1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/TargetData.h" 41 #include "llvm/Support/CallSite.h" 42 #include "llvm/Support/ErrorHandling.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 47 switch (CGM.getContext().Target.getCXXABI()) { 48 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 49 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 50 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 51 } 52 53 llvm_unreachable("invalid C++ ABI kind"); 54 return *CreateItaniumCXXABI(CGM); 55 } 56 57 58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 59 llvm::Module &M, const llvm::TargetData &TD, 60 Diagnostic &diags) 61 : BlockModule(C, M, TD, Types, *this), Context(C), 62 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 66 TBAA(0), 67 VTables(*this), Runtime(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 VMContext(M.getContext()), 70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 73 BlockObjectAssign(0), BlockObjectDispose(0){ 74 75 if (!Features.ObjC1) 76 Runtime = 0; 77 else if (!Features.NeXTRuntime) 78 Runtime = CreateGNUObjCRuntime(*this); 79 else if (Features.ObjCNonFragileABI) 80 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 81 else 82 Runtime = CreateMacObjCRuntime(*this); 83 84 // Enable TBAA unless it's suppressed. 85 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 86 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 87 ABI.getMangleContext()); 88 89 // If debug info generation is enabled, create the CGDebugInfo object. 90 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 91 } 92 93 CodeGenModule::~CodeGenModule() { 94 delete Runtime; 95 delete &ABI; 96 delete TBAA; 97 delete DebugInfo; 98 } 99 100 void CodeGenModule::createObjCRuntime() { 101 if (!Features.NeXTRuntime) 102 Runtime = CreateGNUObjCRuntime(*this); 103 else if (Features.ObjCNonFragileABI) 104 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 105 else 106 Runtime = CreateMacObjCRuntime(*this); 107 } 108 109 void CodeGenModule::Release() { 110 EmitDeferred(); 111 EmitCXXGlobalInitFunc(); 112 EmitCXXGlobalDtorFunc(); 113 if (Runtime) 114 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 115 AddGlobalCtor(ObjCInitFunction); 116 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 117 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 118 EmitAnnotations(); 119 EmitLLVMUsed(); 120 121 SimplifyPersonality(); 122 123 if (getCodeGenOpts().EmitDeclMetadata) 124 EmitDeclMetadata(); 125 } 126 127 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 128 if (!TBAA) 129 return 0; 130 return TBAA->getTBAAInfo(QTy); 131 } 132 133 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 134 llvm::MDNode *TBAAInfo) { 135 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 136 } 137 138 bool CodeGenModule::isTargetDarwin() const { 139 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 140 } 141 142 /// ErrorUnsupported - Print out an error that codegen doesn't support the 143 /// specified stmt yet. 144 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 145 bool OmitOnError) { 146 if (OmitOnError && getDiags().hasErrorOccurred()) 147 return; 148 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 149 "cannot compile this %0 yet"); 150 std::string Msg = Type; 151 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 152 << Msg << S->getSourceRange(); 153 } 154 155 /// ErrorUnsupported - Print out an error that codegen doesn't support the 156 /// specified decl yet. 157 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 158 bool OmitOnError) { 159 if (OmitOnError && getDiags().hasErrorOccurred()) 160 return; 161 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 162 "cannot compile this %0 yet"); 163 std::string Msg = Type; 164 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 165 } 166 167 static llvm::GlobalValue::VisibilityTypes GetLLVMVisibility(Visibility V) { 168 switch (V) { 169 case DefaultVisibility: return llvm::GlobalValue::DefaultVisibility; 170 case HiddenVisibility: return llvm::GlobalValue::HiddenVisibility; 171 case ProtectedVisibility: return llvm::GlobalValue::ProtectedVisibility; 172 } 173 llvm_unreachable("unknown visibility!"); 174 return llvm::GlobalValue::DefaultVisibility; 175 } 176 177 178 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 179 const NamedDecl *D) const { 180 // Internal definitions always have default visibility. 181 if (GV->hasLocalLinkage()) { 182 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 183 return; 184 } 185 186 // Set visibility for definitions. 187 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 188 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 189 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 190 } 191 192 /// Set the symbol visibility of type information (vtable and RTTI) 193 /// associated with the given type. 194 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 195 const CXXRecordDecl *RD, 196 TypeVisibilityKind TVK) const { 197 setGlobalVisibility(GV, RD); 198 199 if (!CodeGenOpts.HiddenWeakVTables) 200 return; 201 202 // We want to drop the visibility to hidden for weak type symbols. 203 // This isn't possible if there might be unresolved references 204 // elsewhere that rely on this symbol being visible. 205 206 // This should be kept roughly in sync with setThunkVisibility 207 // in CGVTables.cpp. 208 209 // Preconditions. 210 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 211 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 212 return; 213 214 // Don't override an explicit visibility attribute. 215 if (RD->hasAttr<VisibilityAttr>()) 216 return; 217 218 switch (RD->getTemplateSpecializationKind()) { 219 // We have to disable the optimization if this is an EI definition 220 // because there might be EI declarations in other shared objects. 221 case TSK_ExplicitInstantiationDefinition: 222 case TSK_ExplicitInstantiationDeclaration: 223 return; 224 225 // Every use of a non-template class's type information has to emit it. 226 case TSK_Undeclared: 227 break; 228 229 // In theory, implicit instantiations can ignore the possibility of 230 // an explicit instantiation declaration because there necessarily 231 // must be an EI definition somewhere with default visibility. In 232 // practice, it's possible to have an explicit instantiation for 233 // an arbitrary template class, and linkers aren't necessarily able 234 // to deal with mixed-visibility symbols. 235 case TSK_ExplicitSpecialization: 236 case TSK_ImplicitInstantiation: 237 if (!CodeGenOpts.HiddenWeakTemplateVTables) 238 return; 239 break; 240 } 241 242 // If there's a key function, there may be translation units 243 // that don't have the key function's definition. But ignore 244 // this if we're emitting RTTI under -fno-rtti. 245 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 246 if (Context.getKeyFunction(RD)) 247 return; 248 } 249 250 // Otherwise, drop the visibility to hidden. 251 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 252 GV->setUnnamedAddr(true); 253 } 254 255 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 256 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 257 258 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 259 if (!Str.empty()) 260 return Str; 261 262 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 263 IdentifierInfo *II = ND->getIdentifier(); 264 assert(II && "Attempt to mangle unnamed decl."); 265 266 Str = II->getName(); 267 return Str; 268 } 269 270 llvm::SmallString<256> Buffer; 271 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 272 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 273 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 274 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 275 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 276 getCXXABI().getMangleContext().mangleBlock(BD, Buffer); 277 else 278 getCXXABI().getMangleContext().mangleName(ND, Buffer); 279 280 // Allocate space for the mangled name. 281 size_t Length = Buffer.size(); 282 char *Name = MangledNamesAllocator.Allocate<char>(Length); 283 std::copy(Buffer.begin(), Buffer.end(), Name); 284 285 Str = llvm::StringRef(Name, Length); 286 287 return Str; 288 } 289 290 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 291 const BlockDecl *BD) { 292 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 293 const Decl *D = GD.getDecl(); 294 if (D == 0) 295 MangleCtx.mangleGlobalBlock(BD, Buffer.getBuffer()); 296 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 297 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Buffer.getBuffer()); 298 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 299 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Buffer.getBuffer()); 300 else 301 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Buffer.getBuffer()); 302 } 303 304 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 305 return getModule().getNamedValue(Name); 306 } 307 308 /// AddGlobalCtor - Add a function to the list that will be called before 309 /// main() runs. 310 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 311 // FIXME: Type coercion of void()* types. 312 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 313 } 314 315 /// AddGlobalDtor - Add a function to the list that will be called 316 /// when the module is unloaded. 317 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 318 // FIXME: Type coercion of void()* types. 319 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 320 } 321 322 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 323 // Ctor function type is void()*. 