xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 2575631c0f76753eb61a59461e214900de47be2a)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/TargetData.h"
41 #include "llvm/Support/CallSite.h"
42 #include "llvm/Support/ErrorHandling.h"
43 using namespace clang;
44 using namespace CodeGen;
45 
46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
47   switch (CGM.getContext().Target.getCXXABI()) {
48   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
49   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
50   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
51   }
52 
53   llvm_unreachable("invalid C++ ABI kind");
54   return *CreateItaniumCXXABI(CGM);
55 }
56 
57 
58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
59                              llvm::Module &M, const llvm::TargetData &TD,
60                              Diagnostic &diags)
61   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
62     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
63     ABI(createCXXABI(*this)),
64     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
65     TBAA(0),
66     VTables(*this), Runtime(0),
67     CFConstantStringClassRef(0), ConstantStringClassRef(0),
68     VMContext(M.getContext()),
69     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
70     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
71     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
72     BlockObjectAssign(0), BlockObjectDispose(0),
73     BlockDescriptorType(0), GenericBlockLiteralType(0) {
74   if (!Features.ObjC1)
75     Runtime = 0;
76   else if (!Features.NeXTRuntime)
77     Runtime = CreateGNUObjCRuntime(*this);
78   else if (Features.ObjCNonFragileABI)
79     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
80   else
81     Runtime = CreateMacObjCRuntime(*this);
82 
83   // Enable TBAA unless it's suppressed.
84   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
85     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
86                            ABI.getMangleContext());
87 
88   // If debug info generation is enabled, create the CGDebugInfo object.
89   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
90 
91   Block.GlobalUniqueCount = 0;
92   Int8PtrTy = llvm::Type::getInt8PtrTy(M.getContext());
93 }
94 
95 CodeGenModule::~CodeGenModule() {
96   delete Runtime;
97   delete &ABI;
98   delete TBAA;
99   delete DebugInfo;
100 }
101 
102 void CodeGenModule::createObjCRuntime() {
103   if (!Features.NeXTRuntime)
104     Runtime = CreateGNUObjCRuntime(*this);
105   else if (Features.ObjCNonFragileABI)
106     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
107   else
108     Runtime = CreateMacObjCRuntime(*this);
109 }
110 
111 void CodeGenModule::Release() {
112   EmitDeferred();
113   EmitCXXGlobalInitFunc();
114   EmitCXXGlobalDtorFunc();
115   if (Runtime)
116     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
117       AddGlobalCtor(ObjCInitFunction);
118   EmitCtorList(GlobalCtors, "llvm.global_ctors");
119   EmitCtorList(GlobalDtors, "llvm.global_dtors");
120   EmitAnnotations();
121   EmitLLVMUsed();
122 
123   SimplifyPersonality();
124 
125   if (getCodeGenOpts().EmitDeclMetadata)
126     EmitDeclMetadata();
127 }
128 
129 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
130   if (!TBAA)
131     return 0;
132   return TBAA->getTBAAInfo(QTy);
133 }
134 
135 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
136                                         llvm::MDNode *TBAAInfo) {
137   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
138 }
139 
140 bool CodeGenModule::isTargetDarwin() const {
141   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
142 }
143 
144 /// ErrorUnsupported - Print out an error that codegen doesn't support the
145 /// specified stmt yet.
146 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
147                                      bool OmitOnError) {
148   if (OmitOnError && getDiags().hasErrorOccurred())
149     return;
150   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
151                                                "cannot compile this %0 yet");
152   std::string Msg = Type;
153   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
154     << Msg << S->getSourceRange();
155 }
156 
157 /// ErrorUnsupported - Print out an error that codegen doesn't support the
158 /// specified decl yet.
159 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
160                                      bool OmitOnError) {
161   if (OmitOnError && getDiags().hasErrorOccurred())
162     return;
163   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
164                                                "cannot compile this %0 yet");
165   std::string Msg = Type;
166   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
167 }
168 
169 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
170                                         const NamedDecl *D) const {
171   // Internal definitions always have default visibility.
172   if (GV->hasLocalLinkage()) {
173     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
174     return;
175   }
176 
177   // Set visibility for definitions.
178   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
179   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
180     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
181 }
182 
183 /// Set the symbol visibility of type information (vtable and RTTI)
184 /// associated with the given type.
185 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
186                                       const CXXRecordDecl *RD,
187                                       TypeVisibilityKind TVK) const {
188   setGlobalVisibility(GV, RD);
189 
190   if (!CodeGenOpts.HiddenWeakVTables)
191     return;
192 
193   // We never want to drop the visibility for RTTI names.
194   if (TVK == TVK_ForRTTIName)
195     return;
196 
197   // We want to drop the visibility to hidden for weak type symbols.
198   // This isn't possible if there might be unresolved references
199   // elsewhere that rely on this symbol being visible.
200 
201   // This should be kept roughly in sync with setThunkVisibility
202   // in CGVTables.cpp.
203 
204   // Preconditions.
205   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
206       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
207     return;
208 
209   // Don't override an explicit visibility attribute.
210   if (RD->hasAttr<VisibilityAttr>())
211     return;
212 
213   switch (RD->getTemplateSpecializationKind()) {
214   // We have to disable the optimization if this is an EI definition
215   // because there might be EI declarations in other shared objects.
216   case TSK_ExplicitInstantiationDefinition:
217   case TSK_ExplicitInstantiationDeclaration:
218     return;
219 
220   // Every use of a non-template class's type information has to emit it.
221   case TSK_Undeclared:
222     break;
223 
224   // In theory, implicit instantiations can ignore the possibility of
225   // an explicit instantiation declaration because there necessarily
226   // must be an EI definition somewhere with default visibility.  In
227   // practice, it's possible to have an explicit instantiation for
228   // an arbitrary template class, and linkers aren't necessarily able
229   // to deal with mixed-visibility symbols.
230   case TSK_ExplicitSpecialization:
231   case TSK_ImplicitInstantiation:
232     if (!CodeGenOpts.HiddenWeakTemplateVTables)
233       return;
234     break;
235   }
236 
237   // If there's a key function, there may be translation units
238   // that don't have the key function's definition.  But ignore
239   // this if we're emitting RTTI under -fno-rtti.
240   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
241     if (Context.getKeyFunction(RD))
242       return;
243   }
244 
245   // Otherwise, drop the visibility to hidden.
246   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
247   GV->setUnnamedAddr(true);
248 }
249 
250 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
251   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
252 
253   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
254   if (!Str.empty())
255     return Str;
256 
257   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
258     IdentifierInfo *II = ND->getIdentifier();
259     assert(II && "Attempt to mangle unnamed decl.");
260 
261     Str = II->getName();
262     return Str;
263   }
264 
265   llvm::SmallString<256> Buffer;
266   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
267     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
268   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
269     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
270   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
271     getCXXABI().getMangleContext().mangleBlock(BD, Buffer);
272   else
273     getCXXABI().getMangleContext().mangleName(ND, Buffer);
274 
275   // Allocate space for the mangled name.
276   size_t Length = Buffer.size();
277   char *Name = MangledNamesAllocator.Allocate<char>(Length);
278   std::copy(Buffer.begin(), Buffer.end(), Name);
279 
280   Str = llvm::StringRef(Name, Length);
281 
282   return Str;
283 }
284 
285 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
286                                         const BlockDecl *BD) {
287   MangleContext &MangleCtx = getCXXABI().getMangleContext();
288   const Decl *D = GD.getDecl();
289   if (D == 0)
290     MangleCtx.mangleGlobalBlock(BD, Buffer.getBuffer());
291   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
292     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Buffer.getBuffer());
293   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
294     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Buffer.getBuffer());
295   else
296     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Buffer.getBuffer());
297 }
298 
299 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
300   return getModule().getNamedValue(Name);
301 }
302 
303 /// AddGlobalCtor - Add a function to the list that will be called before
304 /// main() runs.
305 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
306   // FIXME: Type coercion of void()* types.
307   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
308 }
309 
310 /// AddGlobalDtor - Add a function to the list that will be called
311 /// when the module is unloaded.
312 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
313   // FIXME: Type coercion of void()* types.
314   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
315 }
316 
317 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
318   // Ctor function type is void()*.
319   llvm::FunctionType* CtorFTy =
320     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
321   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
322 
323   // Get the type of a ctor entry, { i32, void ()* }.
324   llvm::StructType* CtorStructTy =
325     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
326                           llvm::PointerType::getUnqual(CtorFTy), NULL);
327 
328   // Construct the constructor and destructor arrays.
