have default visibility. 706 if (GV->hasLocalLinkage()) { 707 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 708 return; 709 } 710 if (!D) 711 return; 712 // Set visibility for definitions. 713 LinkageInfo LV = D->getLinkageAndVisibility(); 714 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 715 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 716 } 717 718 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 719 llvm::GlobalValue *GV) { 720 if (GV->hasLocalLinkage()) 721 return true; 722 723 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 724 return true; 725 726 // DLLImport explicitly marks the GV as external. 727 if (GV->hasDLLImportStorageClass()) 728 return false; 729 730 const llvm::Triple &TT = CGM.getTriple(); 731 // Every other GV is local on COFF. 732 // Make an exception for windows OS in the triple: Some firmware builds use 733 // *-win32-macho triples. This (accidentally?) produced windows relocations 734 // without GOT tables in older clang versions; Keep this behaviour. 735 // FIXME: even thread local variables? 736 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 737 return true; 738 739 // Only handle COFF and ELF for now. 740 if (!TT.isOSBinFormatELF()) 741 return false; 742 743 // If this is not an executable, don't assume anything is local. 744 const auto &CGOpts = CGM.getCodeGenOpts(); 745 llvm::Reloc::Model RM = CGOpts.RelocationModel; 746 const auto &LOpts = CGM.getLangOpts(); 747 if (RM != llvm::Reloc::Static && !LOpts.PIE) 748 return false; 749 750 // A definition cannot be preempted from an executable. 751 if (!GV->isDeclarationForLinker()) 752 return true; 753 754 // Most PIC code sequences that assume that a symbol is local cannot produce a 755 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 756 // depended, it seems worth it to handle it here. 757 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 758 return false; 759 760 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 761 llvm::Triple::ArchType Arch = TT.getArch(); 762 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 763 Arch == llvm::Triple::ppc64le) 764 return false; 765 766 // If we can use copy relocations we can assume it is local. 767 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 768 if (!Var->isThreadLocal() && 769 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 770 return true; 771 772 // If we can use a plt entry as the symbol address we can assume it 773 // is local. 774 // FIXME: This should work for PIE, but the gold linker doesn't support it. 775 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 776 return true; 777 778 // Otherwise don't assue it is local. 779 return false; 780 } 781 782 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 783 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 784 } 785 786 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 787 GlobalDecl GD) const { 788 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 789 // C++ destructors have a few C++ ABI specific special cases. 790 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 791 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 792 return; 793 } 794 setDLLImportDLLExport(GV, D); 795 } 796 797 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 798 const NamedDecl *D) const { 799 if (D && D->isExternallyVisible()) { 800 if (D->hasAttr<DLLImportAttr>()) 801 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 802 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 803 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 804 } 805 } 806 807 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 808 GlobalDecl GD) const { 809 setDLLImportDLLExport(GV, GD); 810 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 811 } 812 813 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 814 const NamedDecl *D) const { 815 setDLLImportDLLExport(GV, D); 816 setGlobalVisibilityAndLocal(GV, D); 817 } 818 819 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 820 const NamedDecl *D) const { 821 setGlobalVisibility(GV, D); 822 setDSOLocal(GV); 823 } 824 825 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 826 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 827 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 828 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 829 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 830 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 831 } 832 833 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 834 CodeGenOptions::TLSModel M) { 835 switch (M) { 836 case CodeGenOptions::GeneralDynamicTLSModel: 837 return llvm::GlobalVariable::GeneralDynamicTLSModel; 838 case CodeGenOptions::LocalDynamicTLSModel: 839 return llvm::GlobalVariable::LocalDynamicTLSModel; 840 case CodeGenOptions::InitialExecTLSModel: 841 return llvm::GlobalVariable::InitialExecTLSModel; 842 case CodeGenOptions::LocalExecTLSModel: 843 return llvm::GlobalVariable::LocalExecTLSModel; 844 } 845 llvm_unreachable("Invalid TLS model!"); 846 } 847 848 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 849 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 850 851 llvm::GlobalValue::ThreadLocalMode TLM; 852 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 853 854 // Override the TLS model if it is explicitly specified. 855 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 856 TLM = GetLLVMTLSModel(Attr->getModel()); 857 } 858 859 GV->setThreadLocalMode(TLM); 860 } 861 862 static void AppendTargetMangling(const CodeGenModule &CGM, 863 const TargetAttr *Attr, raw_ostream &Out) { 864 if (Attr->isDefaultVersion()) 865 return; 866 867 Out << '.'; 868 const auto &Target = CGM.getTarget(); 869 TargetAttr::ParsedTargetAttr Info = 870 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 871 // Multiversioning doesn't allow "no-${feature}", so we can 872 // only have "+" prefixes here. 873 assert(LHS.startswith("+") && RHS.startswith("+") && 874 "Features should always have a prefix."); 875 return Target.multiVersionSortPriority(LHS.substr(1)) > 876 Target.multiVersionSortPriority(RHS.substr(1)); 877 }); 878 879 bool IsFirst = true; 880 881 if (!Info.Architecture.empty()) { 882 IsFirst = false; 883 Out << "arch_" << Info.Architecture; 884 } 885 886 for (StringRef Feat : Info.Features) { 887 if (!IsFirst) 888 Out << '_'; 889 IsFirst = false; 890 Out << Feat.substr(1); 891 } 892 } 893 894 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 895 const NamedDecl *ND, 896 bool OmitTargetMangling = false) { 897 SmallString<256> Buffer; 898 llvm::raw_svector_ostream Out(Buffer); 899 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 900 if (MC.shouldMangleDeclName(ND)) { 901 llvm::raw_svector_ostream Out(Buffer); 902 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 903 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 904 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 905 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 906 else 907 MC.mangleName(ND, Out); 908 } else { 909 IdentifierInfo *II = ND->getIdentifier(); 910 assert(II && "Attempt to mangle unnamed decl."); 911 const auto *FD = dyn_cast<FunctionDecl>(ND); 912 913 if (FD && 914 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 915 llvm::raw_svector_ostream Out(Buffer); 916 Out << "__regcall3__" << II->getName(); 917 } else { 918 Out << II->getName(); 919 } 920 } 921 922 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 923 if (FD->isMultiVersion() && !OmitTargetMangling) 924 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 925 return Out.str(); 926 } 927 928 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 929 const FunctionDecl *FD) { 930 if (!FD->isMultiVersion()) 931 return; 932 933 // Get the name of what this would be without the 'target' attribute. This 934 // allows us to lookup the version that was emitted when this wasn't a 935 // multiversion function. 936 std::string NonTargetName = 937 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true); 938 GlobalDecl OtherGD; 939 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 940 assert(OtherGD.getCanonicalDecl() 941 .getDecl() 942 ->getAsFunction() 943 ->isMultiVersion() && 944 "Other GD should now be a multiversioned function"); 945 // OtherFD is the version of this function that was mangled BEFORE 946 // becoming a MultiVersion function. It potentially needs to be updated. 947 const FunctionDecl *OtherFD = 948 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 949 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 950 // This is so that if the initial version was already the 'default' 951 // version, we don't try to update it. 952 if (OtherName != NonTargetName) { 953 // Remove instead of erase, since others may have stored the StringRef 954 // to this. 955 const auto ExistingRecord = Manglings.find(NonTargetName); 956 if (ExistingRecord != std::end(Manglings)) 957 Manglings.remove(&(*ExistingRecord)); 958 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 959 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 960 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 961 Entry->setName(OtherName); 962 } 963 } 964 } 965 966 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 967 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 968 969 // Some ABIs don't have constructor variants. Make sure that base and 970 // complete constructors get mangled the same. 971 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 972 if (!getTarget().getCXXABI().hasConstructorVariants()) { 973 CXXCtorType OrigCtorType = GD.getCtorType(); 974 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 975 if (OrigCtorType == Ctor_Base) 976 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 977 } 978 } 979 980 auto FoundName = MangledDeclNames.find(CanonicalGD); 981 if (FoundName != MangledDeclNames.end()) 982 return FoundName->second; 983 984 985 // Keep the first result in the case of a mangling collision. 986 const auto *ND = cast<NamedDecl>(GD.getDecl()); 987 auto Result = 988 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 989 return MangledDeclNames[CanonicalGD] = Result.first->first(); 990 } 991 992 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 993 const BlockDecl *BD) { 994 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 995 const Decl *D = GD.getDecl(); 996 997 SmallString<256> Buffer; 998 llvm::raw_svector_ostream Out(Buffer); 999 if (!D) 1000 MangleCtx.mangleGlobalBlock(BD, 1001 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1002 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1003 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1004 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1005 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1006 else 1007 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1008 1009 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1010 return Result.first->first(); 1011 } 1012 1013 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1014 return getModule().getNamedValue(Name); 1015 } 1016 1017 /// AddGlobalCtor - Add a function to the list that will be called before 1018 /// main() runs. 1019 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1020 llvm::Constant *AssociatedData) { 1021 // FIXME: Type coercion of void()* types. 1022 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1023 } 1024 1025 /// AddGlobalDtor - Add a function to the list that will be called 1026 /// when the module is unloaded. 1027 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1028 // FIXME: Type coercion of void()* types. 1029 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1030 } 1031 1032 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1033 if (Fns.empty()) return; 1034 1035 // Ctor function type is void()*. 1036 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1037 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 1038 1039 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1040 llvm::StructType *CtorStructTy = llvm::StructType::get( 1041 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 1042 1043 // Construct the constructor and destructor arrays. 1044 ConstantInitBuilder builder(*this); 1045 auto ctors = builder.beginArray(CtorStructTy); 1046 for (const auto &I : Fns) { 1047 auto ctor = ctors.beginStruct(CtorStructTy); 1048 ctor.addInt(Int32Ty, I.Priority); 1049 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1050 if (I.AssociatedData) 1051 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1052 else 1053 ctor.addNullPointer(VoidPtrTy); 1054 ctor.finishAndAddTo(ctors); 1055 } 1056 1057 auto list = 1058 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1059 /*constant*/ false, 1060 llvm::GlobalValue::AppendingLinkage); 1061 1062 // The LTO linker doesn't seem to like it when we set an alignment 1063 // on appending variables. Take it off as a workaround. 1064 list->setAlignment(0); 1065 1066 Fns.clear(); 1067 } 1068 1069 llvm::GlobalValue::LinkageTypes 1070 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1071 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1072 1073 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1074 1075 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1076 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1077 1078 if (isa<CXXConstructorDecl>(D) && 1079 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1080 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1081 // Our approach to inheriting constructors is fundamentally different from 1082 // that used by the MS ABI, so keep our inheriting constructor thunks 1083 // internal rather than trying to pick an unambiguous mangling for them. 1084 return llvm::GlobalValue::InternalLinkage; 1085 } 1086 1087 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1088 } 1089 1090 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1091 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1092 if (!MDS) return nullptr; 1093 1094 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1095 } 1096 1097 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1098 const CGFunctionInfo &Info, 1099 llvm::Function *F) { 1100 unsigned CallingConv; 1101 llvm::AttributeList PAL; 1102 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1103 F->setAttributes(PAL); 1104 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1105 } 1106 1107 /// Determines whether the language options require us to model 1108 /// unwind exceptions. We treat -fexceptions as mandating this 1109 /// except under the fragile ObjC ABI with only ObjC exceptions 1110 /// enabled. This means, for example, that C with -fexceptions 1111 /// enables this. 1112 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1113 // If exceptions are completely disabled, obviously this is false. 1114 if (!LangOpts.Exceptions) return false; 1115 1116 // If C++ exceptions are enabled, this is true. 1117 if (LangOpts.CXXExceptions) return true; 1118 1119 // If ObjC exceptions are enabled, this depends on the ABI. 1120 if (LangOpts.ObjCExceptions) { 1121 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1122 } 1123 1124 return true; 1125 } 1126 1127 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1128 llvm::Function *F) { 1129 llvm::AttrBuilder B; 1130 1131 if (CodeGenOpts.UnwindTables) 1132 B.addAttribute(llvm::Attribute::UWTable); 1133 1134 if (!hasUnwindExceptions(LangOpts)) 1135 B.addAttribute(llvm::Attribute::NoUnwind); 1136 1137 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1138 B.addAttribute(llvm::Attribute::StackProtect); 1139 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1140 B.addAttribute(llvm::Attribute::StackProtectStrong); 1141 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1142 B.addAttribute(llvm::Attribute::StackProtectReq); 1143 1144 if (!D) { 1145 // If we don't have a declaration to control inlining, the function isn't 1146 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1147 // disabled, mark the function as noinline. 1148 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1149 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1150 B.addAttribute(llvm::Attribute::NoInline); 1151 1152 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1153 return; 1154 } 1155 1156 // Track whether we need to add the optnone LLVM attribute, 1157 // starting with the default for this optimization level. 1158 bool ShouldAddOptNone = 1159 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1160 // We can't add optnone in the following cases, it won't pass the verifier. 1161 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1162 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1163 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1164 1165 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1166 B.addAttribute(llvm::Attribute::OptimizeNone); 1167 1168 // OptimizeNone implies noinline; we should not be inlining such functions. 1169 B.addAttribute(llvm::Attribute::NoInline); 1170 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1171 "OptimizeNone and AlwaysInline on same function!"); 1172 1173 // We still need to handle naked functions even though optnone subsumes 1174 // much of their semantics. 1175 if (D->hasAttr<NakedAttr>()) 1176 B.addAttribute(llvm::Attribute::Naked); 1177 1178 // OptimizeNone wins over OptimizeForSize and MinSize. 1179 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1180 F->removeFnAttr(llvm::Attribute::MinSize); 1181 } else if (D->hasAttr<NakedAttr>()) { 1182 // Naked implies noinline: we should not be inlining such functions. 1183 B.addAttribute(llvm::Attribute::Naked); 1184 B.addAttribute(llvm::Attribute::NoInline); 1185 } else if (D->hasAttr<NoDuplicateAttr>()) { 1186 B.addAttribute(llvm::Attribute::NoDuplicate); 1187 } else if (D->hasAttr<NoInlineAttr>()) { 1188 B.addAttribute(llvm::Attribute::NoInline); 1189 } else if (D->hasAttr<AlwaysInlineAttr>() && 1190 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1191 // (noinline wins over always_inline, and we can't specify both in IR) 1192 B.addAttribute(llvm::Attribute::AlwaysInline); 1193 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1194 // If we're not inlining, then force everything that isn't always_inline to 1195 // carry an explicit noinline attribute. 1196 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1197 B.addAttribute(llvm::Attribute::NoInline); 1198 } else { 1199 // Otherwise, propagate the inline hint attribute and potentially use its 1200 // absence to mark things as noinline. 1201 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1202 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1203 return Redecl->isInlineSpecified(); 1204 })) { 1205 B.addAttribute(llvm::Attribute::InlineHint); 1206 } else if (CodeGenOpts.getInlining() == 1207 CodeGenOptions::OnlyHintInlining && 1208 !FD->isInlined() && 1209 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1210 B.addAttribute(llvm::Attribute::NoInline); 1211 } 1212 } 1213 } 1214 1215 // Add other optimization related attributes if we are optimizing this 1216 // function. 1217 if (!D->hasAttr<OptimizeNoneAttr>()) { 1218 if (D->hasAttr<ColdAttr>()) { 1219 if (!ShouldAddOptNone) 1220 B.addAttribute(llvm::Attribute::OptimizeForSize); 1221 B.addAttribute(llvm::Attribute::Cold); 1222 } 1223 1224 if (D->hasAttr<MinSizeAttr>()) 1225 B.addAttribute(llvm::Attribute::MinSize); 1226 } 1227 1228 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1229 1230 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1231 if (alignment) 1232 F->setAlignment(alignment); 1233 1234 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1235 // reserve a bit for differentiating between virtual and non-virtual member 1236 // functions. If the current target's C++ ABI requires this and this is a 1237 // member function, set its alignment accordingly. 