xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 25019ca828977c478cb06cb8a6e8c4e240adfef4)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "ConstantBuilder.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecordLayout.h"
37 #include "clang/AST/RecursiveASTVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/IR/CallSite.h"
49 #include "llvm/IR/CallingConv.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/ProfileData/InstrProfReader.h"
55 #include "llvm/Support/ConvertUTF.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MD5.h"
58 
59 using namespace clang;
60 using namespace CodeGen;
61 
62 static const char AnnotationSection[] = "llvm.metadata";
63 
64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
65   switch (CGM.getTarget().getCXXABI().getKind()) {
66   case TargetCXXABI::GenericAArch64:
67   case TargetCXXABI::GenericARM:
68   case TargetCXXABI::iOS:
69   case TargetCXXABI::iOS64:
70   case TargetCXXABI::WatchOS:
71   case TargetCXXABI::GenericMIPS:
72   case TargetCXXABI::GenericItanium:
73   case TargetCXXABI::WebAssembly:
74     return CreateItaniumCXXABI(CGM);
75   case TargetCXXABI::Microsoft:
76     return CreateMicrosoftCXXABI(CGM);
77   }
78 
79   llvm_unreachable("invalid C++ ABI kind");
80 }
81 
82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
83                              const PreprocessorOptions &PPO,
84                              const CodeGenOptions &CGO, llvm::Module &M,
85                              DiagnosticsEngine &diags,
86                              CoverageSourceInfo *CoverageInfo)
87     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
88       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
89       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
90       VMContext(M.getContext()), Types(*this), VTables(*this),
91       SanitizerMD(new SanitizerMetadata(*this)) {
92 
93   // Initialize the type cache.
94   llvm::LLVMContext &LLVMContext = M.getContext();
95   VoidTy = llvm::Type::getVoidTy(LLVMContext);
96   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
97   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
98   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
99   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
100   FloatTy = llvm::Type::getFloatTy(LLVMContext);
101   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
102   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
103   PointerAlignInBytes =
104     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
105   SizeSizeInBytes =
106     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
107   IntAlignInBytes =
108     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
109   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
110   IntPtrTy = llvm::IntegerType::get(LLVMContext,
111     C.getTargetInfo().getMaxPointerWidth());
112   Int8PtrTy = Int8Ty->getPointerTo(0);
113   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
114 
115   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
116   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
117 
118   if (LangOpts.ObjC1)
119     createObjCRuntime();
120   if (LangOpts.OpenCL)
121     createOpenCLRuntime();
122   if (LangOpts.OpenMP)
123     createOpenMPRuntime();
124   if (LangOpts.CUDA)
125     createCUDARuntime();
126 
127   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
128   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
129       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
130     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
131                                getCXXABI().getMangleContext()));
132 
133   // If debug info or coverage generation is enabled, create the CGDebugInfo
134   // object.
135   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
136       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
137     DebugInfo.reset(new CGDebugInfo(*this));
138 
139   Block.GlobalUniqueCount = 0;
140 
141   if (C.getLangOpts().ObjC1)
142     ObjCData.reset(new ObjCEntrypoints());
143 
144   if (CodeGenOpts.hasProfileClangUse()) {
145     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
146         CodeGenOpts.ProfileInstrumentUsePath);
147     if (auto E = ReaderOrErr.takeError()) {
148       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
149                                               "Could not read profile %0: %1");
150       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
151         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
152                                   << EI.message();
153       });
154     } else
155       PGOReader = std::move(ReaderOrErr.get());
156   }
157 
158   // If coverage mapping generation is enabled, create the
159   // CoverageMappingModuleGen object.
160   if (CodeGenOpts.CoverageMapping)
161     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
162 }
163 
164 CodeGenModule::~CodeGenModule() {}
165 
166 void CodeGenModule::createObjCRuntime() {
167   // This is just isGNUFamily(), but we want to force implementors of
168   // new ABIs to decide how best to do this.
169   switch (LangOpts.ObjCRuntime.getKind()) {
170   case ObjCRuntime::GNUstep:
171   case ObjCRuntime::GCC:
172   case ObjCRuntime::ObjFW:
173     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
174     return;
175 
176   case ObjCRuntime::FragileMacOSX:
177   case ObjCRuntime::MacOSX:
178   case ObjCRuntime::iOS:
179   case ObjCRuntime::WatchOS:
180     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
181     return;
182   }
183   llvm_unreachable("bad runtime kind");
184 }
185 
186 void CodeGenModule::createOpenCLRuntime() {
187   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
188 }
189 
190 void CodeGenModule::createOpenMPRuntime() {
191   // Select a specialized code generation class based on the target, if any.
192   // If it does not exist use the default implementation.
193   switch (getTriple().getArch()) {
194   case llvm::Triple::nvptx:
195   case llvm::Triple::nvptx64:
196     assert(getLangOpts().OpenMPIsDevice &&
197            "OpenMP NVPTX is only prepared to deal with device code.");
198     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
199     break;
200   default:
201     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
202     break;
203   }
204 }
205 
206 void CodeGenModule::createCUDARuntime() {
207   CUDARuntime.reset(CreateNVCUDARuntime(*this));
208 }
209 
210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
211   Replacements[Name] = C;
212 }
213 
214 void CodeGenModule::applyReplacements() {
215   for (auto &I : Replacements) {
216     StringRef MangledName = I.first();
217     llvm::Constant *Replacement = I.second;
218     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
219     if (!Entry)
220       continue;
221     auto *OldF = cast<llvm::Function>(Entry);
222     auto *NewF = dyn_cast<llvm::Function>(Replacement);
223     if (!NewF) {
224       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
225         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
226       } else {
227         auto *CE = cast<llvm::ConstantExpr>(Replacement);
228         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
229                CE->getOpcode() == llvm::Instruction::GetElementPtr);
230         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
231       }
232     }
233 
234     // Replace old with new, but keep the old order.
235     OldF->replaceAllUsesWith(Replacement);
236     if (NewF) {
237       NewF->removeFromParent();
238       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
239                                                        NewF);
240     }
241     OldF->eraseFromParent();
242   }
243 }
244 
245 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
246   GlobalValReplacements.push_back(std::make_pair(GV, C));
247 }
248 
249 void CodeGenModule::applyGlobalValReplacements() {
250   for (auto &I : GlobalValReplacements) {
251     llvm::GlobalValue *GV = I.first;
252     llvm::Constant *C = I.second;
253 
254     GV->replaceAllUsesWith(C);
255     GV->eraseFromParent();
256   }
257 }
258 
259 // This is only used in aliases that we created and we know they have a
260 // linear structure.
261 static const llvm::GlobalObject *getAliasedGlobal(
262     const llvm::GlobalIndirectSymbol &GIS) {
263   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
264   const llvm::Constant *C = &GIS;
265   for (;;) {
266     C = C->stripPointerCasts();
267     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
268       return GO;
269     // stripPointerCasts will not walk over weak aliases.
270     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
271     if (!GIS2)
272       return nullptr;
273     if (!Visited.insert(GIS2).second)
274       return nullptr;
275     C = GIS2->getIndirectSymbol();
276   }
277 }
278 
279 void CodeGenModule::checkAliases() {
280   // Check if the constructed aliases are well formed. It is really unfortunate
281   // that we have to do this in CodeGen, but we only construct mangled names
282   // and aliases during codegen.
283   bool Error = false;
284   DiagnosticsEngine &Diags = getDiags();
285   for (const GlobalDecl &GD : Aliases) {
286     const auto *D = cast<ValueDecl>(GD.getDecl());
287     SourceLocation Location;
288     bool IsIFunc = D->hasAttr<IFuncAttr>();
289     if (const Attr *A = D->getDefiningAttr())
290       Location = A->getLocation();
291     else
292       llvm_unreachable("Not an alias or ifunc?");
293     StringRef MangledName = getMangledName(GD);
294     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
295     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
296     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
297     if (!GV) {
298       Error = true;
299       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
300     } else if (GV->isDeclaration()) {
301       Error = true;
302       Diags.Report(Location, diag::err_alias_to_undefined)
303           << IsIFunc << IsIFunc;
304     } else if (IsIFunc) {
305       // Check resolver function type.
306       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
307           GV->getType()->getPointerElementType());
308       assert(FTy);
309       if (!FTy->getReturnType()->isPointerTy())
310         Diags.Report(Location, diag::err_ifunc_resolver_return);
311       if (FTy->getNumParams())
312         Diags.Report(Location, diag::err_ifunc_resolver_params);
313     }
314 
315     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
316     llvm::GlobalValue *AliaseeGV;
317     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
318       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
319     else
320       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
321 
322     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
323       StringRef AliasSection = SA->getName();
324       if (AliasSection != AliaseeGV->getSection())
325         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
326             << AliasSection << IsIFunc << IsIFunc;
327     }
328 
329     // We have to handle alias to weak aliases in here. LLVM itself disallows
330     // this since the object semantics would not match the IL one. For
331     // compatibility with gcc we implement it by just pointing the alias
332     // to its aliasee's aliasee. We also warn, since the user is probably
333     // expecting the link to be weak.
334     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
335       if (GA->isInterposable()) {
336         Diags.Report(Location, diag::warn_alias_to_weak_alias)
337             << GV->getName() << GA->getName() << IsIFunc;
338         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
339             GA->getIndirectSymbol(), Alias->getType());
340         Alias->setIndirectSymbol(Aliasee);
341       }
342     }
343   }
344   if (!Error)
345     return;
346 
347   for (const GlobalDecl &GD : Aliases) {
348     StringRef MangledName = getMangledName(GD);
349     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
350     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
351     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
352     Alias->eraseFromParent();
353   }
354 }
355 
356 void CodeGenModule::clear() {
357   DeferredDeclsToEmit.clear();
358   if (OpenMPRuntime)
359     OpenMPRuntime->clear();
360 }
361 
362 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
363                                        StringRef MainFile) {
364   if (!hasDiagnostics())
365     return;
366   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
367     if (MainFile.empty())
368       MainFile = "<stdin>";
369     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
370   } else
371     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
372                                                       << Mismatched;
373 }
374 
375 void CodeGenModule::Release() {
376   EmitDeferred();
377   applyGlobalValReplacements();
378   applyReplacements();
379   checkAliases();
380   EmitCXXGlobalInitFunc();
381   EmitCXXGlobalDtorFunc();
382   EmitCXXThreadLocalInitFunc();
383   if (ObjCRuntime)
384     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
385       AddGlobalCtor(ObjCInitFunction);
386   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
387       CUDARuntime) {
388     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
389       AddGlobalCtor(CudaCtorFunction);
390     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
391       AddGlobalDtor(CudaDtorFunction);
392   }
393   if (OpenMPRuntime)
394     if (llvm::Function *OpenMPRegistrationFunction =
395             OpenMPRuntime->emitRegistrationFunction())
396       AddGlobalCtor(OpenMPRegistrationFunction, 0);
397   if (PGOReader) {
398     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
399     if (PGOStats.hasDiagnostics())
400       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
401   }
402   EmitCtorList(GlobalCtors, "llvm.global_ctors");
403   EmitCtorList(GlobalDtors, "llvm.global_dtors");
404   EmitGlobalAnnotations();
405   EmitStaticExternCAliases();
406   EmitDeferredUnusedCoverageMappings();
407   if (CoverageMapping)
408     CoverageMapping->emit();
409   if (CodeGenOpts.SanitizeCfiCrossDso)
410     CodeGenFunction(*this).EmitCfiCheckFail();
411   emitLLVMUsed();
412   if (SanStats)
413     SanStats->finish();
414 
415   if (CodeGenOpts.Autolink &&
416       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
417     EmitModuleLinkOptions();
418   }
419   if (CodeGenOpts.DwarfVersion) {
420     // We actually want the latest version when there are conflicts.
421     // We can change from Warning to Latest if such mode is supported.
422     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
423                               CodeGenOpts.DwarfVersion);
424   }
425   if (CodeGenOpts.EmitCodeView) {
426     // Indicate that we want CodeView in the metadata.
427     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
428   }
429   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
430     // We don't support LTO with 2 with different StrictVTablePointers
431     // FIXME: we could support it by stripping all the information introduced
432     // by StrictVTablePointers.
433 
434     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
435 
436     llvm::Metadata *Ops[2] = {
437               llvm::MDString::get(VMContext, "StrictVTablePointers"),
438               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
439                   llvm::Type::getInt32Ty(VMContext), 1))};
440 
441     getModule().addModuleFlag(llvm::Module::Require,
442                               "StrictVTablePointersRequirement",
443                               llvm::MDNode::get(VMContext, Ops));
444   }
445   if (DebugInfo)
446     // We support a single version in the linked module. The LLVM
447     // parser will drop debug info with a different version number
448     // (and warn about it, too).
449     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
450                               llvm::DEBUG_METADATA_VERSION);
451 
452   // We need to record the widths of enums and wchar_t, so that we can generate
453   // the correct build attributes in the ARM backend.
454   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
455   if (   Arch == llvm::Triple::arm
456       || Arch == llvm::Triple::armeb
457       || Arch == llvm::Triple::thumb
458       || Arch == llvm::Triple::thumbeb) {
459     // Width of wchar_t in bytes
460     uint64_t WCharWidth =
461         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
462     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
463 
464     // The minimum width of an enum in bytes
465     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
466     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
467   }
468 
469   if (CodeGenOpts.SanitizeCfiCrossDso) {
470     // Indicate that we want cross-DSO control flow integrity checks.
471     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
472   }
473 
474   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
475     // Indicate whether __nvvm_reflect should be configured to flush denormal
476     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
477     // property.)
478     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
479                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
480   }
481 
482   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
483     assert(PLevel < 3 && "Invalid PIC Level");
484     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
485     if (Context.getLangOpts().PIE)
486       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
487   }
488 
489   SimplifyPersonality();
490 
491   if (getCodeGenOpts().EmitDeclMetadata)
492     EmitDeclMetadata();
493 
494   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
495     EmitCoverageFile();
496 
497   if (DebugInfo)
498     DebugInfo->finalize();
499 
500   EmitVersionIdentMetadata();
501 
502   EmitTargetMetadata();
503 }
504 
505 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
506   // Make sure that this type is translated.
507   Types.UpdateCompletedType(TD);
508 }
509 
510 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
511   // Make sure that this type is translated.
512   Types.RefreshTypeCacheForClass(RD);
513 }
514 
515 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
516   if (!TBAA)
517     return nullptr;
518   return TBAA->getTBAAInfo(QTy);
519 }
520 
521 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
522   if (!TBAA)
523     return nullptr;
524   return TBAA->getTBAAInfoForVTablePtr();
525 }
526 
527 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
528   if (!TBAA)
529     return nullptr;
530   return TBAA->getTBAAStructInfo(QTy);
531 }
532 
533 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
534                                                   llvm::MDNode *AccessN,
535                                                   uint64_t O) {
536   if (!TBAA)
537     return nullptr;
538   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
539 }
540 
541 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
542 /// and struct-path aware TBAA, the tag has the same format:
543 /// base type, access type and offset.
544 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
545 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
546                                                 llvm::MDNode *TBAAInfo,
547                                                 bool ConvertTypeToTag) {
548   if (ConvertTypeToTag && TBAA)
549     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
550                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
551   else
552     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
553 }
554 
555 void CodeGenModule::DecorateInstructionWithInvariantGroup(
556     llvm::Instruction *I, const CXXRecordDecl *RD) {
557   llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
558   auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
559   // Check if we have to wrap MDString in MDNode.
560   if (!MetaDataNode)
561     MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
562   I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
563 }
564 
565 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
566   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
567   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
568 }
569 
570 /// ErrorUnsupported - Print out an error that codegen doesn't support the
571 /// specified stmt yet.
572 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
573   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
574                                                "cannot compile this %0 yet");
575   std::string Msg = Type;
576   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
577     << Msg << S->getSourceRange();
578 }
579 
580 /// ErrorUnsupported - Print out an error that codegen doesn't support the
581 /// specified decl yet.
582 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
583   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
584                                                "cannot compile this %0 yet");
585   std::string Msg = Type;
586   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
587 }
588 
589 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
590   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
591 }
592 
593 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
594                                         const NamedDecl *D) const {
595   // Internal definitions always have default visibility.
596   if (GV->hasLocalLinkage()) {
597     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
598     return;
599   }
600 
601   // Set visibility for definitions.
602   LinkageInfo LV = D->getLinkageAndVisibility();
603   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
604     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
605 }
606 
607 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
608   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
609       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
610       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
611       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
612       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
613 }
614 
615 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
616     CodeGenOptions::TLSModel M) {
617   switch (M) {
618   case CodeGenOptions::GeneralDynamicTLSModel:
619     return llvm::GlobalVariable::GeneralDynamicTLSModel;
620   case CodeGenOptions::LocalDynamicTLSModel:
621     return llvm::GlobalVariable::LocalDynamicTLSModel;
622   case CodeGenOptions::InitialExecTLSModel:
623     return llvm::GlobalVariable::InitialExecTLSModel;
624   case CodeGenOptions::LocalExecTLSModel:
625     return llvm::GlobalVariable::LocalExecTLSModel;
626   }
627   llvm_unreachable("Invalid TLS model!");
628 }
629 
630 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
631   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
632 
633   llvm::GlobalValue::ThreadLocalMode TLM;
634   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
635 
636   // Override the TLS model if it is explicitly specified.
