xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 273c299d5d649a0222fbde03c9a41e41913751b4)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 #include "llvm/Transforms/IPO/HotColdSplitting.h"
67 
68 using namespace clang;
69 using namespace CodeGen;
70 
71 static llvm::cl::opt<bool> LimitedCoverage(
72     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
73     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
74     llvm::cl::init(false));
75 
76 static const char AnnotationSection[] = "llvm.metadata";
77 
78 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
79   switch (CGM.getTarget().getCXXABI().getKind()) {
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::iOS64:
85   case TargetCXXABI::WatchOS:
86   case TargetCXXABI::GenericMIPS:
87   case TargetCXXABI::GenericItanium:
88   case TargetCXXABI::WebAssembly:
89   case TargetCXXABI::XL:
90     return CreateItaniumCXXABI(CGM);
91   case TargetCXXABI::Microsoft:
92     return CreateMicrosoftCXXABI(CGM);
93   }
94 
95   llvm_unreachable("invalid C++ ABI kind");
96 }
97 
98 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
99                              const PreprocessorOptions &PPO,
100                              const CodeGenOptions &CGO, llvm::Module &M,
101                              DiagnosticsEngine &diags,
102                              CoverageSourceInfo *CoverageInfo)
103     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
104       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
105       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
106       VMContext(M.getContext()), Types(*this), VTables(*this),
107       SanitizerMD(new SanitizerMetadata(*this)) {
108 
109   // Initialize the type cache.
110   llvm::LLVMContext &LLVMContext = M.getContext();
111   VoidTy = llvm::Type::getVoidTy(LLVMContext);
112   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
113   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
114   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
115   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
116   HalfTy = llvm::Type::getHalfTy(LLVMContext);
117   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
118   FloatTy = llvm::Type::getFloatTy(LLVMContext);
119   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
120   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
121   PointerAlignInBytes =
122     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
123   SizeSizeInBytes =
124     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
125   IntAlignInBytes =
126     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
127   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
128   IntPtrTy = llvm::IntegerType::get(LLVMContext,
129     C.getTargetInfo().getMaxPointerWidth());
130   Int8PtrTy = Int8Ty->getPointerTo(0);
131   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
132   AllocaInt8PtrTy = Int8Ty->getPointerTo(
133       M.getDataLayout().getAllocaAddrSpace());
134   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
135 
136   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
137 
138   if (LangOpts.ObjC)
139     createObjCRuntime();
140   if (LangOpts.OpenCL)
141     createOpenCLRuntime();
142   if (LangOpts.OpenMP)
143     createOpenMPRuntime();
144   if (LangOpts.CUDA)
145     createCUDARuntime();
146 
147   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
148   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
149       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
150     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
151                                getCXXABI().getMangleContext()));
152 
153   // If debug info or coverage generation is enabled, create the CGDebugInfo
154   // object.
155   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
156       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
157     DebugInfo.reset(new CGDebugInfo(*this));
158 
159   Block.GlobalUniqueCount = 0;
160 
161   if (C.getLangOpts().ObjC)
162     ObjCData.reset(new ObjCEntrypoints());
163 
164   if (CodeGenOpts.hasProfileClangUse()) {
165     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
166         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
167     if (auto E = ReaderOrErr.takeError()) {
168       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
169                                               "Could not read profile %0: %1");
170       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
171         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
172                                   << EI.message();
173       });
174     } else
175       PGOReader = std::move(ReaderOrErr.get());
176   }
177 
178   // If coverage mapping generation is enabled, create the
179   // CoverageMappingModuleGen object.
180   if (CodeGenOpts.CoverageMapping)
181     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
182 }
183 
184 CodeGenModule::~CodeGenModule() {}
185 
186 void CodeGenModule::createObjCRuntime() {
187   // This is just isGNUFamily(), but we want to force implementors of
188   // new ABIs to decide how best to do this.
189   switch (LangOpts.ObjCRuntime.getKind()) {
190   case ObjCRuntime::GNUstep:
191   case ObjCRuntime::GCC:
192   case ObjCRuntime::ObjFW:
193     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
194     return;
195 
196   case ObjCRuntime::FragileMacOSX:
197   case ObjCRuntime::MacOSX:
198   case ObjCRuntime::iOS:
199   case ObjCRuntime::WatchOS:
200     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
201     return;
202   }
203   llvm_unreachable("bad runtime kind");
204 }
205 
206 void CodeGenModule::createOpenCLRuntime() {
207   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
208 }
209 
210 void CodeGenModule::createOpenMPRuntime() {
211   // Select a specialized code generation class based on the target, if any.
212   // If it does not exist use the default implementation.
213   switch (getTriple().getArch()) {
214   case llvm::Triple::nvptx:
215   case llvm::Triple::nvptx64:
216     assert(getLangOpts().OpenMPIsDevice &&
217            "OpenMP NVPTX is only prepared to deal with device code.");
218     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
219     break;
220   case llvm::Triple::amdgcn:
221     assert(getLangOpts().OpenMPIsDevice &&
222            "OpenMP AMDGCN is only prepared to deal with device code.");
223     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
224     break;
225   default:
226     if (LangOpts.OpenMPSimd)
227       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
228     else
229       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
230     break;
231   }
232 }
233 
234 void CodeGenModule::createCUDARuntime() {
235   CUDARuntime.reset(CreateNVCUDARuntime(*this));
236 }
237 
238 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
239   Replacements[Name] = C;
240 }
241 
242 void CodeGenModule::applyReplacements() {
243   for (auto &I : Replacements) {
244     StringRef MangledName = I.first();
245     llvm::Constant *Replacement = I.second;
246     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
247     if (!Entry)
248       continue;
249     auto *OldF = cast<llvm::Function>(Entry);
250     auto *NewF = dyn_cast<llvm::Function>(Replacement);
251     if (!NewF) {
252       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
253         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
254       } else {
255         auto *CE = cast<llvm::ConstantExpr>(Replacement);
256         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
257                CE->getOpcode() == llvm::Instruction::GetElementPtr);
258         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
259       }
260     }
261 
262     // Replace old with new, but keep the old order.
263     OldF->replaceAllUsesWith(Replacement);
264     if (NewF) {
265       NewF->removeFromParent();
266       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
267                                                        NewF);
268     }
269     OldF->eraseFromParent();
270   }
271 }
272 
273 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
274   GlobalValReplacements.push_back(std::make_pair(GV, C));
275 }
276 
277 void CodeGenModule::applyGlobalValReplacements() {
278   for (auto &I : GlobalValReplacements) {
279     llvm::GlobalValue *GV = I.first;
280     llvm::Constant *C = I.second;
281 
282     GV->replaceAllUsesWith(C);
283     GV->eraseFromParent();
284   }
285 }
286 
287 // This is only used in aliases that we created and we know they have a
288 // linear structure.
289 static const llvm::GlobalObject *getAliasedGlobal(
290     const llvm::GlobalIndirectSymbol &GIS) {
291   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
292   const llvm::Constant *C = &GIS;
293   for (;;) {
294     C = C->stripPointerCasts();
295     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
296       return GO;
297     // stripPointerCasts will not walk over weak aliases.
298     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
299     if (!GIS2)
300       return nullptr;
301     if (!Visited.insert(GIS2).second)
302       return nullptr;
303     C = GIS2->getIndirectSymbol();
304   }
305 }
306 
307 void CodeGenModule::checkAliases() {
308   // Check if the constructed aliases are well formed. It is really unfortunate
309   // that we have to do this in CodeGen, but we only construct mangled names
310   // and aliases during codegen.
311   bool Error = false;
312   DiagnosticsEngine &Diags = getDiags();
313   for (const GlobalDecl &GD : Aliases) {
314     const auto *D = cast<ValueDecl>(GD.getDecl());
315     SourceLocation Location;
316     bool IsIFunc = D->hasAttr<IFuncAttr>();
317     if (const Attr *A = D->getDefiningAttr())
318       Location = A->getLocation();
319     else
320       llvm_unreachable("Not an alias or ifunc?");
321     StringRef MangledName = getMangledName(GD);
322     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
323     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
324     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
325     if (!GV) {
326       Error = true;
327       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
328     } else if (GV->isDeclaration()) {
329       Error = true;
330       Diags.Report(Location, diag::err_alias_to_undefined)
331           << IsIFunc << IsIFunc;
332     } else if (IsIFunc) {
333       // Check resolver function type.
334       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
335           GV->getType()->getPointerElementType());
336       assert(FTy);
337       if (!FTy->getReturnType()->isPointerTy())
338         Diags.Report(Location, diag::err_ifunc_resolver_return);
339     }
340 
341     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
342     llvm::GlobalValue *AliaseeGV;
343     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
344       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
345     else
346       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
347 
348     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
349       StringRef AliasSection = SA->getName();
350       if (AliasSection != AliaseeGV->getSection())
351         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
352             << AliasSection << IsIFunc << IsIFunc;
353     }
354 
355     // We have to handle alias to weak aliases in here. LLVM itself disallows
356     // this since the object semantics would not match the IL one. For
357     // compatibility with gcc we implement it by just pointing the alias
358     // to its aliasee's aliasee. We also warn, since the user is probably
359     // expecting the link to be weak.
360     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
361       if (GA->isInterposable()) {
362         Diags.Report(Location, diag::warn_alias_to_weak_alias)
363             << GV->getName() << GA->getName() << IsIFunc;
364         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
365             GA->getIndirectSymbol(), Alias->getType());
366         Alias->setIndirectSymbol(Aliasee);
367       }
368     }
369   }
370   if (!Error)
371     return;
372 
373   for (const GlobalDecl &GD : Aliases) {
374     StringRef MangledName = getMangledName(GD);
375     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
376     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
377     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
378     Alias->eraseFromParent();
379   }
380 }
381 
382 void CodeGenModule::clear() {
383   DeferredDeclsToEmit.clear();
384   if (OpenMPRuntime)
385     OpenMPRuntime->clear();
386 }
387 
388 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
389                                        StringRef MainFile) {
390   if (!hasDiagnostics())
391     return;
392   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
393     if (MainFile.empty())
394       MainFile = "<stdin>";
395     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
396   } else {
397     if (Mismatched > 0)
398       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
399 
400     if (Missing > 0)
401       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
402   }
403 }
404 
405 void CodeGenModule::Release() {
406   EmitDeferred();
407   EmitVTablesOpportunistically();
408   applyGlobalValReplacements();
409   applyReplacements();
410   checkAliases();
411   emitMultiVersionFunctions();
412   EmitCXXGlobalInitFunc();
413   EmitCXXGlobalCleanUpFunc();
414   registerGlobalDtorsWithAtExit();
415   EmitCXXThreadLocalInitFunc();
416   if (ObjCRuntime)
417     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
418       AddGlobalCtor(ObjCInitFunction);
419   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
420       CUDARuntime) {
421     if (llvm::Function *CudaCtorFunction =
422             CUDARuntime->makeModuleCtorFunction())
423       AddGlobalCtor(CudaCtorFunction);
424   }
425   if (OpenMPRuntime) {
426     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
427             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
428       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
429     }
430     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
431     OpenMPRuntime->clear();
432   }
433   if (PGOReader) {
434     getModule().setProfileSummary(
435         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
436         llvm::ProfileSummary::PSK_Instr);
437     if (PGOStats.hasDiagnostics())
438       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
439   }
440   EmitCtorList(GlobalCtors, "llvm.global_ctors");
441   EmitCtorList(GlobalDtors, "llvm.global_dtors");
442   EmitGlobalAnnotations();
443   EmitStaticExternCAliases();
444   EmitDeferredUnusedCoverageMappings();
445   if (CoverageMapping)
446     CoverageMapping->emit();
447   if (CodeGenOpts.SanitizeCfiCrossDso) {
448     CodeGenFunction(*this).EmitCfiCheckFail();
449     CodeGenFunction(*this).EmitCfiCheckStub();
450   }
451   emitAtAvailableLinkGuard();
452   if (Context.getTargetInfo().getTriple().isWasm() &&
453       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
454     EmitMainVoidAlias();
455   }
456   emitLLVMUsed();
457   if (SanStats)
458     SanStats->finish();
459 
460   if (CodeGenOpts.Autolink &&
461       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
462     EmitModuleLinkOptions();
463   }
464 
465   // On ELF we pass the dependent library specifiers directly to the linker
466   // without manipulating them. This is in contrast to other platforms where
467   // they are mapped to a specific linker option by the compiler. This
468   // difference is a result of the greater variety of ELF linkers and the fact
469   // that ELF linkers tend to handle libraries in a more complicated fashion
470   // than on other platforms. This forces us to defer handling the dependent
471   // libs to the linker.
472   //
473   // CUDA/HIP device and host libraries are different. Currently there is no
474   // way to differentiate dependent libraries for host or device. Existing
475   // usage of #pragma comment(lib, *) is intended for host libraries on
476   // Windows. Therefore emit llvm.dependent-libraries only for host.
477   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
478     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
479     for (auto *MD : ELFDependentLibraries)
480       NMD->addOperand(MD);
481   }
482 
483   // Record mregparm value now so it is visible through rest of codegen.
484   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
485     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
486                               CodeGenOpts.NumRegisterParameters);
487 
488   if (CodeGenOpts.DwarfVersion) {
489     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
490                               CodeGenOpts.DwarfVersion);
491   }
492 
493   if (Context.getLangOpts().SemanticInterposition)
494     // Require various optimization to respect semantic interposition.
495     getModule().setSemanticInterposition(1);
496   else if (Context.getLangOpts().ExplicitNoSemanticInterposition)
497     // Allow dso_local on applicable targets.
498     getModule().setSemanticInterposition(0);
499 
500   if (CodeGenOpts.EmitCodeView) {
501     // Indicate that we want CodeView in the metadata.
502     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
503   }
504   if (CodeGenOpts.CodeViewGHash) {
505     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
506   }
507   if (CodeGenOpts.ControlFlowGuard) {
508     // Function ID tables and checks for Control Flow Guard (cfguard=2).
509     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
510   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
511     // Function ID tables for Control Flow Guard (cfguard=1).
512     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
513   }
514   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
515     // We don't support LTO with 2 with different StrictVTablePointers
516     // FIXME: we could support it by stripping all the information introduced
517     // by StrictVTablePointers.
518 
519     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
520 
521     llvm::Metadata *Ops[2] = {
522               llvm::MDString::get(VMContext, "StrictVTablePointers"),
523               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
524                   llvm::Type::getInt32Ty(VMContext), 1))};
525 
526     getModule().addModuleFlag(llvm::Module::Require,
527                               "StrictVTablePointersRequirement",
528                               llvm::MDNode::get(VMContext, Ops));
529   }
530   if (getModuleDebugInfo())
531     // We support a single version in the linked module. The LLVM
532     // parser will drop debug info with a different version number
533     // (and warn about it, too).
534     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
535                               llvm::DEBUG_METADATA_VERSION);
536 
537   // We need to record the widths of enums and wchar_t, so that we can generate
538   // the correct build attributes in the ARM backend. wchar_size is also used by
539   // TargetLibraryInfo.
540   uint64_t WCharWidth =
541       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
542   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
543 
544   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
545   if (   Arch == llvm::Triple::arm
546       || Arch == llvm::Triple::armeb
547       || Arch == llvm::Triple::thumb
548       || Arch == llvm::Triple::thumbeb) {
549     // The minimum width of an enum in bytes
550     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
551     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
552   }
553 
554   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
555     StringRef ABIStr = Target.getABI();
556     llvm::LLVMContext &Ctx = TheModule.getContext();
557     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
558                               llvm::MDString::get(Ctx, ABIStr));
559   }
560 
561   if (CodeGenOpts.SanitizeCfiCrossDso) {
562     // Indicate that we want cross-DSO control flow integrity checks.
563     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
564   }
565 
566   if (CodeGenOpts.WholeProgramVTables) {
567     // Indicate whether VFE was enabled for this module, so that the
568     // vcall_visibility metadata added under whole program vtables is handled
569     // appropriately in the optimizer.
570     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
571                               CodeGenOpts.VirtualFunctionElimination);
572   }
573 
574   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
575     getModule().addModuleFlag(llvm::Module::Override,
576                               "CFI Canonical Jump Tables",
577                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
578   }
579 
580   if (CodeGenOpts.CFProtectionReturn &&
581       Target.checkCFProtectionReturnSupported(getDiags())) {
582     // Indicate that we want to instrument return control flow protection.
583     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
584                               1);
585   }
586 
587   if (CodeGenOpts.CFProtectionBranch &&
588       Target.checkCFProtectionBranchSupported(getDiags())) {
589     // Indicate that we want to instrument branch control flow protection.
590     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
591                               1);
592   }
593 
594   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
595       Arch == llvm::Triple::aarch64_be) {
596     getModule().addModuleFlag(llvm::Module::Error,
597                               "branch-target-enforcement",
598                               LangOpts.BranchTargetEnforcement);
599 
600     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
601                               LangOpts.hasSignReturnAddress());
602 
603     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
604                               LangOpts.isSignReturnAddressScopeAll());
605 
606     getModule().addModuleFlag(llvm::Module::Error,
607                               "sign-return-address-with-bkey",
608                               !LangOpts.isSignReturnAddressWithAKey());
609   }
610 
611   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
612     // Indicate whether __nvvm_reflect should be configured to flush denormal
613     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
614     // property.)
615     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
616                               CodeGenOpts.FP32DenormalMode.Output !=
617                                   llvm::DenormalMode::IEEE);
618   }
619 
620   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
621   if (LangOpts.OpenCL) {
622     EmitOpenCLMetadata();
623     // Emit SPIR version.
624     if (getTriple().isSPIR()) {
625       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
626       // opencl.spir.version named metadata.
627       // C++ is backwards compatible with OpenCL v2.0.
628       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
629       llvm::Metadata *SPIRVerElts[] = {
630           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
631               Int32Ty, Version / 100)),
632           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
633               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
634       llvm::NamedMDNode *SPIRVerMD =
635           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
636       llvm::LLVMContext &Ctx = TheModule.getContext();
637       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
638     }
639   }
640 
641   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
642     assert(PLevel < 3 && "Invalid PIC Level");
643     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
644     if (Context.getLangOpts().PIE)
645       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
646   }
647 
648   if (getCodeGenOpts().CodeModel.size() > 0) {
649     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
650                   .Case("tiny", llvm::CodeModel::Tiny)
651                   .Case("small", llvm::CodeModel::Small)
652                   .Case("kernel", llvm::CodeModel::Kernel)
653                   .Case("medium", llvm::CodeModel::Medium)
654                   .Case("large", llvm::CodeModel::Large)
655                   .Default(~0u);
656     if (CM != ~0u) {
657       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
658       getModule().setCodeModel(codeModel);
659     }
660   }
661 
662   if (CodeGenOpts.NoPLT)
663     getModule().setRtLibUseGOT();
664 
665   SimplifyPersonality();
666 
667   if (getCodeGenOpts().EmitDeclMetadata)
668     EmitDeclMetadata();
669 
670   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
671     EmitCoverageFile();
672 
673   if (CGDebugInfo *DI = getModuleDebugInfo())
674     DI->finalize();
675 
676   if (getCodeGenOpts().EmitVersionIdentMetadata)
677     EmitVersionIdentMetadata();
678 
679   if (!getCodeGenOpts().RecordCommandLine.empty())
680     EmitCommandLineMetadata();
681 
682   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
683 
684   EmitBackendOptionsMetadata(getCodeGenOpts());
685 }
686 
687 void CodeGenModule::EmitOpenCLMetadata() {
688   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
689   // opencl.ocl.version named metadata node.
690   // C++ is backwards compatible with OpenCL v2.0.
691   // FIXME: We might need to add CXX version at some point too?
692   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
693   llvm::Metadata *OCLVerElts[] = {
694       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
695           Int32Ty, Version / 100)),
696       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
697           Int32Ty, (Version % 100) / 10))};
698   llvm::NamedMDNode *OCLVerMD =
699       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
700   llvm::LLVMContext &Ctx = TheModule.getContext();
701   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
702 }
703 
704 void CodeGenModule::EmitBackendOptionsMetadata(
705     const CodeGenOptions CodeGenOpts) {
706   switch (getTriple().getArch()) {
707   default:
708     break;
709   case llvm::Triple::riscv32:
710   case llvm::Triple::riscv64:
711     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
712                               CodeGenOpts.SmallDataLimit);
713     break;
714   }
715 }
716 
717 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
718   // Make sure that this type is translated.
719   Types.UpdateCompletedType(TD);
720 }
721 
722 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
723   // Make sure that this type is translated.
724   Types.RefreshTypeCacheForClass(RD);
725 }
726 
727 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
728   if (!TBAA)
729     return nullptr;
730   return TBAA->getTypeInfo(QTy);
731 }
732 
733 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
734   if (!TBAA)
735     return TBAAAccessInfo();
736   if (getLangOpts().CUDAIsDevice) {
737     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
738     // access info.
739     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
740       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
741           nullptr)
742         return TBAAAccessInfo();
743     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
744       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
745           nullptr)
746         return TBAAAccessInfo();
747     }
748   }
749   return TBAA->getAccessInfo(AccessType);
750 }
751 
752 TBAAAccessInfo
753 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
754   if (!TBAA)
755     return TBAAAccessInfo();
756   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
757 }
758 
759 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
760   if (!TBAA)
761     return nullptr;
762   return TBAA->getTBAAStructInfo(QTy);
763 }
764 
765 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
766   if (!TBAA)
767     return nullptr;
768   return TBAA->getBaseTypeInfo(QTy);
769 }
770 
771 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
772   if (!TBAA)
773     return nullptr;
774   return TBAA->getAccessTagInfo(Info);
775 }
776 
777 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
778                                                    TBAAAccessInfo TargetInfo) {
779   if (!TBAA)
780     return TBAAAccessInfo();
781   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
782 }
783 
784 TBAAAccessInfo
785 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
786                                                    TBAAAccessInfo InfoB) {
787   if (!TBAA)
788     return TBAAAccessInfo();
789   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
790 }
791 
792 TBAAAccessInfo
793 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
794                                               TBAAAccessInfo SrcInfo) {
795   if (!TBAA)
796     return TBAAAccessInfo();
797   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
798 }
799 
800 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
801                                                 TBAAAccessInfo TBAAInfo) {
802   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
803     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
804 }
805 
806 void CodeGenModule::DecorateInstructionWithInvariantGroup(
807     llvm::Instruction *I, const CXXRecordDecl *RD) {
808   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
809                  llvm::MDNode::get(getLLVMContext(), {}));
810 }
811 
812 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
813   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
814   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
815 }
816 
817 /// ErrorUnsupported - Print out an error that codegen doesn't support the
818 /// specified stmt yet.
819 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
820   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
821                                                "cannot compile this %0 yet");
822   std::string Msg = Type;
823   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
824       << Msg << S->getSourceRange();
825 }
826 
827 /// ErrorUnsupported - Print out an error that codegen doesn't support the
828 /// specified decl yet.
829 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
830   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
831                                                "cannot compile this %0 yet");
832   std::string Msg = Type;
833   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
834 }
835 
836 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
837   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
838 }
839 
840 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
841                                         const NamedDecl *D) const {
842   if (GV->hasDLLImportStorageClass())
843     return;
844   // Internal definitions always have default visibility.
845   if (GV->hasLocalLinkage()) {
846     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
847     return;
848   }
849   if (!D)
850     return;
851   // Set visibility for definitions, and for declarations if requested globally
852   // or set explicitly.
853   LinkageInfo LV = D->getLinkageAndVisibility();
854   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
855       !GV->isDeclarationForLinker())
856     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
857 }
858 
859 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
860                                  llvm::GlobalValue *GV) {
861   if (GV->hasLocalLinkage())
862     return true;
863 
864   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
865     return true;
866 
867   // DLLImport explicitly marks the GV as external.
