1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/StringSwitch.h" 53 #include "llvm/Analysis/TargetLibraryInfo.h" 54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 55 #include "llvm/IR/CallingConv.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/Intrinsics.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/ProfileSummary.h" 61 #include "llvm/ProfileData/InstrProfReader.h" 62 #include "llvm/ProfileData/SampleProf.h" 63 #include "llvm/Support/CRC.h" 64 #include "llvm/Support/CodeGen.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/ConvertUTF.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/TimeProfiler.h" 69 #include "llvm/Support/xxhash.h" 70 #include "llvm/TargetParser/Triple.h" 71 #include "llvm/TargetParser/X86TargetParser.h" 72 #include <optional> 73 74 using namespace clang; 75 using namespace CodeGen; 76 77 static llvm::cl::opt<bool> LimitedCoverage( 78 "limited-coverage-experimental", llvm::cl::Hidden, 79 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 80 81 static const char AnnotationSection[] = "llvm.metadata"; 82 83 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 84 switch (CGM.getContext().getCXXABIKind()) { 85 case TargetCXXABI::AppleARM64: 86 case TargetCXXABI::Fuchsia: 87 case TargetCXXABI::GenericAArch64: 88 case TargetCXXABI::GenericARM: 89 case TargetCXXABI::iOS: 90 case TargetCXXABI::WatchOS: 91 case TargetCXXABI::GenericMIPS: 92 case TargetCXXABI::GenericItanium: 93 case TargetCXXABI::WebAssembly: 94 case TargetCXXABI::XL: 95 return CreateItaniumCXXABI(CGM); 96 case TargetCXXABI::Microsoft: 97 return CreateMicrosoftCXXABI(CGM); 98 } 99 100 llvm_unreachable("invalid C++ ABI kind"); 101 } 102 103 CodeGenModule::CodeGenModule(ASTContext &C, 104 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 105 const HeaderSearchOptions &HSO, 106 const PreprocessorOptions &PPO, 107 const CodeGenOptions &CGO, llvm::Module &M, 108 DiagnosticsEngine &diags, 109 CoverageSourceInfo *CoverageInfo) 110 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 111 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 112 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 113 VMContext(M.getContext()), Types(*this), VTables(*this), 114 SanitizerMD(new SanitizerMetadata(*this)) { 115 116 // Initialize the type cache. 117 llvm::LLVMContext &LLVMContext = M.getContext(); 118 VoidTy = llvm::Type::getVoidTy(LLVMContext); 119 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 120 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 121 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 122 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 123 HalfTy = llvm::Type::getHalfTy(LLVMContext); 124 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 125 FloatTy = llvm::Type::getFloatTy(LLVMContext); 126 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 127 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 128 PointerAlignInBytes = 129 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 130 .getQuantity(); 131 SizeSizeInBytes = 132 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 133 IntAlignInBytes = 134 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 135 CharTy = 136 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 137 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 138 IntPtrTy = llvm::IntegerType::get(LLVMContext, 139 C.getTargetInfo().getMaxPointerWidth()); 140 Int8PtrTy = Int8Ty->getPointerTo(0); 141 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 142 const llvm::DataLayout &DL = M.getDataLayout(); 143 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 144 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 145 ConstGlobalsPtrTy = Int8Ty->getPointerTo( 146 C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 147 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 148 149 // Build C++20 Module initializers. 150 // TODO: Add Microsoft here once we know the mangling required for the 151 // initializers. 152 CXX20ModuleInits = 153 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 154 ItaniumMangleContext::MK_Itanium; 155 156 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 157 158 if (LangOpts.ObjC) 159 createObjCRuntime(); 160 if (LangOpts.OpenCL) 161 createOpenCLRuntime(); 162 if (LangOpts.OpenMP) 163 createOpenMPRuntime(); 164 if (LangOpts.CUDA) 165 createCUDARuntime(); 166 if (LangOpts.HLSL) 167 createHLSLRuntime(); 168 169 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 170 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 171 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 172 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 173 getCXXABI().getMangleContext())); 174 175 // If debug info or coverage generation is enabled, create the CGDebugInfo 176 // object. 177 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 178 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 179 DebugInfo.reset(new CGDebugInfo(*this)); 180 181 Block.GlobalUniqueCount = 0; 182 183 if (C.getLangOpts().ObjC) 184 ObjCData.reset(new ObjCEntrypoints()); 185 186 if (CodeGenOpts.hasProfileClangUse()) { 187 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 188 CodeGenOpts.ProfileInstrumentUsePath, *FS, 189 CodeGenOpts.ProfileRemappingFile); 190 // We're checking for profile read errors in CompilerInvocation, so if 191 // there was an error it should've already been caught. If it hasn't been 192 // somehow, trip an assertion. 193 assert(ReaderOrErr); 194 PGOReader = std::move(ReaderOrErr.get()); 195 } 196 197 // If coverage mapping generation is enabled, create the 198 // CoverageMappingModuleGen object. 199 if (CodeGenOpts.CoverageMapping) 200 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 201 202 // Generate the module name hash here if needed. 203 if (CodeGenOpts.UniqueInternalLinkageNames && 204 !getModule().getSourceFileName().empty()) { 205 std::string Path = getModule().getSourceFileName(); 206 // Check if a path substitution is needed from the MacroPrefixMap. 207 for (const auto &Entry : LangOpts.MacroPrefixMap) 208 if (Path.rfind(Entry.first, 0) != std::string::npos) { 209 Path = Entry.second + Path.substr(Entry.first.size()); 210 break; 211 } 212 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 213 } 214 } 215 216 CodeGenModule::~CodeGenModule() {} 217 218 void CodeGenModule::createObjCRuntime() { 219 // This is just isGNUFamily(), but we want to force implementors of 220 // new ABIs to decide how best to do this. 221 switch (LangOpts.ObjCRuntime.getKind()) { 222 case ObjCRuntime::GNUstep: 223 case ObjCRuntime::GCC: 224 case ObjCRuntime::ObjFW: 225 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 226 return; 227 228 case ObjCRuntime::FragileMacOSX: 229 case ObjCRuntime::MacOSX: 230 case ObjCRuntime::iOS: 231 case ObjCRuntime::WatchOS: 232 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 233 return; 234 } 235 llvm_unreachable("bad runtime kind"); 236 } 237 238 void CodeGenModule::createOpenCLRuntime() { 239 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 240 } 241 242 void CodeGenModule::createOpenMPRuntime() { 243 // Select a specialized code generation class based on the target, if any. 244 // If it does not exist use the default implementation. 245 switch (getTriple().getArch()) { 246 case llvm::Triple::nvptx: 247 case llvm::Triple::nvptx64: 248 case llvm::Triple::amdgcn: 249 assert(getLangOpts().OpenMPIsDevice && 250 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 251 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 252 break; 253 default: 254 if (LangOpts.OpenMPSimd) 255 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 256 else 257 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 258 break; 259 } 260 } 261 262 void CodeGenModule::createCUDARuntime() { 263 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 264 } 265 266 void CodeGenModule::createHLSLRuntime() { 267 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 268 } 269 270 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 271 Replacements[Name] = C; 272 } 273 274 void CodeGenModule::applyReplacements() { 275 for (auto &I : Replacements) { 276 StringRef MangledName = I.first(); 277 llvm::Constant *Replacement = I.second; 278 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 279 if (!Entry) 280 continue; 281 auto *OldF = cast<llvm::Function>(Entry); 282 auto *NewF = dyn_cast<llvm::Function>(Replacement); 283 if (!NewF) { 284 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 285 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 286 } else { 287 auto *CE = cast<llvm::ConstantExpr>(Replacement); 288 assert(CE->getOpcode() == llvm::Instruction::BitCast || 289 CE->getOpcode() == llvm::Instruction::GetElementPtr); 290 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 291 } 292 } 293 294 // Replace old with new, but keep the old order. 295 OldF->replaceAllUsesWith(Replacement); 296 if (NewF) { 297 NewF->removeFromParent(); 298 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 299 NewF); 300 } 301 OldF->eraseFromParent(); 302 } 303 } 304 305 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 306 GlobalValReplacements.push_back(std::make_pair(GV, C)); 307 } 308 309 void CodeGenModule::applyGlobalValReplacements() { 310 for (auto &I : GlobalValReplacements) { 311 llvm::GlobalValue *GV = I.first; 312 llvm::Constant *C = I.second; 313 314 GV->replaceAllUsesWith(C); 315 GV->eraseFromParent(); 316 } 317 } 318 319 // This is only used in aliases that we created and we know they have a 320 // linear structure. 321 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 322 const llvm::Constant *C; 323 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 324 C = GA->getAliasee(); 325 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 326 C = GI->getResolver(); 327 else 328 return GV; 329 330 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 331 if (!AliaseeGV) 332 return nullptr; 333 334 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 335 if (FinalGV == GV) 336 return nullptr; 337 338 return FinalGV; 339 } 340 341 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 342 SourceLocation Location, bool IsIFunc, 343 const llvm::GlobalValue *Alias, 344 const llvm::GlobalValue *&GV) { 345 GV = getAliasedGlobal(Alias); 346 if (!GV) { 347 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 348 return false; 349 } 350 351 if (GV->isDeclaration()) { 352 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 353 return false; 354 } 355 356 if (IsIFunc) { 357 // Check resolver function type. 358 const auto *F = dyn_cast<llvm::Function>(GV); 359 if (!F) { 360 Diags.Report(Location, diag::err_alias_to_undefined) 361 << IsIFunc << IsIFunc; 362 return false; 363 } 364 365 llvm::FunctionType *FTy = F->getFunctionType(); 366 if (!FTy->getReturnType()->isPointerTy()) { 367 Diags.Report(Location, diag::err_ifunc_resolver_return); 368 return false; 369 } 370 } 371 372 return true; 373 } 374 375 void CodeGenModule::checkAliases() { 376 // Check if the constructed aliases are well formed. It is really unfortunate 377 // that we have to do this in CodeGen, but we only construct mangled names 378 // and aliases during codegen. 379 bool Error = false; 380 DiagnosticsEngine &Diags = getDiags(); 381 for (const GlobalDecl &GD : Aliases) { 382 const auto *D = cast<ValueDecl>(GD.getDecl()); 383 SourceLocation Location; 384 bool IsIFunc = D->hasAttr<IFuncAttr>(); 385 if (const Attr *A = D->getDefiningAttr()) 386 Location = A->getLocation(); 387 else 388 llvm_unreachable("Not an alias or ifunc?"); 389 390 StringRef MangledName = getMangledName(GD); 391 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 392 const llvm::GlobalValue *GV = nullptr; 393 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 394 Error = true; 395 continue; 396 } 397 398 llvm::Constant *Aliasee = 399 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 400 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 401 402 llvm::GlobalValue *AliaseeGV; 403 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 404 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 405 else 406 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 407 408 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 409 StringRef AliasSection = SA->getName(); 410 if (AliasSection != AliaseeGV->getSection()) 411 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 412 << AliasSection << IsIFunc << IsIFunc; 413 } 414 415 // We have to handle alias to weak aliases in here. LLVM itself disallows 416 // this since the object semantics would not match the IL one. For 417 // compatibility with gcc we implement it by just pointing the alias 418 // to its aliasee's aliasee. We also warn, since the user is probably 419 // expecting the link to be weak. 420 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 421 if (GA->isInterposable()) { 422 Diags.Report(Location, diag::warn_alias_to_weak_alias) 423 << GV->getName() << GA->getName() << IsIFunc; 424 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 425 GA->getAliasee(), Alias->getType()); 426 427 if (IsIFunc) 428 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 429 else 430 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 431 } 432 } 433 } 434 if (!Error) 435 return; 436 437 for (const GlobalDecl &GD : Aliases) { 438 StringRef MangledName = getMangledName(GD); 439 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 440 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 441 Alias->eraseFromParent(); 442 } 443 } 444 445 void CodeGenModule::clear() { 446 DeferredDeclsToEmit.clear(); 447 EmittedDeferredDecls.clear(); 448 if (OpenMPRuntime) 449 OpenMPRuntime->clear(); 450 } 451 452 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 453 StringRef MainFile) { 454 if (!hasDiagnostics()) 455 return; 456 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 457 if (MainFile.empty()) 458 MainFile = "<stdin>"; 459 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 460 } else { 461 if (Mismatched > 0) 462 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 463 464 if (Missing > 0) 465 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 466 } 467 } 468 469 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 470 llvm::Module &M) { 471 if (!LO.VisibilityFromDLLStorageClass) 472 return; 473 474 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 475 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 476 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 477 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 478 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 479 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 480 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 481 CodeGenModule::GetLLVMVisibility( 482 LO.getExternDeclNoDLLStorageClassVisibility()); 483 484 for (llvm::GlobalValue &GV : M.global_values()) { 485 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 486 continue; 487 488 // Reset DSO locality before setting the visibility. This removes 489 // any effects that visibility options and annotations may have 490 // had on the DSO locality. Setting the visibility will implicitly set 491 // appropriate globals to DSO Local; however, this will be pessimistic 492 // w.r.t. to the normal compiler IRGen. 493 GV.setDSOLocal(false); 494 495 if (GV.isDeclarationForLinker()) { 496 GV.setVisibility(GV.getDLLStorageClass() == 497 llvm::GlobalValue::DLLImportStorageClass 498 ? ExternDeclDLLImportVisibility 499 : ExternDeclNoDLLStorageClassVisibility); 500 } else { 501 GV.setVisibility(GV.getDLLStorageClass() == 502 llvm::GlobalValue::DLLExportStorageClass 503 ? DLLExportVisibility 504 : NoDLLStorageClassVisibility); 505 } 506 507 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 508 } 509 } 510 511 void CodeGenModule::Release() { 512 Module *Primary = getContext().getNamedModuleForCodeGen(); 513 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 514 EmitModuleInitializers(Primary); 515 EmitDeferred(); 516 DeferredDecls.insert(EmittedDeferredDecls.begin(), 517 EmittedDeferredDecls.end()); 518 EmittedDeferredDecls.clear(); 519 EmitVTablesOpportunistically(); 520 applyGlobalValReplacements(); 521 applyReplacements(); 522 emitMultiVersionFunctions(); 523 524 if (Context.getLangOpts().IncrementalExtensions && 525 GlobalTopLevelStmtBlockInFlight.first) { 526 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 527 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 528 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 529 } 530 531 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 532 EmitCXXModuleInitFunc(Primary); 533 else 534 EmitCXXGlobalInitFunc(); 535 EmitCXXGlobalCleanUpFunc(); 536 registerGlobalDtorsWithAtExit(); 537 EmitCXXThreadLocalInitFunc(); 538 if (ObjCRuntime) 539 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 540 AddGlobalCtor(ObjCInitFunction); 541 if (Context.getLangOpts().CUDA && CUDARuntime) { 542 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 543 AddGlobalCtor(CudaCtorFunction); 544 } 545 if (OpenMPRuntime) { 546 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 547 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 548 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 549 } 550 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 551 OpenMPRuntime->clear(); 552 } 553 if (PGOReader) { 554 getModule().setProfileSummary( 555 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 556 llvm::ProfileSummary::PSK_Instr); 557 if (PGOStats.hasDiagnostics()) 558 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 559 } 560 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 561 return L.LexOrder < R.LexOrder; 562 }); 563 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 564 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 565 EmitGlobalAnnotations(); 566 EmitStaticExternCAliases(); 567 checkAliases(); 568 EmitDeferredUnusedCoverageMappings(); 569 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 570 if (CoverageMapping) 571 CoverageMapping->emit(); 572 if (CodeGenOpts.SanitizeCfiCrossDso) { 573 CodeGenFunction(*this).EmitCfiCheckFail(); 574 CodeGenFunction(*this).EmitCfiCheckStub(); 575 } 576 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 577 finalizeKCFITypes(); 578 emitAtAvailableLinkGuard(); 579 if (Context.getTargetInfo().getTriple().isWasm()) 580 EmitMainVoidAlias(); 581 582 if (getTriple().isAMDGPU()) { 583 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 584 // preserve ASAN functions in bitcode libraries. 585 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 586 auto *FT = llvm::FunctionType::get(VoidTy, {}); 587 auto *F = llvm::Function::Create( 588 FT, llvm::GlobalValue::ExternalLinkage, 589 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 590 auto *Var = new llvm::GlobalVariable( 591 getModule(), FT->getPointerTo(), 592 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 593 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 594 llvm::GlobalVariable::NotThreadLocal); 595 addCompilerUsedGlobal(Var); 596 } 597 // Emit amdgpu_code_object_version module flag, which is code object version 598 // times 100. 599 if (getTarget().getTargetOpts().CodeObjectVersion != 600 TargetOptions::COV_None) { 601 getModule().addModuleFlag(llvm::Module::Error, 602 "amdgpu_code_object_version", 603 getTarget().getTargetOpts().CodeObjectVersion); 604 } 605 } 606 607 // Emit a global array containing all external kernels or device variables 608 // used by host functions and mark it as used for CUDA/HIP. This is necessary 609 // to get kernels or device variables in archives linked in even if these 610 // kernels or device variables are only used in host functions. 611 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 612 SmallVector<llvm::Constant *, 8> UsedArray; 613 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 614 GlobalDecl GD; 615 if (auto *FD = dyn_cast<FunctionDecl>(D)) 616 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 617 else 618 GD = GlobalDecl(D); 619 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 620 GetAddrOfGlobal(GD), Int8PtrTy)); 621 } 622 623 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 624 625 auto *GV = new llvm::GlobalVariable( 626 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 627 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 628 addCompilerUsedGlobal(GV); 629 } 630 631 emitLLVMUsed(); 632 if (SanStats) 633 SanStats->finish(); 634 635 if (CodeGenOpts.Autolink && 636 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 637 EmitModuleLinkOptions(); 638 } 639 640 // On ELF we pass the dependent library specifiers directly to the linker 641 // without manipulating them. This is in contrast to other platforms where 642 // they are mapped to a specific linker option by the compiler. This 643 // difference is a result of the greater variety of ELF linkers and the fact 644 // that ELF linkers tend to handle libraries in a more complicated fashion 645 // than on other platforms. This forces us to defer handling the dependent 646 // libs to the linker. 647 // 648 // CUDA/HIP device and host libraries are different. Currently there is no 649 // way to differentiate dependent libraries for host or device. Existing 650 // usage of #pragma comment(lib, *) is intended for host libraries on 651 // Windows. Therefore emit llvm.dependent-libraries only for host. 652 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 653 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 654 for (auto *MD : ELFDependentLibraries) 655 NMD->addOperand(MD); 656 } 657 658 // Record mregparm value now so it is visible through rest of codegen. 659 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 660 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 661 CodeGenOpts.NumRegisterParameters); 662 663 if (CodeGenOpts.DwarfVersion) { 664 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 665 CodeGenOpts.DwarfVersion); 666 } 667 668 if (CodeGenOpts.Dwarf64) 669 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 670 671 if (Context.getLangOpts().SemanticInterposition) 672 // Require various optimization to respect semantic interposition. 673 getModule().setSemanticInterposition(true); 674 675 if (CodeGenOpts.EmitCodeView) { 676 // Indicate that we want CodeView in the metadata. 677 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 678 } 679 if (CodeGenOpts.CodeViewGHash) { 680 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 681 } 682 if (CodeGenOpts.ControlFlowGuard) { 683 // Function ID tables and checks for Control Flow Guard (cfguard=2). 684 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 685 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 686 // Function ID tables for Control Flow Guard (cfguard=1). 687 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 688 } 689 if (CodeGenOpts.EHContGuard) { 690 // Function ID tables for EH Continuation Guard. 691 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 692 } 693 if (Context.getLangOpts().Kernel) { 694 // Note if we are compiling with /kernel. 695 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 696 } 697 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 698 // We don't support LTO with 2 with different StrictVTablePointers 699 // FIXME: we could support it by stripping all the information introduced 700 // by StrictVTablePointers. 701 702 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 703 704 llvm::Metadata *Ops[2] = { 705 llvm::MDString::get(VMContext, "StrictVTablePointers"), 706 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 707 llvm::Type::getInt32Ty(VMContext), 1))}; 708 709 getModule().addModuleFlag(llvm::Module::Require, 710 "StrictVTablePointersRequirement", 711 llvm::MDNode::get(VMContext, Ops)); 712 } 713 if (getModuleDebugInfo()) 714 // We support a single version in the linked module. The LLVM 715 // parser will drop debug info with a different version number 716 // (and warn about it, too). 717 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 718 llvm::DEBUG_METADATA_VERSION); 719 720 // We need to record the widths of enums and wchar_t, so that we can generate 721 // the correct build attributes in the ARM backend. wchar_size is also used by 722 // TargetLibraryInfo. 723 uint64_t WCharWidth = 724 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 725 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 726 727 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 728 if ( Arch == llvm::Triple::arm 729 || Arch == llvm::Triple::armeb 730 || Arch == llvm::Triple::thumb 731 || Arch == llvm::Triple::thumbeb) { 732 // The minimum width of an enum in bytes 733 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 734 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 735 } 736 737 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 738 StringRef ABIStr = Target.getABI(); 739 llvm::LLVMContext &Ctx = TheModule.getContext(); 740 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 741 llvm::MDString::get(Ctx, ABIStr)); 742 } 743 744 if (CodeGenOpts.SanitizeCfiCrossDso) { 745 // Indicate that we want cross-DSO control flow integrity checks. 746 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 747 } 748 749 if (CodeGenOpts.WholeProgramVTables) { 750 // Indicate whether VFE was enabled for this module, so that the 751 // vcall_visibility metadata added under whole program vtables is handled 752 // appropriately in the optimizer. 753 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 754 CodeGenOpts.VirtualFunctionElimination); 755 } 756 757 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 758 getModule().addModuleFlag(llvm::Module::Override, 759 "CFI Canonical Jump Tables", 760 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 761 } 762 763 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 764 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 765 // KCFI assumes patchable-function-prefix is the same for all indirectly 766 // called functions. Store the expected offset for code generation. 