324 llvm::FunctionType* CtorFTy = 325 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 326 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 327 328 // Get the type of a ctor entry, { i32, void ()* }. 329 llvm::StructType* CtorStructTy = 330 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 331 llvm::PointerType::getUnqual(CtorFTy), NULL); 332 333 // Construct the constructor and destructor arrays. 334 std::vector<llvm::Constant*> Ctors; 335 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 336 std::vector<llvm::Constant*> S; 337 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 338 I->second, false)); 339 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 340 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 341 } 342 343 if (!Ctors.empty()) { 344 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 345 new llvm::GlobalVariable(TheModule, AT, false, 346 llvm::GlobalValue::AppendingLinkage, 347 llvm::ConstantArray::get(AT, Ctors), 348 GlobalName); 349 } 350 } 351 352 void CodeGenModule::EmitAnnotations() { 353 if (Annotations.empty()) 354 return; 355 356 // Create a new global variable for the ConstantStruct in the Module. 357 llvm::Constant *Array = 358 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 359 Annotations.size()), 360 Annotations); 361 llvm::GlobalValue *gv = 362 new llvm::GlobalVariable(TheModule, Array->getType(), false, 363 llvm::GlobalValue::AppendingLinkage, Array, 364 "llvm.global.annotations"); 365 gv->setSection("llvm.metadata"); 366 } 367 368 llvm::GlobalValue::LinkageTypes 369 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 370 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 371 372 if (Linkage == GVA_Internal) 373 return llvm::Function::InternalLinkage; 374 375 if (D->hasAttr<DLLExportAttr>()) 376 return llvm::Function::DLLExportLinkage; 377 378 if (D->hasAttr<WeakAttr>()) 379 return llvm::Function::WeakAnyLinkage; 380 381 // In C99 mode, 'inline' functions are guaranteed to have a strong 382 // definition somewhere else, so we can use available_externally linkage. 383 if (Linkage == GVA_C99Inline) 384 return llvm::Function::AvailableExternallyLinkage; 385 386 // In C++, the compiler has to emit a definition in every translation unit 387 // that references the function. We should use linkonce_odr because 388 // a) if all references in this translation unit are optimized away, we 389 // don't need to codegen it. b) if the function persists, it needs to be 390 // merged with other definitions. c) C++ has the ODR, so we know the 391 // definition is dependable. 392 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 393 return llvm::Function::LinkOnceODRLinkage; 394 395 // An explicit instantiation of a template has weak linkage, since 396 // explicit instantiations can occur in multiple translation units 397 // and must all be equivalent. However, we are not allowed to 398 // throw away these explicit instantiations. 399 if (Linkage == GVA_ExplicitTemplateInstantiation) 400 return llvm::Function::WeakODRLinkage; 401 402 // Otherwise, we have strong external linkage. 403 assert(Linkage == GVA_StrongExternal); 404 return llvm::Function::ExternalLinkage; 405 } 406 407 408 /// SetFunctionDefinitionAttributes - Set attributes for a global. 409 /// 410 /// FIXME: This is currently only done for aliases and functions, but not for 411 /// variables (these details are set in EmitGlobalVarDefinition for variables). 412 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 413 llvm::GlobalValue *GV) { 414 SetCommonAttributes(D, GV); 415 } 416 417 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 418 const CGFunctionInfo &Info, 419 llvm::Function *F) { 420 unsigned CallingConv; 421 AttributeListType AttributeList; 422 ConstructAttributeList(Info, D, AttributeList, CallingConv); 423 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 424 AttributeList.size())); 425 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 426 } 427 428 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 429 llvm::Function *F) { 430 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 431 F->addFnAttr(llvm::Attribute::NoUnwind); 432 433 if (D->hasAttr<AlwaysInlineAttr>()) 434 F->addFnAttr(llvm::Attribute::AlwaysInline); 435 436 if (D->hasAttr<NakedAttr>()) 437 F->addFnAttr(llvm::Attribute::Naked); 438 439 if (D->hasAttr<NoInlineAttr>()) 440 F->addFnAttr(llvm::Attribute::NoInline); 441 442 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 443 F->setUnnamedAddr(true); 444 445 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 446 F->addFnAttr(llvm::Attribute::StackProtect); 447 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 448 F->addFnAttr(llvm::Attribute::StackProtectReq); 449 450 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 451 if (alignment) 452 F->setAlignment(alignment); 453 454 // C++ ABI requires 2-byte alignment for member functions. 455 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 456 F->setAlignment(2); 457 } 458 459 void CodeGenModule::SetCommonAttributes(const Decl *D, 460 llvm::GlobalValue *GV) { 461 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 462 setGlobalVisibility(GV, ND); 463 else 464 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 465 466 if (D->hasAttr<UsedAttr>()) 467 AddUsedGlobal(GV); 468 469 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 470 GV->setSection(SA->getName()); 471 472 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 473 } 474 475 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 476 llvm::Function *F, 477 const CGFunctionInfo &FI) { 478 SetLLVMFunctionAttributes(D, FI, F); 479 SetLLVMFunctionAttributesForDefinition(D, F); 480 481 F->setLinkage(llvm::Function::InternalLinkage); 482 483 SetCommonAttributes(D, F); 484 } 485 486 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 487 llvm::Function *F, 488 bool IsIncompleteFunction) { 489 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 490 491 if (!IsIncompleteFunction) 492 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 493 494 // Only a few attributes are set on declarations; these may later be 495 // overridden by a definition. 496 497 if (FD->hasAttr<DLLImportAttr>()) { 498 F->setLinkage(llvm::Function::DLLImportLinkage); 499 } else if (FD->hasAttr<WeakAttr>() || 500 FD->hasAttr<WeakImportAttr>()) { 501 // "extern_weak" is overloaded in LLVM; we probably should have 502 // separate linkage types for this. 503 F->setLinkage(llvm::Function::ExternalWeakLinkage); 504 } else { 505 F->setLinkage(llvm::Function::ExternalLinkage); 506 507 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 508 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 509 F->setVisibility(GetLLVMVisibility(LV.visibility())); 510 } 511 } 512 513 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 514 F->setSection(SA->getName()); 515 } 516 517 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 518 assert(!GV->isDeclaration() && 519 "Only globals with definition can force usage."); 520 LLVMUsed.push_back(GV); 521 } 522 523 void CodeGenModule::EmitLLVMUsed() { 524 // Don't create llvm.used if there is no need. 525 if (LLVMUsed.empty()) 526 return; 527 528 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 529 530 // Convert LLVMUsed to what ConstantArray needs. 531 std::vector<llvm::Constant*> UsedArray; 532 UsedArray.resize(LLVMUsed.size()); 533 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 534 UsedArray[i] = 535 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 536 i8PTy); 537 } 538 539 if (UsedArray.empty()) 540 return; 541 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 542 543 llvm::GlobalVariable *GV = 544 new llvm::GlobalVariable(getModule(), ATy, false, 545 llvm::GlobalValue::AppendingLinkage, 546 llvm::ConstantArray::get(ATy, UsedArray), 547 "llvm.used"); 548 549 GV->setSection("llvm.metadata"); 550 } 551 552 void CodeGenModule::EmitDeferred() { 553 // Emit code for any potentially referenced deferred decls. Since a 554 // previously unused static decl may become used during the generation of code 555 // for a static function, iterate until no changes are made. 556 557 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 558 if (!DeferredVTables.empty()) { 559 const CXXRecordDecl *RD = DeferredVTables.back(); 560 DeferredVTables.pop_back(); 561 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 562 continue; 563 } 564 565 GlobalDecl D = DeferredDeclsToEmit.back(); 566 DeferredDeclsToEmit.pop_back(); 567 568 // Check to see if we've already emitted this. This is necessary 569 // for a couple of reasons: first, decls can end up in the 570 // deferred-decls queue multiple times, and second, decls can end 571 // up with definitions in unusual ways (e.g. by an extern inline 572 // function acquiring a strong function redefinition). Just 573 // ignore these cases. 574 // 575 // TODO: That said, looking this up multiple times is very wasteful. 576 llvm::StringRef Name = getMangledName(D); 577 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 578 assert(CGRef && "Deferred decl wasn't referenced?"); 579 580 if (!CGRef->isDeclaration()) 581 continue; 582 583 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 584 // purposes an alias counts as a definition. 585 if (isa<llvm::GlobalAlias>(CGRef)) 586 continue; 587 588 // Otherwise, emit the definition and move on to the next one. 589 EmitGlobalDefinition(D); 590 } 591 } 592 593 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 594 /// annotation information for a given GlobalValue. The annotation struct is 595 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 596 /// GlobalValue being annotated. The second field is the constant string 597 /// created from the AnnotateAttr's annotation. The third field is a constant 598 /// string containing the name of the translation unit. The fourth field is 599 /// the line number in the file of the annotated value declaration. 