1238 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1239 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1240 F->setAlignment(2); 1241 } 1242 1243 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1244 if (CodeGenOpts.SanitizeCfiCrossDso) 1245 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1246 CreateFunctionTypeMetadata(FD, F); 1247 } 1248 1249 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1250 const Decl *D = GD.getDecl(); 1251 if (dyn_cast_or_null<NamedDecl>(D)) 1252 setGVProperties(GV, GD); 1253 else 1254 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1255 1256 if (D && D->hasAttr<UsedAttr>()) 1257 addUsedGlobal(GV); 1258 } 1259 1260 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1261 llvm::AttrBuilder &Attrs) { 1262 // Add target-cpu and target-features attributes to functions. If 1263 // we have a decl for the function and it has a target attribute then 1264 // parse that and add it to the feature set. 1265 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1266 std::vector<std::string> Features; 1267 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1268 FD = FD ? FD->getMostRecentDecl() : FD; 1269 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1270 bool AddedAttr = false; 1271 if (TD) { 1272 llvm::StringMap<bool> FeatureMap; 1273 getFunctionFeatureMap(FeatureMap, FD); 1274 1275 // Produce the canonical string for this set of features. 1276 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1277 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1278 1279 // Now add the target-cpu and target-features to the function. 1280 // While we populated the feature map above, we still need to 1281 // get and parse the target attribute so we can get the cpu for 1282 // the function. 1283 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1284 if (ParsedAttr.Architecture != "" && 1285 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1286 TargetCPU = ParsedAttr.Architecture; 1287 } else { 1288 // Otherwise just add the existing target cpu and target features to the 1289 // function. 1290 Features = getTarget().getTargetOpts().Features; 1291 } 1292 1293 if (TargetCPU != "") { 1294 Attrs.addAttribute("target-cpu", TargetCPU); 1295 AddedAttr = true; 1296 } 1297 if (!Features.empty()) { 1298 std::sort(Features.begin(), Features.end()); 1299 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1300 AddedAttr = true; 1301 } 1302 1303 return AddedAttr; 1304 } 1305 1306 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1307 llvm::GlobalObject *GO) { 1308 const Decl *D = GD.getDecl(); 1309 SetCommonAttributes(GD, GO); 1310 1311 if (D) { 1312 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1313 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1314 GV->addAttribute("bss-section", SA->getName()); 1315 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1316 GV->addAttribute("data-section", SA->getName()); 1317 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1318 GV->addAttribute("rodata-section", SA->getName()); 1319 } 1320 1321 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1322 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1323 if (!D->getAttr<SectionAttr>()) 1324 F->addFnAttr("implicit-section-name", SA->getName()); 1325 1326 llvm::AttrBuilder Attrs; 1327 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1328 // We know that GetCPUAndFeaturesAttributes will always have the 1329 // newest set, since it has the newest possible FunctionDecl, so the 1330 // new ones should replace the old. 1331 F->removeFnAttr("target-cpu"); 1332 F->removeFnAttr("target-features"); 1333 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1334 } 1335 } 1336 1337 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1338 GO->setSection(SA->getName()); 1339 } 1340 1341 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1342 } 1343 1344 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1345 llvm::Function *F, 1346 const CGFunctionInfo &FI) { 1347 const Decl *D = GD.getDecl(); 1348 SetLLVMFunctionAttributes(D, FI, F); 1349 SetLLVMFunctionAttributesForDefinition(D, F); 1350 1351 F->setLinkage(llvm::Function::InternalLinkage); 1352 1353 setNonAliasAttributes(GD, F); 1354 } 1355 1356 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1357 // Set linkage and visibility in case we never see a definition. 1358 LinkageInfo LV = ND->getLinkageAndVisibility(); 1359 // Don't set internal linkage on declarations. 1360 // "extern_weak" is overloaded in LLVM; we probably should have 1361 // separate linkage types for this. 1362 if (isExternallyVisible(LV.getLinkage()) && 1363 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1364 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1365 } 1366 1367 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1368 llvm::Function *F) { 1369 // Only if we are checking indirect calls. 1370 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1371 return; 1372 1373 // Non-static class methods are handled via vtable pointer checks elsewhere. 1374 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1375 return; 1376 1377 // Additionally, if building with cross-DSO support... 1378 if (CodeGenOpts.SanitizeCfiCrossDso) { 1379 // Skip available_externally functions. They won't be codegen'ed in the 1380 // current module anyway. 1381 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1382 return; 1383 } 1384 1385 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1386 F->addTypeMetadata(0, MD); 1387 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1388 1389 // Emit a hash-based bit set entry for cross-DSO calls. 1390 if (CodeGenOpts.SanitizeCfiCrossDso) 1391 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1392 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1393 } 1394 1395 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1396 bool IsIncompleteFunction, 1397 bool IsThunk) { 1398 1399 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1400 // If this is an intrinsic function, set the function's attributes 1401 // to the intrinsic's attributes. 1402 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1403 return; 1404 } 1405 1406 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1407 1408 if (!IsIncompleteFunction) { 1409 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1410 // Setup target-specific attributes. 1411 if (F->isDeclaration()) 1412 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1413 } 1414 1415 // Add the Returned attribute for "this", except for iOS 5 and earlier 1416 // where substantial code, including the libstdc++ dylib, was compiled with 1417 // GCC and does not actually return "this". 1418 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1419 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1420 assert(!F->arg_empty() && 1421 F->arg_begin()->getType() 1422 ->canLosslesslyBitCastTo(F->getReturnType()) && 1423 "unexpected this return"); 1424 F->addAttribute(1, llvm::Attribute::Returned); 1425 } 1426 1427 // Only a few attributes are set on declarations; these may later be 1428 // overridden by a definition. 1429 1430 setLinkageForGV(F, FD); 1431 setGVProperties(F, FD); 1432 1433 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1434 F->addFnAttr("implicit-section-name"); 1435 } 1436 1437 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1438 F->setSection(SA->getName()); 1439 1440 if (FD->isReplaceableGlobalAllocationFunction()) { 1441 // A replaceable global allocation function does not act like a builtin by 1442 // default, only if it is invoked by a new-expression or delete-expression. 1443 F->addAttribute(llvm::AttributeList::FunctionIndex, 1444 llvm::Attribute::NoBuiltin); 1445 1446 // A sane operator new returns a non-aliasing pointer. 1447 // FIXME: Also add NonNull attribute to the return value 1448 // for the non-nothrow forms? 1449 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1450 if (getCodeGenOpts().AssumeSaneOperatorNew && 1451 (Kind == OO_New || Kind == OO_Array_New)) 1452 F->addAttribute(llvm::AttributeList::ReturnIndex, 1453 llvm::Attribute::NoAlias); 1454 } 1455 1456 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1457 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1458 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1459 if (MD->isVirtual()) 1460 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1461 1462 // Don't emit entries for function declarations in the cross-DSO mode. This 1463 // is handled with better precision by the receiving DSO. 1464 if (!CodeGenOpts.SanitizeCfiCrossDso) 1465 CreateFunctionTypeMetadata(FD, F); 1466 1467 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1468 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1469 } 1470 1471 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1472 assert(!GV->isDeclaration() && 1473 "Only globals with definition can force usage."); 1474 LLVMUsed.emplace_back(GV); 1475 } 1476 1477 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1478 assert(!GV->isDeclaration() && 1479 "Only globals with definition can force usage."); 1480 LLVMCompilerUsed.emplace_back(GV); 1481 } 1482 1483 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1484 std::vector<llvm::WeakTrackingVH> &List) { 1485 // Don't create llvm.used if there is no need. 1486 if (List.empty()) 1487 return; 1488 1489 // Convert List to what ConstantArray needs. 1490 SmallVector<llvm::Constant*, 8> UsedArray; 1491 UsedArray.resize(List.size()); 1492 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1493 UsedArray[i] = 1494 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1495 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1496 } 1497 1498 if (UsedArray.empty()) 1499 return; 1500 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1501 1502 auto *GV = new llvm::GlobalVariable( 1503 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1504 llvm::ConstantArray::get(ATy, UsedArray), Name); 1505 1506 GV->setSection("llvm.metadata"); 1507 } 1508 1509 void CodeGenModule::emitLLVMUsed() { 1510 emitUsed(*this, "llvm.used", LLVMUsed); 1511 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1512 } 1513 1514 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1515 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1516 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1517 } 1518 1519 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1520 llvm::SmallString<32> Opt; 1521 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1522 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1523 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1524 } 1525 1526 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1527 auto &C = getLLVMContext(); 1528 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1529 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1530 } 1531 1532 void CodeGenModule::AddDependentLib(StringRef Lib) { 1533 llvm::SmallString<24> Opt; 1534 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1535 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1536 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1537 } 1538 1539 /// \brief Add link options implied by the given module, including modules 1540 /// it depends on, using a postorder walk. 1541 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1542 SmallVectorImpl<llvm::MDNode *> &Metadata, 1543 llvm::SmallPtrSet<Module *, 16> &Visited) { 1544 // Import this module's parent. 1545 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1546 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1547 } 1548 1549 // Import this module's dependencies. 1550 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1551 if (Visited.insert(Mod->Imports[I - 1]).second) 1552 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1553 } 1554 1555 // Add linker options to link against the libraries/frameworks 1556 // described by this module. 1557 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1558 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1559 // Link against a framework. Frameworks are currently Darwin only, so we 1560 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1561 if (Mod->LinkLibraries[I-1].IsFramework) { 1562 llvm::Metadata *Args[2] = { 1563 llvm::MDString::get(Context, "-framework"), 1564 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1565 1566 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1567 continue; 1568 } 1569 1570 // Link against a library. 1571 llvm::SmallString<24> Opt; 1572 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1573 Mod->LinkLibraries[I-1].Library, Opt); 1574 auto *OptString = llvm::MDString::get(Context, Opt); 1575 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1576 } 1577 } 1578 1579 void CodeGenModule::EmitModuleLinkOptions() { 1580 // Collect the set of all of the modules we want to visit to emit link 1581 // options, which is essentially the imported modules and all of their 1582 // non-explicit child modules. 1583 llvm::SetVector<clang::Module *> LinkModules; 1584 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1585 SmallVector<clang::Module *, 16> Stack; 1586 1587 // Seed the stack with imported modules. 1588 for (Module *M : ImportedModules) { 1589 // Do not add any link flags when an implementation TU of a module imports 1590 // a header of that same module. 1591 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1592 !getLangOpts().isCompilingModule()) 1593 continue; 1594 if (Visited.insert(M).second) 1595 Stack.push_back(M); 1596 } 1597 1598 // Find all of the modules to import, making a little effort to prune 1599 // non-leaf modules. 1600 while (!Stack.empty()) { 1601 clang::Module *Mod = Stack.pop_back_val(); 1602 1603 bool AnyChildren = false; 1604 1605 // Visit the submodules of this module. 1606 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1607 SubEnd = Mod->submodule_end(); 1608 Sub != SubEnd; ++Sub) { 1609 // Skip explicit children; they need to be explicitly imported to be 1610 // linked against. 1611 if ((*Sub)->IsExplicit) 1612 continue; 1613 1614 if (Visited.insert(*Sub).second) { 1615 Stack.push_back(*Sub); 1616 AnyChildren = true; 1617 } 1618 } 1619 1620 // We didn't find any children, so add this module to the list of 1621 // modules to link against. 1622 if (!AnyChildren) { 1623 LinkModules.insert(Mod); 1624 } 1625 } 1626 1627 // Add link options for all of the imported modules in reverse topological 1628 // order. We don't do anything to try to order import link flags with respect 1629 // to linker options inserted by things like #pragma comment(). 1630 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1631 Visited.clear(); 1632 for (Module *M : LinkModules) 1633 if (Visited.insert(M).second) 1634 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1635 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1636 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1637 1638 // Add the linker options metadata flag. 1639 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1640 for (auto *MD : LinkerOptionsMetadata) 1641 NMD->addOperand(MD); 1642 } 1643 1644 void CodeGenModule::EmitDeferred() { 1645 // Emit code for any potentially referenced deferred decls. Since a 1646 // previously unused static decl may become used during the generation of code 1647 // for a static function, iterate until no changes are made. 1648 1649 if (!DeferredVTables.empty()) { 1650 EmitDeferredVTables(); 1651 1652 // Emitting a vtable doesn't directly cause more vtables to 1653 // become deferred, although it can cause functions to be 1654 // emitted that then need those vtables. 1655 assert(DeferredVTables.empty()); 1656 } 1657 1658 // Stop if we're out of both deferred vtables and deferred declarations. 1659 if (DeferredDeclsToEmit.empty()) 1660 return; 1661 1662 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1663 // work, it will not interfere with this. 1664 std::vector<GlobalDecl> CurDeclsToEmit; 1665 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1666 1667 for (GlobalDecl &D : CurDeclsToEmit) { 1668 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1669 // to get GlobalValue with exactly the type we need, not something that 1670 // might had been created for another decl with the same mangled name but 1671 // different type. 1672 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1673 GetAddrOfGlobal(D, ForDefinition)); 1674 1675 // In case of different address spaces, we may still get a cast, even with 1676 // IsForDefinition equal to true. Query mangled names table to get 1677 // GlobalValue. 1678 if (!GV) 1679 GV = GetGlobalValue(getMangledName(D)); 1680 1681 // Make sure GetGlobalValue returned non-null. 1682 assert(GV); 1683 1684 // Check to see if we've already emitted this. This is necessary 1685 // for a couple of reasons: first, decls can end up in the 1686 // deferred-decls queue multiple times, and second, decls can end 1687 // up with definitions in unusual ways (e.g. by an extern inline 1688 // function acquiring a strong function redefinition). Just 1689 // ignore these cases. 1690 if (!GV->isDeclaration()) 1691 continue; 1692 1693 // Otherwise, emit the definition and move on to the next one. 1694 EmitGlobalDefinition(D, GV); 1695 1696 // If we found out that we need to emit more decls, do that recursively. 1697 // This has the advantage that the decls are emitted in a DFS and related 1698 // ones are close together, which is convenient for testing. 1699 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1700 EmitDeferred(); 1701 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1702 } 1703 } 1704 } 1705 1706 void CodeGenModule::EmitVTablesOpportunistically() { 1707 // Try to emit external vtables as available_externally if they have emitted 1708 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1709 // is not allowed to create new references to things that need to be emitted 1710 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1711 1712 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1713 && "Only emit opportunistic vtables with optimizations"); 1714 1715 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1716 assert(getVTables().isVTableExternal(RD) && 1717 "This queue should only contain external vtables"); 1718 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1719 VTables.GenerateClassData(RD); 1720 } 1721 OpportunisticVTables.clear(); 1722 } 1723 1724 void CodeGenModule::EmitGlobalAnnotations() { 1725 if (Annotations.empty()) 1726 return; 1727 1728 // Create a new global variable for the ConstantStruct in the Module. 1729 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1730 Annotations[0]->getType(), Annotations.size()), Annotations); 1731 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1732 llvm::GlobalValue::AppendingLinkage, 1733 Array, "llvm.global.annotations"); 1734 gv->setSection(AnnotationSection); 1735 } 1736 1737 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1738 llvm::Constant *&AStr = AnnotationStrings[Str]; 1739 if (AStr) 1740 return AStr; 1741 1742 // Not found yet, create a new global. 1743 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1744 auto *gv = 1745 new llvm::GlobalVariable(getModule(), s->getType(), true, 1746 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1747 gv->setSection(AnnotationSection); 1748 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1749 AStr = gv; 1750 return gv; 1751 } 1752 1753 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1754 SourceManager &SM = getContext().getSourceManager(); 1755 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1756 if (PLoc.isValid()) 1757 return EmitAnnotationString(PLoc.getFilename()); 1758 return EmitAnnotationString(SM.getBufferName(Loc)); 1759 } 1760 1761 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1762 SourceManager &SM = getContext().getSourceManager(); 1763 PresumedLoc PLoc = SM.getPresumedLoc(L); 1764 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1765 SM.getExpansionLineNumber(L); 1766 return llvm::ConstantInt::get(Int32Ty, LineNo); 1767 } 1768 1769 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1770 const AnnotateAttr *AA, 1771 SourceLocation L) { 1772 // Get the globals for file name, annotation, and the line number. 