767 if (CodeGenOpts.PatchableFunctionEntryOffset) 768 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 769 CodeGenOpts.PatchableFunctionEntryOffset); 770 } 771 772 if (CodeGenOpts.CFProtectionReturn && 773 Target.checkCFProtectionReturnSupported(getDiags())) { 774 // Indicate that we want to instrument return control flow protection. 775 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 776 1); 777 } 778 779 if (CodeGenOpts.CFProtectionBranch && 780 Target.checkCFProtectionBranchSupported(getDiags())) { 781 // Indicate that we want to instrument branch control flow protection. 782 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 783 1); 784 } 785 786 if (CodeGenOpts.FunctionReturnThunks) 787 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 788 789 if (CodeGenOpts.IndirectBranchCSPrefix) 790 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 791 792 // Add module metadata for return address signing (ignoring 793 // non-leaf/all) and stack tagging. These are actually turned on by function 794 // attributes, but we use module metadata to emit build attributes. This is 795 // needed for LTO, where the function attributes are inside bitcode 796 // serialised into a global variable by the time build attributes are 797 // emitted, so we can't access them. LTO objects could be compiled with 798 // different flags therefore module flags are set to "Min" behavior to achieve 799 // the same end result of the normal build where e.g BTI is off if any object 800 // doesn't support it. 801 if (Context.getTargetInfo().hasFeature("ptrauth") && 802 LangOpts.getSignReturnAddressScope() != 803 LangOptions::SignReturnAddressScopeKind::None) 804 getModule().addModuleFlag(llvm::Module::Override, 805 "sign-return-address-buildattr", 1); 806 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 807 getModule().addModuleFlag(llvm::Module::Override, 808 "tag-stack-memory-buildattr", 1); 809 810 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 811 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 812 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 813 Arch == llvm::Triple::aarch64_be) { 814 if (LangOpts.BranchTargetEnforcement) 815 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 816 1); 817 if (LangOpts.hasSignReturnAddress()) 818 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 819 if (LangOpts.isSignReturnAddressScopeAll()) 820 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 821 1); 822 if (!LangOpts.isSignReturnAddressWithAKey()) 823 getModule().addModuleFlag(llvm::Module::Min, 824 "sign-return-address-with-bkey", 1); 825 } 826 827 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 828 llvm::LLVMContext &Ctx = TheModule.getContext(); 829 getModule().addModuleFlag( 830 llvm::Module::Error, "MemProfProfileFilename", 831 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 832 } 833 834 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 835 // Indicate whether __nvvm_reflect should be configured to flush denormal 836 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 837 // property.) 838 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 839 CodeGenOpts.FP32DenormalMode.Output != 840 llvm::DenormalMode::IEEE); 841 } 842 843 if (LangOpts.EHAsynch) 844 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 845 846 // Indicate whether this Module was compiled with -fopenmp 847 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 848 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 849 if (getLangOpts().OpenMPIsDevice) 850 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 851 LangOpts.OpenMP); 852 853 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 854 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 855 EmitOpenCLMetadata(); 856 // Emit SPIR version. 857 if (getTriple().isSPIR()) { 858 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 859 // opencl.spir.version named metadata. 860 // C++ for OpenCL has a distinct mapping for version compatibility with 861 // OpenCL. 862 auto Version = LangOpts.getOpenCLCompatibleVersion(); 863 llvm::Metadata *SPIRVerElts[] = { 864 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 865 Int32Ty, Version / 100)), 866 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 867 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 868 llvm::NamedMDNode *SPIRVerMD = 869 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 870 llvm::LLVMContext &Ctx = TheModule.getContext(); 871 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 872 } 873 } 874 875 // HLSL related end of code gen work items. 876 if (LangOpts.HLSL) 877 getHLSLRuntime().finishCodeGen(); 878 879 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 880 assert(PLevel < 3 && "Invalid PIC Level"); 881 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 882 if (Context.getLangOpts().PIE) 883 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 884 } 885 886 if (getCodeGenOpts().CodeModel.size() > 0) { 887 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 888 .Case("tiny", llvm::CodeModel::Tiny) 889 .Case("small", llvm::CodeModel::Small) 890 .Case("kernel", llvm::CodeModel::Kernel) 891 .Case("medium", llvm::CodeModel::Medium) 892 .Case("large", llvm::CodeModel::Large) 893 .Default(~0u); 894 if (CM != ~0u) { 895 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 896 getModule().setCodeModel(codeModel); 897 } 898 } 899 900 if (CodeGenOpts.NoPLT) 901 getModule().setRtLibUseGOT(); 902 if (CodeGenOpts.UnwindTables) 903 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 904 905 switch (CodeGenOpts.getFramePointer()) { 906 case CodeGenOptions::FramePointerKind::None: 907 // 0 ("none") is the default. 908 break; 909 case CodeGenOptions::FramePointerKind::NonLeaf: 910 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 911 break; 912 case CodeGenOptions::FramePointerKind::All: 913 getModule().setFramePointer(llvm::FramePointerKind::All); 914 break; 915 } 916 917 SimplifyPersonality(); 918 919 if (getCodeGenOpts().EmitDeclMetadata) 920 EmitDeclMetadata(); 921 922 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 923 EmitCoverageFile(); 924 925 if (CGDebugInfo *DI = getModuleDebugInfo()) 926 DI->finalize(); 927 928 if (getCodeGenOpts().EmitVersionIdentMetadata) 929 EmitVersionIdentMetadata(); 930 931 if (!getCodeGenOpts().RecordCommandLine.empty()) 932 EmitCommandLineMetadata(); 933 934 if (!getCodeGenOpts().StackProtectorGuard.empty()) 935 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 936 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 937 getModule().setStackProtectorGuardReg( 938 getCodeGenOpts().StackProtectorGuardReg); 939 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 940 getModule().setStackProtectorGuardSymbol( 941 getCodeGenOpts().StackProtectorGuardSymbol); 942 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 943 getModule().setStackProtectorGuardOffset( 944 getCodeGenOpts().StackProtectorGuardOffset); 945 if (getCodeGenOpts().StackAlignment) 946 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 947 if (getCodeGenOpts().SkipRaxSetup) 948 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 949 950 if (getContext().getTargetInfo().getMaxTLSAlign()) 951 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 952 getContext().getTargetInfo().getMaxTLSAlign()); 953 954 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 955 956 EmitBackendOptionsMetadata(getCodeGenOpts()); 957 958 // If there is device offloading code embed it in the host now. 959 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 960 961 // Set visibility from DLL storage class 962 // We do this at the end of LLVM IR generation; after any operation 963 // that might affect the DLL storage class or the visibility, and 964 // before anything that might act on these. 965 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 966 } 967 968 void CodeGenModule::EmitOpenCLMetadata() { 969 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 970 // opencl.ocl.version named metadata node. 971 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 972 auto Version = LangOpts.getOpenCLCompatibleVersion(); 973 llvm::Metadata *OCLVerElts[] = { 974 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 975 Int32Ty, Version / 100)), 976 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 977 Int32Ty, (Version % 100) / 10))}; 978 llvm::NamedMDNode *OCLVerMD = 979 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 980 llvm::LLVMContext &Ctx = TheModule.getContext(); 981 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 982 } 983 984 void CodeGenModule::EmitBackendOptionsMetadata( 985 const CodeGenOptions CodeGenOpts) { 986 if (getTriple().isRISCV()) { 987 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 988 CodeGenOpts.SmallDataLimit); 989 } 990 } 991 992 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 993 // Make sure that this type is translated. 994 Types.UpdateCompletedType(TD); 995 } 996 997 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 998 // Make sure that this type is translated. 999 Types.RefreshTypeCacheForClass(RD); 1000 } 1001 1002 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1003 if (!TBAA) 1004 return nullptr; 1005 return TBAA->getTypeInfo(QTy); 1006 } 1007 1008 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1009 if (!TBAA) 1010 return TBAAAccessInfo(); 1011 if (getLangOpts().CUDAIsDevice) { 1012 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1013 // access info. 1014 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1015 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1016 nullptr) 1017 return TBAAAccessInfo(); 1018 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1019 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1020 nullptr) 1021 return TBAAAccessInfo(); 1022 } 1023 } 1024 return TBAA->getAccessInfo(AccessType); 1025 } 1026 1027 TBAAAccessInfo 1028 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1029 if (!TBAA) 1030 return TBAAAccessInfo(); 1031 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1032 } 1033 1034 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1035 if (!TBAA) 1036 return nullptr; 1037 return TBAA->getTBAAStructInfo(QTy); 1038 } 1039 1040 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1041 if (!TBAA) 1042 return nullptr; 1043 return TBAA->getBaseTypeInfo(QTy); 1044 } 1045 1046 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1047 if (!TBAA) 1048 return nullptr; 1049 return TBAA->getAccessTagInfo(Info); 1050 } 1051 1052 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1053 TBAAAccessInfo TargetInfo) { 1054 if (!TBAA) 1055 return TBAAAccessInfo(); 1056 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1057 } 1058 1059 TBAAAccessInfo 1060 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1061 TBAAAccessInfo InfoB) { 1062 if (!TBAA) 1063 return TBAAAccessInfo(); 1064 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1065 } 1066 1067 TBAAAccessInfo 1068 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1069 TBAAAccessInfo SrcInfo) { 1070 if (!TBAA) 1071 return TBAAAccessInfo(); 1072 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1073 } 1074 1075 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1076 TBAAAccessInfo TBAAInfo) { 1077 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1078 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1079 } 1080 1081 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1082 llvm::Instruction *I, const CXXRecordDecl *RD) { 1083 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1084 llvm::MDNode::get(getLLVMContext(), {})); 1085 } 1086 1087 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1088 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1089 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1090 } 1091 1092 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1093 /// specified stmt yet. 1094 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1095 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1096 "cannot compile this %0 yet"); 1097 std::string Msg = Type; 1098 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1099 << Msg << S->getSourceRange(); 1100 } 1101 1102 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1103 /// specified decl yet. 1104 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1105 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1106 "cannot compile this %0 yet"); 1107 std::string Msg = Type; 1108 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1109 } 1110 1111 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1112 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1113 } 1114 1115 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1116 const NamedDecl *D) const { 1117 // Internal definitions always have default visibility. 1118 if (GV->hasLocalLinkage()) { 1119 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1120 return; 1121 } 1122 if (!D) 1123 return; 1124 // Set visibility for definitions, and for declarations if requested globally 1125 // or set explicitly. 1126 LinkageInfo LV = D->getLinkageAndVisibility(); 1127 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1128 // Reject incompatible dlllstorage and visibility annotations. 1129 if (!LV.isVisibilityExplicit()) 1130 return; 1131 if (GV->hasDLLExportStorageClass()) { 1132 if (LV.getVisibility() == HiddenVisibility) 1133 getDiags().Report(D->getLocation(), 1134 diag::err_hidden_visibility_dllexport); 1135 } else if (LV.getVisibility() != DefaultVisibility) { 1136 getDiags().Report(D->getLocation(), 1137 diag::err_non_default_visibility_dllimport); 1138 } 1139 return; 1140 } 1141 1142 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1143 !GV->isDeclarationForLinker()) 1144 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1145 } 1146 1147 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1148 llvm::GlobalValue *GV) { 1149 if (GV->hasLocalLinkage()) 1150 return true; 1151 1152 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1153 return true; 1154 1155 // DLLImport explicitly marks the GV as external. 1156 if (GV->hasDLLImportStorageClass()) 1157 return false; 1158 1159 const llvm::Triple &TT = CGM.getTriple(); 1160 if (TT.isWindowsGNUEnvironment()) { 1161 // In MinGW, variables without DLLImport can still be automatically 1162 // imported from a DLL by the linker; don't mark variables that 1163 // potentially could come from another DLL as DSO local. 1164 1165 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1166 // (and this actually happens in the public interface of libstdc++), so 1167 // such variables can't be marked as DSO local. (Native TLS variables 1168 // can't be dllimported at all, though.) 1169 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1170 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1171 return false; 1172 } 1173 1174 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1175 // remain unresolved in the link, they can be resolved to zero, which is 1176 // outside the current DSO. 1177 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1178 return false; 1179 1180 // Every other GV is local on COFF. 1181 // Make an exception for windows OS in the triple: Some firmware builds use 1182 // *-win32-macho triples. This (accidentally?) produced windows relocations 1183 // without GOT tables in older clang versions; Keep this behaviour. 1184 // FIXME: even thread local variables? 1185 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1186 return true; 1187 1188 // Only handle COFF and ELF for now. 1189 if (!TT.isOSBinFormatELF()) 1190 return false; 1191 1192 // If this is not an executable, don't assume anything is local. 1193 const auto &CGOpts = CGM.getCodeGenOpts(); 1194 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1195 const auto &LOpts = CGM.getLangOpts(); 1196 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1197 // On ELF, if -fno-semantic-interposition is specified and the target 1198 // supports local aliases, there will be neither CC1 1199 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1200 // dso_local on the function if using a local alias is preferable (can avoid 1201 // PLT indirection). 1202 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1203 return false; 1204 return !(CGM.getLangOpts().SemanticInterposition || 1205 CGM.getLangOpts().HalfNoSemanticInterposition); 1206 } 1207 1208 // A definition cannot be preempted from an executable. 1209 if (!GV->isDeclarationForLinker()) 1210 return true; 1211 1212 // Most PIC code sequences that assume that a symbol is local cannot produce a 1213 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1214 // depended, it seems worth it to handle it here. 1215 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1216 return false; 1217 1218 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1219 if (TT.isPPC64()) 1220 return false; 1221 1222 if (CGOpts.DirectAccessExternalData) { 1223 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1224 // for non-thread-local variables. If the symbol is not defined in the 1225 // executable, a copy relocation will be needed at link time. dso_local is 1226 // excluded for thread-local variables because they generally don't support 1227 // copy relocations. 1228 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1229 if (!Var->isThreadLocal()) 1230 return true; 1231 1232 // -fno-pic sets dso_local on a function declaration to allow direct 1233 // accesses when taking its address (similar to a data symbol). If the 1234 // function is not defined in the executable, a canonical PLT entry will be 1235 // needed at link time. -fno-direct-access-external-data can avoid the 1236 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1237 // it could just cause trouble without providing perceptible benefits. 1238 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1239 return true; 1240 } 1241 1242 // If we can use copy relocations we can assume it is local. 1243 1244 // Otherwise don't assume it is local. 1245 return false; 1246 } 1247 1248 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1249 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1250 } 1251 1252 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1253 GlobalDecl GD) const { 1254 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1255 // C++ destructors have a few C++ ABI specific special cases. 1256 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1257 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1258 return; 1259 } 1260 setDLLImportDLLExport(GV, D); 1261 } 1262 1263 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1264 const NamedDecl *D) const { 1265 if (D && D->isExternallyVisible()) { 1266 if (D->hasAttr<DLLImportAttr>()) 1267 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1268 else if ((D->hasAttr<DLLExportAttr>() || 1269 shouldMapVisibilityToDLLExport(D)) && 1270 !GV->isDeclarationForLinker()) 1271 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1272 } 1273 } 1274 1275 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1276 GlobalDecl GD) const { 1277 setDLLImportDLLExport(GV, GD); 1278 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1279 } 1280 1281 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1282 const NamedDecl *D) const { 1283 setDLLImportDLLExport(GV, D); 1284 setGVPropertiesAux(GV, D); 1285 } 1286 1287 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1288 const NamedDecl *D) const { 1289 setGlobalVisibility(GV, D); 1290 setDSOLocal(GV); 1291 GV->setPartition(CodeGenOpts.SymbolPartition); 1292 } 1293 1294 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1295 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1296 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1297 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1298 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1299 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1300 } 1301 1302 llvm::GlobalVariable::ThreadLocalMode 1303 CodeGenModule::GetDefaultLLVMTLSModel() const { 1304 switch (CodeGenOpts.getDefaultTLSModel()) { 1305 case CodeGenOptions::GeneralDynamicTLSModel: 1306 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1307 case CodeGenOptions::LocalDynamicTLSModel: 1308 return llvm::GlobalVariable::LocalDynamicTLSModel; 1309 case CodeGenOptions::InitialExecTLSModel: 1310 return llvm::GlobalVariable::InitialExecTLSModel; 1311 case CodeGenOptions::LocalExecTLSModel: 1312 return llvm::GlobalVariable::LocalExecTLSModel; 1313 } 1314 llvm_unreachable("Invalid TLS model!"); 1315 } 1316 1317 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1318 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1319 1320 llvm::GlobalValue::ThreadLocalMode TLM; 1321 TLM = GetDefaultLLVMTLSModel(); 1322 1323 // Override the TLS model if it is explicitly specified. 1324 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1325 TLM = GetLLVMTLSModel(Attr->getModel()); 1326 } 1327 1328 GV->setThreadLocalMode(TLM); 1329 } 1330 1331 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1332 StringRef Name) { 1333 const TargetInfo &Target = CGM.getTarget(); 1334 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1335 } 1336 1337 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1338 const CPUSpecificAttr *Attr, 1339 unsigned CPUIndex, 1340 raw_ostream &Out) { 1341 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1342 // supported. 1343 if (Attr) 1344 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1345 else if (CGM.getTarget().supportsIFunc()) 1346 Out << ".resolver"; 1347 } 1348 1349 static void AppendTargetVersionMangling(const CodeGenModule &CGM, 1350 const TargetVersionAttr *Attr, 1351 raw_ostream &Out) { 1352 if (Attr->isDefaultVersion()) 1353 return; 1354 Out << "._"; 1355 llvm::SmallVector<StringRef, 8> Feats; 1356 Attr->getFeatures(Feats); 1357 for (const auto &Feat : Feats) { 1358 Out << 'M'; 1359 Out << Feat; 1360 } 1361 } 1362 1363 static void AppendTargetMangling(const CodeGenModule &CGM, 1364 const TargetAttr *Attr, raw_ostream &Out) { 1365 if (Attr->isDefaultVersion()) 1366 return; 1367 1368 Out << '.'; 1369 const TargetInfo &Target = CGM.getTarget(); 1370 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1371 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1372 // Multiversioning doesn't allow "no-${feature}", so we can 1373 // only have "+" prefixes here. 1374 assert(LHS.startswith("+") && RHS.startswith("+") && 1375 "Features should always have a prefix."); 1376 return Target.multiVersionSortPriority(LHS.substr(1)) > 1377 Target.multiVersionSortPriority(RHS.substr(1)); 1378 }); 1379 1380 bool IsFirst = true; 1381 1382 if (!Info.CPU.empty()) { 1383 IsFirst = false; 1384 Out << "arch_" << Info.CPU; 1385 } 1386 1387 for (StringRef Feat : Info.Features) { 1388 if (!IsFirst) 1389 Out << '_'; 1390 IsFirst = false; 1391 Out << Feat.substr(1); 1392 } 1393 } 1394 1395 // Returns true if GD is a function decl with internal linkage and 1396 // needs a unique suffix after the mangled name. 1397 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1398 CodeGenModule &CGM) { 1399 const Decl *D = GD.getDecl(); 1400 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1401 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1402 } 1403 1404 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1405 const TargetClonesAttr *Attr, 1406 unsigned VersionIndex, 1407 raw_ostream &Out) { 1408 if (CGM.getTarget().getTriple().isAArch64()) { 1409 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1410 if (FeatureStr == "default") 1411 return; 1412 Out << "._"; 1413 SmallVector<StringRef, 8> Features; 1414 FeatureStr.split(Features, "+"); 1415 for (auto &Feat : Features) { 1416 Out << 'M'; 1417 Out << Feat; 1418 } 1419 } else { 1420 Out << '.'; 1421 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1422 if (FeatureStr.startswith("arch=")) 1423 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1424 else 1425 Out << FeatureStr; 1426 1427 Out << '.' << Attr->getMangledIndex(VersionIndex); 1428 } 1429 } 1430 1431 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1432 const NamedDecl *ND, 1433 bool OmitMultiVersionMangling = false) { 1434 SmallString<256> Buffer; 1435 llvm::raw_svector_ostream Out(Buffer); 1436 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1437 if (!CGM.getModuleNameHash().empty()) 1438 MC.needsUniqueInternalLinkageNames(); 1439 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1440 if (ShouldMangle) 1441 MC.mangleName(GD.getWithDecl(ND), Out); 1442 else { 1443 IdentifierInfo *II = ND->getIdentifier(); 1444 assert(II && "Attempt to mangle unnamed decl."); 1445 const auto *FD = dyn_cast<FunctionDecl>(ND); 1446 1447 if (FD && 1448 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1449 Out << "__regcall3__" << II->getName(); 1450 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1451 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1452 Out << "__device_stub__" << II->getName(); 1453 } else { 1454 Out << II->getName(); 1455 } 1456 } 1457 1458 // Check if the module name hash should be appended for internal linkage 1459 // symbols. This should come before multi-version target suffixes are 1460 // appended. This is to keep the name and module hash suffix of the 1461 // internal linkage function together. The unique suffix should only be 1462 // added when name mangling is done to make sure that the final name can 1463 // be properly demangled. For example, for C functions without prototypes, 1464 // name mangling is not done and the unique suffix should not be appeneded 1465 // then. 1466 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1467 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1468 "Hash computed when not explicitly requested"); 1469 Out << CGM.getModuleNameHash(); 1470 } 1471 1472 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1473 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1474 switch (FD->getMultiVersionKind()) { 1475 case MultiVersionKind::CPUDispatch: 1476 case MultiVersionKind::CPUSpecific: 1477 AppendCPUSpecificCPUDispatchMangling(CGM, 1478 FD->getAttr<CPUSpecificAttr>(), 1479 GD.getMultiVersionIndex(), Out); 1480 break; 1481 case MultiVersionKind::Target: 1482 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1483 break; 1484 case MultiVersionKind::TargetVersion: 1485 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); 1486 break; 1487 case MultiVersionKind::TargetClones: 1488 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1489 GD.getMultiVersionIndex(), Out); 1490 break; 1491 case MultiVersionKind::None: 1492 llvm_unreachable("None multiversion type isn't valid here"); 1493 } 1494 } 1495 1496 // Make unique name for device side static file-scope variable for HIP. 1497 if (CGM.getContext().shouldExternalize(ND) && 1498 CGM.getLangOpts().GPURelocatableDeviceCode && 1499 CGM.getLangOpts().CUDAIsDevice) 1500 CGM.printPostfixForExternalizedDecl(Out, ND); 1501 1502 return std::string(Out.str()); 1503 } 1504 1505 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1506 const FunctionDecl *FD, 1507 StringRef &CurName) { 1508 if (!FD->isMultiVersion()) 1509 return; 1510 1511 // Get the name of what this would be without the 'target' attribute. This 1512 // allows us to lookup the version that was emitted when this wasn't a 1513 // multiversion function. 