329   std::vector<llvm::Constant*> Ctors;
330   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
331     std::vector<llvm::Constant*> S;
332     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
333                 I->second, false));
334     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
335     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
336   }
337 
338   if (!Ctors.empty()) {
339     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
340     new llvm::GlobalVariable(TheModule, AT, false,
341                              llvm::GlobalValue::AppendingLinkage,
342                              llvm::ConstantArray::get(AT, Ctors),
343                              GlobalName);
344   }
345 }
346 
347 void CodeGenModule::EmitAnnotations() {
348   if (Annotations.empty())
349     return;
350 
351   // Create a new global variable for the ConstantStruct in the Module.
352   llvm::Constant *Array =
353   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
354                                                 Annotations.size()),
355                            Annotations);
356   llvm::GlobalValue *gv =
357   new llvm::GlobalVariable(TheModule, Array->getType(), false,
358                            llvm::GlobalValue::AppendingLinkage, Array,
359                            "llvm.global.annotations");
360   gv->setSection("llvm.metadata");
361 }
362 
363 llvm::GlobalValue::LinkageTypes
364 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
365   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
366 
367   if (Linkage == GVA_Internal)
368     return llvm::Function::InternalLinkage;
369 
370   if (D->hasAttr<DLLExportAttr>())
371     return llvm::Function::DLLExportLinkage;
372 
373   if (D->hasAttr<WeakAttr>())
374     return llvm::Function::WeakAnyLinkage;
375 
376   // In C99 mode, 'inline' functions are guaranteed to have a strong
377   // definition somewhere else, so we can use available_externally linkage.
378   if (Linkage == GVA_C99Inline)
379     return llvm::Function::AvailableExternallyLinkage;
380 
381   // In C++, the compiler has to emit a definition in every translation unit
382   // that references the function.  We should use linkonce_odr because
383   // a) if all references in this translation unit are optimized away, we
384   // don't need to codegen it.  b) if the function persists, it needs to be
385   // merged with other definitions. c) C++ has the ODR, so we know the
386   // definition is dependable.
387   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
388     return !Context.getLangOptions().AppleKext
389              ? llvm::Function::LinkOnceODRLinkage
390              : llvm::Function::InternalLinkage;
391 
392   // An explicit instantiation of a template has weak linkage, since
393   // explicit instantiations can occur in multiple translation units
394   // and must all be equivalent. However, we are not allowed to
395   // throw away these explicit instantiations.
396   if (Linkage == GVA_ExplicitTemplateInstantiation)
397     return !Context.getLangOptions().AppleKext
398              ? llvm::Function::WeakODRLinkage
399              : llvm::Function::InternalLinkage;
400 
401   // Otherwise, we have strong external linkage.
402   assert(Linkage == GVA_StrongExternal);
403   return llvm::Function::ExternalLinkage;
404 }
405 
406 
407 /// SetFunctionDefinitionAttributes - Set attributes for a global.
408 ///
409 /// FIXME: This is currently only done for aliases and functions, but not for
410 /// variables (these details are set in EmitGlobalVarDefinition for variables).
411 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
412                                                     llvm::GlobalValue *GV) {
413   SetCommonAttributes(D, GV);
414 }
415 
416 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
417                                               const CGFunctionInfo &Info,
418                                               llvm::Function *F) {
419   unsigned CallingConv;
420   AttributeListType AttributeList;
421   ConstructAttributeList(Info, D, AttributeList, CallingConv);
422   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
423                                           AttributeList.size()));
424   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
425 }
426 
427 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
428                                                            llvm::Function *F) {
429   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
430     F->addFnAttr(llvm::Attribute::NoUnwind);
431 
432   if (D->hasAttr<AlwaysInlineAttr>())
433     F->addFnAttr(llvm::Attribute::AlwaysInline);
434 
435   if (D->hasAttr<NakedAttr>())
436     F->addFnAttr(llvm::Attribute::Naked);
437 
438   if (D->hasAttr<NoInlineAttr>())
439     F->addFnAttr(llvm::Attribute::NoInline);
440 
441   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
442     F->setUnnamedAddr(true);
443 
444   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
445     F->addFnAttr(llvm::Attribute::StackProtect);
446   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
447     F->addFnAttr(llvm::Attribute::StackProtectReq);
448 
449   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
450   if (alignment)
451     F->setAlignment(alignment);
452 
453   // C++ ABI requires 2-byte alignment for member functions.
454   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
455     F->setAlignment(2);
456 }
457 
458 void CodeGenModule::SetCommonAttributes(const Decl *D,
459                                         llvm::GlobalValue *GV) {
460   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
461     setGlobalVisibility(GV, ND);
462   else
463     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
464 
465   if (D->hasAttr<UsedAttr>())
466     AddUsedGlobal(GV);
467 
468   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
469     GV->setSection(SA->getName());
470 
471   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
472 }
473 
474 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
475                                                   llvm::Function *F,
476                                                   const CGFunctionInfo &FI) {
477   SetLLVMFunctionAttributes(D, FI, F);
478   SetLLVMFunctionAttributesForDefinition(D, F);
479 
480   F->setLinkage(llvm::Function::InternalLinkage);
481 
482   SetCommonAttributes(D, F);
483 }
484 
485 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
486                                           llvm::Function *F,
487                                           bool IsIncompleteFunction) {
488   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
489 
490   if (!IsIncompleteFunction)
491     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
492 
493   // Only a few attributes are set on declarations; these may later be
494   // overridden by a definition.
495 
496   if (FD->hasAttr<DLLImportAttr>()) {
497     F->setLinkage(llvm::Function::DLLImportLinkage);
498   } else if (FD->hasAttr<WeakAttr>() ||
499              FD->hasAttr<WeakImportAttr>()) {
500     // "extern_weak" is overloaded in LLVM; we probably should have
501     // separate linkage types for this.
502     F->setLinkage(llvm::Function::ExternalWeakLinkage);
503   } else {
504     F->setLinkage(llvm::Function::ExternalLinkage);
505 
506     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
507     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
508       F->setVisibility(GetLLVMVisibility(LV.visibility()));
509     }
510   }
511 
512   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
513     F->setSection(SA->getName());
514 }
515 
516 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
517   assert(!GV->isDeclaration() &&
518          "Only globals with definition can force usage.");
519   LLVMUsed.push_back(GV);
520 }
521 
522 void CodeGenModule::EmitLLVMUsed() {
523   // Don't create llvm.used if there is no need.
524   if (LLVMUsed.empty())
525     return;
526 
527   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
528 
529   // Convert LLVMUsed to what ConstantArray needs.
530   std::vector<llvm::Constant*> UsedArray;
531   UsedArray.resize(LLVMUsed.size());
532   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
533     UsedArray[i] =
534      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
535                                       i8PTy);
536   }
537 
538   if (UsedArray.empty())
539     return;
540   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
541 
542   llvm::GlobalVariable *GV =
543     new llvm::GlobalVariable(getModule(), ATy, false,
544                              llvm::GlobalValue::AppendingLinkage,
545                              llvm::ConstantArray::get(ATy, UsedArray),
546                              "llvm.used");
547 
548   GV->setSection("llvm.metadata");
549 }
550 
551 void CodeGenModule::EmitDeferred() {
552   // Emit code for any potentially referenced deferred decls.  Since a
553   // previously unused static decl may become used during the generation of code
554   // for a static function, iterate until no  changes are made.
555 
556   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
557     if (!DeferredVTables.empty()) {
558       const CXXRecordDecl *RD = DeferredVTables.back();
559       DeferredVTables.pop_back();
560       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
561       continue;
562     }
563 
564     GlobalDecl D = DeferredDeclsToEmit.back();
565     DeferredDeclsToEmit.pop_back();
566 
567     // Check to see if we've already emitted this.  This is necessary
568     // for a couple of reasons: first, decls can end up in the
569     // deferred-decls queue multiple times, and second, decls can end
570     // up with definitions in unusual ways (e.g. by an extern inline
571     // function acquiring a strong function redefinition).  Just
572     // ignore these cases.
573     //
574     // TODO: That said, looking this up multiple times is very wasteful.
575     llvm::StringRef Name = getMangledName(D);
576     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
577     assert(CGRef && "Deferred decl wasn't referenced?");
578 
579     if (!CGRef->isDeclaration())
580       continue;
581 
582     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
583     // purposes an alias counts as a definition.
584     if (isa<llvm::GlobalAlias>(CGRef))
585       continue;
586 
587     // Otherwise, emit the definition and move on to the next one.
588     EmitGlobalDefinition(D);
589   }
590 }
591 
592 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
593 /// annotation information for a given GlobalValue.  The annotation struct is
594 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
595 /// GlobalValue being annotated.  The second field is the constant string
596 /// created from the AnnotateAttr's annotation.  The third field is a constant
597 /// string containing the name of the translation unit.  The fourth field is
598 /// the line number in the file of the annotated value declaration.
599 ///
600 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
601 ///        appears to.