637   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
638     TLM = GetLLVMTLSModel(Attr->getModel());
639   }
640 
641   GV->setThreadLocalMode(TLM);
642 }
643 
644 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
645   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
646 
647   // Some ABIs don't have constructor variants.  Make sure that base and
648   // complete constructors get mangled the same.
649   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
650     if (!getTarget().getCXXABI().hasConstructorVariants()) {
651       CXXCtorType OrigCtorType = GD.getCtorType();
652       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
653       if (OrigCtorType == Ctor_Base)
654         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
655     }
656   }
657 
658   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
659   if (!FoundStr.empty())
660     return FoundStr;
661 
662   const auto *ND = cast<NamedDecl>(GD.getDecl());
663   SmallString<256> Buffer;
664   StringRef Str;
665   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
666     llvm::raw_svector_ostream Out(Buffer);
667     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
668       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
669     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
670       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
671     else
672       getCXXABI().getMangleContext().mangleName(ND, Out);
673     Str = Out.str();
674   } else {
675     IdentifierInfo *II = ND->getIdentifier();
676     assert(II && "Attempt to mangle unnamed decl.");
677     const auto *FD = dyn_cast<FunctionDecl>(ND);
678 
679     if (FD &&
680         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
681       llvm::raw_svector_ostream Out(Buffer);
682       Out << "__regcall3__" << II->getName();
683       Str = Out.str();
684     } else {
685       Str = II->getName();
686     }
687   }
688 
689   // Keep the first result in the case of a mangling collision.
690   auto Result = Manglings.insert(std::make_pair(Str, GD));
691   return FoundStr = Result.first->first();
692 }
693 
694 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
695                                              const BlockDecl *BD) {
696   MangleContext &MangleCtx = getCXXABI().getMangleContext();
697   const Decl *D = GD.getDecl();
698 
699   SmallString<256> Buffer;
700   llvm::raw_svector_ostream Out(Buffer);
701   if (!D)
702     MangleCtx.mangleGlobalBlock(BD,
703       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
704   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
705     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
706   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
707     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
708   else
709     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
710 
711   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
712   return Result.first->first();
713 }
714 
715 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
716   return getModule().getNamedValue(Name);
717 }
718 
719 /// AddGlobalCtor - Add a function to the list that will be called before
720 /// main() runs.
721 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
722                                   llvm::Constant *AssociatedData) {
723   // FIXME: Type coercion of void()* types.
724   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
725 }
726 
727 /// AddGlobalDtor - Add a function to the list that will be called
728 /// when the module is unloaded.
729 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
730   // FIXME: Type coercion of void()* types.
731   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
732 }
733 
734 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
735   if (Fns.empty()) return;
736 
737   // Ctor function type is void()*.
738   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
739   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
740 
741   // Get the type of a ctor entry, { i32, void ()*, i8* }.
742   llvm::StructType *CtorStructTy = llvm::StructType::get(
743       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
744 
745   // Construct the constructor and destructor arrays.
746   ConstantInitBuilder builder(*this);
747   auto ctors = builder.beginArray(CtorStructTy);
748   for (const auto &I : Fns) {
749     auto ctor = ctors.beginStruct(CtorStructTy);
750     ctor.addInt(Int32Ty, I.Priority);
751     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
752     if (I.AssociatedData)
753       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
754     else
755       ctor.addNullPointer(VoidPtrTy);
756     ctor.finishAndAddTo(ctors);
757   }
758 
759   auto list =
760     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
761                                 /*constant*/ false,
762                                 llvm::GlobalValue::AppendingLinkage);
763 
764   // The LTO linker doesn't seem to like it when we set an alignment
765   // on appending variables.  Take it off as a workaround.
766   list->setAlignment(0);
767 
768   Fns.clear();
769 }
770 
771 llvm::GlobalValue::LinkageTypes
772 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
773   const auto *D = cast<FunctionDecl>(GD.getDecl());
774 
775   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
776 
777   if (isa<CXXDestructorDecl>(D) &&
778       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
779                                          GD.getDtorType())) {
780     // Destructor variants in the Microsoft C++ ABI are always internal or
781     // linkonce_odr thunks emitted on an as-needed basis.
782     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
783                                    : llvm::GlobalValue::LinkOnceODRLinkage;
784   }
785 
786   if (isa<CXXConstructorDecl>(D) &&
787       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
788       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
789     // Our approach to inheriting constructors is fundamentally different from
790     // that used by the MS ABI, so keep our inheriting constructor thunks
791     // internal rather than trying to pick an unambiguous mangling for them.
792     return llvm::GlobalValue::InternalLinkage;
793   }
794 
795   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
796 }
797 
798 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
799   const auto *FD = cast<FunctionDecl>(GD.getDecl());
800 
801   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
802     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
803       // Don't dllexport/import destructor thunks.
804       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
805       return;
806     }
807   }
808 
809   if (FD->hasAttr<DLLImportAttr>())
810     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
811   else if (FD->hasAttr<DLLExportAttr>())
812     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
813   else
814     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
815 }
816 
817 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
818   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
819   if (!MDS) return nullptr;
820 
821   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
822 }
823 
824 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
825                                                     llvm::Function *F) {
826   setNonAliasAttributes(D, F);
827 }
828 
829 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
830                                               const CGFunctionInfo &Info,
831                                               llvm::Function *F) {
832   unsigned CallingConv;
833   AttributeListType AttributeList;
834   ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
835                          false);
836   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
837   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
838 }
839 
840 /// Determines whether the language options require us to model
841 /// unwind exceptions.  We treat -fexceptions as mandating this
842 /// except under the fragile ObjC ABI with only ObjC exceptions
843 /// enabled.  This means, for example, that C with -fexceptions
844 /// enables this.
845 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
846   // If exceptions are completely disabled, obviously this is false.
847   if (!LangOpts.Exceptions) return false;
848 
849   // If C++ exceptions are enabled, this is true.
850   if (LangOpts.CXXExceptions) return true;
851 
852   // If ObjC exceptions are enabled, this depends on the ABI.
853   if (LangOpts.ObjCExceptions) {
854     return LangOpts.ObjCRuntime.hasUnwindExceptions();
855   }
856 
857   return true;
858 }
859 
860 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
861                                                            llvm::Function *F) {
862   llvm::AttrBuilder B;
863 
864   if (CodeGenOpts.UnwindTables)
865     B.addAttribute(llvm::Attribute::UWTable);
866 
867   if (!hasUnwindExceptions(LangOpts))
868     B.addAttribute(llvm::Attribute::NoUnwind);
869 
870   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
871     B.addAttribute(llvm::Attribute::StackProtect);
872   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
873     B.addAttribute(llvm::Attribute::StackProtectStrong);
874   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
875     B.addAttribute(llvm::Attribute::StackProtectReq);
876 
877   if (!D) {
878     // If we don't have a declaration to control inlining, the function isn't
879     // explicitly marked as alwaysinline for semantic reasons, and inlining is
880     // disabled, mark the function as noinline.
881     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
882         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
883       B.addAttribute(llvm::Attribute::NoInline);
884 
885     F->addAttributes(llvm::AttributeSet::FunctionIndex,
886                      llvm::AttributeSet::get(
887                          F->getContext(),
888                          llvm::AttributeSet::FunctionIndex, B));
889     return;
890   }
891 
892   if (D->hasAttr<OptimizeNoneAttr>()) {
893     B.addAttribute(llvm::Attribute::OptimizeNone);
894 
895     // OptimizeNone implies noinline; we should not be inlining such functions.
896     B.addAttribute(llvm::Attribute::NoInline);
897     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
898            "OptimizeNone and AlwaysInline on same function!");
899 
900     // We still need to handle naked functions even though optnone subsumes
901     // much of their semantics.
902     if (D->hasAttr<NakedAttr>())
903       B.addAttribute(llvm::Attribute::Naked);
904 
905     // OptimizeNone wins over OptimizeForSize and MinSize.
906     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
907     F->removeFnAttr(llvm::Attribute::MinSize);
908   } else if (D->hasAttr<NakedAttr>()) {
909     // Naked implies noinline: we should not be inlining such functions.
910     B.addAttribute(llvm::Attribute::Naked);
911     B.addAttribute(llvm::Attribute::NoInline);
912   } else if (D->hasAttr<NoDuplicateAttr>()) {
913     B.addAttribute(llvm::Attribute::NoDuplicate);
914   } else if (D->hasAttr<NoInlineAttr>()) {
915     B.addAttribute(llvm::Attribute::NoInline);
916   } else if (D->hasAttr<AlwaysInlineAttr>() &&
917              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
918     // (noinline wins over always_inline, and we can't specify both in IR)
919     B.addAttribute(llvm::Attribute::AlwaysInline);
920   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
921     // If we're not inlining, then force everything that isn't always_inline to
922     // carry an explicit noinline attribute.
923     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
924       B.addAttribute(llvm::Attribute::NoInline);
925   } else {
926     // Otherwise, propagate the inline hint attribute and potentially use its
927     // absence to mark things as noinline.
928     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
929       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
930             return Redecl->isInlineSpecified();
931           })) {
932         B.addAttribute(llvm::Attribute::InlineHint);
933       } else if (CodeGenOpts.getInlining() ==
934                      CodeGenOptions::OnlyHintInlining &&
935                  !FD->isInlined() &&
936                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
937         B.addAttribute(llvm::Attribute::NoInline);
938       }
939     }
940   }
941 
942   // Add other optimization related attributes if we are optimizing this
943   // function.
944   if (!D->hasAttr<OptimizeNoneAttr>()) {
945     if (D->hasAttr<ColdAttr>()) {
946       B.addAttribute(llvm::Attribute::OptimizeForSize);
947       B.addAttribute(llvm::Attribute::Cold);
948     }
949 
950     if (D->hasAttr<MinSizeAttr>())
951       B.addAttribute(llvm::Attribute::MinSize);
952   }
953 
954   F->addAttributes(llvm::AttributeSet::FunctionIndex,
955                    llvm::AttributeSet::get(
956                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
957 
958   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
959   if (alignment)
960     F->setAlignment(alignment);
961 
962   // Some C++ ABIs require 2-byte alignment for member functions, in order to
963   // reserve a bit for differentiating between virtual and non-virtual member
964   // functions. If the current target's C++ ABI requires this and this is a
965   // member function, set its alignment accordingly.
966   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
967     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
968       F->setAlignment(2);
969   }
970 
971   // In the cross-dso CFI mode, we want !type attributes on definitions only.
972   if (CodeGenOpts.SanitizeCfiCrossDso)
973     if (auto *FD = dyn_cast<FunctionDecl>(D))
974       CreateFunctionTypeMetadata(FD, F);
975 }
976 
977 void CodeGenModule::SetCommonAttributes(const Decl *D,
978                                         llvm::GlobalValue *GV) {
979   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
980     setGlobalVisibility(GV, ND);
981   else
982     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
983 
984   if (D && D->hasAttr<UsedAttr>())
985     addUsedGlobal(GV);
986 }
987 
988 void CodeGenModule::setAliasAttributes(const Decl *D,
989                                        llvm::GlobalValue *GV) {
990   SetCommonAttributes(D, GV);
991 
992   // Process the dllexport attribute based on whether the original definition
993   // (not necessarily the aliasee) was exported.
994   if (D->hasAttr<DLLExportAttr>())
995     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
996 }
997 
998 void CodeGenModule::setNonAliasAttributes(const Decl *D,
999                                           llvm::GlobalObject *GO) {
1000   SetCommonAttributes(D, GO);
1001 
1002   if (D)
1003     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1004       GO->setSection(SA->getName());
1005 
1006   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1007 }
1008 
1009 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1010                                                   llvm::Function *F,
1011                                                   const CGFunctionInfo &FI) {
1012   SetLLVMFunctionAttributes(D, FI, F);
1013   SetLLVMFunctionAttributesForDefinition(D, F);
1014 
1015   F->setLinkage(llvm::Function::InternalLinkage);
1016 
1017   setNonAliasAttributes(D, F);
1018 }
1019 
1020 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
1021                                          const NamedDecl *ND) {
1022   // Set linkage and visibility in case we never see a definition.
1023   LinkageInfo LV = ND->getLinkageAndVisibility();
1024   if (LV.getLinkage() != ExternalLinkage) {
1025     // Don't set internal linkage on declarations.
1026   } else {
1027     if (ND->hasAttr<DLLImportAttr>()) {
1028       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1029       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1030     } else if (ND->hasAttr<DLLExportAttr>()) {
1031       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1032       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1033     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1034       // "extern_weak" is overloaded in LLVM; we probably should have
1035       // separate linkage types for this.
1036       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1037     }
1038 
1039     // Set visibility on a declaration only if it's explicit.
1040     if (LV.isVisibilityExplicit())
1041       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
1042   }
1043 }
1044 
1045 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1046                                                llvm::Function *F) {
1047   // Only if we are checking indirect calls.
1048   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1049     return;
1050 
1051   // Non-static class methods are handled via vtable pointer checks elsewhere.
1052   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1053     return;
1054 
1055   // Additionally, if building with cross-DSO support...
1056   if (CodeGenOpts.SanitizeCfiCrossDso) {
1057     // Skip available_externally functions. They won't be codegen'ed in the
1058     // current module anyway.
1059     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1060       return;
1061   }
1062 
1063   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1064   F->addTypeMetadata(0, MD);
1065 
1066   // Emit a hash-based bit set entry for cross-DSO calls.
1067   if (CodeGenOpts.SanitizeCfiCrossDso)
1068     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1069       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1070 }
1071 
1072 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1073                                           bool IsIncompleteFunction,
1074                                           bool IsThunk) {
1075   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1076     // If this is an intrinsic function, set the function's attributes
1077     // to the intrinsic's attributes.
1078     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1079     return;
1080   }
1081 
1082   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1083 
1084   if (!IsIncompleteFunction)
1085     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1086 
1087   // Add the Returned attribute for "this", except for iOS 5 and earlier
1088   // where substantial code, including the libstdc++ dylib, was compiled with
1089   // GCC and does not actually return "this".
1090   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1091       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1092     assert(!F->arg_empty() &&
1093            F->arg_begin()->getType()
1094              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1095            "unexpected this return");
1096     F->addAttribute(1, llvm::Attribute::Returned);
1097   }
1098 
1099   // Only a few attributes are set on declarations; these may later be
1100   // overridden by a definition.
1101 
1102   setLinkageAndVisibilityForGV(F, FD);
1103 
1104   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1105     F->setSection(SA->getName());
1106 
1107   if (FD->isReplaceableGlobalAllocationFunction()) {
1108     // A replaceable global allocation function does not act like a builtin by
1109     // default, only if it is invoked by a new-expression or delete-expression.
1110     F->addAttribute(llvm::AttributeSet::FunctionIndex,
1111                     llvm::Attribute::NoBuiltin);
1112 
1113     // A sane operator new returns a non-aliasing pointer.
1114     // FIXME: Also add NonNull attribute to the return value
1115     // for the non-nothrow forms?
1116     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1117     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1118         (Kind == OO_New || Kind == OO_Array_New))
1119       F->addAttribute(llvm::AttributeSet::ReturnIndex,
1120                       llvm::Attribute::NoAlias);
1121   }
1122 
1123   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1124     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1125   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1126     if (MD->isVirtual())
1127       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1128 
1129   // Don't emit entries for function declarations in the cross-DSO mode. This
1130   // is handled with better precision by the receiving DSO.
1131   if (!CodeGenOpts.SanitizeCfiCrossDso)
1132     CreateFunctionTypeMetadata(FD, F);
1133 }
1134 
1135 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1136   assert(!GV->isDeclaration() &&
1137          "Only globals with definition can force usage.");
1138   LLVMUsed.emplace_back(GV);
1139 }
1140 
1141 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1142   assert(!GV->isDeclaration() &&
1143          "Only globals with definition can force usage.");
1144   LLVMCompilerUsed.emplace_back(GV);
1145 }
1146 
1147 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1148                      std::vector<llvm::WeakVH> &List) {
1149   // Don't create llvm.used if there is no need.
1150   if (List.empty())
1151     return;
1152 
1153   // Convert List to what ConstantArray needs.