1514 std::string NonTargetName = 1515 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1516 GlobalDecl OtherGD; 1517 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1518 assert(OtherGD.getCanonicalDecl() 1519 .getDecl() 1520 ->getAsFunction() 1521 ->isMultiVersion() && 1522 "Other GD should now be a multiversioned function"); 1523 // OtherFD is the version of this function that was mangled BEFORE 1524 // becoming a MultiVersion function. It potentially needs to be updated. 1525 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1526 .getDecl() 1527 ->getAsFunction() 1528 ->getMostRecentDecl(); 1529 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1530 // This is so that if the initial version was already the 'default' 1531 // version, we don't try to update it. 1532 if (OtherName != NonTargetName) { 1533 // Remove instead of erase, since others may have stored the StringRef 1534 // to this. 1535 const auto ExistingRecord = Manglings.find(NonTargetName); 1536 if (ExistingRecord != std::end(Manglings)) 1537 Manglings.remove(&(*ExistingRecord)); 1538 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1539 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1540 Result.first->first(); 1541 // If this is the current decl is being created, make sure we update the name. 1542 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1543 CurName = OtherNameRef; 1544 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1545 Entry->setName(OtherName); 1546 } 1547 } 1548 } 1549 1550 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1551 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1552 1553 // Some ABIs don't have constructor variants. Make sure that base and 1554 // complete constructors get mangled the same. 1555 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1556 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1557 CXXCtorType OrigCtorType = GD.getCtorType(); 1558 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1559 if (OrigCtorType == Ctor_Base) 1560 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1561 } 1562 } 1563 1564 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1565 // static device variable depends on whether the variable is referenced by 1566 // a host or device host function. Therefore the mangled name cannot be 1567 // cached. 1568 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1569 auto FoundName = MangledDeclNames.find(CanonicalGD); 1570 if (FoundName != MangledDeclNames.end()) 1571 return FoundName->second; 1572 } 1573 1574 // Keep the first result in the case of a mangling collision. 1575 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1576 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1577 1578 // Ensure either we have different ABIs between host and device compilations, 1579 // says host compilation following MSVC ABI but device compilation follows 1580 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1581 // mangling should be the same after name stubbing. The later checking is 1582 // very important as the device kernel name being mangled in host-compilation 1583 // is used to resolve the device binaries to be executed. Inconsistent naming 1584 // result in undefined behavior. Even though we cannot check that naming 1585 // directly between host- and device-compilations, the host- and 1586 // device-mangling in host compilation could help catching certain ones. 1587 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1588 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1589 (getContext().getAuxTargetInfo() && 1590 (getContext().getAuxTargetInfo()->getCXXABI() != 1591 getContext().getTargetInfo().getCXXABI())) || 1592 getCUDARuntime().getDeviceSideName(ND) == 1593 getMangledNameImpl( 1594 *this, 1595 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1596 ND)); 1597 1598 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1599 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1600 } 1601 1602 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1603 const BlockDecl *BD) { 1604 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1605 const Decl *D = GD.getDecl(); 1606 1607 SmallString<256> Buffer; 1608 llvm::raw_svector_ostream Out(Buffer); 1609 if (!D) 1610 MangleCtx.mangleGlobalBlock(BD, 1611 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1612 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1613 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1614 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1615 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1616 else 1617 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1618 1619 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1620 return Result.first->first(); 1621 } 1622 1623 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1624 auto it = MangledDeclNames.begin(); 1625 while (it != MangledDeclNames.end()) { 1626 if (it->second == Name) 1627 return it->first; 1628 it++; 1629 } 1630 return GlobalDecl(); 1631 } 1632 1633 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1634 return getModule().getNamedValue(Name); 1635 } 1636 1637 /// AddGlobalCtor - Add a function to the list that will be called before 1638 /// main() runs. 1639 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1640 unsigned LexOrder, 1641 llvm::Constant *AssociatedData) { 1642 // FIXME: Type coercion of void()* types. 1643 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1644 } 1645 1646 /// AddGlobalDtor - Add a function to the list that will be called 1647 /// when the module is unloaded. 1648 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1649 bool IsDtorAttrFunc) { 1650 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1651 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1652 DtorsUsingAtExit[Priority].push_back(Dtor); 1653 return; 1654 } 1655 1656 // FIXME: Type coercion of void()* types. 1657 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 1658 } 1659 1660 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1661 if (Fns.empty()) return; 1662 1663 // Ctor function type is void()*. 1664 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1665 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1666 TheModule.getDataLayout().getProgramAddressSpace()); 1667 1668 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1669 llvm::StructType *CtorStructTy = llvm::StructType::get( 1670 Int32Ty, CtorPFTy, VoidPtrTy); 1671 1672 // Construct the constructor and destructor arrays. 1673 ConstantInitBuilder builder(*this); 1674 auto ctors = builder.beginArray(CtorStructTy); 1675 for (const auto &I : Fns) { 1676 auto ctor = ctors.beginStruct(CtorStructTy); 1677 ctor.addInt(Int32Ty, I.Priority); 1678 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1679 if (I.AssociatedData) 1680 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1681 else 1682 ctor.addNullPointer(VoidPtrTy); 1683 ctor.finishAndAddTo(ctors); 1684 } 1685 1686 auto list = 1687 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1688 /*constant*/ false, 1689 llvm::GlobalValue::AppendingLinkage); 1690 1691 // The LTO linker doesn't seem to like it when we set an alignment 1692 // on appending variables. Take it off as a workaround. 1693 list->setAlignment(std::nullopt); 1694 1695 Fns.clear(); 1696 } 1697 1698 llvm::GlobalValue::LinkageTypes 1699 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1700 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1701 1702 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1703 1704 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1705 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1706 1707 if (isa<CXXConstructorDecl>(D) && 1708 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1709 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1710 // Our approach to inheriting constructors is fundamentally different from 1711 // that used by the MS ABI, so keep our inheriting constructor thunks 1712 // internal rather than trying to pick an unambiguous mangling for them. 1713 return llvm::GlobalValue::InternalLinkage; 1714 } 1715 1716 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1717 } 1718 1719 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1720 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1721 if (!MDS) return nullptr; 1722 1723 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1724 } 1725 1726 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 1727 if (auto *FnType = T->getAs<FunctionProtoType>()) 1728 T = getContext().getFunctionType( 1729 FnType->getReturnType(), FnType->getParamTypes(), 1730 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 1731 1732 std::string OutName; 1733 llvm::raw_string_ostream Out(OutName); 1734 getCXXABI().getMangleContext().mangleTypeName( 1735 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 1736 1737 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 1738 Out << ".normalized"; 1739 1740 return llvm::ConstantInt::get(Int32Ty, 1741 static_cast<uint32_t>(llvm::xxHash64(OutName))); 1742 } 1743 1744 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1745 const CGFunctionInfo &Info, 1746 llvm::Function *F, bool IsThunk) { 1747 unsigned CallingConv; 1748 llvm::AttributeList PAL; 1749 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1750 /*AttrOnCallSite=*/false, IsThunk); 1751 F->setAttributes(PAL); 1752 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1753 } 1754 1755 static void removeImageAccessQualifier(std::string& TyName) { 1756 std::string ReadOnlyQual("__read_only"); 1757 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1758 if (ReadOnlyPos != std::string::npos) 1759 // "+ 1" for the space after access qualifier. 1760 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1761 else { 1762 std::string WriteOnlyQual("__write_only"); 1763 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1764 if (WriteOnlyPos != std::string::npos) 1765 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1766 else { 1767 std::string ReadWriteQual("__read_write"); 1768 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1769 if (ReadWritePos != std::string::npos) 1770 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1771 } 1772 } 1773 } 1774 1775 // Returns the address space id that should be produced to the 1776 // kernel_arg_addr_space metadata. This is always fixed to the ids 1777 // as specified in the SPIR 2.0 specification in order to differentiate 1778 // for example in clGetKernelArgInfo() implementation between the address 1779 // spaces with targets without unique mapping to the OpenCL address spaces 1780 // (basically all single AS CPUs). 1781 static unsigned ArgInfoAddressSpace(LangAS AS) { 1782 switch (AS) { 1783 case LangAS::opencl_global: 1784 return 1; 1785 case LangAS::opencl_constant: 1786 return 2; 1787 case LangAS::opencl_local: 1788 return 3; 1789 case LangAS::opencl_generic: 1790 return 4; // Not in SPIR 2.0 specs. 1791 case LangAS::opencl_global_device: 1792 return 5; 1793 case LangAS::opencl_global_host: 1794 return 6; 1795 default: 1796 return 0; // Assume private. 1797 } 1798 } 1799 1800 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 1801 const FunctionDecl *FD, 1802 CodeGenFunction *CGF) { 1803 assert(((FD && CGF) || (!FD && !CGF)) && 1804 "Incorrect use - FD and CGF should either be both null or not!"); 1805 // Create MDNodes that represent the kernel arg metadata. 1806 // Each MDNode is a list in the form of "key", N number of values which is 1807 // the same number of values as their are kernel arguments. 1808 1809 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1810 1811 // MDNode for the kernel argument address space qualifiers. 1812 SmallVector<llvm::Metadata *, 8> addressQuals; 1813 1814 // MDNode for the kernel argument access qualifiers (images only). 1815 SmallVector<llvm::Metadata *, 8> accessQuals; 1816 1817 // MDNode for the kernel argument type names. 1818 SmallVector<llvm::Metadata *, 8> argTypeNames; 1819 1820 // MDNode for the kernel argument base type names. 1821 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1822 1823 // MDNode for the kernel argument type qualifiers. 1824 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1825 1826 // MDNode for the kernel argument names. 1827 SmallVector<llvm::Metadata *, 8> argNames; 1828 1829 if (FD && CGF) 1830 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1831 const ParmVarDecl *parm = FD->getParamDecl(i); 1832 // Get argument name. 1833 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1834 1835 if (!getLangOpts().OpenCL) 1836 continue; 1837 QualType ty = parm->getType(); 1838 std::string typeQuals; 1839 1840 // Get image and pipe access qualifier: 1841 if (ty->isImageType() || ty->isPipeType()) { 1842 const Decl *PDecl = parm; 1843 if (const auto *TD = ty->getAs<TypedefType>()) 1844 PDecl = TD->getDecl(); 1845 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1846 if (A && A->isWriteOnly()) 1847 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1848 else if (A && A->isReadWrite()) 1849 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1850 else 1851 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1852 } else 1853 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1854 1855 auto getTypeSpelling = [&](QualType Ty) { 1856 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1857 1858 if (Ty.isCanonical()) { 1859 StringRef typeNameRef = typeName; 1860 // Turn "unsigned type" to "utype" 1861 if (typeNameRef.consume_front("unsigned ")) 1862 return std::string("u") + typeNameRef.str(); 1863 if (typeNameRef.consume_front("signed ")) 1864 return typeNameRef.str(); 1865 } 1866 1867 return typeName; 1868 }; 1869 1870 if (ty->isPointerType()) { 1871 QualType pointeeTy = ty->getPointeeType(); 1872 1873 // Get address qualifier. 1874 addressQuals.push_back( 1875 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1876 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1877 1878 // Get argument type name. 1879 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1880 std::string baseTypeName = 1881 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1882 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1883 argBaseTypeNames.push_back( 1884 llvm::MDString::get(VMContext, baseTypeName)); 1885 1886 // Get argument type qualifiers: 1887 if (ty.isRestrictQualified()) 1888 typeQuals = "restrict"; 1889 if (pointeeTy.isConstQualified() || 1890 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1891 typeQuals += typeQuals.empty() ? "const" : " const"; 1892 if (pointeeTy.isVolatileQualified()) 1893 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1894 } else { 1895 uint32_t AddrSpc = 0; 1896 bool isPipe = ty->isPipeType(); 1897 if (ty->isImageType() || isPipe) 1898 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1899 1900 addressQuals.push_back( 1901 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1902 1903 // Get argument type name. 1904 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1905 std::string typeName = getTypeSpelling(ty); 1906 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1907 1908 // Remove access qualifiers on images 1909 // (as they are inseparable from type in clang implementation, 1910 // but OpenCL spec provides a special query to get access qualifier 1911 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1912 if (ty->isImageType()) { 1913 removeImageAccessQualifier(typeName); 1914 removeImageAccessQualifier(baseTypeName); 1915 } 1916 1917 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1918 argBaseTypeNames.push_back( 1919 llvm::MDString::get(VMContext, baseTypeName)); 1920 1921 if (isPipe) 1922 typeQuals = "pipe"; 1923 } 1924 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1925 } 1926 1927 if (getLangOpts().OpenCL) { 1928 Fn->setMetadata("kernel_arg_addr_space", 1929 llvm::MDNode::get(VMContext, addressQuals)); 1930 Fn->setMetadata("kernel_arg_access_qual", 1931 llvm::MDNode::get(VMContext, accessQuals)); 1932 Fn->setMetadata("kernel_arg_type", 1933 llvm::MDNode::get(VMContext, argTypeNames)); 1934 Fn->setMetadata("kernel_arg_base_type", 1935 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1936 Fn->setMetadata("kernel_arg_type_qual", 1937 llvm::MDNode::get(VMContext, argTypeQuals)); 1938 } 1939 if (getCodeGenOpts().EmitOpenCLArgMetadata || 1940 getCodeGenOpts().HIPSaveKernelArgName) 1941 Fn->setMetadata("kernel_arg_name", 1942 llvm::MDNode::get(VMContext, argNames)); 1943 } 1944 1945 /// Determines whether the language options require us to model 1946 /// unwind exceptions. We treat -fexceptions as mandating this 1947 /// except under the fragile ObjC ABI with only ObjC exceptions 1948 /// enabled. This means, for example, that C with -fexceptions 1949 /// enables this. 1950 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1951 // If exceptions are completely disabled, obviously this is false. 1952 if (!LangOpts.Exceptions) return false; 1953 1954 // If C++ exceptions are enabled, this is true. 1955 if (LangOpts.CXXExceptions) return true; 1956 1957 // If ObjC exceptions are enabled, this depends on the ABI. 1958 if (LangOpts.ObjCExceptions) { 1959 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1960 } 1961 1962 return true; 1963 } 1964 1965 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1966 const CXXMethodDecl *MD) { 1967 // Check that the type metadata can ever actually be used by a call. 1968 if (!CGM.getCodeGenOpts().LTOUnit || 1969 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1970 return false; 1971 1972 // Only functions whose address can be taken with a member function pointer 1973 // need this sort of type metadata. 1974 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1975 !isa<CXXDestructorDecl>(MD); 1976 } 1977 1978 std::vector<const CXXRecordDecl *> 1979 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1980 llvm::SetVector<const CXXRecordDecl *> MostBases; 1981 1982 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1983 CollectMostBases = [&](const CXXRecordDecl *RD) { 1984 if (RD->getNumBases() == 0) 1985 MostBases.insert(RD); 1986 for (const CXXBaseSpecifier &B : RD->bases()) 1987 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1988 }; 1989 CollectMostBases(RD); 1990 return MostBases.takeVector(); 1991 } 1992 1993 llvm::GlobalVariable * 1994 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) { 1995 auto It = RTTIProxyMap.find(Addr); 1996 if (It != RTTIProxyMap.end()) 1997 return It->second; 1998 1999 auto *FTRTTIProxy = new llvm::GlobalVariable( 2000 TheModule, Addr->getType(), 2001 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr, 2002 "__llvm_rtti_proxy"); 2003 FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2004 2005 RTTIProxyMap[Addr] = FTRTTIProxy; 2006 return FTRTTIProxy; 2007 } 2008 2009 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2010 llvm::Function *F) { 2011 llvm::AttrBuilder B(F->getContext()); 2012 2013 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2014 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2015 2016 if (CodeGenOpts.StackClashProtector) 2017 B.addAttribute("probe-stack", "inline-asm"); 2018 2019 if (!hasUnwindExceptions(LangOpts)) 2020 B.addAttribute(llvm::Attribute::NoUnwind); 2021 2022 if (D && D->hasAttr<NoStackProtectorAttr>()) 2023 ; // Do nothing. 2024 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2025 LangOpts.getStackProtector() == LangOptions::SSPOn) 2026 B.addAttribute(llvm::Attribute::StackProtectStrong); 2027 else if (LangOpts.getStackProtector() == LangOptions::SSPOn) 2028 B.addAttribute(llvm::Attribute::StackProtect); 2029 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 2030 B.addAttribute(llvm::Attribute::StackProtectStrong); 2031 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 2032 B.addAttribute(llvm::Attribute::StackProtectReq); 2033 2034 if (!D) { 2035 // If we don't have a declaration to control inlining, the function isn't 2036 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2037 // disabled, mark the function as noinline. 2038 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2039 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2040 B.addAttribute(llvm::Attribute::NoInline); 2041 2042 F->addFnAttrs(B); 2043 return; 2044 } 2045 2046 // Track whether we need to add the optnone LLVM attribute, 2047 // starting with the default for this optimization level. 2048 bool ShouldAddOptNone = 2049 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2050 // We can't add optnone in the following cases, it won't pass the verifier. 2051 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2052 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2053 2054 // Add optnone, but do so only if the function isn't always_inline. 2055 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2056 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2057 B.addAttribute(llvm::Attribute::OptimizeNone); 2058 2059 // OptimizeNone implies noinline; we should not be inlining such functions. 2060 B.addAttribute(llvm::Attribute::NoInline); 2061 2062 // We still need to handle naked functions even though optnone subsumes 2063 // much of their semantics. 2064 if (D->hasAttr<NakedAttr>()) 2065 B.addAttribute(llvm::Attribute::Naked); 2066 2067 // OptimizeNone wins over OptimizeForSize and MinSize. 2068 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2069 F->removeFnAttr(llvm::Attribute::MinSize); 2070 } else if (D->hasAttr<NakedAttr>()) { 2071 // Naked implies noinline: we should not be inlining such functions. 2072 B.addAttribute(llvm::Attribute::Naked); 2073 B.addAttribute(llvm::Attribute::NoInline); 2074 } else if (D->hasAttr<NoDuplicateAttr>()) { 2075 B.addAttribute(llvm::Attribute::NoDuplicate); 2076 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2077 // Add noinline if the function isn't always_inline. 2078 B.addAttribute(llvm::Attribute::NoInline); 2079 } else if (D->hasAttr<AlwaysInlineAttr>() && 2080 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2081 // (noinline wins over always_inline, and we can't specify both in IR) 2082 B.addAttribute(llvm::Attribute::AlwaysInline); 2083 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2084 // If we're not inlining, then force everything that isn't always_inline to 2085 // carry an explicit noinline attribute. 2086 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2087 B.addAttribute(llvm::Attribute::NoInline); 2088 } else { 2089 // Otherwise, propagate the inline hint attribute and potentially use its 2090 // absence to mark things as noinline. 2091 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2092 // Search function and template pattern redeclarations for inline. 2093 auto CheckForInline = [](const FunctionDecl *FD) { 2094 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2095 return Redecl->isInlineSpecified(); 2096 }; 2097 if (any_of(FD->redecls(), CheckRedeclForInline)) 2098 return true; 2099 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2100 if (!Pattern) 2101 return false; 2102 return any_of(Pattern->redecls(), CheckRedeclForInline); 2103 }; 2104 if (CheckForInline(FD)) { 2105 B.addAttribute(llvm::Attribute::InlineHint); 2106 } else if (CodeGenOpts.getInlining() == 2107 CodeGenOptions::OnlyHintInlining && 2108 !FD->isInlined() && 2109 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2110 B.addAttribute(llvm::Attribute::NoInline); 2111 } 2112 } 2113 } 2114 2115 // Add other optimization related attributes if we are optimizing this 2116 // function. 2117 if (!D->hasAttr<OptimizeNoneAttr>()) { 2118 if (D->hasAttr<ColdAttr>()) { 2119 if (!ShouldAddOptNone) 2120 B.addAttribute(llvm::Attribute::OptimizeForSize); 2121 B.addAttribute(llvm::Attribute::Cold); 2122 } 2123 if (D->hasAttr<HotAttr>()) 2124 B.addAttribute(llvm::Attribute::Hot); 2125 if (D->hasAttr<MinSizeAttr>()) 2126 B.addAttribute(llvm::Attribute::MinSize); 2127 } 2128 2129 F->addFnAttrs(B); 2130 2131 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2132 if (alignment) 2133 F->setAlignment(llvm::Align(alignment)); 2134 2135 if (!D->hasAttr<AlignedAttr>()) 2136 if (LangOpts.FunctionAlignment) 2137 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2138 2139 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2140 // reserve a bit for differentiating between virtual and non-virtual member 2141 // functions. If the current target's C++ ABI requires this and this is a 2142 // member function, set its alignment accordingly. 