868   if (GV->hasDLLImportStorageClass())
869     return false;
870 
871   const llvm::Triple &TT = CGM.getTriple();
872   if (TT.isWindowsGNUEnvironment()) {
873     // In MinGW, variables without DLLImport can still be automatically
874     // imported from a DLL by the linker; don't mark variables that
875     // potentially could come from another DLL as DSO local.
876     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
877         !GV->isThreadLocal())
878       return false;
879   }
880 
881   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
882   // remain unresolved in the link, they can be resolved to zero, which is
883   // outside the current DSO.
884   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
885     return false;
886 
887   // Every other GV is local on COFF.
888   // Make an exception for windows OS in the triple: Some firmware builds use
889   // *-win32-macho triples. This (accidentally?) produced windows relocations
890   // without GOT tables in older clang versions; Keep this behaviour.
891   // FIXME: even thread local variables?
892   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
893     return true;
894 
895   // Only handle COFF and ELF for now.
896   if (!TT.isOSBinFormatELF())
897     return false;
898 
899   // If this is not an executable, don't assume anything is local.
900   const auto &CGOpts = CGM.getCodeGenOpts();
901   llvm::Reloc::Model RM = CGOpts.RelocationModel;
902   const auto &LOpts = CGM.getLangOpts();
903   if (RM != llvm::Reloc::Static && !LOpts.PIE)
904     return false;
905 
906   // A definition cannot be preempted from an executable.
907   if (!GV->isDeclarationForLinker())
908     return true;
909 
910   // Most PIC code sequences that assume that a symbol is local cannot produce a
911   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
912   // depended, it seems worth it to handle it here.
913   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
914     return false;
915 
916   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
917   llvm::Triple::ArchType Arch = TT.getArch();
918   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
919       Arch == llvm::Triple::ppc64le)
920     return false;
921 
922   // If we can use copy relocations we can assume it is local.
923   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
924     if (!Var->isThreadLocal() &&
925         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
926       return true;
927 
928   // If we can use a plt entry as the symbol address we can assume it
929   // is local.
930   // FIXME: This should work for PIE, but the gold linker doesn't support it.
931   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
932     return true;
933 
934   // Otherwise don't assume it is local.
935   return false;
936 }
937 
938 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
939   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
940 }
941 
942 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
943                                           GlobalDecl GD) const {
944   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
945   // C++ destructors have a few C++ ABI specific special cases.
946   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
947     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
948     return;
949   }
950   setDLLImportDLLExport(GV, D);
951 }
952 
953 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
954                                           const NamedDecl *D) const {
955   if (D && D->isExternallyVisible()) {
956     if (D->hasAttr<DLLImportAttr>())
957       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
958     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
959       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
960   }
961 }
962 
963 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
964                                     GlobalDecl GD) const {
965   setDLLImportDLLExport(GV, GD);
966   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
967 }
968 
969 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
970                                     const NamedDecl *D) const {
971   setDLLImportDLLExport(GV, D);
972   setGVPropertiesAux(GV, D);
973 }
974 
975 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
976                                        const NamedDecl *D) const {
977   setGlobalVisibility(GV, D);
978   setDSOLocal(GV);
979   GV->setPartition(CodeGenOpts.SymbolPartition);
980 }
981 
982 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
983   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
984       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
985       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
986       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
987       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
988 }
989 
990 llvm::GlobalVariable::ThreadLocalMode
991 CodeGenModule::GetDefaultLLVMTLSModel() const {
992   switch (CodeGenOpts.getDefaultTLSModel()) {
993   case CodeGenOptions::GeneralDynamicTLSModel:
994     return llvm::GlobalVariable::GeneralDynamicTLSModel;
995   case CodeGenOptions::LocalDynamicTLSModel:
996     return llvm::GlobalVariable::LocalDynamicTLSModel;
997   case CodeGenOptions::InitialExecTLSModel:
998     return llvm::GlobalVariable::InitialExecTLSModel;
999   case CodeGenOptions::LocalExecTLSModel:
1000     return llvm::GlobalVariable::LocalExecTLSModel;
1001   }
1002   llvm_unreachable("Invalid TLS model!");
1003 }
1004 
1005 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1006   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1007 
1008   llvm::GlobalValue::ThreadLocalMode TLM;
1009   TLM = GetDefaultLLVMTLSModel();
1010 
1011   // Override the TLS model if it is explicitly specified.
1012   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1013     TLM = GetLLVMTLSModel(Attr->getModel());
1014   }
1015 
1016   GV->setThreadLocalMode(TLM);
1017 }
1018 
1019 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1020                                           StringRef Name) {
1021   const TargetInfo &Target = CGM.getTarget();
1022   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1023 }
1024 
1025 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1026                                                  const CPUSpecificAttr *Attr,
1027                                                  unsigned CPUIndex,
1028                                                  raw_ostream &Out) {
1029   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1030   // supported.
1031   if (Attr)
1032     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1033   else if (CGM.getTarget().supportsIFunc())
1034     Out << ".resolver";
1035 }
1036 
1037 static void AppendTargetMangling(const CodeGenModule &CGM,
1038                                  const TargetAttr *Attr, raw_ostream &Out) {
1039   if (Attr->isDefaultVersion())
1040     return;
1041 
1042   Out << '.';
1043   const TargetInfo &Target = CGM.getTarget();
1044   ParsedTargetAttr Info =
1045       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1046         // Multiversioning doesn't allow "no-${feature}", so we can
1047         // only have "+" prefixes here.
1048         assert(LHS.startswith("+") && RHS.startswith("+") &&
1049                "Features should always have a prefix.");
1050         return Target.multiVersionSortPriority(LHS.substr(1)) >
1051                Target.multiVersionSortPriority(RHS.substr(1));
1052       });
1053 
1054   bool IsFirst = true;
1055 
1056   if (!Info.Architecture.empty()) {
1057     IsFirst = false;
1058     Out << "arch_" << Info.Architecture;
1059   }
1060 
1061   for (StringRef Feat : Info.Features) {
1062     if (!IsFirst)
1063       Out << '_';
1064     IsFirst = false;
1065     Out << Feat.substr(1);
1066   }
1067 }
1068 
1069 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1070                                       const NamedDecl *ND,
1071                                       bool OmitMultiVersionMangling = false) {
1072   SmallString<256> Buffer;
1073   llvm::raw_svector_ostream Out(Buffer);
1074   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1075   if (MC.shouldMangleDeclName(ND))
1076     MC.mangleName(GD.getWithDecl(ND), Out);
1077   else {
1078     IdentifierInfo *II = ND->getIdentifier();
1079     assert(II && "Attempt to mangle unnamed decl.");
1080     const auto *FD = dyn_cast<FunctionDecl>(ND);
1081 
1082     if (FD &&
1083         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1084       Out << "__regcall3__" << II->getName();
1085     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1086                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1087       Out << "__device_stub__" << II->getName();
1088     } else {
1089       Out << II->getName();
1090     }
1091   }
1092 
1093   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1094     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1095       switch (FD->getMultiVersionKind()) {
1096       case MultiVersionKind::CPUDispatch:
1097       case MultiVersionKind::CPUSpecific:
1098         AppendCPUSpecificCPUDispatchMangling(CGM,
1099                                              FD->getAttr<CPUSpecificAttr>(),
1100                                              GD.getMultiVersionIndex(), Out);
1101         break;
1102       case MultiVersionKind::Target:
1103         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1104         break;
1105       case MultiVersionKind::None:
1106         llvm_unreachable("None multiversion type isn't valid here");
1107       }
1108     }
1109 
1110   return std::string(Out.str());
1111 }
1112 
1113 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1114                                             const FunctionDecl *FD) {
1115   if (!FD->isMultiVersion())
1116     return;
1117 
1118   // Get the name of what this would be without the 'target' attribute.  This
1119   // allows us to lookup the version that was emitted when this wasn't a
1120   // multiversion function.
1121   std::string NonTargetName =
1122       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1123   GlobalDecl OtherGD;
1124   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1125     assert(OtherGD.getCanonicalDecl()
1126                .getDecl()
1127                ->getAsFunction()
1128                ->isMultiVersion() &&
1129            "Other GD should now be a multiversioned function");
1130     // OtherFD is the version of this function that was mangled BEFORE
1131     // becoming a MultiVersion function.  It potentially needs to be updated.
1132     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1133                                       .getDecl()
1134                                       ->getAsFunction()
1135                                       ->getMostRecentDecl();
1136     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1137     // This is so that if the initial version was already the 'default'
1138     // version, we don't try to update it.
1139     if (OtherName != NonTargetName) {
1140       // Remove instead of erase, since others may have stored the StringRef
1141       // to this.
1142       const auto ExistingRecord = Manglings.find(NonTargetName);
1143       if (ExistingRecord != std::end(Manglings))
1144         Manglings.remove(&(*ExistingRecord));
1145       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1146       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1147       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1148         Entry->setName(OtherName);
1149     }
1150   }
1151 }
1152 
1153 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1154   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1155 
1156   // Some ABIs don't have constructor variants.  Make sure that base and
1157   // complete constructors get mangled the same.
1158   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1159     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1160       CXXCtorType OrigCtorType = GD.getCtorType();
1161       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1162       if (OrigCtorType == Ctor_Base)
1163         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1164     }
1165   }
1166 
1167   auto FoundName = MangledDeclNames.find(CanonicalGD);
1168   if (FoundName != MangledDeclNames.end())
1169     return FoundName->second;
1170 
1171   // Keep the first result in the case of a mangling collision.
1172   const auto *ND = cast<NamedDecl>(GD.getDecl());
1173   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1174 
1175   // Ensure either we have different ABIs between host and device compilations,
1176   // says host compilation following MSVC ABI but device compilation follows
1177   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1178   // mangling should be the same after name stubbing. The later checking is
1179   // very important as the device kernel name being mangled in host-compilation
1180   // is used to resolve the device binaries to be executed. Inconsistent naming
1181   // result in undefined behavior. Even though we cannot check that naming
1182   // directly between host- and device-compilations, the host- and
1183   // device-mangling in host compilation could help catching certain ones.
1184   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1185          getLangOpts().CUDAIsDevice ||
1186          (getContext().getAuxTargetInfo() &&
1187           (getContext().getAuxTargetInfo()->getCXXABI() !=
1188            getContext().getTargetInfo().getCXXABI())) ||
1189          getCUDARuntime().getDeviceSideName(ND) ==
1190              getMangledNameImpl(
1191                  *this,
1192                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1193                  ND));
1194 
1195   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1196   return MangledDeclNames[CanonicalGD] = Result.first->first();
1197 }
1198 
1199 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1200                                              const BlockDecl *BD) {
1201   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1202   const Decl *D = GD.getDecl();
1203 
1204   SmallString<256> Buffer;
1205   llvm::raw_svector_ostream Out(Buffer);
1206   if (!D)
1207     MangleCtx.mangleGlobalBlock(BD,
1208       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1209   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1210     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1211   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1212     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1213   else
1214     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1215 
1216   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1217   return Result.first->first();
1218 }
1219 
1220 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1221   return getModule().getNamedValue(Name);
1222 }
1223 
1224 /// AddGlobalCtor - Add a function to the list that will be called before
1225 /// main() runs.
1226 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1227                                   llvm::Constant *AssociatedData) {
1228   // FIXME: Type coercion of void()* types.
1229   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1230 }
1231 
1232 /// AddGlobalDtor - Add a function to the list that will be called
1233 /// when the module is unloaded.
1234 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1235   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1236     if (getCXXABI().useSinitAndSterm())
1237       llvm::report_fatal_error(
1238           "register global dtors with atexit() is not supported yet");
1239     DtorsUsingAtExit[Priority].push_back(Dtor);
1240     return;
1241   }
1242 
1243   // FIXME: Type coercion of void()* types.
1244   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1245 }
1246 
1247 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1248   if (Fns.empty()) return;
1249 
1250   // Ctor function type is void()*.
1251   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1252   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1253       TheModule.getDataLayout().getProgramAddressSpace());
1254 
1255   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1256   llvm::StructType *CtorStructTy = llvm::StructType::get(
1257       Int32Ty, CtorPFTy, VoidPtrTy);
1258 
1259   // Construct the constructor and destructor arrays.
1260   ConstantInitBuilder builder(*this);
1261   auto ctors = builder.beginArray(CtorStructTy);
1262   for (const auto &I : Fns) {
1263     auto ctor = ctors.beginStruct(CtorStructTy);
1264     ctor.addInt(Int32Ty, I.Priority);
1265     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1266     if (I.AssociatedData)
1267       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1268     else
1269       ctor.addNullPointer(VoidPtrTy);
1270     ctor.finishAndAddTo(ctors);
1271   }
1272 
1273   auto list =
1274     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1275                                 /*constant*/ false,
1276                                 llvm::GlobalValue::AppendingLinkage);
1277 
1278   // The LTO linker doesn't seem to like it when we set an alignment
1279   // on appending variables.  Take it off as a workaround.
1280   list->setAlignment(llvm::None);
1281 
1282   Fns.clear();
1283 }
1284 
1285 llvm::GlobalValue::LinkageTypes
1286 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1287   const auto *D = cast<FunctionDecl>(GD.getDecl());
1288 
1289   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1290 
1291   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1292     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1293 
1294   if (isa<CXXConstructorDecl>(D) &&
1295       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1296       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1297     // Our approach to inheriting constructors is fundamentally different from
1298     // that used by the MS ABI, so keep our inheriting constructor thunks
1299     // internal rather than trying to pick an unambiguous mangling for them.
1300     return llvm::GlobalValue::InternalLinkage;
1301   }
1302 
1303   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1304 }
1305 
1306 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1307   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1308   if (!MDS) return nullptr;
1309 
1310   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1311 }
1312 
1313 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1314                                               const CGFunctionInfo &Info,
1315                                               llvm::Function *F) {
1316   unsigned CallingConv;
1317   llvm::AttributeList PAL;
1318   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1319   F->setAttributes(PAL);
1320   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1321 }
1322 
1323 static void removeImageAccessQualifier(std::string& TyName) {
1324   std::string ReadOnlyQual("__read_only");
1325   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1326   if (ReadOnlyPos != std::string::npos)
1327     // "+ 1" for the space after access qualifier.
1328     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1329   else {
1330     std::string WriteOnlyQual("__write_only");
1331     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1332     if (WriteOnlyPos != std::string::npos)
1333       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1334     else {
1335       std::string ReadWriteQual("__read_write");
1336       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1337       if (ReadWritePos != std::string::npos)
1338         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1339     }
1340   }
1341 }
1342 
1343 // Returns the address space id that should be produced to the
1344 // kernel_arg_addr_space metadata. This is always fixed to the ids
1345 // as specified in the SPIR 2.0 specification in order to differentiate
1346 // for example in clGetKernelArgInfo() implementation between the address
1347 // spaces with targets without unique mapping to the OpenCL address spaces
1348 // (basically all single AS CPUs).
1349 static unsigned ArgInfoAddressSpace(LangAS AS) {
1350   switch (AS) {
1351   case LangAS::opencl_global:
1352     return 1;
1353   case LangAS::opencl_constant:
1354     return 2;
1355   case LangAS::opencl_local:
1356     return 3;
1357   case LangAS::opencl_generic:
1358     return 4; // Not in SPIR 2.0 specs.
1359   case LangAS::opencl_global_device:
1360     return 5;
1361   case LangAS::opencl_global_host:
1362     return 6;
1363   default:
1364     return 0; // Assume private.
1365   }
1366 }
1367 
1368 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1369                                          const FunctionDecl *FD,
1370                                          CodeGenFunction *CGF) {
1371   assert(((FD && CGF) || (!FD && !CGF)) &&
1372          "Incorrect use - FD and CGF should either be both null or not!");
1373   // Create MDNodes that represent the kernel arg metadata.
1374   // Each MDNode is a list in the form of "key", N number of values which is
1375   // the same number of values as their are kernel arguments.
1376 
1377   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1378 
1379   // MDNode for the kernel argument address space qualifiers.
1380   SmallVector<llvm::Metadata *, 8> addressQuals;
1381 
1382   // MDNode for the kernel argument access qualifiers (images only).
1383   SmallVector<llvm::Metadata *, 8> accessQuals;
1384 
1385   // MDNode for the kernel argument type names.
1386   SmallVector<llvm::Metadata *, 8> argTypeNames;
1387 
1388   // MDNode for the kernel argument base type names.
1389   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1390 
1391   // MDNode for the kernel argument type qualifiers.
1392   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1393 
1394   // MDNode for the kernel argument names.
1395   SmallVector<llvm::Metadata *, 8> argNames;
1396 
1397   if (FD && CGF)
1398     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1399       const ParmVarDecl *parm = FD->getParamDecl(i);
1400       QualType ty = parm->getType();
1401       std::string typeQuals;
1402 
1403       if (ty->isPointerType()) {
1404         QualType pointeeTy = ty->getPointeeType();
1405 
1406         // Get address qualifier.
1407         addressQuals.push_back(
1408             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1409                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1410 
1411         // Get argument type name.
1412         std::string typeName =
1413             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1414 
1415         // Turn "unsigned type" to "utype"
1416         std::string::size_type pos = typeName.find("unsigned");
1417         if (pointeeTy.isCanonical() && pos != std::string::npos)
1418           typeName.erase(pos + 1, 8);
1419 
1420         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1421 
1422         std::string baseTypeName =
1423             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1424                 Policy) +
1425             "*";
1426 
1427         // Turn "unsigned type" to "utype"
1428         pos = baseTypeName.find("unsigned");
1429         if (pos != std::string::npos)
1430           baseTypeName.erase(pos + 1, 8);
1431 
1432         argBaseTypeNames.push_back(
1433             llvm::MDString::get(VMContext, baseTypeName));
1434 
1435         // Get argument type qualifiers:
1436         if (ty.isRestrictQualified())
1437           typeQuals = "restrict";
1438         if (pointeeTy.isConstQualified() ||
1439             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1440           typeQuals += typeQuals.empty() ? "const" : " const";
1441         if (pointeeTy.isVolatileQualified())
1442           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1443       } else {
1444         uint32_t AddrSpc = 0;
1445         bool isPipe = ty->isPipeType();
1446         if (ty->isImageType() || isPipe)
1447           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1448 
1449         addressQuals.push_back(
1450             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1451 
1452         // Get argument type name.
1453         std::string typeName;
1454         if (isPipe)
1455           typeName = ty.getCanonicalType()
1456                          ->castAs<PipeType>()
1457                          ->getElementType()
1458                          .getAsString(Policy);
1459         else
1460           typeName = ty.getUnqualifiedType().getAsString(Policy);
1461 
1462         // Turn "unsigned type" to "utype"
1463         std::string::size_type pos = typeName.find("unsigned");
1464         if (ty.isCanonical() && pos != std::string::npos)
1465           typeName.erase(pos + 1, 8);
1466 
1467         std::string baseTypeName;
1468         if (isPipe)
1469           baseTypeName = ty.getCanonicalType()
1470                              ->castAs<PipeType>()
1471                              ->getElementType()
1472                              .getCanonicalType()
1473                              .getAsString(Policy);
1474         else
1475           baseTypeName =
1476               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1477 
1478         // Remove access qualifiers on images
1479         // (as they are inseparable from type in clang implementation,
1480         // but OpenCL spec provides a special query to get access qualifier
1481         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1482         if (ty->isImageType()) {
1483           removeImageAccessQualifier(typeName);
1484           removeImageAccessQualifier(baseTypeName);
1485         }
1486 
1487         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1488 
1489         // Turn "unsigned type" to "utype"
1490         pos = baseTypeName.find("unsigned");
1491         if (pos != std::string::npos)
1492           baseTypeName.erase(pos + 1, 8);
1493 
1494         argBaseTypeNames.push_back(
1495             llvm::MDString::get(VMContext, baseTypeName));
1496 
1497         if (isPipe)
1498           typeQuals = "pipe";
1499       }
1500 
1501       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1502 
1503       // Get image and pipe access qualifier:
1504       if (ty->isImageType() || ty->isPipeType()) {
1505         const Decl *PDecl = parm;
1506         if (auto *TD = dyn_cast<TypedefType>(ty))
1507           PDecl = TD->getDecl();
1508         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1509         if (A && A->isWriteOnly())
1510           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1511         else if (A && A->isReadWrite())
1512           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1513         else
1514           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1515       } else
1516         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1517 
1518       // Get argument name.
1519       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1520     }
1521 
1522   Fn->setMetadata("kernel_arg_addr_space",
1523                   llvm::MDNode::get(VMContext, addressQuals));
1524   Fn->setMetadata("kernel_arg_access_qual",
1525                   llvm::MDNode::get(VMContext, accessQuals));
1526   Fn->setMetadata("kernel_arg_type",
1527                   llvm::MDNode::get(VMContext, argTypeNames));
1528   Fn->setMetadata("kernel_arg_base_type",
1529                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1530   Fn->setMetadata("kernel_arg_type_qual",
1531                   llvm::MDNode::get(VMContext, argTypeQuals));
1532   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1533     Fn->setMetadata("kernel_arg_name",
1534                     llvm::MDNode::get(VMContext, argNames));
1535 }
1536 
1537 /// Determines whether the language options require us to model
1538 /// unwind exceptions.  We treat -fexceptions as mandating this
1539 /// except under the fragile ObjC ABI with only ObjC exceptions
1540 /// enabled.  This means, for example, that C with -fexceptions
1541 /// enables this.
1542 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1543   // If exceptions are completely disabled, obviously this is false.
1544   if (!LangOpts.Exceptions) return false;
1545 
1546   // If C++ exceptions are enabled, this is true.
1547   if (LangOpts.CXXExceptions) return true;
1548 
1549   // If ObjC exceptions are enabled, this depends on the ABI.
1550   if (LangOpts.ObjCExceptions) {
1551     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1552   }
1553 
1554   return true;
1555 }
1556 
1557 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1558                                                       const CXXMethodDecl *MD) {
1559   // Check that the type metadata can ever actually be used by a call.
1560   if (!CGM.getCodeGenOpts().LTOUnit ||
1561       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1562     return false;
1563 
1564   // Only functions whose address can be taken with a member function pointer
1565   // need this sort of type metadata.
1566   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1567          !isa<CXXDestructorDecl>(MD);
1568 }
1569 
1570 std::vector<const CXXRecordDecl *>
1571 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1572   llvm::SetVector<const CXXRecordDecl *> MostBases;
1573 
1574   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1575   CollectMostBases = [&](const CXXRecordDecl *RD) {
1576     if (RD->getNumBases() == 0)
1577       MostBases.insert(RD);
1578     for (const CXXBaseSpecifier &B : RD->bases())
1579       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1580   };
1581   CollectMostBases(RD);
1582   return MostBases.takeVector();
1583 }
1584 
1585 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1586                                                            llvm::Function *F) {
1587   llvm::AttrBuilder B;
1588 
1589   if (CodeGenOpts.UnwindTables)
1590     B.addAttribute(llvm::Attribute::UWTable);
1591 
1592   if (CodeGenOpts.StackClashProtector)
1593     B.addAttribute("probe-stack", "inline-asm");
1594 
1595   if (!hasUnwindExceptions(LangOpts))
1596     B.addAttribute(llvm::Attribute::NoUnwind);
1597 
1598   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1599     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1600       B.addAttribute(llvm::Attribute::StackProtect);
1601     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1602       B.addAttribute(llvm::Attribute::StackProtectStrong);
1603     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1604       B.addAttribute(llvm::Attribute::StackProtectReq);
1605   }
1606 
1607   if (!D) {
1608     // If we don't have a declaration to control inlining, the function isn't
1609     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1610     // disabled, mark the function as noinline.
1611     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1612         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1613       B.addAttribute(llvm::Attribute::NoInline);
1614 
1615     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1616     return;
1617   }
1618 
1619   // Track whether we need to add the optnone LLVM attribute,
1620   // starting with the default for this optimization level.