1773 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1774 *UnitGV = EmitAnnotationUnit(L), 1775 *LineNoCst = EmitAnnotationLineNo(L); 1776 1777 // Create the ConstantStruct for the global annotation. 1778 llvm::Constant *Fields[4] = { 1779 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1780 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1781 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1782 LineNoCst 1783 }; 1784 return llvm::ConstantStruct::getAnon(Fields); 1785 } 1786 1787 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1788 llvm::GlobalValue *GV) { 1789 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1790 // Get the struct elements for these annotations. 1791 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1792 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1793 } 1794 1795 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1796 llvm::Function *Fn, 1797 SourceLocation Loc) const { 1798 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1799 // Blacklist by function name. 1800 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1801 return true; 1802 // Blacklist by location. 1803 if (Loc.isValid()) 1804 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1805 // If location is unknown, this may be a compiler-generated function. Assume 1806 // it's located in the main file. 1807 auto &SM = Context.getSourceManager(); 1808 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1809 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1810 } 1811 return false; 1812 } 1813 1814 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1815 SourceLocation Loc, QualType Ty, 1816 StringRef Category) const { 1817 // For now globals can be blacklisted only in ASan and KASan. 1818 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1819 (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress); 1820 if (!EnabledAsanMask) 1821 return false; 1822 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1823 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1824 return true; 1825 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1826 return true; 1827 // Check global type. 1828 if (!Ty.isNull()) { 1829 // Drill down the array types: if global variable of a fixed type is 1830 // blacklisted, we also don't instrument arrays of them. 1831 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1832 Ty = AT->getElementType(); 1833 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1834 // We allow to blacklist only record types (classes, structs etc.) 1835 if (Ty->isRecordType()) { 1836 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1837 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1838 return true; 1839 } 1840 } 1841 return false; 1842 } 1843 1844 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1845 StringRef Category) const { 1846 if (!LangOpts.XRayInstrument) 1847 return false; 1848 const auto &XRayFilter = getContext().getXRayFilter(); 1849 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1850 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1851 if (Loc.isValid()) 1852 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1853 if (Attr == ImbueAttr::NONE) 1854 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1855 switch (Attr) { 1856 case ImbueAttr::NONE: 1857 return false; 1858 case ImbueAttr::ALWAYS: 1859 Fn->addFnAttr("function-instrument", "xray-always"); 1860 break; 1861 case ImbueAttr::ALWAYS_ARG1: 1862 Fn->addFnAttr("function-instrument", "xray-always"); 1863 Fn->addFnAttr("xray-log-args", "1"); 1864 break; 1865 case ImbueAttr::NEVER: 1866 Fn->addFnAttr("function-instrument", "xray-never"); 1867 break; 1868 } 1869 return true; 1870 } 1871 1872 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1873 // Never defer when EmitAllDecls is specified. 1874 if (LangOpts.EmitAllDecls) 1875 return true; 1876 1877 return getContext().DeclMustBeEmitted(Global); 1878 } 1879 1880 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1881 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1882 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1883 // Implicit template instantiations may change linkage if they are later 1884 // explicitly instantiated, so they should not be emitted eagerly. 1885 return false; 1886 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1887 if (Context.getInlineVariableDefinitionKind(VD) == 1888 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1889 // A definition of an inline constexpr static data member may change 1890 // linkage later if it's redeclared outside the class. 1891 return false; 1892 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1893 // codegen for global variables, because they may be marked as threadprivate. 1894 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1895 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1896 return false; 1897 1898 return true; 1899 } 1900 1901 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1902 const CXXUuidofExpr* E) { 1903 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1904 // well-formed. 1905 StringRef Uuid = E->getUuidStr(); 1906 std::string Name = "_GUID_" + Uuid.lower(); 1907 std::replace(Name.begin(), Name.end(), '-', '_'); 1908 1909 // The UUID descriptor should be pointer aligned. 1910 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1911 1912 // Look for an existing global. 1913 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1914 return ConstantAddress(GV, Alignment); 1915 1916 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1917 assert(Init && "failed to initialize as constant"); 1918 1919 auto *GV = new llvm::GlobalVariable( 1920 getModule(), Init->getType(), 1921 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1922 if (supportsCOMDAT()) 1923 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1924 return ConstantAddress(GV, Alignment); 1925 } 1926 1927 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1928 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1929 assert(AA && "No alias?"); 1930 1931 CharUnits Alignment = getContext().getDeclAlign(VD); 1932 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1933 1934 // See if there is already something with the target's name in the module. 1935 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1936 if (Entry) { 1937 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1938 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1939 return ConstantAddress(Ptr, Alignment); 1940 } 1941 1942 llvm::Constant *Aliasee; 1943 if (isa<llvm::FunctionType>(DeclTy)) 1944 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1945 GlobalDecl(cast<FunctionDecl>(VD)), 1946 /*ForVTable=*/false); 1947 else 1948 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1949 llvm::PointerType::getUnqual(DeclTy), 1950 nullptr); 1951 1952 auto *F = cast<llvm::GlobalValue>(Aliasee); 1953 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1954 WeakRefReferences.insert(F); 1955 1956 return ConstantAddress(Aliasee, Alignment); 1957 } 1958 1959 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1960 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1961 1962 // Weak references don't produce any output by themselves. 1963 if (Global->hasAttr<WeakRefAttr>()) 1964 return; 1965 1966 // If this is an alias definition (which otherwise looks like a declaration) 1967 // emit it now. 1968 if (Global->hasAttr<AliasAttr>()) 1969 return EmitAliasDefinition(GD); 1970 1971 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1972 if (Global->hasAttr<IFuncAttr>()) 1973 return emitIFuncDefinition(GD); 1974 1975 // If this is CUDA, be selective about which declarations we emit. 1976 if (LangOpts.CUDA) { 1977 if (LangOpts.CUDAIsDevice) { 1978 if (!Global->hasAttr<CUDADeviceAttr>() && 1979 !Global->hasAttr<CUDAGlobalAttr>() && 1980 !Global->hasAttr<CUDAConstantAttr>() && 1981 !Global->hasAttr<CUDASharedAttr>()) 1982 return; 1983 } else { 1984 // We need to emit host-side 'shadows' for all global 1985 // device-side variables because the CUDA runtime needs their 1986 // size and host-side address in order to provide access to 1987 // their device-side incarnations. 1988 1989 // So device-only functions are the only things we skip. 1990 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1991 Global->hasAttr<CUDADeviceAttr>()) 1992 return; 1993 1994 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1995 "Expected Variable or Function"); 1996 } 1997 } 1998 1999 if (LangOpts.OpenMP) { 2000 // If this is OpenMP device, check if it is legal to emit this global 2001 // normally. 2002 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2003 return; 2004 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2005 if (MustBeEmitted(Global)) 2006 EmitOMPDeclareReduction(DRD); 2007 return; 2008 } 2009 } 2010 2011 // Ignore declarations, they will be emitted on their first use. 2012 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2013 // Forward declarations are emitted lazily on first use. 2014 if (!FD->doesThisDeclarationHaveABody()) { 2015 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2016 return; 2017 2018 StringRef MangledName = getMangledName(GD); 2019 2020 // Compute the function info and LLVM type. 2021 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2022 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2023 2024 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2025 /*DontDefer=*/false); 2026 return; 2027 } 2028 } else { 2029 const auto *VD = cast<VarDecl>(Global); 2030 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2031 // We need to emit device-side global CUDA variables even if a 2032 // variable does not have a definition -- we still need to define 2033 // host-side shadow for it. 2034 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2035 !VD->hasDefinition() && 2036 (VD->hasAttr<CUDAConstantAttr>() || 2037 VD->hasAttr<CUDADeviceAttr>()); 2038 if (!MustEmitForCuda && 2039 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2040 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2041 // If this declaration may have caused an inline variable definition to 2042 // change linkage, make sure that it's emitted. 2043 if (Context.getInlineVariableDefinitionKind(VD) == 2044 ASTContext::InlineVariableDefinitionKind::Strong) 2045 GetAddrOfGlobalVar(VD); 2046 return; 2047 } 2048 } 2049 2050 // Defer code generation to first use when possible, e.g. if this is an inline 2051 // function. If the global must always be emitted, do it eagerly if possible 2052 // to benefit from cache locality. 2053 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2054 // Emit the definition if it can't be deferred. 2055 EmitGlobalDefinition(GD); 2056 return; 2057 } 2058 2059 // If we're deferring emission of a C++ variable with an 2060 // initializer, remember the order in which it appeared in the file. 2061 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2062 cast<VarDecl>(Global)->hasInit()) { 2063 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2064 CXXGlobalInits.push_back(nullptr); 2065 } 2066 2067 StringRef MangledName = getMangledName(GD); 2068 if (GetGlobalValue(MangledName) != nullptr) { 2069 // The value has already been used and should therefore be emitted. 2070 addDeferredDeclToEmit(GD); 2071 } else if (MustBeEmitted(Global)) { 2072 // The value must be emitted, but cannot be emitted eagerly. 2073 assert(!MayBeEmittedEagerly(Global)); 2074 addDeferredDeclToEmit(GD); 2075 } else { 2076 // Otherwise, remember that we saw a deferred decl with this name. The 2077 // first use of the mangled name will cause it to move into 2078 // DeferredDeclsToEmit. 2079 DeferredDecls[MangledName] = GD; 2080 } 2081 } 2082 2083 // Check if T is a class type with a destructor that's not dllimport. 2084 static bool HasNonDllImportDtor(QualType T) { 2085 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2086 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2087 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2088 return true; 2089 2090 return false; 2091 } 2092 2093 namespace { 2094 struct FunctionIsDirectlyRecursive : 2095 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2096 const StringRef Name; 2097 const Builtin::Context &BI; 2098 bool Result; 2099 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2100 Name(N), BI(C), Result(false) { 2101 } 2102 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2103 2104 bool TraverseCallExpr(CallExpr *E) { 2105 const FunctionDecl *FD = E->getDirectCallee(); 2106 if (!FD) 2107 return true; 2108 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2109 if (Attr && Name == Attr->getLabel()) { 2110 Result = true; 2111 return false; 2112 } 2113 unsigned BuiltinID = FD->getBuiltinID(); 2114 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2115 return true; 2116 StringRef BuiltinName = BI.getName(BuiltinID); 2117 if (BuiltinName.startswith("__builtin_") && 2118 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2119 Result = true; 2120 return false; 2121 } 2122 return true; 2123 } 2124 }; 2125 2126 // Make sure we're not referencing non-imported vars or functions. 2127 struct DLLImportFunctionVisitor 2128 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2129 bool SafeToInline = true; 2130 2131 bool shouldVisitImplicitCode() const { return true; } 2132 2133 bool VisitVarDecl(VarDecl *VD) { 2134 if (VD->getTLSKind()) { 2135 // A thread-local variable cannot be imported. 2136 SafeToInline = false; 2137 return SafeToInline; 2138 } 2139 2140 // A variable definition might imply a destructor call. 2141 if (VD->isThisDeclarationADefinition()) 2142 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2143 2144 return SafeToInline; 2145 } 2146 2147 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2148 if (const auto *D = E->getTemporary()->getDestructor()) 2149 SafeToInline = D->hasAttr<DLLImportAttr>(); 2150 return SafeToInline; 2151 } 2152 2153 bool VisitDeclRefExpr(DeclRefExpr *E) { 2154 ValueDecl *VD = E->getDecl(); 2155 if (isa<FunctionDecl>(VD)) 2156 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2157 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2158 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2159 return SafeToInline; 2160 } 2161 2162 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2163 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2164 return SafeToInline; 2165 } 2166 2167 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2168 CXXMethodDecl *M = E->getMethodDecl(); 2169 if (!M) { 2170 // Call through a pointer to member function. This is safe to inline. 2171 SafeToInline = true; 2172 } else { 2173 SafeToInline = M->hasAttr<DLLImportAttr>(); 2174 } 2175 return SafeToInline; 2176 } 2177 2178 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2179 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2180 return SafeToInline; 2181 } 2182 2183 bool VisitCXXNewExpr(CXXNewExpr *E) { 2184 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2185 return SafeToInline; 2186 } 2187 }; 2188 } 2189 2190 // isTriviallyRecursive - Check if this function calls another 2191 // decl that, because of the asm attribute or the other decl being a builtin, 2192 // ends up pointing to itself. 2193 bool 2194 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2195 StringRef Name; 2196 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2197 // asm labels are a special kind of mangling we have to support. 2198 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2199 if (!Attr) 2200 return false; 2201 Name = Attr->getLabel(); 2202 } else { 2203 Name = FD->getName(); 2204 } 2205 2206 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2207 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2208 return Walker.Result; 2209 } 2210 2211 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2212 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2213 return true; 2214 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2215 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2216 return false; 2217 2218 if (F->hasAttr<DLLImportAttr>()) { 2219 // Check whether it would be safe to inline this dllimport function. 2220 DLLImportFunctionVisitor Visitor; 2221 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2222 if (!Visitor.SafeToInline) 2223 return false; 2224 2225 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2226 // Implicit destructor invocations aren't captured in the AST, so the 2227 // check above can't see them. Check for them manually here. 2228 for (const Decl *Member : Dtor->getParent()->decls()) 2229 if (isa<FieldDecl>(Member)) 2230 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2231 return false; 2232 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2233 if (HasNonDllImportDtor(B.getType())) 2234 return false; 2235 } 2236 } 2237 2238 // PR9614. Avoid cases where the source code is lying to us. An available 2239 // externally function should have an equivalent function somewhere else, 2240 // but a function that calls itself is clearly not equivalent to the real 2241 // implementation. 2242 // This happens in glibc's btowc and in some configure checks. 2243 return !isTriviallyRecursive(F); 2244 } 2245 2246 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2247 return CodeGenOpts.OptimizationLevel > 0; 2248 } 2249 2250 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2251 const auto *D = cast<ValueDecl>(GD.getDecl()); 2252 2253 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2254 Context.getSourceManager(), 2255 "Generating code for declaration"); 2256 2257 if (isa<FunctionDecl>(D)) { 2258 // At -O0, don't generate IR for functions with available_externally 2259 // linkage. 2260 if (!shouldEmitFunction(GD)) 2261 return; 2262 2263 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2264 // Make sure to emit the definition(s) before we emit the thunks. 2265 // This is necessary for the generation of certain thunks. 2266 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2267 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2268 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2269 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2270 else 2271 EmitGlobalFunctionDefinition(GD, GV); 2272 2273 if (Method->isVirtual()) 2274 getVTables().EmitThunks(GD); 2275 2276 return; 2277 } 2278 2279 return EmitGlobalFunctionDefinition(GD, GV); 2280 } 2281 2282 if (const auto *VD = dyn_cast<VarDecl>(D)) 2283 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2284 2285 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2286 } 2287 2288 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2289 llvm::Function *NewFn); 2290 2291 void CodeGenModule::emitMultiVersionFunctions() { 2292 for (GlobalDecl GD : MultiVersionFuncs) { 2293 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2294 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2295 getContext().forEachMultiversionedFunctionVersion( 2296 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2297 GlobalDecl CurGD{ 2298 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2299 StringRef MangledName = getMangledName(CurGD); 2300 llvm::Constant *Func = GetGlobalValue(MangledName); 2301 if (!Func) { 2302 if (CurFD->isDefined()) { 2303 EmitGlobalFunctionDefinition(CurGD, nullptr); 2304 Func = GetGlobalValue(MangledName); 2305 } else { 2306 const CGFunctionInfo &FI = 2307 getTypes().arrangeGlobalDeclaration(GD); 2308 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2309 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2310 /*DontDefer=*/false, ForDefinition); 2311 } 2312 assert(Func && "This should have just been created"); 2313 } 2314 Options.emplace_back(getTarget(), cast<llvm::Function>(Func), 2315 CurFD->getAttr<TargetAttr>()->parse()); 2316 }); 2317 2318 llvm::Function *ResolverFunc = cast<llvm::Function>( 2319 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2320 if (supportsCOMDAT()) 2321 ResolverFunc->setComdat( 2322 getModule().getOrInsertComdat(ResolverFunc->getName())); 2323 std::stable_sort( 2324 Options.begin(), Options.end(), 2325 std::greater<CodeGenFunction::MultiVersionResolverOption>()); 2326 CodeGenFunction CGF(*this); 2327 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2328 } 2329 } 2330 2331 /// If an ifunc for the specified mangled name is not in the module, create and 2332 /// return an llvm IFunc Function with the specified type. 2333 llvm::Constant * 2334 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2335 StringRef MangledName, 2336 const FunctionDecl *FD) { 2337 std::string IFuncName = (MangledName + ".ifunc").str(); 2338 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2339 return IFuncGV; 2340 2341 // Since this is the first time we've created this IFunc, make sure 2342 // that we put this multiversioned function into the list to be 2343 // replaced later. 