2143 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2144 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 2145 F->setAlignment(llvm::Align(2)); 2146 } 2147 2148 // In the cross-dso CFI mode with canonical jump tables, we want !type 2149 // attributes on definitions only. 2150 if (CodeGenOpts.SanitizeCfiCrossDso && 2151 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2152 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2153 // Skip available_externally functions. They won't be codegen'ed in the 2154 // current module anyway. 2155 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2156 CreateFunctionTypeMetadataForIcall(FD, F); 2157 } 2158 } 2159 2160 // Emit type metadata on member functions for member function pointer checks. 2161 // These are only ever necessary on definitions; we're guaranteed that the 2162 // definition will be present in the LTO unit as a result of LTO visibility. 2163 auto *MD = dyn_cast<CXXMethodDecl>(D); 2164 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2165 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2166 llvm::Metadata *Id = 2167 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2168 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2169 F->addTypeMetadata(0, Id); 2170 } 2171 } 2172 } 2173 2174 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2175 llvm::Function *F) { 2176 if (D->hasAttr<StrictFPAttr>()) { 2177 llvm::AttrBuilder FuncAttrs(F->getContext()); 2178 FuncAttrs.addAttribute("strictfp"); 2179 F->addFnAttrs(FuncAttrs); 2180 } 2181 } 2182 2183 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2184 const Decl *D = GD.getDecl(); 2185 if (isa_and_nonnull<NamedDecl>(D)) 2186 setGVProperties(GV, GD); 2187 else 2188 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2189 2190 if (D && D->hasAttr<UsedAttr>()) 2191 addUsedOrCompilerUsedGlobal(GV); 2192 2193 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2194 const auto *VD = cast<VarDecl>(D); 2195 if (VD->getType().isConstQualified() && 2196 VD->getStorageDuration() == SD_Static) 2197 addUsedOrCompilerUsedGlobal(GV); 2198 } 2199 } 2200 2201 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2202 llvm::AttrBuilder &Attrs) { 2203 // Add target-cpu and target-features attributes to functions. If 2204 // we have a decl for the function and it has a target attribute then 2205 // parse that and add it to the feature set. 2206 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2207 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2208 std::vector<std::string> Features; 2209 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2210 FD = FD ? FD->getMostRecentDecl() : FD; 2211 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2212 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2213 assert((!TD || !TV) && "both target_version and target specified"); 2214 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2215 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2216 bool AddedAttr = false; 2217 if (TD || TV || SD || TC) { 2218 llvm::StringMap<bool> FeatureMap; 2219 getContext().getFunctionFeatureMap(FeatureMap, GD); 2220 2221 // Produce the canonical string for this set of features. 2222 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2223 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2224 2225 // Now add the target-cpu and target-features to the function. 2226 // While we populated the feature map above, we still need to 2227 // get and parse the target attribute so we can get the cpu for 2228 // the function. 2229 if (TD) { 2230 ParsedTargetAttr ParsedAttr = 2231 Target.parseTargetAttr(TD->getFeaturesStr()); 2232 if (!ParsedAttr.CPU.empty() && 2233 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2234 TargetCPU = ParsedAttr.CPU; 2235 TuneCPU = ""; // Clear the tune CPU. 2236 } 2237 if (!ParsedAttr.Tune.empty() && 2238 getTarget().isValidCPUName(ParsedAttr.Tune)) 2239 TuneCPU = ParsedAttr.Tune; 2240 } 2241 2242 if (SD) { 2243 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2244 // favor this processor. 2245 TuneCPU = getTarget().getCPUSpecificTuneName( 2246 SD->getCPUName(GD.getMultiVersionIndex())->getName()); 2247 } 2248 } else { 2249 // Otherwise just add the existing target cpu and target features to the 2250 // function. 2251 Features = getTarget().getTargetOpts().Features; 2252 } 2253 2254 if (!TargetCPU.empty()) { 2255 Attrs.addAttribute("target-cpu", TargetCPU); 2256 AddedAttr = true; 2257 } 2258 if (!TuneCPU.empty()) { 2259 Attrs.addAttribute("tune-cpu", TuneCPU); 2260 AddedAttr = true; 2261 } 2262 if (!Features.empty()) { 2263 llvm::sort(Features); 2264 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2265 AddedAttr = true; 2266 } 2267 2268 return AddedAttr; 2269 } 2270 2271 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2272 llvm::GlobalObject *GO) { 2273 const Decl *D = GD.getDecl(); 2274 SetCommonAttributes(GD, GO); 2275 2276 if (D) { 2277 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2278 if (D->hasAttr<RetainAttr>()) 2279 addUsedGlobal(GV); 2280 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2281 GV->addAttribute("bss-section", SA->getName()); 2282 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2283 GV->addAttribute("data-section", SA->getName()); 2284 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2285 GV->addAttribute("rodata-section", SA->getName()); 2286 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2287 GV->addAttribute("relro-section", SA->getName()); 2288 } 2289 2290 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2291 if (D->hasAttr<RetainAttr>()) 2292 addUsedGlobal(F); 2293 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2294 if (!D->getAttr<SectionAttr>()) 2295 F->addFnAttr("implicit-section-name", SA->getName()); 2296 2297 llvm::AttrBuilder Attrs(F->getContext()); 2298 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2299 // We know that GetCPUAndFeaturesAttributes will always have the 2300 // newest set, since it has the newest possible FunctionDecl, so the 2301 // new ones should replace the old. 2302 llvm::AttributeMask RemoveAttrs; 2303 RemoveAttrs.addAttribute("target-cpu"); 2304 RemoveAttrs.addAttribute("target-features"); 2305 RemoveAttrs.addAttribute("tune-cpu"); 2306 F->removeFnAttrs(RemoveAttrs); 2307 F->addFnAttrs(Attrs); 2308 } 2309 } 2310 2311 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2312 GO->setSection(CSA->getName()); 2313 else if (const auto *SA = D->getAttr<SectionAttr>()) 2314 GO->setSection(SA->getName()); 2315 } 2316 2317 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2318 } 2319 2320 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2321 llvm::Function *F, 2322 const CGFunctionInfo &FI) { 2323 const Decl *D = GD.getDecl(); 2324 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2325 SetLLVMFunctionAttributesForDefinition(D, F); 2326 2327 F->setLinkage(llvm::Function::InternalLinkage); 2328 2329 setNonAliasAttributes(GD, F); 2330 } 2331 2332 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2333 // Set linkage and visibility in case we never see a definition. 2334 LinkageInfo LV = ND->getLinkageAndVisibility(); 2335 // Don't set internal linkage on declarations. 2336 // "extern_weak" is overloaded in LLVM; we probably should have 2337 // separate linkage types for this. 2338 if (isExternallyVisible(LV.getLinkage()) && 2339 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2340 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2341 } 2342 2343 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2344 llvm::Function *F) { 2345 // Only if we are checking indirect calls. 2346 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2347 return; 2348 2349 // Non-static class methods are handled via vtable or member function pointer 2350 // checks elsewhere. 2351 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2352 return; 2353 2354 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2355 F->addTypeMetadata(0, MD); 2356 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2357 2358 // Emit a hash-based bit set entry for cross-DSO calls. 2359 if (CodeGenOpts.SanitizeCfiCrossDso) 2360 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2361 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2362 } 2363 2364 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2365 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2366 return; 2367 2368 llvm::LLVMContext &Ctx = F->getContext(); 2369 llvm::MDBuilder MDB(Ctx); 2370 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2371 llvm::MDNode::get( 2372 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2373 } 2374 2375 static bool allowKCFIIdentifier(StringRef Name) { 2376 // KCFI type identifier constants are only necessary for external assembly 2377 // functions, which means it's safe to skip unusual names. Subset of 2378 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2379 return llvm::all_of(Name, [](const char &C) { 2380 return llvm::isAlnum(C) || C == '_' || C == '.'; 2381 }); 2382 } 2383 2384 void CodeGenModule::finalizeKCFITypes() { 2385 llvm::Module &M = getModule(); 2386 for (auto &F : M.functions()) { 2387 // Remove KCFI type metadata from non-address-taken local functions. 2388 bool AddressTaken = F.hasAddressTaken(); 2389 if (!AddressTaken && F.hasLocalLinkage()) 2390 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2391 2392 // Generate a constant with the expected KCFI type identifier for all 2393 // address-taken function declarations to support annotating indirectly 2394 // called assembly functions. 2395 if (!AddressTaken || !F.isDeclaration()) 2396 continue; 2397 2398 const llvm::ConstantInt *Type; 2399 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2400 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2401 else 2402 continue; 2403 2404 StringRef Name = F.getName(); 2405 if (!allowKCFIIdentifier(Name)) 2406 continue; 2407 2408 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2409 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2410 .str(); 2411 M.appendModuleInlineAsm(Asm); 2412 } 2413 } 2414 2415 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2416 bool IsIncompleteFunction, 2417 bool IsThunk) { 2418 2419 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2420 // If this is an intrinsic function, set the function's attributes 2421 // to the intrinsic's attributes. 2422 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2423 return; 2424 } 2425 2426 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2427 2428 if (!IsIncompleteFunction) 2429 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2430 IsThunk); 2431 2432 // Add the Returned attribute for "this", except for iOS 5 and earlier 2433 // where substantial code, including the libstdc++ dylib, was compiled with 2434 // GCC and does not actually return "this". 2435 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2436 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2437 assert(!F->arg_empty() && 2438 F->arg_begin()->getType() 2439 ->canLosslesslyBitCastTo(F->getReturnType()) && 2440 "unexpected this return"); 2441 F->addParamAttr(0, llvm::Attribute::Returned); 2442 } 2443 2444 // Only a few attributes are set on declarations; these may later be 2445 // overridden by a definition. 2446 2447 setLinkageForGV(F, FD); 2448 setGVProperties(F, FD); 2449 2450 // Setup target-specific attributes. 2451 if (!IsIncompleteFunction && F->isDeclaration()) 2452 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2453 2454 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2455 F->setSection(CSA->getName()); 2456 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2457 F->setSection(SA->getName()); 2458 2459 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2460 if (EA->isError()) 2461 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2462 else if (EA->isWarning()) 2463 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2464 } 2465 2466 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2467 if (FD->isInlineBuiltinDeclaration()) { 2468 const FunctionDecl *FDBody; 2469 bool HasBody = FD->hasBody(FDBody); 2470 (void)HasBody; 2471 assert(HasBody && "Inline builtin declarations should always have an " 2472 "available body!"); 2473 if (shouldEmitFunction(FDBody)) 2474 F->addFnAttr(llvm::Attribute::NoBuiltin); 2475 } 2476 2477 if (FD->isReplaceableGlobalAllocationFunction()) { 2478 // A replaceable global allocation function does not act like a builtin by 2479 // default, only if it is invoked by a new-expression or delete-expression. 2480 F->addFnAttr(llvm::Attribute::NoBuiltin); 2481 } 2482 2483 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2484 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2485 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2486 if (MD->isVirtual()) 2487 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2488 2489 // Don't emit entries for function declarations in the cross-DSO mode. This 2490 // is handled with better precision by the receiving DSO. But if jump tables 2491 // are non-canonical then we need type metadata in order to produce the local 2492 // jump table. 2493 if (!CodeGenOpts.SanitizeCfiCrossDso || 2494 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2495 CreateFunctionTypeMetadataForIcall(FD, F); 2496 2497 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2498 setKCFIType(FD, F); 2499 2500 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2501 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2502 2503 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2504 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2505 2506 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2507 // Annotate the callback behavior as metadata: 2508 // - The callback callee (as argument number). 2509 // - The callback payloads (as argument numbers). 2510 llvm::LLVMContext &Ctx = F->getContext(); 2511 llvm::MDBuilder MDB(Ctx); 2512 2513 // The payload indices are all but the first one in the encoding. The first 2514 // identifies the callback callee. 2515 int CalleeIdx = *CB->encoding_begin(); 2516 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2517 F->addMetadata(llvm::LLVMContext::MD_callback, 2518 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2519 CalleeIdx, PayloadIndices, 2520 /* VarArgsArePassed */ false)})); 2521 } 2522 } 2523 2524 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2525 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2526 "Only globals with definition can force usage."); 2527 LLVMUsed.emplace_back(GV); 2528 } 2529 2530 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2531 assert(!GV->isDeclaration() && 2532 "Only globals with definition can force usage."); 2533 LLVMCompilerUsed.emplace_back(GV); 2534 } 2535 2536 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2537 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2538 "Only globals with definition can force usage."); 2539 if (getTriple().isOSBinFormatELF()) 2540 LLVMCompilerUsed.emplace_back(GV); 2541 else 2542 LLVMUsed.emplace_back(GV); 2543 } 2544 2545 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2546 std::vector<llvm::WeakTrackingVH> &List) { 2547 // Don't create llvm.used if there is no need. 2548 if (List.empty()) 2549 return; 2550 2551 // Convert List to what ConstantArray needs. 2552 SmallVector<llvm::Constant*, 8> UsedArray; 2553 UsedArray.resize(List.size()); 2554 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2555 UsedArray[i] = 2556 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2557 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2558 } 2559 2560 if (UsedArray.empty()) 2561 return; 2562 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2563 2564 auto *GV = new llvm::GlobalVariable( 2565 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2566 llvm::ConstantArray::get(ATy, UsedArray), Name); 2567 2568 GV->setSection("llvm.metadata"); 2569 } 2570 2571 void CodeGenModule::emitLLVMUsed() { 2572 emitUsed(*this, "llvm.used", LLVMUsed); 2573 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2574 } 2575 2576 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2577 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2578 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2579 } 2580 2581 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2582 llvm::SmallString<32> Opt; 2583 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2584 if (Opt.empty()) 2585 return; 2586 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2587 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2588 } 2589 2590 void CodeGenModule::AddDependentLib(StringRef Lib) { 2591 auto &C = getLLVMContext(); 2592 if (getTarget().getTriple().isOSBinFormatELF()) { 2593 ELFDependentLibraries.push_back( 2594 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2595 return; 2596 } 2597 2598 llvm::SmallString<24> Opt; 2599 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2600 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2601 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2602 } 2603 2604 /// Add link options implied by the given module, including modules 2605 /// it depends on, using a postorder walk. 2606 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2607 SmallVectorImpl<llvm::MDNode *> &Metadata, 2608 llvm::SmallPtrSet<Module *, 16> &Visited) { 2609 // Import this module's parent. 2610 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2611 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2612 } 2613 2614 // Import this module's dependencies. 2615 for (Module *Import : llvm::reverse(Mod->Imports)) { 2616 if (Visited.insert(Import).second) 2617 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2618 } 2619 2620 // Add linker options to link against the libraries/frameworks 2621 // described by this module. 2622 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2623 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2624 2625 // For modules that use export_as for linking, use that module 2626 // name instead. 2627 if (Mod->UseExportAsModuleLinkName) 2628 return; 2629 2630 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2631 // Link against a framework. Frameworks are currently Darwin only, so we 2632 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2633 if (LL.IsFramework) { 2634 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2635 llvm::MDString::get(Context, LL.Library)}; 2636 2637 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2638 continue; 2639 } 2640 2641 // Link against a library. 2642 if (IsELF) { 2643 llvm::Metadata *Args[2] = { 2644 llvm::MDString::get(Context, "lib"), 2645 llvm::MDString::get(Context, LL.Library), 2646 }; 2647 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2648 } else { 2649 llvm::SmallString<24> Opt; 2650 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2651 auto *OptString = llvm::MDString::get(Context, Opt); 2652 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2653 } 2654 } 2655 } 2656 2657 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2658 // Emit the initializers in the order that sub-modules appear in the 2659 // source, first Global Module Fragments, if present. 2660 if (auto GMF = Primary->getGlobalModuleFragment()) { 2661 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2662 if (isa<ImportDecl>(D)) 2663 continue; 2664 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 2665 EmitTopLevelDecl(D); 2666 } 2667 } 2668 // Second any associated with the module, itself. 2669 for (Decl *D : getContext().getModuleInitializers(Primary)) { 2670 // Skip import decls, the inits for those are called explicitly. 2671 if (isa<ImportDecl>(D)) 2672 continue; 2673 EmitTopLevelDecl(D); 2674 } 2675 // Third any associated with the Privat eMOdule Fragment, if present. 2676 if (auto PMF = Primary->getPrivateModuleFragment()) { 2677 for (Decl *D : getContext().getModuleInitializers(PMF)) { 2678 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 2679 EmitTopLevelDecl(D); 2680 } 2681 } 2682 } 2683 2684 void CodeGenModule::EmitModuleLinkOptions() { 2685 // Collect the set of all of the modules we want to visit to emit link 2686 // options, which is essentially the imported modules and all of their 2687 // non-explicit child modules. 2688 llvm::SetVector<clang::Module *> LinkModules; 2689 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2690 SmallVector<clang::Module *, 16> Stack; 2691 2692 // Seed the stack with imported modules. 2693 for (Module *M : ImportedModules) { 2694 // Do not add any link flags when an implementation TU of a module imports 2695 // a header of that same module. 2696 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2697 !getLangOpts().isCompilingModule()) 2698 continue; 2699 if (Visited.insert(M).second) 2700 Stack.push_back(M); 2701 } 2702 2703 // Find all of the modules to import, making a little effort to prune 2704 // non-leaf modules. 2705 while (!Stack.empty()) { 2706 clang::Module *Mod = Stack.pop_back_val(); 2707 2708 bool AnyChildren = false; 2709 2710 // Visit the submodules of this module. 2711 for (const auto &SM : Mod->submodules()) { 2712 // Skip explicit children; they need to be explicitly imported to be 2713 // linked against. 2714 if (SM->IsExplicit) 2715 continue; 2716 2717 if (Visited.insert(SM).second) { 2718 Stack.push_back(SM); 2719 AnyChildren = true; 2720 } 2721 } 2722 2723 // We didn't find any children, so add this module to the list of 2724 // modules to link against. 2725 if (!AnyChildren) { 2726 LinkModules.insert(Mod); 2727 } 2728 } 2729 2730 // Add link options for all of the imported modules in reverse topological 2731 // order. We don't do anything to try to order import link flags with respect 2732 // to linker options inserted by things like #pragma comment(). 2733 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2734 Visited.clear(); 2735 for (Module *M : LinkModules) 2736 if (Visited.insert(M).second) 2737 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2738 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2739 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2740 2741 // Add the linker options metadata flag. 2742 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2743 for (auto *MD : LinkerOptionsMetadata) 2744 NMD->addOperand(MD); 2745 } 2746 2747 void CodeGenModule::EmitDeferred() { 2748 // Emit deferred declare target declarations. 2749 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2750 getOpenMPRuntime().emitDeferredTargetDecls(); 2751 2752 // Emit code for any potentially referenced deferred decls. Since a 2753 // previously unused static decl may become used during the generation of code 2754 // for a static function, iterate until no changes are made. 2755 2756 if (!DeferredVTables.empty()) { 2757 EmitDeferredVTables(); 2758 2759 // Emitting a vtable doesn't directly cause more vtables to 2760 // become deferred, although it can cause functions to be 2761 // emitted that then need those vtables. 2762 assert(DeferredVTables.empty()); 2763 } 2764 2765 // Emit CUDA/HIP static device variables referenced by host code only. 2766 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2767 // needed for further handling. 2768 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2769 llvm::append_range(DeferredDeclsToEmit, 2770 getContext().CUDADeviceVarODRUsedByHost); 2771 2772 // Stop if we're out of both deferred vtables and deferred declarations. 2773 if (DeferredDeclsToEmit.empty()) 2774 return; 2775 2776 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2777 // work, it will not interfere with this. 2778 std::vector<GlobalDecl> CurDeclsToEmit; 2779 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2780 2781 for (GlobalDecl &D : CurDeclsToEmit) { 2782 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2783 // to get GlobalValue with exactly the type we need, not something that 2784 // might had been created for another decl with the same mangled name but 2785 // different type. 2786 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2787 GetAddrOfGlobal(D, ForDefinition)); 2788 2789 // In case of different address spaces, we may still get a cast, even with 2790 // IsForDefinition equal to true. Query mangled names table to get 2791 // GlobalValue. 2792 if (!GV) 2793 GV = GetGlobalValue(getMangledName(D)); 2794 2795 // Make sure GetGlobalValue returned non-null. 2796 assert(GV); 2797 2798 // Check to see if we've already emitted this. This is necessary 2799 // for a couple of reasons: first, decls can end up in the 2800 // deferred-decls queue multiple times, and second, decls can end 2801 // up with definitions in unusual ways (e.g. by an extern inline 2802 // function acquiring a strong function redefinition). Just 2803 // ignore these cases. 2804 if (!GV->isDeclaration()) 2805 continue; 2806 2807 // If this is OpenMP, check if it is legal to emit this global normally. 2808 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2809 continue; 2810 2811 // Otherwise, emit the definition and move on to the next one. 2812 EmitGlobalDefinition(D, GV); 2813 2814 // If we found out that we need to emit more decls, do that recursively. 2815 // This has the advantage that the decls are emitted in a DFS and related 2816 // ones are close together, which is convenient for testing. 2817 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2818 EmitDeferred(); 2819 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2820 } 2821 } 2822 } 2823 2824 void CodeGenModule::EmitVTablesOpportunistically() { 2825 // Try to emit external vtables as available_externally if they have emitted 2826 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2827 // is not allowed to create new references to things that need to be emitted 2828 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2829 2830 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2831 && "Only emit opportunistic vtables with optimizations"); 2832 2833 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2834 assert(getVTables().isVTableExternal(RD) && 2835 "This queue should only contain external vtables"); 2836 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2837 VTables.GenerateClassData(RD); 2838 } 2839 OpportunisticVTables.clear(); 2840 } 2841 2842 void CodeGenModule::EmitGlobalAnnotations() { 2843 if (Annotations.empty()) 2844 return; 2845 2846 // Create a new global variable for the ConstantStruct in the Module. 