1621   bool ShouldAddOptNone =
1622       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1623   // We can't add optnone in the following cases, it won't pass the verifier.
1624   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1625   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1626 
1627   // Add optnone, but do so only if the function isn't always_inline.
1628   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1629       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1630     B.addAttribute(llvm::Attribute::OptimizeNone);
1631 
1632     // OptimizeNone implies noinline; we should not be inlining such functions.
1633     B.addAttribute(llvm::Attribute::NoInline);
1634 
1635     // We still need to handle naked functions even though optnone subsumes
1636     // much of their semantics.
1637     if (D->hasAttr<NakedAttr>())
1638       B.addAttribute(llvm::Attribute::Naked);
1639 
1640     // OptimizeNone wins over OptimizeForSize and MinSize.
1641     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1642     F->removeFnAttr(llvm::Attribute::MinSize);
1643   } else if (D->hasAttr<NakedAttr>()) {
1644     // Naked implies noinline: we should not be inlining such functions.
1645     B.addAttribute(llvm::Attribute::Naked);
1646     B.addAttribute(llvm::Attribute::NoInline);
1647   } else if (D->hasAttr<NoDuplicateAttr>()) {
1648     B.addAttribute(llvm::Attribute::NoDuplicate);
1649   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1650     // Add noinline if the function isn't always_inline.
1651     B.addAttribute(llvm::Attribute::NoInline);
1652   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1653              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1654     // (noinline wins over always_inline, and we can't specify both in IR)
1655     B.addAttribute(llvm::Attribute::AlwaysInline);
1656   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1657     // If we're not inlining, then force everything that isn't always_inline to
1658     // carry an explicit noinline attribute.
1659     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1660       B.addAttribute(llvm::Attribute::NoInline);
1661   } else {
1662     // Otherwise, propagate the inline hint attribute and potentially use its
1663     // absence to mark things as noinline.
1664     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1665       // Search function and template pattern redeclarations for inline.
1666       auto CheckForInline = [](const FunctionDecl *FD) {
1667         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1668           return Redecl->isInlineSpecified();
1669         };
1670         if (any_of(FD->redecls(), CheckRedeclForInline))
1671           return true;
1672         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1673         if (!Pattern)
1674           return false;
1675         return any_of(Pattern->redecls(), CheckRedeclForInline);
1676       };
1677       if (CheckForInline(FD)) {
1678         B.addAttribute(llvm::Attribute::InlineHint);
1679       } else if (CodeGenOpts.getInlining() ==
1680                      CodeGenOptions::OnlyHintInlining &&
1681                  !FD->isInlined() &&
1682                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1683         B.addAttribute(llvm::Attribute::NoInline);
1684       }
1685     }
1686   }
1687 
1688   // Add other optimization related attributes if we are optimizing this
1689   // function.
1690   if (!D->hasAttr<OptimizeNoneAttr>()) {
1691     if (D->hasAttr<ColdAttr>()) {
1692       if (!ShouldAddOptNone)
1693         B.addAttribute(llvm::Attribute::OptimizeForSize);
1694       B.addAttribute(llvm::Attribute::Cold);
1695     }
1696 
1697     if (D->hasAttr<MinSizeAttr>())
1698       B.addAttribute(llvm::Attribute::MinSize);
1699 
1700     if (CodeGenOpts.SplitColdCode)
1701       B.addAttribute(llvm::getHotColdSplittingAttrKind());
1702   }
1703 
1704   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1705 
1706   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1707   if (alignment)
1708     F->setAlignment(llvm::Align(alignment));
1709 
1710   if (!D->hasAttr<AlignedAttr>())
1711     if (LangOpts.FunctionAlignment)
1712       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1713 
1714   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1715   // reserve a bit for differentiating between virtual and non-virtual member
1716   // functions. If the current target's C++ ABI requires this and this is a
1717   // member function, set its alignment accordingly.
1718   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1719     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1720       F->setAlignment(llvm::Align(2));
1721   }
1722 
1723   // In the cross-dso CFI mode with canonical jump tables, we want !type
1724   // attributes on definitions only.
1725   if (CodeGenOpts.SanitizeCfiCrossDso &&
1726       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1727     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1728       // Skip available_externally functions. They won't be codegen'ed in the
1729       // current module anyway.
1730       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1731         CreateFunctionTypeMetadataForIcall(FD, F);
1732     }
1733   }
1734 
1735   // Emit type metadata on member functions for member function pointer checks.
1736   // These are only ever necessary on definitions; we're guaranteed that the
1737   // definition will be present in the LTO unit as a result of LTO visibility.
1738   auto *MD = dyn_cast<CXXMethodDecl>(D);
1739   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1740     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1741       llvm::Metadata *Id =
1742           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1743               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1744       F->addTypeMetadata(0, Id);
1745     }
1746   }
1747 }
1748 
1749 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1750   const Decl *D = GD.getDecl();
1751   if (dyn_cast_or_null<NamedDecl>(D))
1752     setGVProperties(GV, GD);
1753   else
1754     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1755 
1756   if (D && D->hasAttr<UsedAttr>())
1757     addUsedGlobal(GV);
1758 
1759   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1760     const auto *VD = cast<VarDecl>(D);
1761     if (VD->getType().isConstQualified() &&
1762         VD->getStorageDuration() == SD_Static)
1763       addUsedGlobal(GV);
1764   }
1765 }
1766 
1767 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1768                                                 llvm::AttrBuilder &Attrs) {
1769   // Add target-cpu and target-features attributes to functions. If
1770   // we have a decl for the function and it has a target attribute then
1771   // parse that and add it to the feature set.
1772   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1773   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1774   std::vector<std::string> Features;
1775   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1776   FD = FD ? FD->getMostRecentDecl() : FD;
1777   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1778   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1779   bool AddedAttr = false;
1780   if (TD || SD) {
1781     llvm::StringMap<bool> FeatureMap;
1782     getContext().getFunctionFeatureMap(FeatureMap, GD);
1783 
1784     // Produce the canonical string for this set of features.
1785     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1786       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1787 
1788     // Now add the target-cpu and target-features to the function.
1789     // While we populated the feature map above, we still need to
1790     // get and parse the target attribute so we can get the cpu for
1791     // the function.
1792     if (TD) {
1793       ParsedTargetAttr ParsedAttr = TD->parse();
1794       if (!ParsedAttr.Architecture.empty() &&
1795           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1796         TargetCPU = ParsedAttr.Architecture;
1797         TuneCPU = ""; // Clear the tune CPU.
1798       }
1799       if (!ParsedAttr.Tune.empty() &&
1800           getTarget().isValidCPUName(ParsedAttr.Tune))
1801         TuneCPU = ParsedAttr.Tune;
1802     }
1803   } else {
1804     // Otherwise just add the existing target cpu and target features to the
1805     // function.
1806     Features = getTarget().getTargetOpts().Features;
1807   }
1808 
1809   if (!TargetCPU.empty()) {
1810     Attrs.addAttribute("target-cpu", TargetCPU);
1811     AddedAttr = true;
1812   }
1813   if (!TuneCPU.empty()) {
1814     Attrs.addAttribute("tune-cpu", TuneCPU);
1815     AddedAttr = true;
1816   }
1817   if (!Features.empty()) {
1818     llvm::sort(Features);
1819     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1820     AddedAttr = true;
1821   }
1822 
1823   return AddedAttr;
1824 }
1825 
1826 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1827                                           llvm::GlobalObject *GO) {
1828   const Decl *D = GD.getDecl();
1829   SetCommonAttributes(GD, GO);
1830 
1831   if (D) {
1832     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1833       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1834         GV->addAttribute("bss-section", SA->getName());
1835       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1836         GV->addAttribute("data-section", SA->getName());
1837       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1838         GV->addAttribute("rodata-section", SA->getName());
1839       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1840         GV->addAttribute("relro-section", SA->getName());
1841     }
1842 
1843     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1844       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1845         if (!D->getAttr<SectionAttr>())
1846           F->addFnAttr("implicit-section-name", SA->getName());
1847 
1848       llvm::AttrBuilder Attrs;
1849       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1850         // We know that GetCPUAndFeaturesAttributes will always have the
1851         // newest set, since it has the newest possible FunctionDecl, so the
1852         // new ones should replace the old.
1853         llvm::AttrBuilder RemoveAttrs;
1854         RemoveAttrs.addAttribute("target-cpu");
1855         RemoveAttrs.addAttribute("target-features");
1856         RemoveAttrs.addAttribute("tune-cpu");
1857         F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
1858         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1859       }
1860     }
1861 
1862     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1863       GO->setSection(CSA->getName());
1864     else if (const auto *SA = D->getAttr<SectionAttr>())
1865       GO->setSection(SA->getName());
1866   }
1867 
1868   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1869 }
1870 
1871 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1872                                                   llvm::Function *F,
1873                                                   const CGFunctionInfo &FI) {
1874   const Decl *D = GD.getDecl();
1875   SetLLVMFunctionAttributes(GD, FI, F);
1876   SetLLVMFunctionAttributesForDefinition(D, F);
1877 
1878   F->setLinkage(llvm::Function::InternalLinkage);
1879 
1880   setNonAliasAttributes(GD, F);
1881 }
1882 
1883 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1884   // Set linkage and visibility in case we never see a definition.
1885   LinkageInfo LV = ND->getLinkageAndVisibility();
1886   // Don't set internal linkage on declarations.
1887   // "extern_weak" is overloaded in LLVM; we probably should have
1888   // separate linkage types for this.
1889   if (isExternallyVisible(LV.getLinkage()) &&
1890       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1891     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1892 }
1893 
1894 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1895                                                        llvm::Function *F) {
1896   // Only if we are checking indirect calls.
1897   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1898     return;
1899 
1900   // Non-static class methods are handled via vtable or member function pointer
1901   // checks elsewhere.
1902   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1903     return;
1904 
1905   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1906   F->addTypeMetadata(0, MD);
1907   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1908 
1909   // Emit a hash-based bit set entry for cross-DSO calls.
1910   if (CodeGenOpts.SanitizeCfiCrossDso)
1911     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1912       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1913 }
1914 
1915 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1916                                           bool IsIncompleteFunction,
1917                                           bool IsThunk) {
1918 
1919   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1920     // If this is an intrinsic function, set the function's attributes
1921     // to the intrinsic's attributes.
1922     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1923     return;
1924   }
1925 
1926   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1927 
1928   if (!IsIncompleteFunction)
1929     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1930 
1931   // Add the Returned attribute for "this", except for iOS 5 and earlier
1932   // where substantial code, including the libstdc++ dylib, was compiled with
1933   // GCC and does not actually return "this".
1934   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1935       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1936     assert(!F->arg_empty() &&
1937            F->arg_begin()->getType()
1938              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1939            "unexpected this return");
1940     F->addAttribute(1, llvm::Attribute::Returned);
1941   }
1942 
1943   // Only a few attributes are set on declarations; these may later be
1944   // overridden by a definition.
1945 
1946   setLinkageForGV(F, FD);
1947   setGVProperties(F, FD);
1948 
1949   // Setup target-specific attributes.
1950   if (!IsIncompleteFunction && F->isDeclaration())
1951     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1952 
1953   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1954     F->setSection(CSA->getName());
1955   else if (const auto *SA = FD->getAttr<SectionAttr>())
1956      F->setSection(SA->getName());
1957 
1958   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
1959   if (FD->isInlineBuiltinDeclaration()) {
1960     const FunctionDecl *FDBody;
1961     bool HasBody = FD->hasBody(FDBody);
1962     (void)HasBody;
1963     assert(HasBody && "Inline builtin declarations should always have an "
1964                       "available body!");
1965     if (shouldEmitFunction(FDBody))
1966       F->addAttribute(llvm::AttributeList::FunctionIndex,
1967                       llvm::Attribute::NoBuiltin);
1968   }
1969 
1970   if (FD->isReplaceableGlobalAllocationFunction()) {
1971     // A replaceable global allocation function does not act like a builtin by
1972     // default, only if it is invoked by a new-expression or delete-expression.
1973     F->addAttribute(llvm::AttributeList::FunctionIndex,
1974                     llvm::Attribute::NoBuiltin);
1975   }
1976 
1977   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1978     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1979   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1980     if (MD->isVirtual())
1981       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1982 
1983   // Don't emit entries for function declarations in the cross-DSO mode. This
1984   // is handled with better precision by the receiving DSO. But if jump tables
1985   // are non-canonical then we need type metadata in order to produce the local
1986   // jump table.
1987   if (!CodeGenOpts.SanitizeCfiCrossDso ||
1988       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1989     CreateFunctionTypeMetadataForIcall(FD, F);
1990 
1991   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1992     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1993 
1994   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1995     // Annotate the callback behavior as metadata:
1996     //  - The callback callee (as argument number).
1997     //  - The callback payloads (as argument numbers).
1998     llvm::LLVMContext &Ctx = F->getContext();
1999     llvm::MDBuilder MDB(Ctx);
2000 
2001     // The payload indices are all but the first one in the encoding. The first
2002     // identifies the callback callee.
2003     int CalleeIdx = *CB->encoding_begin();
2004     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2005     F->addMetadata(llvm::LLVMContext::MD_callback,
2006                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2007                                                CalleeIdx, PayloadIndices,
2008                                                /* VarArgsArePassed */ false)}));
2009   }
2010 }
2011 
2012 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2013   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2014          "Only globals with definition can force usage.");
2015   LLVMUsed.emplace_back(GV);
2016 }
2017 
2018 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2019   assert(!GV->isDeclaration() &&
2020          "Only globals with definition can force usage.");
2021   LLVMCompilerUsed.emplace_back(GV);
2022 }
2023 
2024 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2025                      std::vector<llvm::WeakTrackingVH> &List) {
2026   // Don't create llvm.used if there is no need.
2027   if (List.empty())
2028     return;
2029 
2030   // Convert List to what ConstantArray needs.
2031   SmallVector<llvm::Constant*, 8> UsedArray;
2032   UsedArray.resize(List.size());
2033   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2034     UsedArray[i] =
2035         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2036             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2037   }
2038 
2039   if (UsedArray.empty())
2040     return;
2041   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2042 
2043   auto *GV = new llvm::GlobalVariable(
2044       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2045       llvm::ConstantArray::get(ATy, UsedArray), Name);
2046 
2047   GV->setSection("llvm.metadata");
2048 }
2049 
2050 void CodeGenModule::emitLLVMUsed() {
2051   emitUsed(*this, "llvm.used", LLVMUsed);
2052   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2053 }
2054 
2055 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2056   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2057   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2058 }
2059 
2060 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2061   llvm::SmallString<32> Opt;
2062   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2063   if (Opt.empty())
2064     return;
2065   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2066   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2067 }
2068 
2069 void CodeGenModule::AddDependentLib(StringRef Lib) {
2070   auto &C = getLLVMContext();
2071   if (getTarget().getTriple().isOSBinFormatELF()) {
2072       ELFDependentLibraries.push_back(
2073         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2074     return;
2075   }
2076 
2077   llvm::SmallString<24> Opt;
2078   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2079   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2080   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2081 }
2082 
2083 /// Add link options implied by the given module, including modules
2084 /// it depends on, using a postorder walk.
2085 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2086                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2087                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2088   // Import this module's parent.
2089   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2090     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2091   }
2092 
2093   // Import this module's dependencies.
2094   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2095     if (Visited.insert(Mod->Imports[I - 1]).second)
2096       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2097   }
2098 
2099   // Add linker options to link against the libraries/frameworks
2100   // described by this module.
2101   llvm::LLVMContext &Context = CGM.getLLVMContext();
2102   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2103 
2104   // For modules that use export_as for linking, use that module
2105   // name instead.
2106   if (Mod->UseExportAsModuleLinkName)
2107     return;
2108 
2109   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2110     // Link against a framework.  Frameworks are currently Darwin only, so we
2111     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2112     if (Mod->LinkLibraries[I-1].IsFramework) {
2113       llvm::Metadata *Args[2] = {
2114           llvm::MDString::get(Context, "-framework"),
2115           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2116 
2117       Metadata.push_back(llvm::MDNode::get(Context, Args));
2118       continue;
2119     }
2120 
2121     // Link against a library.
2122     if (IsELF) {
2123       llvm::Metadata *Args[2] = {
2124           llvm::MDString::get(Context, "lib"),
2125           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2126       };
2127       Metadata.push_back(llvm::MDNode::get(Context, Args));
2128     } else {
2129       llvm::SmallString<24> Opt;
2130       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2131           Mod->LinkLibraries[I - 1].Library, Opt);
2132       auto *OptString = llvm::MDString::get(Context, Opt);
2133       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2134     }
2135   }
2136 }
2137 
2138 void CodeGenModule::EmitModuleLinkOptions() {
2139   // Collect the set of all of the modules we want to visit to emit link
2140   // options, which is essentially the imported modules and all of their
2141   // non-explicit child modules.
2142   llvm::SetVector<clang::Module *> LinkModules;
2143   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2144   SmallVector<clang::Module *, 16> Stack;
2145 
2146   // Seed the stack with imported modules.
2147   for (Module *M : ImportedModules) {
2148     // Do not add any link flags when an implementation TU of a module imports
2149     // a header of that same module.
2150     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2151         !getLangOpts().isCompilingModule())
2152       continue;
2153     if (Visited.insert(M).second)
2154       Stack.push_back(M);
2155   }
2156 
2157   // Find all of the modules to import, making a little effort to prune
2158   // non-leaf modules.
2159   while (!Stack.empty()) {
2160     clang::Module *Mod = Stack.pop_back_val();
2161 
2162     bool AnyChildren = false;
2163 
2164     // Visit the submodules of this module.
2165     for (const auto &SM : Mod->submodules()) {
2166       // Skip explicit children; they need to be explicitly imported to be
2167       // linked against.
2168       if (SM->IsExplicit)
2169         continue;
2170 
2171       if (Visited.insert(SM).second) {
2172         Stack.push_back(SM);
2173         AnyChildren = true;
2174       }
2175     }
2176 
2177     // We didn't find any children, so add this module to the list of
2178     // modules to link against.
2179     if (!AnyChildren) {
2180       LinkModules.insert(Mod);
2181     }
2182   }
2183 
2184   // Add link options for all of the imported modules in reverse topological
2185   // order.  We don't do anything to try to order import link flags with respect
2186   // to linker options inserted by things like #pragma comment().
2187   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2188   Visited.clear();
2189   for (Module *M : LinkModules)
2190     if (Visited.insert(M).second)
2191       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2192   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2193   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2194 
2195   // Add the linker options metadata flag.
2196   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2197   for (auto *MD : LinkerOptionsMetadata)
2198     NMD->addOperand(MD);
2199 }
2200 
2201 void CodeGenModule::EmitDeferred() {
2202   // Emit deferred declare target declarations.
2203   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2204     getOpenMPRuntime().emitDeferredTargetDecls();
2205 
2206   // Emit code for any potentially referenced deferred decls.  Since a
2207   // previously unused static decl may become used during the generation of code
2208   // for a static function, iterate until no changes are made.
2209 
2210   if (!DeferredVTables.empty()) {
2211     EmitDeferredVTables();
2212 
2213     // Emitting a vtable doesn't directly cause more vtables to
2214     // become deferred, although it can cause functions to be
2215     // emitted that then need those vtables.
2216     assert(DeferredVTables.empty());
2217   }
2218 
2219   // Emit CUDA/HIP static device variables referenced by host code only.
2220   if (getLangOpts().CUDA)
2221     for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost)
2222       DeferredDeclsToEmit.push_back(V);
2223 
2224   // Stop if we're out of both deferred vtables and deferred declarations.
2225   if (DeferredDeclsToEmit.empty())
2226     return;
2227 
2228   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2229   // work, it will not interfere with this.
2230   std::vector<GlobalDecl> CurDeclsToEmit;
2231   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2232 
2233   for (GlobalDecl &D : CurDeclsToEmit) {
2234     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2235     // to get GlobalValue with exactly the type we need, not something that
2236     // might had been created for another decl with the same mangled name but
2237     // different type.
2238     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2239         GetAddrOfGlobal(D, ForDefinition));
2240 
2241     // In case of different address spaces, we may still get a cast, even with
2242     // IsForDefinition equal to true. Query mangled names table to get
2243     // GlobalValue.
2244     if (!GV)
2245       GV = GetGlobalValue(getMangledName(D));
2246 
2247     // Make sure GetGlobalValue returned non-null.
2248     assert(GV);
2249 
2250     // Check to see if we've already emitted this.  This is necessary
2251     // for a couple of reasons: first, decls can end up in the
2252     // deferred-decls queue multiple times, and second, decls can end
2253     // up with definitions in unusual ways (e.g. by an extern inline
2254     // function acquiring a strong function redefinition).  Just
2255     // ignore these cases.
2256     if (!GV->isDeclaration())
2257       continue;
2258 
2259     // If this is OpenMP, check if it is legal to emit this global normally.
2260     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2261       continue;
2262 
2263     // Otherwise, emit the definition and move on to the next one.
2264     EmitGlobalDefinition(D, GV);
2265 
2266     // If we found out that we need to emit more decls, do that recursively.
2267     // This has the advantage that the decls are emitted in a DFS and related
2268     // ones are close together, which is convenient for testing.
2269     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2270       EmitDeferred();
2271       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2272     }
2273   }
2274 }
2275 
2276 void CodeGenModule::EmitVTablesOpportunistically() {
2277   // Try to emit external vtables as available_externally if they have emitted
2278   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2279   // is not allowed to create new references to things that need to be emitted
2280   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2281 
2282   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2283          && "Only emit opportunistic vtables with optimizations");
2284 
2285   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2286     assert(getVTables().isVTableExternal(RD) &&
2287            "This queue should only contain external vtables");
2288     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2289       VTables.GenerateClassData(RD);
2290   }
2291   OpportunisticVTables.clear();
2292 }
2293 
2294 void CodeGenModule::EmitGlobalAnnotations() {
2295   if (Annotations.empty())
2296     return;
2297 
2298   // Create a new global variable for the ConstantStruct in the Module.
2299   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2300     Annotations[0]->getType(), Annotations.size()), Annotations);
2301   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2302                                       llvm::GlobalValue::AppendingLinkage,
2303                                       Array, "llvm.global.annotations");
2304   gv->setSection(AnnotationSection);
2305 }
2306 
2307 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2308   llvm::Constant *&AStr = AnnotationStrings[Str];
2309   if (AStr)
2310     return AStr;
2311 
2312   // Not found yet, create a new global.
2313   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2314   auto *gv =
2315       new llvm::GlobalVariable(getModule(), s->getType(), true,
2316                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2317   gv->setSection(AnnotationSection);
2318   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2319   AStr = gv;
2320   return gv;
2321 }
2322 
2323 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2324   SourceManager &SM = getContext().getSourceManager();
2325   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2326   if (PLoc.isValid())
2327     return EmitAnnotationString(PLoc.getFilename());
2328   return EmitAnnotationString(SM.getBufferName(Loc));
2329 }
2330 
2331 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2332   SourceManager &SM = getContext().getSourceManager();
2333   PresumedLoc PLoc = SM.getPresumedLoc(L);
2334   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2335     SM.getExpansionLineNumber(L);
2336   return llvm::ConstantInt::get(Int32Ty, LineNo);
2337 }
2338 
2339 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2340                                                 const AnnotateAttr *AA,
2341                                                 SourceLocation L) {
2342   // Get the globals for file name, annotation, and the line number.
2343   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2344                  *UnitGV = EmitAnnotationUnit(L),
2345                  *LineNoCst = EmitAnnotationLineNo(L);
2346 
2347   llvm::Constant *ASZeroGV = GV;
2348   if (GV->getAddressSpace() != 0) {
2349     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2350                    GV, GV->getValueType()->getPointerTo(0));
2351   }
2352 
2353   // Create the ConstantStruct for the global annotation.