602 ///
603 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
604                                                 const AnnotateAttr *AA,
605                                                 unsigned LineNo) {
606   llvm::Module *M = &getModule();
607 
608   // get [N x i8] constants for the annotation string, and the filename string
609   // which are the 2nd and 3rd elements of the global annotation structure.
610   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
611   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
612                                                   AA->getAnnotation(), true);
613   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
614                                                   M->getModuleIdentifier(),
615                                                   true);
616 
617   // Get the two global values corresponding to the ConstantArrays we just
618   // created to hold the bytes of the strings.
619   llvm::GlobalValue *annoGV =
620     new llvm::GlobalVariable(*M, anno->getType(), false,
621                              llvm::GlobalValue::PrivateLinkage, anno,
622                              GV->getName());
623   // translation unit name string, emitted into the llvm.metadata section.
624   llvm::GlobalValue *unitGV =
625     new llvm::GlobalVariable(*M, unit->getType(), false,
626                              llvm::GlobalValue::PrivateLinkage, unit,
627                              ".str");
628   unitGV->setUnnamedAddr(true);
629 
630   // Create the ConstantStruct for the global annotation.
631   llvm::Constant *Fields[4] = {
632     llvm::ConstantExpr::getBitCast(GV, SBP),
633     llvm::ConstantExpr::getBitCast(annoGV, SBP),
634     llvm::ConstantExpr::getBitCast(unitGV, SBP),
635     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
636   };
637   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
638 }
639 
640 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
641   // Never defer when EmitAllDecls is specified.
642   if (Features.EmitAllDecls)
643     return false;
644 
645   return !getContext().DeclMustBeEmitted(Global);
646 }
647 
648 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
649   const AliasAttr *AA = VD->getAttr<AliasAttr>();
650   assert(AA && "No alias?");
651 
652   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
653 
654   // See if there is already something with the target's name in the module.
655   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
656 
657   llvm::Constant *Aliasee;
658   if (isa<llvm::FunctionType>(DeclTy))
659     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
660                                       /*ForVTable=*/false);
661   else
662     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
663                                     llvm::PointerType::getUnqual(DeclTy), 0);
664   if (!Entry) {
665     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
666     F->setLinkage(llvm::Function::ExternalWeakLinkage);
667     WeakRefReferences.insert(F);
668   }
669 
670   return Aliasee;
671 }
672 
673 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
674   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
675 
676   // Weak references don't produce any output by themselves.
677   if (Global->hasAttr<WeakRefAttr>())
678     return;
679 
680   // If this is an alias definition (which otherwise looks like a declaration)
681   // emit it now.
682   if (Global->hasAttr<AliasAttr>())
683     return EmitAliasDefinition(GD);
684 
685   // Ignore declarations, they will be emitted on their first use.
686   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
687     if (FD->getIdentifier()) {
688       llvm::StringRef Name = FD->getName();
689       if (Name == "_Block_object_assign") {
690         BlockObjectAssignDecl = FD;
691       } else if (Name == "_Block_object_dispose") {
692         BlockObjectDisposeDecl = FD;
693       }
694     }
695 
696     // Forward declarations are emitted lazily on first use.
697     if (!FD->isThisDeclarationADefinition())
698       return;
699   } else {
700     const VarDecl *VD = cast<VarDecl>(Global);
701     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
702 
703     if (VD->getIdentifier()) {
704       llvm::StringRef Name = VD->getName();
705       if (Name == "_NSConcreteGlobalBlock") {
706         NSConcreteGlobalBlockDecl = VD;
707       } else if (Name == "_NSConcreteStackBlock") {
708         NSConcreteStackBlockDecl = VD;
709       }
710     }
711 
712 
713     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
714       return;
715   }
716 
717   // Defer code generation when possible if this is a static definition, inline
718   // function etc.  These we only want to emit if they are used.
719   if (!MayDeferGeneration(Global)) {
720     // Emit the definition if it can't be deferred.
721     EmitGlobalDefinition(GD);
722     return;
723   }
724 
725   // If we're deferring emission of a C++ variable with an
726   // initializer, remember the order in which it appeared in the file.
727   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
728       cast<VarDecl>(Global)->hasInit()) {
729     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
730     CXXGlobalInits.push_back(0);
731   }
732 
733   // If the value has already been used, add it directly to the
734   // DeferredDeclsToEmit list.
735   llvm::StringRef MangledName = getMangledName(GD);
736   if (GetGlobalValue(MangledName))
737     DeferredDeclsToEmit.push_back(GD);
738   else {
739     // Otherwise, remember that we saw a deferred decl with this name.  The
740     // first use of the mangled name will cause it to move into
741     // DeferredDeclsToEmit.
742     DeferredDecls[MangledName] = GD;
743   }
744 }
745 
746 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
747   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
748 
749   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
750                                  Context.getSourceManager(),
751                                  "Generating code for declaration");
752 
753   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
754     // At -O0, don't generate IR for functions with available_externally
755     // linkage.
756     if (CodeGenOpts.OptimizationLevel == 0 &&
757         !Function->hasAttr<AlwaysInlineAttr>() &&
758         getFunctionLinkage(Function)
759                                   == llvm::Function::AvailableExternallyLinkage)
760       return;
761 
762     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
763       if (Method->isVirtual())
764         getVTables().EmitThunks(GD);
765 
766       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
767         return EmitCXXConstructor(CD, GD.getCtorType());
768 
769       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
770         return EmitCXXDestructor(DD, GD.getDtorType());
771     }
772 
773     return EmitGlobalFunctionDefinition(GD);
774   }
775 
776   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
777     return EmitGlobalVarDefinition(VD);
778 
779   assert(0 && "Invalid argument to EmitGlobalDefinition()");
780 }
781 
782 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
783 /// module, create and return an llvm Function with the specified type. If there
784 /// is something in the module with the specified name, return it potentially
785 /// bitcasted to the right type.
786 ///
787 /// If D is non-null, it specifies a decl that correspond to this.  This is used
788 /// to set the attributes on the function when it is first created.
789 llvm::Constant *
790 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
791                                        const llvm::Type *Ty,
792                                        GlobalDecl D, bool ForVTable) {
793   // Lookup the entry, lazily creating it if necessary.
794   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
795   if (Entry) {
796     if (WeakRefReferences.count(Entry)) {
797       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
798       if (FD && !FD->hasAttr<WeakAttr>())
799         Entry->setLinkage(llvm::Function::ExternalLinkage);
800 
801       WeakRefReferences.erase(Entry);
802     }
803 
804     if (Entry->getType()->getElementType() == Ty)
805       return Entry;
806 
807     // Make sure the result is of the correct type.
808     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
809     return llvm::ConstantExpr::getBitCast(Entry, PTy);
810   }
811 
812   // This function doesn't have a complete type (for example, the return
813   // type is an incomplete struct). Use a fake type instead, and make
814   // sure not to try to set attributes.
815   bool IsIncompleteFunction = false;
816 
817   const llvm::FunctionType *FTy;
818   if (isa<llvm::FunctionType>(Ty)) {
819     FTy = cast<llvm::FunctionType>(Ty);
820   } else {
821     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
822     IsIncompleteFunction = true;
823   }
824 
825   llvm::Function *F = llvm::Function::Create(FTy,
826                                              llvm::Function::ExternalLinkage,
827                                              MangledName, &getModule());
828   assert(F->getName() == MangledName && "name was uniqued!");
829   if (D.getDecl())
830     SetFunctionAttributes(D, F, IsIncompleteFunction);
831 
832   // This is the first use or definition of a mangled name.  If there is a
833   // deferred decl with this name, remember that we need to emit it at the end
834   // of the file.
835   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
836   if (DDI != DeferredDecls.end()) {
837     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
838     // list, and remove it from DeferredDecls (since we don't need it anymore).
839     DeferredDeclsToEmit.push_back(DDI->second);
840     DeferredDecls.erase(DDI);
841 
842   // Otherwise, there are cases we have to worry about where we're
843   // using a declaration for which we must emit a definition but where
844   // we might not find a top-level definition:
845   //   - member functions defined inline in their classes
846   //   - friend functions defined inline in some class
847   //   - special member functions with implicit definitions
848   // If we ever change our AST traversal to walk into class methods,
849   // this will be unnecessary.
850   //
851   // We also don't emit a definition for a function if it's going to be an entry
852   // in a vtable, unless it's already marked as used.
853   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
854     // Look for a declaration that's lexically in a record.
855     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
856     do {
857       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
858         if (FD->isImplicit() && !ForVTable) {
859           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
860           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
861           break;
862         } else if (FD->isThisDeclarationADefinition()) {
863           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
864           break;
865         }
866       }
867       FD = FD->getPreviousDeclaration();
868     } while (FD);
869   }
870 
871   // Make sure the result is of the requested type.