2847 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2848 Annotations[0]->getType(), Annotations.size()), Annotations); 2849 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2850 llvm::GlobalValue::AppendingLinkage, 2851 Array, "llvm.global.annotations"); 2852 gv->setSection(AnnotationSection); 2853 } 2854 2855 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2856 llvm::Constant *&AStr = AnnotationStrings[Str]; 2857 if (AStr) 2858 return AStr; 2859 2860 // Not found yet, create a new global. 2861 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2862 auto *gv = new llvm::GlobalVariable( 2863 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 2864 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 2865 ConstGlobalsPtrTy->getAddressSpace()); 2866 gv->setSection(AnnotationSection); 2867 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2868 AStr = gv; 2869 return gv; 2870 } 2871 2872 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2873 SourceManager &SM = getContext().getSourceManager(); 2874 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2875 if (PLoc.isValid()) 2876 return EmitAnnotationString(PLoc.getFilename()); 2877 return EmitAnnotationString(SM.getBufferName(Loc)); 2878 } 2879 2880 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2881 SourceManager &SM = getContext().getSourceManager(); 2882 PresumedLoc PLoc = SM.getPresumedLoc(L); 2883 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2884 SM.getExpansionLineNumber(L); 2885 return llvm::ConstantInt::get(Int32Ty, LineNo); 2886 } 2887 2888 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2889 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2890 if (Exprs.empty()) 2891 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 2892 2893 llvm::FoldingSetNodeID ID; 2894 for (Expr *E : Exprs) { 2895 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2896 } 2897 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2898 if (Lookup) 2899 return Lookup; 2900 2901 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2902 LLVMArgs.reserve(Exprs.size()); 2903 ConstantEmitter ConstEmiter(*this); 2904 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2905 const auto *CE = cast<clang::ConstantExpr>(E); 2906 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2907 CE->getType()); 2908 }); 2909 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2910 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2911 llvm::GlobalValue::PrivateLinkage, Struct, 2912 ".args"); 2913 GV->setSection(AnnotationSection); 2914 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2915 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2916 2917 Lookup = Bitcasted; 2918 return Bitcasted; 2919 } 2920 2921 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2922 const AnnotateAttr *AA, 2923 SourceLocation L) { 2924 // Get the globals for file name, annotation, and the line number. 2925 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2926 *UnitGV = EmitAnnotationUnit(L), 2927 *LineNoCst = EmitAnnotationLineNo(L), 2928 *Args = EmitAnnotationArgs(AA); 2929 2930 llvm::Constant *GVInGlobalsAS = GV; 2931 if (GV->getAddressSpace() != 2932 getDataLayout().getDefaultGlobalsAddressSpace()) { 2933 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2934 GV, GV->getValueType()->getPointerTo( 2935 getDataLayout().getDefaultGlobalsAddressSpace())); 2936 } 2937 2938 // Create the ConstantStruct for the global annotation. 2939 llvm::Constant *Fields[] = { 2940 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2941 llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy), 2942 llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy), 2943 LineNoCst, 2944 Args, 2945 }; 2946 return llvm::ConstantStruct::getAnon(Fields); 2947 } 2948 2949 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2950 llvm::GlobalValue *GV) { 2951 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2952 // Get the struct elements for these annotations. 2953 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2954 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2955 } 2956 2957 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2958 SourceLocation Loc) const { 2959 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2960 // NoSanitize by function name. 2961 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2962 return true; 2963 // NoSanitize by location. Check "mainfile" prefix. 2964 auto &SM = Context.getSourceManager(); 2965 const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID()); 2966 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 2967 return true; 2968 2969 // Check "src" prefix. 2970 if (Loc.isValid()) 2971 return NoSanitizeL.containsLocation(Kind, Loc); 2972 // If location is unknown, this may be a compiler-generated function. Assume 2973 // it's located in the main file. 2974 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 2975 } 2976 2977 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 2978 llvm::GlobalVariable *GV, 2979 SourceLocation Loc, QualType Ty, 2980 StringRef Category) const { 2981 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2982 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 2983 return true; 2984 auto &SM = Context.getSourceManager(); 2985 if (NoSanitizeL.containsMainFile( 2986 Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category)) 2987 return true; 2988 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 2989 return true; 2990 2991 // Check global type. 2992 if (!Ty.isNull()) { 2993 // Drill down the array types: if global variable of a fixed type is 2994 // not sanitized, we also don't instrument arrays of them. 2995 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2996 Ty = AT->getElementType(); 2997 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2998 // Only record types (classes, structs etc.) are ignored. 2999 if (Ty->isRecordType()) { 3000 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3001 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3002 return true; 3003 } 3004 } 3005 return false; 3006 } 3007 3008 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3009 StringRef Category) const { 3010 const auto &XRayFilter = getContext().getXRayFilter(); 3011 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3012 auto Attr = ImbueAttr::NONE; 3013 if (Loc.isValid()) 3014 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3015 if (Attr == ImbueAttr::NONE) 3016 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3017 switch (Attr) { 3018 case ImbueAttr::NONE: 3019 return false; 3020 case ImbueAttr::ALWAYS: 3021 Fn->addFnAttr("function-instrument", "xray-always"); 3022 break; 3023 case ImbueAttr::ALWAYS_ARG1: 3024 Fn->addFnAttr("function-instrument", "xray-always"); 3025 Fn->addFnAttr("xray-log-args", "1"); 3026 break; 3027 case ImbueAttr::NEVER: 3028 Fn->addFnAttr("function-instrument", "xray-never"); 3029 break; 3030 } 3031 return true; 3032 } 3033 3034 ProfileList::ExclusionType 3035 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3036 SourceLocation Loc) const { 3037 const auto &ProfileList = getContext().getProfileList(); 3038 // If the profile list is empty, then instrument everything. 3039 if (ProfileList.isEmpty()) 3040 return ProfileList::Allow; 3041 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3042 // First, check the function name. 3043 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3044 return *V; 3045 // Next, check the source location. 3046 if (Loc.isValid()) 3047 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3048 return *V; 3049 // If location is unknown, this may be a compiler-generated function. Assume 3050 // it's located in the main file. 3051 auto &SM = Context.getSourceManager(); 3052 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) 3053 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3054 return *V; 3055 return ProfileList.getDefault(Kind); 3056 } 3057 3058 ProfileList::ExclusionType 3059 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3060 SourceLocation Loc) const { 3061 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3062 if (V != ProfileList::Allow) 3063 return V; 3064 3065 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3066 if (NumGroups > 1) { 3067 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3068 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3069 return ProfileList::Skip; 3070 } 3071 return ProfileList::Allow; 3072 } 3073 3074 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3075 // Never defer when EmitAllDecls is specified. 3076 if (LangOpts.EmitAllDecls) 3077 return true; 3078 3079 if (CodeGenOpts.KeepStaticConsts) { 3080 const auto *VD = dyn_cast<VarDecl>(Global); 3081 if (VD && VD->getType().isConstQualified() && 3082 VD->getStorageDuration() == SD_Static) 3083 return true; 3084 } 3085 3086 return getContext().DeclMustBeEmitted(Global); 3087 } 3088 3089 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3090 // In OpenMP 5.0 variables and function may be marked as 3091 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3092 // that they must be emitted on the host/device. To be sure we need to have 3093 // seen a declare target with an explicit mentioning of the function, we know 3094 // we have if the level of the declare target attribute is -1. Note that we 3095 // check somewhere else if we should emit this at all. 3096 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3097 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3098 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3099 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3100 return false; 3101 } 3102 3103 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3104 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3105 // Implicit template instantiations may change linkage if they are later 3106 // explicitly instantiated, so they should not be emitted eagerly. 3107 return false; 3108 } 3109 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3110 if (Context.getInlineVariableDefinitionKind(VD) == 3111 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3112 // A definition of an inline constexpr static data member may change 3113 // linkage later if it's redeclared outside the class. 3114 return false; 3115 if (CXX20ModuleInits && VD->getOwningModule() && 3116 !VD->getOwningModule()->isModuleMapModule()) { 3117 // For CXX20, module-owned initializers need to be deferred, since it is 3118 // not known at this point if they will be run for the current module or 3119 // as part of the initializer for an imported one. 3120 return false; 3121 } 3122 } 3123 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3124 // codegen for global variables, because they may be marked as threadprivate. 3125 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3126 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3127 !isTypeConstant(Global->getType(), false) && 3128 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3129 return false; 3130 3131 return true; 3132 } 3133 3134 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3135 StringRef Name = getMangledName(GD); 3136 3137 // The UUID descriptor should be pointer aligned. 3138 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3139 3140 // Look for an existing global. 3141 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3142 return ConstantAddress(GV, GV->getValueType(), Alignment); 3143 3144 ConstantEmitter Emitter(*this); 3145 llvm::Constant *Init; 3146 3147 APValue &V = GD->getAsAPValue(); 3148 if (!V.isAbsent()) { 3149 // If possible, emit the APValue version of the initializer. In particular, 3150 // this gets the type of the constant right. 3151 Init = Emitter.emitForInitializer( 3152 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3153 } else { 3154 // As a fallback, directly construct the constant. 3155 // FIXME: This may get padding wrong under esoteric struct layout rules. 3156 // MSVC appears to create a complete type 'struct __s_GUID' that it 3157 // presumably uses to represent these constants. 3158 MSGuidDecl::Parts Parts = GD->getParts(); 3159 llvm::Constant *Fields[4] = { 3160 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3161 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3162 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3163 llvm::ConstantDataArray::getRaw( 3164 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3165 Int8Ty)}; 3166 Init = llvm::ConstantStruct::getAnon(Fields); 3167 } 3168 3169 auto *GV = new llvm::GlobalVariable( 3170 getModule(), Init->getType(), 3171 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3172 if (supportsCOMDAT()) 3173 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3174 setDSOLocal(GV); 3175 3176 if (!V.isAbsent()) { 3177 Emitter.finalize(GV); 3178 return ConstantAddress(GV, GV->getValueType(), Alignment); 3179 } 3180 3181 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3182 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 3183 GV, Ty->getPointerTo(GV->getAddressSpace())); 3184 return ConstantAddress(Addr, Ty, Alignment); 3185 } 3186 3187 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3188 const UnnamedGlobalConstantDecl *GCD) { 3189 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3190 3191 llvm::GlobalVariable **Entry = nullptr; 3192 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3193 if (*Entry) 3194 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3195 3196 ConstantEmitter Emitter(*this); 3197 llvm::Constant *Init; 3198 3199 const APValue &V = GCD->getValue(); 3200 3201 assert(!V.isAbsent()); 3202 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3203 GCD->getType()); 3204 3205 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3206 /*isConstant=*/true, 3207 llvm::GlobalValue::PrivateLinkage, Init, 3208 ".constant"); 3209 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3210 GV->setAlignment(Alignment.getAsAlign()); 3211 3212 Emitter.finalize(GV); 3213 3214 *Entry = GV; 3215 return ConstantAddress(GV, GV->getValueType(), Alignment); 3216 } 3217 3218 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3219 const TemplateParamObjectDecl *TPO) { 3220 StringRef Name = getMangledName(TPO); 3221 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3222 3223 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3224 return ConstantAddress(GV, GV->getValueType(), Alignment); 3225 3226 ConstantEmitter Emitter(*this); 3227 llvm::Constant *Init = Emitter.emitForInitializer( 3228 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3229 3230 if (!Init) { 3231 ErrorUnsupported(TPO, "template parameter object"); 3232 return ConstantAddress::invalid(); 3233 } 3234 3235 auto *GV = new llvm::GlobalVariable( 3236 getModule(), Init->getType(), 3237 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3238 if (supportsCOMDAT()) 3239 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3240 Emitter.finalize(GV); 3241 3242 return ConstantAddress(GV, GV->getValueType(), Alignment); 3243 } 3244 3245 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3246 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3247 assert(AA && "No alias?"); 3248 3249 CharUnits Alignment = getContext().getDeclAlign(VD); 3250 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3251 3252 // See if there is already something with the target's name in the module. 3253 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3254 if (Entry) { 3255 unsigned AS = getTypes().getTargetAddressSpace(VD->getType()); 3256 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3257 return ConstantAddress(Ptr, DeclTy, Alignment); 3258 } 3259 3260 llvm::Constant *Aliasee; 3261 if (isa<llvm::FunctionType>(DeclTy)) 3262 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3263 GlobalDecl(cast<FunctionDecl>(VD)), 3264 /*ForVTable=*/false); 3265 else 3266 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3267 nullptr); 3268 3269 auto *F = cast<llvm::GlobalValue>(Aliasee); 3270 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3271 WeakRefReferences.insert(F); 3272 3273 return ConstantAddress(Aliasee, DeclTy, Alignment); 3274 } 3275 3276 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3277 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3278 3279 // Weak references don't produce any output by themselves. 3280 if (Global->hasAttr<WeakRefAttr>()) 3281 return; 3282 3283 // If this is an alias definition (which otherwise looks like a declaration) 3284 // emit it now. 3285 if (Global->hasAttr<AliasAttr>()) 3286 return EmitAliasDefinition(GD); 3287 3288 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3289 if (Global->hasAttr<IFuncAttr>()) 3290 return emitIFuncDefinition(GD); 3291 3292 // If this is a cpu_dispatch multiversion function, emit the resolver. 3293 if (Global->hasAttr<CPUDispatchAttr>()) 3294 return emitCPUDispatchDefinition(GD); 3295 3296 // If this is CUDA, be selective about which declarations we emit. 3297 if (LangOpts.CUDA) { 3298 if (LangOpts.CUDAIsDevice) { 3299 if (!Global->hasAttr<CUDADeviceAttr>() && 3300 !Global->hasAttr<CUDAGlobalAttr>() && 3301 !Global->hasAttr<CUDAConstantAttr>() && 3302 !Global->hasAttr<CUDASharedAttr>() && 3303 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3304 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3305 return; 3306 } else { 3307 // We need to emit host-side 'shadows' for all global 3308 // device-side variables because the CUDA runtime needs their 3309 // size and host-side address in order to provide access to 3310 // their device-side incarnations. 3311 3312 // So device-only functions are the only things we skip. 3313 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3314 Global->hasAttr<CUDADeviceAttr>()) 3315 return; 3316 3317 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3318 "Expected Variable or Function"); 3319 } 3320 } 3321 3322 if (LangOpts.OpenMP) { 3323 // If this is OpenMP, check if it is legal to emit this global normally. 3324 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3325 return; 3326 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3327 if (MustBeEmitted(Global)) 3328 EmitOMPDeclareReduction(DRD); 3329 return; 3330 } 3331 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3332 if (MustBeEmitted(Global)) 3333 EmitOMPDeclareMapper(DMD); 3334 return; 3335 } 3336 } 3337 3338 // Ignore declarations, they will be emitted on their first use. 3339 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3340 // Forward declarations are emitted lazily on first use. 3341 if (!FD->doesThisDeclarationHaveABody()) { 3342 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3343 return; 3344 3345 StringRef MangledName = getMangledName(GD); 3346 3347 // Compute the function info and LLVM type. 3348 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3349 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3350 3351 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3352 /*DontDefer=*/false); 3353 return; 3354 } 3355 } else { 3356 const auto *VD = cast<VarDecl>(Global); 3357 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3358 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3359 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3360 if (LangOpts.OpenMP) { 3361 // Emit declaration of the must-be-emitted declare target variable. 3362 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3363 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3364 bool UnifiedMemoryEnabled = 3365 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3366 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3367 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3368 !UnifiedMemoryEnabled) { 3369 (void)GetAddrOfGlobalVar(VD); 3370 } else { 3371 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3372 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3373 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3374 UnifiedMemoryEnabled)) && 3375 "Link clause or to clause with unified memory expected."); 3376 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3377 } 3378 3379 return; 3380 } 3381 } 3382 // If this declaration may have caused an inline variable definition to 3383 // change linkage, make sure that it's emitted. 3384 if (Context.getInlineVariableDefinitionKind(VD) == 3385 ASTContext::InlineVariableDefinitionKind::Strong) 3386 GetAddrOfGlobalVar(VD); 3387 return; 3388 } 3389 } 3390 3391 // Defer code generation to first use when possible, e.g. if this is an inline 3392 // function. If the global must always be emitted, do it eagerly if possible 3393 // to benefit from cache locality. 3394 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3395 // Emit the definition if it can't be deferred. 3396 EmitGlobalDefinition(GD); 3397 return; 3398 } 3399 3400 // If we're deferring emission of a C++ variable with an 3401 // initializer, remember the order in which it appeared in the file. 3402 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3403 cast<VarDecl>(Global)->hasInit()) { 3404 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3405 CXXGlobalInits.push_back(nullptr); 3406 } 3407 3408 StringRef MangledName = getMangledName(GD); 3409 if (GetGlobalValue(MangledName) != nullptr) { 3410 // The value has already been used and should therefore be emitted. 3411 addDeferredDeclToEmit(GD); 3412 } else if (MustBeEmitted(Global)) { 3413 // The value must be emitted, but cannot be emitted eagerly. 3414 assert(!MayBeEmittedEagerly(Global)); 3415 addDeferredDeclToEmit(GD); 3416 EmittedDeferredDecls[MangledName] = GD; 3417 } else { 3418 // Otherwise, remember that we saw a deferred decl with this name. The 3419 // first use of the mangled name will cause it to move into 3420 // DeferredDeclsToEmit. 3421 DeferredDecls[MangledName] = GD; 3422 } 3423 } 3424 3425 // Check if T is a class type with a destructor that's not dllimport. 3426 static bool HasNonDllImportDtor(QualType T) { 3427 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3428 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3429 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3430 return true; 3431 3432 return false; 3433 } 3434 3435 namespace { 3436 struct FunctionIsDirectlyRecursive 3437 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3438 const StringRef Name; 3439 const Builtin::Context &BI; 3440 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3441 : Name(N), BI(C) {} 3442 3443 bool VisitCallExpr(const CallExpr *E) { 3444 const FunctionDecl *FD = E->getDirectCallee(); 3445 if (!FD) 3446 return false; 3447 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3448 if (Attr && Name == Attr->getLabel()) 3449 return true; 3450 unsigned BuiltinID = FD->getBuiltinID(); 3451 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3452 return false; 3453 StringRef BuiltinName = BI.getName(BuiltinID); 3454 if (BuiltinName.startswith("__builtin_") && 3455 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3456 return true; 3457 } 3458 return false; 3459 } 3460 3461 bool VisitStmt(const Stmt *S) { 3462 for (const Stmt *Child : S->children()) 3463 if (Child && this->Visit(Child)) 3464 return true; 3465 return false; 3466 } 3467 }; 3468 3469 // Make sure we're not referencing non-imported vars or functions. 3470 struct DLLImportFunctionVisitor 3471 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3472 bool SafeToInline = true; 3473 3474 bool shouldVisitImplicitCode() const { return true; } 3475 3476 bool VisitVarDecl(VarDecl *VD) { 3477 if (VD->getTLSKind()) { 3478 // A thread-local variable cannot be imported. 3479 SafeToInline = false; 3480 return SafeToInline; 3481 } 3482 3483 // A variable definition might imply a destructor call. 3484 if (VD->isThisDeclarationADefinition()) 3485 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3486 3487 return SafeToInline; 3488 } 3489 3490 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3491 if (const auto *D = E->getTemporary()->getDestructor()) 3492 SafeToInline = D->hasAttr<DLLImportAttr>(); 3493 return SafeToInline; 3494 } 3495 3496 bool VisitDeclRefExpr(DeclRefExpr *E) { 3497 ValueDecl *VD = E->getDecl(); 3498 if (isa<FunctionDecl>(VD)) 3499 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3500 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3501 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3502 return SafeToInline; 3503 } 3504 3505 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3506 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3507 return SafeToInline; 3508 } 3509 3510 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3511 CXXMethodDecl *M = E->getMethodDecl(); 3512 if (!M) { 3513 // Call through a pointer to member function. This is safe to inline. 3514 SafeToInline = true; 3515 } else { 3516 SafeToInline = M->hasAttr<DLLImportAttr>(); 3517 } 3518 return SafeToInline; 3519 } 3520 3521 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3522 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3523 return SafeToInline; 3524 } 3525 3526 bool VisitCXXNewExpr(CXXNewExpr *E) { 3527 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3528 return SafeToInline; 3529 } 3530 }; 3531 } 3532 3533 // isTriviallyRecursive - Check if this function calls another 3534 // decl that, because of the asm attribute or the other decl being a builtin, 3535 // ends up pointing to itself. 