2354   llvm::Constant *Fields[4] = {
2355     llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2356     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2357     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2358     LineNoCst
2359   };
2360   return llvm::ConstantStruct::getAnon(Fields);
2361 }
2362 
2363 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2364                                          llvm::GlobalValue *GV) {
2365   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2366   // Get the struct elements for these annotations.
2367   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2368     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2369 }
2370 
2371 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2372                                            llvm::Function *Fn,
2373                                            SourceLocation Loc) const {
2374   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2375   // Blacklist by function name.
2376   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2377     return true;
2378   // Blacklist by location.
2379   if (Loc.isValid())
2380     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2381   // If location is unknown, this may be a compiler-generated function. Assume
2382   // it's located in the main file.
2383   auto &SM = Context.getSourceManager();
2384   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2385     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2386   }
2387   return false;
2388 }
2389 
2390 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2391                                            SourceLocation Loc, QualType Ty,
2392                                            StringRef Category) const {
2393   // For now globals can be blacklisted only in ASan and KASan.
2394   const SanitizerMask EnabledAsanMask =
2395       LangOpts.Sanitize.Mask &
2396       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2397        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2398        SanitizerKind::MemTag);
2399   if (!EnabledAsanMask)
2400     return false;
2401   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2402   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2403     return true;
2404   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2405     return true;
2406   // Check global type.
2407   if (!Ty.isNull()) {
2408     // Drill down the array types: if global variable of a fixed type is
2409     // blacklisted, we also don't instrument arrays of them.
2410     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2411       Ty = AT->getElementType();
2412     Ty = Ty.getCanonicalType().getUnqualifiedType();
2413     // We allow to blacklist only record types (classes, structs etc.)
2414     if (Ty->isRecordType()) {
2415       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2416       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2417         return true;
2418     }
2419   }
2420   return false;
2421 }
2422 
2423 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2424                                    StringRef Category) const {
2425   const auto &XRayFilter = getContext().getXRayFilter();
2426   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2427   auto Attr = ImbueAttr::NONE;
2428   if (Loc.isValid())
2429     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2430   if (Attr == ImbueAttr::NONE)
2431     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2432   switch (Attr) {
2433   case ImbueAttr::NONE:
2434     return false;
2435   case ImbueAttr::ALWAYS:
2436     Fn->addFnAttr("function-instrument", "xray-always");
2437     break;
2438   case ImbueAttr::ALWAYS_ARG1:
2439     Fn->addFnAttr("function-instrument", "xray-always");
2440     Fn->addFnAttr("xray-log-args", "1");
2441     break;
2442   case ImbueAttr::NEVER:
2443     Fn->addFnAttr("function-instrument", "xray-never");
2444     break;
2445   }
2446   return true;
2447 }
2448 
2449 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2450   // Never defer when EmitAllDecls is specified.
2451   if (LangOpts.EmitAllDecls)
2452     return true;
2453 
2454   if (CodeGenOpts.KeepStaticConsts) {
2455     const auto *VD = dyn_cast<VarDecl>(Global);
2456     if (VD && VD->getType().isConstQualified() &&
2457         VD->getStorageDuration() == SD_Static)
2458       return true;
2459   }
2460 
2461   return getContext().DeclMustBeEmitted(Global);
2462 }
2463 
2464 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2465   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2466     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2467       // Implicit template instantiations may change linkage if they are later
2468       // explicitly instantiated, so they should not be emitted eagerly.
2469       return false;
2470     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2471     // not emit them eagerly unless we sure that the function must be emitted on
2472     // the host.
2473     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2474         !LangOpts.OpenMPIsDevice &&
2475         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2476         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2477       return false;
2478   }
2479   if (const auto *VD = dyn_cast<VarDecl>(Global))
2480     if (Context.getInlineVariableDefinitionKind(VD) ==
2481         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2482       // A definition of an inline constexpr static data member may change
2483       // linkage later if it's redeclared outside the class.
2484       return false;
2485   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2486   // codegen for global variables, because they may be marked as threadprivate.
2487   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2488       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2489       !isTypeConstant(Global->getType(), false) &&
2490       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2491     return false;
2492 
2493   return true;
2494 }
2495 
2496 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2497   StringRef Name = getMangledName(GD);
2498 
2499   // The UUID descriptor should be pointer aligned.
2500   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2501 
2502   // Look for an existing global.
2503   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2504     return ConstantAddress(GV, Alignment);
2505 
2506   ConstantEmitter Emitter(*this);
2507   llvm::Constant *Init;
2508 
2509   APValue &V = GD->getAsAPValue();
2510   if (!V.isAbsent()) {
2511     // If possible, emit the APValue version of the initializer. In particular,
2512     // this gets the type of the constant right.
2513     Init = Emitter.emitForInitializer(
2514         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2515   } else {
2516     // As a fallback, directly construct the constant.
2517     // FIXME: This may get padding wrong under esoteric struct layout rules.
2518     // MSVC appears to create a complete type 'struct __s_GUID' that it
2519     // presumably uses to represent these constants.
2520     MSGuidDecl::Parts Parts = GD->getParts();
2521     llvm::Constant *Fields[4] = {
2522         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2523         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2524         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2525         llvm::ConstantDataArray::getRaw(
2526             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2527             Int8Ty)};
2528     Init = llvm::ConstantStruct::getAnon(Fields);
2529   }
2530 
2531   auto *GV = new llvm::GlobalVariable(
2532       getModule(), Init->getType(),
2533       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2534   if (supportsCOMDAT())
2535     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2536   setDSOLocal(GV);
2537 
2538   llvm::Constant *Addr = GV;
2539   if (!V.isAbsent()) {
2540     Emitter.finalize(GV);
2541   } else {
2542     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2543     Addr = llvm::ConstantExpr::getBitCast(
2544         GV, Ty->getPointerTo(GV->getAddressSpace()));
2545   }
2546   return ConstantAddress(Addr, Alignment);
2547 }
2548 
2549 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2550   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2551   assert(AA && "No alias?");
2552 
2553   CharUnits Alignment = getContext().getDeclAlign(VD);
2554   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2555 
2556   // See if there is already something with the target's name in the module.
2557   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2558   if (Entry) {
2559     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2560     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2561     return ConstantAddress(Ptr, Alignment);
2562   }
2563 
2564   llvm::Constant *Aliasee;
2565   if (isa<llvm::FunctionType>(DeclTy))
2566     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2567                                       GlobalDecl(cast<FunctionDecl>(VD)),
2568                                       /*ForVTable=*/false);
2569   else
2570     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2571                                     llvm::PointerType::getUnqual(DeclTy),
2572                                     nullptr);
2573 
2574   auto *F = cast<llvm::GlobalValue>(Aliasee);
2575   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2576   WeakRefReferences.insert(F);
2577 
2578   return ConstantAddress(Aliasee, Alignment);
2579 }
2580 
2581 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2582   const auto *Global = cast<ValueDecl>(GD.getDecl());
2583 
2584   // Weak references don't produce any output by themselves.
2585   if (Global->hasAttr<WeakRefAttr>())
2586     return;
2587 
2588   // If this is an alias definition (which otherwise looks like a declaration)
2589   // emit it now.
2590   if (Global->hasAttr<AliasAttr>())
2591     return EmitAliasDefinition(GD);
2592 
2593   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2594   if (Global->hasAttr<IFuncAttr>())
2595     return emitIFuncDefinition(GD);
2596 
2597   // If this is a cpu_dispatch multiversion function, emit the resolver.
2598   if (Global->hasAttr<CPUDispatchAttr>())
2599     return emitCPUDispatchDefinition(GD);
2600 
2601   // If this is CUDA, be selective about which declarations we emit.
2602   if (LangOpts.CUDA) {
2603     if (LangOpts.CUDAIsDevice) {
2604       if (!Global->hasAttr<CUDADeviceAttr>() &&
2605           !Global->hasAttr<CUDAGlobalAttr>() &&
2606           !Global->hasAttr<CUDAConstantAttr>() &&
2607           !Global->hasAttr<CUDASharedAttr>() &&
2608           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2609           !Global->getType()->isCUDADeviceBuiltinTextureType())
2610         return;
2611     } else {
2612       // We need to emit host-side 'shadows' for all global
2613       // device-side variables because the CUDA runtime needs their
2614       // size and host-side address in order to provide access to
2615       // their device-side incarnations.
2616 
2617       // So device-only functions are the only things we skip.
2618       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2619           Global->hasAttr<CUDADeviceAttr>())
2620         return;
2621 
2622       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2623              "Expected Variable or Function");
2624     }
2625   }
2626 
2627   if (LangOpts.OpenMP) {
2628     // If this is OpenMP, check if it is legal to emit this global normally.
2629     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2630       return;
2631     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2632       if (MustBeEmitted(Global))
2633         EmitOMPDeclareReduction(DRD);
2634       return;
2635     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2636       if (MustBeEmitted(Global))
2637         EmitOMPDeclareMapper(DMD);
2638       return;
2639     }
2640   }
2641 
2642   // Ignore declarations, they will be emitted on their first use.
2643   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2644     // Forward declarations are emitted lazily on first use.
2645     if (!FD->doesThisDeclarationHaveABody()) {
2646       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2647         return;
2648 
2649       StringRef MangledName = getMangledName(GD);
2650 
2651       // Compute the function info and LLVM type.
2652       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2653       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2654 
2655       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2656                               /*DontDefer=*/false);
2657       return;
2658     }
2659   } else {
2660     const auto *VD = cast<VarDecl>(Global);
2661     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2662     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2663         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2664       if (LangOpts.OpenMP) {
2665         // Emit declaration of the must-be-emitted declare target variable.
2666         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2667                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2668           bool UnifiedMemoryEnabled =
2669               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2670           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2671               !UnifiedMemoryEnabled) {
2672             (void)GetAddrOfGlobalVar(VD);
2673           } else {
2674             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2675                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2676                      UnifiedMemoryEnabled)) &&
2677                    "Link clause or to clause with unified memory expected.");
2678             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2679           }
2680 
2681           return;
2682         }
2683       }
2684       // If this declaration may have caused an inline variable definition to
2685       // change linkage, make sure that it's emitted.
2686       if (Context.getInlineVariableDefinitionKind(VD) ==
2687           ASTContext::InlineVariableDefinitionKind::Strong)
2688         GetAddrOfGlobalVar(VD);
2689       return;
2690     }
2691   }
2692 
2693   // Defer code generation to first use when possible, e.g. if this is an inline
2694   // function. If the global must always be emitted, do it eagerly if possible
2695   // to benefit from cache locality.
2696   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2697     // Emit the definition if it can't be deferred.
2698     EmitGlobalDefinition(GD);
2699     return;
2700   }
2701 
2702   // If we're deferring emission of a C++ variable with an
2703   // initializer, remember the order in which it appeared in the file.
2704   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2705       cast<VarDecl>(Global)->hasInit()) {
2706     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2707     CXXGlobalInits.push_back(nullptr);
2708   }
2709 
2710   StringRef MangledName = getMangledName(GD);
2711   if (GetGlobalValue(MangledName) != nullptr) {
2712     // The value has already been used and should therefore be emitted.
2713     addDeferredDeclToEmit(GD);
2714   } else if (MustBeEmitted(Global)) {
2715     // The value must be emitted, but cannot be emitted eagerly.
2716     assert(!MayBeEmittedEagerly(Global));
2717     addDeferredDeclToEmit(GD);
2718   } else {
2719     // Otherwise, remember that we saw a deferred decl with this name.  The
2720     // first use of the mangled name will cause it to move into
2721     // DeferredDeclsToEmit.
2722     DeferredDecls[MangledName] = GD;
2723   }
2724 }
2725 
2726 // Check if T is a class type with a destructor that's not dllimport.
2727 static bool HasNonDllImportDtor(QualType T) {
2728   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2729     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2730       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2731         return true;
2732 
2733   return false;
2734 }
2735 
2736 namespace {
2737   struct FunctionIsDirectlyRecursive
2738       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2739     const StringRef Name;
2740     const Builtin::Context &BI;
2741     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2742         : Name(N), BI(C) {}
2743 
2744     bool VisitCallExpr(const CallExpr *E) {
2745       const FunctionDecl *FD = E->getDirectCallee();
2746       if (!FD)
2747         return false;
2748       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2749       if (Attr && Name == Attr->getLabel())
2750         return true;
2751       unsigned BuiltinID = FD->getBuiltinID();
2752       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2753         return false;
2754       StringRef BuiltinName = BI.getName(BuiltinID);
2755       if (BuiltinName.startswith("__builtin_") &&
2756           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2757         return true;
2758       }
2759       return false;
2760     }
2761 
2762     bool VisitStmt(const Stmt *S) {
2763       for (const Stmt *Child : S->children())
2764         if (Child && this->Visit(Child))
2765           return true;
2766       return false;
2767     }
2768   };
2769 
2770   // Make sure we're not referencing non-imported vars or functions.
2771   struct DLLImportFunctionVisitor
2772       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2773     bool SafeToInline = true;
2774 
2775     bool shouldVisitImplicitCode() const { return true; }
2776 
2777     bool VisitVarDecl(VarDecl *VD) {
2778       if (VD->getTLSKind()) {
2779         // A thread-local variable cannot be imported.
2780         SafeToInline = false;
2781         return SafeToInline;
2782       }
2783 
2784       // A variable definition might imply a destructor call.
2785       if (VD->isThisDeclarationADefinition())
2786         SafeToInline = !HasNonDllImportDtor(VD->getType());
2787 
2788       return SafeToInline;
2789     }
2790 
2791     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2792       if (const auto *D = E->getTemporary()->getDestructor())
2793         SafeToInline = D->hasAttr<DLLImportAttr>();
2794       return SafeToInline;
2795     }
2796 
2797     bool VisitDeclRefExpr(DeclRefExpr *E) {
2798       ValueDecl *VD = E->getDecl();
2799       if (isa<FunctionDecl>(VD))
2800         SafeToInline = VD->hasAttr<DLLImportAttr>();
2801       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2802         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2803       return SafeToInline;
2804     }
2805 
2806     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2807       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2808       return SafeToInline;
2809     }
2810 
2811     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2812       CXXMethodDecl *M = E->getMethodDecl();
2813       if (!M) {
2814         // Call through a pointer to member function. This is safe to inline.
2815         SafeToInline = true;
2816       } else {
2817         SafeToInline = M->hasAttr<DLLImportAttr>();
2818       }
2819       return SafeToInline;
2820     }
2821 
2822     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2823       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2824       return SafeToInline;
2825     }
2826 
2827     bool VisitCXXNewExpr(CXXNewExpr *E) {
2828       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2829       return SafeToInline;
2830     }
2831   };
2832 }
2833 
2834 // isTriviallyRecursive - Check if this function calls another
2835 // decl that, because of the asm attribute or the other decl being a builtin,
2836 // ends up pointing to itself.
2837 bool
2838 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2839   StringRef Name;
2840   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2841     // asm labels are a special kind of mangling we have to support.
2842     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2843     if (!Attr)
2844       return false;
2845     Name = Attr->getLabel();
2846   } else {
2847     Name = FD->getName();
2848   }
2849 
2850   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2851   const Stmt *Body = FD->getBody();
2852   return Body ? Walker.Visit(Body) : false;
2853 }
2854 
2855 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2856   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2857     return true;
2858   const auto *F = cast<FunctionDecl>(GD.getDecl());
2859   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2860     return false;
2861 
2862   if (F->hasAttr<DLLImportAttr>()) {
2863     // Check whether it would be safe to inline this dllimport function.
2864     DLLImportFunctionVisitor Visitor;
2865     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2866     if (!Visitor.SafeToInline)
2867       return false;
2868 
2869     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2870       // Implicit destructor invocations aren't captured in the AST, so the
2871       // check above can't see them. Check for them manually here.
2872       for (const Decl *Member : Dtor->getParent()->decls())
2873         if (isa<FieldDecl>(Member))
2874           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2875             return false;
2876       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2877         if (HasNonDllImportDtor(B.getType()))
2878           return false;
2879     }
2880   }
2881 
2882   // PR9614. Avoid cases where the source code is lying to us. An available
2883   // externally function should have an equivalent function somewhere else,
2884   // but a function that calls itself through asm label/`__builtin_` trickery is
2885   // clearly not equivalent to the real implementation.
2886   // This happens in glibc's btowc and in some configure checks.
2887   return !isTriviallyRecursive(F);
2888 }
2889 
2890 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2891   return CodeGenOpts.OptimizationLevel > 0;
2892 }
2893 
2894 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2895                                                        llvm::GlobalValue *GV) {
2896   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2897 
2898   if (FD->isCPUSpecificMultiVersion()) {
2899     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2900     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2901       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2902     // Requires multiple emits.
2903   } else
2904     EmitGlobalFunctionDefinition(GD, GV);
2905 }
2906 
2907 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2908   const auto *D = cast<ValueDecl>(GD.getDecl());
2909 
2910   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2911                                  Context.getSourceManager(),
2912                                  "Generating code for declaration");
2913 
2914   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2915     // At -O0, don't generate IR for functions with available_externally
2916     // linkage.
2917     if (!shouldEmitFunction(GD))
2918       return;
2919 
2920     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2921       std::string Name;
2922       llvm::raw_string_ostream OS(Name);
2923       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2924                                /*Qualified=*/true);
2925       return Name;
2926     });
2927 
2928     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2929       // Make sure to emit the definition(s) before we emit the thunks.
2930       // This is necessary for the generation of certain thunks.
2931       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2932         ABI->emitCXXStructor(GD);
2933       else if (FD->isMultiVersion())
2934         EmitMultiVersionFunctionDefinition(GD, GV);
2935       else
2936         EmitGlobalFunctionDefinition(GD, GV);
2937 
2938       if (Method->isVirtual())
2939         getVTables().EmitThunks(GD);
2940 
2941       return;
2942     }
2943 
2944     if (FD->isMultiVersion())
2945       return EmitMultiVersionFunctionDefinition(GD, GV);
2946     return EmitGlobalFunctionDefinition(GD, GV);
2947   }
2948 
2949   if (const auto *VD = dyn_cast<VarDecl>(D))
2950     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2951 
2952   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2953 }
2954 
2955 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2956                                                       llvm::Function *NewFn);
2957 
2958 static unsigned
2959 TargetMVPriority(const TargetInfo &TI,
2960                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2961   unsigned Priority = 0;
2962   for (StringRef Feat : RO.Conditions.Features)
2963     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2964 
2965   if (!RO.Conditions.Architecture.empty())
2966     Priority = std::max(
2967         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2968   return Priority;
2969 }
2970 
2971 void CodeGenModule::emitMultiVersionFunctions() {
2972   for (GlobalDecl GD : MultiVersionFuncs) {
2973     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2974     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2975     getContext().forEachMultiversionedFunctionVersion(
2976         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2977           GlobalDecl CurGD{
2978               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2979           StringRef MangledName = getMangledName(CurGD);
2980           llvm::Constant *Func = GetGlobalValue(MangledName);
2981           if (!Func) {
2982             if (CurFD->isDefined()) {
2983               EmitGlobalFunctionDefinition(CurGD, nullptr);
2984               Func = GetGlobalValue(MangledName);
2985             } else {
2986               const CGFunctionInfo &FI =
2987                   getTypes().arrangeGlobalDeclaration(GD);
2988               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2989               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2990                                        /*DontDefer=*/false, ForDefinition);
2991             }
2992             assert(Func && "This should have just been created");
2993           }
2994 
2995           const auto *TA = CurFD->getAttr<TargetAttr>();
2996           llvm::SmallVector<StringRef, 8> Feats;
2997           TA->getAddedFeatures(Feats);
2998 
2999           Options.emplace_back(cast<llvm::Function>(Func),
3000                                TA->getArchitecture(), Feats);
3001         });
3002 
3003     llvm::Function *ResolverFunc;
3004     const TargetInfo &TI = getTarget();
3005 
3006     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3007       ResolverFunc = cast<llvm::Function>(
3008           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3009       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3010     } else {
3011       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3012     }
3013 
3014     if (supportsCOMDAT())
3015       ResolverFunc->setComdat(
3016           getModule().getOrInsertComdat(ResolverFunc->getName()));
3017 
3018     llvm::stable_sort(
3019         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3020                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3021           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3022         });
3023     CodeGenFunction CGF(*this);
3024     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3025   }
3026 }
3027 
3028 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3029   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3030   assert(FD && "Not a FunctionDecl?");
3031   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3032   assert(DD && "Not a cpu_dispatch Function?");
3033   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3034 
3035   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3036     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3037     DeclTy = getTypes().GetFunctionType(FInfo);
3038   }
3039 
3040   StringRef ResolverName = getMangledName(GD);
3041 
3042   llvm::Type *ResolverType;
3043   GlobalDecl ResolverGD;
3044   if (getTarget().supportsIFunc())
3045     ResolverType = llvm::FunctionType::get(
3046         llvm::PointerType::get(DeclTy,
3047                                Context.getTargetAddressSpace(FD->getType())),
3048         false);
3049   else {
3050     ResolverType = DeclTy;
3051     ResolverGD = GD;
3052   }
3053 
3054   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3055       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3056   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3057   if (supportsCOMDAT())
3058     ResolverFunc->setComdat(
3059         getModule().getOrInsertComdat(ResolverFunc->getName()));
3060 
3061   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3062   const TargetInfo &Target = getTarget();
3063   unsigned Index = 0;
3064   for (const IdentifierInfo *II : DD->cpus()) {
3065     // Get the name of the target function so we can look it up/create it.
3066     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3067                               getCPUSpecificMangling(*this, II->getName());
3068 
3069     llvm::Constant *Func = GetGlobalValue(MangledName);
3070 
3071     if (!Func) {
3072       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3073       if (ExistingDecl.getDecl() &&
3074           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3075         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3076         Func = GetGlobalValue(MangledName);
3077       } else {
3078         if (!ExistingDecl.getDecl())
3079           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3080 
3081       Func = GetOrCreateLLVMFunction(
3082           MangledName, DeclTy, ExistingDecl,
3083           /*ForVTable=*/false, /*DontDefer=*/true,
3084           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3085       }
3086     }
3087 
3088     llvm::SmallVector<StringRef, 32> Features;
3089     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3090     llvm::transform(Features, Features.begin(),
3091                     [](StringRef Str) { return Str.substr(1); });
3092     Features.erase(std::remove_if(
3093         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3094           return !Target.validateCpuSupports(Feat);
3095         }), Features.end());
3096     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3097     ++Index;
3098   }
3099 
3100   llvm::sort(
3101       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3102                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3103         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3104                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3105       });
3106 
3107   // If the list contains multiple 'default' versions, such as when it contains
3108   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3109   // always run on at least a 'pentium'). We do this by deleting the 'least
3110   // advanced' (read, lowest mangling letter).
3111   while (Options.size() > 1 &&
3112          CodeGenFunction::GetX86CpuSupportsMask(
3113              (Options.end() - 2)->Conditions.Features) == 0) {
3114     StringRef LHSName = (Options.end() - 2)->Function->getName();
3115     StringRef RHSName = (Options.end() - 1)->Function->getName();
3116     if (LHSName.compare(RHSName) < 0)
3117       Options.erase(Options.end() - 2);
3118     else
3119       Options.erase(Options.end() - 1);
3120   }
3121 
3122   CodeGenFunction CGF(*this);
3123   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3124 
3125   if (getTarget().supportsIFunc()) {
3126     std::string AliasName = getMangledNameImpl(
3127         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3128     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3129     if (!AliasFunc) {
3130       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3131           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3132           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3133       auto *GA = llvm::GlobalAlias::create(
3134          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3135       GA->setLinkage(llvm::Function::WeakODRLinkage);
3136       SetCommonAttributes(GD, GA);
3137     }
3138   }
3139 }
3140 
3141 /// If a dispatcher for the specified mangled name is not in the module, create
3142 /// and return an llvm Function with the specified type.