872   if (!IsIncompleteFunction) {
873     assert(F->getType()->getElementType() == Ty);
874     return F;
875   }
876 
877   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
878   return llvm::ConstantExpr::getBitCast(F, PTy);
879 }
880 
881 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
882 /// non-null, then this function will use the specified type if it has to
883 /// create it (this occurs when we see a definition of the function).
884 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
885                                                  const llvm::Type *Ty,
886                                                  bool ForVTable) {
887   // If there was no specific requested type, just convert it now.
888   if (!Ty)
889     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
890 
891   llvm::StringRef MangledName = getMangledName(GD);
892   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
893 }
894 
895 /// CreateRuntimeFunction - Create a new runtime function with the specified
896 /// type and name.
897 llvm::Constant *
898 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
899                                      llvm::StringRef Name) {
900   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false);
901 }
902 
903 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
904   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
905     return false;
906   if (Context.getLangOptions().CPlusPlus &&
907       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
908     // FIXME: We should do something fancier here!
909     return false;
910   }
911   return true;
912 }
913 
914 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
915 /// create and return an llvm GlobalVariable with the specified type.  If there
916 /// is something in the module with the specified name, return it potentially
917 /// bitcasted to the right type.
918 ///
919 /// If D is non-null, it specifies a decl that correspond to this.  This is used
920 /// to set the attributes on the global when it is first created.
921 llvm::Constant *
922 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
923                                      const llvm::PointerType *Ty,
924                                      const VarDecl *D,
925                                      bool UnnamedAddr) {
926   // Lookup the entry, lazily creating it if necessary.
927   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
928   if (Entry) {
929     if (WeakRefReferences.count(Entry)) {
930       if (D && !D->hasAttr<WeakAttr>())
931         Entry->setLinkage(llvm::Function::ExternalLinkage);
932 
933       WeakRefReferences.erase(Entry);
934     }
935 
936     if (UnnamedAddr)
937       Entry->setUnnamedAddr(true);
938 
939     if (Entry->getType() == Ty)
940       return Entry;
941 
942     // Make sure the result is of the correct type.
943     return llvm::ConstantExpr::getBitCast(Entry, Ty);
944   }
945 
946   // This is the first use or definition of a mangled name.  If there is a
947   // deferred decl with this name, remember that we need to emit it at the end
948   // of the file.
949   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
950   if (DDI != DeferredDecls.end()) {
951     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
952     // list, and remove it from DeferredDecls (since we don't need it anymore).
953     DeferredDeclsToEmit.push_back(DDI->second);
954     DeferredDecls.erase(DDI);
955   }
956 
957   llvm::GlobalVariable *GV =
958     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
959                              llvm::GlobalValue::ExternalLinkage,
960                              0, MangledName, 0,
961                              false, Ty->getAddressSpace());
962 
963   // Handle things which are present even on external declarations.
964   if (D) {
965     // FIXME: This code is overly simple and should be merged with other global
966     // handling.
967     GV->setConstant(DeclIsConstantGlobal(Context, D));
968 
969     // Set linkage and visibility in case we never see a definition.
970     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
971     if (LV.linkage() != ExternalLinkage) {
972       GV->setLinkage(llvm::GlobalValue::InternalLinkage);
973     } else {
974       if (D->hasAttr<DLLImportAttr>())
975         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
976       else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
977         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
978 
979       // Set visibility on a declaration only if it's explicit.
980       if (LV.visibilityExplicit())
981         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
982     }
983 
984     GV->setThreadLocal(D->isThreadSpecified());
985   }
986 
987   return GV;
988 }
989 
990 
991 llvm::GlobalVariable *
992 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
993                                       const llvm::Type *Ty,
994                                       llvm::GlobalValue::LinkageTypes Linkage) {
995   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
996   llvm::GlobalVariable *OldGV = 0;
997 
998 
999   if (GV) {
1000     // Check if the variable has the right type.
1001     if (GV->getType()->getElementType() == Ty)
1002       return GV;
1003 
1004     // Because C++ name mangling, the only way we can end up with an already
1005     // existing global with the same name is if it has been declared extern "C".
1006       assert(GV->isDeclaration() && "Declaration has wrong type!");
1007     OldGV = GV;
1008   }
1009 
1010   // Create a new variable.
1011   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1012                                 Linkage, 0, Name);
1013 
1014   if (OldGV) {
1015     // Replace occurrences of the old variable if needed.
1016     GV->takeName(OldGV);
1017 
1018     if (!OldGV->use_empty()) {
1019       llvm::Constant *NewPtrForOldDecl =
1020       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1021       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1022     }
1023 
1024     OldGV->eraseFromParent();
1025   }
1026 
1027   return GV;
1028 }
1029 
1030 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1031 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1032 /// then it will be greated with the specified type instead of whatever the
1033 /// normal requested type would be.
1034 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1035                                                   const llvm::Type *Ty) {
1036   assert(D->hasGlobalStorage() && "Not a global variable");
1037   QualType ASTTy = D->getType();
1038   if (Ty == 0)
1039     Ty = getTypes().ConvertTypeForMem(ASTTy);
1040 
1041   const llvm::PointerType *PTy =
1042     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
1043 
1044   llvm::StringRef MangledName = getMangledName(D);
1045   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1046 }
1047 
1048 /// CreateRuntimeVariable - Create a new runtime global variable with the
1049 /// specified type and name.
1050 llvm::Constant *
1051 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1052                                      llvm::StringRef Name) {
1053   return GetOrCreateLLVMGlobal(Name,  llvm::PointerType::getUnqual(Ty), 0,
1054                                true);
1055 }
1056 
1057 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1058   assert(!D->getInit() && "Cannot emit definite definitions here!");
1059 
1060   if (MayDeferGeneration(D)) {
1061     // If we have not seen a reference to this variable yet, place it
1062     // into the deferred declarations table to be emitted if needed
1063     // later.
1064     llvm::StringRef MangledName = getMangledName(D);
1065     if (!GetGlobalValue(MangledName)) {
1066       DeferredDecls[MangledName] = D;
1067       return;
1068     }
1069   }
1070 
1071   // The tentative definition is the only definition.
1072   EmitGlobalVarDefinition(D);
1073 }
1074 
1075 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1076   if (DefinitionRequired)
1077     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1078 }
1079 
1080 llvm::GlobalVariable::LinkageTypes
1081 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1082   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1083     return llvm::GlobalVariable::InternalLinkage;
1084 
1085   if (const CXXMethodDecl *KeyFunction
1086                                     = RD->getASTContext().getKeyFunction(RD)) {
1087     // If this class has a key function, use that to determine the linkage of
1088     // the vtable.
1089     const FunctionDecl *Def = 0;
1090     if (KeyFunction->hasBody(Def))
1091       KeyFunction = cast<CXXMethodDecl>(Def);
1092 
1093     switch (KeyFunction->getTemplateSpecializationKind()) {
1094       case TSK_Undeclared:
1095       case TSK_ExplicitSpecialization:
1096         // When compiling with optimizations turned on, we emit all vtables,
1097         // even if the key function is not defined in the current translation
1098         // unit. If this is the case, use available_externally linkage.
1099         if (!Def && CodeGenOpts.OptimizationLevel)
1100           return llvm::GlobalVariable::AvailableExternallyLinkage;
1101 
1102         if (KeyFunction->isInlined())
1103           return !Context.getLangOptions().AppleKext ?
1104                    llvm::GlobalVariable::LinkOnceODRLinkage :
1105                    llvm::Function::InternalLinkage;
1106 
1107         return llvm::GlobalVariable::ExternalLinkage;
1108 
1109       case TSK_ImplicitInstantiation:
1110         return !Context.getLangOptions().AppleKext ?
1111                  llvm::GlobalVariable::LinkOnceODRLinkage :
1112                  llvm::Function::InternalLinkage;
1113 
1114       case TSK_ExplicitInstantiationDefinition:
1115         return !Context.getLangOptions().AppleKext ?
1116                  llvm::GlobalVariable::WeakODRLinkage :
1117                  llvm::Function::InternalLinkage;
1118 
1119       case TSK_ExplicitInstantiationDeclaration:
1120         // FIXME: Use available_externally linkage. However, this currently
1121         // breaks LLVM's build due to undefined symbols.
1122         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1123         return !Context.getLangOptions().AppleKext ?
1124                  llvm::GlobalVariable::LinkOnceODRLinkage :
1125                  llvm::Function::InternalLinkage;
1126     }
1127   }
1128 
1129   if (Context.getLangOptions().AppleKext)
1130     return llvm::Function::InternalLinkage;
1131 
1132   switch (RD->getTemplateSpecializationKind()) {
1133   case TSK_Undeclared:
1134   case TSK_ExplicitSpecialization:
1135   case TSK_ImplicitInstantiation:
1136     // FIXME: Use available_externally linkage. However, this currently
1137     // breaks LLVM's build due to undefined symbols.