1154   SmallVector<llvm::Constant*, 8> UsedArray;
1155   UsedArray.resize(List.size());
1156   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1157     UsedArray[i] =
1158         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1159             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1160   }
1161 
1162   if (UsedArray.empty())
1163     return;
1164   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1165 
1166   auto *GV = new llvm::GlobalVariable(
1167       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1168       llvm::ConstantArray::get(ATy, UsedArray), Name);
1169 
1170   GV->setSection("llvm.metadata");
1171 }
1172 
1173 void CodeGenModule::emitLLVMUsed() {
1174   emitUsed(*this, "llvm.used", LLVMUsed);
1175   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1176 }
1177 
1178 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1179   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1180   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1181 }
1182 
1183 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1184   llvm::SmallString<32> Opt;
1185   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1186   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1187   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1188 }
1189 
1190 void CodeGenModule::AddDependentLib(StringRef Lib) {
1191   llvm::SmallString<24> Opt;
1192   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1193   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1194   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1195 }
1196 
1197 /// \brief Add link options implied by the given module, including modules
1198 /// it depends on, using a postorder walk.
1199 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1200                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1201                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1202   // Import this module's parent.
1203   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1204     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1205   }
1206 
1207   // Import this module's dependencies.
1208   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1209     if (Visited.insert(Mod->Imports[I - 1]).second)
1210       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1211   }
1212 
1213   // Add linker options to link against the libraries/frameworks
1214   // described by this module.
1215   llvm::LLVMContext &Context = CGM.getLLVMContext();
1216   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1217     // Link against a framework.  Frameworks are currently Darwin only, so we
1218     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1219     if (Mod->LinkLibraries[I-1].IsFramework) {
1220       llvm::Metadata *Args[2] = {
1221           llvm::MDString::get(Context, "-framework"),
1222           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1223 
1224       Metadata.push_back(llvm::MDNode::get(Context, Args));
1225       continue;
1226     }
1227 
1228     // Link against a library.
1229     llvm::SmallString<24> Opt;
1230     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1231       Mod->LinkLibraries[I-1].Library, Opt);
1232     auto *OptString = llvm::MDString::get(Context, Opt);
1233     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1234   }
1235 }
1236 
1237 void CodeGenModule::EmitModuleLinkOptions() {
1238   // Collect the set of all of the modules we want to visit to emit link
1239   // options, which is essentially the imported modules and all of their
1240   // non-explicit child modules.
1241   llvm::SetVector<clang::Module *> LinkModules;
1242   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1243   SmallVector<clang::Module *, 16> Stack;
1244 
1245   // Seed the stack with imported modules.
1246   for (Module *M : ImportedModules) {
1247     // Do not add any link flags when an implementation TU of a module imports
1248     // a header of that same module.
1249     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1250         !getLangOpts().isCompilingModule())
1251       continue;
1252     if (Visited.insert(M).second)
1253       Stack.push_back(M);
1254   }
1255 
1256   // Find all of the modules to import, making a little effort to prune
1257   // non-leaf modules.
1258   while (!Stack.empty()) {
1259     clang::Module *Mod = Stack.pop_back_val();
1260 
1261     bool AnyChildren = false;
1262 
1263     // Visit the submodules of this module.
1264     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1265                                         SubEnd = Mod->submodule_end();
1266          Sub != SubEnd; ++Sub) {
1267       // Skip explicit children; they need to be explicitly imported to be
1268       // linked against.
1269       if ((*Sub)->IsExplicit)
1270         continue;
1271 
1272       if (Visited.insert(*Sub).second) {
1273         Stack.push_back(*Sub);
1274         AnyChildren = true;
1275       }
1276     }
1277 
1278     // We didn't find any children, so add this module to the list of
1279     // modules to link against.
1280     if (!AnyChildren) {
1281       LinkModules.insert(Mod);
1282     }
1283   }
1284 
1285   // Add link options for all of the imported modules in reverse topological
1286   // order.  We don't do anything to try to order import link flags with respect
1287   // to linker options inserted by things like #pragma comment().
1288   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1289   Visited.clear();
1290   for (Module *M : LinkModules)
1291     if (Visited.insert(M).second)
1292       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1293   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1294   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1295 
1296   // Add the linker options metadata flag.
1297   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1298                             llvm::MDNode::get(getLLVMContext(),
1299                                               LinkerOptionsMetadata));
1300 }
1301 
1302 void CodeGenModule::EmitDeferred() {
1303   // Emit code for any potentially referenced deferred decls.  Since a
1304   // previously unused static decl may become used during the generation of code
1305   // for a static function, iterate until no changes are made.
1306 
1307   if (!DeferredVTables.empty()) {
1308     EmitDeferredVTables();
1309 
1310     // Emitting a vtable doesn't directly cause more vtables to
1311     // become deferred, although it can cause functions to be
1312     // emitted that then need those vtables.
1313     assert(DeferredVTables.empty());
1314   }
1315 
1316   // Stop if we're out of both deferred vtables and deferred declarations.
1317   if (DeferredDeclsToEmit.empty())
1318     return;
1319 
1320   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1321   // work, it will not interfere with this.
1322   std::vector<DeferredGlobal> CurDeclsToEmit;
1323   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1324 
1325   for (DeferredGlobal &G : CurDeclsToEmit) {
1326     GlobalDecl D = G.GD;
1327     G.GV = nullptr;
1328 
1329     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1330     // to get GlobalValue with exactly the type we need, not something that
1331     // might had been created for another decl with the same mangled name but
1332     // different type.
1333     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1334         GetAddrOfGlobal(D, ForDefinition));
1335 
1336     // In case of different address spaces, we may still get a cast, even with
1337     // IsForDefinition equal to true. Query mangled names table to get
1338     // GlobalValue.
1339     if (!GV)
1340       GV = GetGlobalValue(getMangledName(D));
1341 
1342     // Make sure GetGlobalValue returned non-null.
1343     assert(GV);
1344 
1345     // Check to see if we've already emitted this.  This is necessary
1346     // for a couple of reasons: first, decls can end up in the
1347     // deferred-decls queue multiple times, and second, decls can end
1348     // up with definitions in unusual ways (e.g. by an extern inline
1349     // function acquiring a strong function redefinition).  Just
1350     // ignore these cases.
1351     if (!GV->isDeclaration())
1352       continue;
1353 
1354     // Otherwise, emit the definition and move on to the next one.
1355     EmitGlobalDefinition(D, GV);
1356 
1357     // If we found out that we need to emit more decls, do that recursively.
1358     // This has the advantage that the decls are emitted in a DFS and related
1359     // ones are close together, which is convenient for testing.
1360     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1361       EmitDeferred();
1362       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1363     }
1364   }
1365 }
1366 
1367 void CodeGenModule::EmitGlobalAnnotations() {
1368   if (Annotations.empty())
1369     return;
1370 
1371   // Create a new global variable for the ConstantStruct in the Module.
1372   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1373     Annotations[0]->getType(), Annotations.size()), Annotations);
1374   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1375                                       llvm::GlobalValue::AppendingLinkage,
1376                                       Array, "llvm.global.annotations");
1377   gv->setSection(AnnotationSection);
1378 }
1379 
1380 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1381   llvm::Constant *&AStr = AnnotationStrings[Str];
1382   if (AStr)
1383     return AStr;
1384 
1385   // Not found yet, create a new global.
1386   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1387   auto *gv =
1388       new llvm::GlobalVariable(getModule(), s->getType(), true,
1389                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1390   gv->setSection(AnnotationSection);
1391   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1392   AStr = gv;
1393   return gv;
1394 }
1395 
1396 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1397   SourceManager &SM = getContext().getSourceManager();
1398   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1399   if (PLoc.isValid())
1400     return EmitAnnotationString(PLoc.getFilename());
1401   return EmitAnnotationString(SM.getBufferName(Loc));
1402 }
1403 
1404 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1405   SourceManager &SM = getContext().getSourceManager();
1406   PresumedLoc PLoc = SM.getPresumedLoc(L);
1407   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1408     SM.getExpansionLineNumber(L);
1409   return llvm::ConstantInt::get(Int32Ty, LineNo);
1410 }
1411 
1412 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1413                                                 const AnnotateAttr *AA,
1414                                                 SourceLocation L) {
1415   // Get the globals for file name, annotation, and the line number.
1416   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1417                  *UnitGV = EmitAnnotationUnit(L),
1418                  *LineNoCst = EmitAnnotationLineNo(L);
1419 
1420   // Create the ConstantStruct for the global annotation.
1421   llvm::Constant *Fields[4] = {
1422     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1423     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1424     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1425     LineNoCst
1426   };
1427   return llvm::ConstantStruct::getAnon(Fields);
1428 }
1429 
1430 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1431                                          llvm::GlobalValue *GV) {
1432   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1433   // Get the struct elements for these annotations.
1434   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1435     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1436 }
1437 
1438 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1439                                            SourceLocation Loc) const {
1440   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1441   // Blacklist by function name.
1442   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1443     return true;
1444   // Blacklist by location.
1445   if (Loc.isValid())
1446     return SanitizerBL.isBlacklistedLocation(Loc);
1447   // If location is unknown, this may be a compiler-generated function. Assume
1448   // it's located in the main file.
1449   auto &SM = Context.getSourceManager();
1450   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1451     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1452   }
1453   return false;
1454 }
1455 
1456 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1457                                            SourceLocation Loc, QualType Ty,
1458                                            StringRef Category) const {
1459   // For now globals can be blacklisted only in ASan and KASan.
1460   if (!LangOpts.Sanitize.hasOneOf(
1461           SanitizerKind::Address | SanitizerKind::KernelAddress))
1462     return false;
1463   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1464   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1465     return true;
1466   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1467     return true;
1468   // Check global type.
1469   if (!Ty.isNull()) {
1470     // Drill down the array types: if global variable of a fixed type is
1471     // blacklisted, we also don't instrument arrays of them.
1472     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1473       Ty = AT->getElementType();
1474     Ty = Ty.getCanonicalType().getUnqualifiedType();
1475     // We allow to blacklist only record types (classes, structs etc.)
1476     if (Ty->isRecordType()) {
1477       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1478       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1479         return true;
1480     }
1481   }
1482   return false;
1483 }
1484 
1485 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1486   // Never defer when EmitAllDecls is specified.
1487   if (LangOpts.EmitAllDecls)
1488     return true;
1489 
1490   return getContext().DeclMustBeEmitted(Global);
1491 }
1492 
1493 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1494   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1495     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1496       // Implicit template instantiations may change linkage if they are later
1497       // explicitly instantiated, so they should not be emitted eagerly.
1498       return false;
1499   if (const auto *VD = dyn_cast<VarDecl>(Global))
1500     if (Context.getInlineVariableDefinitionKind(VD) ==
1501         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1502       // A definition of an inline constexpr static data member may change
1503       // linkage later if it's redeclared outside the class.
1504       return false;
1505   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1506   // codegen for global variables, because they may be marked as threadprivate.
1507   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1508       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1509     return false;
1510 
1511   return true;
1512 }
1513 
1514 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1515     const CXXUuidofExpr* E) {
1516   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1517   // well-formed.
1518   StringRef Uuid = E->getUuidStr();
1519   std::string Name = "_GUID_" + Uuid.lower();
1520   std::replace(Name.begin(), Name.end(), '-', '_');
1521 
1522   // The UUID descriptor should be pointer aligned.
1523   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1524 
1525   // Look for an existing global.
1526   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1527     return ConstantAddress(GV, Alignment);
1528 
1529   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1530   assert(Init && "failed to initialize as constant");
1531 
1532   auto *GV = new llvm::GlobalVariable(
1533       getModule(), Init->getType(),
1534       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1535   if (supportsCOMDAT())
1536     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1537   return ConstantAddress(GV, Alignment);
1538 }
1539 
1540 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1541   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1542   assert(AA && "No alias?");
1543 
1544   CharUnits Alignment = getContext().getDeclAlign(VD);
1545   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1546 
1547   // See if there is already something with the target's name in the module.
1548   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1549   if (Entry) {
1550     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1551     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1552     return ConstantAddress(Ptr, Alignment);
1553   }
1554 
1555   llvm::Constant *Aliasee;
1556   if (isa<llvm::FunctionType>(DeclTy))
1557     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1558                                       GlobalDecl(cast<FunctionDecl>(VD)),
1559                                       /*ForVTable=*/false);
1560   else
1561     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1562                                     llvm::PointerType::getUnqual(DeclTy),
1563                                     nullptr);
1564 
1565   auto *F = cast<llvm::GlobalValue>(Aliasee);
1566   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1567   WeakRefReferences.insert(F);
1568 
1569   return ConstantAddress(Aliasee, Alignment);
1570 }
1571 
1572 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1573   const auto *Global = cast<ValueDecl>(GD.getDecl());
1574 
1575   // Weak references don't produce any output by themselves.
1576   if (Global->hasAttr<WeakRefAttr>())
1577     return;
1578 
1579   // If this is an alias definition (which otherwise looks like a declaration)
1580   // emit it now.
1581   if (Global->hasAttr<AliasAttr>())
1582     return EmitAliasDefinition(GD);
1583 
1584   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1585   if (Global->hasAttr<IFuncAttr>())
1586     return emitIFuncDefinition(GD);
1587 
1588   // If this is CUDA, be selective about which declarations we emit.
1589   if (LangOpts.CUDA) {
1590     if (LangOpts.CUDAIsDevice) {
1591       if (!Global->hasAttr<CUDADeviceAttr>() &&
1592           !Global->hasAttr<CUDAGlobalAttr>() &&
1593           !Global->hasAttr<CUDAConstantAttr>() &&
1594           !Global->hasAttr<CUDASharedAttr>())
1595         return;
1596     } else {
1597       // We need to emit host-side 'shadows' for all global
1598       // device-side variables because the CUDA runtime needs their
1599       // size and host-side address in order to provide access to
1600       // their device-side incarnations.
1601 
1602       // So device-only functions are the only things we skip.
1603       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1604           Global->hasAttr<CUDADeviceAttr>())
1605         return;
1606 
1607       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1608              "Expected Variable or Function");
1609     }
1610   }
1611 
1612   if (LangOpts.OpenMP) {
1613     // If this is OpenMP device, check if it is legal to emit this global
1614     // normally.
1615     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1616       return;
1617     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1618       if (MustBeEmitted(Global))
1619         EmitOMPDeclareReduction(DRD);
1620       return;
1621     }
1622   }
1623 
1624   // Ignore declarations, they will be emitted on their first use.
1625   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1626     // Forward declarations are emitted lazily on first use.
1627     if (!FD->doesThisDeclarationHaveABody()) {
1628       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1629         return;
1630 
1631       StringRef MangledName = getMangledName(GD);
1632 
1633       // Compute the function info and LLVM type.
1634       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1635       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1636 
1637       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1638                               /*DontDefer=*/false);
1639       return;
1640     }
1641   } else {
1642     const auto *VD = cast<VarDecl>(Global);
1643     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1644     // We need to emit device-side global CUDA variables even if a
1645     // variable does not have a definition -- we still need to define
1646     // host-side shadow for it.
1647     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1648                            !VD->hasDefinition() &&
1649                            (VD->hasAttr<CUDAConstantAttr>() ||
1650                             VD->hasAttr<CUDADeviceAttr>());
1651     if (!MustEmitForCuda &&
1652         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1653         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1654       // If this declaration may have caused an inline variable definition to
1655       // change linkage, make sure that it's emitted.
1656       if (Context.getInlineVariableDefinitionKind(VD) ==
1657           ASTContext::InlineVariableDefinitionKind::Strong)
1658         GetAddrOfGlobalVar(VD);
1659       return;
1660     }
1661   }
1662 
1663   // Defer code generation to first use when possible, e.g. if this is an inline
1664   // function. If the global must always be emitted, do it eagerly if possible
1665   // to benefit from cache locality.
1666   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1667     // Emit the definition if it can't be deferred.
1668     EmitGlobalDefinition(GD);
1669     return;
1670   }
1671 
1672   // If we're deferring emission of a C++ variable with an
1673   // initializer, remember the order in which it appeared in the file.
1674   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1675       cast<VarDecl>(Global)->hasInit()) {
1676     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1677     CXXGlobalInits.push_back(nullptr);
1678   }
1679 
1680   StringRef MangledName = getMangledName(GD);
1681   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1682     // The value has already been used and should therefore be emitted.
1683     addDeferredDeclToEmit(GV, GD);
1684   } else if (MustBeEmitted(Global)) {
1685     // The value must be emitted, but cannot be emitted eagerly.
1686     assert(!MayBeEmittedEagerly(Global));
1687     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1688   } else {
1689     // Otherwise, remember that we saw a deferred decl with this name.  The
1690     // first use of the mangled name will cause it to move into
1691     // DeferredDeclsToEmit.