600 /// 601 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 602 /// appears to. 603 /// 604 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 605 const AnnotateAttr *AA, 606 unsigned LineNo) { 607 llvm::Module *M = &getModule(); 608 609 // get [N x i8] constants for the annotation string, and the filename string 610 // which are the 2nd and 3rd elements of the global annotation structure. 611 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 612 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 613 AA->getAnnotation(), true); 614 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 615 M->getModuleIdentifier(), 616 true); 617 618 // Get the two global values corresponding to the ConstantArrays we just 619 // created to hold the bytes of the strings. 620 llvm::GlobalValue *annoGV = 621 new llvm::GlobalVariable(*M, anno->getType(), false, 622 llvm::GlobalValue::PrivateLinkage, anno, 623 GV->getName()); 624 // translation unit name string, emitted into the llvm.metadata section. 625 llvm::GlobalValue *unitGV = 626 new llvm::GlobalVariable(*M, unit->getType(), false, 627 llvm::GlobalValue::PrivateLinkage, unit, 628 ".str"); 629 unitGV->setUnnamedAddr(true); 630 631 // Create the ConstantStruct for the global annotation. 632 llvm::Constant *Fields[4] = { 633 llvm::ConstantExpr::getBitCast(GV, SBP), 634 llvm::ConstantExpr::getBitCast(annoGV, SBP), 635 llvm::ConstantExpr::getBitCast(unitGV, SBP), 636 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 637 }; 638 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 639 } 640 641 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 642 // Never defer when EmitAllDecls is specified. 643 if (Features.EmitAllDecls) 644 return false; 645 646 return !getContext().DeclMustBeEmitted(Global); 647 } 648 649 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 650 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 651 assert(AA && "No alias?"); 652 653 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 654 655 // See if there is already something with the target's name in the module. 656 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 657 658 llvm::Constant *Aliasee; 659 if (isa<llvm::FunctionType>(DeclTy)) 660 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 661 else 662 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 663 llvm::PointerType::getUnqual(DeclTy), 0); 664 if (!Entry) { 665 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 666 F->setLinkage(llvm::Function::ExternalWeakLinkage); 667 WeakRefReferences.insert(F); 668 } 669 670 return Aliasee; 671 } 672 673 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 674 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 675 676 // Weak references don't produce any output by themselves. 677 if (Global->hasAttr<WeakRefAttr>()) 678 return; 679 680 // If this is an alias definition (which otherwise looks like a declaration) 681 // emit it now. 682 if (Global->hasAttr<AliasAttr>()) 683 return EmitAliasDefinition(GD); 684 685 // Ignore declarations, they will be emitted on their first use. 686 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 687 if (FD->getIdentifier()) { 688 llvm::StringRef Name = FD->getName(); 689 if (Name == "_Block_object_assign") { 690 BlockObjectAssignDecl = FD; 691 } else if (Name == "_Block_object_dispose") { 692 BlockObjectDisposeDecl = FD; 693 } 694 } 695 696 // Forward declarations are emitted lazily on first use. 697 if (!FD->isThisDeclarationADefinition()) 698 return; 699 } else { 700 const VarDecl *VD = cast<VarDecl>(Global); 701 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 702 703 if (VD->getIdentifier()) { 704 llvm::StringRef Name = VD->getName(); 705 if (Name == "_NSConcreteGlobalBlock") { 706 NSConcreteGlobalBlockDecl = VD; 707 } else if (Name == "_NSConcreteStackBlock") { 708 NSConcreteStackBlockDecl = VD; 709 } 710 } 711 712 713 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 714 return; 715 } 716 717 // Defer code generation when possible if this is a static definition, inline 718 // function etc. These we only want to emit if they are used. 719 if (!MayDeferGeneration(Global)) { 720 // Emit the definition if it can't be deferred. 721 EmitGlobalDefinition(GD); 722 return; 723 } 724 725 // If we're deferring emission of a C++ variable with an 726 // initializer, remember the order in which it appeared in the file. 727 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 728 cast<VarDecl>(Global)->hasInit()) { 729 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 730 CXXGlobalInits.push_back(0); 731 } 732 733 // If the value has already been used, add it directly to the 734 // DeferredDeclsToEmit list. 735 llvm::StringRef MangledName = getMangledName(GD); 736 if (GetGlobalValue(MangledName)) 737 DeferredDeclsToEmit.push_back(GD); 738 else { 739 // Otherwise, remember that we saw a deferred decl with this name. The 740 // first use of the mangled name will cause it to move into 741 // DeferredDeclsToEmit. 742 DeferredDecls[MangledName] = GD; 743 } 744 } 745 746 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 747 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 748 749 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 750 Context.getSourceManager(), 751 "Generating code for declaration"); 752 753 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 754 // At -O0, don't generate IR for functions with available_externally 755 // linkage. 756 if (CodeGenOpts.OptimizationLevel == 0 && 757 !Function->hasAttr<AlwaysInlineAttr>() && 758 getFunctionLinkage(Function) 759 == llvm::Function::AvailableExternallyLinkage) 760 return; 761 762 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 763 if (Method->isVirtual()) 764 getVTables().EmitThunks(GD); 765 766 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 767 return EmitCXXConstructor(CD, GD.getCtorType()); 768 769 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 770 return EmitCXXDestructor(DD, GD.getDtorType()); 771 } 772 773 return EmitGlobalFunctionDefinition(GD); 774 } 775 776 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 777 return EmitGlobalVarDefinition(VD); 778 779 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 780 } 781 782 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 783 /// module, create and return an llvm Function with the specified type. If there 784 /// is something in the module with the specified name, return it potentially 785 /// bitcasted to the right type. 786 /// 787 /// If D is non-null, it specifies a decl that correspond to this. This is used 788 /// to set the attributes on the function when it is first created. 789 llvm::Constant * 790 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 791 const llvm::Type *Ty, 792 GlobalDecl D) { 793 // Lookup the entry, lazily creating it if necessary. 794 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 795 if (Entry) { 796 if (WeakRefReferences.count(Entry)) { 797 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 798 if (FD && !FD->hasAttr<WeakAttr>()) 799 Entry->setLinkage(llvm::Function::ExternalLinkage); 800 801 WeakRefReferences.erase(Entry); 802 } 803 804 if (Entry->getType()->getElementType() == Ty) 805 return Entry; 806 807 // Make sure the result is of the correct type. 808 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 809 return llvm::ConstantExpr::getBitCast(Entry, PTy); 810 } 811 812 // This function doesn't have a complete type (for example, the return 813 // type is an incomplete struct). Use a fake type instead, and make 814 // sure not to try to set attributes. 815 bool IsIncompleteFunction = false; 816 817 const llvm::FunctionType *FTy; 818 if (isa<llvm::FunctionType>(Ty)) { 819 FTy = cast<llvm::FunctionType>(Ty); 820 } else { 821 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 822 IsIncompleteFunction = true; 823 } 824 825 llvm::Function *F = llvm::Function::Create(FTy, 826 llvm::Function::ExternalLinkage, 827 MangledName, &getModule()); 828 assert(F->getName() == MangledName && "name was uniqued!"); 829 if (D.getDecl()) 830 SetFunctionAttributes(D, F, IsIncompleteFunction); 831 832 // This is the first use or definition of a mangled name. If there is a 833 // deferred decl with this name, remember that we need to emit it at the end 834 // of the file. 835 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 836 if (DDI != DeferredDecls.end()) { 837 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 838 // list, and remove it from DeferredDecls (since we don't need it anymore). 839 DeferredDeclsToEmit.push_back(DDI->second); 840 DeferredDecls.erase(DDI); 841 842 // Otherwise, there are cases we have to worry about where we're 843 // using a declaration for which we must emit a definition but where 844 // we might not find a top-level definition: 845 // - member functions defined inline in their classes 846 // - friend functions defined inline in some class 847 // - special member functions with implicit definitions 848 // If we ever change our AST traversal to walk into class methods, 849 // this will be unnecessary. 850 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 851 // Look for a declaration that's lexically in a record. 