1138     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1139   case TSK_ExplicitInstantiationDeclaration:
1140     return llvm::GlobalVariable::LinkOnceODRLinkage;
1141 
1142   case TSK_ExplicitInstantiationDefinition:
1143       return llvm::GlobalVariable::WeakODRLinkage;
1144   }
1145 
1146   // Silence GCC warning.
1147   return llvm::GlobalVariable::LinkOnceODRLinkage;
1148 }
1149 
1150 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1151     return Context.toCharUnitsFromBits(
1152       TheTargetData.getTypeStoreSizeInBits(Ty));
1153 }
1154 
1155 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1156   llvm::Constant *Init = 0;
1157   QualType ASTTy = D->getType();
1158   bool NonConstInit = false;
1159 
1160   const Expr *InitExpr = D->getAnyInitializer();
1161 
1162   if (!InitExpr) {
1163     // This is a tentative definition; tentative definitions are
1164     // implicitly initialized with { 0 }.
1165     //
1166     // Note that tentative definitions are only emitted at the end of
1167     // a translation unit, so they should never have incomplete
1168     // type. In addition, EmitTentativeDefinition makes sure that we
1169     // never attempt to emit a tentative definition if a real one
1170     // exists. A use may still exists, however, so we still may need
1171     // to do a RAUW.
1172     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1173     Init = EmitNullConstant(D->getType());
1174   } else {
1175     Init = EmitConstantExpr(InitExpr, D->getType());
1176     if (!Init) {
1177       QualType T = InitExpr->getType();
1178       if (D->getType()->isReferenceType())
1179         T = D->getType();
1180 
1181       if (getLangOptions().CPlusPlus) {
1182         Init = EmitNullConstant(T);
1183         NonConstInit = true;
1184       } else {
1185         ErrorUnsupported(D, "static initializer");
1186         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1187       }
1188     } else {
1189       // We don't need an initializer, so remove the entry for the delayed
1190       // initializer position (just in case this entry was delayed).
1191       if (getLangOptions().CPlusPlus)
1192         DelayedCXXInitPosition.erase(D);
1193     }
1194   }
1195 
1196   const llvm::Type* InitType = Init->getType();
1197   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1198 
1199   // Strip off a bitcast if we got one back.
1200   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1201     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1202            // all zero index gep.
1203            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1204     Entry = CE->getOperand(0);
1205   }
1206 
1207   // Entry is now either a Function or GlobalVariable.
1208   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1209 
1210   // We have a definition after a declaration with the wrong type.
1211   // We must make a new GlobalVariable* and update everything that used OldGV
1212   // (a declaration or tentative definition) with the new GlobalVariable*
1213   // (which will be a definition).
1214   //
1215   // This happens if there is a prototype for a global (e.g.
1216   // "extern int x[];") and then a definition of a different type (e.g.
1217   // "int x[10];"). This also happens when an initializer has a different type
1218   // from the type of the global (this happens with unions).
1219   if (GV == 0 ||
1220       GV->getType()->getElementType() != InitType ||
1221       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1222 
1223     // Move the old entry aside so that we'll create a new one.
1224     Entry->setName(llvm::StringRef());
1225 
1226     // Make a new global with the correct type, this is now guaranteed to work.
1227     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1228 
1229     // Replace all uses of the old global with the new global
1230     llvm::Constant *NewPtrForOldDecl =
1231         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1232     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1233 
1234     // Erase the old global, since it is no longer used.
1235     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1236   }
1237 
1238   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1239     SourceManager &SM = Context.getSourceManager();
1240     AddAnnotation(EmitAnnotateAttr(GV, AA,
1241                               SM.getInstantiationLineNumber(D->getLocation())));
1242   }
1243 
1244   GV->setInitializer(Init);
1245 
1246   // If it is safe to mark the global 'constant', do so now.
1247   GV->setConstant(false);
1248   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1249     GV->setConstant(true);
1250 
1251   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1252 
1253   // Set the llvm linkage type as appropriate.
1254   llvm::GlobalValue::LinkageTypes Linkage =
1255     GetLLVMLinkageVarDefinition(D, GV);
1256   GV->setLinkage(Linkage);
1257   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1258     // common vars aren't constant even if declared const.
1259     GV->setConstant(false);
1260 
1261   SetCommonAttributes(D, GV);
1262 
1263   // Emit the initializer function if necessary.
1264   if (NonConstInit)
1265     EmitCXXGlobalVarDeclInitFunc(D, GV);
1266 
1267   // Emit global variable debug information.
1268   if (CGDebugInfo *DI = getDebugInfo()) {
1269     DI->setLocation(D->getLocation());
1270     DI->EmitGlobalVariable(GV, D);
1271   }
1272 }
1273 
1274 llvm::GlobalValue::LinkageTypes
1275 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1276                                            llvm::GlobalVariable *GV) {
1277   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1278   if (Linkage == GVA_Internal)
1279     return llvm::Function::InternalLinkage;
1280   else if (D->hasAttr<DLLImportAttr>())
1281     return llvm::Function::DLLImportLinkage;
1282   else if (D->hasAttr<DLLExportAttr>())
1283     return llvm::Function::DLLExportLinkage;
1284   else if (D->hasAttr<WeakAttr>()) {
1285     if (GV->isConstant())
1286       return llvm::GlobalVariable::WeakODRLinkage;
1287     else
1288       return llvm::GlobalVariable::WeakAnyLinkage;
1289   } else if (Linkage == GVA_TemplateInstantiation ||
1290              Linkage == GVA_ExplicitTemplateInstantiation)
1291     // FIXME: It seems like we can provide more specific linkage here
1292     // (LinkOnceODR, WeakODR).
1293     return llvm::GlobalVariable::WeakAnyLinkage;
1294   else if (!getLangOptions().CPlusPlus &&
1295            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1296              D->getAttr<CommonAttr>()) &&
1297            !D->hasExternalStorage() && !D->getInit() &&
1298            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1299     // Thread local vars aren't considered common linkage.
1300     return llvm::GlobalVariable::CommonLinkage;
1301   }
1302   return llvm::GlobalVariable::ExternalLinkage;
1303 }
1304 
1305 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1306 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1307 /// existing call uses of the old function in the module, this adjusts them to
1308 /// call the new function directly.
1309 ///
1310 /// This is not just a cleanup: the always_inline pass requires direct calls to
1311 /// functions to be able to inline them.  If there is a bitcast in the way, it
1312 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1313 /// run at -O0.
1314 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1315                                                       llvm::Function *NewFn) {
1316   // If we're redefining a global as a function, don't transform it.
1317   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1318   if (OldFn == 0) return;
1319 
1320   const llvm::Type *NewRetTy = NewFn->getReturnType();
1321   llvm::SmallVector<llvm::Value*, 4> ArgList;
1322 
1323   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1324        UI != E; ) {
1325     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1326     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1327     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1328     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1329     llvm::CallSite CS(CI);
1330     if (!CI || !CS.isCallee(I)) continue;
1331 
1332     // If the return types don't match exactly, and if the call isn't dead, then
1333     // we can't transform this call.
1334     if (CI->getType() != NewRetTy && !CI->use_empty())
1335       continue;
1336 
1337     // If the function was passed too few arguments, don't transform.  If extra
1338     // arguments were passed, we silently drop them.  If any of the types
1339     // mismatch, we don't transform.
1340     unsigned ArgNo = 0;
1341     bool DontTransform = false;
1342     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1343          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1344       if (CS.arg_size() == ArgNo ||
1345           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1346         DontTransform = true;
1347         break;
1348       }
1349     }
1350     if (DontTransform)
1351       continue;
1352 
1353     // Okay, we can transform this.  Create the new call instruction and copy
1354     // over the required information.
1355     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1356     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1357                                                      ArgList.end(), "", CI);
1358     ArgList.clear();
1359     if (!NewCall->getType()->isVoidTy())
1360       NewCall->takeName(CI);
1361     NewCall->setAttributes(CI->getAttributes());
1362     NewCall->setCallingConv(CI->getCallingConv());
1363 
1364     // Finally, remove the old call, replacing any uses with the new one.
1365     if (!CI->use_empty())
1366       CI->replaceAllUsesWith(NewCall);
1367 
1368     // Copy debug location attached to CI.
1369     if (!CI->getDebugLoc().isUnknown())
1370       NewCall->setDebugLoc(CI->getDebugLoc());
1371     CI->eraseFromParent();
1372   }
1373 }
1374 
1375 
1376 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1377   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1378   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1379   // Get or create the prototype for the function.
1380   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1381 
1382   // Strip off a bitcast if we got one back.
1383   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1384     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1385     Entry = CE->getOperand(0);
1386   }
1387 
1388 
1389   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1390     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1391 
1392     // If the types mismatch then we have to rewrite the definition.