1692     DeferredDecls[MangledName] = GD;
1693   }
1694 }
1695 
1696 namespace {
1697   struct FunctionIsDirectlyRecursive :
1698     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1699     const StringRef Name;
1700     const Builtin::Context &BI;
1701     bool Result;
1702     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1703       Name(N), BI(C), Result(false) {
1704     }
1705     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1706 
1707     bool TraverseCallExpr(CallExpr *E) {
1708       const FunctionDecl *FD = E->getDirectCallee();
1709       if (!FD)
1710         return true;
1711       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1712       if (Attr && Name == Attr->getLabel()) {
1713         Result = true;
1714         return false;
1715       }
1716       unsigned BuiltinID = FD->getBuiltinID();
1717       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1718         return true;
1719       StringRef BuiltinName = BI.getName(BuiltinID);
1720       if (BuiltinName.startswith("__builtin_") &&
1721           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1722         Result = true;
1723         return false;
1724       }
1725       return true;
1726     }
1727   };
1728 
1729   struct DLLImportFunctionVisitor
1730       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1731     bool SafeToInline = true;
1732 
1733     bool shouldVisitImplicitCode() const { return true; }
1734 
1735     bool VisitVarDecl(VarDecl *VD) {
1736       // A thread-local variable cannot be imported.
1737       SafeToInline = !VD->getTLSKind();
1738       return SafeToInline;
1739     }
1740 
1741     // Make sure we're not referencing non-imported vars or functions.
1742     bool VisitDeclRefExpr(DeclRefExpr *E) {
1743       ValueDecl *VD = E->getDecl();
1744       if (isa<FunctionDecl>(VD))
1745         SafeToInline = VD->hasAttr<DLLImportAttr>();
1746       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1747         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1748       return SafeToInline;
1749     }
1750     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
1751       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
1752       return SafeToInline;
1753     }
1754     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1755       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1756       return SafeToInline;
1757     }
1758     bool VisitCXXNewExpr(CXXNewExpr *E) {
1759       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1760       return SafeToInline;
1761     }
1762   };
1763 }
1764 
1765 // isTriviallyRecursive - Check if this function calls another
1766 // decl that, because of the asm attribute or the other decl being a builtin,
1767 // ends up pointing to itself.
1768 bool
1769 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1770   StringRef Name;
1771   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1772     // asm labels are a special kind of mangling we have to support.
1773     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1774     if (!Attr)
1775       return false;
1776     Name = Attr->getLabel();
1777   } else {
1778     Name = FD->getName();
1779   }
1780 
1781   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1782   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1783   return Walker.Result;
1784 }
1785 
1786 // Check if T is a class type with a destructor that's not dllimport.
1787 static bool HasNonDllImportDtor(QualType T) {
1788   if (const RecordType *RT = dyn_cast<RecordType>(T))
1789     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1790       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1791         return true;
1792 
1793   return false;
1794 }
1795 
1796 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1797   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1798     return true;
1799   const auto *F = cast<FunctionDecl>(GD.getDecl());
1800   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1801     return false;
1802 
1803   if (F->hasAttr<DLLImportAttr>()) {
1804     // Check whether it would be safe to inline this dllimport function.
1805     DLLImportFunctionVisitor Visitor;
1806     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1807     if (!Visitor.SafeToInline)
1808       return false;
1809 
1810     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
1811       // Implicit destructor invocations aren't captured in the AST, so the
1812       // check above can't see them. Check for them manually here.
1813       for (const Decl *Member : Dtor->getParent()->decls())
1814         if (isa<FieldDecl>(Member))
1815           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
1816             return false;
1817       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
1818         if (HasNonDllImportDtor(B.getType()))
1819           return false;
1820     }
1821   }
1822 
1823   // PR9614. Avoid cases where the source code is lying to us. An available
1824   // externally function should have an equivalent function somewhere else,
1825   // but a function that calls itself is clearly not equivalent to the real
1826   // implementation.
1827   // This happens in glibc's btowc and in some configure checks.
1828   return !isTriviallyRecursive(F);
1829 }
1830 
1831 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1832   const auto *D = cast<ValueDecl>(GD.getDecl());
1833 
1834   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1835                                  Context.getSourceManager(),
1836                                  "Generating code for declaration");
1837 
1838   if (isa<FunctionDecl>(D)) {
1839     // At -O0, don't generate IR for functions with available_externally
1840     // linkage.
1841     if (!shouldEmitFunction(GD))
1842       return;
1843 
1844     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1845       // Make sure to emit the definition(s) before we emit the thunks.
1846       // This is necessary for the generation of certain thunks.
1847       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1848         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1849       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1850         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1851       else
1852         EmitGlobalFunctionDefinition(GD, GV);
1853 
1854       if (Method->isVirtual())
1855         getVTables().EmitThunks(GD);
1856 
1857       return;
1858     }
1859 
1860     return EmitGlobalFunctionDefinition(GD, GV);
1861   }
1862 
1863   if (const auto *VD = dyn_cast<VarDecl>(D))
1864     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1865 
1866   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1867 }
1868 
1869 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1870                                                       llvm::Function *NewFn);
1871 
1872 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1873 /// module, create and return an llvm Function with the specified type. If there
1874 /// is something in the module with the specified name, return it potentially
1875 /// bitcasted to the right type.
1876 ///
1877 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1878 /// to set the attributes on the function when it is first created.
1879 llvm::Constant *
1880 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1881                                        llvm::Type *Ty,
1882                                        GlobalDecl GD, bool ForVTable,
1883                                        bool DontDefer, bool IsThunk,
1884                                        llvm::AttributeSet ExtraAttrs,
1885                                        ForDefinition_t IsForDefinition) {
1886   const Decl *D = GD.getDecl();
1887 
1888   // Lookup the entry, lazily creating it if necessary.
1889   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1890   if (Entry) {
1891     if (WeakRefReferences.erase(Entry)) {
1892       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1893       if (FD && !FD->hasAttr<WeakAttr>())
1894         Entry->setLinkage(llvm::Function::ExternalLinkage);
1895     }
1896 
1897     // Handle dropped DLL attributes.
1898     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1899       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1900 
1901     // If there are two attempts to define the same mangled name, issue an
1902     // error.
1903     if (IsForDefinition && !Entry->isDeclaration()) {
1904       GlobalDecl OtherGD;
1905       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1906       // to make sure that we issue an error only once.
1907       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1908           (GD.getCanonicalDecl().getDecl() !=
1909            OtherGD.getCanonicalDecl().getDecl()) &&
1910           DiagnosedConflictingDefinitions.insert(GD).second) {
1911         getDiags().Report(D->getLocation(),
1912                           diag::err_duplicate_mangled_name);
1913         getDiags().Report(OtherGD.getDecl()->getLocation(),
1914                           diag::note_previous_definition);
1915       }
1916     }
1917 
1918     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1919         (Entry->getType()->getElementType() == Ty)) {
1920       return Entry;
1921     }
1922 
1923     // Make sure the result is of the correct type.
1924     // (If function is requested for a definition, we always need to create a new
1925     // function, not just return a bitcast.)
1926     if (!IsForDefinition)
1927       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1928   }
1929 
1930   // This function doesn't have a complete type (for example, the return
1931   // type is an incomplete struct). Use a fake type instead, and make
1932   // sure not to try to set attributes.
1933   bool IsIncompleteFunction = false;
1934 
1935   llvm::FunctionType *FTy;
1936   if (isa<llvm::FunctionType>(Ty)) {
1937     FTy = cast<llvm::FunctionType>(Ty);
1938   } else {
1939     FTy = llvm::FunctionType::get(VoidTy, false);
1940     IsIncompleteFunction = true;
1941   }
1942 
1943   llvm::Function *F =
1944       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1945                              Entry ? StringRef() : MangledName, &getModule());
1946 
1947   // If we already created a function with the same mangled name (but different
1948   // type) before, take its name and add it to the list of functions to be
1949   // replaced with F at the end of CodeGen.
1950   //
1951   // This happens if there is a prototype for a function (e.g. "int f()") and
1952   // then a definition of a different type (e.g. "int f(int x)").
1953   if (Entry) {
1954     F->takeName(Entry);
1955 
1956     // This might be an implementation of a function without a prototype, in
1957     // which case, try to do special replacement of calls which match the new
1958     // prototype.  The really key thing here is that we also potentially drop
1959     // arguments from the call site so as to make a direct call, which makes the
1960     // inliner happier and suppresses a number of optimizer warnings (!) about
1961     // dropping arguments.
1962     if (!Entry->use_empty()) {
1963       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
1964       Entry->removeDeadConstantUsers();
1965     }
1966 
1967     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
1968         F, Entry->getType()->getElementType()->getPointerTo());
1969     addGlobalValReplacement(Entry, BC);
1970   }
1971 
1972   assert(F->getName() == MangledName && "name was uniqued!");
1973   if (D)
1974     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1975   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1976     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1977     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1978                      llvm::AttributeSet::get(VMContext,
1979                                              llvm::AttributeSet::FunctionIndex,
1980                                              B));
1981   }
1982 
1983   if (!DontDefer) {
1984     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1985     // each other bottoming out with the base dtor.  Therefore we emit non-base
1986     // dtors on usage, even if there is no dtor definition in the TU.
1987     if (D && isa<CXXDestructorDecl>(D) &&
1988         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1989                                            GD.getDtorType()))
1990       addDeferredDeclToEmit(F, GD);
1991 
1992     // This is the first use or definition of a mangled name.  If there is a
1993     // deferred decl with this name, remember that we need to emit it at the end
1994     // of the file.
1995     auto DDI = DeferredDecls.find(MangledName);
1996     if (DDI != DeferredDecls.end()) {
1997       // Move the potentially referenced deferred decl to the
1998       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1999       // don't need it anymore).
2000       addDeferredDeclToEmit(F, DDI->second);
2001       DeferredDecls.erase(DDI);
2002 
2003       // Otherwise, there are cases we have to worry about where we're
2004       // using a declaration for which we must emit a definition but where
2005       // we might not find a top-level definition:
2006       //   - member functions defined inline in their classes
2007       //   - friend functions defined inline in some class
2008       //   - special member functions with implicit definitions
2009       // If we ever change our AST traversal to walk into class methods,
2010       // this will be unnecessary.
2011       //
2012       // We also don't emit a definition for a function if it's going to be an
2013       // entry in a vtable, unless it's already marked as used.
2014     } else if (getLangOpts().CPlusPlus && D) {
2015       // Look for a declaration that's lexically in a record.
2016       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2017            FD = FD->getPreviousDecl()) {
2018         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2019           if (FD->doesThisDeclarationHaveABody()) {
2020             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
2021             break;
2022           }
2023         }
2024       }
2025     }
2026   }
2027 
2028   // Make sure the result is of the requested type.
2029   if (!IsIncompleteFunction) {
2030     assert(F->getType()->getElementType() == Ty);
2031     return F;
2032   }
2033 
2034   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2035   return llvm::ConstantExpr::getBitCast(F, PTy);
2036 }
2037 
2038 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2039 /// non-null, then this function will use the specified type if it has to
2040 /// create it (this occurs when we see a definition of the function).
2041 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2042                                                  llvm::Type *Ty,
2043                                                  bool ForVTable,
2044                                                  bool DontDefer,
2045                                               ForDefinition_t IsForDefinition) {
2046   // If there was no specific requested type, just convert it now.
2047   if (!Ty) {
2048     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2049     auto CanonTy = Context.getCanonicalType(FD->getType());
2050     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2051   }
2052 
2053   StringRef MangledName = getMangledName(GD);
2054   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2055                                  /*IsThunk=*/false, llvm::AttributeSet(),
2056                                  IsForDefinition);
2057 }
2058 
2059 static const FunctionDecl *
2060 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2061   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2062   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2063 
2064   IdentifierInfo &CII = C.Idents.get(Name);
2065   for (const auto &Result : DC->lookup(&CII))
2066     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2067       return FD;
2068 
2069   if (!C.getLangOpts().CPlusPlus)
2070     return nullptr;
2071 
2072   // Demangle the premangled name from getTerminateFn()
2073   IdentifierInfo &CXXII =
2074       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2075           ? C.Idents.get("terminate")
2076           : C.Idents.get(Name);
2077 
2078   for (const auto &N : {"__cxxabiv1", "std"}) {
2079     IdentifierInfo &NS = C.Idents.get(N);
2080     for (const auto &Result : DC->lookup(&NS)) {
2081       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2082       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2083         for (const auto &Result : LSD->lookup(&NS))
2084           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2085             break;
2086 
2087       if (ND)
2088         for (const auto &Result : ND->lookup(&CXXII))
2089           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2090             return FD;
2091     }
2092   }
2093 
2094   return nullptr;
2095 }
2096 
2097 /// CreateRuntimeFunction - Create a new runtime function with the specified
2098 /// type and name.
2099 llvm::Constant *
2100 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2101                                      llvm::AttributeSet ExtraAttrs,
2102                                      bool Local) {
2103   llvm::Constant *C =
2104       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2105                               /*DontDefer=*/false, /*IsThunk=*/false,
2106                               ExtraAttrs);
2107 
2108   if (auto *F = dyn_cast<llvm::Function>(C)) {
2109     if (F->empty()) {
2110       F->setCallingConv(getRuntimeCC());
2111 
2112       if (!Local && getTriple().isOSBinFormatCOFF() &&
2113           !getCodeGenOpts().LTOVisibilityPublicStd) {
2114         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2115         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2116           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2117           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2118         }
2119       }
2120     }
2121   }
2122 
2123   return C;
2124 }
2125 
2126 /// CreateBuiltinFunction - Create a new builtin function with the specified
2127 /// type and name.
2128 llvm::Constant *
2129 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
2130                                      StringRef Name,
2131                                      llvm::AttributeSet ExtraAttrs) {
2132   llvm::Constant *C =
2133       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2134                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2135   if (auto *F = dyn_cast<llvm::Function>(C))
2136     if (F->empty())
2137       F->setCallingConv(getBuiltinCC());
2138   return C;
2139 }
2140 
2141 /// isTypeConstant - Determine whether an object of this type can be emitted
2142 /// as a constant.
2143 ///
2144 /// If ExcludeCtor is true, the duration when the object's constructor runs
2145 /// will not be considered. The caller will need to verify that the object is
2146 /// not written to during its construction.
2147 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2148   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2149     return false;
2150 
2151   if (Context.getLangOpts().CPlusPlus) {
2152     if (const CXXRecordDecl *Record
2153           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2154       return ExcludeCtor && !Record->hasMutableFields() &&
2155              Record->hasTrivialDestructor();
2156   }
2157 
2158   return true;
2159 }
2160 
2161 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2162 /// create and return an llvm GlobalVariable with the specified type.  If there
2163 /// is something in the module with the specified name, return it potentially
2164 /// bitcasted to the right type.
2165 ///
2166 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2167 /// to set the attributes on the global when it is first created.
2168 ///
2169 /// If IsForDefinition is true, it is guranteed that an actual global with
2170 /// type Ty will be returned, not conversion of a variable with the same
2171 /// mangled name but some other type.
2172 llvm::Constant *
2173 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2174                                      llvm::PointerType *Ty,
2175                                      const VarDecl *D,
2176                                      ForDefinition_t IsForDefinition) {
2177   // Lookup the entry, lazily creating it if necessary.
2178   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2179   if (Entry) {
2180     if (WeakRefReferences.erase(Entry)) {
2181       if (D && !D->hasAttr<WeakAttr>())
2182         Entry->setLinkage(llvm::Function::ExternalLinkage);
2183     }
2184 
2185     // Handle dropped DLL attributes.
2186     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2187       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2188 
2189     if (Entry->getType() == Ty)
2190       return Entry;
2191 
2192     // If there are two attempts to define the same mangled name, issue an
2193     // error.
2194     if (IsForDefinition && !Entry->isDeclaration()) {
2195       GlobalDecl OtherGD;
2196       const VarDecl *OtherD;
2197 
2198       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2199       // to make sure that we issue an error only once.
2200       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2201           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2202           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2203           OtherD->hasInit() &&
2204           DiagnosedConflictingDefinitions.insert(D).second) {
2205         getDiags().Report(D->getLocation(),
2206                           diag::err_duplicate_mangled_name);
2207         getDiags().Report(OtherGD.getDecl()->getLocation(),
2208                           diag::note_previous_definition);
2209       }
2210     }
2211 
2212     // Make sure the result is of the correct type.
2213     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2214       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2215 
2216     // (If global is requested for a definition, we always need to create a new
2217     // global, not just return a bitcast.)
2218     if (!IsForDefinition)
2219       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2220   }
2221 
2222   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2223   auto *GV = new llvm::GlobalVariable(
2224       getModule(), Ty->getElementType(), false,
2225       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2226       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2227 
2228   // If we already created a global with the same mangled name (but different
2229   // type) before, take its name and remove it from its parent.
2230   if (Entry) {
2231     GV->takeName(Entry);
2232 
2233     if (!Entry->use_empty()) {
2234       llvm::Constant *NewPtrForOldDecl =
2235           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2236       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2237     }
2238 
2239     Entry->eraseFromParent();
2240   }
2241 
2242   // This is the first use or definition of a mangled name.  If there is a
2243   // deferred decl with this name, remember that we need to emit it at the end
2244   // of the file.