3143 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3144     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3145   std::string MangledName =
3146       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3147 
3148   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3149   // a separate resolver).
3150   std::string ResolverName = MangledName;
3151   if (getTarget().supportsIFunc())
3152     ResolverName += ".ifunc";
3153   else if (FD->isTargetMultiVersion())
3154     ResolverName += ".resolver";
3155 
3156   // If this already exists, just return that one.
3157   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3158     return ResolverGV;
3159 
3160   // Since this is the first time we've created this IFunc, make sure
3161   // that we put this multiversioned function into the list to be
3162   // replaced later if necessary (target multiversioning only).
3163   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3164     MultiVersionFuncs.push_back(GD);
3165 
3166   if (getTarget().supportsIFunc()) {
3167     llvm::Type *ResolverType = llvm::FunctionType::get(
3168         llvm::PointerType::get(
3169             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3170         false);
3171     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3172         MangledName + ".resolver", ResolverType, GlobalDecl{},
3173         /*ForVTable=*/false);
3174     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3175         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3176     GIF->setName(ResolverName);
3177     SetCommonAttributes(FD, GIF);
3178 
3179     return GIF;
3180   }
3181 
3182   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3183       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3184   assert(isa<llvm::GlobalValue>(Resolver) &&
3185          "Resolver should be created for the first time");
3186   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3187   return Resolver;
3188 }
3189 
3190 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3191 /// module, create and return an llvm Function with the specified type. If there
3192 /// is something in the module with the specified name, return it potentially
3193 /// bitcasted to the right type.
3194 ///
3195 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3196 /// to set the attributes on the function when it is first created.
3197 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3198     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3199     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3200     ForDefinition_t IsForDefinition) {
3201   const Decl *D = GD.getDecl();
3202 
3203   // Any attempts to use a MultiVersion function should result in retrieving
3204   // the iFunc instead. Name Mangling will handle the rest of the changes.
3205   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3206     // For the device mark the function as one that should be emitted.
3207     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3208         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3209         !DontDefer && !IsForDefinition) {
3210       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3211         GlobalDecl GDDef;
3212         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3213           GDDef = GlobalDecl(CD, GD.getCtorType());
3214         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3215           GDDef = GlobalDecl(DD, GD.getDtorType());
3216         else
3217           GDDef = GlobalDecl(FDDef);
3218         EmitGlobal(GDDef);
3219       }
3220     }
3221 
3222     if (FD->isMultiVersion()) {
3223       if (FD->hasAttr<TargetAttr>())
3224         UpdateMultiVersionNames(GD, FD);
3225       if (!IsForDefinition)
3226         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3227     }
3228   }
3229 
3230   // Lookup the entry, lazily creating it if necessary.
3231   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3232   if (Entry) {
3233     if (WeakRefReferences.erase(Entry)) {
3234       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3235       if (FD && !FD->hasAttr<WeakAttr>())
3236         Entry->setLinkage(llvm::Function::ExternalLinkage);
3237     }
3238 
3239     // Handle dropped DLL attributes.
3240     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3241       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3242       setDSOLocal(Entry);
3243     }
3244 
3245     // If there are two attempts to define the same mangled name, issue an
3246     // error.
3247     if (IsForDefinition && !Entry->isDeclaration()) {
3248       GlobalDecl OtherGD;
3249       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3250       // to make sure that we issue an error only once.
3251       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3252           (GD.getCanonicalDecl().getDecl() !=
3253            OtherGD.getCanonicalDecl().getDecl()) &&
3254           DiagnosedConflictingDefinitions.insert(GD).second) {
3255         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3256             << MangledName;
3257         getDiags().Report(OtherGD.getDecl()->getLocation(),
3258                           diag::note_previous_definition);
3259       }
3260     }
3261 
3262     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3263         (Entry->getValueType() == Ty)) {
3264       return Entry;
3265     }
3266 
3267     // Make sure the result is of the correct type.
3268     // (If function is requested for a definition, we always need to create a new
3269     // function, not just return a bitcast.)
3270     if (!IsForDefinition)
3271       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3272   }
3273 
3274   // This function doesn't have a complete type (for example, the return
3275   // type is an incomplete struct). Use a fake type instead, and make
3276   // sure not to try to set attributes.
3277   bool IsIncompleteFunction = false;
3278 
3279   llvm::FunctionType *FTy;
3280   if (isa<llvm::FunctionType>(Ty)) {
3281     FTy = cast<llvm::FunctionType>(Ty);
3282   } else {
3283     FTy = llvm::FunctionType::get(VoidTy, false);
3284     IsIncompleteFunction = true;
3285   }
3286 
3287   llvm::Function *F =
3288       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3289                              Entry ? StringRef() : MangledName, &getModule());
3290 
3291   // If we already created a function with the same mangled name (but different
3292   // type) before, take its name and add it to the list of functions to be
3293   // replaced with F at the end of CodeGen.
3294   //
3295   // This happens if there is a prototype for a function (e.g. "int f()") and
3296   // then a definition of a different type (e.g. "int f(int x)").
3297   if (Entry) {
3298     F->takeName(Entry);
3299 
3300     // This might be an implementation of a function without a prototype, in
3301     // which case, try to do special replacement of calls which match the new
3302     // prototype.  The really key thing here is that we also potentially drop
3303     // arguments from the call site so as to make a direct call, which makes the
3304     // inliner happier and suppresses a number of optimizer warnings (!) about
3305     // dropping arguments.
3306     if (!Entry->use_empty()) {
3307       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3308       Entry->removeDeadConstantUsers();
3309     }
3310 
3311     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3312         F, Entry->getValueType()->getPointerTo());
3313     addGlobalValReplacement(Entry, BC);
3314   }
3315 
3316   assert(F->getName() == MangledName && "name was uniqued!");
3317   if (D)
3318     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3319   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3320     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3321     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3322   }
3323 
3324   if (!DontDefer) {
3325     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3326     // each other bottoming out with the base dtor.  Therefore we emit non-base
3327     // dtors on usage, even if there is no dtor definition in the TU.
3328     if (D && isa<CXXDestructorDecl>(D) &&
3329         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3330                                            GD.getDtorType()))
3331       addDeferredDeclToEmit(GD);
3332 
3333     // This is the first use or definition of a mangled name.  If there is a
3334     // deferred decl with this name, remember that we need to emit it at the end
3335     // of the file.
3336     auto DDI = DeferredDecls.find(MangledName);
3337     if (DDI != DeferredDecls.end()) {
3338       // Move the potentially referenced deferred decl to the
3339       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3340       // don't need it anymore).
3341       addDeferredDeclToEmit(DDI->second);
3342       DeferredDecls.erase(DDI);
3343 
3344       // Otherwise, there are cases we have to worry about where we're
3345       // using a declaration for which we must emit a definition but where
3346       // we might not find a top-level definition:
3347       //   - member functions defined inline in their classes
3348       //   - friend functions defined inline in some class
3349       //   - special member functions with implicit definitions
3350       // If we ever change our AST traversal to walk into class methods,
3351       // this will be unnecessary.
3352       //
3353       // We also don't emit a definition for a function if it's going to be an
3354       // entry in a vtable, unless it's already marked as used.
3355     } else if (getLangOpts().CPlusPlus && D) {
3356       // Look for a declaration that's lexically in a record.
3357       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3358            FD = FD->getPreviousDecl()) {
3359         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3360           if (FD->doesThisDeclarationHaveABody()) {
3361             addDeferredDeclToEmit(GD.getWithDecl(FD));
3362             break;
3363           }
3364         }
3365       }
3366     }
3367   }
3368 
3369   // Make sure the result is of the requested type.
3370   if (!IsIncompleteFunction) {
3371     assert(F->getFunctionType() == Ty);
3372     return F;
3373   }
3374 
3375   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3376   return llvm::ConstantExpr::getBitCast(F, PTy);
3377 }
3378 
3379 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3380 /// non-null, then this function will use the specified type if it has to
3381 /// create it (this occurs when we see a definition of the function).
3382 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3383                                                  llvm::Type *Ty,
3384                                                  bool ForVTable,
3385                                                  bool DontDefer,
3386                                               ForDefinition_t IsForDefinition) {
3387   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3388          "consteval function should never be emitted");
3389   // If there was no specific requested type, just convert it now.
3390   if (!Ty) {
3391     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3392     Ty = getTypes().ConvertType(FD->getType());
3393   }
3394 
3395   // Devirtualized destructor calls may come through here instead of via
3396   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3397   // of the complete destructor when necessary.
3398   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3399     if (getTarget().getCXXABI().isMicrosoft() &&
3400         GD.getDtorType() == Dtor_Complete &&
3401         DD->getParent()->getNumVBases() == 0)
3402       GD = GlobalDecl(DD, Dtor_Base);
3403   }
3404 
3405   StringRef MangledName = getMangledName(GD);
3406   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3407                                  /*IsThunk=*/false, llvm::AttributeList(),
3408                                  IsForDefinition);
3409 }
3410 
3411 static const FunctionDecl *
3412 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3413   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3414   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3415 
3416   IdentifierInfo &CII = C.Idents.get(Name);
3417   for (const auto &Result : DC->lookup(&CII))
3418     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3419       return FD;
3420 
3421   if (!C.getLangOpts().CPlusPlus)
3422     return nullptr;
3423 
3424   // Demangle the premangled name from getTerminateFn()
3425   IdentifierInfo &CXXII =
3426       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3427           ? C.Idents.get("terminate")
3428           : C.Idents.get(Name);
3429 
3430   for (const auto &N : {"__cxxabiv1", "std"}) {
3431     IdentifierInfo &NS = C.Idents.get(N);
3432     for (const auto &Result : DC->lookup(&NS)) {
3433       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3434       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3435         for (const auto &Result : LSD->lookup(&NS))
3436           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3437             break;
3438 
3439       if (ND)
3440         for (const auto &Result : ND->lookup(&CXXII))
3441           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3442             return FD;
3443     }
3444   }
3445 
3446   return nullptr;
3447 }
3448 
3449 /// CreateRuntimeFunction - Create a new runtime function with the specified
3450 /// type and name.
3451 llvm::FunctionCallee
3452 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3453                                      llvm::AttributeList ExtraAttrs, bool Local,
3454                                      bool AssumeConvergent) {
3455   if (AssumeConvergent) {
3456     ExtraAttrs =
3457         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3458                                 llvm::Attribute::Convergent);
3459   }
3460 
3461   llvm::Constant *C =
3462       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3463                               /*DontDefer=*/false, /*IsThunk=*/false,
3464                               ExtraAttrs);
3465 
3466   if (auto *F = dyn_cast<llvm::Function>(C)) {
3467     if (F->empty()) {
3468       F->setCallingConv(getRuntimeCC());
3469 
3470       // In Windows Itanium environments, try to mark runtime functions
3471       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3472       // will link their standard library statically or dynamically. Marking
3473       // functions imported when they are not imported can cause linker errors
3474       // and warnings.
3475       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3476           !getCodeGenOpts().LTOVisibilityPublicStd) {
3477         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3478         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3479           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3480           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3481         }
3482       }
3483       setDSOLocal(F);
3484     }
3485   }
3486 
3487   return {FTy, C};
3488 }
3489 
3490 /// isTypeConstant - Determine whether an object of this type can be emitted
3491 /// as a constant.
3492 ///
3493 /// If ExcludeCtor is true, the duration when the object's constructor runs
3494 /// will not be considered. The caller will need to verify that the object is
3495 /// not written to during its construction.
3496 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3497   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3498     return false;
3499 
3500   if (Context.getLangOpts().CPlusPlus) {
3501     if (const CXXRecordDecl *Record
3502           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3503       return ExcludeCtor && !Record->hasMutableFields() &&
3504              Record->hasTrivialDestructor();
3505   }
3506 
3507   return true;
3508 }
3509 
3510 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3511 /// create and return an llvm GlobalVariable with the specified type.  If there
3512 /// is something in the module with the specified name, return it potentially
3513 /// bitcasted to the right type.
3514 ///
3515 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3516 /// to set the attributes on the global when it is first created.
3517 ///
3518 /// If IsForDefinition is true, it is guaranteed that an actual global with
3519 /// type Ty will be returned, not conversion of a variable with the same
3520 /// mangled name but some other type.
3521 llvm::Constant *
3522 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3523                                      llvm::PointerType *Ty,
3524                                      const VarDecl *D,
3525                                      ForDefinition_t IsForDefinition) {
3526   // Lookup the entry, lazily creating it if necessary.
3527   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3528   if (Entry) {
3529     if (WeakRefReferences.erase(Entry)) {
3530       if (D && !D->hasAttr<WeakAttr>())
3531         Entry->setLinkage(llvm::Function::ExternalLinkage);
3532     }
3533 
3534     // Handle dropped DLL attributes.
3535     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3536       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3537 
3538     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3539       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3540 
3541     if (Entry->getType() == Ty)
3542       return Entry;
3543 
3544     // If there are two attempts to define the same mangled name, issue an
3545     // error.
3546     if (IsForDefinition && !Entry->isDeclaration()) {
3547       GlobalDecl OtherGD;
3548       const VarDecl *OtherD;
3549 
3550       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3551       // to make sure that we issue an error only once.
3552       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3553           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3554           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3555           OtherD->hasInit() &&
3556           DiagnosedConflictingDefinitions.insert(D).second) {
3557         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3558             << MangledName;
3559         getDiags().Report(OtherGD.getDecl()->getLocation(),
3560                           diag::note_previous_definition);
3561       }
3562     }
3563 
3564     // Make sure the result is of the correct type.
3565     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3566       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3567 
3568     // (If global is requested for a definition, we always need to create a new
3569     // global, not just return a bitcast.)
3570     if (!IsForDefinition)
3571       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3572   }
3573 
3574   auto AddrSpace = GetGlobalVarAddressSpace(D);
3575   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3576 
3577   auto *GV = new llvm::GlobalVariable(
3578       getModule(), Ty->getElementType(), false,
3579       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3580       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3581 
3582   // If we already created a global with the same mangled name (but different
3583   // type) before, take its name and remove it from its parent.
3584   if (Entry) {
3585     GV->takeName(Entry);
3586 
3587     if (!Entry->use_empty()) {
3588       llvm::Constant *NewPtrForOldDecl =
3589           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3590       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3591     }
3592 
3593     Entry->eraseFromParent();
3594   }
3595 
3596   // This is the first use or definition of a mangled name.  If there is a
3597   // deferred decl with this name, remember that we need to emit it at the end
3598   // of the file.
3599   auto DDI = DeferredDecls.find(MangledName);
3600   if (DDI != DeferredDecls.end()) {
3601     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3602     // list, and remove it from DeferredDecls (since we don't need it anymore).
3603     addDeferredDeclToEmit(DDI->second);
3604     DeferredDecls.erase(DDI);
3605   }
3606 
3607   // Handle things which are present even on external declarations.
3608   if (D) {
3609     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3610       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3611 
3612     // FIXME: This code is overly simple and should be merged with other global
3613     // handling.
3614     GV->setConstant(isTypeConstant(D->getType(), false));
3615 
3616     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3617 
3618     setLinkageForGV(GV, D);
3619 
3620     if (D->getTLSKind()) {
3621       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3622         CXXThreadLocals.push_back(D);
3623       setTLSMode(GV, *D);
3624     }
3625 
3626     setGVProperties(GV, D);
3627 
3628     // If required by the ABI, treat declarations of static data members with
3629     // inline initializers as definitions.
3630     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3631       EmitGlobalVarDefinition(D);
3632     }
3633 
3634     // Emit section information for extern variables.
3635     if (D->hasExternalStorage()) {
3636       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3637         GV->setSection(SA->getName());
3638     }
3639 
3640     // Handle XCore specific ABI requirements.
3641     if (getTriple().getArch() == llvm::Triple::xcore &&
3642         D->getLanguageLinkage() == CLanguageLinkage &&
3643         D->getType().isConstant(Context) &&
3644         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3645       GV->setSection(".cp.rodata");
3646 
3647     // Check if we a have a const declaration with an initializer, we may be
3648     // able to emit it as available_externally to expose it's value to the
3649     // optimizer.
3650     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3651         D->getType().isConstQualified() && !GV->hasInitializer() &&
3652         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3653       const auto *Record =
3654           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3655       bool HasMutableFields = Record && Record->hasMutableFields();
3656       if (!HasMutableFields) {
3657         const VarDecl *InitDecl;
3658         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3659         if (InitExpr) {
3660           ConstantEmitter emitter(*this);
3661           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3662           if (Init) {
3663             auto *InitType = Init->getType();
3664             if (GV->getValueType() != InitType) {
3665               // The type of the initializer does not match the definition.
3666               // This happens when an initializer has a different type from
3667               // the type of the global (because of padding at the end of a
3668               // structure for instance).
3669               GV->setName(StringRef());
3670               // Make a new global with the correct type, this is now guaranteed
3671               // to work.
3672               auto *NewGV = cast<llvm::GlobalVariable>(
3673                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3674                       ->stripPointerCasts());
3675 
3676               // Erase the old global, since it is no longer used.
3677               GV->eraseFromParent();
3678               GV = NewGV;
3679             } else {
3680               GV->setInitializer(Init);
3681               GV->setConstant(true);
3682               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3683             }
3684             emitter.finalize(GV);
3685           }
3686         }
3687       }
3688     }
3689   }
3690 
3691   if (GV->isDeclaration())
3692     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3693 
3694   LangAS ExpectedAS =
3695       D ? D->getType().getAddressSpace()
3696         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3697   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3698          Ty->getPointerAddressSpace());
3699   if (AddrSpace != ExpectedAS)
3700     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3701                                                        ExpectedAS, Ty);
3702 
3703   return GV;
3704 }
3705 
3706 llvm::Constant *
3707 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3708   const Decl *D = GD.getDecl();
3709 
3710   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3711     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3712                                 /*DontDefer=*/false, IsForDefinition);
3713 
3714   if (isa<CXXMethodDecl>(D)) {
3715     auto FInfo =
3716         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3717     auto Ty = getTypes().GetFunctionType(*FInfo);
3718     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3719                              IsForDefinition);
3720   }
3721 
3722   if (isa<FunctionDecl>(D)) {
3723     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3724     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3725     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3726                              IsForDefinition);
3727   }
3728 
3729   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
3730 }
3731 
3732 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3733     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3734     unsigned Alignment) {
3735   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3736   llvm::GlobalVariable *OldGV = nullptr;
3737 
3738   if (GV) {
3739     // Check if the variable has the right type.
3740     if (GV->getValueType() == Ty)
3741       return GV;
3742 
3743     // Because C++ name mangling, the only way we can end up with an already
3744     // existing global with the same name is if it has been declared extern "C".
3745     assert(GV->isDeclaration() && "Declaration has wrong type!");
3746     OldGV = GV;
3747   }
3748 
3749   // Create a new variable.
3750   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3751                                 Linkage, nullptr, Name);
3752 
3753   if (OldGV) {
3754     // Replace occurrences of the old variable if needed.
3755     GV->takeName(OldGV);
3756 
3757     if (!OldGV->use_empty()) {
3758       llvm::Constant *NewPtrForOldDecl =
3759       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3760       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3761     }
3762 
3763     OldGV->eraseFromParent();
3764   }
3765 
3766   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3767       !GV->hasAvailableExternallyLinkage())
3768     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3769 
3770   GV->setAlignment(llvm::MaybeAlign(Alignment));
3771 
3772   return GV;
3773 }
3774 
3775 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3776 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3777 /// then it will be created with the specified type instead of whatever the
3778 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3779 /// that an actual global with type Ty will be returned, not conversion of a
3780 /// variable with the same mangled name but some other type.
3781 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3782                                                   llvm::Type *Ty,
3783                                            ForDefinition_t IsForDefinition) {
3784   assert(D->hasGlobalStorage() && "Not a global variable");
3785   QualType ASTTy = D->getType();
3786   if (!Ty)
3787     Ty = getTypes().ConvertTypeForMem(ASTTy);
3788 
3789   llvm::PointerType *PTy =
3790     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3791 
3792   StringRef MangledName = getMangledName(D);
3793   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3794 }
3795 
3796 /// CreateRuntimeVariable - Create a new runtime global variable with the
3797 /// specified type and name.
3798 llvm::Constant *
3799 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3800                                      StringRef Name) {
3801   auto PtrTy =
3802       getContext().getLangOpts().OpenCL
3803           ? llvm::PointerType::get(
3804                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3805           : llvm::PointerType::getUnqual(Ty);
3806   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3807   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3808   return Ret;
3809 }
3810 
3811 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3812   assert(!D->getInit() && "Cannot emit definite definitions here!");
3813 
3814   StringRef MangledName = getMangledName(D);
3815   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3816 
3817   // We already have a definition, not declaration, with the same mangled name.
3818   // Emitting of declaration is not required (and actually overwrites emitted
3819   // definition).
3820   if (GV && !GV->isDeclaration())
3821     return;
3822 
3823   // If we have not seen a reference to this variable yet, place it into the
3824   // deferred declarations table to be emitted if needed later.
3825   if (!MustBeEmitted(D) && !GV) {
3826       DeferredDecls[MangledName] = D;
3827       return;
3828   }
3829 
3830   // The tentative definition is the only definition.
3831   EmitGlobalVarDefinition(D);
3832 }
3833 
3834 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3835   EmitExternalVarDeclaration(D);
3836 }
3837 
3838 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3839   return Context.toCharUnitsFromBits(
3840       getDataLayout().getTypeStoreSizeInBits(Ty));
3841 }
3842 
3843 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3844   LangAS AddrSpace = LangAS::Default;
3845   if (LangOpts.OpenCL) {
3846     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3847     assert(AddrSpace == LangAS::opencl_global ||
3848            AddrSpace == LangAS::opencl_global_device ||
3849            AddrSpace == LangAS::opencl_global_host ||
3850            AddrSpace == LangAS::opencl_constant ||
3851            AddrSpace == LangAS::opencl_local ||
3852            AddrSpace >= LangAS::FirstTargetAddressSpace);
3853     return AddrSpace;
3854   }
3855 
3856   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3857     if (D && D->hasAttr<CUDAConstantAttr>())
3858       return LangAS::cuda_constant;
3859     else if (D && D->hasAttr<CUDASharedAttr>())
3860       return LangAS::cuda_shared;
3861     else if (D && D->hasAttr<CUDADeviceAttr>())
3862       return LangAS::cuda_device;
3863     else if (D && D->getType().isConstQualified())
3864       return LangAS::cuda_constant;
3865     else
3866       return LangAS::cuda_device;
3867   }
3868 
3869   if (LangOpts.OpenMP) {
3870     LangAS AS;
3871     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3872       return AS;
3873   }
3874   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3875 }
3876 
3877 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3878   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3879   if (LangOpts.OpenCL)
3880     return LangAS::opencl_constant;
3881   if (auto AS = getTarget().getConstantAddressSpace())
3882     return AS.getValue();
3883   return LangAS::Default;
3884 }
3885 
3886 // In address space agnostic languages, string literals are in default address
3887 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3888 // emitted in constant address space in LLVM IR. To be consistent with other
3889 // parts of AST, string literal global variables in constant address space
3890 // need to be casted to default address space before being put into address
3891 // map and referenced by other part of CodeGen.
3892 // In OpenCL, string literals are in constant address space in AST, therefore
3893 // they should not be casted to default address space.