852 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 853 do { 854 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 855 if (FD->isImplicit()) { 856 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 857 DeferredDeclsToEmit.push_back(D); 858 break; 859 } else if (FD->isThisDeclarationADefinition()) { 860 DeferredDeclsToEmit.push_back(D); 861 break; 862 } 863 } 864 FD = FD->getPreviousDeclaration(); 865 } while (FD); 866 } 867 868 // Make sure the result is of the requested type. 869 if (!IsIncompleteFunction) { 870 assert(F->getType()->getElementType() == Ty); 871 return F; 872 } 873 874 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 875 return llvm::ConstantExpr::getBitCast(F, PTy); 876 } 877 878 /// GetAddrOfFunction - Return the address of the given function. If Ty is 879 /// non-null, then this function will use the specified type if it has to 880 /// create it (this occurs when we see a definition of the function). 881 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 882 const llvm::Type *Ty) { 883 // If there was no specific requested type, just convert it now. 884 if (!Ty) 885 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 886 887 llvm::StringRef MangledName = getMangledName(GD); 888 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 889 } 890 891 /// CreateRuntimeFunction - Create a new runtime function with the specified 892 /// type and name. 893 llvm::Constant * 894 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 895 llvm::StringRef Name) { 896 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 897 } 898 899 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 900 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 901 return false; 902 if (Context.getLangOptions().CPlusPlus && 903 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 904 // FIXME: We should do something fancier here! 905 return false; 906 } 907 return true; 908 } 909 910 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 911 /// create and return an llvm GlobalVariable with the specified type. If there 912 /// is something in the module with the specified name, return it potentially 913 /// bitcasted to the right type. 914 /// 915 /// If D is non-null, it specifies a decl that correspond to this. This is used 916 /// to set the attributes on the global when it is first created. 917 llvm::Constant * 918 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 919 const llvm::PointerType *Ty, 920 const VarDecl *D, 921 bool UnnamedAddr) { 922 // Lookup the entry, lazily creating it if necessary. 923 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 924 if (Entry) { 925 if (WeakRefReferences.count(Entry)) { 926 if (D && !D->hasAttr<WeakAttr>()) 927 Entry->setLinkage(llvm::Function::ExternalLinkage); 928 929 WeakRefReferences.erase(Entry); 930 } 931 932 if (UnnamedAddr) 933 Entry->setUnnamedAddr(true); 934 935 if (Entry->getType() == Ty) 936 return Entry; 937 938 // Make sure the result is of the correct type. 939 return llvm::ConstantExpr::getBitCast(Entry, Ty); 940 } 941 942 // This is the first use or definition of a mangled name. If there is a 943 // deferred decl with this name, remember that we need to emit it at the end 944 // of the file. 945 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 946 if (DDI != DeferredDecls.end()) { 947 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 948 // list, and remove it from DeferredDecls (since we don't need it anymore). 949 DeferredDeclsToEmit.push_back(DDI->second); 950 DeferredDecls.erase(DDI); 951 } 952 953 llvm::GlobalVariable *GV = 954 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 955 llvm::GlobalValue::ExternalLinkage, 956 0, MangledName, 0, 957 false, Ty->getAddressSpace()); 958 959 // Handle things which are present even on external declarations. 960 if (D) { 961 // FIXME: This code is overly simple and should be merged with other global 962 // handling. 963 GV->setConstant(DeclIsConstantGlobal(Context, D)); 964 965 // Set linkage and visibility in case we never see a definition. 966 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 967 if (LV.linkage() != ExternalLinkage) { 968 GV->setLinkage(llvm::GlobalValue::InternalLinkage); 969 } else { 970 if (D->hasAttr<DLLImportAttr>()) 971 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 972 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 973 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 974 975 // Set visibility on a declaration only if it's explicit. 976 if (LV.visibilityExplicit()) 977 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 978 } 979 980 GV->setThreadLocal(D->isThreadSpecified()); 981 } 982 983 return GV; 984 } 985 986 987 llvm::GlobalVariable * 988 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name, 989 const llvm::Type *Ty, 990 llvm::GlobalValue::LinkageTypes Linkage) { 991 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 992 llvm::GlobalVariable *OldGV = 0; 993 994 995 if (GV) { 996 // Check if the variable has the right type. 997 if (GV->getType()->getElementType() == Ty) 998 return GV; 999 1000 // Because C++ name mangling, the only way we can end up with an already 1001 // existing global with the same name is if it has been declared extern "C". 1002 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1003 OldGV = GV; 1004 } 1005 1006 // Create a new variable. 1007 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1008 Linkage, 0, Name); 1009 1010 if (OldGV) { 1011 // Replace occurrences of the old variable if needed. 1012 GV->takeName(OldGV); 1013 1014 if (!OldGV->use_empty()) { 1015 llvm::Constant *NewPtrForOldDecl = 1016 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1017 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1018 } 1019 1020 OldGV->eraseFromParent(); 1021 } 1022 1023 return GV; 1024 } 1025 1026 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1027 /// given global variable. If Ty is non-null and if the global doesn't exist, 1028 /// then it will be greated with the specified type instead of whatever the 1029 /// normal requested type would be. 1030 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1031 const llvm::Type *Ty) { 1032 assert(D->hasGlobalStorage() && "Not a global variable"); 1033 QualType ASTTy = D->getType(); 1034 if (Ty == 0) 1035 Ty = getTypes().ConvertTypeForMem(ASTTy); 1036 1037 const llvm::PointerType *PTy = 1038 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1039 1040 llvm::StringRef MangledName = getMangledName(D); 1041 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1042 } 1043 1044 /// CreateRuntimeVariable - Create a new runtime global variable with the 1045 /// specified type and name. 1046 llvm::Constant * 1047 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1048 llvm::StringRef Name) { 1049 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1050 true); 1051 } 1052 1053 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1054 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1055 1056 if (MayDeferGeneration(D)) { 1057 // If we have not seen a reference to this variable yet, place it 1058 // into the deferred declarations table to be emitted if needed 1059 // later. 1060 llvm::StringRef MangledName = getMangledName(D); 1061 if (!GetGlobalValue(MangledName)) { 1062 DeferredDecls[MangledName] = D; 1063 return; 1064 } 1065 } 1066 1067 // The tentative definition is the only definition. 1068 EmitGlobalVarDefinition(D); 1069 } 1070 1071 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1072 if (DefinitionRequired) 1073 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1074 } 1075 1076 llvm::GlobalVariable::LinkageTypes 1077 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1078 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1079 return llvm::GlobalVariable::InternalLinkage; 1080 1081 if (const CXXMethodDecl *KeyFunction 1082 = RD->getASTContext().getKeyFunction(RD)) { 1083 // If this class has a key function, use that to determine the linkage of 1084 // the vtable. 1085 const FunctionDecl *Def = 0; 1086 if (KeyFunction->hasBody(Def)) 1087 KeyFunction = cast<CXXMethodDecl>(Def); 1088 1089 switch (KeyFunction->getTemplateSpecializationKind()) { 1090 case TSK_Undeclared: 1091 case TSK_ExplicitSpecialization: 1092 if (KeyFunction->isInlined()) 1093 return llvm::GlobalVariable::LinkOnceODRLinkage; 1094 1095 return llvm::GlobalVariable::ExternalLinkage; 1096 1097 case TSK_ImplicitInstantiation: 1098 return llvm::GlobalVariable::LinkOnceODRLinkage; 1099 1100 case TSK_ExplicitInstantiationDefinition: 1101 return llvm::GlobalVariable::WeakODRLinkage; 1102 1103 case TSK_ExplicitInstantiationDeclaration: 1104 // FIXME: Use available_externally linkage. However, this currently 1105 // breaks LLVM's build due to undefined symbols. 1106 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1107 return llvm::GlobalVariable::LinkOnceODRLinkage; 1108 } 1109 } 1110 1111 switch (RD->getTemplateSpecializationKind()) { 1112 case TSK_Undeclared: 1113 case TSK_ExplicitSpecialization: 1114 case TSK_ImplicitInstantiation: 1115 return llvm::GlobalVariable::LinkOnceODRLinkage; 1116 1117 case TSK_ExplicitInstantiationDefinition: 1118 return llvm::GlobalVariable::WeakODRLinkage; 1119 1120 case TSK_ExplicitInstantiationDeclaration: 1121 // FIXME: Use available_externally linkage. However, this currently 1122 // breaks LLVM's build due to undefined symbols. 1123 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1124 return llvm::GlobalVariable::LinkOnceODRLinkage; 1125 } 1126 1127 // Silence GCC warning. 