2245   auto DDI = DeferredDecls.find(MangledName);
2246   if (DDI != DeferredDecls.end()) {
2247     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2248     // list, and remove it from DeferredDecls (since we don't need it anymore).
2249     addDeferredDeclToEmit(GV, DDI->second);
2250     DeferredDecls.erase(DDI);
2251   }
2252 
2253   // Handle things which are present even on external declarations.
2254   if (D) {
2255     // FIXME: This code is overly simple and should be merged with other global
2256     // handling.
2257     GV->setConstant(isTypeConstant(D->getType(), false));
2258 
2259     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2260 
2261     setLinkageAndVisibilityForGV(GV, D);
2262 
2263     if (D->getTLSKind()) {
2264       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2265         CXXThreadLocals.push_back(D);
2266       setTLSMode(GV, *D);
2267     }
2268 
2269     // If required by the ABI, treat declarations of static data members with
2270     // inline initializers as definitions.
2271     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2272       EmitGlobalVarDefinition(D);
2273     }
2274 
2275     // Handle XCore specific ABI requirements.
2276     if (getTriple().getArch() == llvm::Triple::xcore &&
2277         D->getLanguageLinkage() == CLanguageLinkage &&
2278         D->getType().isConstant(Context) &&
2279         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2280       GV->setSection(".cp.rodata");
2281   }
2282 
2283   if (AddrSpace != Ty->getAddressSpace())
2284     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2285 
2286   return GV;
2287 }
2288 
2289 llvm::Constant *
2290 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2291                                ForDefinition_t IsForDefinition) {
2292   const Decl *D = GD.getDecl();
2293   if (isa<CXXConstructorDecl>(D))
2294     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2295                                 getFromCtorType(GD.getCtorType()),
2296                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2297                                 /*DontDefer=*/false, IsForDefinition);
2298   else if (isa<CXXDestructorDecl>(D))
2299     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2300                                 getFromDtorType(GD.getDtorType()),
2301                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2302                                 /*DontDefer=*/false, IsForDefinition);
2303   else if (isa<CXXMethodDecl>(D)) {
2304     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2305         cast<CXXMethodDecl>(D));
2306     auto Ty = getTypes().GetFunctionType(*FInfo);
2307     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2308                              IsForDefinition);
2309   } else if (isa<FunctionDecl>(D)) {
2310     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2311     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2312     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2313                              IsForDefinition);
2314   } else
2315     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2316                               IsForDefinition);
2317 }
2318 
2319 llvm::GlobalVariable *
2320 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2321                                       llvm::Type *Ty,
2322                                       llvm::GlobalValue::LinkageTypes Linkage) {
2323   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2324   llvm::GlobalVariable *OldGV = nullptr;
2325 
2326   if (GV) {
2327     // Check if the variable has the right type.
2328     if (GV->getType()->getElementType() == Ty)
2329       return GV;
2330 
2331     // Because C++ name mangling, the only way we can end up with an already
2332     // existing global with the same name is if it has been declared extern "C".
2333     assert(GV->isDeclaration() && "Declaration has wrong type!");
2334     OldGV = GV;
2335   }
2336 
2337   // Create a new variable.
2338   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2339                                 Linkage, nullptr, Name);
2340 
2341   if (OldGV) {
2342     // Replace occurrences of the old variable if needed.
2343     GV->takeName(OldGV);
2344 
2345     if (!OldGV->use_empty()) {
2346       llvm::Constant *NewPtrForOldDecl =
2347       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2348       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2349     }
2350 
2351     OldGV->eraseFromParent();
2352   }
2353 
2354   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2355       !GV->hasAvailableExternallyLinkage())
2356     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2357 
2358   return GV;
2359 }
2360 
2361 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2362 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2363 /// then it will be created with the specified type instead of whatever the
2364 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2365 /// that an actual global with type Ty will be returned, not conversion of a
2366 /// variable with the same mangled name but some other type.
2367 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2368                                                   llvm::Type *Ty,
2369                                            ForDefinition_t IsForDefinition) {
2370   assert(D->hasGlobalStorage() && "Not a global variable");
2371   QualType ASTTy = D->getType();
2372   if (!Ty)
2373     Ty = getTypes().ConvertTypeForMem(ASTTy);
2374 
2375   llvm::PointerType *PTy =
2376     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2377 
2378   StringRef MangledName = getMangledName(D);
2379   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2380 }
2381 
2382 /// CreateRuntimeVariable - Create a new runtime global variable with the
2383 /// specified type and name.
2384 llvm::Constant *
2385 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2386                                      StringRef Name) {
2387   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2388 }
2389 
2390 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2391   assert(!D->getInit() && "Cannot emit definite definitions here!");
2392 
2393   StringRef MangledName = getMangledName(D);
2394   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2395 
2396   // We already have a definition, not declaration, with the same mangled name.
2397   // Emitting of declaration is not required (and actually overwrites emitted
2398   // definition).
2399   if (GV && !GV->isDeclaration())
2400     return;
2401 
2402   // If we have not seen a reference to this variable yet, place it into the
2403   // deferred declarations table to be emitted if needed later.
2404   if (!MustBeEmitted(D) && !GV) {
2405       DeferredDecls[MangledName] = D;
2406       return;
2407   }
2408 
2409   // The tentative definition is the only definition.
2410   EmitGlobalVarDefinition(D);
2411 }
2412 
2413 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2414   return Context.toCharUnitsFromBits(
2415       getDataLayout().getTypeStoreSizeInBits(Ty));
2416 }
2417 
2418 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2419                                                  unsigned AddrSpace) {
2420   if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2421     if (D->hasAttr<CUDAConstantAttr>())
2422       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2423     else if (D->hasAttr<CUDASharedAttr>())
2424       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2425     else
2426       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2427   }
2428 
2429   return AddrSpace;
2430 }
2431 
2432 template<typename SomeDecl>
2433 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2434                                                llvm::GlobalValue *GV) {
2435   if (!getLangOpts().CPlusPlus)
2436     return;
2437 
2438   // Must have 'used' attribute, or else inline assembly can't rely on
2439   // the name existing.
2440   if (!D->template hasAttr<UsedAttr>())
2441     return;
2442 
2443   // Must have internal linkage and an ordinary name.
2444   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2445     return;
2446 
2447   // Must be in an extern "C" context. Entities declared directly within
2448   // a record are not extern "C" even if the record is in such a context.
2449   const SomeDecl *First = D->getFirstDecl();
2450   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2451     return;
2452 
2453   // OK, this is an internal linkage entity inside an extern "C" linkage
2454   // specification. Make a note of that so we can give it the "expected"
2455   // mangled name if nothing else is using that name.
2456   std::pair<StaticExternCMap::iterator, bool> R =
2457       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2458 
2459   // If we have multiple internal linkage entities with the same name
2460   // in extern "C" regions, none of them gets that name.
2461   if (!R.second)
2462     R.first->second = nullptr;
2463 }
2464 
2465 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2466   if (!CGM.supportsCOMDAT())
2467     return false;
2468 
2469   if (D.hasAttr<SelectAnyAttr>())
2470     return true;
2471 
2472   GVALinkage Linkage;
2473   if (auto *VD = dyn_cast<VarDecl>(&D))
2474     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2475   else
2476     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2477 
2478   switch (Linkage) {
2479   case GVA_Internal:
2480   case GVA_AvailableExternally:
2481   case GVA_StrongExternal:
2482     return false;
2483   case GVA_DiscardableODR:
2484   case GVA_StrongODR:
2485     return true;
2486   }
2487   llvm_unreachable("No such linkage");
2488 }
2489 
2490 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2491                                           llvm::GlobalObject &GO) {
2492   if (!shouldBeInCOMDAT(*this, D))
2493     return;
2494   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2495 }
2496 
2497 /// Pass IsTentative as true if you want to create a tentative definition.
2498 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2499                                             bool IsTentative) {
2500   // OpenCL global variables of sampler type are translated to function calls,
2501   // therefore no need to be translated.
2502   QualType ASTTy = D->getType();
2503   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2504     return;
2505 
2506   llvm::Constant *Init = nullptr;
2507   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2508   bool NeedsGlobalCtor = false;
2509   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2510 
2511   const VarDecl *InitDecl;
2512   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2513 
2514   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2515   // as part of their declaration."  Sema has already checked for
2516   // error cases, so we just need to set Init to UndefValue.
2517   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2518       D->hasAttr<CUDASharedAttr>())
2519     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2520   else if (!InitExpr) {
2521     // This is a tentative definition; tentative definitions are
2522     // implicitly initialized with { 0 }.
2523     //
2524     // Note that tentative definitions are only emitted at the end of
2525     // a translation unit, so they should never have incomplete
2526     // type. In addition, EmitTentativeDefinition makes sure that we
2527     // never attempt to emit a tentative definition if a real one
2528     // exists. A use may still exists, however, so we still may need
2529     // to do a RAUW.
2530     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2531     Init = EmitNullConstant(D->getType());
2532   } else {
2533     initializedGlobalDecl = GlobalDecl(D);
2534     Init = EmitConstantInit(*InitDecl);
2535 
2536     if (!Init) {
2537       QualType T = InitExpr->getType();
2538       if (D->getType()->isReferenceType())
2539         T = D->getType();
2540 
2541       if (getLangOpts().CPlusPlus) {
2542         Init = EmitNullConstant(T);
2543         NeedsGlobalCtor = true;
2544       } else {
2545         ErrorUnsupported(D, "static initializer");
2546         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2547       }
2548     } else {
2549       // We don't need an initializer, so remove the entry for the delayed
2550       // initializer position (just in case this entry was delayed) if we
2551       // also don't need to register a destructor.
2552       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2553         DelayedCXXInitPosition.erase(D);
2554     }
2555   }
2556 
2557   llvm::Type* InitType = Init->getType();
2558   llvm::Constant *Entry =
2559       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
2560 
2561   // Strip off a bitcast if we got one back.
2562   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2563     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2564            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2565            // All zero index gep.
2566            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2567     Entry = CE->getOperand(0);
2568   }
2569 
2570   // Entry is now either a Function or GlobalVariable.
2571   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2572 
2573   // We have a definition after a declaration with the wrong type.
2574   // We must make a new GlobalVariable* and update everything that used OldGV
2575   // (a declaration or tentative definition) with the new GlobalVariable*
2576   // (which will be a definition).
2577   //
2578   // This happens if there is a prototype for a global (e.g.
2579   // "extern int x[];") and then a definition of a different type (e.g.
2580   // "int x[10];"). This also happens when an initializer has a different type
2581   // from the type of the global (this happens with unions).
2582   if (!GV ||
2583       GV->getType()->getElementType() != InitType ||
2584       GV->getType()->getAddressSpace() !=
2585        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2586 
2587     // Move the old entry aside so that we'll create a new one.
2588     Entry->setName(StringRef());
2589 
2590     // Make a new global with the correct type, this is now guaranteed to work.
2591     GV = cast<llvm::GlobalVariable>(
2592         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
2593 
2594     // Replace all uses of the old global with the new global
2595     llvm::Constant *NewPtrForOldDecl =
2596         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2597     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2598 
2599     // Erase the old global, since it is no longer used.
2600     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2601   }
2602 
2603   MaybeHandleStaticInExternC(D, GV);
2604 
2605   if (D->hasAttr<AnnotateAttr>())
2606     AddGlobalAnnotations(D, GV);
2607 
2608   // Set the llvm linkage type as appropriate.
2609   llvm::GlobalValue::LinkageTypes Linkage =
2610       getLLVMLinkageVarDefinition(D, GV->isConstant());
2611 
2612   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2613   // the device. [...]"
2614   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2615   // __device__, declares a variable that: [...]
2616   // Is accessible from all the threads within the grid and from the host
2617   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2618   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2619   if (GV && LangOpts.CUDA) {
2620     if (LangOpts.CUDAIsDevice) {
2621       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2622         GV->setExternallyInitialized(true);
2623     } else {
2624       // Host-side shadows of external declarations of device-side
2625       // global variables become internal definitions. These have to
2626       // be internal in order to prevent name conflicts with global
2627       // host variables with the same name in a different TUs.
2628       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2629         Linkage = llvm::GlobalValue::InternalLinkage;
2630 
2631         // Shadow variables and their properties must be registered
2632         // with CUDA runtime.
2633         unsigned Flags = 0;
2634         if (!D->hasDefinition())
2635           Flags |= CGCUDARuntime::ExternDeviceVar;
2636         if (D->hasAttr<CUDAConstantAttr>())
2637           Flags |= CGCUDARuntime::ConstantDeviceVar;
2638         getCUDARuntime().registerDeviceVar(*GV, Flags);
2639       } else if (D->hasAttr<CUDASharedAttr>())
2640         // __shared__ variables are odd. Shadows do get created, but
2641         // they are not registered with the CUDA runtime, so they
2642         // can't really be used to access their device-side
2643         // counterparts. It's not clear yet whether it's nvcc's bug or
2644         // a feature, but we've got to do the same for compatibility.
2645         Linkage = llvm::GlobalValue::InternalLinkage;
2646     }
2647   }
2648   GV->setInitializer(Init);
2649 
2650   // If it is safe to mark the global 'constant', do so now.
2651   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2652                   isTypeConstant(D->getType(), true));
2653 
2654   // If it is in a read-only section, mark it 'constant'.
2655   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2656     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2657     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2658       GV->setConstant(true);
2659   }
2660 
2661   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2662 
2663 
2664   // On Darwin, if the normal linkage of a C++ thread_local variable is
2665   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2666   // copies within a linkage unit; otherwise, the backing variable has
2667   // internal linkage and all accesses should just be calls to the
2668   // Itanium-specified entry point, which has the normal linkage of the
2669   // variable. This is to preserve the ability to change the implementation
2670   // behind the scenes.
2671   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2672       Context.getTargetInfo().getTriple().isOSDarwin() &&
2673       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2674       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2675     Linkage = llvm::GlobalValue::InternalLinkage;
2676 
2677   GV->setLinkage(Linkage);
2678   if (D->hasAttr<DLLImportAttr>())
2679     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2680   else if (D->hasAttr<DLLExportAttr>())
2681     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2682   else
2683     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2684 
2685   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
2686     // common vars aren't constant even if declared const.
2687     GV->setConstant(false);
2688     // Tentative definition of global variables may be initialized with
2689     // non-zero null pointers. In this case they should have weak linkage
2690     // since common linkage must have zero initializer and must not have
2691     // explicit section therefore cannot have non-zero initial value.
2692     if (!GV->getInitializer()->isNullValue())
2693       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
2694   }
2695 
2696   setNonAliasAttributes(D, GV);
2697 
2698   if (D->getTLSKind() && !GV->isThreadLocal()) {
2699     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2700       CXXThreadLocals.push_back(D);
2701     setTLSMode(GV, *D);
2702   }
2703 
2704   maybeSetTrivialComdat(*D, *GV);
2705 
2706   // Emit the initializer function if necessary.
2707   if (NeedsGlobalCtor || NeedsGlobalDtor)
2708     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2709 
2710   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2711 
2712   // Emit global variable debug information.
2713   if (CGDebugInfo *DI = getModuleDebugInfo())
2714     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2715       DI->EmitGlobalVariable(GV, D);
2716 }
2717 
2718 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2719                                       CodeGenModule &CGM, const VarDecl *D,
2720                                       bool NoCommon) {
2721   // Don't give variables common linkage if -fno-common was specified unless it
2722   // was overridden by a NoCommon attribute.
2723   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2724     return true;
2725 
2726   // C11 6.9.2/2:
2727   //   A declaration of an identifier for an object that has file scope without
2728   //   an initializer, and without a storage-class specifier or with the
2729   //   storage-class specifier static, constitutes a tentative definition.
2730   if (D->getInit() || D->hasExternalStorage())
2731     return true;
2732 
2733   // A variable cannot be both common and exist in a section.
2734   if (D->hasAttr<SectionAttr>())
2735     return true;
2736 
2737   // Thread local vars aren't considered common linkage.
2738   if (D->getTLSKind())
2739     return true;
2740 
2741   // Tentative definitions marked with WeakImportAttr are true definitions.
2742   if (D->hasAttr<WeakImportAttr>())
2743     return true;
2744 
2745   // A variable cannot be both common and exist in a comdat.
2746   if (shouldBeInCOMDAT(CGM, *D))
2747     return true;
2748 
2749   // Declarations with a required alignment do not have common linkage in MSVC
2750   // mode.