2344 MultiVersionFuncs.push_back(GD); 2345 2346 std::string ResolverName = (MangledName + ".resolver").str(); 2347 llvm::Type *ResolverType = llvm::FunctionType::get( 2348 llvm::PointerType::get(DeclTy, 2349 Context.getTargetAddressSpace(FD->getType())), 2350 false); 2351 llvm::Constant *Resolver = 2352 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2353 /*ForVTable=*/false); 2354 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2355 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2356 GIF->setName(IFuncName); 2357 SetCommonAttributes(FD, GIF); 2358 2359 return GIF; 2360 } 2361 2362 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2363 /// module, create and return an llvm Function with the specified type. If there 2364 /// is something in the module with the specified name, return it potentially 2365 /// bitcasted to the right type. 2366 /// 2367 /// If D is non-null, it specifies a decl that correspond to this. This is used 2368 /// to set the attributes on the function when it is first created. 2369 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2370 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2371 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2372 ForDefinition_t IsForDefinition) { 2373 const Decl *D = GD.getDecl(); 2374 2375 // Any attempts to use a MultiVersion function should result in retrieving 2376 // the iFunc instead. Name Mangling will handle the rest of the changes. 2377 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2378 // For the device mark the function as one that should be emitted. 2379 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2380 !OpenMPRuntime->markAsGlobalTarget(FD) && FD->isDefined() && 2381 !DontDefer && !IsForDefinition) 2382 addDeferredDeclToEmit(GD); 2383 2384 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) { 2385 UpdateMultiVersionNames(GD, FD); 2386 if (!IsForDefinition) 2387 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD); 2388 } 2389 } 2390 2391 // Lookup the entry, lazily creating it if necessary. 2392 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2393 if (Entry) { 2394 if (WeakRefReferences.erase(Entry)) { 2395 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2396 if (FD && !FD->hasAttr<WeakAttr>()) 2397 Entry->setLinkage(llvm::Function::ExternalLinkage); 2398 } 2399 2400 // Handle dropped DLL attributes. 2401 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2402 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2403 2404 // If there are two attempts to define the same mangled name, issue an 2405 // error. 2406 if (IsForDefinition && !Entry->isDeclaration()) { 2407 GlobalDecl OtherGD; 2408 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2409 // to make sure that we issue an error only once. 2410 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2411 (GD.getCanonicalDecl().getDecl() != 2412 OtherGD.getCanonicalDecl().getDecl()) && 2413 DiagnosedConflictingDefinitions.insert(GD).second) { 2414 getDiags().Report(D->getLocation(), 2415 diag::err_duplicate_mangled_name); 2416 getDiags().Report(OtherGD.getDecl()->getLocation(), 2417 diag::note_previous_definition); 2418 } 2419 } 2420 2421 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2422 (Entry->getType()->getElementType() == Ty)) { 2423 return Entry; 2424 } 2425 2426 // Make sure the result is of the correct type. 2427 // (If function is requested for a definition, we always need to create a new 2428 // function, not just return a bitcast.) 2429 if (!IsForDefinition) 2430 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2431 } 2432 2433 // This function doesn't have a complete type (for example, the return 2434 // type is an incomplete struct). Use a fake type instead, and make 2435 // sure not to try to set attributes. 2436 bool IsIncompleteFunction = false; 2437 2438 llvm::FunctionType *FTy; 2439 if (isa<llvm::FunctionType>(Ty)) { 2440 FTy = cast<llvm::FunctionType>(Ty); 2441 } else { 2442 FTy = llvm::FunctionType::get(VoidTy, false); 2443 IsIncompleteFunction = true; 2444 } 2445 2446 llvm::Function *F = 2447 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2448 Entry ? StringRef() : MangledName, &getModule()); 2449 2450 // If we already created a function with the same mangled name (but different 2451 // type) before, take its name and add it to the list of functions to be 2452 // replaced with F at the end of CodeGen. 2453 // 2454 // This happens if there is a prototype for a function (e.g. "int f()") and 2455 // then a definition of a different type (e.g. "int f(int x)"). 2456 if (Entry) { 2457 F->takeName(Entry); 2458 2459 // This might be an implementation of a function without a prototype, in 2460 // which case, try to do special replacement of calls which match the new 2461 // prototype. The really key thing here is that we also potentially drop 2462 // arguments from the call site so as to make a direct call, which makes the 2463 // inliner happier and suppresses a number of optimizer warnings (!) about 2464 // dropping arguments. 2465 if (!Entry->use_empty()) { 2466 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2467 Entry->removeDeadConstantUsers(); 2468 } 2469 2470 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2471 F, Entry->getType()->getElementType()->getPointerTo()); 2472 addGlobalValReplacement(Entry, BC); 2473 } 2474 2475 assert(F->getName() == MangledName && "name was uniqued!"); 2476 if (D) 2477 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2478 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2479 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2480 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2481 } 2482 2483 if (!DontDefer) { 2484 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2485 // each other bottoming out with the base dtor. Therefore we emit non-base 2486 // dtors on usage, even if there is no dtor definition in the TU. 2487 if (D && isa<CXXDestructorDecl>(D) && 2488 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2489 GD.getDtorType())) 2490 addDeferredDeclToEmit(GD); 2491 2492 // This is the first use or definition of a mangled name. If there is a 2493 // deferred decl with this name, remember that we need to emit it at the end 2494 // of the file. 2495 auto DDI = DeferredDecls.find(MangledName); 2496 if (DDI != DeferredDecls.end()) { 2497 // Move the potentially referenced deferred decl to the 2498 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2499 // don't need it anymore). 2500 addDeferredDeclToEmit(DDI->second); 2501 DeferredDecls.erase(DDI); 2502 2503 // Otherwise, there are cases we have to worry about where we're 2504 // using a declaration for which we must emit a definition but where 2505 // we might not find a top-level definition: 2506 // - member functions defined inline in their classes 2507 // - friend functions defined inline in some class 2508 // - special member functions with implicit definitions 2509 // If we ever change our AST traversal to walk into class methods, 2510 // this will be unnecessary. 2511 // 2512 // We also don't emit a definition for a function if it's going to be an 2513 // entry in a vtable, unless it's already marked as used. 2514 } else if (getLangOpts().CPlusPlus && D) { 2515 // Look for a declaration that's lexically in a record. 2516 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2517 FD = FD->getPreviousDecl()) { 2518 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2519 if (FD->doesThisDeclarationHaveABody()) { 2520 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2521 break; 2522 } 2523 } 2524 } 2525 } 2526 } 2527 2528 // Make sure the result is of the requested type. 2529 if (!IsIncompleteFunction) { 2530 assert(F->getType()->getElementType() == Ty); 2531 return F; 2532 } 2533 2534 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2535 return llvm::ConstantExpr::getBitCast(F, PTy); 2536 } 2537 2538 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2539 /// non-null, then this function will use the specified type if it has to 2540 /// create it (this occurs when we see a definition of the function). 2541 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2542 llvm::Type *Ty, 2543 bool ForVTable, 2544 bool DontDefer, 2545 ForDefinition_t IsForDefinition) { 2546 // If there was no specific requested type, just convert it now. 2547 if (!Ty) { 2548 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2549 auto CanonTy = Context.getCanonicalType(FD->getType()); 2550 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2551 } 2552 2553 // Devirtualized destructor calls may come through here instead of via 2554 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2555 // of the complete destructor when necessary. 2556 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2557 if (getTarget().getCXXABI().isMicrosoft() && 2558 GD.getDtorType() == Dtor_Complete && 2559 DD->getParent()->getNumVBases() == 0) 2560 GD = GlobalDecl(DD, Dtor_Base); 2561 } 2562 2563 StringRef MangledName = getMangledName(GD); 2564 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2565 /*IsThunk=*/false, llvm::AttributeList(), 2566 IsForDefinition); 2567 } 2568 2569 static const FunctionDecl * 2570 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2571 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2572 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2573 2574 IdentifierInfo &CII = C.Idents.get(Name); 2575 for (const auto &Result : DC->lookup(&CII)) 2576 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2577 return FD; 2578 2579 if (!C.getLangOpts().CPlusPlus) 2580 return nullptr; 2581 2582 // Demangle the premangled name from getTerminateFn() 2583 IdentifierInfo &CXXII = 2584 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2585 ? C.Idents.get("terminate") 2586 : C.Idents.get(Name); 2587 2588 for (const auto &N : {"__cxxabiv1", "std"}) { 2589 IdentifierInfo &NS = C.Idents.get(N); 2590 for (const auto &Result : DC->lookup(&NS)) { 2591 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2592 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2593 for (const auto &Result : LSD->lookup(&NS)) 2594 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2595 break; 2596 2597 if (ND) 2598 for (const auto &Result : ND->lookup(&CXXII)) 2599 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2600 return FD; 2601 } 2602 } 2603 2604 return nullptr; 2605 } 2606 2607 /// CreateRuntimeFunction - Create a new runtime function with the specified 2608 /// type and name. 2609 llvm::Constant * 2610 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2611 llvm::AttributeList ExtraAttrs, 2612 bool Local) { 2613 llvm::Constant *C = 2614 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2615 /*DontDefer=*/false, /*IsThunk=*/false, 2616 ExtraAttrs); 2617 2618 if (auto *F = dyn_cast<llvm::Function>(C)) { 2619 if (F->empty()) { 2620 F->setCallingConv(getRuntimeCC()); 2621 2622 if (!Local && getTriple().isOSBinFormatCOFF() && 2623 !getCodeGenOpts().LTOVisibilityPublicStd && 2624 !getTriple().isWindowsGNUEnvironment()) { 2625 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2626 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2627 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2628 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2629 } 2630 } 2631 } 2632 } 2633 2634 return C; 2635 } 2636 2637 /// CreateBuiltinFunction - Create a new builtin function with the specified 2638 /// type and name. 2639 llvm::Constant * 2640 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2641 llvm::AttributeList ExtraAttrs) { 2642 llvm::Constant *C = 2643 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2644 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2645 if (auto *F = dyn_cast<llvm::Function>(C)) 2646 if (F->empty()) 2647 F->setCallingConv(getBuiltinCC()); 2648 return C; 2649 } 2650 2651 /// isTypeConstant - Determine whether an object of this type can be emitted 2652 /// as a constant. 2653 /// 2654 /// If ExcludeCtor is true, the duration when the object's constructor runs 2655 /// will not be considered. The caller will need to verify that the object is 2656 /// not written to during its construction. 2657 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2658 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2659 return false; 2660 2661 if (Context.getLangOpts().CPlusPlus) { 2662 if (const CXXRecordDecl *Record 2663 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2664 return ExcludeCtor && !Record->hasMutableFields() && 2665 Record->hasTrivialDestructor(); 2666 } 2667 2668 return true; 2669 } 2670 2671 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2672 /// create and return an llvm GlobalVariable with the specified type. If there 2673 /// is something in the module with the specified name, return it potentially 2674 /// bitcasted to the right type. 2675 /// 2676 /// If D is non-null, it specifies a decl that correspond to this. This is used 2677 /// to set the attributes on the global when it is first created. 2678 /// 2679 /// If IsForDefinition is true, it is guranteed that an actual global with 2680 /// type Ty will be returned, not conversion of a variable with the same 2681 /// mangled name but some other type. 2682 llvm::Constant * 2683 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2684 llvm::PointerType *Ty, 2685 const VarDecl *D, 2686 ForDefinition_t IsForDefinition) { 2687 // Lookup the entry, lazily creating it if necessary. 2688 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2689 if (Entry) { 2690 if (WeakRefReferences.erase(Entry)) { 2691 if (D && !D->hasAttr<WeakAttr>()) 2692 Entry->setLinkage(llvm::Function::ExternalLinkage); 2693 } 2694 2695 // Handle dropped DLL attributes. 2696 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2697 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2698 2699 if (Entry->getType() == Ty) 2700 return Entry; 2701 2702 // If there are two attempts to define the same mangled name, issue an 2703 // error. 2704 if (IsForDefinition && !Entry->isDeclaration()) { 2705 GlobalDecl OtherGD; 2706 const VarDecl *OtherD; 2707 2708 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2709 // to make sure that we issue an error only once. 2710 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2711 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2712 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2713 OtherD->hasInit() && 2714 DiagnosedConflictingDefinitions.insert(D).second) { 2715 getDiags().Report(D->getLocation(), 2716 diag::err_duplicate_mangled_name); 2717 getDiags().Report(OtherGD.getDecl()->getLocation(), 2718 diag::note_previous_definition); 2719 } 2720 } 2721 2722 // Make sure the result is of the correct type. 2723 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2724 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2725 2726 // (If global is requested for a definition, we always need to create a new 2727 // global, not just return a bitcast.) 2728 if (!IsForDefinition) 2729 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2730 } 2731 2732 auto AddrSpace = GetGlobalVarAddressSpace(D); 2733 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2734 2735 auto *GV = new llvm::GlobalVariable( 2736 getModule(), Ty->getElementType(), false, 2737 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2738 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2739 2740 // If we already created a global with the same mangled name (but different 2741 // type) before, take its name and remove it from its parent. 2742 if (Entry) { 2743 GV->takeName(Entry); 2744 2745 if (!Entry->use_empty()) { 2746 llvm::Constant *NewPtrForOldDecl = 2747 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2748 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2749 } 2750 2751 Entry->eraseFromParent(); 2752 } 2753 2754 // This is the first use or definition of a mangled name. If there is a 2755 // deferred decl with this name, remember that we need to emit it at the end 2756 // of the file. 2757 auto DDI = DeferredDecls.find(MangledName); 2758 if (DDI != DeferredDecls.end()) { 2759 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2760 // list, and remove it from DeferredDecls (since we don't need it anymore). 2761 addDeferredDeclToEmit(DDI->second); 2762 DeferredDecls.erase(DDI); 2763 } 2764 2765 // Handle things which are present even on external declarations. 2766 if (D) { 2767 // FIXME: This code is overly simple and should be merged with other global 2768 // handling. 2769 GV->setConstant(isTypeConstant(D->getType(), false)); 2770 2771 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2772 2773 setLinkageForGV(GV, D); 2774 2775 if (D->getTLSKind()) { 2776 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2777 CXXThreadLocals.push_back(D); 2778 setTLSMode(GV, *D); 2779 } 2780 2781 setGVProperties(GV, D); 2782 2783 // If required by the ABI, treat declarations of static data members with 2784 // inline initializers as definitions. 2785 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2786 EmitGlobalVarDefinition(D); 2787 } 2788 2789 // Emit section information for extern variables. 2790 if (D->hasExternalStorage()) { 2791 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2792 GV->setSection(SA->getName()); 2793 } 2794 2795 // Handle XCore specific ABI requirements. 2796 if (getTriple().getArch() == llvm::Triple::xcore && 2797 D->getLanguageLinkage() == CLanguageLinkage && 2798 D->getType().isConstant(Context) && 2799 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2800 GV->setSection(".cp.rodata"); 2801 2802 // Check if we a have a const declaration with an initializer, we may be 2803 // able to emit it as available_externally to expose it's value to the 2804 // optimizer. 2805 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2806 D->getType().isConstQualified() && !GV->hasInitializer() && 2807 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2808 const auto *Record = 2809 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2810 bool HasMutableFields = Record && Record->hasMutableFields(); 2811 if (!HasMutableFields) { 2812 const VarDecl *InitDecl; 2813 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2814 if (InitExpr) { 2815 ConstantEmitter emitter(*this); 2816 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2817 if (Init) { 2818 auto *InitType = Init->getType(); 2819 if (GV->getType()->getElementType() != InitType) { 2820 // The type of the initializer does not match the definition. 2821 // This happens when an initializer has a different type from 2822 // the type of the global (because of padding at the end of a 2823 // structure for instance). 