1393     assert(OldFn->isDeclaration() &&
1394            "Shouldn't replace non-declaration");
1395 
1396     // F is the Function* for the one with the wrong type, we must make a new
1397     // Function* and update everything that used F (a declaration) with the new
1398     // Function* (which will be a definition).
1399     //
1400     // This happens if there is a prototype for a function
1401     // (e.g. "int f()") and then a definition of a different type
1402     // (e.g. "int f(int x)").  Move the old function aside so that it
1403     // doesn't interfere with GetAddrOfFunction.
1404     OldFn->setName(llvm::StringRef());
1405     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1406 
1407     // If this is an implementation of a function without a prototype, try to
1408     // replace any existing uses of the function (which may be calls) with uses
1409     // of the new function
1410     if (D->getType()->isFunctionNoProtoType()) {
1411       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1412       OldFn->removeDeadConstantUsers();
1413     }
1414 
1415     // Replace uses of F with the Function we will endow with a body.
1416     if (!Entry->use_empty()) {
1417       llvm::Constant *NewPtrForOldDecl =
1418         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1419       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1420     }
1421 
1422     // Ok, delete the old function now, which is dead.
1423     OldFn->eraseFromParent();
1424 
1425     Entry = NewFn;
1426   }
1427 
1428   // We need to set linkage and visibility on the function before
1429   // generating code for it because various parts of IR generation
1430   // want to propagate this information down (e.g. to local static
1431   // declarations).
1432   llvm::Function *Fn = cast<llvm::Function>(Entry);
1433   setFunctionLinkage(D, Fn);
1434 
1435   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1436   setGlobalVisibility(Fn, D);
1437 
1438   CodeGenFunction(*this).GenerateCode(D, Fn);
1439 
1440   SetFunctionDefinitionAttributes(D, Fn);
1441   SetLLVMFunctionAttributesForDefinition(D, Fn);
1442 
1443   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1444     AddGlobalCtor(Fn, CA->getPriority());
1445   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1446     AddGlobalDtor(Fn, DA->getPriority());
1447 }
1448 
1449 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1450   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1451   const AliasAttr *AA = D->getAttr<AliasAttr>();
1452   assert(AA && "Not an alias?");
1453 
1454   llvm::StringRef MangledName = getMangledName(GD);
1455 
1456   // If there is a definition in the module, then it wins over the alias.
1457   // This is dubious, but allow it to be safe.  Just ignore the alias.
1458   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1459   if (Entry && !Entry->isDeclaration())
1460     return;
1461 
1462   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1463 
1464   // Create a reference to the named value.  This ensures that it is emitted
1465   // if a deferred decl.
1466   llvm::Constant *Aliasee;
1467   if (isa<llvm::FunctionType>(DeclTy))
1468     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1469                                       /*ForVTable=*/false);
1470   else
1471     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1472                                     llvm::PointerType::getUnqual(DeclTy), 0);
1473 
1474   // Create the new alias itself, but don't set a name yet.
1475   llvm::GlobalValue *GA =
1476     new llvm::GlobalAlias(Aliasee->getType(),
1477                           llvm::Function::ExternalLinkage,
1478                           "", Aliasee, &getModule());
1479 
1480   if (Entry) {
1481     assert(Entry->isDeclaration());
1482 
1483     // If there is a declaration in the module, then we had an extern followed
1484     // by the alias, as in:
1485     //   extern int test6();
1486     //   ...
1487     //   int test6() __attribute__((alias("test7")));
1488     //
1489     // Remove it and replace uses of it with the alias.
1490     GA->takeName(Entry);
1491 
1492     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1493                                                           Entry->getType()));
1494     Entry->eraseFromParent();
1495   } else {
1496     GA->setName(MangledName);
1497   }
1498 
1499   // Set attributes which are particular to an alias; this is a
1500   // specialization of the attributes which may be set on a global
1501   // variable/function.
1502   if (D->hasAttr<DLLExportAttr>()) {
1503     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1504       // The dllexport attribute is ignored for undefined symbols.
1505       if (FD->hasBody())
1506         GA->setLinkage(llvm::Function::DLLExportLinkage);
1507     } else {
1508       GA->setLinkage(llvm::Function::DLLExportLinkage);
1509     }
1510   } else if (D->hasAttr<WeakAttr>() ||
1511              D->hasAttr<WeakRefAttr>() ||
1512              D->hasAttr<WeakImportAttr>()) {
1513     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1514   }
1515 
1516   SetCommonAttributes(D, GA);
1517 }
1518 
1519 /// getBuiltinLibFunction - Given a builtin id for a function like
1520 /// "__builtin_fabsf", return a Function* for "fabsf".
1521 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1522                                                   unsigned BuiltinID) {
1523   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1524           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1525          "isn't a lib fn");
1526 
1527   // Get the name, skip over the __builtin_ prefix (if necessary).
1528   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1529   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1530     Name += 10;
1531 
1532   const llvm::FunctionType *Ty =
1533     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1534 
1535   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false);
1536 }
1537 
1538 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1539                                             unsigned NumTys) {
1540   return llvm::Intrinsic::getDeclaration(&getModule(),
1541                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1542 }
1543 
1544 static llvm::StringMapEntry<llvm::Constant*> &
1545 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1546                          const StringLiteral *Literal,
1547                          bool TargetIsLSB,
1548                          bool &IsUTF16,
1549                          unsigned &StringLength) {
1550   llvm::StringRef String = Literal->getString();
1551   unsigned NumBytes = String.size();
1552 
1553   // Check for simple case.
1554   if (!Literal->containsNonAsciiOrNull()) {
1555     StringLength = NumBytes;
1556     return Map.GetOrCreateValue(String);
1557   }
1558 
1559   // Otherwise, convert the UTF8 literals into a byte string.
1560   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1561   const UTF8 *FromPtr = (UTF8 *)String.data();
1562   UTF16 *ToPtr = &ToBuf[0];
1563 
1564   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1565                            &ToPtr, ToPtr + NumBytes,
1566                            strictConversion);
1567 
1568   // ConvertUTF8toUTF16 returns the length in ToPtr.
1569   StringLength = ToPtr - &ToBuf[0];
1570 
1571   // Render the UTF-16 string into a byte array and convert to the target byte
1572   // order.
1573   //
1574   // FIXME: This isn't something we should need to do here.
1575   llvm::SmallString<128> AsBytes;
1576   AsBytes.reserve(StringLength * 2);
1577   for (unsigned i = 0; i != StringLength; ++i) {
1578     unsigned short Val = ToBuf[i];
1579     if (TargetIsLSB) {
1580       AsBytes.push_back(Val & 0xFF);
1581       AsBytes.push_back(Val >> 8);
1582     } else {
1583       AsBytes.push_back(Val >> 8);
1584       AsBytes.push_back(Val & 0xFF);
1585     }
1586   }
1587   // Append one extra null character, the second is automatically added by our
1588   // caller.
1589   AsBytes.push_back(0);
1590 
1591   IsUTF16 = true;
1592   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1593 }
1594 
1595 llvm::Constant *
1596 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1597   unsigned StringLength = 0;
1598   bool isUTF16 = false;
1599   llvm::StringMapEntry<llvm::Constant*> &Entry =
1600     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1601                              getTargetData().isLittleEndian(),
1602                              isUTF16, StringLength);
1603 
1604   if (llvm::Constant *C = Entry.getValue())
1605     return C;
1606 
1607   llvm::Constant *Zero =
1608       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1609   llvm::Constant *Zeros[] = { Zero, Zero };
1610 
1611   // If we don't already have it, get __CFConstantStringClassReference.
1612   if (!CFConstantStringClassRef) {
1613     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1614     Ty = llvm::ArrayType::get(Ty, 0);
1615     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1616                                            "__CFConstantStringClassReference");
1617     // Decay array -> ptr
1618     CFConstantStringClassRef =
1619       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1620   }
1621 
1622   QualType CFTy = getContext().getCFConstantStringType();
1623 
1624   const llvm::StructType *STy =
1625     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1626 
1627   std::vector<llvm::Constant*> Fields(4);
1628 
1629   // Class pointer.
1630   Fields[0] = CFConstantStringClassRef;
1631 
1632   // Flags.
1633   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1634   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1635     llvm::ConstantInt::get(Ty, 0x07C8);
1636 
1637   // String pointer.
1638   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1639 
1640   llvm::GlobalValue::LinkageTypes Linkage;
1641   bool isConstant;
1642   if (isUTF16) {
1643     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1644     Linkage = llvm::GlobalValue::InternalLinkage;
1645     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1646     // does make plain ascii ones writable.
1647     isConstant = true;
1648   } else {
1649     Linkage = llvm::GlobalValue::PrivateLinkage;
1650     isConstant = !Features.WritableStrings;
1651   }
1652 
1653   llvm::GlobalVariable *GV =
1654     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1655                              ".str");
1656   GV->setUnnamedAddr(true);
1657   if (isUTF16) {
1658     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1659     GV->setAlignment(Align.getQuantity());
1660   }
1661   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1662 
1663   // String length.