2751   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2752     if (D->hasAttr<AlignedAttr>())
2753       return true;
2754     QualType VarType = D->getType();
2755     if (Context.isAlignmentRequired(VarType))
2756       return true;
2757 
2758     if (const auto *RT = VarType->getAs<RecordType>()) {
2759       const RecordDecl *RD = RT->getDecl();
2760       for (const FieldDecl *FD : RD->fields()) {
2761         if (FD->isBitField())
2762           continue;
2763         if (FD->hasAttr<AlignedAttr>())
2764           return true;
2765         if (Context.isAlignmentRequired(FD->getType()))
2766           return true;
2767       }
2768     }
2769   }
2770 
2771   return false;
2772 }
2773 
2774 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2775     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2776   if (Linkage == GVA_Internal)
2777     return llvm::Function::InternalLinkage;
2778 
2779   if (D->hasAttr<WeakAttr>()) {
2780     if (IsConstantVariable)
2781       return llvm::GlobalVariable::WeakODRLinkage;
2782     else
2783       return llvm::GlobalVariable::WeakAnyLinkage;
2784   }
2785 
2786   // We are guaranteed to have a strong definition somewhere else,
2787   // so we can use available_externally linkage.
2788   if (Linkage == GVA_AvailableExternally)
2789     return llvm::Function::AvailableExternallyLinkage;
2790 
2791   // Note that Apple's kernel linker doesn't support symbol
2792   // coalescing, so we need to avoid linkonce and weak linkages there.
2793   // Normally, this means we just map to internal, but for explicit
2794   // instantiations we'll map to external.
2795 
2796   // In C++, the compiler has to emit a definition in every translation unit
2797   // that references the function.  We should use linkonce_odr because
2798   // a) if all references in this translation unit are optimized away, we
2799   // don't need to codegen it.  b) if the function persists, it needs to be
2800   // merged with other definitions. c) C++ has the ODR, so we know the
2801   // definition is dependable.
2802   if (Linkage == GVA_DiscardableODR)
2803     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2804                                             : llvm::Function::InternalLinkage;
2805 
2806   // An explicit instantiation of a template has weak linkage, since
2807   // explicit instantiations can occur in multiple translation units
2808   // and must all be equivalent. However, we are not allowed to
2809   // throw away these explicit instantiations.
2810   //
2811   // We don't currently support CUDA device code spread out across multiple TUs,
2812   // so say that CUDA templates are either external (for kernels) or internal.
2813   // This lets llvm perform aggressive inter-procedural optimizations.
2814   if (Linkage == GVA_StrongODR) {
2815     if (Context.getLangOpts().AppleKext)
2816       return llvm::Function::ExternalLinkage;
2817     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
2818       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
2819                                           : llvm::Function::InternalLinkage;
2820     return llvm::Function::WeakODRLinkage;
2821   }
2822 
2823   // C++ doesn't have tentative definitions and thus cannot have common
2824   // linkage.
2825   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2826       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2827                                  CodeGenOpts.NoCommon))
2828     return llvm::GlobalVariable::CommonLinkage;
2829 
2830   // selectany symbols are externally visible, so use weak instead of
2831   // linkonce.  MSVC optimizes away references to const selectany globals, so
2832   // all definitions should be the same and ODR linkage should be used.
2833   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2834   if (D->hasAttr<SelectAnyAttr>())
2835     return llvm::GlobalVariable::WeakODRLinkage;
2836 
2837   // Otherwise, we have strong external linkage.
2838   assert(Linkage == GVA_StrongExternal);
2839   return llvm::GlobalVariable::ExternalLinkage;
2840 }
2841 
2842 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2843     const VarDecl *VD, bool IsConstant) {
2844   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2845   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2846 }
2847 
2848 /// Replace the uses of a function that was declared with a non-proto type.
2849 /// We want to silently drop extra arguments from call sites
2850 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2851                                           llvm::Function *newFn) {
2852   // Fast path.
2853   if (old->use_empty()) return;
2854 
2855   llvm::Type *newRetTy = newFn->getReturnType();
2856   SmallVector<llvm::Value*, 4> newArgs;
2857   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2858 
2859   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2860          ui != ue; ) {
2861     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2862     llvm::User *user = use->getUser();
2863 
2864     // Recognize and replace uses of bitcasts.  Most calls to
2865     // unprototyped functions will use bitcasts.
2866     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2867       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2868         replaceUsesOfNonProtoConstant(bitcast, newFn);
2869       continue;
2870     }
2871 
2872     // Recognize calls to the function.
2873     llvm::CallSite callSite(user);
2874     if (!callSite) continue;
2875     if (!callSite.isCallee(&*use)) continue;
2876 
2877     // If the return types don't match exactly, then we can't
2878     // transform this call unless it's dead.
2879     if (callSite->getType() != newRetTy && !callSite->use_empty())
2880       continue;
2881 
2882     // Get the call site's attribute list.
2883     SmallVector<llvm::AttributeSet, 8> newAttrs;
2884     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2885 
2886     // Collect any return attributes from the call.
2887     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2888       newAttrs.push_back(
2889         llvm::AttributeSet::get(newFn->getContext(),
2890                                 oldAttrs.getRetAttributes()));
2891 
2892     // If the function was passed too few arguments, don't transform.
2893     unsigned newNumArgs = newFn->arg_size();
2894     if (callSite.arg_size() < newNumArgs) continue;
2895 
2896     // If extra arguments were passed, we silently drop them.
2897     // If any of the types mismatch, we don't transform.
2898     unsigned argNo = 0;
2899     bool dontTransform = false;
2900     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2901            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2902       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2903         dontTransform = true;
2904         break;
2905       }
2906 
2907       // Add any parameter attributes.
2908       if (oldAttrs.hasAttributes(argNo + 1))
2909         newAttrs.
2910           push_back(llvm::
2911                     AttributeSet::get(newFn->getContext(),
2912                                       oldAttrs.getParamAttributes(argNo + 1)));
2913     }
2914     if (dontTransform)
2915       continue;
2916 
2917     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2918       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2919                                                  oldAttrs.getFnAttributes()));
2920 
2921     // Okay, we can transform this.  Create the new call instruction and copy
2922     // over the required information.
2923     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2924 
2925     // Copy over any operand bundles.
2926     callSite.getOperandBundlesAsDefs(newBundles);
2927 
2928     llvm::CallSite newCall;
2929     if (callSite.isCall()) {
2930       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2931                                        callSite.getInstruction());
2932     } else {
2933       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2934       newCall = llvm::InvokeInst::Create(newFn,
2935                                          oldInvoke->getNormalDest(),
2936                                          oldInvoke->getUnwindDest(),
2937                                          newArgs, newBundles, "",
2938                                          callSite.getInstruction());
2939     }
2940     newArgs.clear(); // for the next iteration
2941 
2942     if (!newCall->getType()->isVoidTy())
2943       newCall->takeName(callSite.getInstruction());
2944     newCall.setAttributes(
2945                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2946     newCall.setCallingConv(callSite.getCallingConv());
2947 
2948     // Finally, remove the old call, replacing any uses with the new one.
2949     if (!callSite->use_empty())
2950       callSite->replaceAllUsesWith(newCall.getInstruction());
2951 
2952     // Copy debug location attached to CI.
2953     if (callSite->getDebugLoc())
2954       newCall->setDebugLoc(callSite->getDebugLoc());
2955 
2956     callSite->eraseFromParent();
2957   }
2958 }
2959 
2960 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2961 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2962 /// existing call uses of the old function in the module, this adjusts them to
2963 /// call the new function directly.
2964 ///
2965 /// This is not just a cleanup: the always_inline pass requires direct calls to
2966 /// functions to be able to inline them.  If there is a bitcast in the way, it
2967 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2968 /// run at -O0.
2969 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2970                                                       llvm::Function *NewFn) {
2971   // If we're redefining a global as a function, don't transform it.
2972   if (!isa<llvm::Function>(Old)) return;
2973 
2974   replaceUsesOfNonProtoConstant(Old, NewFn);
2975 }
2976 
2977 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2978   auto DK = VD->isThisDeclarationADefinition();
2979   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
2980     return;
2981 
2982   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2983   // If we have a definition, this might be a deferred decl. If the
2984   // instantiation is explicit, make sure we emit it at the end.
2985   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2986     GetAddrOfGlobalVar(VD);
2987 
2988   EmitTopLevelDecl(VD);
2989 }
2990 
2991 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2992                                                  llvm::GlobalValue *GV) {
2993   const auto *D = cast<FunctionDecl>(GD.getDecl());
2994 
2995   // Compute the function info and LLVM type.
2996   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2997   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2998 
2999   // Get or create the prototype for the function.
3000   if (!GV || (GV->getType()->getElementType() != Ty))
3001     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3002                                                    /*DontDefer=*/true,
3003                                                    ForDefinition));
3004 
3005   // Already emitted.
3006   if (!GV->isDeclaration())
3007     return;
3008 
3009   // We need to set linkage and visibility on the function before
3010   // generating code for it because various parts of IR generation
3011   // want to propagate this information down (e.g. to local static
3012   // declarations).
3013   auto *Fn = cast<llvm::Function>(GV);
3014   setFunctionLinkage(GD, Fn);
3015   setFunctionDLLStorageClass(GD, Fn);
3016 
3017   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3018   setGlobalVisibility(Fn, D);
3019 
3020   MaybeHandleStaticInExternC(D, Fn);
3021 
3022   maybeSetTrivialComdat(*D, *Fn);
3023 
3024   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3025 
3026   setFunctionDefinitionAttributes(D, Fn);
3027   SetLLVMFunctionAttributesForDefinition(D, Fn);
3028 
3029   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3030     AddGlobalCtor(Fn, CA->getPriority());
3031   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3032     AddGlobalDtor(Fn, DA->getPriority());
3033   if (D->hasAttr<AnnotateAttr>())
3034     AddGlobalAnnotations(D, Fn);
3035 }
3036 
3037 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3038   const auto *D = cast<ValueDecl>(GD.getDecl());
3039   const AliasAttr *AA = D->getAttr<AliasAttr>();
3040   assert(AA && "Not an alias?");
3041 
3042   StringRef MangledName = getMangledName(GD);
3043 
3044   if (AA->getAliasee() == MangledName) {
3045     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3046     return;
3047   }
3048 
3049   // If there is a definition in the module, then it wins over the alias.
3050   // This is dubious, but allow it to be safe.  Just ignore the alias.
3051   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3052   if (Entry && !Entry->isDeclaration())
3053     return;
3054 
3055   Aliases.push_back(GD);
3056 
3057   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3058 
3059   // Create a reference to the named value.  This ensures that it is emitted
3060   // if a deferred decl.
3061   llvm::Constant *Aliasee;
3062   if (isa<llvm::FunctionType>(DeclTy))
3063     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3064                                       /*ForVTable=*/false);
3065   else
3066     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3067                                     llvm::PointerType::getUnqual(DeclTy),
3068                                     /*D=*/nullptr);
3069 
3070   // Create the new alias itself, but don't set a name yet.
3071   auto *GA = llvm::GlobalAlias::create(
3072       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3073 
3074   if (Entry) {
3075     if (GA->getAliasee() == Entry) {
3076       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3077       return;
3078     }
3079 
3080     assert(Entry->isDeclaration());
3081 
3082     // If there is a declaration in the module, then we had an extern followed
3083     // by the alias, as in:
3084     //   extern int test6();
3085     //   ...
3086     //   int test6() __attribute__((alias("test7")));
3087     //
3088     // Remove it and replace uses of it with the alias.
3089     GA->takeName(Entry);
3090 
3091     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3092                                                           Entry->getType()));
3093     Entry->eraseFromParent();
3094   } else {
3095     GA->setName(MangledName);
3096   }
3097 
3098   // Set attributes which are particular to an alias; this is a
3099   // specialization of the attributes which may be set on a global
3100   // variable/function.
3101   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3102       D->isWeakImported()) {
3103     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3104   }
3105 
3106   if (const auto *VD = dyn_cast<VarDecl>(D))
3107     if (VD->getTLSKind())
3108       setTLSMode(GA, *VD);
3109 
3110   setAliasAttributes(D, GA);
3111 }
3112 
3113 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3114   const auto *D = cast<ValueDecl>(GD.getDecl());
3115   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3116   assert(IFA && "Not an ifunc?");
3117 
3118   StringRef MangledName = getMangledName(GD);
3119 
3120   if (IFA->getResolver() == MangledName) {
3121     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3122     return;
3123   }
3124 
3125   // Report an error if some definition overrides ifunc.
3126   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3127   if (Entry && !Entry->isDeclaration()) {
3128     GlobalDecl OtherGD;
3129     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3130         DiagnosedConflictingDefinitions.insert(GD).second) {
3131       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3132       Diags.Report(OtherGD.getDecl()->getLocation(),
3133                    diag::note_previous_definition);
3134     }
3135     return;
3136   }
3137 
3138   Aliases.push_back(GD);
3139 
3140   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3141   llvm::Constant *Resolver =
3142       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3143                               /*ForVTable=*/false);
3144   llvm::GlobalIFunc *GIF =
3145       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3146                                 "", Resolver, &getModule());
3147   if (Entry) {
3148     if (GIF->getResolver() == Entry) {
3149       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3150       return;
3151     }
3152     assert(Entry->isDeclaration());
3153 
3154     // If there is a declaration in the module, then we had an extern followed
3155     // by the ifunc, as in:
3156     //   extern int test();
3157     //   ...
3158     //   int test() __attribute__((ifunc("resolver")));
3159     //
3160     // Remove it and replace uses of it with the ifunc.
3161     GIF->takeName(Entry);
3162 
3163     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3164                                                           Entry->getType()));
3165     Entry->eraseFromParent();
3166   } else
3167     GIF->setName(MangledName);
3168 
3169   SetCommonAttributes(D, GIF);
3170 }
3171 
3172 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3173                                             ArrayRef<llvm::Type*> Tys) {
3174   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3175                                          Tys);
3176 }
3177 
3178 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3179 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3180                          const StringLiteral *Literal, bool TargetIsLSB,
3181                          bool &IsUTF16, unsigned &StringLength) {
3182   StringRef String = Literal->getString();
3183   unsigned NumBytes = String.size();
3184 
3185   // Check for simple case.
3186   if (!Literal->containsNonAsciiOrNull()) {
3187     StringLength = NumBytes;
3188     return *Map.insert(std::make_pair(String, nullptr)).first;
3189   }
3190 
3191   // Otherwise, convert the UTF8 literals into a string of shorts.
3192   IsUTF16 = true;
3193 
3194   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3195   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3196   llvm::UTF16 *ToPtr = &ToBuf[0];
3197 
3198   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3199                                  ToPtr + NumBytes, llvm::strictConversion);
3200 
3201   // ConvertUTF8toUTF16 returns the length in ToPtr.
3202   StringLength = ToPtr - &ToBuf[0];
3203 
3204   // Add an explicit null.
3205   *ToPtr = 0;
3206   return *Map.insert(std::make_pair(
3207                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3208                                    (StringLength + 1) * 2),
3209                          nullptr)).first;
3210 }
3211 
3212 ConstantAddress
3213 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3214   unsigned StringLength = 0;
3215   bool isUTF16 = false;
3216   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3217       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3218                                getDataLayout().isLittleEndian(), isUTF16,
3219                                StringLength);
3220 
3221   if (auto *C = Entry.second)
3222     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3223 
3224   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3225   llvm::Constant *Zeros[] = { Zero, Zero };
3226 
3227   // If we don't already have it, get __CFConstantStringClassReference.
3228   if (!CFConstantStringClassRef) {
3229     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3230     Ty = llvm::ArrayType::get(Ty, 0);
3231     llvm::Constant *GV =
3232         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3233 
3234     if (getTriple().isOSBinFormatCOFF()) {
3235       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3236       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3237       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3238       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3239 
3240       const VarDecl *VD = nullptr;
3241       for (const auto &Result : DC->lookup(&II))
3242         if ((VD = dyn_cast<VarDecl>(Result)))
3243           break;
3244 
3245       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3246         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3247         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3248       } else {
3249         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3250         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3251       }
3252     }
3253 
3254     // Decay array -> ptr
3255     CFConstantStringClassRef =
3256         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3257   }
3258 
3259   QualType CFTy = getContext().getCFConstantStringType();
3260 
3261   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3262 
3263   ConstantInitBuilder Builder(*this);
3264   auto Fields = Builder.beginStruct(STy);
3265 
3266   // Class pointer.
3267   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3268 
3269   // Flags.
3270   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3271 
3272   // String pointer.
3273   llvm::Constant *C = nullptr;
3274   if (isUTF16) {
3275     auto Arr = llvm::makeArrayRef(
3276         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3277         Entry.first().size() / 2);
3278     C = llvm::ConstantDataArray::get(VMContext, Arr);
3279   } else {
3280     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3281   }
3282 
3283   // Note: -fwritable-strings doesn't make the backing store strings of
3284   // CFStrings writable. (See <rdar://problem/10657500>)
3285   auto *GV =
3286       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3287                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3288   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3289   // Don't enforce the target's minimum global alignment, since the only use
3290   // of the string is via this class initializer.