1128 return llvm::GlobalVariable::LinkOnceODRLinkage; 1129 } 1130 1131 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1132 return Context.toCharUnitsFromBits( 1133 TheTargetData.getTypeStoreSizeInBits(Ty)); 1134 } 1135 1136 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1137 llvm::Constant *Init = 0; 1138 QualType ASTTy = D->getType(); 1139 bool NonConstInit = false; 1140 1141 const Expr *InitExpr = D->getAnyInitializer(); 1142 1143 if (!InitExpr) { 1144 // This is a tentative definition; tentative definitions are 1145 // implicitly initialized with { 0 }. 1146 // 1147 // Note that tentative definitions are only emitted at the end of 1148 // a translation unit, so they should never have incomplete 1149 // type. In addition, EmitTentativeDefinition makes sure that we 1150 // never attempt to emit a tentative definition if a real one 1151 // exists. A use may still exists, however, so we still may need 1152 // to do a RAUW. 1153 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1154 Init = EmitNullConstant(D->getType()); 1155 } else { 1156 Init = EmitConstantExpr(InitExpr, D->getType()); 1157 if (!Init) { 1158 QualType T = InitExpr->getType(); 1159 if (D->getType()->isReferenceType()) 1160 T = D->getType(); 1161 1162 if (getLangOptions().CPlusPlus) { 1163 Init = EmitNullConstant(T); 1164 NonConstInit = true; 1165 } else { 1166 ErrorUnsupported(D, "static initializer"); 1167 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1168 } 1169 } else { 1170 // We don't need an initializer, so remove the entry for the delayed 1171 // initializer position (just in case this entry was delayed). 1172 if (getLangOptions().CPlusPlus) 1173 DelayedCXXInitPosition.erase(D); 1174 } 1175 } 1176 1177 const llvm::Type* InitType = Init->getType(); 1178 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1179 1180 // Strip off a bitcast if we got one back. 1181 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1182 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1183 // all zero index gep. 1184 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1185 Entry = CE->getOperand(0); 1186 } 1187 1188 // Entry is now either a Function or GlobalVariable. 1189 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1190 1191 // We have a definition after a declaration with the wrong type. 1192 // We must make a new GlobalVariable* and update everything that used OldGV 1193 // (a declaration or tentative definition) with the new GlobalVariable* 1194 // (which will be a definition). 1195 // 1196 // This happens if there is a prototype for a global (e.g. 1197 // "extern int x[];") and then a definition of a different type (e.g. 1198 // "int x[10];"). This also happens when an initializer has a different type 1199 // from the type of the global (this happens with unions). 1200 if (GV == 0 || 1201 GV->getType()->getElementType() != InitType || 1202 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1203 1204 // Move the old entry aside so that we'll create a new one. 1205 Entry->setName(llvm::StringRef()); 1206 1207 // Make a new global with the correct type, this is now guaranteed to work. 1208 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1209 1210 // Replace all uses of the old global with the new global 1211 llvm::Constant *NewPtrForOldDecl = 1212 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1213 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1214 1215 // Erase the old global, since it is no longer used. 1216 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1217 } 1218 1219 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1220 SourceManager &SM = Context.getSourceManager(); 1221 AddAnnotation(EmitAnnotateAttr(GV, AA, 1222 SM.getInstantiationLineNumber(D->getLocation()))); 1223 } 1224 1225 GV->setInitializer(Init); 1226 1227 // If it is safe to mark the global 'constant', do so now. 1228 GV->setConstant(false); 1229 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1230 GV->setConstant(true); 1231 1232 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1233 1234 // Set the llvm linkage type as appropriate. 1235 llvm::GlobalValue::LinkageTypes Linkage = 1236 GetLLVMLinkageVarDefinition(D, GV); 1237 GV->setLinkage(Linkage); 1238 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1239 // common vars aren't constant even if declared const. 1240 GV->setConstant(false); 1241 1242 SetCommonAttributes(D, GV); 1243 1244 // Emit the initializer function if necessary. 1245 if (NonConstInit) 1246 EmitCXXGlobalVarDeclInitFunc(D, GV); 1247 1248 // Emit global variable debug information. 1249 if (CGDebugInfo *DI = getDebugInfo()) { 1250 DI->setLocation(D->getLocation()); 1251 DI->EmitGlobalVariable(GV, D); 1252 } 1253 } 1254 1255 llvm::GlobalValue::LinkageTypes 1256 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1257 llvm::GlobalVariable *GV) { 1258 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1259 if (Linkage == GVA_Internal) 1260 return llvm::Function::InternalLinkage; 1261 else if (D->hasAttr<DLLImportAttr>()) 1262 return llvm::Function::DLLImportLinkage; 1263 else if (D->hasAttr<DLLExportAttr>()) 1264 return llvm::Function::DLLExportLinkage; 1265 else if (D->hasAttr<WeakAttr>()) { 1266 if (GV->isConstant()) 1267 return llvm::GlobalVariable::WeakODRLinkage; 1268 else 1269 return llvm::GlobalVariable::WeakAnyLinkage; 1270 } else if (Linkage == GVA_TemplateInstantiation || 1271 Linkage == GVA_ExplicitTemplateInstantiation) 1272 // FIXME: It seems like we can provide more specific linkage here 1273 // (LinkOnceODR, WeakODR). 1274 return llvm::GlobalVariable::WeakAnyLinkage; 1275 else if (!getLangOptions().CPlusPlus && 1276 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1277 D->getAttr<CommonAttr>()) && 1278 !D->hasExternalStorage() && !D->getInit() && 1279 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1280 // Thread local vars aren't considered common linkage. 1281 return llvm::GlobalVariable::CommonLinkage; 1282 } 1283 return llvm::GlobalVariable::ExternalLinkage; 1284 } 1285 1286 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1287 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1288 /// existing call uses of the old function in the module, this adjusts them to 1289 /// call the new function directly. 1290 /// 1291 /// This is not just a cleanup: the always_inline pass requires direct calls to 1292 /// functions to be able to inline them. If there is a bitcast in the way, it 1293 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1294 /// run at -O0. 1295 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1296 llvm::Function *NewFn) { 1297 // If we're redefining a global as a function, don't transform it. 1298 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1299 if (OldFn == 0) return; 1300 1301 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1302 llvm::SmallVector<llvm::Value*, 4> ArgList; 1303 1304 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1305 UI != E; ) { 1306 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1307 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1308 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1309 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1310 llvm::CallSite CS(CI); 1311 if (!CI || !CS.isCallee(I)) continue; 1312 1313 // If the return types don't match exactly, and if the call isn't dead, then 1314 // we can't transform this call. 1315 if (CI->getType() != NewRetTy && !CI->use_empty()) 1316 continue; 1317 1318 // If the function was passed too few arguments, don't transform. If extra 1319 // arguments were passed, we silently drop them. If any of the types 1320 // mismatch, we don't transform. 1321 unsigned ArgNo = 0; 1322 bool DontTransform = false; 1323 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1324 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1325 if (CS.arg_size() == ArgNo || 1326 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1327 DontTransform = true; 1328 break; 1329 } 1330 } 1331 if (DontTransform) 1332 continue; 1333 1334 // Okay, we can transform this. Create the new call instruction and copy 1335 // over the required information. 1336 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1337 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1338 ArgList.end(), "", CI); 1339 ArgList.clear(); 1340 if (!NewCall->getType()->isVoidTy()) 1341 NewCall->takeName(CI); 1342 NewCall->setAttributes(CI->getAttributes()); 1343 NewCall->setCallingConv(CI->getCallingConv()); 1344 1345 // Finally, remove the old call, replacing any uses with the new one. 1346 if (!CI->use_empty()) 1347 CI->replaceAllUsesWith(NewCall); 1348 1349 // Copy debug location attached to CI. 1350 if (!CI->getDebugLoc().isUnknown()) 1351 NewCall->setDebugLoc(CI->getDebugLoc()); 1352 CI->eraseFromParent(); 1353 } 1354 } 1355 1356 1357 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1358 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1359 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1360 // Get or create the prototype for the function. 1361 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1362 1363 // Strip off a bitcast if we got one back. 1364 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1365 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1366 Entry = CE->getOperand(0); 1367 } 1368 1369 1370 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1371 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1372 1373 // If the types mismatch then we have to rewrite the definition. 1374 assert(OldFn->isDeclaration() && 1375 "Shouldn't replace non-declaration"); 1376 1377 // F is the Function* for the one with the wrong type, we must make a new 1378 // Function* and update everything that used F (a declaration) with the new 1379 // Function* (which will be a definition). 