1664   Ty = getTypes().ConvertType(getContext().LongTy);
1665   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1666 
1667   // The struct.
1668   C = llvm::ConstantStruct::get(STy, Fields);
1669   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1670                                 llvm::GlobalVariable::PrivateLinkage, C,
1671                                 "_unnamed_cfstring_");
1672   if (const char *Sect = getContext().Target.getCFStringSection())
1673     GV->setSection(Sect);
1674   Entry.setValue(GV);
1675 
1676   return GV;
1677 }
1678 
1679 llvm::Constant *
1680 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1681   unsigned StringLength = 0;
1682   bool isUTF16 = false;
1683   llvm::StringMapEntry<llvm::Constant*> &Entry =
1684     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1685                              getTargetData().isLittleEndian(),
1686                              isUTF16, StringLength);
1687 
1688   if (llvm::Constant *C = Entry.getValue())
1689     return C;
1690 
1691   llvm::Constant *Zero =
1692   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1693   llvm::Constant *Zeros[] = { Zero, Zero };
1694 
1695   // If we don't already have it, get _NSConstantStringClassReference.
1696   if (!ConstantStringClassRef) {
1697     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1698     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1699     Ty = llvm::ArrayType::get(Ty, 0);
1700     llvm::Constant *GV;
1701     if (StringClass.empty())
1702       GV = CreateRuntimeVariable(Ty,
1703                                  Features.ObjCNonFragileABI ?
1704                                  "OBJC_CLASS_$_NSConstantString" :
1705                                  "_NSConstantStringClassReference");
1706     else {
1707       std::string str;
1708       if (Features.ObjCNonFragileABI)
1709         str = "OBJC_CLASS_$_" + StringClass;
1710       else
1711         str = "_" + StringClass + "ClassReference";
1712       GV = CreateRuntimeVariable(Ty, str);
1713     }
1714     // Decay array -> ptr
1715     ConstantStringClassRef =
1716     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1717   }
1718 
1719   QualType NSTy = getContext().getNSConstantStringType();
1720 
1721   const llvm::StructType *STy =
1722   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1723 
1724   std::vector<llvm::Constant*> Fields(3);
1725 
1726   // Class pointer.
1727   Fields[0] = ConstantStringClassRef;
1728 
1729   // String pointer.
1730   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1731 
1732   llvm::GlobalValue::LinkageTypes Linkage;
1733   bool isConstant;
1734   if (isUTF16) {
1735     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1736     Linkage = llvm::GlobalValue::InternalLinkage;
1737     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1738     // does make plain ascii ones writable.
1739     isConstant = true;
1740   } else {
1741     Linkage = llvm::GlobalValue::PrivateLinkage;
1742     isConstant = !Features.WritableStrings;
1743   }
1744 
1745   llvm::GlobalVariable *GV =
1746   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1747                            ".str");
1748   GV->setUnnamedAddr(true);
1749   if (isUTF16) {
1750     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1751     GV->setAlignment(Align.getQuantity());
1752   }
1753   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1754 
1755   // String length.
1756   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1757   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1758 
1759   // The struct.
1760   C = llvm::ConstantStruct::get(STy, Fields);
1761   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1762                                 llvm::GlobalVariable::PrivateLinkage, C,
1763                                 "_unnamed_nsstring_");
1764   // FIXME. Fix section.
1765   if (const char *Sect =
1766         Features.ObjCNonFragileABI
1767           ? getContext().Target.getNSStringNonFragileABISection()
1768           : getContext().Target.getNSStringSection())
1769     GV->setSection(Sect);
1770   Entry.setValue(GV);
1771 
1772   return GV;
1773 }
1774 
1775 /// GetStringForStringLiteral - Return the appropriate bytes for a
1776 /// string literal, properly padded to match the literal type.
1777 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1778   const ASTContext &Context = getContext();
1779   const ConstantArrayType *CAT =
1780     Context.getAsConstantArrayType(E->getType());
1781   assert(CAT && "String isn't pointer or array!");
1782 
1783   // Resize the string to the right size.
1784   uint64_t RealLen = CAT->getSize().getZExtValue();
1785 
1786   if (E->isWide())
1787     RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1788 
1789   std::string Str = E->getString().str();
1790   Str.resize(RealLen, '\0');
1791 
1792   return Str;
1793 }
1794 
1795 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1796 /// constant array for the given string literal.
1797 llvm::Constant *
1798 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1799   // FIXME: This can be more efficient.
1800   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1801   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1802   if (S->isWide()) {
1803     llvm::Type *DestTy =
1804         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1805     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1806   }
1807   return C;
1808 }
1809 
1810 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1811 /// array for the given ObjCEncodeExpr node.
1812 llvm::Constant *
1813 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1814   std::string Str;
1815   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1816 
1817   return GetAddrOfConstantCString(Str);
1818 }
1819 
1820 
1821 /// GenerateWritableString -- Creates storage for a string literal.
1822 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1823                                              bool constant,
1824                                              CodeGenModule &CGM,
1825                                              const char *GlobalName) {
1826   // Create Constant for this string literal. Don't add a '\0'.
1827   llvm::Constant *C =
1828       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1829 
1830   // Create a global variable for this string
1831   llvm::GlobalVariable *GV =
1832     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1833                              llvm::GlobalValue::PrivateLinkage,
1834                              C, GlobalName);
1835   GV->setUnnamedAddr(true);
1836   return GV;
1837 }
1838 
1839 /// GetAddrOfConstantString - Returns a pointer to a character array
1840 /// containing the literal. This contents are exactly that of the
1841 /// given string, i.e. it will not be null terminated automatically;
1842 /// see GetAddrOfConstantCString. Note that whether the result is
1843 /// actually a pointer to an LLVM constant depends on
1844 /// Feature.WriteableStrings.
1845 ///
1846 /// The result has pointer to array type.
1847 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1848                                                        const char *GlobalName) {
1849   bool IsConstant = !Features.WritableStrings;
1850 
1851   // Get the default prefix if a name wasn't specified.
1852   if (!GlobalName)
1853     GlobalName = ".str";
1854 
1855   // Don't share any string literals if strings aren't constant.
1856   if (!IsConstant)
1857     return GenerateStringLiteral(str, false, *this, GlobalName);
1858 
1859   llvm::StringMapEntry<llvm::Constant *> &Entry =
1860     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1861 
1862   if (Entry.getValue())
1863     return Entry.getValue();
1864 
1865   // Create a global variable for this.
1866   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1867   Entry.setValue(C);
1868   return C;
1869 }
1870 
1871 /// GetAddrOfConstantCString - Returns a pointer to a character
1872 /// array containing the literal and a terminating '\-'
1873 /// character. The result has pointer to array type.
1874 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1875                                                         const char *GlobalName){
1876   return GetAddrOfConstantString(str + '\0', GlobalName);
1877 }
1878 
1879 /// EmitObjCPropertyImplementations - Emit information for synthesized
1880 /// properties for an implementation.
1881 void CodeGenModule::EmitObjCPropertyImplementations(const
1882                                                     ObjCImplementationDecl *D) {
1883   for (ObjCImplementationDecl::propimpl_iterator
1884          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1885     ObjCPropertyImplDecl *PID = *i;
1886 
1887     // Dynamic is just for type-checking.
1888     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1889       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1890 
1891       // Determine which methods need to be implemented, some may have
1892       // been overridden. Note that ::isSynthesized is not the method
1893       // we want, that just indicates if the decl came from a
1894       // property. What we want to know is if the method is defined in
1895       // this implementation.
1896       if (!D->getInstanceMethod(PD->getGetterName()))
1897         CodeGenFunction(*this).GenerateObjCGetter(
1898                                  const_cast<ObjCImplementationDecl *>(D), PID);
1899       if (!PD->isReadOnly() &&
1900           !D->getInstanceMethod(PD->getSetterName()))
1901         CodeGenFunction(*this).GenerateObjCSetter(
1902                                  const_cast<ObjCImplementationDecl *>(D), PID);
1903     }
1904   }
1905 }
1906 
1907 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1908 /// for an implementation.
1909 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1910   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1911     return;
1912   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1913   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1914   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1915   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1916   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1917                                                   D->getLocation(),
1918                                                   D->getLocation(), cxxSelector,
1919                                                   getContext().VoidTy, 0,
1920                                                   DC, true, false, true, false,
1921                                                   ObjCMethodDecl::Required);
1922   D->addInstanceMethod(DTORMethod);
1923   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1924 
1925   II = &getContext().Idents.get(".cxx_construct");
1926   cxxSelector = getContext().Selectors.getSelector(0, &II);
1927   // The constructor returns 'self'.