3291   CharUnits Align = isUTF16
3292                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3293                         : getContext().getTypeAlignInChars(getContext().CharTy);
3294   GV->setAlignment(Align.getQuantity());
3295 
3296   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3297   // Without it LLVM can merge the string with a non unnamed_addr one during
3298   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3299   if (getTriple().isOSBinFormatMachO())
3300     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3301                            : "__TEXT,__cstring,cstring_literals");
3302 
3303   // String.
3304   llvm::Constant *Str =
3305       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3306 
3307   if (isUTF16)
3308     // Cast the UTF16 string to the correct type.
3309     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3310   Fields.add(Str);
3311 
3312   // String length.
3313   auto Ty = getTypes().ConvertType(getContext().LongTy);
3314   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3315 
3316   CharUnits Alignment = getPointerAlign();
3317 
3318   // The struct.
3319   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3320                                     /*isConstant=*/false,
3321                                     llvm::GlobalVariable::PrivateLinkage);
3322   switch (getTriple().getObjectFormat()) {
3323   case llvm::Triple::UnknownObjectFormat:
3324     llvm_unreachable("unknown file format");
3325   case llvm::Triple::COFF:
3326   case llvm::Triple::ELF:
3327   case llvm::Triple::Wasm:
3328     GV->setSection("cfstring");
3329     break;
3330   case llvm::Triple::MachO:
3331     GV->setSection("__DATA,__cfstring");
3332     break;
3333   }
3334   Entry.second = GV;
3335 
3336   return ConstantAddress(GV, Alignment);
3337 }
3338 
3339 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3340   if (ObjCFastEnumerationStateType.isNull()) {
3341     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3342     D->startDefinition();
3343 
3344     QualType FieldTypes[] = {
3345       Context.UnsignedLongTy,
3346       Context.getPointerType(Context.getObjCIdType()),
3347       Context.getPointerType(Context.UnsignedLongTy),
3348       Context.getConstantArrayType(Context.UnsignedLongTy,
3349                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3350     };
3351 
3352     for (size_t i = 0; i < 4; ++i) {
3353       FieldDecl *Field = FieldDecl::Create(Context,
3354                                            D,
3355                                            SourceLocation(),
3356                                            SourceLocation(), nullptr,
3357                                            FieldTypes[i], /*TInfo=*/nullptr,
3358                                            /*BitWidth=*/nullptr,
3359                                            /*Mutable=*/false,
3360                                            ICIS_NoInit);
3361       Field->setAccess(AS_public);
3362       D->addDecl(Field);
3363     }
3364 
3365     D->completeDefinition();
3366     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3367   }
3368 
3369   return ObjCFastEnumerationStateType;
3370 }
3371 
3372 llvm::Constant *
3373 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3374   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3375 
3376   // Don't emit it as the address of the string, emit the string data itself
3377   // as an inline array.
3378   if (E->getCharByteWidth() == 1) {
3379     SmallString<64> Str(E->getString());
3380 
3381     // Resize the string to the right size, which is indicated by its type.
3382     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3383     Str.resize(CAT->getSize().getZExtValue());
3384     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3385   }
3386 
3387   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3388   llvm::Type *ElemTy = AType->getElementType();
3389   unsigned NumElements = AType->getNumElements();
3390 
3391   // Wide strings have either 2-byte or 4-byte elements.
3392   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3393     SmallVector<uint16_t, 32> Elements;
3394     Elements.reserve(NumElements);
3395 
3396     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3397       Elements.push_back(E->getCodeUnit(i));
3398     Elements.resize(NumElements);
3399     return llvm::ConstantDataArray::get(VMContext, Elements);
3400   }
3401 
3402   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3403   SmallVector<uint32_t, 32> Elements;
3404   Elements.reserve(NumElements);
3405 
3406   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3407     Elements.push_back(E->getCodeUnit(i));
3408   Elements.resize(NumElements);
3409   return llvm::ConstantDataArray::get(VMContext, Elements);
3410 }
3411 
3412 static llvm::GlobalVariable *
3413 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3414                       CodeGenModule &CGM, StringRef GlobalName,
3415                       CharUnits Alignment) {
3416   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3417   unsigned AddrSpace = 0;
3418   if (CGM.getLangOpts().OpenCL)
3419     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3420 
3421   llvm::Module &M = CGM.getModule();
3422   // Create a global variable for this string
3423   auto *GV = new llvm::GlobalVariable(
3424       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3425       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3426   GV->setAlignment(Alignment.getQuantity());
3427   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3428   if (GV->isWeakForLinker()) {
3429     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3430     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3431   }
3432 
3433   return GV;
3434 }
3435 
3436 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3437 /// constant array for the given string literal.
3438 ConstantAddress
3439 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3440                                                   StringRef Name) {
3441   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3442 
3443   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3444   llvm::GlobalVariable **Entry = nullptr;
3445   if (!LangOpts.WritableStrings) {
3446     Entry = &ConstantStringMap[C];
3447     if (auto GV = *Entry) {
3448       if (Alignment.getQuantity() > GV->getAlignment())
3449         GV->setAlignment(Alignment.getQuantity());
3450       return ConstantAddress(GV, Alignment);
3451     }
3452   }
3453 
3454   SmallString<256> MangledNameBuffer;
3455   StringRef GlobalVariableName;
3456   llvm::GlobalValue::LinkageTypes LT;
3457 
3458   // Mangle the string literal if the ABI allows for it.  However, we cannot
3459   // do this if  we are compiling with ASan or -fwritable-strings because they
3460   // rely on strings having normal linkage.
3461   if (!LangOpts.WritableStrings &&
3462       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3463       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3464     llvm::raw_svector_ostream Out(MangledNameBuffer);
3465     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3466 
3467     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3468     GlobalVariableName = MangledNameBuffer;
3469   } else {
3470     LT = llvm::GlobalValue::PrivateLinkage;
3471     GlobalVariableName = Name;
3472   }
3473 
3474   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3475   if (Entry)
3476     *Entry = GV;
3477 
3478   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3479                                   QualType());
3480   return ConstantAddress(GV, Alignment);
3481 }
3482 
3483 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3484 /// array for the given ObjCEncodeExpr node.
3485 ConstantAddress
3486 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3487   std::string Str;
3488   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3489 
3490   return GetAddrOfConstantCString(Str);
3491 }
3492 
3493 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3494 /// the literal and a terminating '\0' character.
3495 /// The result has pointer to array type.
3496 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3497     const std::string &Str, const char *GlobalName) {
3498   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3499   CharUnits Alignment =
3500     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3501 
3502   llvm::Constant *C =
3503       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3504 
3505   // Don't share any string literals if strings aren't constant.
3506   llvm::GlobalVariable **Entry = nullptr;
3507   if (!LangOpts.WritableStrings) {
3508     Entry = &ConstantStringMap[C];
3509     if (auto GV = *Entry) {
3510       if (Alignment.getQuantity() > GV->getAlignment())
3511         GV->setAlignment(Alignment.getQuantity());
3512       return ConstantAddress(GV, Alignment);
3513     }
3514   }
3515 
3516   // Get the default prefix if a name wasn't specified.
3517   if (!GlobalName)
3518     GlobalName = ".str";
3519   // Create a global variable for this.
3520   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3521                                   GlobalName, Alignment);
3522   if (Entry)
3523     *Entry = GV;
3524   return ConstantAddress(GV, Alignment);
3525 }
3526 
3527 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3528     const MaterializeTemporaryExpr *E, const Expr *Init) {
3529   assert((E->getStorageDuration() == SD_Static ||
3530           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3531   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3532 
3533   // If we're not materializing a subobject of the temporary, keep the
3534   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3535   QualType MaterializedType = Init->getType();
3536   if (Init == E->GetTemporaryExpr())
3537     MaterializedType = E->getType();
3538 
3539   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3540 
3541   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3542     return ConstantAddress(Slot, Align);
3543 
3544   // FIXME: If an externally-visible declaration extends multiple temporaries,
3545   // we need to give each temporary the same name in every translation unit (and
3546   // we also need to make the temporaries externally-visible).
3547   SmallString<256> Name;
3548   llvm::raw_svector_ostream Out(Name);
3549   getCXXABI().getMangleContext().mangleReferenceTemporary(
3550       VD, E->getManglingNumber(), Out);
3551 
3552   APValue *Value = nullptr;
3553   if (E->getStorageDuration() == SD_Static) {
3554     // We might have a cached constant initializer for this temporary. Note
3555     // that this might have a different value from the value computed by
3556     // evaluating the initializer if the surrounding constant expression
3557     // modifies the temporary.
3558     Value = getContext().getMaterializedTemporaryValue(E, false);
3559     if (Value && Value->isUninit())
3560       Value = nullptr;
3561   }
3562 
3563   // Try evaluating it now, it might have a constant initializer.
3564   Expr::EvalResult EvalResult;
3565   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3566       !EvalResult.hasSideEffects())
3567     Value = &EvalResult.Val;
3568 
3569   llvm::Constant *InitialValue = nullptr;
3570   bool Constant = false;
3571   llvm::Type *Type;
3572   if (Value) {
3573     // The temporary has a constant initializer, use it.
3574     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3575     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3576     Type = InitialValue->getType();
3577   } else {
3578     // No initializer, the initialization will be provided when we
3579     // initialize the declaration which performed lifetime extension.
3580     Type = getTypes().ConvertTypeForMem(MaterializedType);
3581   }
3582 
3583   // Create a global variable for this lifetime-extended temporary.
3584   llvm::GlobalValue::LinkageTypes Linkage =
3585       getLLVMLinkageVarDefinition(VD, Constant);
3586   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3587     const VarDecl *InitVD;
3588     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3589         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3590       // Temporaries defined inside a class get linkonce_odr linkage because the
3591       // class can be defined in multipe translation units.
3592       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3593     } else {
3594       // There is no need for this temporary to have external linkage if the
3595       // VarDecl has external linkage.
3596       Linkage = llvm::GlobalVariable::InternalLinkage;
3597     }
3598   }
3599   unsigned AddrSpace = GetGlobalVarAddressSpace(
3600       VD, getContext().getTargetAddressSpace(MaterializedType));
3601   auto *GV = new llvm::GlobalVariable(
3602       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3603       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3604       AddrSpace);
3605   setGlobalVisibility(GV, VD);
3606   GV->setAlignment(Align.getQuantity());
3607   if (supportsCOMDAT() && GV->isWeakForLinker())
3608     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3609   if (VD->getTLSKind())
3610     setTLSMode(GV, *VD);
3611   MaterializedGlobalTemporaryMap[E] = GV;
3612   return ConstantAddress(GV, Align);
3613 }
3614 
3615 /// EmitObjCPropertyImplementations - Emit information for synthesized
3616 /// properties for an implementation.
3617 void CodeGenModule::EmitObjCPropertyImplementations(const
3618                                                     ObjCImplementationDecl *D) {
3619   for (const auto *PID : D->property_impls()) {
3620     // Dynamic is just for type-checking.
3621     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3622       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3623 
3624       // Determine which methods need to be implemented, some may have
3625       // been overridden. Note that ::isPropertyAccessor is not the method
3626       // we want, that just indicates if the decl came from a
3627       // property. What we want to know is if the method is defined in
3628       // this implementation.
3629       if (!D->getInstanceMethod(PD->getGetterName()))
3630         CodeGenFunction(*this).GenerateObjCGetter(
3631                                  const_cast<ObjCImplementationDecl *>(D), PID);
3632       if (!PD->isReadOnly() &&
3633           !D->getInstanceMethod(PD->getSetterName()))
3634         CodeGenFunction(*this).GenerateObjCSetter(
3635                                  const_cast<ObjCImplementationDecl *>(D), PID);
3636     }
3637   }
3638 }
3639 
3640 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3641   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3642   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3643        ivar; ivar = ivar->getNextIvar())
3644     if (ivar->getType().isDestructedType())
3645       return true;
3646 
3647   return false;
3648 }
3649 
3650 static bool AllTrivialInitializers(CodeGenModule &CGM,
3651                                    ObjCImplementationDecl *D) {
3652   CodeGenFunction CGF(CGM);
3653   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3654        E = D->init_end(); B != E; ++B) {
3655     CXXCtorInitializer *CtorInitExp = *B;
3656     Expr *Init = CtorInitExp->getInit();
3657     if (!CGF.isTrivialInitializer(Init))
3658       return false;
3659   }
3660   return true;
3661 }
3662 
3663 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3664 /// for an implementation.
3665 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3666   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3667   if (needsDestructMethod(D)) {
3668     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3669     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3670     ObjCMethodDecl *DTORMethod =
3671       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3672                              cxxSelector, getContext().VoidTy, nullptr, D,
3673                              /*isInstance=*/true, /*isVariadic=*/false,
3674                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3675                              /*isDefined=*/false, ObjCMethodDecl::Required);
3676     D->addInstanceMethod(DTORMethod);
3677     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3678     D->setHasDestructors(true);
3679   }
3680 
3681   // If the implementation doesn't have any ivar initializers, we don't need
3682   // a .cxx_construct.
3683   if (D->getNumIvarInitializers() == 0 ||
3684       AllTrivialInitializers(*this, D))
3685     return;
3686 
3687   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3688   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3689   // The constructor returns 'self'.
3690   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3691                                                 D->getLocation(),
3692                                                 D->getLocation(),
3693                                                 cxxSelector,
3694                                                 getContext().getObjCIdType(),
3695                                                 nullptr, D, /*isInstance=*/true,
3696                                                 /*isVariadic=*/false,
3697                                                 /*isPropertyAccessor=*/true,
3698                                                 /*isImplicitlyDeclared=*/true,
3699                                                 /*isDefined=*/false,
3700                                                 ObjCMethodDecl::Required);
3701   D->addInstanceMethod(CTORMethod);
3702   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3703   D->setHasNonZeroConstructors(true);
3704 }
3705 
3706 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3707 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3708   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3709       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3710     ErrorUnsupported(LSD, "linkage spec");
3711     return;
3712   }
3713 
3714   EmitDeclContext(LSD);
3715 }
3716 
3717 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
3718   for (auto *I : DC->decls()) {
3719     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
3720     // are themselves considered "top-level", so EmitTopLevelDecl on an
3721     // ObjCImplDecl does not recursively visit them. We need to do that in
3722     // case they're nested inside another construct (LinkageSpecDecl /
3723     // ExportDecl) that does stop them from being considered "top-level".
3724     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3725       for (auto *M : OID->methods())
3726         EmitTopLevelDecl(M);
3727     }
3728 
3729     EmitTopLevelDecl(I);
3730   }
3731 }
3732 
3733 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3734 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3735   // Ignore dependent declarations.
3736   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3737     return;
3738 
3739   switch (D->getKind()) {
3740   case Decl::CXXConversion:
3741   case Decl::CXXMethod:
3742   case Decl::Function:
3743     // Skip function templates
3744     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3745         cast<FunctionDecl>(D)->isLateTemplateParsed())
3746       return;
3747 
3748     EmitGlobal(cast<FunctionDecl>(D));
3749     // Always provide some coverage mapping
3750     // even for the functions that aren't emitted.
3751     AddDeferredUnusedCoverageMapping(D);
3752     break;
3753 
3754   case Decl::Var:
3755   case Decl::Decomposition:
3756     // Skip variable templates
3757     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3758       return;
3759   case Decl::VarTemplateSpecialization:
3760     EmitGlobal(cast<VarDecl>(D));
3761     if (auto *DD = dyn_cast<DecompositionDecl>(D))
3762       for (auto *B : DD->bindings())
3763         if (auto *HD = B->getHoldingVar())
3764           EmitGlobal(HD);
3765     break;
3766 
3767   // Indirect fields from global anonymous structs and unions can be
3768   // ignored; only the actual variable requires IR gen support.
3769   case Decl::IndirectField:
3770     break;
3771 
3772   // C++ Decls
3773   case Decl::Namespace:
3774     EmitDeclContext(cast<NamespaceDecl>(D));
3775     break;
3776   case Decl::CXXRecord:
3777     // Emit any static data members, they may be definitions.
3778     for (auto *I : cast<CXXRecordDecl>(D)->decls())
3779       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
3780         EmitTopLevelDecl(I);
3781     break;
3782     // No code generation needed.
3783   case Decl::UsingShadow:
3784   case Decl::ClassTemplate:
3785   case Decl::VarTemplate:
3786   case Decl::VarTemplatePartialSpecialization:
3787   case Decl::FunctionTemplate:
3788   case Decl::TypeAliasTemplate:
3789   case Decl::Block:
3790   case Decl::Empty:
3791     break;
3792   case Decl::Using:          // using X; [C++]
3793     if (CGDebugInfo *DI = getModuleDebugInfo())
3794         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3795     return;
3796   case Decl::NamespaceAlias:
3797     if (CGDebugInfo *DI = getModuleDebugInfo())
3798         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3799     return;
3800   case Decl::UsingDirective: // using namespace X; [C++]
3801     if (CGDebugInfo *DI = getModuleDebugInfo())
3802       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3803     return;
3804   case Decl::CXXConstructor:
3805     // Skip function templates
3806     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3807         cast<FunctionDecl>(D)->isLateTemplateParsed())
3808       return;
3809 
3810     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3811     break;
3812   case Decl::CXXDestructor:
3813     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3814       return;
3815     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3816     break;
3817 
3818   case Decl::StaticAssert:
3819     // Nothing to do.