1380 // 1381 // This happens if there is a prototype for a function 1382 // (e.g. "int f()") and then a definition of a different type 1383 // (e.g. "int f(int x)"). Move the old function aside so that it 1384 // doesn't interfere with GetAddrOfFunction. 1385 OldFn->setName(llvm::StringRef()); 1386 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1387 1388 // If this is an implementation of a function without a prototype, try to 1389 // replace any existing uses of the function (which may be calls) with uses 1390 // of the new function 1391 if (D->getType()->isFunctionNoProtoType()) { 1392 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1393 OldFn->removeDeadConstantUsers(); 1394 } 1395 1396 // Replace uses of F with the Function we will endow with a body. 1397 if (!Entry->use_empty()) { 1398 llvm::Constant *NewPtrForOldDecl = 1399 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1400 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1401 } 1402 1403 // Ok, delete the old function now, which is dead. 1404 OldFn->eraseFromParent(); 1405 1406 Entry = NewFn; 1407 } 1408 1409 // We need to set linkage and visibility on the function before 1410 // generating code for it because various parts of IR generation 1411 // want to propagate this information down (e.g. to local static 1412 // declarations). 1413 llvm::Function *Fn = cast<llvm::Function>(Entry); 1414 setFunctionLinkage(D, Fn); 1415 1416 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1417 setGlobalVisibility(Fn, D); 1418 1419 CodeGenFunction(*this).GenerateCode(D, Fn); 1420 1421 SetFunctionDefinitionAttributes(D, Fn); 1422 SetLLVMFunctionAttributesForDefinition(D, Fn); 1423 1424 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1425 AddGlobalCtor(Fn, CA->getPriority()); 1426 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1427 AddGlobalDtor(Fn, DA->getPriority()); 1428 } 1429 1430 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1431 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1432 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1433 assert(AA && "Not an alias?"); 1434 1435 llvm::StringRef MangledName = getMangledName(GD); 1436 1437 // If there is a definition in the module, then it wins over the alias. 1438 // This is dubious, but allow it to be safe. Just ignore the alias. 1439 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1440 if (Entry && !Entry->isDeclaration()) 1441 return; 1442 1443 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1444 1445 // Create a reference to the named value. This ensures that it is emitted 1446 // if a deferred decl. 1447 llvm::Constant *Aliasee; 1448 if (isa<llvm::FunctionType>(DeclTy)) 1449 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1450 else 1451 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1452 llvm::PointerType::getUnqual(DeclTy), 0); 1453 1454 // Create the new alias itself, but don't set a name yet. 1455 llvm::GlobalValue *GA = 1456 new llvm::GlobalAlias(Aliasee->getType(), 1457 llvm::Function::ExternalLinkage, 1458 "", Aliasee, &getModule()); 1459 1460 if (Entry) { 1461 assert(Entry->isDeclaration()); 1462 1463 // If there is a declaration in the module, then we had an extern followed 1464 // by the alias, as in: 1465 // extern int test6(); 1466 // ... 1467 // int test6() __attribute__((alias("test7"))); 1468 // 1469 // Remove it and replace uses of it with the alias. 1470 GA->takeName(Entry); 1471 1472 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1473 Entry->getType())); 1474 Entry->eraseFromParent(); 1475 } else { 1476 GA->setName(MangledName); 1477 } 1478 1479 // Set attributes which are particular to an alias; this is a 1480 // specialization of the attributes which may be set on a global 1481 // variable/function. 1482 if (D->hasAttr<DLLExportAttr>()) { 1483 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1484 // The dllexport attribute is ignored for undefined symbols. 1485 if (FD->hasBody()) 1486 GA->setLinkage(llvm::Function::DLLExportLinkage); 1487 } else { 1488 GA->setLinkage(llvm::Function::DLLExportLinkage); 1489 } 1490 } else if (D->hasAttr<WeakAttr>() || 1491 D->hasAttr<WeakRefAttr>() || 1492 D->hasAttr<WeakImportAttr>()) { 1493 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1494 } 1495 1496 SetCommonAttributes(D, GA); 1497 } 1498 1499 /// getBuiltinLibFunction - Given a builtin id for a function like 1500 /// "__builtin_fabsf", return a Function* for "fabsf". 1501 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1502 unsigned BuiltinID) { 1503 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1504 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1505 "isn't a lib fn"); 1506 1507 // Get the name, skip over the __builtin_ prefix (if necessary). 1508 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1509 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1510 Name += 10; 1511 1512 const llvm::FunctionType *Ty = 1513 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1514 1515 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1516 } 1517 1518 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1519 unsigned NumTys) { 1520 return llvm::Intrinsic::getDeclaration(&getModule(), 1521 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1522 } 1523 1524 static llvm::StringMapEntry<llvm::Constant*> & 1525 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1526 const StringLiteral *Literal, 1527 bool TargetIsLSB, 1528 bool &IsUTF16, 1529 unsigned &StringLength) { 1530 llvm::StringRef String = Literal->getString(); 1531 unsigned NumBytes = String.size(); 1532 1533 // Check for simple case. 1534 if (!Literal->containsNonAsciiOrNull()) { 1535 StringLength = NumBytes; 1536 return Map.GetOrCreateValue(String); 1537 } 1538 1539 // Otherwise, convert the UTF8 literals into a byte string. 1540 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1541 const UTF8 *FromPtr = (UTF8 *)String.data(); 1542 UTF16 *ToPtr = &ToBuf[0]; 1543 1544 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1545 &ToPtr, ToPtr + NumBytes, 1546 strictConversion); 1547 1548 // ConvertUTF8toUTF16 returns the length in ToPtr. 1549 StringLength = ToPtr - &ToBuf[0]; 1550 1551 // Render the UTF-16 string into a byte array and convert to the target byte 1552 // order. 1553 // 1554 // FIXME: This isn't something we should need to do here. 1555 llvm::SmallString<128> AsBytes; 1556 AsBytes.reserve(StringLength * 2); 1557 for (unsigned i = 0; i != StringLength; ++i) { 1558 unsigned short Val = ToBuf[i]; 1559 if (TargetIsLSB) { 1560 AsBytes.push_back(Val & 0xFF); 1561 AsBytes.push_back(Val >> 8); 1562 } else { 1563 AsBytes.push_back(Val >> 8); 1564 AsBytes.push_back(Val & 0xFF); 1565 } 1566 } 1567 // Append one extra null character, the second is automatically added by our 1568 // caller. 1569 AsBytes.push_back(0); 1570 1571 IsUTF16 = true; 1572 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1573 } 1574 1575 llvm::Constant * 1576 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1577 unsigned StringLength = 0; 1578 bool isUTF16 = false; 1579 llvm::StringMapEntry<llvm::Constant*> &Entry = 1580 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1581 getTargetData().isLittleEndian(), 1582 isUTF16, StringLength); 1583 1584 if (llvm::Constant *C = Entry.getValue()) 1585 return C; 1586 1587 llvm::Constant *Zero = 1588 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1589 llvm::Constant *Zeros[] = { Zero, Zero }; 1590 1591 // If we don't already have it, get __CFConstantStringClassReference. 1592 if (!CFConstantStringClassRef) { 1593 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1594 Ty = llvm::ArrayType::get(Ty, 0); 1595 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1596 "__CFConstantStringClassReference"); 1597 // Decay array -> ptr 1598 CFConstantStringClassRef = 1599 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1600 } 1601 1602 QualType CFTy = getContext().getCFConstantStringType(); 1603 1604 const llvm::StructType *STy = 1605 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1606 1607 std::vector<llvm::Constant*> Fields(4); 1608 1609 // Class pointer. 1610 Fields[0] = CFConstantStringClassRef; 1611 1612 // Flags. 1613 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1614 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1615 llvm::ConstantInt::get(Ty, 0x07C8); 1616 1617 // String pointer. 1618 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1619 1620 llvm::GlobalValue::LinkageTypes Linkage; 1621 bool isConstant; 1622 if (isUTF16) { 1623 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1624 Linkage = llvm::GlobalValue::InternalLinkage; 1625 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1626 // does make plain ascii ones writable. 1627 isConstant = true; 1628 } else { 1629 Linkage = llvm::GlobalValue::PrivateLinkage; 1630 isConstant = !Features.WritableStrings; 1631 } 1632 1633 llvm::GlobalVariable *GV = 1634 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1635 ".str"); 1636 GV->setUnnamedAddr(true); 1637 if (isUTF16) { 1638 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1639 GV->setAlignment(Align.getQuantity()); 1640 } 1641 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1642 1643 // String length. 1644 Ty = getTypes().ConvertType(getContext().LongTy); 1645 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1646 1647 // The struct. 