3536 bool 3537 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3538 StringRef Name; 3539 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3540 // asm labels are a special kind of mangling we have to support. 3541 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3542 if (!Attr) 3543 return false; 3544 Name = Attr->getLabel(); 3545 } else { 3546 Name = FD->getName(); 3547 } 3548 3549 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3550 const Stmt *Body = FD->getBody(); 3551 return Body ? Walker.Visit(Body) : false; 3552 } 3553 3554 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3555 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3556 return true; 3557 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3558 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3559 return false; 3560 3561 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3562 // Check whether it would be safe to inline this dllimport function. 3563 DLLImportFunctionVisitor Visitor; 3564 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3565 if (!Visitor.SafeToInline) 3566 return false; 3567 3568 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3569 // Implicit destructor invocations aren't captured in the AST, so the 3570 // check above can't see them. Check for them manually here. 3571 for (const Decl *Member : Dtor->getParent()->decls()) 3572 if (isa<FieldDecl>(Member)) 3573 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3574 return false; 3575 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3576 if (HasNonDllImportDtor(B.getType())) 3577 return false; 3578 } 3579 } 3580 3581 // Inline builtins declaration must be emitted. They often are fortified 3582 // functions. 3583 if (F->isInlineBuiltinDeclaration()) 3584 return true; 3585 3586 // PR9614. Avoid cases where the source code is lying to us. An available 3587 // externally function should have an equivalent function somewhere else, 3588 // but a function that calls itself through asm label/`__builtin_` trickery is 3589 // clearly not equivalent to the real implementation. 3590 // This happens in glibc's btowc and in some configure checks. 3591 return !isTriviallyRecursive(F); 3592 } 3593 3594 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3595 return CodeGenOpts.OptimizationLevel > 0; 3596 } 3597 3598 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3599 llvm::GlobalValue *GV) { 3600 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3601 3602 if (FD->isCPUSpecificMultiVersion()) { 3603 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3604 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3605 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3606 } else if (FD->isTargetClonesMultiVersion()) { 3607 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3608 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3609 if (Clone->isFirstOfVersion(I)) 3610 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3611 // Ensure that the resolver function is also emitted. 3612 GetOrCreateMultiVersionResolver(GD); 3613 } else 3614 EmitGlobalFunctionDefinition(GD, GV); 3615 } 3616 3617 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3618 const auto *D = cast<ValueDecl>(GD.getDecl()); 3619 3620 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3621 Context.getSourceManager(), 3622 "Generating code for declaration"); 3623 3624 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3625 // At -O0, don't generate IR for functions with available_externally 3626 // linkage. 3627 if (!shouldEmitFunction(GD)) 3628 return; 3629 3630 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3631 std::string Name; 3632 llvm::raw_string_ostream OS(Name); 3633 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3634 /*Qualified=*/true); 3635 return Name; 3636 }); 3637 3638 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3639 // Make sure to emit the definition(s) before we emit the thunks. 3640 // This is necessary for the generation of certain thunks. 3641 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3642 ABI->emitCXXStructor(GD); 3643 else if (FD->isMultiVersion()) 3644 EmitMultiVersionFunctionDefinition(GD, GV); 3645 else 3646 EmitGlobalFunctionDefinition(GD, GV); 3647 3648 if (Method->isVirtual()) 3649 getVTables().EmitThunks(GD); 3650 3651 return; 3652 } 3653 3654 if (FD->isMultiVersion()) 3655 return EmitMultiVersionFunctionDefinition(GD, GV); 3656 return EmitGlobalFunctionDefinition(GD, GV); 3657 } 3658 3659 if (const auto *VD = dyn_cast<VarDecl>(D)) 3660 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3661 3662 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3663 } 3664 3665 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3666 llvm::Function *NewFn); 3667 3668 static unsigned 3669 TargetMVPriority(const TargetInfo &TI, 3670 const CodeGenFunction::MultiVersionResolverOption &RO) { 3671 unsigned Priority = 0; 3672 unsigned NumFeatures = 0; 3673 for (StringRef Feat : RO.Conditions.Features) { 3674 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3675 NumFeatures++; 3676 } 3677 3678 if (!RO.Conditions.Architecture.empty()) 3679 Priority = std::max( 3680 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3681 3682 Priority += TI.multiVersionFeatureCost() * NumFeatures; 3683 3684 return Priority; 3685 } 3686 3687 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3688 // TU can forward declare the function without causing problems. Particularly 3689 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3690 // work with internal linkage functions, so that the same function name can be 3691 // used with internal linkage in multiple TUs. 3692 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3693 GlobalDecl GD) { 3694 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3695 if (FD->getFormalLinkage() == InternalLinkage) 3696 return llvm::GlobalValue::InternalLinkage; 3697 return llvm::GlobalValue::WeakODRLinkage; 3698 } 3699 3700 void CodeGenModule::emitMultiVersionFunctions() { 3701 std::vector<GlobalDecl> MVFuncsToEmit; 3702 MultiVersionFuncs.swap(MVFuncsToEmit); 3703 for (GlobalDecl GD : MVFuncsToEmit) { 3704 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3705 assert(FD && "Expected a FunctionDecl"); 3706 3707 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3708 if (FD->isTargetMultiVersion()) { 3709 getContext().forEachMultiversionedFunctionVersion( 3710 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3711 GlobalDecl CurGD{ 3712 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3713 StringRef MangledName = getMangledName(CurGD); 3714 llvm::Constant *Func = GetGlobalValue(MangledName); 3715 if (!Func) { 3716 if (CurFD->isDefined()) { 3717 EmitGlobalFunctionDefinition(CurGD, nullptr); 3718 Func = GetGlobalValue(MangledName); 3719 } else { 3720 const CGFunctionInfo &FI = 3721 getTypes().arrangeGlobalDeclaration(GD); 3722 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3723 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3724 /*DontDefer=*/false, ForDefinition); 3725 } 3726 assert(Func && "This should have just been created"); 3727 } 3728 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 3729 const auto *TA = CurFD->getAttr<TargetAttr>(); 3730 llvm::SmallVector<StringRef, 8> Feats; 3731 TA->getAddedFeatures(Feats); 3732 Options.emplace_back(cast<llvm::Function>(Func), 3733 TA->getArchitecture(), Feats); 3734 } else { 3735 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 3736 llvm::SmallVector<StringRef, 8> Feats; 3737 TVA->getFeatures(Feats); 3738 Options.emplace_back(cast<llvm::Function>(Func), 3739 /*Architecture*/ "", Feats); 3740 } 3741 }); 3742 } else if (FD->isTargetClonesMultiVersion()) { 3743 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3744 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3745 ++VersionIndex) { 3746 if (!TC->isFirstOfVersion(VersionIndex)) 3747 continue; 3748 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 3749 VersionIndex}; 3750 StringRef Version = TC->getFeatureStr(VersionIndex); 3751 StringRef MangledName = getMangledName(CurGD); 3752 llvm::Constant *Func = GetGlobalValue(MangledName); 3753 if (!Func) { 3754 if (FD->isDefined()) { 3755 EmitGlobalFunctionDefinition(CurGD, nullptr); 3756 Func = GetGlobalValue(MangledName); 3757 } else { 3758 const CGFunctionInfo &FI = 3759 getTypes().arrangeGlobalDeclaration(CurGD); 3760 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3761 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3762 /*DontDefer=*/false, ForDefinition); 3763 } 3764 assert(Func && "This should have just been created"); 3765 } 3766 3767 StringRef Architecture; 3768 llvm::SmallVector<StringRef, 1> Feature; 3769 3770 if (getTarget().getTriple().isAArch64()) { 3771 if (Version != "default") { 3772 llvm::SmallVector<StringRef, 8> VerFeats; 3773 Version.split(VerFeats, "+"); 3774 for (auto &CurFeat : VerFeats) 3775 Feature.push_back(CurFeat.trim()); 3776 } 3777 } else { 3778 if (Version.startswith("arch=")) 3779 Architecture = Version.drop_front(sizeof("arch=") - 1); 3780 else if (Version != "default") 3781 Feature.push_back(Version); 3782 } 3783 3784 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3785 } 3786 } else { 3787 assert(0 && "Expected a target or target_clones multiversion function"); 3788 continue; 3789 } 3790 3791 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 3792 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 3793 ResolverConstant = IFunc->getResolver(); 3794 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 3795 3796 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3797 3798 if (supportsCOMDAT()) 3799 ResolverFunc->setComdat( 3800 getModule().getOrInsertComdat(ResolverFunc->getName())); 3801 3802 const TargetInfo &TI = getTarget(); 3803 llvm::stable_sort( 3804 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3805 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3806 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3807 }); 3808 CodeGenFunction CGF(*this); 3809 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3810 } 3811 3812 // Ensure that any additions to the deferred decls list caused by emitting a 3813 // variant are emitted. This can happen when the variant itself is inline and 3814 // calls a function without linkage. 3815 if (!MVFuncsToEmit.empty()) 3816 EmitDeferred(); 3817 3818 // Ensure that any additions to the multiversion funcs list from either the 3819 // deferred decls or the multiversion functions themselves are emitted. 3820 if (!MultiVersionFuncs.empty()) 3821 emitMultiVersionFunctions(); 3822 } 3823 3824 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3825 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3826 assert(FD && "Not a FunctionDecl?"); 3827 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3828 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3829 assert(DD && "Not a cpu_dispatch Function?"); 3830 3831 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3832 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3833 3834 StringRef ResolverName = getMangledName(GD); 3835 UpdateMultiVersionNames(GD, FD, ResolverName); 3836 3837 llvm::Type *ResolverType; 3838 GlobalDecl ResolverGD; 3839 if (getTarget().supportsIFunc()) { 3840 ResolverType = llvm::FunctionType::get( 3841 llvm::PointerType::get(DeclTy, 3842 getTypes().getTargetAddressSpace(FD->getType())), 3843 false); 3844 } 3845 else { 3846 ResolverType = DeclTy; 3847 ResolverGD = GD; 3848 } 3849 3850 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3851 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3852 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3853 if (supportsCOMDAT()) 3854 ResolverFunc->setComdat( 3855 getModule().getOrInsertComdat(ResolverFunc->getName())); 3856 3857 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3858 const TargetInfo &Target = getTarget(); 3859 unsigned Index = 0; 3860 for (const IdentifierInfo *II : DD->cpus()) { 3861 // Get the name of the target function so we can look it up/create it. 3862 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3863 getCPUSpecificMangling(*this, II->getName()); 3864 3865 llvm::Constant *Func = GetGlobalValue(MangledName); 3866 3867 if (!Func) { 3868 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3869 if (ExistingDecl.getDecl() && 3870 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3871 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3872 Func = GetGlobalValue(MangledName); 3873 } else { 3874 if (!ExistingDecl.getDecl()) 3875 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3876 3877 Func = GetOrCreateLLVMFunction( 3878 MangledName, DeclTy, ExistingDecl, 3879 /*ForVTable=*/false, /*DontDefer=*/true, 3880 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3881 } 3882 } 3883 3884 llvm::SmallVector<StringRef, 32> Features; 3885 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3886 llvm::transform(Features, Features.begin(), 3887 [](StringRef Str) { return Str.substr(1); }); 3888 llvm::erase_if(Features, [&Target](StringRef Feat) { 3889 return !Target.validateCpuSupports(Feat); 3890 }); 3891 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3892 ++Index; 3893 } 3894 3895 llvm::stable_sort( 3896 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3897 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3898 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3899 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3900 }); 3901 3902 // If the list contains multiple 'default' versions, such as when it contains 3903 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3904 // always run on at least a 'pentium'). We do this by deleting the 'least 3905 // advanced' (read, lowest mangling letter). 3906 while (Options.size() > 1 && 3907 llvm::X86::getCpuSupportsMask( 3908 (Options.end() - 2)->Conditions.Features) == 0) { 3909 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3910 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3911 if (LHSName.compare(RHSName) < 0) 3912 Options.erase(Options.end() - 2); 3913 else 3914 Options.erase(Options.end() - 1); 3915 } 3916 3917 CodeGenFunction CGF(*this); 3918 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3919 3920 if (getTarget().supportsIFunc()) { 3921 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3922 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 3923 3924 // Fix up function declarations that were created for cpu_specific before 3925 // cpu_dispatch was known 3926 if (!isa<llvm::GlobalIFunc>(IFunc)) { 3927 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3928 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3929 &getModule()); 3930 GI->takeName(IFunc); 3931 IFunc->replaceAllUsesWith(GI); 3932 IFunc->eraseFromParent(); 3933 IFunc = GI; 3934 } 3935 3936 std::string AliasName = getMangledNameImpl( 3937 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3938 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3939 if (!AliasFunc) { 3940 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3941 &getModule()); 3942 SetCommonAttributes(GD, GA); 3943 } 3944 } 3945 } 3946 3947 /// If a dispatcher for the specified mangled name is not in the module, create 3948 /// and return an llvm Function with the specified type. 3949 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 3950 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3951 assert(FD && "Not a FunctionDecl?"); 3952 3953 std::string MangledName = 3954 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3955 3956 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3957 // a separate resolver). 3958 std::string ResolverName = MangledName; 3959 if (getTarget().supportsIFunc()) 3960 ResolverName += ".ifunc"; 3961 else if (FD->isTargetMultiVersion()) 3962 ResolverName += ".resolver"; 3963 3964 // If the resolver has already been created, just return it. 3965 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3966 return ResolverGV; 3967 3968 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3969 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3970 3971 // The resolver needs to be created. For target and target_clones, defer 3972 // creation until the end of the TU. 3973 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 3974 MultiVersionFuncs.push_back(GD); 3975 3976 // For cpu_specific, don't create an ifunc yet because we don't know if the 3977 // cpu_dispatch will be emitted in this translation unit. 3978 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 3979 llvm::Type *ResolverType = llvm::FunctionType::get( 3980 llvm::PointerType::get(DeclTy, 3981 getTypes().getTargetAddressSpace(FD->getType())), 3982 false); 3983 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3984 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3985 /*ForVTable=*/false); 3986 llvm::GlobalIFunc *GIF = 3987 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3988 "", Resolver, &getModule()); 3989 GIF->setName(ResolverName); 3990 SetCommonAttributes(FD, GIF); 3991 3992 return GIF; 3993 } 3994 3995 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3996 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3997 assert(isa<llvm::GlobalValue>(Resolver) && 3998 "Resolver should be created for the first time"); 3999 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4000 return Resolver; 4001 } 4002 4003 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4004 /// module, create and return an llvm Function with the specified type. If there 4005 /// is something in the module with the specified name, return it potentially 4006 /// bitcasted to the right type. 4007 /// 4008 /// If D is non-null, it specifies a decl that correspond to this. This is used 4009 /// to set the attributes on the function when it is first created. 4010 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4011 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4012 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4013 ForDefinition_t IsForDefinition) { 4014 const Decl *D = GD.getDecl(); 4015 4016 // Any attempts to use a MultiVersion function should result in retrieving 4017 // the iFunc instead. Name Mangling will handle the rest of the changes. 4018 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4019 // For the device mark the function as one that should be emitted. 4020 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 4021 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4022 !DontDefer && !IsForDefinition) { 4023 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4024 GlobalDecl GDDef; 4025 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4026 GDDef = GlobalDecl(CD, GD.getCtorType()); 4027 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4028 GDDef = GlobalDecl(DD, GD.getDtorType()); 4029 else 4030 GDDef = GlobalDecl(FDDef); 4031 EmitGlobal(GDDef); 4032 } 4033 } 4034 4035 if (FD->isMultiVersion()) { 4036 UpdateMultiVersionNames(GD, FD, MangledName); 4037 if (!IsForDefinition) 4038 return GetOrCreateMultiVersionResolver(GD); 4039 } 4040 } 4041 4042 // Lookup the entry, lazily creating it if necessary. 4043 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4044 if (Entry) { 4045 if (WeakRefReferences.erase(Entry)) { 4046 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4047 if (FD && !FD->hasAttr<WeakAttr>()) 4048 Entry->setLinkage(llvm::Function::ExternalLinkage); 4049 } 4050 4051 // Handle dropped DLL attributes. 4052 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4053 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4054 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4055 setDSOLocal(Entry); 4056 } 4057 4058 // If there are two attempts to define the same mangled name, issue an 4059 // error. 4060 if (IsForDefinition && !Entry->isDeclaration()) { 4061 GlobalDecl OtherGD; 4062 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4063 // to make sure that we issue an error only once. 4064 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4065 (GD.getCanonicalDecl().getDecl() != 4066 OtherGD.getCanonicalDecl().getDecl()) && 4067 DiagnosedConflictingDefinitions.insert(GD).second) { 4068 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4069 << MangledName; 4070 getDiags().Report(OtherGD.getDecl()->getLocation(), 4071 diag::note_previous_definition); 4072 } 4073 } 4074 4075 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4076 (Entry->getValueType() == Ty)) { 4077 return Entry; 4078 } 4079 4080 // Make sure the result is of the correct type. 4081 // (If function is requested for a definition, we always need to create a new 4082 // function, not just return a bitcast.) 4083 if (!IsForDefinition) 4084 return llvm::ConstantExpr::getBitCast( 4085 Entry, Ty->getPointerTo(Entry->getAddressSpace())); 4086 } 4087 4088 // This function doesn't have a complete type (for example, the return 4089 // type is an incomplete struct). Use a fake type instead, and make 4090 // sure not to try to set attributes. 4091 bool IsIncompleteFunction = false; 4092 4093 llvm::FunctionType *FTy; 4094 if (isa<llvm::FunctionType>(Ty)) { 4095 FTy = cast<llvm::FunctionType>(Ty); 4096 } else { 4097 FTy = llvm::FunctionType::get(VoidTy, false); 4098 IsIncompleteFunction = true; 4099 } 4100 4101 llvm::Function *F = 4102 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4103 Entry ? StringRef() : MangledName, &getModule()); 4104 4105 // If we already created a function with the same mangled name (but different 4106 // type) before, take its name and add it to the list of functions to be 4107 // replaced with F at the end of CodeGen. 4108 // 4109 // This happens if there is a prototype for a function (e.g. "int f()") and 4110 // then a definition of a different type (e.g. "int f(int x)"). 4111 if (Entry) { 4112 F->takeName(Entry); 4113 4114 // This might be an implementation of a function without a prototype, in 4115 // which case, try to do special replacement of calls which match the new 4116 // prototype. The really key thing here is that we also potentially drop 4117 // arguments from the call site so as to make a direct call, which makes the 4118 // inliner happier and suppresses a number of optimizer warnings (!) about 4119 // dropping arguments. 4120 if (!Entry->use_empty()) { 4121 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4122 Entry->removeDeadConstantUsers(); 4123 } 4124 4125 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 4126 F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace())); 4127 addGlobalValReplacement(Entry, BC); 4128 } 4129 4130 assert(F->getName() == MangledName && "name was uniqued!"); 4131 if (D) 4132 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4133 if (ExtraAttrs.hasFnAttrs()) { 4134 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4135 F->addFnAttrs(B); 4136 } 4137 4138 if (!DontDefer) { 4139 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4140 // each other bottoming out with the base dtor. Therefore we emit non-base 4141 // dtors on usage, even if there is no dtor definition in the TU. 4142 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4143 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4144 GD.getDtorType())) 4145 addDeferredDeclToEmit(GD); 4146 4147 // This is the first use or definition of a mangled name. If there is a 4148 // deferred decl with this name, remember that we need to emit it at the end 4149 // of the file. 4150 auto DDI = DeferredDecls.find(MangledName); 4151 if (DDI != DeferredDecls.end()) { 4152 // Move the potentially referenced deferred decl to the 4153 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4154 // don't need it anymore). 4155 addDeferredDeclToEmit(DDI->second); 4156 EmittedDeferredDecls[DDI->first] = DDI->second; 4157 DeferredDecls.erase(DDI); 4158 4159 // Otherwise, there are cases we have to worry about where we're 4160 // using a declaration for which we must emit a definition but where 4161 // we might not find a top-level definition: 4162 // - member functions defined inline in their classes 4163 // - friend functions defined inline in some class 4164 // - special member functions with implicit definitions 4165 // If we ever change our AST traversal to walk into class methods, 4166 // this will be unnecessary. 4167 // 4168 // We also don't emit a definition for a function if it's going to be an 4169 // entry in a vtable, unless it's already marked as used. 4170 } else if (getLangOpts().CPlusPlus && D) { 4171 // Look for a declaration that's lexically in a record. 4172 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4173 FD = FD->getPreviousDecl()) { 4174 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4175 if (FD->doesThisDeclarationHaveABody()) { 4176 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4177 break; 4178 } 4179 } 4180 } 4181 } 4182 } 4183 4184 // Make sure the result is of the requested type. 4185 if (!IsIncompleteFunction) { 4186 assert(F->getFunctionType() == Ty); 4187 return F; 4188 } 4189 4190 return llvm::ConstantExpr::getBitCast(F, 4191 Ty->getPointerTo(F->getAddressSpace())); 4192 } 4193 4194 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4195 /// non-null, then this function will use the specified type if it has to 4196 /// create it (this occurs when we see a definition of the function). 4197 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 4198 llvm::Type *Ty, 4199 bool ForVTable, 4200 bool DontDefer, 4201 ForDefinition_t IsForDefinition) { 4202 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 4203 "consteval function should never be emitted"); 4204 // If there was no specific requested type, just convert it now. 4205 if (!Ty) { 4206 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4207 Ty = getTypes().ConvertType(FD->getType()); 4208 } 4209 4210 // Devirtualized destructor calls may come through here instead of via 4211 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4212 // of the complete destructor when necessary. 