3820     break;
3821 
3822   // Objective-C Decls
3823 
3824   // Forward declarations, no (immediate) code generation.
3825   case Decl::ObjCInterface:
3826   case Decl::ObjCCategory:
3827     break;
3828 
3829   case Decl::ObjCProtocol: {
3830     auto *Proto = cast<ObjCProtocolDecl>(D);
3831     if (Proto->isThisDeclarationADefinition())
3832       ObjCRuntime->GenerateProtocol(Proto);
3833     break;
3834   }
3835 
3836   case Decl::ObjCCategoryImpl:
3837     // Categories have properties but don't support synthesize so we
3838     // can ignore them here.
3839     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3840     break;
3841 
3842   case Decl::ObjCImplementation: {
3843     auto *OMD = cast<ObjCImplementationDecl>(D);
3844     EmitObjCPropertyImplementations(OMD);
3845     EmitObjCIvarInitializations(OMD);
3846     ObjCRuntime->GenerateClass(OMD);
3847     // Emit global variable debug information.
3848     if (CGDebugInfo *DI = getModuleDebugInfo())
3849       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3850         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3851             OMD->getClassInterface()), OMD->getLocation());
3852     break;
3853   }
3854   case Decl::ObjCMethod: {
3855     auto *OMD = cast<ObjCMethodDecl>(D);
3856     // If this is not a prototype, emit the body.
3857     if (OMD->getBody())
3858       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3859     break;
3860   }
3861   case Decl::ObjCCompatibleAlias:
3862     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3863     break;
3864 
3865   case Decl::PragmaComment: {
3866     const auto *PCD = cast<PragmaCommentDecl>(D);
3867     switch (PCD->getCommentKind()) {
3868     case PCK_Unknown:
3869       llvm_unreachable("unexpected pragma comment kind");
3870     case PCK_Linker:
3871       AppendLinkerOptions(PCD->getArg());
3872       break;
3873     case PCK_Lib:
3874       AddDependentLib(PCD->getArg());
3875       break;
3876     case PCK_Compiler:
3877     case PCK_ExeStr:
3878     case PCK_User:
3879       break; // We ignore all of these.
3880     }
3881     break;
3882   }
3883 
3884   case Decl::PragmaDetectMismatch: {
3885     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3886     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3887     break;
3888   }
3889 
3890   case Decl::LinkageSpec:
3891     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3892     break;
3893 
3894   case Decl::FileScopeAsm: {
3895     // File-scope asm is ignored during device-side CUDA compilation.
3896     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3897       break;
3898     // File-scope asm is ignored during device-side OpenMP compilation.
3899     if (LangOpts.OpenMPIsDevice)
3900       break;
3901     auto *AD = cast<FileScopeAsmDecl>(D);
3902     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3903     break;
3904   }
3905 
3906   case Decl::Import: {
3907     auto *Import = cast<ImportDecl>(D);
3908 
3909     // If we've already imported this module, we're done.
3910     if (!ImportedModules.insert(Import->getImportedModule()))
3911       break;
3912 
3913     // Emit debug information for direct imports.
3914     if (!Import->getImportedOwningModule()) {
3915       if (CGDebugInfo *DI = getModuleDebugInfo())
3916         DI->EmitImportDecl(*Import);
3917     }
3918 
3919     // Find all of the submodules and emit the module initializers.
3920     llvm::SmallPtrSet<clang::Module *, 16> Visited;
3921     SmallVector<clang::Module *, 16> Stack;
3922     Visited.insert(Import->getImportedModule());
3923     Stack.push_back(Import->getImportedModule());
3924 
3925     while (!Stack.empty()) {
3926       clang::Module *Mod = Stack.pop_back_val();
3927       if (!EmittedModuleInitializers.insert(Mod).second)
3928         continue;
3929 
3930       for (auto *D : Context.getModuleInitializers(Mod))
3931         EmitTopLevelDecl(D);
3932 
3933       // Visit the submodules of this module.
3934       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
3935                                              SubEnd = Mod->submodule_end();
3936            Sub != SubEnd; ++Sub) {
3937         // Skip explicit children; they need to be explicitly imported to emit
3938         // the initializers.
3939         if ((*Sub)->IsExplicit)
3940           continue;
3941 
3942         if (Visited.insert(*Sub).second)
3943           Stack.push_back(*Sub);
3944       }
3945     }
3946     break;
3947   }
3948 
3949   case Decl::Export:
3950     EmitDeclContext(cast<ExportDecl>(D));
3951     break;
3952 
3953   case Decl::OMPThreadPrivate:
3954     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3955     break;
3956 
3957   case Decl::ClassTemplateSpecialization: {
3958     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3959     if (DebugInfo &&
3960         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3961         Spec->hasDefinition())
3962       DebugInfo->completeTemplateDefinition(*Spec);
3963     break;
3964   }
3965 
3966   case Decl::OMPDeclareReduction:
3967     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
3968     break;
3969 
3970   default:
3971     // Make sure we handled everything we should, every other kind is a
3972     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3973     // function. Need to recode Decl::Kind to do that easily.
3974     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3975     break;
3976   }
3977 }
3978 
3979 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3980   // Do we need to generate coverage mapping?
3981   if (!CodeGenOpts.CoverageMapping)
3982     return;
3983   switch (D->getKind()) {
3984   case Decl::CXXConversion:
3985   case Decl::CXXMethod:
3986   case Decl::Function:
3987   case Decl::ObjCMethod:
3988   case Decl::CXXConstructor:
3989   case Decl::CXXDestructor: {
3990     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
3991       return;
3992     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3993     if (I == DeferredEmptyCoverageMappingDecls.end())
3994       DeferredEmptyCoverageMappingDecls[D] = true;
3995     break;
3996   }
3997   default:
3998     break;
3999   };
4000 }
4001 
4002 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4003   // Do we need to generate coverage mapping?
4004   if (!CodeGenOpts.CoverageMapping)
4005     return;
4006   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4007     if (Fn->isTemplateInstantiation())
4008       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4009   }
4010   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4011   if (I == DeferredEmptyCoverageMappingDecls.end())
4012     DeferredEmptyCoverageMappingDecls[D] = false;
4013   else
4014     I->second = false;
4015 }
4016 
4017 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4018   std::vector<const Decl *> DeferredDecls;
4019   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
4020     if (!I.second)
4021       continue;
4022     DeferredDecls.push_back(I.first);
4023   }
4024   // Sort the declarations by their location to make sure that the tests get a
4025   // predictable order for the coverage mapping for the unused declarations.
4026   if (CodeGenOpts.DumpCoverageMapping)
4027     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
4028               [] (const Decl *LHS, const Decl *RHS) {
4029       return LHS->getLocStart() < RHS->getLocStart();
4030     });
4031   for (const auto *D : DeferredDecls) {
4032     switch (D->getKind()) {
4033     case Decl::CXXConversion:
4034     case Decl::CXXMethod:
4035     case Decl::Function:
4036     case Decl::ObjCMethod: {
4037       CodeGenPGO PGO(*this);
4038       GlobalDecl GD(cast<FunctionDecl>(D));
4039       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4040                                   getFunctionLinkage(GD));
4041       break;
4042     }
4043     case Decl::CXXConstructor: {
4044       CodeGenPGO PGO(*this);
4045       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4046       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4047                                   getFunctionLinkage(GD));
4048       break;
4049     }
4050     case Decl::CXXDestructor: {
4051       CodeGenPGO PGO(*this);
4052       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4053       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4054                                   getFunctionLinkage(GD));
4055       break;
4056     }
4057     default:
4058       break;
4059     };
4060   }
4061 }
4062 
4063 /// Turns the given pointer into a constant.
4064 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4065                                           const void *Ptr) {
4066   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4067   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4068   return llvm::ConstantInt::get(i64, PtrInt);
4069 }
4070 
4071 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4072                                    llvm::NamedMDNode *&GlobalMetadata,
4073                                    GlobalDecl D,
4074                                    llvm::GlobalValue *Addr) {
4075   if (!GlobalMetadata)
4076     GlobalMetadata =
4077       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4078 
4079   // TODO: should we report variant information for ctors/dtors?
4080   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4081                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4082                                CGM.getLLVMContext(), D.getDecl()))};
4083   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4084 }
4085 
4086 /// For each function which is declared within an extern "C" region and marked
4087 /// as 'used', but has internal linkage, create an alias from the unmangled
4088 /// name to the mangled name if possible. People expect to be able to refer
4089 /// to such functions with an unmangled name from inline assembly within the
4090 /// same translation unit.
4091 void CodeGenModule::EmitStaticExternCAliases() {
4092   // Don't do anything if we're generating CUDA device code -- the NVPTX
4093   // assembly target doesn't support aliases.
4094   if (Context.getTargetInfo().getTriple().isNVPTX())
4095     return;
4096   for (auto &I : StaticExternCValues) {
4097     IdentifierInfo *Name = I.first;
4098     llvm::GlobalValue *Val = I.second;
4099     if (Val && !getModule().getNamedValue(Name->getName()))
4100       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4101   }
4102 }
4103 
4104 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4105                                              GlobalDecl &Result) const {
4106   auto Res = Manglings.find(MangledName);
4107   if (Res == Manglings.end())
4108     return false;
4109   Result = Res->getValue();
4110   return true;
4111 }
4112 
4113 /// Emits metadata nodes associating all the global values in the
4114 /// current module with the Decls they came from.  This is useful for
4115 /// projects using IR gen as a subroutine.
4116 ///
4117 /// Since there's currently no way to associate an MDNode directly
4118 /// with an llvm::GlobalValue, we create a global named metadata
4119 /// with the name 'clang.global.decl.ptrs'.
4120 void CodeGenModule::EmitDeclMetadata() {
4121   llvm::NamedMDNode *GlobalMetadata = nullptr;
4122 
4123   for (auto &I : MangledDeclNames) {
4124     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4125     // Some mangled names don't necessarily have an associated GlobalValue
4126     // in this module, e.g. if we mangled it for DebugInfo.
4127     if (Addr)
4128       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4129   }
4130 }
4131 
4132 /// Emits metadata nodes for all the local variables in the current
4133 /// function.
4134 void CodeGenFunction::EmitDeclMetadata() {
4135   if (LocalDeclMap.empty()) return;
4136 
4137   llvm::LLVMContext &Context = getLLVMContext();
4138 
4139   // Find the unique metadata ID for this name.
4140   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4141 
4142   llvm::NamedMDNode *GlobalMetadata = nullptr;
4143 
4144   for (auto &I : LocalDeclMap) {
4145     const Decl *D = I.first;
4146     llvm::Value *Addr = I.second.getPointer();
4147     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4148       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4149       Alloca->setMetadata(
4150           DeclPtrKind, llvm::MDNode::get(
4151                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4152     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4153       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4154       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4155     }
4156   }
4157 }
4158 
4159 void CodeGenModule::EmitVersionIdentMetadata() {
4160   llvm::NamedMDNode *IdentMetadata =
4161     TheModule.getOrInsertNamedMetadata("llvm.ident");
4162   std::string Version = getClangFullVersion();
4163   llvm::LLVMContext &Ctx = TheModule.getContext();
4164 
4165   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4166   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4167 }
4168 
4169 void CodeGenModule::EmitTargetMetadata() {
4170   // Warning, new MangledDeclNames may be appended within this loop.
4171   // We rely on MapVector insertions adding new elements to the end
4172   // of the container.
4173   // FIXME: Move this loop into the one target that needs it, and only
4174   // loop over those declarations for which we couldn't emit the target
4175   // metadata when we emitted the declaration.
4176   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4177     auto Val = *(MangledDeclNames.begin() + I);
4178     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4179     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4180     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4181   }
4182 }
4183 
4184 void CodeGenModule::EmitCoverageFile() {
4185   if (getCodeGenOpts().CoverageDataFile.empty() &&
4186       getCodeGenOpts().CoverageNotesFile.empty())
4187     return;
4188 
4189   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4190   if (!CUNode)
4191     return;
4192 
4193   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4194   llvm::LLVMContext &Ctx = TheModule.getContext();
4195   auto *CoverageDataFile =
4196       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4197   auto *CoverageNotesFile =
4198       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4199   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4200     llvm::MDNode *CU = CUNode->getOperand(i);
4201     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4202     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4203   }
4204 }
4205 
4206 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4207   // Sema has checked that all uuid strings are of the form
4208   // "12345678-1234-1234-1234-1234567890ab".
4209   assert(Uuid.size() == 36);
4210   for (unsigned i = 0; i < 36; ++i) {
4211     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4212     else                                         assert(isHexDigit(Uuid[i]));
4213   }
4214 
4215   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4216   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4217 
4218   llvm::Constant *Field3[8];
4219   for (unsigned Idx = 0; Idx < 8; ++Idx)
4220     Field3[Idx] = llvm::ConstantInt::get(
4221         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4222 
4223   llvm::Constant *Fields[4] = {
4224     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4225     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4226     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4227     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4228   };
4229 
4230   return llvm::ConstantStruct::getAnon(Fields);
4231 }
4232 
4233 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4234                                                        bool ForEH) {
4235   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4236   // FIXME: should we even be calling this method if RTTI is disabled
4237   // and it's not for EH?
4238   if (!ForEH && !getLangOpts().RTTI)
4239     return llvm::Constant::getNullValue(Int8PtrTy);
4240 
4241   if (ForEH && Ty->isObjCObjectPointerType() &&
4242       LangOpts.ObjCRuntime.isGNUFamily())
4243     return ObjCRuntime->GetEHType(Ty);
4244 
4245   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4246 }
4247 
4248 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4249   for (auto RefExpr : D->varlists()) {
4250     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4251     bool PerformInit =
4252         VD->getAnyInitializer() &&
4253         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4254                                                         /*ForRef=*/false);
4255 
4256     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4257     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4258             VD, Addr, RefExpr->getLocStart(), PerformInit))
4259       CXXGlobalInits.push_back(InitFunction);
4260   }
4261 }
4262 
4263 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4264   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4265   if (InternalId)
4266     return InternalId;
4267 
4268   if (isExternallyVisible(T->getLinkage())) {
4269     std::string OutName;
4270     llvm::raw_string_ostream Out(OutName);
4271     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4272 
4273     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4274   } else {
4275     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4276                                            llvm::ArrayRef<llvm::Metadata *>());
4277   }
4278 
4279   return InternalId;
4280 }
4281 
4282 /// Returns whether this module needs the "all-vtables" type identifier.
4283 bool CodeGenModule::NeedAllVtablesTypeId() const {
4284   // Returns true if at least one of vtable-based CFI checkers is enabled and
4285   // is not in the trapping mode.
4286   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4287            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4288           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4289            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4290           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4291            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4292           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4293            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4294 }
4295 
4296 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4297                                           CharUnits Offset,
4298                                           const CXXRecordDecl *RD) {
4299   llvm::Metadata *MD =
4300       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4301   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4302 
4303   if (CodeGenOpts.SanitizeCfiCrossDso)
4304     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4305       VTable->addTypeMetadata(Offset.getQuantity(),
4306                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4307 
4308   if (NeedAllVtablesTypeId()) {
4309     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4310     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4311   }
4312 }
4313 
4314 // Fills in the supplied string map with the set of target features for the
4315 // passed in function.
4316 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4317                                           const FunctionDecl *FD) {
4318   StringRef TargetCPU = Target.getTargetOpts().CPU;
4319   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4320     // If we have a TargetAttr build up the feature map based on that.
4321     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4322 
4323     // Make a copy of the features as passed on the command line into the
4324     // beginning of the additional features from the function to override.
4325     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4326                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4327                             Target.getTargetOpts().FeaturesAsWritten.end());
4328 
4329     if (ParsedAttr.second != "")
4330       TargetCPU = ParsedAttr.second;
4331 
4332     // Now populate the feature map, first with the TargetCPU which is either
4333     // the default or a new one from the target attribute string. Then we'll use
4334     // the passed in features (FeaturesAsWritten) along with the new ones from
4335     // the attribute.
4336     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4337   } else {
4338     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4339                           Target.getTargetOpts().Features);
4340   }
4341 }
4342 
4343 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4344   if (!SanStats)
4345     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4346 
4347   return *SanStats;
4348 }
4349 llvm::Value *
4350 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4351                                                   CodeGenFunction &CGF) {
4352   llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF);
4353   auto SamplerT = getOpenCLRuntime().getSamplerType();
4354   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4355   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4356                                 "__translate_sampler_initializer"),
4357                                 {C});
4358 }
4359