1648 C = llvm::ConstantStruct::get(STy, Fields); 1649 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1650 llvm::GlobalVariable::PrivateLinkage, C, 1651 "_unnamed_cfstring_"); 1652 if (const char *Sect = getContext().Target.getCFStringSection()) 1653 GV->setSection(Sect); 1654 Entry.setValue(GV); 1655 1656 return GV; 1657 } 1658 1659 llvm::Constant * 1660 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1661 unsigned StringLength = 0; 1662 bool isUTF16 = false; 1663 llvm::StringMapEntry<llvm::Constant*> &Entry = 1664 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1665 getTargetData().isLittleEndian(), 1666 isUTF16, StringLength); 1667 1668 if (llvm::Constant *C = Entry.getValue()) 1669 return C; 1670 1671 llvm::Constant *Zero = 1672 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1673 llvm::Constant *Zeros[] = { Zero, Zero }; 1674 1675 // If we don't already have it, get _NSConstantStringClassReference. 1676 if (!ConstantStringClassRef) { 1677 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1678 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1679 Ty = llvm::ArrayType::get(Ty, 0); 1680 llvm::Constant *GV; 1681 if (StringClass.empty()) 1682 GV = CreateRuntimeVariable(Ty, 1683 Features.ObjCNonFragileABI ? 1684 "OBJC_CLASS_$_NSConstantString" : 1685 "_NSConstantStringClassReference"); 1686 else { 1687 std::string str; 1688 if (Features.ObjCNonFragileABI) 1689 str = "OBJC_CLASS_$_" + StringClass; 1690 else 1691 str = "_" + StringClass + "ClassReference"; 1692 GV = CreateRuntimeVariable(Ty, str); 1693 } 1694 // Decay array -> ptr 1695 ConstantStringClassRef = 1696 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1697 } 1698 1699 QualType NSTy = getContext().getNSConstantStringType(); 1700 1701 const llvm::StructType *STy = 1702 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1703 1704 std::vector<llvm::Constant*> Fields(3); 1705 1706 // Class pointer. 1707 Fields[0] = ConstantStringClassRef; 1708 1709 // String pointer. 1710 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1711 1712 llvm::GlobalValue::LinkageTypes Linkage; 1713 bool isConstant; 1714 if (isUTF16) { 1715 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1716 Linkage = llvm::GlobalValue::InternalLinkage; 1717 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1718 // does make plain ascii ones writable. 1719 isConstant = true; 1720 } else { 1721 Linkage = llvm::GlobalValue::PrivateLinkage; 1722 isConstant = !Features.WritableStrings; 1723 } 1724 1725 llvm::GlobalVariable *GV = 1726 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1727 ".str"); 1728 GV->setUnnamedAddr(true); 1729 if (isUTF16) { 1730 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1731 GV->setAlignment(Align.getQuantity()); 1732 } 1733 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1734 1735 // String length. 1736 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1737 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1738 1739 // The struct. 1740 C = llvm::ConstantStruct::get(STy, Fields); 1741 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1742 llvm::GlobalVariable::PrivateLinkage, C, 1743 "_unnamed_nsstring_"); 1744 // FIXME. Fix section. 1745 if (const char *Sect = 1746 Features.ObjCNonFragileABI 1747 ? getContext().Target.getNSStringNonFragileABISection() 1748 : getContext().Target.getNSStringSection()) 1749 GV->setSection(Sect); 1750 Entry.setValue(GV); 1751 1752 return GV; 1753 } 1754 1755 /// GetStringForStringLiteral - Return the appropriate bytes for a 1756 /// string literal, properly padded to match the literal type. 1757 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1758 const ASTContext &Context = getContext(); 1759 const ConstantArrayType *CAT = 1760 Context.getAsConstantArrayType(E->getType()); 1761 assert(CAT && "String isn't pointer or array!"); 1762 1763 // Resize the string to the right size. 1764 uint64_t RealLen = CAT->getSize().getZExtValue(); 1765 1766 if (E->isWide()) 1767 RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth(); 1768 1769 std::string Str = E->getString().str(); 1770 Str.resize(RealLen, '\0'); 1771 1772 return Str; 1773 } 1774 1775 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1776 /// constant array for the given string literal. 1777 llvm::Constant * 1778 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1779 // FIXME: This can be more efficient. 1780 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1781 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1782 if (S->isWide()) { 1783 llvm::Type *DestTy = 1784 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1785 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1786 } 1787 return C; 1788 } 1789 1790 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1791 /// array for the given ObjCEncodeExpr node. 1792 llvm::Constant * 1793 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1794 std::string Str; 1795 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1796 1797 return GetAddrOfConstantCString(Str); 1798 } 1799 1800 1801 /// GenerateWritableString -- Creates storage for a string literal. 1802 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1803 bool constant, 1804 CodeGenModule &CGM, 1805 const char *GlobalName) { 1806 // Create Constant for this string literal. Don't add a '\0'. 1807 llvm::Constant *C = 1808 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1809 1810 // Create a global variable for this string 1811 llvm::GlobalVariable *GV = 1812 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1813 llvm::GlobalValue::PrivateLinkage, 1814 C, GlobalName); 1815 GV->setUnnamedAddr(true); 1816 return GV; 1817 } 1818 1819 /// GetAddrOfConstantString - Returns a pointer to a character array 1820 /// containing the literal. This contents are exactly that of the 1821 /// given string, i.e. it will not be null terminated automatically; 1822 /// see GetAddrOfConstantCString. Note that whether the result is 1823 /// actually a pointer to an LLVM constant depends on 1824 /// Feature.WriteableStrings. 1825 /// 1826 /// The result has pointer to array type. 1827 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1828 const char *GlobalName) { 1829 bool IsConstant = !Features.WritableStrings; 1830 1831 // Get the default prefix if a name wasn't specified. 1832 if (!GlobalName) 1833 GlobalName = ".str"; 1834 1835 // Don't share any string literals if strings aren't constant. 1836 if (!IsConstant) 1837 return GenerateStringLiteral(str, false, *this, GlobalName); 1838 1839 llvm::StringMapEntry<llvm::Constant *> &Entry = 1840 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1841 1842 if (Entry.getValue()) 1843 return Entry.getValue(); 1844 1845 // Create a global variable for this. 1846 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1847 Entry.setValue(C); 1848 return C; 1849 } 1850 1851 /// GetAddrOfConstantCString - Returns a pointer to a character 1852 /// array containing the literal and a terminating '\-' 1853 /// character. The result has pointer to array type. 1854 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1855 const char *GlobalName){ 1856 return GetAddrOfConstantString(str + '\0', GlobalName); 1857 } 1858 1859 /// EmitObjCPropertyImplementations - Emit information for synthesized 1860 /// properties for an implementation. 1861 void CodeGenModule::EmitObjCPropertyImplementations(const 1862 ObjCImplementationDecl *D) { 1863 for (ObjCImplementationDecl::propimpl_iterator 1864 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1865 ObjCPropertyImplDecl *PID = *i; 1866 1867 // Dynamic is just for type-checking. 1868 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1869 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1870 1871 // Determine which methods need to be implemented, some may have 1872 // been overridden. Note that ::isSynthesized is not the method 1873 // we want, that just indicates if the decl came from a 1874 // property. What we want to know is if the method is defined in 1875 // this implementation. 1876 if (!D->getInstanceMethod(PD->getGetterName())) 1877 CodeGenFunction(*this).GenerateObjCGetter( 1878 const_cast<ObjCImplementationDecl *>(D), PID); 1879 if (!PD->isReadOnly() && 1880 !D->getInstanceMethod(PD->getSetterName())) 1881 CodeGenFunction(*this).GenerateObjCSetter( 1882 const_cast<ObjCImplementationDecl *>(D), PID); 1883 } 1884 } 1885 } 1886 1887 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1888 /// for an implementation. 1889 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1890 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1891 return; 1892 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1893 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1894 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1895 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1896 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1897 D->getLocation(), 1898 D->getLocation(), cxxSelector, 1899 getContext().VoidTy, 0, 1900 DC, true, false, true, false, 1901 ObjCMethodDecl::Required); 1902 D->addInstanceMethod(DTORMethod); 1903 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1904 1905 II = &getContext().Idents.get(".cxx_construct"); 1906 cxxSelector = getContext().Selectors.getSelector(0, &II); 1907 // The constructor returns 'self'. 1908 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1909 D->getLocation(), 1910 D->getLocation(), cxxSelector, 1911 getContext().getObjCIdType(), 0, 1912 DC, true, false, true, false, 1913 ObjCMethodDecl::Required); 1914 D->addInstanceMethod(CTORMethod); 1915 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1916 1917 1918 } 1919 1920 /// EmitNamespace - Emit all declarations in a namespace. 