1928   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1929                                                 D->getLocation(),
1930                                                 D->getLocation(), cxxSelector,
1931                                                 getContext().getObjCIdType(), 0,
1932                                                 DC, true, false, true, false,
1933                                                 ObjCMethodDecl::Required);
1934   D->addInstanceMethod(CTORMethod);
1935   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1936 
1937 
1938 }
1939 
1940 /// EmitNamespace - Emit all declarations in a namespace.
1941 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1942   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1943        I != E; ++I)
1944     EmitTopLevelDecl(*I);
1945 }
1946 
1947 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1948 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1949   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1950       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1951     ErrorUnsupported(LSD, "linkage spec");
1952     return;
1953   }
1954 
1955   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1956        I != E; ++I)
1957     EmitTopLevelDecl(*I);
1958 }
1959 
1960 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1961 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1962   // If an error has occurred, stop code generation, but continue
1963   // parsing and semantic analysis (to ensure all warnings and errors
1964   // are emitted).
1965   if (Diags.hasErrorOccurred())
1966     return;
1967 
1968   // Ignore dependent declarations.
1969   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1970     return;
1971 
1972   switch (D->getKind()) {
1973   case Decl::CXXConversion:
1974   case Decl::CXXMethod:
1975   case Decl::Function:
1976     // Skip function templates
1977     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1978       return;
1979 
1980     EmitGlobal(cast<FunctionDecl>(D));
1981     break;
1982 
1983   case Decl::Var:
1984     EmitGlobal(cast<VarDecl>(D));
1985     break;
1986 
1987   // C++ Decls
1988   case Decl::Namespace:
1989     EmitNamespace(cast<NamespaceDecl>(D));
1990     break;
1991     // No code generation needed.
1992   case Decl::UsingShadow:
1993   case Decl::Using:
1994   case Decl::UsingDirective:
1995   case Decl::ClassTemplate:
1996   case Decl::FunctionTemplate:
1997   case Decl::NamespaceAlias:
1998     break;
1999   case Decl::CXXConstructor:
2000     // Skip function templates
2001     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
2002       return;
2003 
2004     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2005     break;
2006   case Decl::CXXDestructor:
2007     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2008     break;
2009 
2010   case Decl::StaticAssert:
2011     // Nothing to do.
2012     break;
2013 
2014   // Objective-C Decls
2015 
2016   // Forward declarations, no (immediate) code generation.
2017   case Decl::ObjCClass:
2018   case Decl::ObjCForwardProtocol:
2019   case Decl::ObjCInterface:
2020     break;
2021 
2022     case Decl::ObjCCategory: {
2023       ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2024       if (CD->IsClassExtension() && CD->hasSynthBitfield())
2025         Context.ResetObjCLayout(CD->getClassInterface());
2026       break;
2027     }
2028 
2029 
2030   case Decl::ObjCProtocol:
2031     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2032     break;
2033 
2034   case Decl::ObjCCategoryImpl:
2035     // Categories have properties but don't support synthesize so we
2036     // can ignore them here.
2037     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2038     break;
2039 
2040   case Decl::ObjCImplementation: {
2041     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2042     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2043       Context.ResetObjCLayout(OMD->getClassInterface());
2044     EmitObjCPropertyImplementations(OMD);
2045     EmitObjCIvarInitializations(OMD);
2046     Runtime->GenerateClass(OMD);
2047     break;
2048   }
2049   case Decl::ObjCMethod: {
2050     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2051     // If this is not a prototype, emit the body.
2052     if (OMD->getBody())
2053       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2054     break;
2055   }
2056   case Decl::ObjCCompatibleAlias:
2057     // compatibility-alias is a directive and has no code gen.
2058     break;
2059 
2060   case Decl::LinkageSpec:
2061     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2062     break;
2063 
2064   case Decl::FileScopeAsm: {
2065     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2066     llvm::StringRef AsmString = AD->getAsmString()->getString();
2067 
2068     const std::string &S = getModule().getModuleInlineAsm();
2069     if (S.empty())
2070       getModule().setModuleInlineAsm(AsmString);
2071     else
2072       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2073     break;
2074   }
2075 
2076   default:
2077     // Make sure we handled everything we should, every other kind is a
2078     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2079     // function. Need to recode Decl::Kind to do that easily.
2080     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2081   }
2082 }
2083 
2084 /// Turns the given pointer into a constant.
2085 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2086                                           const void *Ptr) {
2087   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2088   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2089   return llvm::ConstantInt::get(i64, PtrInt);
2090 }
2091 
2092 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2093                                    llvm::NamedMDNode *&GlobalMetadata,
2094                                    GlobalDecl D,
2095                                    llvm::GlobalValue *Addr) {
2096   if (!GlobalMetadata)
2097     GlobalMetadata =
2098       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2099 
2100   // TODO: should we report variant information for ctors/dtors?
2101   llvm::Value *Ops[] = {
2102     Addr,
2103     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2104   };
2105   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2106 }
2107 
2108 /// Emits metadata nodes associating all the global values in the
2109 /// current module with the Decls they came from.  This is useful for
2110 /// projects using IR gen as a subroutine.
2111 ///
2112 /// Since there's currently no way to associate an MDNode directly
2113 /// with an llvm::GlobalValue, we create a global named metadata
2114 /// with the name 'clang.global.decl.ptrs'.
2115 void CodeGenModule::EmitDeclMetadata() {
2116   llvm::NamedMDNode *GlobalMetadata = 0;
2117 
2118   // StaticLocalDeclMap
2119   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2120          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2121        I != E; ++I) {
2122     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2123     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2124   }
2125 }
2126 
2127 /// Emits metadata nodes for all the local variables in the current
2128 /// function.
2129 void CodeGenFunction::EmitDeclMetadata() {
2130   if (LocalDeclMap.empty()) return;
2131 
2132   llvm::LLVMContext &Context = getLLVMContext();
2133 
2134   // Find the unique metadata ID for this name.
2135   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2136 
2137   llvm::NamedMDNode *GlobalMetadata = 0;
2138 
2139   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2140          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2141     const Decl *D = I->first;
2142     llvm::Value *Addr = I->second;
2143 
2144     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2145       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2146       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2147     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2148       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2149       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2150     }
2151   }
2152 }
2153 
2154 ///@name Custom Runtime Function Interfaces
2155 ///@{
2156 //
2157 // FIXME: These can be eliminated once we can have clients just get the required
2158 // AST nodes from the builtin tables.
2159 
2160 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2161   if (BlockObjectDispose)
2162     return BlockObjectDispose;
2163 
2164   // If we saw an explicit decl, use that.
2165   if (BlockObjectDisposeDecl) {
2166     return BlockObjectDispose = GetAddrOfFunction(
2167       BlockObjectDisposeDecl,
2168       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2169   }
2170 
2171   // Otherwise construct the function by hand.
2172   const llvm::FunctionType *FTy;
2173   std::vector<const llvm::Type*> ArgTys;
2174   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2175   ArgTys.push_back(Int8PtrTy);
2176   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2177   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2178   return BlockObjectDispose =
2179     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2180 }
2181 
2182 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2183   if (BlockObjectAssign)
2184     return BlockObjectAssign;
2185 
2186   // If we saw an explicit decl, use that.
2187   if (BlockObjectAssignDecl) {
2188     return BlockObjectAssign = GetAddrOfFunction(
2189       BlockObjectAssignDecl,
2190       getTypes().GetFunctionType(BlockObjectAssignDecl));
2191   }
2192 
2193   // Otherwise construct the function by hand.
2194   const llvm::FunctionType *FTy;
2195   std::vector<const llvm::Type*> ArgTys;
2196   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2197   ArgTys.push_back(Int8PtrTy);
2198   ArgTys.push_back(Int8PtrTy);
2199   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2200   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2201   return BlockObjectAssign =
2202     CreateRuntimeFunction(FTy, "_Block_object_assign");
2203 }
2204 
2205 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2206   if (NSConcreteGlobalBlock)
2207     return NSConcreteGlobalBlock;
2208 
2209   // If we saw an explicit decl, use that.
2210   if (NSConcreteGlobalBlockDecl) {
2211     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2212       NSConcreteGlobalBlockDecl,
2213       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2214   }
2215 
2216   // Otherwise construct the variable by hand.
2217   return NSConcreteGlobalBlock =
2218     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2219 }
2220 
2221 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2222   if (NSConcreteStackBlock)
2223     return NSConcreteStackBlock;
2224 
2225   // If we saw an explicit decl, use that.
2226   if (NSConcreteStackBlockDecl) {
2227     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2228       NSConcreteStackBlockDecl,
2229       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2230   }
2231 
2232   // Otherwise construct the variable by hand.
2233   return NSConcreteStackBlock =
2234     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2235 }
2236 
2237 ///@}
2238