3894 static llvm::Constant *
3895 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3896                                        llvm::GlobalVariable *GV) {
3897   llvm::Constant *Cast = GV;
3898   if (!CGM.getLangOpts().OpenCL) {
3899     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3900       if (AS != LangAS::Default)
3901         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3902             CGM, GV, AS.getValue(), LangAS::Default,
3903             GV->getValueType()->getPointerTo(
3904                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3905     }
3906   }
3907   return Cast;
3908 }
3909 
3910 template<typename SomeDecl>
3911 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3912                                                llvm::GlobalValue *GV) {
3913   if (!getLangOpts().CPlusPlus)
3914     return;
3915 
3916   // Must have 'used' attribute, or else inline assembly can't rely on
3917   // the name existing.
3918   if (!D->template hasAttr<UsedAttr>())
3919     return;
3920 
3921   // Must have internal linkage and an ordinary name.
3922   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3923     return;
3924 
3925   // Must be in an extern "C" context. Entities declared directly within
3926   // a record are not extern "C" even if the record is in such a context.
3927   const SomeDecl *First = D->getFirstDecl();
3928   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3929     return;
3930 
3931   // OK, this is an internal linkage entity inside an extern "C" linkage
3932   // specification. Make a note of that so we can give it the "expected"
3933   // mangled name if nothing else is using that name.
3934   std::pair<StaticExternCMap::iterator, bool> R =
3935       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3936 
3937   // If we have multiple internal linkage entities with the same name
3938   // in extern "C" regions, none of them gets that name.
3939   if (!R.second)
3940     R.first->second = nullptr;
3941 }
3942 
3943 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3944   if (!CGM.supportsCOMDAT())
3945     return false;
3946 
3947   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3948   // them being "merged" by the COMDAT Folding linker optimization.
3949   if (D.hasAttr<CUDAGlobalAttr>())
3950     return false;
3951 
3952   if (D.hasAttr<SelectAnyAttr>())
3953     return true;
3954 
3955   GVALinkage Linkage;
3956   if (auto *VD = dyn_cast<VarDecl>(&D))
3957     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3958   else
3959     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3960 
3961   switch (Linkage) {
3962   case GVA_Internal:
3963   case GVA_AvailableExternally:
3964   case GVA_StrongExternal:
3965     return false;
3966   case GVA_DiscardableODR:
3967   case GVA_StrongODR:
3968     return true;
3969   }
3970   llvm_unreachable("No such linkage");
3971 }
3972 
3973 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3974                                           llvm::GlobalObject &GO) {
3975   if (!shouldBeInCOMDAT(*this, D))
3976     return;
3977   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3978 }
3979 
3980 /// Pass IsTentative as true if you want to create a tentative definition.
3981 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3982                                             bool IsTentative) {
3983   // OpenCL global variables of sampler type are translated to function calls,
3984   // therefore no need to be translated.
3985   QualType ASTTy = D->getType();
3986   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3987     return;
3988 
3989   // If this is OpenMP device, check if it is legal to emit this global
3990   // normally.
3991   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3992       OpenMPRuntime->emitTargetGlobalVariable(D))
3993     return;
3994 
3995   llvm::Constant *Init = nullptr;
3996   bool NeedsGlobalCtor = false;
3997   bool NeedsGlobalDtor =
3998       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3999 
4000   const VarDecl *InitDecl;
4001   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4002 
4003   Optional<ConstantEmitter> emitter;
4004 
4005   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4006   // as part of their declaration."  Sema has already checked for
4007   // error cases, so we just need to set Init to UndefValue.
4008   bool IsCUDASharedVar =
4009       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4010   // Shadows of initialized device-side global variables are also left
4011   // undefined.
4012   bool IsCUDAShadowVar =
4013       !getLangOpts().CUDAIsDevice &&
4014       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4015        D->hasAttr<CUDASharedAttr>());
4016   bool IsCUDADeviceShadowVar =
4017       getLangOpts().CUDAIsDevice &&
4018       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4019        D->getType()->isCUDADeviceBuiltinTextureType());
4020   // HIP pinned shadow of initialized host-side global variables are also
4021   // left undefined.
4022   if (getLangOpts().CUDA &&
4023       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4024     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4025   else if (D->hasAttr<LoaderUninitializedAttr>())
4026     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4027   else if (!InitExpr) {
4028     // This is a tentative definition; tentative definitions are
4029     // implicitly initialized with { 0 }.
4030     //
4031     // Note that tentative definitions are only emitted at the end of
4032     // a translation unit, so they should never have incomplete
4033     // type. In addition, EmitTentativeDefinition makes sure that we
4034     // never attempt to emit a tentative definition if a real one
4035     // exists. A use may still exists, however, so we still may need
4036     // to do a RAUW.
4037     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4038     Init = EmitNullConstant(D->getType());
4039   } else {
4040     initializedGlobalDecl = GlobalDecl(D);
4041     emitter.emplace(*this);
4042     Init = emitter->tryEmitForInitializer(*InitDecl);
4043 
4044     if (!Init) {
4045       QualType T = InitExpr->getType();
4046       if (D->getType()->isReferenceType())
4047         T = D->getType();
4048 
4049       if (getLangOpts().CPlusPlus) {
4050         Init = EmitNullConstant(T);
4051         NeedsGlobalCtor = true;
4052       } else {
4053         ErrorUnsupported(D, "static initializer");
4054         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4055       }
4056     } else {
4057       // We don't need an initializer, so remove the entry for the delayed
4058       // initializer position (just in case this entry was delayed) if we
4059       // also don't need to register a destructor.
4060       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4061         DelayedCXXInitPosition.erase(D);
4062     }
4063   }
4064 
4065   llvm::Type* InitType = Init->getType();
4066   llvm::Constant *Entry =
4067       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4068 
4069   // Strip off pointer casts if we got them.
4070   Entry = Entry->stripPointerCasts();
4071 
4072   // Entry is now either a Function or GlobalVariable.
4073   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4074 
4075   // We have a definition after a declaration with the wrong type.
4076   // We must make a new GlobalVariable* and update everything that used OldGV
4077   // (a declaration or tentative definition) with the new GlobalVariable*
4078   // (which will be a definition).
4079   //
4080   // This happens if there is a prototype for a global (e.g.
4081   // "extern int x[];") and then a definition of a different type (e.g.
4082   // "int x[10];"). This also happens when an initializer has a different type
4083   // from the type of the global (this happens with unions).
4084   if (!GV || GV->getValueType() != InitType ||
4085       GV->getType()->getAddressSpace() !=
4086           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4087 
4088     // Move the old entry aside so that we'll create a new one.
4089     Entry->setName(StringRef());
4090 
4091     // Make a new global with the correct type, this is now guaranteed to work.
4092     GV = cast<llvm::GlobalVariable>(
4093         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4094             ->stripPointerCasts());
4095 
4096     // Replace all uses of the old global with the new global
4097     llvm::Constant *NewPtrForOldDecl =
4098         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4099     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4100 
4101     // Erase the old global, since it is no longer used.
4102     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4103   }
4104 
4105   MaybeHandleStaticInExternC(D, GV);
4106 
4107   if (D->hasAttr<AnnotateAttr>())
4108     AddGlobalAnnotations(D, GV);
4109 
4110   // Set the llvm linkage type as appropriate.
4111   llvm::GlobalValue::LinkageTypes Linkage =
4112       getLLVMLinkageVarDefinition(D, GV->isConstant());
4113 
4114   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4115   // the device. [...]"
4116   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4117   // __device__, declares a variable that: [...]
4118   // Is accessible from all the threads within the grid and from the host
4119   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4120   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4121   if (GV && LangOpts.CUDA) {
4122     if (LangOpts.CUDAIsDevice) {
4123       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4124           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4125         GV->setExternallyInitialized(true);
4126     } else {
4127       // Host-side shadows of external declarations of device-side
4128       // global variables become internal definitions. These have to
4129       // be internal in order to prevent name conflicts with global
4130       // host variables with the same name in a different TUs.
4131       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
4132         Linkage = llvm::GlobalValue::InternalLinkage;
4133         // Shadow variables and their properties must be registered with CUDA
4134         // runtime. Skip Extern global variables, which will be registered in
4135         // the TU where they are defined.
4136         //
4137         // Don't register a C++17 inline variable. The local symbol can be
4138         // discarded and referencing a discarded local symbol from outside the
4139         // comdat (__cuda_register_globals) is disallowed by the ELF spec.
4140         // TODO: Reject __device__ constexpr and __device__ inline in Sema.
4141         if (!D->hasExternalStorage() && !D->isInline())
4142           getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(),
4143                                              D->hasAttr<CUDAConstantAttr>());
4144       } else if (D->hasAttr<CUDASharedAttr>()) {
4145         // __shared__ variables are odd. Shadows do get created, but
4146         // they are not registered with the CUDA runtime, so they
4147         // can't really be used to access their device-side
4148         // counterparts. It's not clear yet whether it's nvcc's bug or
4149         // a feature, but we've got to do the same for compatibility.
4150         Linkage = llvm::GlobalValue::InternalLinkage;
4151       } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4152                  D->getType()->isCUDADeviceBuiltinTextureType()) {
4153         // Builtin surfaces and textures and their template arguments are
4154         // also registered with CUDA runtime.
4155         Linkage = llvm::GlobalValue::InternalLinkage;
4156         const ClassTemplateSpecializationDecl *TD =
4157             cast<ClassTemplateSpecializationDecl>(
4158                 D->getType()->getAs<RecordType>()->getDecl());
4159         const TemplateArgumentList &Args = TD->getTemplateArgs();
4160         if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
4161           assert(Args.size() == 2 &&
4162                  "Unexpected number of template arguments of CUDA device "
4163                  "builtin surface type.");
4164           auto SurfType = Args[1].getAsIntegral();
4165           if (!D->hasExternalStorage())
4166             getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(),
4167                                                 SurfType.getSExtValue());
4168         } else {
4169           assert(Args.size() == 3 &&
4170                  "Unexpected number of template arguments of CUDA device "
4171                  "builtin texture type.");
4172           auto TexType = Args[1].getAsIntegral();
4173           auto Normalized = Args[2].getAsIntegral();
4174           if (!D->hasExternalStorage())
4175             getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(),
4176                                                TexType.getSExtValue(),
4177                                                Normalized.getZExtValue());
4178         }
4179       }
4180     }
4181   }
4182 
4183   GV->setInitializer(Init);
4184   if (emitter)
4185     emitter->finalize(GV);
4186 
4187   // If it is safe to mark the global 'constant', do so now.
4188   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4189                   isTypeConstant(D->getType(), true));
4190 
4191   // If it is in a read-only section, mark it 'constant'.
4192   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4193     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4194     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4195       GV->setConstant(true);
4196   }
4197 
4198   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4199 
4200   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4201   // function is only defined alongside the variable, not also alongside
4202   // callers. Normally, all accesses to a thread_local go through the
4203   // thread-wrapper in order to ensure initialization has occurred, underlying
4204   // variable will never be used other than the thread-wrapper, so it can be
4205   // converted to internal linkage.
4206   //
4207   // However, if the variable has the 'constinit' attribute, it _can_ be
4208   // referenced directly, without calling the thread-wrapper, so the linkage
4209   // must not be changed.
4210   //
4211   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4212   // weak or linkonce, the de-duplication semantics are important to preserve,
4213   // so we don't change the linkage.
4214   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4215       Linkage == llvm::GlobalValue::ExternalLinkage &&
4216       Context.getTargetInfo().getTriple().isOSDarwin() &&
4217       !D->hasAttr<ConstInitAttr>())
4218     Linkage = llvm::GlobalValue::InternalLinkage;
4219 
4220   GV->setLinkage(Linkage);
4221   if (D->hasAttr<DLLImportAttr>())
4222     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4223   else if (D->hasAttr<DLLExportAttr>())
4224     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4225   else
4226     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4227 
4228   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4229     // common vars aren't constant even if declared const.
4230     GV->setConstant(false);
4231     // Tentative definition of global variables may be initialized with
4232     // non-zero null pointers. In this case they should have weak linkage
4233     // since common linkage must have zero initializer and must not have
4234     // explicit section therefore cannot have non-zero initial value.
4235     if (!GV->getInitializer()->isNullValue())
4236       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4237   }
4238 
4239   setNonAliasAttributes(D, GV);
4240 
4241   if (D->getTLSKind() && !GV->isThreadLocal()) {
4242     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4243       CXXThreadLocals.push_back(D);
4244     setTLSMode(GV, *D);
4245   }
4246 
4247   maybeSetTrivialComdat(*D, *GV);
4248 
4249   // Emit the initializer function if necessary.
4250   if (NeedsGlobalCtor || NeedsGlobalDtor)
4251     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4252 
4253   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4254 
4255   // Emit global variable debug information.
4256   if (CGDebugInfo *DI = getModuleDebugInfo())
4257     if (getCodeGenOpts().hasReducedDebugInfo())
4258       DI->EmitGlobalVariable(GV, D);
4259 }
4260 
4261 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4262   if (CGDebugInfo *DI = getModuleDebugInfo())
4263     if (getCodeGenOpts().hasReducedDebugInfo()) {
4264       QualType ASTTy = D->getType();
4265       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4266       llvm::PointerType *PTy =
4267           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4268       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4269       DI->EmitExternalVariable(
4270           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4271     }
4272 }
4273 
4274 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4275                                       CodeGenModule &CGM, const VarDecl *D,
4276                                       bool NoCommon) {
4277   // Don't give variables common linkage if -fno-common was specified unless it
4278   // was overridden by a NoCommon attribute.
4279   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4280     return true;
4281 
4282   // C11 6.9.2/2:
4283   //   A declaration of an identifier for an object that has file scope without
4284   //   an initializer, and without a storage-class specifier or with the
4285   //   storage-class specifier static, constitutes a tentative definition.
4286   if (D->getInit() || D->hasExternalStorage())
4287     return true;
4288 
4289   // A variable cannot be both common and exist in a section.
4290   if (D->hasAttr<SectionAttr>())
4291     return true;
4292 
4293   // A variable cannot be both common and exist in a section.
4294   // We don't try to determine which is the right section in the front-end.
4295   // If no specialized section name is applicable, it will resort to default.
4296   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4297       D->hasAttr<PragmaClangDataSectionAttr>() ||
4298       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4299       D->hasAttr<PragmaClangRodataSectionAttr>())
4300     return true;
4301 
4302   // Thread local vars aren't considered common linkage.
4303   if (D->getTLSKind())
4304     return true;
4305 
4306   // Tentative definitions marked with WeakImportAttr are true definitions.
4307   if (D->hasAttr<WeakImportAttr>())
4308     return true;
4309 
4310   // A variable cannot be both common and exist in a comdat.
4311   if (shouldBeInCOMDAT(CGM, *D))
4312     return true;
4313 
4314   // Declarations with a required alignment do not have common linkage in MSVC
4315   // mode.
4316   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4317     if (D->hasAttr<AlignedAttr>())
4318       return true;
4319     QualType VarType = D->getType();
4320     if (Context.isAlignmentRequired(VarType))
4321       return true;
4322 
4323     if (const auto *RT = VarType->getAs<RecordType>()) {
4324       const RecordDecl *RD = RT->getDecl();
4325       for (const FieldDecl *FD : RD->fields()) {
4326         if (FD->isBitField())
4327           continue;
4328         if (FD->hasAttr<AlignedAttr>())
4329           return true;
4330         if (Context.isAlignmentRequired(FD->getType()))
4331           return true;
4332       }
4333     }
4334   }
4335 
4336   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4337   // common symbols, so symbols with greater alignment requirements cannot be
4338   // common.
4339   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4340   // alignments for common symbols via the aligncomm directive, so this
4341   // restriction only applies to MSVC environments.
4342   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4343       Context.getTypeAlignIfKnown(D->getType()) >
4344           Context.toBits(CharUnits::fromQuantity(32)))
4345     return true;
4346 
4347   return false;
4348 }
4349 
4350 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4351     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4352   if (Linkage == GVA_Internal)
4353     return llvm::Function::InternalLinkage;
4354 
4355   if (D->hasAttr<WeakAttr>()) {
4356     if (IsConstantVariable)
4357       return llvm::GlobalVariable::WeakODRLinkage;
4358     else
4359       return llvm::GlobalVariable::WeakAnyLinkage;
4360   }
4361 
4362   if (const auto *FD = D->getAsFunction())
4363     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4364       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4365 
4366   // We are guaranteed to have a strong definition somewhere else,
4367   // so we can use available_externally linkage.
4368   if (Linkage == GVA_AvailableExternally)
4369     return llvm::GlobalValue::AvailableExternallyLinkage;
4370 
4371   // Note that Apple's kernel linker doesn't support symbol
4372   // coalescing, so we need to avoid linkonce and weak linkages there.
4373   // Normally, this means we just map to internal, but for explicit
4374   // instantiations we'll map to external.
4375 
4376   // In C++, the compiler has to emit a definition in every translation unit
4377   // that references the function.  We should use linkonce_odr because
4378   // a) if all references in this translation unit are optimized away, we
4379   // don't need to codegen it.  b) if the function persists, it needs to be
4380   // merged with other definitions. c) C++ has the ODR, so we know the
4381   // definition is dependable.
4382   if (Linkage == GVA_DiscardableODR)
4383     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4384                                             : llvm::Function::InternalLinkage;
4385 
4386   // An explicit instantiation of a template has weak linkage, since
4387   // explicit instantiations can occur in multiple translation units
4388   // and must all be equivalent. However, we are not allowed to
4389   // throw away these explicit instantiations.
4390   //
4391   // We don't currently support CUDA device code spread out across multiple TUs,
4392   // so say that CUDA templates are either external (for kernels) or internal.
4393   // This lets llvm perform aggressive inter-procedural optimizations.
4394   if (Linkage == GVA_StrongODR) {
4395     if (Context.getLangOpts().AppleKext)
4396       return llvm::Function::ExternalLinkage;
4397     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4398       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4399                                           : llvm::Function::InternalLinkage;
4400     return llvm::Function::WeakODRLinkage;
4401   }
4402 
4403   // C++ doesn't have tentative definitions and thus cannot have common
4404   // linkage.
4405   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4406       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4407                                  CodeGenOpts.NoCommon))
4408     return llvm::GlobalVariable::CommonLinkage;
4409 
4410   // selectany symbols are externally visible, so use weak instead of
4411   // linkonce.  MSVC optimizes away references to const selectany globals, so
4412   // all definitions should be the same and ODR linkage should be used.
4413   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4414   if (D->hasAttr<SelectAnyAttr>())
4415     return llvm::GlobalVariable::WeakODRLinkage;
4416 
4417   // Otherwise, we have strong external linkage.
4418   assert(Linkage == GVA_StrongExternal);
4419   return llvm::GlobalVariable::ExternalLinkage;
4420 }
4421 
4422 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4423     const VarDecl *VD, bool IsConstant) {
4424   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4425   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4426 }
4427 
4428 /// Replace the uses of a function that was declared with a non-proto type.
4429 /// We want to silently drop extra arguments from call sites
4430 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4431                                           llvm::Function *newFn) {
4432   // Fast path.
4433   if (old->use_empty()) return;
4434 
4435   llvm::Type *newRetTy = newFn->getReturnType();
4436   SmallVector<llvm::Value*, 4> newArgs;
4437   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4438 
4439   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4440          ui != ue; ) {
4441     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4442     llvm::User *user = use->getUser();
4443 
4444     // Recognize and replace uses of bitcasts.  Most calls to
4445     // unprototyped functions will use bitcasts.
4446     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4447       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4448         replaceUsesOfNonProtoConstant(bitcast, newFn);
4449       continue;
4450     }
4451 
4452     // Recognize calls to the function.
4453     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4454     if (!callSite) continue;
4455     if (!callSite->isCallee(&*use))
4456       continue;
4457 
4458     // If the return types don't match exactly, then we can't
4459     // transform this call unless it's dead.
4460     if (callSite->getType() != newRetTy && !callSite->use_empty())
4461       continue;
4462 
4463     // Get the call site's attribute list.
4464     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4465     llvm::AttributeList oldAttrs = callSite->getAttributes();
4466 
4467     // If the function was passed too few arguments, don't transform.
4468     unsigned newNumArgs = newFn->arg_size();
4469     if (callSite->arg_size() < newNumArgs)
4470       continue;
4471 
4472     // If extra arguments were passed, we silently drop them.
4473     // If any of the types mismatch, we don't transform.
4474     unsigned argNo = 0;
4475     bool dontTransform = false;
4476     for (llvm::Argument &A : newFn->args()) {
4477       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4478         dontTransform = true;
4479         break;
4480       }
4481 
4482       // Add any parameter attributes.
4483       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4484       argNo++;
4485     }
4486     if (dontTransform)
4487       continue;
4488 
4489     // Okay, we can transform this.  Create the new call instruction and copy
4490     // over the required information.
4491     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4492 
4493     // Copy over any operand bundles.
4494     callSite->getOperandBundlesAsDefs(newBundles);
4495 
4496     llvm::CallBase *newCall;
4497     if (dyn_cast<llvm::CallInst>(callSite)) {
4498       newCall =
4499           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4500     } else {
4501       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4502       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4503                                          oldInvoke->getUnwindDest(), newArgs,
4504                                          newBundles, "", callSite);
4505     }
4506     newArgs.clear(); // for the next iteration
4507 
4508     if (!newCall->getType()->isVoidTy())
4509       newCall->takeName(callSite);
4510     newCall->setAttributes(llvm::AttributeList::get(
4511         newFn->getContext(), oldAttrs.getFnAttributes(),
4512         oldAttrs.getRetAttributes(), newArgAttrs));
4513     newCall->setCallingConv(callSite->getCallingConv());
4514 
4515     // Finally, remove the old call, replacing any uses with the new one.
4516     if (!callSite->use_empty())
4517       callSite->replaceAllUsesWith(newCall);
4518 
4519     // Copy debug location attached to CI.
4520     if (callSite->getDebugLoc())
4521       newCall->setDebugLoc(callSite->getDebugLoc());
4522 
4523     callSite->eraseFromParent();
4524   }
4525 }
4526 
4527 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4528 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4529 /// existing call uses of the old function in the module, this adjusts them to
4530 /// call the new function directly.
4531 ///
4532 /// This is not just a cleanup: the always_inline pass requires direct calls to
4533 /// functions to be able to inline them.  If there is a bitcast in the way, it
4534 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4535 /// run at -O0.
4536 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4537                                                       llvm::Function *NewFn) {
4538   // If we're redefining a global as a function, don't transform it.
4539   if (!isa<llvm::Function>(Old)) return;
4540 
4541   replaceUsesOfNonProtoConstant(Old, NewFn);
4542 }
4543 
4544 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4545   auto DK = VD->isThisDeclarationADefinition();
4546   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4547     return;
4548 
4549   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4550   // If we have a definition, this might be a deferred decl. If the
4551   // instantiation is explicit, make sure we emit it at the end.
4552   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4553     GetAddrOfGlobalVar(VD);
4554 
4555   EmitTopLevelDecl(VD);
4556 }
4557 
4558 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4559                                                  llvm::GlobalValue *GV) {
4560   const auto *D = cast<FunctionDecl>(GD.getDecl());
4561 
4562   // Compute the function info and LLVM type.
4563   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4564   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4565 
4566   // Get or create the prototype for the function.
4567   if (!GV || (GV->getValueType() != Ty))
4568     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4569                                                    /*DontDefer=*/true,
4570                                                    ForDefinition));
4571 
4572   // Already emitted.
4573   if (!GV->isDeclaration())
4574     return;
4575 
4576   // We need to set linkage and visibility on the function before
4577   // generating code for it because various parts of IR generation
4578   // want to propagate this information down (e.g. to local static
4579   // declarations).