4213 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4214 if (getTarget().getCXXABI().isMicrosoft() && 4215 GD.getDtorType() == Dtor_Complete && 4216 DD->getParent()->getNumVBases() == 0) 4217 GD = GlobalDecl(DD, Dtor_Base); 4218 } 4219 4220 StringRef MangledName = getMangledName(GD); 4221 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4222 /*IsThunk=*/false, llvm::AttributeList(), 4223 IsForDefinition); 4224 // Returns kernel handle for HIP kernel stub function. 4225 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4226 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4227 auto *Handle = getCUDARuntime().getKernelHandle( 4228 cast<llvm::Function>(F->stripPointerCasts()), GD); 4229 if (IsForDefinition) 4230 return F; 4231 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 4232 } 4233 return F; 4234 } 4235 4236 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4237 llvm::GlobalValue *F = 4238 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4239 4240 return llvm::ConstantExpr::getBitCast( 4241 llvm::NoCFIValue::get(F), 4242 llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace())); 4243 } 4244 4245 static const FunctionDecl * 4246 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4247 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4248 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4249 4250 IdentifierInfo &CII = C.Idents.get(Name); 4251 for (const auto *Result : DC->lookup(&CII)) 4252 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4253 return FD; 4254 4255 if (!C.getLangOpts().CPlusPlus) 4256 return nullptr; 4257 4258 // Demangle the premangled name from getTerminateFn() 4259 IdentifierInfo &CXXII = 4260 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4261 ? C.Idents.get("terminate") 4262 : C.Idents.get(Name); 4263 4264 for (const auto &N : {"__cxxabiv1", "std"}) { 4265 IdentifierInfo &NS = C.Idents.get(N); 4266 for (const auto *Result : DC->lookup(&NS)) { 4267 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4268 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4269 for (const auto *Result : LSD->lookup(&NS)) 4270 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4271 break; 4272 4273 if (ND) 4274 for (const auto *Result : ND->lookup(&CXXII)) 4275 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4276 return FD; 4277 } 4278 } 4279 4280 return nullptr; 4281 } 4282 4283 /// CreateRuntimeFunction - Create a new runtime function with the specified 4284 /// type and name. 4285 llvm::FunctionCallee 4286 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4287 llvm::AttributeList ExtraAttrs, bool Local, 4288 bool AssumeConvergent) { 4289 if (AssumeConvergent) { 4290 ExtraAttrs = 4291 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4292 } 4293 4294 llvm::Constant *C = 4295 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4296 /*DontDefer=*/false, /*IsThunk=*/false, 4297 ExtraAttrs); 4298 4299 if (auto *F = dyn_cast<llvm::Function>(C)) { 4300 if (F->empty()) { 4301 F->setCallingConv(getRuntimeCC()); 4302 4303 // In Windows Itanium environments, try to mark runtime functions 4304 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4305 // will link their standard library statically or dynamically. Marking 4306 // functions imported when they are not imported can cause linker errors 4307 // and warnings. 4308 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4309 !getCodeGenOpts().LTOVisibilityPublicStd) { 4310 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4311 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4312 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4313 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4314 } 4315 } 4316 setDSOLocal(F); 4317 } 4318 } 4319 4320 return {FTy, C}; 4321 } 4322 4323 /// isTypeConstant - Determine whether an object of this type can be emitted 4324 /// as a constant. 4325 /// 4326 /// If ExcludeCtor is true, the duration when the object's constructor runs 4327 /// will not be considered. The caller will need to verify that the object is 4328 /// not written to during its construction. 4329 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4330 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4331 return false; 4332 4333 if (Context.getLangOpts().CPlusPlus) { 4334 if (const CXXRecordDecl *Record 4335 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4336 return ExcludeCtor && !Record->hasMutableFields() && 4337 Record->hasTrivialDestructor(); 4338 } 4339 4340 return true; 4341 } 4342 4343 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4344 /// create and return an llvm GlobalVariable with the specified type and address 4345 /// space. If there is something in the module with the specified name, return 4346 /// it potentially bitcasted to the right type. 4347 /// 4348 /// If D is non-null, it specifies a decl that correspond to this. This is used 4349 /// to set the attributes on the global when it is first created. 4350 /// 4351 /// If IsForDefinition is true, it is guaranteed that an actual global with 4352 /// type Ty will be returned, not conversion of a variable with the same 4353 /// mangled name but some other type. 4354 llvm::Constant * 4355 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4356 LangAS AddrSpace, const VarDecl *D, 4357 ForDefinition_t IsForDefinition) { 4358 // Lookup the entry, lazily creating it if necessary. 4359 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4360 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4361 if (Entry) { 4362 if (WeakRefReferences.erase(Entry)) { 4363 if (D && !D->hasAttr<WeakAttr>()) 4364 Entry->setLinkage(llvm::Function::ExternalLinkage); 4365 } 4366 4367 // Handle dropped DLL attributes. 4368 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4369 !shouldMapVisibilityToDLLExport(D)) 4370 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4371 4372 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4373 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4374 4375 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4376 return Entry; 4377 4378 // If there are two attempts to define the same mangled name, issue an 4379 // error. 4380 if (IsForDefinition && !Entry->isDeclaration()) { 4381 GlobalDecl OtherGD; 4382 const VarDecl *OtherD; 4383 4384 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4385 // to make sure that we issue an error only once. 4386 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4387 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4388 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4389 OtherD->hasInit() && 4390 DiagnosedConflictingDefinitions.insert(D).second) { 4391 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4392 << MangledName; 4393 getDiags().Report(OtherGD.getDecl()->getLocation(), 4394 diag::note_previous_definition); 4395 } 4396 } 4397 4398 // Make sure the result is of the correct type. 4399 if (Entry->getType()->getAddressSpace() != TargetAS) { 4400 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4401 Ty->getPointerTo(TargetAS)); 4402 } 4403 4404 // (If global is requested for a definition, we always need to create a new 4405 // global, not just return a bitcast.) 4406 if (!IsForDefinition) 4407 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4408 } 4409 4410 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4411 4412 auto *GV = new llvm::GlobalVariable( 4413 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4414 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4415 getContext().getTargetAddressSpace(DAddrSpace)); 4416 4417 // If we already created a global with the same mangled name (but different 4418 // type) before, take its name and remove it from its parent. 4419 if (Entry) { 4420 GV->takeName(Entry); 4421 4422 if (!Entry->use_empty()) { 4423 llvm::Constant *NewPtrForOldDecl = 4424 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4425 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4426 } 4427 4428 Entry->eraseFromParent(); 4429 } 4430 4431 // This is the first use or definition of a mangled name. If there is a 4432 // deferred decl with this name, remember that we need to emit it at the end 4433 // of the file. 4434 auto DDI = DeferredDecls.find(MangledName); 4435 if (DDI != DeferredDecls.end()) { 4436 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4437 // list, and remove it from DeferredDecls (since we don't need it anymore). 4438 addDeferredDeclToEmit(DDI->second); 4439 EmittedDeferredDecls[DDI->first] = DDI->second; 4440 DeferredDecls.erase(DDI); 4441 } 4442 4443 // Handle things which are present even on external declarations. 4444 if (D) { 4445 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4446 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4447 4448 // FIXME: This code is overly simple and should be merged with other global 4449 // handling. 4450 GV->setConstant(isTypeConstant(D->getType(), false)); 4451 4452 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4453 4454 setLinkageForGV(GV, D); 4455 4456 if (D->getTLSKind()) { 4457 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4458 CXXThreadLocals.push_back(D); 4459 setTLSMode(GV, *D); 4460 } 4461 4462 setGVProperties(GV, D); 4463 4464 // If required by the ABI, treat declarations of static data members with 4465 // inline initializers as definitions. 4466 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4467 EmitGlobalVarDefinition(D); 4468 } 4469 4470 // Emit section information for extern variables. 4471 if (D->hasExternalStorage()) { 4472 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4473 GV->setSection(SA->getName()); 4474 } 4475 4476 // Handle XCore specific ABI requirements. 4477 if (getTriple().getArch() == llvm::Triple::xcore && 4478 D->getLanguageLinkage() == CLanguageLinkage && 4479 D->getType().isConstant(Context) && 4480 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4481 GV->setSection(".cp.rodata"); 4482 4483 // Check if we a have a const declaration with an initializer, we may be 4484 // able to emit it as available_externally to expose it's value to the 4485 // optimizer. 4486 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4487 D->getType().isConstQualified() && !GV->hasInitializer() && 4488 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4489 const auto *Record = 4490 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4491 bool HasMutableFields = Record && Record->hasMutableFields(); 4492 if (!HasMutableFields) { 4493 const VarDecl *InitDecl; 4494 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4495 if (InitExpr) { 4496 ConstantEmitter emitter(*this); 4497 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4498 if (Init) { 4499 auto *InitType = Init->getType(); 4500 if (GV->getValueType() != InitType) { 4501 // The type of the initializer does not match the definition. 4502 // This happens when an initializer has a different type from 4503 // the type of the global (because of padding at the end of a 4504 // structure for instance). 4505 GV->setName(StringRef()); 4506 // Make a new global with the correct type, this is now guaranteed 4507 // to work. 4508 auto *NewGV = cast<llvm::GlobalVariable>( 4509 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4510 ->stripPointerCasts()); 4511 4512 // Erase the old global, since it is no longer used. 4513 GV->eraseFromParent(); 4514 GV = NewGV; 4515 } else { 4516 GV->setInitializer(Init); 4517 GV->setConstant(true); 4518 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4519 } 4520 emitter.finalize(GV); 4521 } 4522 } 4523 } 4524 } 4525 } 4526 4527 if (GV->isDeclaration()) { 4528 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4529 // External HIP managed variables needed to be recorded for transformation 4530 // in both device and host compilations. 4531 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4532 D->hasExternalStorage()) 4533 getCUDARuntime().handleVarRegistration(D, *GV); 4534 } 4535 4536 if (D) 4537 SanitizerMD->reportGlobal(GV, *D); 4538 4539 LangAS ExpectedAS = 4540 D ? D->getType().getAddressSpace() 4541 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4542 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4543 if (DAddrSpace != ExpectedAS) { 4544 return getTargetCodeGenInfo().performAddrSpaceCast( 4545 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4546 } 4547 4548 return GV; 4549 } 4550 4551 llvm::Constant * 4552 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4553 const Decl *D = GD.getDecl(); 4554 4555 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4556 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4557 /*DontDefer=*/false, IsForDefinition); 4558 4559 if (isa<CXXMethodDecl>(D)) { 4560 auto FInfo = 4561 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4562 auto Ty = getTypes().GetFunctionType(*FInfo); 4563 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4564 IsForDefinition); 4565 } 4566 4567 if (isa<FunctionDecl>(D)) { 4568 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4569 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4570 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4571 IsForDefinition); 4572 } 4573 4574 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4575 } 4576 4577 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4578 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4579 llvm::Align Alignment) { 4580 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4581 llvm::GlobalVariable *OldGV = nullptr; 4582 4583 if (GV) { 4584 // Check if the variable has the right type. 4585 if (GV->getValueType() == Ty) 4586 return GV; 4587 4588 // Because C++ name mangling, the only way we can end up with an already 4589 // existing global with the same name is if it has been declared extern "C". 4590 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4591 OldGV = GV; 4592 } 4593 4594 // Create a new variable. 4595 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4596 Linkage, nullptr, Name); 4597 4598 if (OldGV) { 4599 // Replace occurrences of the old variable if needed. 4600 GV->takeName(OldGV); 4601 4602 if (!OldGV->use_empty()) { 4603 llvm::Constant *NewPtrForOldDecl = 4604 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4605 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4606 } 4607 4608 OldGV->eraseFromParent(); 4609 } 4610 4611 if (supportsCOMDAT() && GV->isWeakForLinker() && 4612 !GV->hasAvailableExternallyLinkage()) 4613 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4614 4615 GV->setAlignment(Alignment); 4616 4617 return GV; 4618 } 4619 4620 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4621 /// given global variable. If Ty is non-null and if the global doesn't exist, 4622 /// then it will be created with the specified type instead of whatever the 4623 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4624 /// that an actual global with type Ty will be returned, not conversion of a 4625 /// variable with the same mangled name but some other type. 4626 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4627 llvm::Type *Ty, 4628 ForDefinition_t IsForDefinition) { 4629 assert(D->hasGlobalStorage() && "Not a global variable"); 4630 QualType ASTTy = D->getType(); 4631 if (!Ty) 4632 Ty = getTypes().ConvertTypeForMem(ASTTy); 4633 4634 StringRef MangledName = getMangledName(D); 4635 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4636 IsForDefinition); 4637 } 4638 4639 /// CreateRuntimeVariable - Create a new runtime global variable with the 4640 /// specified type and name. 4641 llvm::Constant * 4642 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4643 StringRef Name) { 4644 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4645 : LangAS::Default; 4646 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4647 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4648 return Ret; 4649 } 4650 4651 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4652 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4653 4654 StringRef MangledName = getMangledName(D); 4655 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4656 4657 // We already have a definition, not declaration, with the same mangled name. 4658 // Emitting of declaration is not required (and actually overwrites emitted 4659 // definition). 4660 if (GV && !GV->isDeclaration()) 4661 return; 4662 4663 // If we have not seen a reference to this variable yet, place it into the 4664 // deferred declarations table to be emitted if needed later. 4665 if (!MustBeEmitted(D) && !GV) { 4666 DeferredDecls[MangledName] = D; 4667 return; 4668 } 4669 4670 // The tentative definition is the only definition. 4671 EmitGlobalVarDefinition(D); 4672 } 4673 4674 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4675 EmitExternalVarDeclaration(D); 4676 } 4677 4678 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4679 return Context.toCharUnitsFromBits( 4680 getDataLayout().getTypeStoreSizeInBits(Ty)); 4681 } 4682 4683 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4684 if (LangOpts.OpenCL) { 4685 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4686 assert(AS == LangAS::opencl_global || 4687 AS == LangAS::opencl_global_device || 4688 AS == LangAS::opencl_global_host || 4689 AS == LangAS::opencl_constant || 4690 AS == LangAS::opencl_local || 4691 AS >= LangAS::FirstTargetAddressSpace); 4692 return AS; 4693 } 4694 4695 if (LangOpts.SYCLIsDevice && 4696 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4697 return LangAS::sycl_global; 4698 4699 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4700 if (D) { 4701 if (D->hasAttr<CUDAConstantAttr>()) 4702 return LangAS::cuda_constant; 4703 if (D->hasAttr<CUDASharedAttr>()) 4704 return LangAS::cuda_shared; 4705 if (D->hasAttr<CUDADeviceAttr>()) 4706 return LangAS::cuda_device; 4707 if (D->getType().isConstQualified()) 4708 return LangAS::cuda_constant; 4709 } 4710 return LangAS::cuda_device; 4711 } 4712 4713 if (LangOpts.OpenMP) { 4714 LangAS AS; 4715 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4716 return AS; 4717 } 4718 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4719 } 4720 4721 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4722 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4723 if (LangOpts.OpenCL) 4724 return LangAS::opencl_constant; 4725 if (LangOpts.SYCLIsDevice) 4726 return LangAS::sycl_global; 4727 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4728 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4729 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4730 // with OpVariable instructions with Generic storage class which is not 4731 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4732 // UniformConstant storage class is not viable as pointers to it may not be 4733 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4734 return LangAS::cuda_device; 4735 if (auto AS = getTarget().getConstantAddressSpace()) 4736 return *AS; 4737 return LangAS::Default; 4738 } 4739 4740 // In address space agnostic languages, string literals are in default address 4741 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4742 // emitted in constant address space in LLVM IR. To be consistent with other 4743 // parts of AST, string literal global variables in constant address space 4744 // need to be casted to default address space before being put into address 4745 // map and referenced by other part of CodeGen. 4746 // In OpenCL, string literals are in constant address space in AST, therefore 4747 // they should not be casted to default address space. 4748 static llvm::Constant * 4749 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4750 llvm::GlobalVariable *GV) { 4751 llvm::Constant *Cast = GV; 4752 if (!CGM.getLangOpts().OpenCL) { 4753 auto AS = CGM.GetGlobalConstantAddressSpace(); 4754 if (AS != LangAS::Default) 4755 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4756 CGM, GV, AS, LangAS::Default, 4757 GV->getValueType()->getPointerTo( 4758 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4759 } 4760 return Cast; 4761 } 4762 4763 template<typename SomeDecl> 4764 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4765 llvm::GlobalValue *GV) { 4766 if (!getLangOpts().CPlusPlus) 4767 return; 4768 4769 // Must have 'used' attribute, or else inline assembly can't rely on 4770 // the name existing. 4771 if (!D->template hasAttr<UsedAttr>()) 4772 return; 4773 4774 // Must have internal linkage and an ordinary name. 4775 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4776 return; 4777 4778 // Must be in an extern "C" context. Entities declared directly within 4779 // a record are not extern "C" even if the record is in such a context. 4780 const SomeDecl *First = D->getFirstDecl(); 4781 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4782 return; 4783 4784 // OK, this is an internal linkage entity inside an extern "C" linkage 4785 // specification. Make a note of that so we can give it the "expected" 4786 // mangled name if nothing else is using that name. 4787 std::pair<StaticExternCMap::iterator, bool> R = 4788 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4789 4790 // If we have multiple internal linkage entities with the same name 4791 // in extern "C" regions, none of them gets that name. 4792 if (!R.second) 4793 R.first->second = nullptr; 4794 } 4795 4796 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4797 if (!CGM.supportsCOMDAT()) 4798 return false; 4799 4800 if (D.hasAttr<SelectAnyAttr>()) 4801 return true; 4802 4803 GVALinkage Linkage; 4804 if (auto *VD = dyn_cast<VarDecl>(&D)) 4805 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4806 else 4807 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4808 4809 switch (Linkage) { 4810 case GVA_Internal: 4811 case GVA_AvailableExternally: 4812 case GVA_StrongExternal: 4813 return false; 4814 case GVA_DiscardableODR: 4815 case GVA_StrongODR: 4816 return true; 4817 } 4818 llvm_unreachable("No such linkage"); 4819 } 4820 4821 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4822 llvm::GlobalObject &GO) { 4823 if (!shouldBeInCOMDAT(*this, D)) 4824 return; 4825 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4826 } 4827 4828 /// Pass IsTentative as true if you want to create a tentative definition. 4829 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4830 bool IsTentative) { 4831 // OpenCL global variables of sampler type are translated to function calls, 4832 // therefore no need to be translated. 4833 QualType ASTTy = D->getType(); 4834 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4835 return; 4836 4837 // If this is OpenMP device, check if it is legal to emit this global 4838 // normally. 4839 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4840 OpenMPRuntime->emitTargetGlobalVariable(D)) 4841 return; 4842 4843 llvm::TrackingVH<llvm::Constant> Init; 4844 bool NeedsGlobalCtor = false; 4845 // Whether the definition of the variable is available externally. 4846 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 4847 // since this is the job for its original source. 4848 bool IsDefinitionAvailableExternally = 4849 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 4850 bool NeedsGlobalDtor = 4851 !IsDefinitionAvailableExternally && 4852 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4853 4854 const VarDecl *InitDecl; 4855 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4856 4857 std::optional<ConstantEmitter> emitter; 4858 4859 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4860 // as part of their declaration." Sema has already checked for 4861 // error cases, so we just need to set Init to UndefValue. 4862 bool IsCUDASharedVar = 4863 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4864 // Shadows of initialized device-side global variables are also left 4865 // undefined. 4866 // Managed Variables should be initialized on both host side and device side. 4867 bool IsCUDAShadowVar = 4868 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4869 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4870 D->hasAttr<CUDASharedAttr>()); 4871 bool IsCUDADeviceShadowVar = 4872 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4873 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4874 D->getType()->isCUDADeviceBuiltinTextureType()); 4875 if (getLangOpts().CUDA && 4876 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4877 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4878 else if (D->hasAttr<LoaderUninitializedAttr>()) 4879 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4880 else if (!InitExpr) { 4881 // This is a tentative definition; tentative definitions are 4882 // implicitly initialized with { 0 }. 4883 // 4884 // Note that tentative definitions are only emitted at the end of 4885 // a translation unit, so they should never have incomplete 4886 // type. In addition, EmitTentativeDefinition makes sure that we 4887 // never attempt to emit a tentative definition if a real one 4888 // exists. A use may still exists, however, so we still may need 4889 // to do a RAUW. 4890 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4891 Init = EmitNullConstant(D->getType()); 4892 } else { 4893 initializedGlobalDecl = GlobalDecl(D); 4894 emitter.emplace(*this); 4895 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4896 if (!Initializer) { 4897 QualType T = InitExpr->getType(); 4898 if (D->getType()->isReferenceType()) 4899 T = D->getType(); 4900 4901 if (getLangOpts().CPlusPlus) { 4902 if (InitDecl->hasFlexibleArrayInit(getContext())) 4903 ErrorUnsupported(D, "flexible array initializer"); 4904 Init = EmitNullConstant(T); 4905 4906 if (!IsDefinitionAvailableExternally) 4907 NeedsGlobalCtor = true; 4908 } else { 4909 ErrorUnsupported(D, "static initializer"); 4910 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4911 } 4912 } else { 4913 Init = Initializer; 4914 // We don't need an initializer, so remove the entry for the delayed 4915 // initializer position (just in case this entry was delayed) if we 4916 // also don't need to register a destructor. 