2824 GV->setName(StringRef()); 2825 // Make a new global with the correct type, this is now guaranteed 2826 // to work. 2827 auto *NewGV = cast<llvm::GlobalVariable>( 2828 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2829 2830 // Erase the old global, since it is no longer used. 2831 GV->eraseFromParent(); 2832 GV = NewGV; 2833 } else { 2834 GV->setInitializer(Init); 2835 GV->setConstant(true); 2836 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2837 } 2838 emitter.finalize(GV); 2839 } 2840 } 2841 } 2842 } 2843 } 2844 2845 LangAS ExpectedAS = 2846 D ? D->getType().getAddressSpace() 2847 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2848 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2849 Ty->getPointerAddressSpace()); 2850 if (AddrSpace != ExpectedAS) 2851 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2852 ExpectedAS, Ty); 2853 2854 return GV; 2855 } 2856 2857 llvm::Constant * 2858 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2859 ForDefinition_t IsForDefinition) { 2860 const Decl *D = GD.getDecl(); 2861 if (isa<CXXConstructorDecl>(D)) 2862 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2863 getFromCtorType(GD.getCtorType()), 2864 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2865 /*DontDefer=*/false, IsForDefinition); 2866 else if (isa<CXXDestructorDecl>(D)) 2867 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2868 getFromDtorType(GD.getDtorType()), 2869 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2870 /*DontDefer=*/false, IsForDefinition); 2871 else if (isa<CXXMethodDecl>(D)) { 2872 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2873 cast<CXXMethodDecl>(D)); 2874 auto Ty = getTypes().GetFunctionType(*FInfo); 2875 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2876 IsForDefinition); 2877 } else if (isa<FunctionDecl>(D)) { 2878 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2879 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2880 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2881 IsForDefinition); 2882 } else 2883 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2884 IsForDefinition); 2885 } 2886 2887 llvm::GlobalVariable * 2888 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2889 llvm::Type *Ty, 2890 llvm::GlobalValue::LinkageTypes Linkage) { 2891 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2892 llvm::GlobalVariable *OldGV = nullptr; 2893 2894 if (GV) { 2895 // Check if the variable has the right type. 2896 if (GV->getType()->getElementType() == Ty) 2897 return GV; 2898 2899 // Because C++ name mangling, the only way we can end up with an already 2900 // existing global with the same name is if it has been declared extern "C". 2901 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2902 OldGV = GV; 2903 } 2904 2905 // Create a new variable. 2906 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2907 Linkage, nullptr, Name); 2908 2909 if (OldGV) { 2910 // Replace occurrences of the old variable if needed. 2911 GV->takeName(OldGV); 2912 2913 if (!OldGV->use_empty()) { 2914 llvm::Constant *NewPtrForOldDecl = 2915 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2916 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2917 } 2918 2919 OldGV->eraseFromParent(); 2920 } 2921 2922 if (supportsCOMDAT() && GV->isWeakForLinker() && 2923 !GV->hasAvailableExternallyLinkage()) 2924 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2925 2926 return GV; 2927 } 2928 2929 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2930 /// given global variable. If Ty is non-null and if the global doesn't exist, 2931 /// then it will be created with the specified type instead of whatever the 2932 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2933 /// that an actual global with type Ty will be returned, not conversion of a 2934 /// variable with the same mangled name but some other type. 2935 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2936 llvm::Type *Ty, 2937 ForDefinition_t IsForDefinition) { 2938 assert(D->hasGlobalStorage() && "Not a global variable"); 2939 QualType ASTTy = D->getType(); 2940 if (!Ty) 2941 Ty = getTypes().ConvertTypeForMem(ASTTy); 2942 2943 llvm::PointerType *PTy = 2944 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2945 2946 StringRef MangledName = getMangledName(D); 2947 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2948 } 2949 2950 /// CreateRuntimeVariable - Create a new runtime global variable with the 2951 /// specified type and name. 2952 llvm::Constant * 2953 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2954 StringRef Name) { 2955 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2956 } 2957 2958 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2959 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2960 2961 StringRef MangledName = getMangledName(D); 2962 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2963 2964 // We already have a definition, not declaration, with the same mangled name. 2965 // Emitting of declaration is not required (and actually overwrites emitted 2966 // definition). 2967 if (GV && !GV->isDeclaration()) 2968 return; 2969 2970 // If we have not seen a reference to this variable yet, place it into the 2971 // deferred declarations table to be emitted if needed later. 2972 if (!MustBeEmitted(D) && !GV) { 2973 DeferredDecls[MangledName] = D; 2974 return; 2975 } 2976 2977 // The tentative definition is the only definition. 2978 EmitGlobalVarDefinition(D); 2979 } 2980 2981 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2982 return Context.toCharUnitsFromBits( 2983 getDataLayout().getTypeStoreSizeInBits(Ty)); 2984 } 2985 2986 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2987 LangAS AddrSpace = LangAS::Default; 2988 if (LangOpts.OpenCL) { 2989 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 2990 assert(AddrSpace == LangAS::opencl_global || 2991 AddrSpace == LangAS::opencl_constant || 2992 AddrSpace == LangAS::opencl_local || 2993 AddrSpace >= LangAS::FirstTargetAddressSpace); 2994 return AddrSpace; 2995 } 2996 2997 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2998 if (D && D->hasAttr<CUDAConstantAttr>()) 2999 return LangAS::cuda_constant; 3000 else if (D && D->hasAttr<CUDASharedAttr>()) 3001 return LangAS::cuda_shared; 3002 else 3003 return LangAS::cuda_device; 3004 } 3005 3006 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3007 } 3008 3009 template<typename SomeDecl> 3010 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3011 llvm::GlobalValue *GV) { 3012 if (!getLangOpts().CPlusPlus) 3013 return; 3014 3015 // Must have 'used' attribute, or else inline assembly can't rely on 3016 // the name existing. 3017 if (!D->template hasAttr<UsedAttr>()) 3018 return; 3019 3020 // Must have internal linkage and an ordinary name. 3021 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3022 return; 3023 3024 // Must be in an extern "C" context. Entities declared directly within 3025 // a record are not extern "C" even if the record is in such a context. 3026 const SomeDecl *First = D->getFirstDecl(); 3027 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3028 return; 3029 3030 // OK, this is an internal linkage entity inside an extern "C" linkage 3031 // specification. Make a note of that so we can give it the "expected" 3032 // mangled name if nothing else is using that name. 3033 std::pair<StaticExternCMap::iterator, bool> R = 3034 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3035 3036 // If we have multiple internal linkage entities with the same name 3037 // in extern "C" regions, none of them gets that name. 3038 if (!R.second) 3039 R.first->second = nullptr; 3040 } 3041 3042 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3043 if (!CGM.supportsCOMDAT()) 3044 return false; 3045 3046 if (D.hasAttr<SelectAnyAttr>()) 3047 return true; 3048 3049 GVALinkage Linkage; 3050 if (auto *VD = dyn_cast<VarDecl>(&D)) 3051 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3052 else 3053 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3054 3055 switch (Linkage) { 3056 case GVA_Internal: 3057 case GVA_AvailableExternally: 3058 case GVA_StrongExternal: 3059 return false; 3060 case GVA_DiscardableODR: 3061 case GVA_StrongODR: 3062 return true; 3063 } 3064 llvm_unreachable("No such linkage"); 3065 } 3066 3067 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3068 llvm::GlobalObject &GO) { 3069 if (!shouldBeInCOMDAT(*this, D)) 3070 return; 3071 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3072 } 3073 3074 /// Pass IsTentative as true if you want to create a tentative definition. 3075 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3076 bool IsTentative) { 3077 // OpenCL global variables of sampler type are translated to function calls, 3078 // therefore no need to be translated. 3079 QualType ASTTy = D->getType(); 3080 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3081 return; 3082 3083 // If this is OpenMP device, check if it is legal to emit this global 3084 // normally. 3085 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3086 OpenMPRuntime->emitTargetGlobalVariable(D)) 3087 return; 3088 3089 llvm::Constant *Init = nullptr; 3090 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3091 bool NeedsGlobalCtor = false; 3092 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3093 3094 const VarDecl *InitDecl; 3095 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3096 3097 Optional<ConstantEmitter> emitter; 3098 3099 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3100 // as part of their declaration." Sema has already checked for 3101 // error cases, so we just need to set Init to UndefValue. 3102 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3103 D->hasAttr<CUDASharedAttr>()) 3104 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3105 else if (!InitExpr) { 3106 // This is a tentative definition; tentative definitions are 3107 // implicitly initialized with { 0 }. 3108 // 3109 // Note that tentative definitions are only emitted at the end of 3110 // a translation unit, so they should never have incomplete 3111 // type. In addition, EmitTentativeDefinition makes sure that we 3112 // never attempt to emit a tentative definition if a real one 3113 // exists. A use may still exists, however, so we still may need 3114 // to do a RAUW. 3115 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3116 Init = EmitNullConstant(D->getType()); 3117 } else { 3118 initializedGlobalDecl = GlobalDecl(D); 3119 emitter.emplace(*this); 3120 Init = emitter->tryEmitForInitializer(*InitDecl); 3121 3122 if (!Init) { 3123 QualType T = InitExpr->getType(); 3124 if (D->getType()->isReferenceType()) 3125 T = D->getType(); 3126 3127 if (getLangOpts().CPlusPlus) { 3128 Init = EmitNullConstant(T); 3129 NeedsGlobalCtor = true; 3130 } else { 3131 ErrorUnsupported(D, "static initializer"); 3132 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3133 } 3134 } else { 3135 // We don't need an initializer, so remove the entry for the delayed 3136 // initializer position (just in case this entry was delayed) if we 3137 // also don't need to register a destructor. 3138 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3139 DelayedCXXInitPosition.erase(D); 3140 } 3141 } 3142 3143 llvm::Type* InitType = Init->getType(); 3144 llvm::Constant *Entry = 3145 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3146 3147 // Strip off a bitcast if we got one back. 3148 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3149 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3150 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3151 // All zero index gep. 3152 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3153 Entry = CE->getOperand(0); 3154 } 3155 3156 // Entry is now either a Function or GlobalVariable. 3157 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3158 3159 // We have a definition after a declaration with the wrong type. 3160 // We must make a new GlobalVariable* and update everything that used OldGV 3161 // (a declaration or tentative definition) with the new GlobalVariable* 3162 // (which will be a definition). 3163 // 3164 // This happens if there is a prototype for a global (e.g. 3165 // "extern int x[];") and then a definition of a different type (e.g. 3166 // "int x[10];"). This also happens when an initializer has a different type 3167 // from the type of the global (this happens with unions). 3168 if (!GV || GV->getType()->getElementType() != InitType || 3169 GV->getType()->getAddressSpace() != 3170 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3171 3172 // Move the old entry aside so that we'll create a new one. 3173 Entry->setName(StringRef()); 3174 3175 // Make a new global with the correct type, this is now guaranteed to work. 3176 GV = cast<llvm::GlobalVariable>( 3177 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3178 3179 // Replace all uses of the old global with the new global 3180 llvm::Constant *NewPtrForOldDecl = 3181 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3182 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3183 3184 // Erase the old global, since it is no longer used. 3185 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3186 } 3187 3188 MaybeHandleStaticInExternC(D, GV); 3189 3190 if (D->hasAttr<AnnotateAttr>()) 3191 AddGlobalAnnotations(D, GV); 3192 3193 // Set the llvm linkage type as appropriate. 3194 llvm::GlobalValue::LinkageTypes Linkage = 3195 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3196 3197 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3198 // the device. [...]" 3199 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3200 // __device__, declares a variable that: [...] 3201 // Is accessible from all the threads within the grid and from the host 3202 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3203 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3204 if (GV && LangOpts.CUDA) { 3205 if (LangOpts.CUDAIsDevice) { 3206 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3207 GV->setExternallyInitialized(true); 3208 } else { 3209 // Host-side shadows of external declarations of device-side 3210 // global variables become internal definitions. These have to 3211 // be internal in order to prevent name conflicts with global 3212 // host variables with the same name in a different TUs. 3213 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3214 Linkage = llvm::GlobalValue::InternalLinkage; 3215 3216 // Shadow variables and their properties must be registered 3217 // with CUDA runtime. 3218 unsigned Flags = 0; 3219 if (!D->hasDefinition()) 3220 Flags |= CGCUDARuntime::ExternDeviceVar; 3221 if (D->hasAttr<CUDAConstantAttr>()) 3222 Flags |= CGCUDARuntime::ConstantDeviceVar; 3223 getCUDARuntime().registerDeviceVar(*GV, Flags); 3224 } else if (D->hasAttr<CUDASharedAttr>()) 3225 // __shared__ variables are odd. Shadows do get created, but 3226 // they are not registered with the CUDA runtime, so they 3227 // can't really be used to access their device-side 3228 // counterparts. It's not clear yet whether it's nvcc's bug or 3229 // a feature, but we've got to do the same for compatibility. 3230 Linkage = llvm::GlobalValue::InternalLinkage; 3231 } 3232 } 3233 3234 GV->setInitializer(Init); 3235 if (emitter) emitter->finalize(GV); 3236 3237 // If it is safe to mark the global 'constant', do so now. 3238 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3239 isTypeConstant(D->getType(), true)); 3240 3241 // If it is in a read-only section, mark it 'constant'. 3242 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3243 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3244 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3245 GV->setConstant(true); 3246 } 3247 3248 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3249 3250 3251 // On Darwin, if the normal linkage of a C++ thread_local variable is 3252 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3253 // copies within a linkage unit; otherwise, the backing variable has 3254 // internal linkage and all accesses should just be calls to the 3255 // Itanium-specified entry point, which has the normal linkage of the 3256 // variable. This is to preserve the ability to change the implementation 3257 // behind the scenes. 3258 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3259 Context.getTargetInfo().getTriple().isOSDarwin() && 3260 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3261 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3262 Linkage = llvm::GlobalValue::InternalLinkage; 3263 3264 GV->setLinkage(Linkage); 3265 if (D->hasAttr<DLLImportAttr>()) 3266 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3267 else if (D->hasAttr<DLLExportAttr>()) 3268 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3269 else 3270 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3271 3272 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3273 // common vars aren't constant even if declared const. 3274 GV->setConstant(false); 3275 // Tentative definition of global variables may be initialized with 3276 // non-zero null pointers. In this case they should have weak linkage 3277 // since common linkage must have zero initializer and must not have 3278 // explicit section therefore cannot have non-zero initial value. 3279 if (!GV->getInitializer()->isNullValue()) 3280 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3281 } 3282 3283 setNonAliasAttributes(D, GV); 3284 3285 if (D->getTLSKind() && !GV->isThreadLocal()) { 3286 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3287 CXXThreadLocals.push_back(D); 3288 setTLSMode(GV, *D); 3289 } 3290 3291 maybeSetTrivialComdat(*D, *GV); 3292 3293 // Emit the initializer function if necessary. 3294 if (NeedsGlobalCtor || NeedsGlobalDtor) 3295 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3296 3297 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3298 3299 // Emit global variable debug information. 3300 if (CGDebugInfo *DI = getModuleDebugInfo()) 3301 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3302 DI->EmitGlobalVariable(GV, D); 3303 } 3304 3305 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3306 CodeGenModule &CGM, const VarDecl *D, 3307 bool NoCommon) { 3308 // Don't give variables common linkage if -fno-common was specified unless it 3309 // was overridden by a NoCommon attribute. 3310 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3311 return true; 3312 3313 // C11 6.9.2/2: 3314 // A declaration of an identifier for an object that has file scope without 3315 // an initializer, and without a storage-class specifier or with the 3316 // storage-class specifier static, constitutes a tentative definition. 3317 if (D->getInit() || D->hasExternalStorage()) 3318 return true; 3319 3320 // A variable cannot be both common and exist in a section. 3321 if (D->hasAttr<SectionAttr>()) 3322 return true; 3323 3324 // A variable cannot be both common and exist in a section. 3325 // We dont try to determine which is the right section in the front-end. 3326 // If no specialized section name is applicable, it will resort to default. 3327 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3328 D->hasAttr<PragmaClangDataSectionAttr>() || 3329 D->hasAttr<PragmaClangRodataSectionAttr>()) 3330 return true; 3331 3332 // Thread local vars aren't considered common linkage. 3333 if (D->getTLSKind()) 3334 return true; 3335 3336 // Tentative definitions marked with WeakImportAttr are true definitions. 3337 if (D->hasAttr<WeakImportAttr>()) 3338 return true; 3339 3340 // A variable cannot be both common and exist in a comdat. 