4580   auto *Fn = cast<llvm::Function>(GV);
4581   setFunctionLinkage(GD, Fn);
4582 
4583   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4584   setGVProperties(Fn, GD);
4585 
4586   MaybeHandleStaticInExternC(D, Fn);
4587 
4588 
4589   maybeSetTrivialComdat(*D, *Fn);
4590 
4591   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4592 
4593   setNonAliasAttributes(GD, Fn);
4594   SetLLVMFunctionAttributesForDefinition(D, Fn);
4595 
4596   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4597     AddGlobalCtor(Fn, CA->getPriority());
4598   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4599     AddGlobalDtor(Fn, DA->getPriority());
4600   if (D->hasAttr<AnnotateAttr>())
4601     AddGlobalAnnotations(D, Fn);
4602 }
4603 
4604 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4605   const auto *D = cast<ValueDecl>(GD.getDecl());
4606   const AliasAttr *AA = D->getAttr<AliasAttr>();
4607   assert(AA && "Not an alias?");
4608 
4609   StringRef MangledName = getMangledName(GD);
4610 
4611   if (AA->getAliasee() == MangledName) {
4612     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4613     return;
4614   }
4615 
4616   // If there is a definition in the module, then it wins over the alias.
4617   // This is dubious, but allow it to be safe.  Just ignore the alias.
4618   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4619   if (Entry && !Entry->isDeclaration())
4620     return;
4621 
4622   Aliases.push_back(GD);
4623 
4624   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4625 
4626   // Create a reference to the named value.  This ensures that it is emitted
4627   // if a deferred decl.
4628   llvm::Constant *Aliasee;
4629   llvm::GlobalValue::LinkageTypes LT;
4630   if (isa<llvm::FunctionType>(DeclTy)) {
4631     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4632                                       /*ForVTable=*/false);
4633     LT = getFunctionLinkage(GD);
4634   } else {
4635     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4636                                     llvm::PointerType::getUnqual(DeclTy),
4637                                     /*D=*/nullptr);
4638     LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4639                                      D->getType().isConstQualified());
4640   }
4641 
4642   // Create the new alias itself, but don't set a name yet.
4643   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4644   auto *GA =
4645       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4646 
4647   if (Entry) {
4648     if (GA->getAliasee() == Entry) {
4649       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4650       return;
4651     }
4652 
4653     assert(Entry->isDeclaration());
4654 
4655     // If there is a declaration in the module, then we had an extern followed
4656     // by the alias, as in:
4657     //   extern int test6();
4658     //   ...
4659     //   int test6() __attribute__((alias("test7")));
4660     //
4661     // Remove it and replace uses of it with the alias.
4662     GA->takeName(Entry);
4663 
4664     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4665                                                           Entry->getType()));
4666     Entry->eraseFromParent();
4667   } else {
4668     GA->setName(MangledName);
4669   }
4670 
4671   // Set attributes which are particular to an alias; this is a
4672   // specialization of the attributes which may be set on a global
4673   // variable/function.
4674   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4675       D->isWeakImported()) {
4676     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4677   }
4678 
4679   if (const auto *VD = dyn_cast<VarDecl>(D))
4680     if (VD->getTLSKind())
4681       setTLSMode(GA, *VD);
4682 
4683   SetCommonAttributes(GD, GA);
4684 }
4685 
4686 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4687   const auto *D = cast<ValueDecl>(GD.getDecl());
4688   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4689   assert(IFA && "Not an ifunc?");
4690 
4691   StringRef MangledName = getMangledName(GD);
4692 
4693   if (IFA->getResolver() == MangledName) {
4694     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4695     return;
4696   }
4697 
4698   // Report an error if some definition overrides ifunc.
4699   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4700   if (Entry && !Entry->isDeclaration()) {
4701     GlobalDecl OtherGD;
4702     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4703         DiagnosedConflictingDefinitions.insert(GD).second) {
4704       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4705           << MangledName;
4706       Diags.Report(OtherGD.getDecl()->getLocation(),
4707                    diag::note_previous_definition);
4708     }
4709     return;
4710   }
4711 
4712   Aliases.push_back(GD);
4713 
4714   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4715   llvm::Constant *Resolver =
4716       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4717                               /*ForVTable=*/false);
4718   llvm::GlobalIFunc *GIF =
4719       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4720                                 "", Resolver, &getModule());
4721   if (Entry) {
4722     if (GIF->getResolver() == Entry) {
4723       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4724       return;
4725     }
4726     assert(Entry->isDeclaration());
4727 
4728     // If there is a declaration in the module, then we had an extern followed
4729     // by the ifunc, as in:
4730     //   extern int test();
4731     //   ...
4732     //   int test() __attribute__((ifunc("resolver")));
4733     //
4734     // Remove it and replace uses of it with the ifunc.
4735     GIF->takeName(Entry);
4736 
4737     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4738                                                           Entry->getType()));
4739     Entry->eraseFromParent();
4740   } else
4741     GIF->setName(MangledName);
4742 
4743   SetCommonAttributes(GD, GIF);
4744 }
4745 
4746 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4747                                             ArrayRef<llvm::Type*> Tys) {
4748   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4749                                          Tys);
4750 }
4751 
4752 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4753 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4754                          const StringLiteral *Literal, bool TargetIsLSB,
4755                          bool &IsUTF16, unsigned &StringLength) {
4756   StringRef String = Literal->getString();
4757   unsigned NumBytes = String.size();
4758 
4759   // Check for simple case.
4760   if (!Literal->containsNonAsciiOrNull()) {
4761     StringLength = NumBytes;
4762     return *Map.insert(std::make_pair(String, nullptr)).first;
4763   }
4764 
4765   // Otherwise, convert the UTF8 literals into a string of shorts.
4766   IsUTF16 = true;
4767 
4768   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4769   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4770   llvm::UTF16 *ToPtr = &ToBuf[0];
4771 
4772   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4773                                  ToPtr + NumBytes, llvm::strictConversion);
4774 
4775   // ConvertUTF8toUTF16 returns the length in ToPtr.
4776   StringLength = ToPtr - &ToBuf[0];
4777 
4778   // Add an explicit null.
4779   *ToPtr = 0;
4780   return *Map.insert(std::make_pair(
4781                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4782                                    (StringLength + 1) * 2),
4783                          nullptr)).first;
4784 }
4785 
4786 ConstantAddress
4787 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4788   unsigned StringLength = 0;
4789   bool isUTF16 = false;
4790   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4791       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4792                                getDataLayout().isLittleEndian(), isUTF16,
4793                                StringLength);
4794 
4795   if (auto *C = Entry.second)
4796     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4797 
4798   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4799   llvm::Constant *Zeros[] = { Zero, Zero };
4800 
4801   const ASTContext &Context = getContext();
4802   const llvm::Triple &Triple = getTriple();
4803 
4804   const auto CFRuntime = getLangOpts().CFRuntime;
4805   const bool IsSwiftABI =
4806       static_cast<unsigned>(CFRuntime) >=
4807       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4808   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4809 
4810   // If we don't already have it, get __CFConstantStringClassReference.
4811   if (!CFConstantStringClassRef) {
4812     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4813     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4814     Ty = llvm::ArrayType::get(Ty, 0);
4815 
4816     switch (CFRuntime) {
4817     default: break;
4818     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4819     case LangOptions::CoreFoundationABI::Swift5_0:
4820       CFConstantStringClassName =
4821           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4822                               : "$s10Foundation19_NSCFConstantStringCN";
4823       Ty = IntPtrTy;
4824       break;
4825     case LangOptions::CoreFoundationABI::Swift4_2:
4826       CFConstantStringClassName =
4827           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4828                               : "$S10Foundation19_NSCFConstantStringCN";
4829       Ty = IntPtrTy;
4830       break;
4831     case LangOptions::CoreFoundationABI::Swift4_1:
4832       CFConstantStringClassName =
4833           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4834                               : "__T010Foundation19_NSCFConstantStringCN";
4835       Ty = IntPtrTy;
4836       break;
4837     }
4838 
4839     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4840 
4841     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4842       llvm::GlobalValue *GV = nullptr;
4843 
4844       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4845         IdentifierInfo &II = Context.Idents.get(GV->getName());
4846         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4847         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4848 
4849         const VarDecl *VD = nullptr;
4850         for (const auto &Result : DC->lookup(&II))
4851           if ((VD = dyn_cast<VarDecl>(Result)))
4852             break;
4853 
4854         if (Triple.isOSBinFormatELF()) {
4855           if (!VD)
4856             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4857         } else {
4858           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4859           if (!VD || !VD->hasAttr<DLLExportAttr>())
4860             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4861           else
4862             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4863         }
4864 
4865         setDSOLocal(GV);
4866       }
4867     }
4868 
4869     // Decay array -> ptr
4870     CFConstantStringClassRef =
4871         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4872                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4873   }
4874 
4875   QualType CFTy = Context.getCFConstantStringType();
4876 
4877   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4878 
4879   ConstantInitBuilder Builder(*this);
4880   auto Fields = Builder.beginStruct(STy);
4881 
4882   // Class pointer.
4883   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4884 
4885   // Flags.
4886   if (IsSwiftABI) {
4887     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4888     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4889   } else {
4890     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4891   }
4892 
4893   // String pointer.
4894   llvm::Constant *C = nullptr;
4895   if (isUTF16) {
4896     auto Arr = llvm::makeArrayRef(
4897         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4898         Entry.first().size() / 2);
4899     C = llvm::ConstantDataArray::get(VMContext, Arr);
4900   } else {
4901     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4902   }
4903 
4904   // Note: -fwritable-strings doesn't make the backing store strings of
4905   // CFStrings writable. (See <rdar://problem/10657500>)
4906   auto *GV =
4907       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4908                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4909   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4910   // Don't enforce the target's minimum global alignment, since the only use
4911   // of the string is via this class initializer.
4912   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4913                             : Context.getTypeAlignInChars(Context.CharTy);
4914   GV->setAlignment(Align.getAsAlign());
4915 
4916   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4917   // Without it LLVM can merge the string with a non unnamed_addr one during
4918   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4919   if (Triple.isOSBinFormatMachO())
4920     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4921                            : "__TEXT,__cstring,cstring_literals");
4922   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4923   // the static linker to adjust permissions to read-only later on.
4924   else if (Triple.isOSBinFormatELF())
4925     GV->setSection(".rodata");
4926 
4927   // String.
4928   llvm::Constant *Str =
4929       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4930 
4931   if (isUTF16)
4932     // Cast the UTF16 string to the correct type.
4933     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4934   Fields.add(Str);
4935 
4936   // String length.
4937   llvm::IntegerType *LengthTy =
4938       llvm::IntegerType::get(getModule().getContext(),
4939                              Context.getTargetInfo().getLongWidth());
4940   if (IsSwiftABI) {
4941     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4942         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4943       LengthTy = Int32Ty;
4944     else
4945       LengthTy = IntPtrTy;
4946   }
4947   Fields.addInt(LengthTy, StringLength);
4948 
4949   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4950   // properly aligned on 32-bit platforms.
4951   CharUnits Alignment =
4952       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4953 
4954   // The struct.
4955   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4956                                     /*isConstant=*/false,
4957                                     llvm::GlobalVariable::PrivateLinkage);
4958   GV->addAttribute("objc_arc_inert");
4959   switch (Triple.getObjectFormat()) {
4960   case llvm::Triple::UnknownObjectFormat:
4961     llvm_unreachable("unknown file format");
4962   case llvm::Triple::GOFF:
4963     llvm_unreachable("GOFF is not yet implemented");
4964   case llvm::Triple::XCOFF:
4965     llvm_unreachable("XCOFF is not yet implemented");
4966   case llvm::Triple::COFF:
4967   case llvm::Triple::ELF:
4968   case llvm::Triple::Wasm:
4969     GV->setSection("cfstring");
4970     break;
4971   case llvm::Triple::MachO:
4972     GV->setSection("__DATA,__cfstring");
4973     break;
4974   }
4975   Entry.second = GV;
4976 
4977   return ConstantAddress(GV, Alignment);
4978 }
4979 
4980 bool CodeGenModule::getExpressionLocationsEnabled() const {
4981   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4982 }
4983 
4984 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4985   if (ObjCFastEnumerationStateType.isNull()) {
4986     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4987     D->startDefinition();
4988 
4989     QualType FieldTypes[] = {
4990       Context.UnsignedLongTy,
4991       Context.getPointerType(Context.getObjCIdType()),
4992       Context.getPointerType(Context.UnsignedLongTy),
4993       Context.getConstantArrayType(Context.UnsignedLongTy,
4994                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4995     };
4996 
4997     for (size_t i = 0; i < 4; ++i) {
4998       FieldDecl *Field = FieldDecl::Create(Context,
4999                                            D,
5000                                            SourceLocation(),
5001                                            SourceLocation(), nullptr,
5002                                            FieldTypes[i], /*TInfo=*/nullptr,
5003                                            /*BitWidth=*/nullptr,
5004                                            /*Mutable=*/false,
5005                                            ICIS_NoInit);
5006       Field->setAccess(AS_public);
5007       D->addDecl(Field);
5008     }
5009 
5010     D->completeDefinition();
5011     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5012   }
5013 
5014   return ObjCFastEnumerationStateType;
5015 }
5016 
5017 llvm::Constant *
5018 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5019   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5020 
5021   // Don't emit it as the address of the string, emit the string data itself
5022   // as an inline array.
5023   if (E->getCharByteWidth() == 1) {
5024     SmallString<64> Str(E->getString());
5025 
5026     // Resize the string to the right size, which is indicated by its type.
5027     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5028     Str.resize(CAT->getSize().getZExtValue());
5029     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5030   }
5031 
5032   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5033   llvm::Type *ElemTy = AType->getElementType();
5034   unsigned NumElements = AType->getNumElements();
5035 
5036   // Wide strings have either 2-byte or 4-byte elements.
5037   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5038     SmallVector<uint16_t, 32> Elements;
5039     Elements.reserve(NumElements);
5040 
5041     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5042       Elements.push_back(E->getCodeUnit(i));
5043     Elements.resize(NumElements);
5044     return llvm::ConstantDataArray::get(VMContext, Elements);
5045   }
5046 
5047   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5048   SmallVector<uint32_t, 32> Elements;
5049   Elements.reserve(NumElements);
5050 
5051   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5052     Elements.push_back(E->getCodeUnit(i));
5053   Elements.resize(NumElements);
5054   return llvm::ConstantDataArray::get(VMContext, Elements);
5055 }
5056 
5057 static llvm::GlobalVariable *
5058 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5059                       CodeGenModule &CGM, StringRef GlobalName,
5060                       CharUnits Alignment) {
5061   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5062       CGM.getStringLiteralAddressSpace());
5063 
5064   llvm::Module &M = CGM.getModule();
5065   // Create a global variable for this string
5066   auto *GV = new llvm::GlobalVariable(
5067       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5068       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5069   GV->setAlignment(Alignment.getAsAlign());
5070   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5071   if (GV->isWeakForLinker()) {
5072     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5073     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5074   }
5075   CGM.setDSOLocal(GV);
5076 
5077   return GV;
5078 }
5079 
5080 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5081 /// constant array for the given string literal.
5082 ConstantAddress
5083 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5084                                                   StringRef Name) {
5085   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5086 
5087   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5088   llvm::GlobalVariable **Entry = nullptr;
5089   if (!LangOpts.WritableStrings) {
5090     Entry = &ConstantStringMap[C];
5091     if (auto GV = *Entry) {
5092       if (Alignment.getQuantity() > GV->getAlignment())
5093         GV->setAlignment(Alignment.getAsAlign());
5094       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5095                              Alignment);
5096     }
5097   }
5098 
5099   SmallString<256> MangledNameBuffer;
5100   StringRef GlobalVariableName;
5101   llvm::GlobalValue::LinkageTypes LT;
5102 
5103   // Mangle the string literal if that's how the ABI merges duplicate strings.
5104   // Don't do it if they are writable, since we don't want writes in one TU to
5105   // affect strings in another.
5106   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5107       !LangOpts.WritableStrings) {
5108     llvm::raw_svector_ostream Out(MangledNameBuffer);
5109     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5110     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5111     GlobalVariableName = MangledNameBuffer;
5112   } else {
5113     LT = llvm::GlobalValue::PrivateLinkage;
5114     GlobalVariableName = Name;
5115   }
5116 
5117   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5118   if (Entry)
5119     *Entry = GV;
5120 
5121   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5122                                   QualType());
5123 
5124   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5125                          Alignment);
5126 }
5127 
5128 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5129 /// array for the given ObjCEncodeExpr node.
5130 ConstantAddress
5131 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5132   std::string Str;
5133   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5134 
5135   return GetAddrOfConstantCString(Str);
5136 }
5137 
5138 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5139 /// the literal and a terminating '\0' character.
5140 /// The result has pointer to array type.
5141 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5142     const std::string &Str, const char *GlobalName) {
5143   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5144   CharUnits Alignment =
5145     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5146 
5147   llvm::Constant *C =
5148       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5149 
5150   // Don't share any string literals if strings aren't constant.
5151   llvm::GlobalVariable **Entry = nullptr;
5152   if (!LangOpts.WritableStrings) {
5153     Entry = &ConstantStringMap[C];
5154     if (auto GV = *Entry) {
5155       if (Alignment.getQuantity() > GV->getAlignment())
5156         GV->setAlignment(Alignment.getAsAlign());
5157       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5158                              Alignment);
5159     }
5160   }
5161 
5162   // Get the default prefix if a name wasn't specified.
5163   if (!GlobalName)
5164     GlobalName = ".str";
5165   // Create a global variable for this.
5166   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5167                                   GlobalName, Alignment);
5168   if (Entry)
5169     *Entry = GV;
5170 
5171   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5172                          Alignment);
5173 }
5174 
5175 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5176     const MaterializeTemporaryExpr *E, const Expr *Init) {
5177   assert((E->getStorageDuration() == SD_Static ||
5178           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5179   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5180 
5181   // If we're not materializing a subobject of the temporary, keep the
5182   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5183   QualType MaterializedType = Init->getType();
5184   if (Init == E->getSubExpr())
5185     MaterializedType = E->getType();
5186 
5187   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5188 
5189   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5190     return ConstantAddress(Slot, Align);
5191 
5192   // FIXME: If an externally-visible declaration extends multiple temporaries,
5193   // we need to give each temporary the same name in every translation unit (and
5194   // we also need to make the temporaries externally-visible).
5195   SmallString<256> Name;
5196   llvm::raw_svector_ostream Out(Name);
5197   getCXXABI().getMangleContext().mangleReferenceTemporary(
5198       VD, E->getManglingNumber(), Out);
5199 
5200   APValue *Value = nullptr;
5201   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5202     // If the initializer of the extending declaration is a constant
5203     // initializer, we should have a cached constant initializer for this
5204     // temporary. Note that this might have a different value from the value
5205     // computed by evaluating the initializer if the surrounding constant
5206     // expression modifies the temporary.
5207     Value = E->getOrCreateValue(false);
5208   }
5209 
5210   // Try evaluating it now, it might have a constant initializer.
5211   Expr::EvalResult EvalResult;
5212   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5213       !EvalResult.hasSideEffects())
5214     Value = &EvalResult.Val;
5215 
5216   LangAS AddrSpace =
5217       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5218 
5219   Optional<ConstantEmitter> emitter;
5220   llvm::Constant *InitialValue = nullptr;
5221   bool Constant = false;
5222   llvm::Type *Type;
5223   if (Value) {
5224     // The temporary has a constant initializer, use it.
5225     emitter.emplace(*this);
5226     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5227                                                MaterializedType);
5228     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5229     Type = InitialValue->getType();
5230   } else {
5231     // No initializer, the initialization will be provided when we
5232     // initialize the declaration which performed lifetime extension.
5233     Type = getTypes().ConvertTypeForMem(MaterializedType);
5234   }
5235 
5236   // Create a global variable for this lifetime-extended temporary.
5237   llvm::GlobalValue::LinkageTypes Linkage =
5238       getLLVMLinkageVarDefinition(VD, Constant);
5239   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5240     const VarDecl *InitVD;
5241     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5242         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5243       // Temporaries defined inside a class get linkonce_odr linkage because the
5244       // class can be defined in multiple translation units.
5245       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5246     } else {
5247       // There is no need for this temporary to have external linkage if the
5248       // VarDecl has external linkage.
5249       Linkage = llvm::GlobalVariable::InternalLinkage;
5250     }
5251   }
5252   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5253   auto *GV = new llvm::GlobalVariable(
5254       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5255       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5256   if (emitter) emitter->finalize(GV);
5257   setGVProperties(GV, VD);
5258   GV->setAlignment(Align.getAsAlign());
5259   if (supportsCOMDAT() && GV->isWeakForLinker())
5260     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5261   if (VD->getTLSKind())
5262     setTLSMode(GV, *VD);
5263   llvm::Constant *CV = GV;
5264   if (AddrSpace != LangAS::Default)
5265     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5266         *this, GV, AddrSpace, LangAS::Default,
5267         Type->getPointerTo(
5268             getContext().getTargetAddressSpace(LangAS::Default)));
5269   MaterializedGlobalTemporaryMap[E] = CV;
5270   return ConstantAddress(CV, Align);
5271 }
5272 
5273 /// EmitObjCPropertyImplementations - Emit information for synthesized
5274 /// properties for an implementation.
5275 void CodeGenModule::EmitObjCPropertyImplementations(const
5276                                                     ObjCImplementationDecl *D) {
5277   for (const auto *PID : D->property_impls()) {
5278     // Dynamic is just for type-checking.
5279     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5280       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5281 
5282       // Determine which methods need to be implemented, some may have
5283       // been overridden. Note that ::isPropertyAccessor is not the method
5284       // we want, that just indicates if the decl came from a
5285       // property. What we want to know is if the method is defined in
5286       // this implementation.
5287       auto *Getter = PID->getGetterMethodDecl();
5288       if (!Getter || Getter->isSynthesizedAccessorStub())
5289         CodeGenFunction(*this).GenerateObjCGetter(
5290             const_cast<ObjCImplementationDecl *>(D), PID);
5291       auto *Setter = PID->getSetterMethodDecl();
5292       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5293         CodeGenFunction(*this).GenerateObjCSetter(
5294                                  const_cast<ObjCImplementationDecl *>(D), PID);
5295     }
5296   }
5297 }
5298 
5299 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5300   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5301   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5302        ivar; ivar = ivar->getNextIvar())
5303     if (ivar->getType().isDestructedType())
5304       return true;
5305 
5306   return false;
5307 }
5308 
5309 static bool AllTrivialInitializers(CodeGenModule &CGM,
5310                                    ObjCImplementationDecl *D) {
5311   CodeGenFunction CGF(CGM);
5312   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5313        E = D->init_end(); B != E; ++B) {
5314     CXXCtorInitializer *CtorInitExp = *B;
5315     Expr *Init = CtorInitExp->getInit();
5316     if (!CGF.isTrivialInitializer(Init))
5317       return false;
5318   }
5319   return true;
5320 }
5321 
5322 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5323 /// for an implementation.
5324 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5325   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5326   if (needsDestructMethod(D)) {
5327     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5328     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5329     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5330         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5331         getContext().VoidTy, nullptr, D,
5332         /*isInstance=*/true, /*isVariadic=*/false,
5333         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5334         /*isImplicitlyDeclared=*/true,
5335         /*isDefined=*/false, ObjCMethodDecl::Required);
5336     D->addInstanceMethod(DTORMethod);
5337     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5338     D->setHasDestructors(true);
5339   }
5340 
5341   // If the implementation doesn't have any ivar initializers, we don't need
5342   // a .cxx_construct.
5343   if (D->getNumIvarInitializers() == 0 ||
5344       AllTrivialInitializers(*this, D))
5345     return;
5346 
5347   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5348   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5349   // The constructor returns 'self'.