1921 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1922 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1923 I != E; ++I) 1924 EmitTopLevelDecl(*I); 1925 } 1926 1927 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1928 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1929 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1930 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1931 ErrorUnsupported(LSD, "linkage spec"); 1932 return; 1933 } 1934 1935 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1936 I != E; ++I) 1937 EmitTopLevelDecl(*I); 1938 } 1939 1940 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1941 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1942 // If an error has occurred, stop code generation, but continue 1943 // parsing and semantic analysis (to ensure all warnings and errors 1944 // are emitted). 1945 if (Diags.hasErrorOccurred()) 1946 return; 1947 1948 // Ignore dependent declarations. 1949 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1950 return; 1951 1952 switch (D->getKind()) { 1953 case Decl::CXXConversion: 1954 case Decl::CXXMethod: 1955 case Decl::Function: 1956 // Skip function templates 1957 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1958 return; 1959 1960 EmitGlobal(cast<FunctionDecl>(D)); 1961 break; 1962 1963 case Decl::Var: 1964 EmitGlobal(cast<VarDecl>(D)); 1965 break; 1966 1967 // C++ Decls 1968 case Decl::Namespace: 1969 EmitNamespace(cast<NamespaceDecl>(D)); 1970 break; 1971 // No code generation needed. 1972 case Decl::UsingShadow: 1973 case Decl::Using: 1974 case Decl::UsingDirective: 1975 case Decl::ClassTemplate: 1976 case Decl::FunctionTemplate: 1977 case Decl::NamespaceAlias: 1978 break; 1979 case Decl::CXXConstructor: 1980 // Skip function templates 1981 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1982 return; 1983 1984 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1985 break; 1986 case Decl::CXXDestructor: 1987 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1988 break; 1989 1990 case Decl::StaticAssert: 1991 // Nothing to do. 1992 break; 1993 1994 // Objective-C Decls 1995 1996 // Forward declarations, no (immediate) code generation. 1997 case Decl::ObjCClass: 1998 case Decl::ObjCForwardProtocol: 1999 case Decl::ObjCInterface: 2000 break; 2001 2002 case Decl::ObjCCategory: { 2003 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2004 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2005 Context.ResetObjCLayout(CD->getClassInterface()); 2006 break; 2007 } 2008 2009 2010 case Decl::ObjCProtocol: 2011 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2012 break; 2013 2014 case Decl::ObjCCategoryImpl: 2015 // Categories have properties but don't support synthesize so we 2016 // can ignore them here. 2017 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2018 break; 2019 2020 case Decl::ObjCImplementation: { 2021 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2022 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2023 Context.ResetObjCLayout(OMD->getClassInterface()); 2024 EmitObjCPropertyImplementations(OMD); 2025 EmitObjCIvarInitializations(OMD); 2026 Runtime->GenerateClass(OMD); 2027 break; 2028 } 2029 case Decl::ObjCMethod: { 2030 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2031 // If this is not a prototype, emit the body. 2032 if (OMD->getBody()) 2033 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2034 break; 2035 } 2036 case Decl::ObjCCompatibleAlias: 2037 // compatibility-alias is a directive and has no code gen. 2038 break; 2039 2040 case Decl::LinkageSpec: 2041 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2042 break; 2043 2044 case Decl::FileScopeAsm: { 2045 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2046 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2047 2048 const std::string &S = getModule().getModuleInlineAsm(); 2049 if (S.empty()) 2050 getModule().setModuleInlineAsm(AsmString); 2051 else 2052 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2053 break; 2054 } 2055 2056 default: 2057 // Make sure we handled everything we should, every other kind is a 2058 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2059 // function. Need to recode Decl::Kind to do that easily. 2060 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2061 } 2062 } 2063 2064 /// Turns the given pointer into a constant. 2065 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2066 const void *Ptr) { 2067 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2068 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2069 return llvm::ConstantInt::get(i64, PtrInt); 2070 } 2071 2072 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2073 llvm::NamedMDNode *&GlobalMetadata, 2074 GlobalDecl D, 2075 llvm::GlobalValue *Addr) { 2076 if (!GlobalMetadata) 2077 GlobalMetadata = 2078 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2079 2080 // TODO: should we report variant information for ctors/dtors? 2081 llvm::Value *Ops[] = { 2082 Addr, 2083 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2084 }; 2085 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2086 } 2087 2088 /// Emits metadata nodes associating all the global values in the 2089 /// current module with the Decls they came from. This is useful for 2090 /// projects using IR gen as a subroutine. 2091 /// 2092 /// Since there's currently no way to associate an MDNode directly 2093 /// with an llvm::GlobalValue, we create a global named metadata 2094 /// with the name 'clang.global.decl.ptrs'. 2095 void CodeGenModule::EmitDeclMetadata() { 2096 llvm::NamedMDNode *GlobalMetadata = 0; 2097 2098 // StaticLocalDeclMap 2099 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2100 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2101 I != E; ++I) { 2102 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2103 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2104 } 2105 } 2106 2107 /// Emits metadata nodes for all the local variables in the current 2108 /// function. 2109 void CodeGenFunction::EmitDeclMetadata() { 2110 if (LocalDeclMap.empty()) return; 2111 2112 llvm::LLVMContext &Context = getLLVMContext(); 2113 2114 // Find the unique metadata ID for this name. 2115 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2116 2117 llvm::NamedMDNode *GlobalMetadata = 0; 2118 2119 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2120 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2121 const Decl *D = I->first; 2122 llvm::Value *Addr = I->second; 2123 2124 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2125 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2126 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2127 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2128 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2129 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2130 } 2131 } 2132 } 2133 2134 ///@name Custom Runtime Function Interfaces 2135 ///@{ 2136 // 2137 // FIXME: These can be eliminated once we can have clients just get the required 2138 // AST nodes from the builtin tables. 2139 2140 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2141 if (BlockObjectDispose) 2142 return BlockObjectDispose; 2143 2144 // If we saw an explicit decl, use that. 2145 if (BlockObjectDisposeDecl) { 2146 return BlockObjectDispose = GetAddrOfFunction( 2147 BlockObjectDisposeDecl, 2148 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2149 } 2150 2151 // Otherwise construct the function by hand. 2152 const llvm::FunctionType *FTy; 2153 std::vector<const llvm::Type*> ArgTys; 2154 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2155 ArgTys.push_back(PtrToInt8Ty); 2156 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2157 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2158 return BlockObjectDispose = 2159 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2160 } 2161 2162 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2163 if (BlockObjectAssign) 2164 return BlockObjectAssign; 2165 2166 // If we saw an explicit decl, use that. 2167 if (BlockObjectAssignDecl) { 2168 return BlockObjectAssign = GetAddrOfFunction( 2169 BlockObjectAssignDecl, 2170 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2171 } 2172 2173 // Otherwise construct the function by hand. 2174 const llvm::FunctionType *FTy; 2175 std::vector<const llvm::Type*> ArgTys; 2176 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2177 ArgTys.push_back(PtrToInt8Ty); 2178 ArgTys.push_back(PtrToInt8Ty); 2179 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2180 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2181 return BlockObjectAssign = 2182 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2183 } 2184 2185 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2186 if (NSConcreteGlobalBlock) 2187 return NSConcreteGlobalBlock; 2188 2189 // If we saw an explicit decl, use that. 2190 if (NSConcreteGlobalBlockDecl) { 2191 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2192 NSConcreteGlobalBlockDecl, 2193 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2194 } 2195 2196 // Otherwise construct the variable by hand. 2197 return NSConcreteGlobalBlock = CreateRuntimeVariable( 2198 PtrToInt8Ty, "_NSConcreteGlobalBlock"); 2199 } 2200 2201 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2202 if (NSConcreteStackBlock) 2203 return NSConcreteStackBlock; 2204 2205 // If we saw an explicit decl, use that. 2206 if (NSConcreteStackBlockDecl) { 2207 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2208 NSConcreteStackBlockDecl, 2209 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2210 } 2211 2212 // Otherwise construct the variable by hand. 2213 return NSConcreteStackBlock = CreateRuntimeVariable( 2214 PtrToInt8Ty, "_NSConcreteStackBlock"); 2215 } 2216 2217 ///@} 2218