3341 if (shouldBeInCOMDAT(CGM, *D)) 3342 return true; 3343 3344 // Declarations with a required alignment do not have common linkage in MSVC 3345 // mode. 3346 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3347 if (D->hasAttr<AlignedAttr>()) 3348 return true; 3349 QualType VarType = D->getType(); 3350 if (Context.isAlignmentRequired(VarType)) 3351 return true; 3352 3353 if (const auto *RT = VarType->getAs<RecordType>()) { 3354 const RecordDecl *RD = RT->getDecl(); 3355 for (const FieldDecl *FD : RD->fields()) { 3356 if (FD->isBitField()) 3357 continue; 3358 if (FD->hasAttr<AlignedAttr>()) 3359 return true; 3360 if (Context.isAlignmentRequired(FD->getType())) 3361 return true; 3362 } 3363 } 3364 } 3365 3366 return false; 3367 } 3368 3369 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3370 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3371 if (Linkage == GVA_Internal) 3372 return llvm::Function::InternalLinkage; 3373 3374 if (D->hasAttr<WeakAttr>()) { 3375 if (IsConstantVariable) 3376 return llvm::GlobalVariable::WeakODRLinkage; 3377 else 3378 return llvm::GlobalVariable::WeakAnyLinkage; 3379 } 3380 3381 // We are guaranteed to have a strong definition somewhere else, 3382 // so we can use available_externally linkage. 3383 if (Linkage == GVA_AvailableExternally) 3384 return llvm::GlobalValue::AvailableExternallyLinkage; 3385 3386 // Note that Apple's kernel linker doesn't support symbol 3387 // coalescing, so we need to avoid linkonce and weak linkages there. 3388 // Normally, this means we just map to internal, but for explicit 3389 // instantiations we'll map to external. 3390 3391 // In C++, the compiler has to emit a definition in every translation unit 3392 // that references the function. We should use linkonce_odr because 3393 // a) if all references in this translation unit are optimized away, we 3394 // don't need to codegen it. b) if the function persists, it needs to be 3395 // merged with other definitions. c) C++ has the ODR, so we know the 3396 // definition is dependable. 3397 if (Linkage == GVA_DiscardableODR) 3398 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3399 : llvm::Function::InternalLinkage; 3400 3401 // An explicit instantiation of a template has weak linkage, since 3402 // explicit instantiations can occur in multiple translation units 3403 // and must all be equivalent. However, we are not allowed to 3404 // throw away these explicit instantiations. 3405 // 3406 // We don't currently support CUDA device code spread out across multiple TUs, 3407 // so say that CUDA templates are either external (for kernels) or internal. 3408 // This lets llvm perform aggressive inter-procedural optimizations. 3409 if (Linkage == GVA_StrongODR) { 3410 if (Context.getLangOpts().AppleKext) 3411 return llvm::Function::ExternalLinkage; 3412 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3413 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3414 : llvm::Function::InternalLinkage; 3415 return llvm::Function::WeakODRLinkage; 3416 } 3417 3418 // C++ doesn't have tentative definitions and thus cannot have common 3419 // linkage. 3420 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3421 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3422 CodeGenOpts.NoCommon)) 3423 return llvm::GlobalVariable::CommonLinkage; 3424 3425 // selectany symbols are externally visible, so use weak instead of 3426 // linkonce. MSVC optimizes away references to const selectany globals, so 3427 // all definitions should be the same and ODR linkage should be used. 3428 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3429 if (D->hasAttr<SelectAnyAttr>()) 3430 return llvm::GlobalVariable::WeakODRLinkage; 3431 3432 // Otherwise, we have strong external linkage. 3433 assert(Linkage == GVA_StrongExternal); 3434 return llvm::GlobalVariable::ExternalLinkage; 3435 } 3436 3437 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3438 const VarDecl *VD, bool IsConstant) { 3439 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3440 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3441 } 3442 3443 /// Replace the uses of a function that was declared with a non-proto type. 3444 /// We want to silently drop extra arguments from call sites 3445 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3446 llvm::Function *newFn) { 3447 // Fast path. 3448 if (old->use_empty()) return; 3449 3450 llvm::Type *newRetTy = newFn->getReturnType(); 3451 SmallVector<llvm::Value*, 4> newArgs; 3452 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3453 3454 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3455 ui != ue; ) { 3456 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3457 llvm::User *user = use->getUser(); 3458 3459 // Recognize and replace uses of bitcasts. Most calls to 3460 // unprototyped functions will use bitcasts. 3461 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3462 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3463 replaceUsesOfNonProtoConstant(bitcast, newFn); 3464 continue; 3465 } 3466 3467 // Recognize calls to the function. 3468 llvm::CallSite callSite(user); 3469 if (!callSite) continue; 3470 if (!callSite.isCallee(&*use)) continue; 3471 3472 // If the return types don't match exactly, then we can't 3473 // transform this call unless it's dead. 3474 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3475 continue; 3476 3477 // Get the call site's attribute list. 3478 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3479 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3480 3481 // If the function was passed too few arguments, don't transform. 3482 unsigned newNumArgs = newFn->arg_size(); 3483 if (callSite.arg_size() < newNumArgs) continue; 3484 3485 // If extra arguments were passed, we silently drop them. 3486 // If any of the types mismatch, we don't transform. 3487 unsigned argNo = 0; 3488 bool dontTransform = false; 3489 for (llvm::Argument &A : newFn->args()) { 3490 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3491 dontTransform = true; 3492 break; 3493 } 3494 3495 // Add any parameter attributes. 3496 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3497 argNo++; 3498 } 3499 if (dontTransform) 3500 continue; 3501 3502 // Okay, we can transform this. Create the new call instruction and copy 3503 // over the required information. 3504 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3505 3506 // Copy over any operand bundles. 3507 callSite.getOperandBundlesAsDefs(newBundles); 3508 3509 llvm::CallSite newCall; 3510 if (callSite.isCall()) { 3511 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3512 callSite.getInstruction()); 3513 } else { 3514 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3515 newCall = llvm::InvokeInst::Create(newFn, 3516 oldInvoke->getNormalDest(), 3517 oldInvoke->getUnwindDest(), 3518 newArgs, newBundles, "", 3519 callSite.getInstruction()); 3520 } 3521 newArgs.clear(); // for the next iteration 3522 3523 if (!newCall->getType()->isVoidTy()) 3524 newCall->takeName(callSite.getInstruction()); 3525 newCall.setAttributes(llvm::AttributeList::get( 3526 newFn->getContext(), oldAttrs.getFnAttributes(), 3527 oldAttrs.getRetAttributes(), newArgAttrs)); 3528 newCall.setCallingConv(callSite.getCallingConv()); 3529 3530 // Finally, remove the old call, replacing any uses with the new one. 3531 if (!callSite->use_empty()) 3532 callSite->replaceAllUsesWith(newCall.getInstruction()); 3533 3534 // Copy debug location attached to CI. 3535 if (callSite->getDebugLoc()) 3536 newCall->setDebugLoc(callSite->getDebugLoc()); 3537 3538 callSite->eraseFromParent(); 3539 } 3540 } 3541 3542 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3543 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3544 /// existing call uses of the old function in the module, this adjusts them to 3545 /// call the new function directly. 3546 /// 3547 /// This is not just a cleanup: the always_inline pass requires direct calls to 3548 /// functions to be able to inline them. If there is a bitcast in the way, it 3549 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3550 /// run at -O0. 3551 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3552 llvm::Function *NewFn) { 3553 // If we're redefining a global as a function, don't transform it. 3554 if (!isa<llvm::Function>(Old)) return; 3555 3556 replaceUsesOfNonProtoConstant(Old, NewFn); 3557 } 3558 3559 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3560 auto DK = VD->isThisDeclarationADefinition(); 3561 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3562 return; 3563 3564 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3565 // If we have a definition, this might be a deferred decl. If the 3566 // instantiation is explicit, make sure we emit it at the end. 3567 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3568 GetAddrOfGlobalVar(VD); 3569 3570 EmitTopLevelDecl(VD); 3571 } 3572 3573 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3574 llvm::GlobalValue *GV) { 3575 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3576 3577 // Compute the function info and LLVM type. 3578 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3579 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3580 3581 // Get or create the prototype for the function. 3582 if (!GV || (GV->getType()->getElementType() != Ty)) 3583 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3584 /*DontDefer=*/true, 3585 ForDefinition)); 3586 3587 // Already emitted. 3588 if (!GV->isDeclaration()) 3589 return; 3590 3591 // We need to set linkage and visibility on the function before 3592 // generating code for it because various parts of IR generation 3593 // want to propagate this information down (e.g. to local static 3594 // declarations). 3595 auto *Fn = cast<llvm::Function>(GV); 3596 setFunctionLinkage(GD, Fn); 3597 3598 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3599 setGVProperties(Fn, GD); 3600 3601 MaybeHandleStaticInExternC(D, Fn); 3602 3603 maybeSetTrivialComdat(*D, *Fn); 3604 3605 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3606 3607 setNonAliasAttributes(GD, Fn); 3608 SetLLVMFunctionAttributesForDefinition(D, Fn); 3609 3610 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3611 AddGlobalCtor(Fn, CA->getPriority()); 3612 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3613 AddGlobalDtor(Fn, DA->getPriority()); 3614 if (D->hasAttr<AnnotateAttr>()) 3615 AddGlobalAnnotations(D, Fn); 3616 } 3617 3618 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3619 const auto *D = cast<ValueDecl>(GD.getDecl()); 3620 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3621 assert(AA && "Not an alias?"); 3622 3623 StringRef MangledName = getMangledName(GD); 3624 3625 if (AA->getAliasee() == MangledName) { 3626 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3627 return; 3628 } 3629 3630 // If there is a definition in the module, then it wins over the alias. 3631 // This is dubious, but allow it to be safe. Just ignore the alias. 3632 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3633 if (Entry && !Entry->isDeclaration()) 3634 return; 3635 3636 Aliases.push_back(GD); 3637 3638 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3639 3640 // Create a reference to the named value. This ensures that it is emitted 3641 // if a deferred decl. 3642 llvm::Constant *Aliasee; 3643 if (isa<llvm::FunctionType>(DeclTy)) 3644 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3645 /*ForVTable=*/false); 3646 else 3647 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3648 llvm::PointerType::getUnqual(DeclTy), 3649 /*D=*/nullptr); 3650 3651 // Create the new alias itself, but don't set a name yet. 3652 auto *GA = llvm::GlobalAlias::create( 3653 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3654 3655 if (Entry) { 3656 if (GA->getAliasee() == Entry) { 3657 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3658 return; 3659 } 3660 3661 assert(Entry->isDeclaration()); 3662 3663 // If there is a declaration in the module, then we had an extern followed 3664 // by the alias, as in: 3665 // extern int test6(); 3666 // ... 3667 // int test6() __attribute__((alias("test7"))); 3668 // 3669 // Remove it and replace uses of it with the alias. 3670 GA->takeName(Entry); 3671 3672 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3673 Entry->getType())); 3674 Entry->eraseFromParent(); 3675 } else { 3676 GA->setName(MangledName); 3677 } 3678 3679 // Set attributes which are particular to an alias; this is a 3680 // specialization of the attributes which may be set on a global 3681 // variable/function. 3682 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3683 D->isWeakImported()) { 3684 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3685 } 3686 3687 if (const auto *VD = dyn_cast<VarDecl>(D)) 3688 if (VD->getTLSKind()) 3689 setTLSMode(GA, *VD); 3690 3691 SetCommonAttributes(GD, GA); 3692 } 3693 3694 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3695 const auto *D = cast<ValueDecl>(GD.getDecl()); 3696 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3697 assert(IFA && "Not an ifunc?"); 3698 3699 StringRef MangledName = getMangledName(GD); 3700 3701 if (IFA->getResolver() == MangledName) { 3702 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3703 return; 3704 } 3705 3706 // Report an error if some definition overrides ifunc. 3707 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3708 if (Entry && !Entry->isDeclaration()) { 3709 GlobalDecl OtherGD; 3710 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3711 DiagnosedConflictingDefinitions.insert(GD).second) { 3712 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3713 Diags.Report(OtherGD.getDecl()->getLocation(), 3714 diag::note_previous_definition); 3715 } 3716 return; 3717 } 3718 3719 Aliases.push_back(GD); 3720 3721 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3722 llvm::Constant *Resolver = 3723 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3724 /*ForVTable=*/false); 3725 llvm::GlobalIFunc *GIF = 3726 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3727 "", Resolver, &getModule()); 3728 if (Entry) { 3729 if (GIF->getResolver() == Entry) { 3730 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3731 return; 3732 } 3733 assert(Entry->isDeclaration()); 3734 3735 // If there is a declaration in the module, then we had an extern followed 3736 // by the ifunc, as in: 3737 // extern int test(); 3738 // ... 3739 // int test() __attribute__((ifunc("resolver"))); 3740 // 3741 // Remove it and replace uses of it with the ifunc. 3742 GIF->takeName(Entry); 3743 3744 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3745 Entry->getType())); 3746 Entry->eraseFromParent(); 3747 } else 3748 GIF->setName(MangledName); 3749 3750 SetCommonAttributes(GD, GIF); 3751 } 3752 3753 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3754 ArrayRef<llvm::Type*> Tys) { 3755 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3756 Tys); 3757 } 3758 3759 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3760 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3761 const StringLiteral *Literal, bool TargetIsLSB, 3762 bool &IsUTF16, unsigned &StringLength) { 3763 StringRef String = Literal->getString(); 3764 unsigned NumBytes = String.size(); 3765 3766 // Check for simple case. 3767 if (!Literal->containsNonAsciiOrNull()) { 3768 StringLength = NumBytes; 3769 return *Map.insert(std::make_pair(String, nullptr)).first; 3770 } 3771 3772 // Otherwise, convert the UTF8 literals into a string of shorts. 3773 IsUTF16 = true; 3774 3775 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3776 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3777 llvm::UTF16 *ToPtr = &ToBuf[0]; 3778 3779 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3780 ToPtr + NumBytes, llvm::strictConversion); 3781 3782 // ConvertUTF8toUTF16 returns the length in ToPtr. 3783 StringLength = ToPtr - &ToBuf[0]; 3784 3785 // Add an explicit null. 3786 *ToPtr = 0; 3787 return *Map.insert(std::make_pair( 3788 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3789 (StringLength + 1) * 2), 3790 nullptr)).first; 3791 } 3792 3793 ConstantAddress 3794 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3795 unsigned StringLength = 0; 3796 bool isUTF16 = false; 3797 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3798 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3799 getDataLayout().isLittleEndian(), isUTF16, 3800 StringLength); 3801 3802 if (auto *C = Entry.second) 3803 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3804 3805 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3806 llvm::Constant *Zeros[] = { Zero, Zero }; 3807 3808 // If we don't already have it, get __CFConstantStringClassReference. 3809 if (!CFConstantStringClassRef) { 3810 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3811 Ty = llvm::ArrayType::get(Ty, 0); 3812 llvm::Constant *GV = 3813 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3814 3815 if (getTriple().isOSBinFormatCOFF()) { 3816 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3817 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3818 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3819 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3820 3821 const VarDecl *VD = nullptr; 3822 for (const auto &Result : DC->lookup(&II)) 3823 if ((VD = dyn_cast<VarDecl>(Result))) 3824 break; 3825 3826 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3827 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3828 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3829 } else { 3830 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3831 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3832 } 3833 } 3834 3835 // Decay array -> ptr 3836 CFConstantStringClassRef = 3837 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3838 } 3839 3840 QualType CFTy = getContext().getCFConstantStringType(); 3841 3842 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3843 3844 ConstantInitBuilder Builder(*this); 3845 auto Fields = Builder.beginStruct(STy); 3846 3847 // Class pointer. 3848 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3849 3850 // Flags. 3851 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3852 3853 // String pointer. 3854 llvm::Constant *C = nullptr; 3855 if (isUTF16) { 3856 auto Arr = llvm::makeArrayRef( 3857 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3858 Entry.first().size() / 2); 3859 C = llvm::ConstantDataArray::get(VMContext, Arr); 3860 } else { 3861 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3862 } 3863 3864 // Note: -fwritable-strings doesn't make the backing store strings of 3865 // CFStrings writable. (See <rdar://problem/10657500>) 3866 auto *GV = 3867 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3868 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3869 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3870 // Don't enforce the target's minimum global alignment, since the only use 3871 // of the string is via this class initializer. 3872 CharUnits Align = isUTF16 3873 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3874 : getContext().getTypeAlignInChars(getContext().CharTy); 3875 GV->setAlignment(Align.getQuantity()); 3876 3877 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3878 // Without it LLVM can merge the string with a non unnamed_addr one during 3879 // LTO. Doing that changes the section it ends in, which surprises ld64. 3880 if (getTriple().isOSBinFormatMachO()) 3881 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3882 : "__TEXT,__cstring,cstring_literals"); 3883 3884 // String. 3885 llvm::Constant *Str = 3886 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3887 3888 if (isUTF16) 3889 // Cast the UTF16 string to the correct type. 3890 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3891 Fields.add(Str); 3892 3893 // String length. 3894 auto Ty = getTypes().ConvertType(getContext().LongTy); 3895 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3896 3897 CharUnits Alignment = getPointerAlign(); 3898 3899 // The struct. 