5350   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5351       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5352       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5353       /*isVariadic=*/false,
5354       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5355       /*isImplicitlyDeclared=*/true,
5356       /*isDefined=*/false, ObjCMethodDecl::Required);
5357   D->addInstanceMethod(CTORMethod);
5358   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5359   D->setHasNonZeroConstructors(true);
5360 }
5361 
5362 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5363 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5364   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5365       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5366     ErrorUnsupported(LSD, "linkage spec");
5367     return;
5368   }
5369 
5370   EmitDeclContext(LSD);
5371 }
5372 
5373 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5374   for (auto *I : DC->decls()) {
5375     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5376     // are themselves considered "top-level", so EmitTopLevelDecl on an
5377     // ObjCImplDecl does not recursively visit them. We need to do that in
5378     // case they're nested inside another construct (LinkageSpecDecl /
5379     // ExportDecl) that does stop them from being considered "top-level".
5380     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5381       for (auto *M : OID->methods())
5382         EmitTopLevelDecl(M);
5383     }
5384 
5385     EmitTopLevelDecl(I);
5386   }
5387 }
5388 
5389 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5390 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5391   // Ignore dependent declarations.
5392   if (D->isTemplated())
5393     return;
5394 
5395   // Consteval function shouldn't be emitted.
5396   if (auto *FD = dyn_cast<FunctionDecl>(D))
5397     if (FD->isConsteval())
5398       return;
5399 
5400   switch (D->getKind()) {
5401   case Decl::CXXConversion:
5402   case Decl::CXXMethod:
5403   case Decl::Function:
5404     EmitGlobal(cast<FunctionDecl>(D));
5405     // Always provide some coverage mapping
5406     // even for the functions that aren't emitted.
5407     AddDeferredUnusedCoverageMapping(D);
5408     break;
5409 
5410   case Decl::CXXDeductionGuide:
5411     // Function-like, but does not result in code emission.
5412     break;
5413 
5414   case Decl::Var:
5415   case Decl::Decomposition:
5416   case Decl::VarTemplateSpecialization:
5417     EmitGlobal(cast<VarDecl>(D));
5418     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5419       for (auto *B : DD->bindings())
5420         if (auto *HD = B->getHoldingVar())
5421           EmitGlobal(HD);
5422     break;
5423 
5424   // Indirect fields from global anonymous structs and unions can be
5425   // ignored; only the actual variable requires IR gen support.
5426   case Decl::IndirectField:
5427     break;
5428 
5429   // C++ Decls
5430   case Decl::Namespace:
5431     EmitDeclContext(cast<NamespaceDecl>(D));
5432     break;
5433   case Decl::ClassTemplateSpecialization: {
5434     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5435     if (CGDebugInfo *DI = getModuleDebugInfo())
5436       if (Spec->getSpecializationKind() ==
5437               TSK_ExplicitInstantiationDefinition &&
5438           Spec->hasDefinition())
5439         DI->completeTemplateDefinition(*Spec);
5440   } LLVM_FALLTHROUGH;
5441   case Decl::CXXRecord: {
5442     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5443     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5444       if (CRD->hasDefinition())
5445         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5446       if (auto *ES = D->getASTContext().getExternalSource())
5447         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5448           DI->completeUnusedClass(*CRD);
5449     }
5450     // Emit any static data members, they may be definitions.
5451     for (auto *I : CRD->decls())
5452       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5453         EmitTopLevelDecl(I);
5454     break;
5455   }
5456     // No code generation needed.
5457   case Decl::UsingShadow:
5458   case Decl::ClassTemplate:
5459   case Decl::VarTemplate:
5460   case Decl::Concept:
5461   case Decl::VarTemplatePartialSpecialization:
5462   case Decl::FunctionTemplate:
5463   case Decl::TypeAliasTemplate:
5464   case Decl::Block:
5465   case Decl::Empty:
5466   case Decl::Binding:
5467     break;
5468   case Decl::Using:          // using X; [C++]
5469     if (CGDebugInfo *DI = getModuleDebugInfo())
5470         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5471     break;
5472   case Decl::NamespaceAlias:
5473     if (CGDebugInfo *DI = getModuleDebugInfo())
5474         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5475     break;
5476   case Decl::UsingDirective: // using namespace X; [C++]
5477     if (CGDebugInfo *DI = getModuleDebugInfo())
5478       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5479     break;
5480   case Decl::CXXConstructor:
5481     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5482     break;
5483   case Decl::CXXDestructor:
5484     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5485     break;
5486 
5487   case Decl::StaticAssert:
5488     // Nothing to do.
5489     break;
5490 
5491   // Objective-C Decls
5492 
5493   // Forward declarations, no (immediate) code generation.
5494   case Decl::ObjCInterface:
5495   case Decl::ObjCCategory:
5496     break;
5497 
5498   case Decl::ObjCProtocol: {
5499     auto *Proto = cast<ObjCProtocolDecl>(D);
5500     if (Proto->isThisDeclarationADefinition())
5501       ObjCRuntime->GenerateProtocol(Proto);
5502     break;
5503   }
5504 
5505   case Decl::ObjCCategoryImpl:
5506     // Categories have properties but don't support synthesize so we
5507     // can ignore them here.
5508     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5509     break;
5510 
5511   case Decl::ObjCImplementation: {
5512     auto *OMD = cast<ObjCImplementationDecl>(D);
5513     EmitObjCPropertyImplementations(OMD);
5514     EmitObjCIvarInitializations(OMD);
5515     ObjCRuntime->GenerateClass(OMD);
5516     // Emit global variable debug information.
5517     if (CGDebugInfo *DI = getModuleDebugInfo())
5518       if (getCodeGenOpts().hasReducedDebugInfo())
5519         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5520             OMD->getClassInterface()), OMD->getLocation());
5521     break;
5522   }
5523   case Decl::ObjCMethod: {
5524     auto *OMD = cast<ObjCMethodDecl>(D);
5525     // If this is not a prototype, emit the body.
5526     if (OMD->getBody())
5527       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5528     break;
5529   }
5530   case Decl::ObjCCompatibleAlias:
5531     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5532     break;
5533 
5534   case Decl::PragmaComment: {
5535     const auto *PCD = cast<PragmaCommentDecl>(D);
5536     switch (PCD->getCommentKind()) {
5537     case PCK_Unknown:
5538       llvm_unreachable("unexpected pragma comment kind");
5539     case PCK_Linker:
5540       AppendLinkerOptions(PCD->getArg());
5541       break;
5542     case PCK_Lib:
5543         AddDependentLib(PCD->getArg());
5544       break;
5545     case PCK_Compiler:
5546     case PCK_ExeStr:
5547     case PCK_User:
5548       break; // We ignore all of these.
5549     }
5550     break;
5551   }
5552 
5553   case Decl::PragmaDetectMismatch: {
5554     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5555     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5556     break;
5557   }
5558 
5559   case Decl::LinkageSpec:
5560     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5561     break;
5562 
5563   case Decl::FileScopeAsm: {
5564     // File-scope asm is ignored during device-side CUDA compilation.
5565     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5566       break;
5567     // File-scope asm is ignored during device-side OpenMP compilation.
5568     if (LangOpts.OpenMPIsDevice)
5569       break;
5570     auto *AD = cast<FileScopeAsmDecl>(D);
5571     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5572     break;
5573   }
5574 
5575   case Decl::Import: {
5576     auto *Import = cast<ImportDecl>(D);
5577 
5578     // If we've already imported this module, we're done.
5579     if (!ImportedModules.insert(Import->getImportedModule()))
5580       break;
5581 
5582     // Emit debug information for direct imports.
5583     if (!Import->getImportedOwningModule()) {
5584       if (CGDebugInfo *DI = getModuleDebugInfo())
5585         DI->EmitImportDecl(*Import);
5586     }
5587 
5588     // Find all of the submodules and emit the module initializers.
5589     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5590     SmallVector<clang::Module *, 16> Stack;
5591     Visited.insert(Import->getImportedModule());
5592     Stack.push_back(Import->getImportedModule());
5593 
5594     while (!Stack.empty()) {
5595       clang::Module *Mod = Stack.pop_back_val();
5596       if (!EmittedModuleInitializers.insert(Mod).second)
5597         continue;
5598 
5599       for (auto *D : Context.getModuleInitializers(Mod))
5600         EmitTopLevelDecl(D);
5601 
5602       // Visit the submodules of this module.
5603       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5604                                              SubEnd = Mod->submodule_end();
5605            Sub != SubEnd; ++Sub) {
5606         // Skip explicit children; they need to be explicitly imported to emit
5607         // the initializers.
5608         if ((*Sub)->IsExplicit)
5609           continue;
5610 
5611         if (Visited.insert(*Sub).second)
5612           Stack.push_back(*Sub);
5613       }
5614     }
5615     break;
5616   }
5617 
5618   case Decl::Export:
5619     EmitDeclContext(cast<ExportDecl>(D));
5620     break;
5621 
5622   case Decl::OMPThreadPrivate:
5623     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5624     break;
5625 
5626   case Decl::OMPAllocate:
5627     break;
5628 
5629   case Decl::OMPDeclareReduction:
5630     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5631     break;
5632 
5633   case Decl::OMPDeclareMapper:
5634     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5635     break;
5636 
5637   case Decl::OMPRequires:
5638     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5639     break;
5640 
5641   case Decl::Typedef:
5642   case Decl::TypeAlias: // using foo = bar; [C++11]
5643     if (CGDebugInfo *DI = getModuleDebugInfo())
5644       DI->EmitAndRetainType(
5645           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5646     break;
5647 
5648   case Decl::Record:
5649     if (CGDebugInfo *DI = getModuleDebugInfo())
5650       if (cast<RecordDecl>(D)->getDefinition())
5651         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5652     break;
5653 
5654   case Decl::Enum:
5655     if (CGDebugInfo *DI = getModuleDebugInfo())
5656       if (cast<EnumDecl>(D)->getDefinition())
5657         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5658     break;
5659 
5660   default:
5661     // Make sure we handled everything we should, every other kind is a
5662     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5663     // function. Need to recode Decl::Kind to do that easily.
5664     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5665     break;
5666   }
5667 }
5668 
5669 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5670   // Do we need to generate coverage mapping?
5671   if (!CodeGenOpts.CoverageMapping)
5672     return;
5673   switch (D->getKind()) {
5674   case Decl::CXXConversion:
5675   case Decl::CXXMethod:
5676   case Decl::Function:
5677   case Decl::ObjCMethod:
5678   case Decl::CXXConstructor:
5679   case Decl::CXXDestructor: {
5680     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5681       break;
5682     SourceManager &SM = getContext().getSourceManager();
5683     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5684       break;
5685     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5686     if (I == DeferredEmptyCoverageMappingDecls.end())
5687       DeferredEmptyCoverageMappingDecls[D] = true;
5688     break;
5689   }
5690   default:
5691     break;
5692   };
5693 }
5694 
5695 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5696   // Do we need to generate coverage mapping?
5697   if (!CodeGenOpts.CoverageMapping)
5698     return;
5699   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5700     if (Fn->isTemplateInstantiation())
5701       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5702   }
5703   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5704   if (I == DeferredEmptyCoverageMappingDecls.end())
5705     DeferredEmptyCoverageMappingDecls[D] = false;
5706   else
5707     I->second = false;
5708 }
5709 
5710 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5711   // We call takeVector() here to avoid use-after-free.
5712   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5713   // we deserialize function bodies to emit coverage info for them, and that
5714   // deserializes more declarations. How should we handle that case?
5715   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5716     if (!Entry.second)
5717       continue;
5718     const Decl *D = Entry.first;
5719     switch (D->getKind()) {
5720     case Decl::CXXConversion:
5721     case Decl::CXXMethod:
5722     case Decl::Function:
5723     case Decl::ObjCMethod: {
5724       CodeGenPGO PGO(*this);
5725       GlobalDecl GD(cast<FunctionDecl>(D));
5726       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5727                                   getFunctionLinkage(GD));
5728       break;
5729     }
5730     case Decl::CXXConstructor: {
5731       CodeGenPGO PGO(*this);
5732       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5733       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5734                                   getFunctionLinkage(GD));
5735       break;
5736     }
5737     case Decl::CXXDestructor: {
5738       CodeGenPGO PGO(*this);
5739       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5740       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5741                                   getFunctionLinkage(GD));
5742       break;
5743     }
5744     default:
5745       break;
5746     };
5747   }
5748 }
5749 
5750 void CodeGenModule::EmitMainVoidAlias() {
5751   // In order to transition away from "__original_main" gracefully, emit an
5752   // alias for "main" in the no-argument case so that libc can detect when
5753   // new-style no-argument main is in used.
5754   if (llvm::Function *F = getModule().getFunction("main")) {
5755     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5756         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5757       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5758   }
5759 }
5760 
5761 /// Turns the given pointer into a constant.
5762 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5763                                           const void *Ptr) {
5764   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5765   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5766   return llvm::ConstantInt::get(i64, PtrInt);
5767 }
5768 
5769 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5770                                    llvm::NamedMDNode *&GlobalMetadata,
5771                                    GlobalDecl D,
5772                                    llvm::GlobalValue *Addr) {
5773   if (!GlobalMetadata)
5774     GlobalMetadata =
5775       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5776 
5777   // TODO: should we report variant information for ctors/dtors?
5778   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5779                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5780                                CGM.getLLVMContext(), D.getDecl()))};
5781   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5782 }
5783 
5784 /// For each function which is declared within an extern "C" region and marked
5785 /// as 'used', but has internal linkage, create an alias from the unmangled
5786 /// name to the mangled name if possible. People expect to be able to refer
5787 /// to such functions with an unmangled name from inline assembly within the
5788 /// same translation unit.
5789 void CodeGenModule::EmitStaticExternCAliases() {
5790   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5791     return;
5792   for (auto &I : StaticExternCValues) {
5793     IdentifierInfo *Name = I.first;
5794     llvm::GlobalValue *Val = I.second;
5795     if (Val && !getModule().getNamedValue(Name->getName()))
5796       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5797   }
5798 }
5799 
5800 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5801                                              GlobalDecl &Result) const {
5802   auto Res = Manglings.find(MangledName);
5803   if (Res == Manglings.end())
5804     return false;
5805   Result = Res->getValue();
5806   return true;
5807 }
5808 
5809 /// Emits metadata nodes associating all the global values in the
5810 /// current module with the Decls they came from.  This is useful for
5811 /// projects using IR gen as a subroutine.
5812 ///
5813 /// Since there's currently no way to associate an MDNode directly
5814 /// with an llvm::GlobalValue, we create a global named metadata
5815 /// with the name 'clang.global.decl.ptrs'.
5816 void CodeGenModule::EmitDeclMetadata() {
5817   llvm::NamedMDNode *GlobalMetadata = nullptr;
5818 
5819   for (auto &I : MangledDeclNames) {
5820     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5821     // Some mangled names don't necessarily have an associated GlobalValue
5822     // in this module, e.g. if we mangled it for DebugInfo.
5823     if (Addr)
5824       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5825   }
5826 }
5827 
5828 /// Emits metadata nodes for all the local variables in the current
5829 /// function.
5830 void CodeGenFunction::EmitDeclMetadata() {
5831   if (LocalDeclMap.empty()) return;
5832 
5833   llvm::LLVMContext &Context = getLLVMContext();
5834 
5835   // Find the unique metadata ID for this name.
5836   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5837 
5838   llvm::NamedMDNode *GlobalMetadata = nullptr;
5839 
5840   for (auto &I : LocalDeclMap) {
5841     const Decl *D = I.first;
5842     llvm::Value *Addr = I.second.getPointer();
5843     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5844       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5845       Alloca->setMetadata(
5846           DeclPtrKind, llvm::MDNode::get(
5847                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5848     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5849       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5850       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5851     }
5852   }
5853 }
5854 
5855 void CodeGenModule::EmitVersionIdentMetadata() {
5856   llvm::NamedMDNode *IdentMetadata =
5857     TheModule.getOrInsertNamedMetadata("llvm.ident");
5858   std::string Version = getClangFullVersion();
5859   llvm::LLVMContext &Ctx = TheModule.getContext();
5860 
5861   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5862   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5863 }
5864 
5865 void CodeGenModule::EmitCommandLineMetadata() {
5866   llvm::NamedMDNode *CommandLineMetadata =
5867     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5868   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5869   llvm::LLVMContext &Ctx = TheModule.getContext();
5870 
5871   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5872   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5873 }
5874 
5875 void CodeGenModule::EmitCoverageFile() {
5876   if (getCodeGenOpts().CoverageDataFile.empty() &&
5877       getCodeGenOpts().CoverageNotesFile.empty())
5878     return;
5879 
5880   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5881   if (!CUNode)
5882     return;
5883 
5884   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5885   llvm::LLVMContext &Ctx = TheModule.getContext();
5886   auto *CoverageDataFile =
5887       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5888   auto *CoverageNotesFile =
5889       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5890   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5891     llvm::MDNode *CU = CUNode->getOperand(i);
5892     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5893     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5894   }
5895 }
5896 
5897 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5898                                                        bool ForEH) {
5899   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5900   // FIXME: should we even be calling this method if RTTI is disabled
5901   // and it's not for EH?
5902   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
5903       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
5904        getTriple().isNVPTX()))
5905     return llvm::Constant::getNullValue(Int8PtrTy);
5906 
5907   if (ForEH && Ty->isObjCObjectPointerType() &&
5908       LangOpts.ObjCRuntime.isGNUFamily())
5909     return ObjCRuntime->GetEHType(Ty);
5910 
5911   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5912 }
5913 
5914 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5915   // Do not emit threadprivates in simd-only mode.
5916   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5917     return;
5918   for (auto RefExpr : D->varlists()) {
5919     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5920     bool PerformInit =
5921         VD->getAnyInitializer() &&
5922         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5923                                                         /*ForRef=*/false);
5924 
5925     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5926     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5927             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5928       CXXGlobalInits.push_back(InitFunction);
5929   }
5930 }
5931 
5932 llvm::Metadata *
5933 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5934                                             StringRef Suffix) {
5935   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5936   if (InternalId)
5937     return InternalId;
5938 
5939   if (isExternallyVisible(T->getLinkage())) {
5940     std::string OutName;
5941     llvm::raw_string_ostream Out(OutName);
5942     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5943     Out << Suffix;
5944 
5945     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5946   } else {
5947     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5948                                            llvm::ArrayRef<llvm::Metadata *>());
5949   }
5950 
5951   return InternalId;
5952 }
5953 
5954 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5955   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5956 }
5957 
5958 llvm::Metadata *
5959 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5960   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5961 }
5962 
5963 // Generalize pointer types to a void pointer with the qualifiers of the
5964 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5965 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5966 // 'void *'.
5967 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5968   if (!Ty->isPointerType())
5969     return Ty;
5970 
5971   return Ctx.getPointerType(
5972       QualType(Ctx.VoidTy).withCVRQualifiers(
5973           Ty->getPointeeType().getCVRQualifiers()));
5974 }
5975 
5976 // Apply type generalization to a FunctionType's return and argument types
5977 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5978   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5979     SmallVector<QualType, 8> GeneralizedParams;
5980     for (auto &Param : FnType->param_types())
5981       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5982 
5983     return Ctx.getFunctionType(
5984         GeneralizeType(Ctx, FnType->getReturnType()),
5985         GeneralizedParams, FnType->getExtProtoInfo());
5986   }
5987 
5988   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5989     return Ctx.getFunctionNoProtoType(
5990         GeneralizeType(Ctx, FnType->getReturnType()));
5991 
5992   llvm_unreachable("Encountered unknown FunctionType");
5993 }
5994 
5995 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5996   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5997                                       GeneralizedMetadataIdMap, ".generalized");
5998 }
5999 
6000 /// Returns whether this module needs the "all-vtables" type identifier.
6001 bool CodeGenModule::NeedAllVtablesTypeId() const {
6002   // Returns true if at least one of vtable-based CFI checkers is enabled and
6003   // is not in the trapping mode.
6004   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6005            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6006           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6007            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6008           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6009            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6010           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6011            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6012 }
6013 
6014 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6015                                           CharUnits Offset,
6016                                           const CXXRecordDecl *RD) {
6017   llvm::Metadata *MD =
6018       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6019   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6020 
6021   if (CodeGenOpts.SanitizeCfiCrossDso)
6022     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6023       VTable->addTypeMetadata(Offset.getQuantity(),
6024                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6025 
6026   if (NeedAllVtablesTypeId()) {
6027     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6028     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6029   }
6030 }
6031 
6032 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6033   if (!SanStats)
6034     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6035 
6036   return *SanStats;
6037 }
6038 llvm::Value *
6039 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6040                                                   CodeGenFunction &CGF) {
6041   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6042   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6043   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6044   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
6045                                 "__translate_sampler_initializer"),
6046                                 {C});
6047 }
6048 
6049 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6050     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6051   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6052                                  /* forPointeeType= */ true);
6053 }
6054 
6055 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6056                                                  LValueBaseInfo *BaseInfo,
6057                                                  TBAAAccessInfo *TBAAInfo,
6058                                                  bool forPointeeType) {
6059   if (TBAAInfo)
6060     *TBAAInfo = getTBAAAccessInfo(T);
6061 
6062   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6063   // that doesn't return the information we need to compute BaseInfo.
6064 
6065   // Honor alignment typedef attributes even on incomplete types.
6066   // We also honor them straight for C++ class types, even as pointees;
6067   // there's an expressivity gap here.
6068   if (auto TT = T->getAs<TypedefType>()) {
6069     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6070       if (BaseInfo)
6071         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6072       return getContext().toCharUnitsFromBits(Align);
6073     }
6074   }
6075 
6076   bool AlignForArray = T->isArrayType();
6077 
6078   // Analyze the base element type, so we don't get confused by incomplete
6079   // array types.
6080   T = getContext().getBaseElementType(T);
6081 
6082   if (T->isIncompleteType()) {
6083     // We could try to replicate the logic from
6084     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6085     // type is incomplete, so it's impossible to test. We could try to reuse
6086     // getTypeAlignIfKnown, but that doesn't return the information we need
6087     // to set BaseInfo.  So just ignore the possibility that the alignment is
6088     // greater than one.
6089     if (BaseInfo)
6090       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6091     return CharUnits::One();
6092   }
6093 
6094   if (BaseInfo)
6095     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6096 
6097   CharUnits Alignment;
6098   // For C++ class pointees, we don't know whether we're pointing at a
6099   // base or a complete object, so we generally need to use the
6100   // non-virtual alignment.
6101   const CXXRecordDecl *RD;
6102   if (forPointeeType && !AlignForArray && (RD = T->getAsCXXRecordDecl())) {
6103     Alignment = getClassPointerAlignment(RD);
6104   } else {
6105     Alignment = getContext().getTypeAlignInChars(T);
6106     if (T.getQualifiers().hasUnaligned())
6107       Alignment = CharUnits::One();
6108   }
6109 
6110   // Cap to the global maximum type alignment unless the alignment
6111   // was somehow explicit on the type.
6112   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6113     if (Alignment.getQuantity() > MaxAlign &&
6114         !getContext().isAlignmentRequired(T))
6115       Alignment = CharUnits::fromQuantity(MaxAlign);
6116   }
6117   return Alignment;
6118 }
6119 
6120 bool CodeGenModule::stopAutoInit() {
6121   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6122   if (StopAfter) {
6123     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6124     // used
6125     if (NumAutoVarInit >= StopAfter) {
6126       return true;
6127     }
6128     if (!NumAutoVarInit) {
6129       unsigned DiagID = getDiags().getCustomDiagID(
6130           DiagnosticsEngine::Warning,
6131           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6132           "number of times ftrivial-auto-var-init=%1 gets applied.");
6133       getDiags().Report(DiagID)
6134           << StopAfter
6135           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6136                       LangOptions::TrivialAutoVarInitKind::Zero
6137                   ? "zero"
6138                   : "pattern");
6139     }
6140     ++NumAutoVarInit;
6141   }
6142   return false;
6143 }
6144