3900 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3901 /*isConstant=*/false, 3902 llvm::GlobalVariable::PrivateLinkage); 3903 switch (getTriple().getObjectFormat()) { 3904 case llvm::Triple::UnknownObjectFormat: 3905 llvm_unreachable("unknown file format"); 3906 case llvm::Triple::COFF: 3907 case llvm::Triple::ELF: 3908 case llvm::Triple::Wasm: 3909 GV->setSection("cfstring"); 3910 break; 3911 case llvm::Triple::MachO: 3912 GV->setSection("__DATA,__cfstring"); 3913 break; 3914 } 3915 Entry.second = GV; 3916 3917 return ConstantAddress(GV, Alignment); 3918 } 3919 3920 bool CodeGenModule::getExpressionLocationsEnabled() const { 3921 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3922 } 3923 3924 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3925 if (ObjCFastEnumerationStateType.isNull()) { 3926 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3927 D->startDefinition(); 3928 3929 QualType FieldTypes[] = { 3930 Context.UnsignedLongTy, 3931 Context.getPointerType(Context.getObjCIdType()), 3932 Context.getPointerType(Context.UnsignedLongTy), 3933 Context.getConstantArrayType(Context.UnsignedLongTy, 3934 llvm::APInt(32, 5), ArrayType::Normal, 0) 3935 }; 3936 3937 for (size_t i = 0; i < 4; ++i) { 3938 FieldDecl *Field = FieldDecl::Create(Context, 3939 D, 3940 SourceLocation(), 3941 SourceLocation(), nullptr, 3942 FieldTypes[i], /*TInfo=*/nullptr, 3943 /*BitWidth=*/nullptr, 3944 /*Mutable=*/false, 3945 ICIS_NoInit); 3946 Field->setAccess(AS_public); 3947 D->addDecl(Field); 3948 } 3949 3950 D->completeDefinition(); 3951 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3952 } 3953 3954 return ObjCFastEnumerationStateType; 3955 } 3956 3957 llvm::Constant * 3958 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3959 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3960 3961 // Don't emit it as the address of the string, emit the string data itself 3962 // as an inline array. 3963 if (E->getCharByteWidth() == 1) { 3964 SmallString<64> Str(E->getString()); 3965 3966 // Resize the string to the right size, which is indicated by its type. 3967 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3968 Str.resize(CAT->getSize().getZExtValue()); 3969 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3970 } 3971 3972 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3973 llvm::Type *ElemTy = AType->getElementType(); 3974 unsigned NumElements = AType->getNumElements(); 3975 3976 // Wide strings have either 2-byte or 4-byte elements. 3977 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3978 SmallVector<uint16_t, 32> Elements; 3979 Elements.reserve(NumElements); 3980 3981 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3982 Elements.push_back(E->getCodeUnit(i)); 3983 Elements.resize(NumElements); 3984 return llvm::ConstantDataArray::get(VMContext, Elements); 3985 } 3986 3987 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3988 SmallVector<uint32_t, 32> Elements; 3989 Elements.reserve(NumElements); 3990 3991 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3992 Elements.push_back(E->getCodeUnit(i)); 3993 Elements.resize(NumElements); 3994 return llvm::ConstantDataArray::get(VMContext, Elements); 3995 } 3996 3997 static llvm::GlobalVariable * 3998 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3999 CodeGenModule &CGM, StringRef GlobalName, 4000 CharUnits Alignment) { 4001 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4002 unsigned AddrSpace = 0; 4003 if (CGM.getLangOpts().OpenCL) 4004 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 4005 4006 llvm::Module &M = CGM.getModule(); 4007 // Create a global variable for this string 4008 auto *GV = new llvm::GlobalVariable( 4009 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4010 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4011 GV->setAlignment(Alignment.getQuantity()); 4012 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4013 if (GV->isWeakForLinker()) { 4014 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4015 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4016 } 4017 4018 return GV; 4019 } 4020 4021 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4022 /// constant array for the given string literal. 4023 ConstantAddress 4024 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4025 StringRef Name) { 4026 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4027 4028 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4029 llvm::GlobalVariable **Entry = nullptr; 4030 if (!LangOpts.WritableStrings) { 4031 Entry = &ConstantStringMap[C]; 4032 if (auto GV = *Entry) { 4033 if (Alignment.getQuantity() > GV->getAlignment()) 4034 GV->setAlignment(Alignment.getQuantity()); 4035 return ConstantAddress(GV, Alignment); 4036 } 4037 } 4038 4039 SmallString<256> MangledNameBuffer; 4040 StringRef GlobalVariableName; 4041 llvm::GlobalValue::LinkageTypes LT; 4042 4043 // Mangle the string literal if the ABI allows for it. However, we cannot 4044 // do this if we are compiling with ASan or -fwritable-strings because they 4045 // rely on strings having normal linkage. 4046 if (!LangOpts.WritableStrings && 4047 !LangOpts.Sanitize.has(SanitizerKind::Address) && 4048 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 4049 llvm::raw_svector_ostream Out(MangledNameBuffer); 4050 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4051 4052 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4053 GlobalVariableName = MangledNameBuffer; 4054 } else { 4055 LT = llvm::GlobalValue::PrivateLinkage; 4056 GlobalVariableName = Name; 4057 } 4058 4059 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4060 if (Entry) 4061 *Entry = GV; 4062 4063 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4064 QualType()); 4065 return ConstantAddress(GV, Alignment); 4066 } 4067 4068 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4069 /// array for the given ObjCEncodeExpr node. 4070 ConstantAddress 4071 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4072 std::string Str; 4073 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4074 4075 return GetAddrOfConstantCString(Str); 4076 } 4077 4078 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4079 /// the literal and a terminating '\0' character. 4080 /// The result has pointer to array type. 4081 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4082 const std::string &Str, const char *GlobalName) { 4083 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4084 CharUnits Alignment = 4085 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4086 4087 llvm::Constant *C = 4088 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4089 4090 // Don't share any string literals if strings aren't constant. 4091 llvm::GlobalVariable **Entry = nullptr; 4092 if (!LangOpts.WritableStrings) { 4093 Entry = &ConstantStringMap[C]; 4094 if (auto GV = *Entry) { 4095 if (Alignment.getQuantity() > GV->getAlignment()) 4096 GV->setAlignment(Alignment.getQuantity()); 4097 return ConstantAddress(GV, Alignment); 4098 } 4099 } 4100 4101 // Get the default prefix if a name wasn't specified. 4102 if (!GlobalName) 4103 GlobalName = ".str"; 4104 // Create a global variable for this. 4105 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4106 GlobalName, Alignment); 4107 if (Entry) 4108 *Entry = GV; 4109 return ConstantAddress(GV, Alignment); 4110 } 4111 4112 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4113 const MaterializeTemporaryExpr *E, const Expr *Init) { 4114 assert((E->getStorageDuration() == SD_Static || 4115 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4116 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4117 4118 // If we're not materializing a subobject of the temporary, keep the 4119 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4120 QualType MaterializedType = Init->getType(); 4121 if (Init == E->GetTemporaryExpr()) 4122 MaterializedType = E->getType(); 4123 4124 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4125 4126 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4127 return ConstantAddress(Slot, Align); 4128 4129 // FIXME: If an externally-visible declaration extends multiple temporaries, 4130 // we need to give each temporary the same name in every translation unit (and 4131 // we also need to make the temporaries externally-visible). 4132 SmallString<256> Name; 4133 llvm::raw_svector_ostream Out(Name); 4134 getCXXABI().getMangleContext().mangleReferenceTemporary( 4135 VD, E->getManglingNumber(), Out); 4136 4137 APValue *Value = nullptr; 4138 if (E->getStorageDuration() == SD_Static) { 4139 // We might have a cached constant initializer for this temporary. Note 4140 // that this might have a different value from the value computed by 4141 // evaluating the initializer if the surrounding constant expression 4142 // modifies the temporary. 4143 Value = getContext().getMaterializedTemporaryValue(E, false); 4144 if (Value && Value->isUninit()) 4145 Value = nullptr; 4146 } 4147 4148 // Try evaluating it now, it might have a constant initializer. 4149 Expr::EvalResult EvalResult; 4150 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4151 !EvalResult.hasSideEffects()) 4152 Value = &EvalResult.Val; 4153 4154 LangAS AddrSpace = 4155 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4156 4157 Optional<ConstantEmitter> emitter; 4158 llvm::Constant *InitialValue = nullptr; 4159 bool Constant = false; 4160 llvm::Type *Type; 4161 if (Value) { 4162 // The temporary has a constant initializer, use it. 4163 emitter.emplace(*this); 4164 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4165 MaterializedType); 4166 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4167 Type = InitialValue->getType(); 4168 } else { 4169 // No initializer, the initialization will be provided when we 4170 // initialize the declaration which performed lifetime extension. 4171 Type = getTypes().ConvertTypeForMem(MaterializedType); 4172 } 4173 4174 // Create a global variable for this lifetime-extended temporary. 4175 llvm::GlobalValue::LinkageTypes Linkage = 4176 getLLVMLinkageVarDefinition(VD, Constant); 4177 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4178 const VarDecl *InitVD; 4179 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4180 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4181 // Temporaries defined inside a class get linkonce_odr linkage because the 4182 // class can be defined in multipe translation units. 4183 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4184 } else { 4185 // There is no need for this temporary to have external linkage if the 4186 // VarDecl has external linkage. 4187 Linkage = llvm::GlobalVariable::InternalLinkage; 4188 } 4189 } 4190 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4191 auto *GV = new llvm::GlobalVariable( 4192 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4193 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4194 if (emitter) emitter->finalize(GV); 4195 setGVProperties(GV, VD); 4196 GV->setAlignment(Align.getQuantity()); 4197 if (supportsCOMDAT() && GV->isWeakForLinker()) 4198 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4199 if (VD->getTLSKind()) 4200 setTLSMode(GV, *VD); 4201 llvm::Constant *CV = GV; 4202 if (AddrSpace != LangAS::Default) 4203 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4204 *this, GV, AddrSpace, LangAS::Default, 4205 Type->getPointerTo( 4206 getContext().getTargetAddressSpace(LangAS::Default))); 4207 MaterializedGlobalTemporaryMap[E] = CV; 4208 return ConstantAddress(CV, Align); 4209 } 4210 4211 /// EmitObjCPropertyImplementations - Emit information for synthesized 4212 /// properties for an implementation. 4213 void CodeGenModule::EmitObjCPropertyImplementations(const 4214 ObjCImplementationDecl *D) { 4215 for (const auto *PID : D->property_impls()) { 4216 // Dynamic is just for type-checking. 4217 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4218 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4219 4220 // Determine which methods need to be implemented, some may have 4221 // been overridden. Note that ::isPropertyAccessor is not the method 4222 // we want, that just indicates if the decl came from a 4223 // property. What we want to know is if the method is defined in 4224 // this implementation. 4225 if (!D->getInstanceMethod(PD->getGetterName())) 4226 CodeGenFunction(*this).GenerateObjCGetter( 4227 const_cast<ObjCImplementationDecl *>(D), PID); 4228 if (!PD->isReadOnly() && 4229 !D->getInstanceMethod(PD->getSetterName())) 4230 CodeGenFunction(*this).GenerateObjCSetter( 4231 const_cast<ObjCImplementationDecl *>(D), PID); 4232 } 4233 } 4234 } 4235 4236 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4237 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4238 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4239 ivar; ivar = ivar->getNextIvar()) 4240 if (ivar->getType().isDestructedType()) 4241 return true; 4242 4243 return false; 4244 } 4245 4246 static bool AllTrivialInitializers(CodeGenModule &CGM, 4247 ObjCImplementationDecl *D) { 4248 CodeGenFunction CGF(CGM); 4249 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4250 E = D->init_end(); B != E; ++B) { 4251 CXXCtorInitializer *CtorInitExp = *B; 4252 Expr *Init = CtorInitExp->getInit(); 4253 if (!CGF.isTrivialInitializer(Init)) 4254 return false; 4255 } 4256 return true; 4257 } 4258 4259 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4260 /// for an implementation. 4261 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4262 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4263 if (needsDestructMethod(D)) { 4264 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4265 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4266 ObjCMethodDecl *DTORMethod = 4267 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4268 cxxSelector, getContext().VoidTy, nullptr, D, 4269 /*isInstance=*/true, /*isVariadic=*/false, 4270 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4271 /*isDefined=*/false, ObjCMethodDecl::Required); 4272 D->addInstanceMethod(DTORMethod); 4273 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4274 D->setHasDestructors(true); 4275 } 4276 4277 // If the implementation doesn't have any ivar initializers, we don't need 4278 // a .cxx_construct. 4279 if (D->getNumIvarInitializers() == 0 || 4280 AllTrivialInitializers(*this, D)) 4281 return; 4282 4283 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4284 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4285 // The constructor returns 'self'. 4286 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4287 D->getLocation(), 4288 D->getLocation(), 4289 cxxSelector, 4290 getContext().getObjCIdType(), 4291 nullptr, D, /*isInstance=*/true, 4292 /*isVariadic=*/false, 4293 /*isPropertyAccessor=*/true, 4294 /*isImplicitlyDeclared=*/true, 4295 /*isDefined=*/false, 4296 ObjCMethodDecl::Required); 4297 D->addInstanceMethod(CTORMethod); 4298 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4299 D->setHasNonZeroConstructors(true); 4300 } 4301 4302 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4303 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4304 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4305 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4306 ErrorUnsupported(LSD, "linkage spec"); 4307 return; 4308 } 4309 4310 EmitDeclContext(LSD); 4311 } 4312 4313 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4314 for (auto *I : DC->decls()) { 4315 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4316 // are themselves considered "top-level", so EmitTopLevelDecl on an 4317 // ObjCImplDecl does not recursively visit them. We need to do that in 4318 // case they're nested inside another construct (LinkageSpecDecl / 4319 // ExportDecl) that does stop them from being considered "top-level". 4320 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4321 for (auto *M : OID->methods()) 4322 EmitTopLevelDecl(M); 4323 } 4324 4325 EmitTopLevelDecl(I); 4326 } 4327 } 4328 4329 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4330 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4331 // Ignore dependent declarations. 4332 if (D->isTemplated()) 4333 return; 4334 4335 switch (D->getKind()) { 4336 case Decl::CXXConversion: 4337 case Decl::CXXMethod: 4338 case Decl::Function: 4339 EmitGlobal(cast<FunctionDecl>(D)); 4340 // Always provide some coverage mapping 4341 // even for the functions that aren't emitted. 4342 AddDeferredUnusedCoverageMapping(D); 4343 break; 4344 4345 case Decl::CXXDeductionGuide: 4346 // Function-like, but does not result in code emission. 4347 break; 4348 4349 case Decl::Var: 4350 case Decl::Decomposition: 4351 case Decl::VarTemplateSpecialization: 4352 EmitGlobal(cast<VarDecl>(D)); 4353 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4354 for (auto *B : DD->bindings()) 4355 if (auto *HD = B->getHoldingVar()) 4356 EmitGlobal(HD); 4357 break; 4358 4359 // Indirect fields from global anonymous structs and unions can be 4360 // ignored; only the actual variable requires IR gen support. 4361 case Decl::IndirectField: 4362 break; 4363 4364 // C++ Decls 4365 case Decl::Namespace: 4366 EmitDeclContext(cast<NamespaceDecl>(D)); 4367 break; 4368 case Decl::ClassTemplateSpecialization: { 4369 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4370 if (DebugInfo && 4371 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4372 Spec->hasDefinition()) 4373 DebugInfo->completeTemplateDefinition(*Spec); 4374 } LLVM_FALLTHROUGH; 4375 case Decl::CXXRecord: 4376 if (DebugInfo) { 4377 if (auto *ES = D->getASTContext().getExternalSource()) 4378 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4379 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4380 } 4381 // Emit any static data members, they may be definitions. 4382 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4383 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4384 EmitTopLevelDecl(I); 4385 break; 4386 // No code generation needed. 4387 case Decl::UsingShadow: 4388 case Decl::ClassTemplate: 4389 case Decl::VarTemplate: 4390 case Decl::VarTemplatePartialSpecialization: 4391 case Decl::FunctionTemplate: 4392 case Decl::TypeAliasTemplate: 4393 case Decl::Block: 4394 case Decl::Empty: 4395 break; 4396 case Decl::Using: // using X; [C++] 4397 if (CGDebugInfo *DI = getModuleDebugInfo()) 4398 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4399 return; 4400 case Decl::NamespaceAlias: 4401 if (CGDebugInfo *DI = getModuleDebugInfo()) 4402 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4403 return; 4404 case Decl::UsingDirective: // using namespace X; [C++] 4405 if (CGDebugInfo *DI = getModuleDebugInfo()) 4406 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4407 return; 4408 case Decl::CXXConstructor: 4409 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4410 break; 4411 case Decl::CXXDestructor: 4412 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4413 break; 4414 4415 case Decl::StaticAssert: 4416 // Nothing to do. 4417 break; 4418 4419 // Objective-C Decls 4420 4421 // Forward declarations, no (immediate) code generation. 4422 case Decl::ObjCInterface: 4423 case Decl::ObjCCategory: 4424 break; 4425 4426 case Decl::ObjCProtocol: { 4427 auto *Proto = cast<ObjCProtocolDecl>(D); 4428 if (Proto->isThisDeclarationADefinition()) 4429 ObjCRuntime->GenerateProtocol(Proto); 4430 break; 4431 } 4432 4433 case Decl::ObjCCategoryImpl: 4434 // Categories have properties but don't support synthesize so we 4435 // can ignore them here. 4436 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4437 break; 4438 4439 case Decl::ObjCImplementation: { 4440 auto *OMD = cast<ObjCImplementationDecl>(D); 4441 EmitObjCPropertyImplementations(OMD); 4442 EmitObjCIvarInitializations(OMD); 4443 ObjCRuntime->GenerateClass(OMD); 4444 // Emit global variable debug information. 4445 if (CGDebugInfo *DI = getModuleDebugInfo()) 4446 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4447 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4448 OMD->getClassInterface()), OMD->getLocation()); 4449 break; 4450 } 4451 case Decl::ObjCMethod: { 4452 auto *OMD = cast<ObjCMethodDecl>(D); 4453 // If this is not a prototype, emit the body. 4454 if (OMD->getBody()) 4455 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4456 break; 4457 } 4458 case Decl::ObjCCompatibleAlias: 4459 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4460 break; 4461 4462 case Decl::PragmaComment: { 4463 const auto *PCD = cast<PragmaCommentDecl>(D); 4464 switch (PCD->getCommentKind()) { 4465 case PCK_Unknown: 4466 llvm_unreachable("unexpected pragma comment kind"); 4467 case PCK_Linker: 4468 AppendLinkerOptions(PCD->getArg()); 4469 break; 4470 case PCK_Lib: 4471 if (getTarget().getTriple().isOSBinFormatELF() && 4472 !getTarget().getTriple().isPS4()) 4473 AddELFLibDirective(PCD->getArg()); 4474 else 4475 AddDependentLib(PCD->getArg()); 4476 break; 4477 case PCK_Compiler: 4478 case PCK_ExeStr: 4479 case PCK_User: 4480 break; // We ignore all of these. 4481 } 4482 break; 4483 } 4484 4485 case Decl::PragmaDetectMismatch: { 4486 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4487 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4488 break; 4489 } 4490 4491 case Decl::LinkageSpec: 4492 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4493 break; 4494 4495 case Decl::FileScopeAsm: { 4496 // File-scope asm is ignored during device-side CUDA compilation. 4497 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4498 break; 4499 // File-scope asm is ignored during device-side OpenMP compilation. 4500 if (LangOpts.OpenMPIsDevice) 4501 break; 4502 auto *AD = cast<FileScopeAsmDecl>(D); 4503 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4504 break; 4505 } 4506 4507 case Decl::Import: { 4508 auto *Import = cast<ImportDecl>(D); 4509 4510 // If we've already imported this module, we're done. 4511 if (!ImportedModules.insert(Import->getImportedModule())) 4512 break; 4513 4514 // Emit debug information for direct imports. 4515 if (!Import->getImportedOwningModule()) { 4516 if (CGDebugInfo *DI = getModuleDebugInfo()) 4517 DI->EmitImportDecl(*Import); 4518 } 4519 4520 // Find all of the submodules and emit the module initializers. 4521 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4522 SmallVector<clang::Module *, 16> Stack; 4523 Visited.insert(Import->getImportedModule()); 4524 Stack.push_back(Import->getImportedModule()); 4525 4526 while (!Stack.empty()) { 4527 clang::Module *Mod = Stack.pop_back_val(); 4528 if (!EmittedModuleInitializers.insert(Mod).second) 4529 continue; 4530 4531 for (auto *D : Context.getModuleInitializers(Mod)) 4532 EmitTopLevelDecl(D); 4533 4534 // Visit the submodules of this module. 4535 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4536 SubEnd = Mod->submodule_end(); 4537 Sub != SubEnd; ++Sub) { 4538 // Skip explicit children; they need to be explicitly imported to emit 4539 // the initializers. 4540 if ((*Sub)->IsExplicit) 4541 continue; 4542 4543 if (Visited.insert(*Sub).second) 4544 Stack.push_back(*Sub); 4545 } 4546 } 4547 break; 4548 } 4549 4550 case Decl::Export: 4551 EmitDeclContext(cast<ExportDecl>(D)); 4552 break; 4553 4554 case Decl::OMPThreadPrivate: 4555 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4556 break; 4557 4558 case Decl::OMPDeclareReduction: 4559 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4560 break; 4561 4562 default: 4563 // Make sure we handled everything we should, every other kind is a 4564 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4565 // function. Need to recode Decl::Kind to do that easily. 4566 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4567 break; 4568 } 4569 } 4570 4571 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4572 // Do we need to generate coverage mapping? 4573 if (!CodeGenOpts.CoverageMapping) 4574 return; 4575 switch (D->getKind()) { 4576 case Decl::CXXConversion: 4577 case Decl::CXXMethod: 4578 case Decl::Function: 4579 case Decl::ObjCMethod: 4580 case Decl::CXXConstructor: 4581 case Decl::CXXDestructor: { 4582 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4583 return; 4584 SourceManager &SM = getContext().getSourceManager(); 4585 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4586 return; 4587 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4588 if (I == DeferredEmptyCoverageMappingDecls.end()) 4589 DeferredEmptyCoverageMappingDecls[D] = true; 4590 break; 4591 } 4592 default: 4593 break; 4594 }; 4595 } 4596 4597 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4598 // Do we need to generate coverage mapping? 4599 if (!CodeGenOpts.CoverageMapping) 4600 return; 4601 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4602 if (Fn->isTemplateInstantiation()) 4603 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4604 } 4605 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4606 if (I == DeferredEmptyCoverageMappingDecls.end()) 4607 DeferredEmptyCoverageMappingDecls[D] = false; 4608 else 4609 I->second = false; 4610 } 4611 4612 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4613 // We call takeVector() here to avoid use-after-free. 4614 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4615 // we deserialize function bodies to emit coverage info for them, and that 4616 // deserializes more declarations. How should we handle that case? 4617 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4618 if (!Entry.second) 4619 continue; 4620 const Decl *D = Entry.first; 4621 switch (D->getKind()) { 4622 case Decl::CXXConversion: 4623 case Decl::CXXMethod: 4624 case Decl::Function: 4625 case Decl::ObjCMethod: { 4626 CodeGenPGO PGO(*this); 4627 GlobalDecl GD(cast<FunctionDecl>(D)); 4628 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4629 getFunctionLinkage(GD)); 4630 break; 4631 } 4632 case Decl::CXXConstructor: { 4633 CodeGenPGO PGO(*this); 4634 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4635 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4636 getFunctionLinkage(GD)); 4637 break; 4638 } 4639 case Decl::CXXDestructor: { 4640 CodeGenPGO PGO(*this); 4641 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4642 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4643 getFunctionLinkage(GD)); 4644 break; 4645 } 4646 default: 4647 break; 4648 }; 4649 } 4650 } 4651 4652 /// Turns the given pointer into a constant. 4653 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4654 const void *Ptr) { 4655 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4656 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4657 return llvm::ConstantInt::get(i64, PtrInt); 4658 } 4659 4660 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4661 llvm::NamedMDNode *&GlobalMetadata, 4662 GlobalDecl D, 4663 llvm::GlobalValue *Addr) { 4664 if (!GlobalMetadata) 4665 GlobalMetadata = 4666 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4667 4668 // TODO: should we report variant information for ctors/dtors? 4669 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4670 llvm::ConstantAsMetadata::get(GetPointerConstant( 4671 CGM.getLLVMContext(), D.getDecl()))}; 4672 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4673 } 4674 4675 /// For each function which is declared within an extern "C" region and marked 4676 /// as 'used', but has internal linkage, create an alias from the unmangled 4677 /// name to the mangled name if possible. People expect to be able to refer 4678 /// to such functions with an unmangled name from inline assembly within the 4679 /// same translation unit. 4680 void CodeGenModule::EmitStaticExternCAliases() { 4681 // Don't do anything if we're generating CUDA device code -- the NVPTX 4682 // assembly target doesn't support aliases. 4683 if (Context.getTargetInfo().getTriple().isNVPTX()) 4684 return; 4685 for (auto &I : StaticExternCValues) { 4686 IdentifierInfo *Name = I.first; 4687 llvm::GlobalValue *Val = I.second; 4688 if (Val && !getModule().getNamedValue(Name->getName())) 4689 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4690 } 4691 } 4692 4693 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4694 GlobalDecl &Result) const { 4695 auto Res = Manglings.find(MangledName); 4696 if (Res == Manglings.end()) 4697 return false; 4698 Result = Res->getValue(); 4699 return true; 4700 } 4701 4702 /// Emits metadata nodes associating all the global values in the 4703 /// current module with the Decls they came from. This is useful for 4704 /// projects using IR gen as a subroutine. 4705 /// 4706 /// Since there's currently no way to associate an MDNode directly 4707 /// with an llvm::GlobalValue, we create a global named metadata 4708 /// with the name 'clang.global.decl.ptrs'. 4709 void CodeGenModule::EmitDeclMetadata() { 4710 llvm::NamedMDNode *GlobalMetadata = nullptr; 4711 4712 for (auto &I : MangledDeclNames) { 4713 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4714 // Some mangled names don't necessarily have an associated GlobalValue 4715 // in this module, e.g. if we mangled it for DebugInfo. 4716 if (Addr) 4717 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4718 } 4719 } 4720 4721 /// Emits metadata nodes for all the local variables in the current 4722 /// function. 4723 void CodeGenFunction::EmitDeclMetadata() { 4724 if (LocalDeclMap.empty()) return; 4725 4726 llvm::LLVMContext &Context = getLLVMContext(); 4727 4728 // Find the unique metadata ID for this name. 4729 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4730 4731 llvm::NamedMDNode *GlobalMetadata = nullptr; 4732 4733 for (auto &I : LocalDeclMap) { 4734 const Decl *D = I.first; 4735 llvm::Value *Addr = I.second.getPointer(); 4736 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4737 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4738 Alloca->setMetadata( 4739 DeclPtrKind, llvm::MDNode::get( 4740 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4741 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4742 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4743 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4744 } 4745 } 4746 } 4747 4748 void CodeGenModule::EmitVersionIdentMetadata() { 4749 llvm::NamedMDNode *IdentMetadata = 4750 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4751 std::string Version = getClangFullVersion(); 4752 llvm::LLVMContext &Ctx = TheModule.getContext(); 4753 4754 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4755 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4756 } 4757 4758 void CodeGenModule::EmitTargetMetadata() { 4759 // Warning, new MangledDeclNames may be appended within this loop. 4760 // We rely on MapVector insertions adding new elements to the end 4761 // of the container. 4762 // FIXME: Move this loop into the one target that needs it, and only 4763 // loop over those declarations for which we couldn't emit the target 4764 // metadata when we emitted the declaration. 4765 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4766 auto Val = *(MangledDeclNames.begin() + I); 4767 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4768 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4769 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4770 } 4771 } 4772 4773 void CodeGenModule::EmitCoverageFile() { 4774 if (getCodeGenOpts().CoverageDataFile.empty() && 4775 getCodeGenOpts().CoverageNotesFile.empty()) 4776 return; 4777 4778 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4779 if (!CUNode) 4780 return; 4781 4782 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4783 llvm::LLVMContext &Ctx = TheModule.getContext(); 4784 auto *CoverageDataFile = 4785 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4786 auto *CoverageNotesFile = 4787 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4788 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4789 llvm::MDNode *CU = CUNode->getOperand(i); 4790 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4791 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4792 } 4793 } 4794 4795 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4796 // Sema has checked that all uuid strings are of the form 4797 // "12345678-1234-1234-1234-1234567890ab". 4798 assert(Uuid.size() == 36); 4799 for (unsigned i = 0; i < 36; ++i) { 4800 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4801 else assert(isHexDigit(Uuid[i])); 4802 } 4803 4804 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4805 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4806 4807 llvm::Constant *Field3[8]; 4808 for (unsigned Idx = 0; Idx < 8; ++Idx) 4809 Field3[Idx] = llvm::ConstantInt::get( 4810 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4811 4812 llvm::Constant *Fields[4] = { 4813 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4814 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4815 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4816 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4817 }; 4818 4819 return llvm::ConstantStruct::getAnon(Fields); 4820 } 4821 4822 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4823 bool ForEH) { 4824 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4825 // FIXME: should we even be calling this method if RTTI is disabled 4826 // and it's not for EH? 4827 if (!ForEH && !getLangOpts().RTTI) 4828 return llvm::Constant::getNullValue(Int8PtrTy); 4829 4830 if (ForEH && Ty->isObjCObjectPointerType() && 4831 LangOpts.ObjCRuntime.isGNUFamily()) 4832 return ObjCRuntime->GetEHType(Ty); 4833 4834 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4835 } 4836 4837 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4838 // Do not emit threadprivates in simd-only mode. 4839 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4840 return; 4841 for (auto RefExpr : D->varlists()) { 4842 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4843 bool PerformInit = 4844 VD->getAnyInitializer() && 4845 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4846 /*ForRef=*/false); 4847 4848 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4849 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4850 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4851 CXXGlobalInits.push_back(InitFunction); 4852 } 4853 } 4854 4855 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4856 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4857 if (InternalId) 4858 return InternalId; 4859 4860 if (isExternallyVisible(T->getLinkage())) { 4861 std::string OutName; 4862 llvm::raw_string_ostream Out(OutName); 4863 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4864 4865 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4866 } else { 4867 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4868 llvm::ArrayRef<llvm::Metadata *>()); 4869 } 4870 4871 return InternalId; 4872 } 4873 4874 // Generalize pointer types to a void pointer with the qualifiers of the 4875 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4876 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4877 // 'void *'. 4878 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4879 if (!Ty->isPointerType()) 4880 return Ty; 4881 4882 return Ctx.getPointerType( 4883 QualType(Ctx.VoidTy).withCVRQualifiers( 4884 Ty->getPointeeType().getCVRQualifiers())); 4885 } 4886 4887 // Apply type generalization to a FunctionType's return and argument types 4888 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4889 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4890 SmallVector<QualType, 8> GeneralizedParams; 4891 for (auto &Param : FnType->param_types()) 4892 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4893 4894 return Ctx.getFunctionType( 4895 GeneralizeType(Ctx, FnType->getReturnType()), 4896 GeneralizedParams, FnType->getExtProtoInfo()); 4897 } 4898 4899 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4900 return Ctx.getFunctionNoProtoType( 4901 GeneralizeType(Ctx, FnType->getReturnType())); 4902 4903 llvm_unreachable("Encountered unknown FunctionType"); 4904 } 4905 4906 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4907 T = GeneralizeFunctionType(getContext(), T); 4908 4909 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4910 if (InternalId) 4911 return InternalId; 4912 4913 if (isExternallyVisible(T->getLinkage())) { 4914 std::string OutName; 4915 llvm::raw_string_ostream Out(OutName); 4916 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4917 Out << ".generalized"; 4918 4919 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4920 } else { 4921 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4922 llvm::ArrayRef<llvm::Metadata *>()); 4923 } 4924 4925 return InternalId; 4926 } 4927 4928 /// Returns whether this module needs the "all-vtables" type identifier. 4929 bool CodeGenModule::NeedAllVtablesTypeId() const { 4930 // Returns true if at least one of vtable-based CFI checkers is enabled and 4931 // is not in the trapping mode. 4932 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4933 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4934 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4935 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4936 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4937 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4938 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4939 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4940 } 4941 4942 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4943 CharUnits Offset, 4944 const CXXRecordDecl *RD) { 4945 llvm::Metadata *MD = 4946 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4947 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4948 4949 if (CodeGenOpts.SanitizeCfiCrossDso) 4950 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4951 VTable->addTypeMetadata(Offset.getQuantity(), 4952 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4953 4954 if (NeedAllVtablesTypeId()) { 4955 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4956 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4957 } 4958 } 4959 4960 // Fills in the supplied string map with the set of target features for the 4961 // passed in function. 4962 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4963 const FunctionDecl *FD) { 4964 StringRef TargetCPU = Target.getTargetOpts().CPU; 4965 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4966 // If we have a TargetAttr build up the feature map based on that. 4967 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4968 4969 ParsedAttr.Features.erase( 4970 llvm::remove_if(ParsedAttr.Features, 4971 [&](const std::string &Feat) { 4972 return !Target.isValidFeatureName( 4973 StringRef{Feat}.substr(1)); 4974 }), 4975 ParsedAttr.Features.end()); 4976 4977 // Make a copy of the features as passed on the command line into the 4978 // beginning of the additional features from the function to override. 4979 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4980 Target.getTargetOpts().FeaturesAsWritten.begin(), 4981 Target.getTargetOpts().FeaturesAsWritten.end()); 4982 4983 if (ParsedAttr.Architecture != "" && 4984 Target.isValidCPUName(ParsedAttr.Architecture)) 4985 TargetCPU = ParsedAttr.Architecture; 4986 4987 // Now populate the feature map, first with the TargetCPU which is either 4988 // the default or a new one from the target attribute string. Then we'll use 4989 // the passed in features (FeaturesAsWritten) along with the new ones from 4990 // the attribute. 4991 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4992 ParsedAttr.Features); 4993 } else { 4994 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4995 Target.getTargetOpts().Features); 4996 } 4997 } 4998 4999 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5000 if (!SanStats) 5001 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5002 5003 return *SanStats; 5004 } 5005 llvm::Value * 5006 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5007 CodeGenFunction &CGF) { 5008 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5009 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5010 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5011 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5012 "__translate_sampler_initializer"), 5013 {C}); 5014 } 5015