4917 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4918 DelayedCXXInitPosition.erase(D); 4919 4920 #ifndef NDEBUG 4921 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 4922 InitDecl->getFlexibleArrayInitChars(getContext()); 4923 CharUnits CstSize = CharUnits::fromQuantity( 4924 getDataLayout().getTypeAllocSize(Init->getType())); 4925 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 4926 #endif 4927 } 4928 } 4929 4930 llvm::Type* InitType = Init->getType(); 4931 llvm::Constant *Entry = 4932 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4933 4934 // Strip off pointer casts if we got them. 4935 Entry = Entry->stripPointerCasts(); 4936 4937 // Entry is now either a Function or GlobalVariable. 4938 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4939 4940 // We have a definition after a declaration with the wrong type. 4941 // We must make a new GlobalVariable* and update everything that used OldGV 4942 // (a declaration or tentative definition) with the new GlobalVariable* 4943 // (which will be a definition). 4944 // 4945 // This happens if there is a prototype for a global (e.g. 4946 // "extern int x[];") and then a definition of a different type (e.g. 4947 // "int x[10];"). This also happens when an initializer has a different type 4948 // from the type of the global (this happens with unions). 4949 if (!GV || GV->getValueType() != InitType || 4950 GV->getType()->getAddressSpace() != 4951 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4952 4953 // Move the old entry aside so that we'll create a new one. 4954 Entry->setName(StringRef()); 4955 4956 // Make a new global with the correct type, this is now guaranteed to work. 4957 GV = cast<llvm::GlobalVariable>( 4958 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4959 ->stripPointerCasts()); 4960 4961 // Replace all uses of the old global with the new global 4962 llvm::Constant *NewPtrForOldDecl = 4963 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4964 Entry->getType()); 4965 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4966 4967 // Erase the old global, since it is no longer used. 4968 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4969 } 4970 4971 MaybeHandleStaticInExternC(D, GV); 4972 4973 if (D->hasAttr<AnnotateAttr>()) 4974 AddGlobalAnnotations(D, GV); 4975 4976 // Set the llvm linkage type as appropriate. 4977 llvm::GlobalValue::LinkageTypes Linkage = 4978 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4979 4980 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4981 // the device. [...]" 4982 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4983 // __device__, declares a variable that: [...] 4984 // Is accessible from all the threads within the grid and from the host 4985 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4986 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4987 if (GV && LangOpts.CUDA) { 4988 if (LangOpts.CUDAIsDevice) { 4989 if (Linkage != llvm::GlobalValue::InternalLinkage && 4990 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4991 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4992 D->getType()->isCUDADeviceBuiltinTextureType())) 4993 GV->setExternallyInitialized(true); 4994 } else { 4995 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4996 } 4997 getCUDARuntime().handleVarRegistration(D, *GV); 4998 } 4999 5000 GV->setInitializer(Init); 5001 if (emitter) 5002 emitter->finalize(GV); 5003 5004 // If it is safe to mark the global 'constant', do so now. 5005 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5006 isTypeConstant(D->getType(), true)); 5007 5008 // If it is in a read-only section, mark it 'constant'. 5009 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5010 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5011 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5012 GV->setConstant(true); 5013 } 5014 5015 CharUnits AlignVal = getContext().getDeclAlign(D); 5016 // Check for alignment specifed in an 'omp allocate' directive. 5017 if (std::optional<CharUnits> AlignValFromAllocate = 5018 getOMPAllocateAlignment(D)) 5019 AlignVal = *AlignValFromAllocate; 5020 GV->setAlignment(AlignVal.getAsAlign()); 5021 5022 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5023 // function is only defined alongside the variable, not also alongside 5024 // callers. Normally, all accesses to a thread_local go through the 5025 // thread-wrapper in order to ensure initialization has occurred, underlying 5026 // variable will never be used other than the thread-wrapper, so it can be 5027 // converted to internal linkage. 5028 // 5029 // However, if the variable has the 'constinit' attribute, it _can_ be 5030 // referenced directly, without calling the thread-wrapper, so the linkage 5031 // must not be changed. 5032 // 5033 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5034 // weak or linkonce, the de-duplication semantics are important to preserve, 5035 // so we don't change the linkage. 5036 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5037 Linkage == llvm::GlobalValue::ExternalLinkage && 5038 Context.getTargetInfo().getTriple().isOSDarwin() && 5039 !D->hasAttr<ConstInitAttr>()) 5040 Linkage = llvm::GlobalValue::InternalLinkage; 5041 5042 GV->setLinkage(Linkage); 5043 if (D->hasAttr<DLLImportAttr>()) 5044 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5045 else if (D->hasAttr<DLLExportAttr>()) 5046 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5047 else 5048 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5049 5050 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5051 // common vars aren't constant even if declared const. 5052 GV->setConstant(false); 5053 // Tentative definition of global variables may be initialized with 5054 // non-zero null pointers. In this case they should have weak linkage 5055 // since common linkage must have zero initializer and must not have 5056 // explicit section therefore cannot have non-zero initial value. 5057 if (!GV->getInitializer()->isNullValue()) 5058 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5059 } 5060 5061 setNonAliasAttributes(D, GV); 5062 5063 if (D->getTLSKind() && !GV->isThreadLocal()) { 5064 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5065 CXXThreadLocals.push_back(D); 5066 setTLSMode(GV, *D); 5067 } 5068 5069 maybeSetTrivialComdat(*D, *GV); 5070 5071 // Emit the initializer function if necessary. 5072 if (NeedsGlobalCtor || NeedsGlobalDtor) 5073 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5074 5075 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5076 5077 // Emit global variable debug information. 5078 if (CGDebugInfo *DI = getModuleDebugInfo()) 5079 if (getCodeGenOpts().hasReducedDebugInfo()) 5080 DI->EmitGlobalVariable(GV, D); 5081 } 5082 5083 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5084 if (CGDebugInfo *DI = getModuleDebugInfo()) 5085 if (getCodeGenOpts().hasReducedDebugInfo()) { 5086 QualType ASTTy = D->getType(); 5087 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5088 llvm::Constant *GV = 5089 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5090 DI->EmitExternalVariable( 5091 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5092 } 5093 } 5094 5095 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5096 CodeGenModule &CGM, const VarDecl *D, 5097 bool NoCommon) { 5098 // Don't give variables common linkage if -fno-common was specified unless it 5099 // was overridden by a NoCommon attribute. 5100 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5101 return true; 5102 5103 // C11 6.9.2/2: 5104 // A declaration of an identifier for an object that has file scope without 5105 // an initializer, and without a storage-class specifier or with the 5106 // storage-class specifier static, constitutes a tentative definition. 5107 if (D->getInit() || D->hasExternalStorage()) 5108 return true; 5109 5110 // A variable cannot be both common and exist in a section. 5111 if (D->hasAttr<SectionAttr>()) 5112 return true; 5113 5114 // A variable cannot be both common and exist in a section. 5115 // We don't try to determine which is the right section in the front-end. 5116 // If no specialized section name is applicable, it will resort to default. 5117 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5118 D->hasAttr<PragmaClangDataSectionAttr>() || 5119 D->hasAttr<PragmaClangRelroSectionAttr>() || 5120 D->hasAttr<PragmaClangRodataSectionAttr>()) 5121 return true; 5122 5123 // Thread local vars aren't considered common linkage. 5124 if (D->getTLSKind()) 5125 return true; 5126 5127 // Tentative definitions marked with WeakImportAttr are true definitions. 5128 if (D->hasAttr<WeakImportAttr>()) 5129 return true; 5130 5131 // A variable cannot be both common and exist in a comdat. 5132 if (shouldBeInCOMDAT(CGM, *D)) 5133 return true; 5134 5135 // Declarations with a required alignment do not have common linkage in MSVC 5136 // mode. 5137 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5138 if (D->hasAttr<AlignedAttr>()) 5139 return true; 5140 QualType VarType = D->getType(); 5141 if (Context.isAlignmentRequired(VarType)) 5142 return true; 5143 5144 if (const auto *RT = VarType->getAs<RecordType>()) { 5145 const RecordDecl *RD = RT->getDecl(); 5146 for (const FieldDecl *FD : RD->fields()) { 5147 if (FD->isBitField()) 5148 continue; 5149 if (FD->hasAttr<AlignedAttr>()) 5150 return true; 5151 if (Context.isAlignmentRequired(FD->getType())) 5152 return true; 5153 } 5154 } 5155 } 5156 5157 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5158 // common symbols, so symbols with greater alignment requirements cannot be 5159 // common. 5160 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5161 // alignments for common symbols via the aligncomm directive, so this 5162 // restriction only applies to MSVC environments. 5163 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5164 Context.getTypeAlignIfKnown(D->getType()) > 5165 Context.toBits(CharUnits::fromQuantity(32))) 5166 return true; 5167 5168 return false; 5169 } 5170 5171 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 5172 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 5173 if (Linkage == GVA_Internal) 5174 return llvm::Function::InternalLinkage; 5175 5176 if (D->hasAttr<WeakAttr>()) 5177 return llvm::GlobalVariable::WeakAnyLinkage; 5178 5179 if (const auto *FD = D->getAsFunction()) 5180 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5181 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5182 5183 // We are guaranteed to have a strong definition somewhere else, 5184 // so we can use available_externally linkage. 5185 if (Linkage == GVA_AvailableExternally) 5186 return llvm::GlobalValue::AvailableExternallyLinkage; 5187 5188 // Note that Apple's kernel linker doesn't support symbol 5189 // coalescing, so we need to avoid linkonce and weak linkages there. 5190 // Normally, this means we just map to internal, but for explicit 5191 // instantiations we'll map to external. 5192 5193 // In C++, the compiler has to emit a definition in every translation unit 5194 // that references the function. We should use linkonce_odr because 5195 // a) if all references in this translation unit are optimized away, we 5196 // don't need to codegen it. b) if the function persists, it needs to be 5197 // merged with other definitions. c) C++ has the ODR, so we know the 5198 // definition is dependable. 5199 if (Linkage == GVA_DiscardableODR) 5200 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5201 : llvm::Function::InternalLinkage; 5202 5203 // An explicit instantiation of a template has weak linkage, since 5204 // explicit instantiations can occur in multiple translation units 5205 // and must all be equivalent. However, we are not allowed to 5206 // throw away these explicit instantiations. 5207 // 5208 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5209 // so say that CUDA templates are either external (for kernels) or internal. 5210 // This lets llvm perform aggressive inter-procedural optimizations. For 5211 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5212 // therefore we need to follow the normal linkage paradigm. 5213 if (Linkage == GVA_StrongODR) { 5214 if (getLangOpts().AppleKext) 5215 return llvm::Function::ExternalLinkage; 5216 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5217 !getLangOpts().GPURelocatableDeviceCode) 5218 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5219 : llvm::Function::InternalLinkage; 5220 return llvm::Function::WeakODRLinkage; 5221 } 5222 5223 // C++ doesn't have tentative definitions and thus cannot have common 5224 // linkage. 5225 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5226 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5227 CodeGenOpts.NoCommon)) 5228 return llvm::GlobalVariable::CommonLinkage; 5229 5230 // selectany symbols are externally visible, so use weak instead of 5231 // linkonce. MSVC optimizes away references to const selectany globals, so 5232 // all definitions should be the same and ODR linkage should be used. 5233 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5234 if (D->hasAttr<SelectAnyAttr>()) 5235 return llvm::GlobalVariable::WeakODRLinkage; 5236 5237 // Otherwise, we have strong external linkage. 5238 assert(Linkage == GVA_StrongExternal); 5239 return llvm::GlobalVariable::ExternalLinkage; 5240 } 5241 5242 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 5243 const VarDecl *VD, bool IsConstant) { 5244 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5245 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 5246 } 5247 5248 /// Replace the uses of a function that was declared with a non-proto type. 5249 /// We want to silently drop extra arguments from call sites 5250 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5251 llvm::Function *newFn) { 5252 // Fast path. 5253 if (old->use_empty()) return; 5254 5255 llvm::Type *newRetTy = newFn->getReturnType(); 5256 SmallVector<llvm::Value*, 4> newArgs; 5257 5258 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5259 ui != ue; ) { 5260 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5261 llvm::User *user = use->getUser(); 5262 5263 // Recognize and replace uses of bitcasts. Most calls to 5264 // unprototyped functions will use bitcasts. 5265 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5266 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5267 replaceUsesOfNonProtoConstant(bitcast, newFn); 5268 continue; 5269 } 5270 5271 // Recognize calls to the function. 5272 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5273 if (!callSite) continue; 5274 if (!callSite->isCallee(&*use)) 5275 continue; 5276 5277 // If the return types don't match exactly, then we can't 5278 // transform this call unless it's dead. 5279 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5280 continue; 5281 5282 // Get the call site's attribute list. 5283 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5284 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5285 5286 // If the function was passed too few arguments, don't transform. 5287 unsigned newNumArgs = newFn->arg_size(); 5288 if (callSite->arg_size() < newNumArgs) 5289 continue; 5290 5291 // If extra arguments were passed, we silently drop them. 5292 // If any of the types mismatch, we don't transform. 5293 unsigned argNo = 0; 5294 bool dontTransform = false; 5295 for (llvm::Argument &A : newFn->args()) { 5296 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5297 dontTransform = true; 5298 break; 5299 } 5300 5301 // Add any parameter attributes. 5302 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5303 argNo++; 5304 } 5305 if (dontTransform) 5306 continue; 5307 5308 // Okay, we can transform this. Create the new call instruction and copy 5309 // over the required information. 5310 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5311 5312 // Copy over any operand bundles. 5313 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5314 callSite->getOperandBundlesAsDefs(newBundles); 5315 5316 llvm::CallBase *newCall; 5317 if (isa<llvm::CallInst>(callSite)) { 5318 newCall = 5319 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5320 } else { 5321 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5322 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5323 oldInvoke->getUnwindDest(), newArgs, 5324 newBundles, "", callSite); 5325 } 5326 newArgs.clear(); // for the next iteration 5327 5328 if (!newCall->getType()->isVoidTy()) 5329 newCall->takeName(callSite); 5330 newCall->setAttributes( 5331 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5332 oldAttrs.getRetAttrs(), newArgAttrs)); 5333 newCall->setCallingConv(callSite->getCallingConv()); 5334 5335 // Finally, remove the old call, replacing any uses with the new one. 5336 if (!callSite->use_empty()) 5337 callSite->replaceAllUsesWith(newCall); 5338 5339 // Copy debug location attached to CI. 5340 if (callSite->getDebugLoc()) 5341 newCall->setDebugLoc(callSite->getDebugLoc()); 5342 5343 callSite->eraseFromParent(); 5344 } 5345 } 5346 5347 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5348 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5349 /// existing call uses of the old function in the module, this adjusts them to 5350 /// call the new function directly. 5351 /// 5352 /// This is not just a cleanup: the always_inline pass requires direct calls to 5353 /// functions to be able to inline them. If there is a bitcast in the way, it 5354 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5355 /// run at -O0. 5356 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5357 llvm::Function *NewFn) { 5358 // If we're redefining a global as a function, don't transform it. 5359 if (!isa<llvm::Function>(Old)) return; 5360 5361 replaceUsesOfNonProtoConstant(Old, NewFn); 5362 } 5363 5364 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5365 auto DK = VD->isThisDeclarationADefinition(); 5366 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5367 return; 5368 5369 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5370 // If we have a definition, this might be a deferred decl. If the 5371 // instantiation is explicit, make sure we emit it at the end. 5372 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5373 GetAddrOfGlobalVar(VD); 5374 5375 EmitTopLevelDecl(VD); 5376 } 5377 5378 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5379 llvm::GlobalValue *GV) { 5380 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5381 5382 // Compute the function info and LLVM type. 5383 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5384 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5385 5386 // Get or create the prototype for the function. 5387 if (!GV || (GV->getValueType() != Ty)) 5388 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5389 /*DontDefer=*/true, 5390 ForDefinition)); 5391 5392 // Already emitted. 5393 if (!GV->isDeclaration()) 5394 return; 5395 5396 // We need to set linkage and visibility on the function before 5397 // generating code for it because various parts of IR generation 5398 // want to propagate this information down (e.g. to local static 5399 // declarations). 5400 auto *Fn = cast<llvm::Function>(GV); 5401 setFunctionLinkage(GD, Fn); 5402 5403 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5404 setGVProperties(Fn, GD); 5405 5406 MaybeHandleStaticInExternC(D, Fn); 5407 5408 maybeSetTrivialComdat(*D, *Fn); 5409 5410 // Set CodeGen attributes that represent floating point environment. 5411 setLLVMFunctionFEnvAttributes(D, Fn); 5412 5413 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5414 5415 setNonAliasAttributes(GD, Fn); 5416 SetLLVMFunctionAttributesForDefinition(D, Fn); 5417 5418 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5419 AddGlobalCtor(Fn, CA->getPriority()); 5420 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5421 AddGlobalDtor(Fn, DA->getPriority(), true); 5422 if (D->hasAttr<AnnotateAttr>()) 5423 AddGlobalAnnotations(D, Fn); 5424 } 5425 5426 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5427 const auto *D = cast<ValueDecl>(GD.getDecl()); 5428 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5429 assert(AA && "Not an alias?"); 5430 5431 StringRef MangledName = getMangledName(GD); 5432 5433 if (AA->getAliasee() == MangledName) { 5434 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5435 return; 5436 } 5437 5438 // If there is a definition in the module, then it wins over the alias. 5439 // This is dubious, but allow it to be safe. Just ignore the alias. 5440 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5441 if (Entry && !Entry->isDeclaration()) 5442 return; 5443 5444 Aliases.push_back(GD); 5445 5446 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5447 5448 // Create a reference to the named value. This ensures that it is emitted 5449 // if a deferred decl. 5450 llvm::Constant *Aliasee; 5451 llvm::GlobalValue::LinkageTypes LT; 5452 if (isa<llvm::FunctionType>(DeclTy)) { 5453 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5454 /*ForVTable=*/false); 5455 LT = getFunctionLinkage(GD); 5456 } else { 5457 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5458 /*D=*/nullptr); 5459 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5460 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5461 else 5462 LT = getFunctionLinkage(GD); 5463 } 5464 5465 // Create the new alias itself, but don't set a name yet. 5466 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5467 auto *GA = 5468 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5469 5470 if (Entry) { 5471 if (GA->getAliasee() == Entry) { 5472 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5473 return; 5474 } 5475 5476 assert(Entry->isDeclaration()); 5477 5478 // If there is a declaration in the module, then we had an extern followed 5479 // by the alias, as in: 5480 // extern int test6(); 5481 // ... 5482 // int test6() __attribute__((alias("test7"))); 5483 // 5484 // Remove it and replace uses of it with the alias. 5485 GA->takeName(Entry); 5486 5487 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5488 Entry->getType())); 5489 Entry->eraseFromParent(); 5490 } else { 5491 GA->setName(MangledName); 5492 } 5493 5494 // Set attributes which are particular to an alias; this is a 5495 // specialization of the attributes which may be set on a global 5496 // variable/function. 5497 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5498 D->isWeakImported()) { 5499 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5500 } 5501 5502 if (const auto *VD = dyn_cast<VarDecl>(D)) 5503 if (VD->getTLSKind()) 5504 setTLSMode(GA, *VD); 5505 5506 SetCommonAttributes(GD, GA); 5507 5508 // Emit global alias debug information. 5509 if (isa<VarDecl>(D)) 5510 if (CGDebugInfo *DI = getModuleDebugInfo()) 5511 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5512 } 5513 5514 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5515 const auto *D = cast<ValueDecl>(GD.getDecl()); 5516 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5517 assert(IFA && "Not an ifunc?"); 5518 5519 StringRef MangledName = getMangledName(GD); 5520 5521 if (IFA->getResolver() == MangledName) { 5522 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5523 return; 5524 } 5525 5526 // Report an error if some definition overrides ifunc. 5527 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5528 if (Entry && !Entry->isDeclaration()) { 5529 GlobalDecl OtherGD; 5530 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5531 DiagnosedConflictingDefinitions.insert(GD).second) { 5532 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5533 << MangledName; 5534 Diags.Report(OtherGD.getDecl()->getLocation(), 5535 diag::note_previous_definition); 5536 } 5537 return; 5538 } 5539 5540 Aliases.push_back(GD); 5541 5542 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5543 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5544 llvm::Constant *Resolver = 5545 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5546 /*ForVTable=*/false); 5547 llvm::GlobalIFunc *GIF = 5548 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5549 "", Resolver, &getModule()); 5550 if (Entry) { 5551 if (GIF->getResolver() == Entry) { 5552 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5553 return; 5554 } 5555 assert(Entry->isDeclaration()); 5556 5557 // If there is a declaration in the module, then we had an extern followed 5558 // by the ifunc, as in: 5559 // extern int test(); 5560 // ... 5561 // int test() __attribute__((ifunc("resolver"))); 5562 // 5563 // Remove it and replace uses of it with the ifunc. 5564 GIF->takeName(Entry); 5565 5566 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5567 Entry->getType())); 5568 Entry->eraseFromParent(); 5569 } else 5570 GIF->setName(MangledName); 5571 5572 SetCommonAttributes(GD, GIF); 5573 } 5574 5575 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5576 ArrayRef<llvm::Type*> Tys) { 5577 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5578 Tys); 5579 } 5580 5581 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5582 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5583 const StringLiteral *Literal, bool TargetIsLSB, 5584 bool &IsUTF16, unsigned &StringLength) { 5585 StringRef String = Literal->getString(); 5586 unsigned NumBytes = String.size(); 5587 5588 // Check for simple case. 5589 if (!Literal->containsNonAsciiOrNull()) { 5590 StringLength = NumBytes; 5591 return *Map.insert(std::make_pair(String, nullptr)).first; 5592 } 5593 5594 // Otherwise, convert the UTF8 literals into a string of shorts. 5595 IsUTF16 = true; 5596 5597 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5598 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5599 llvm::UTF16 *ToPtr = &ToBuf[0]; 5600 5601 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5602 ToPtr + NumBytes, llvm::strictConversion); 5603 5604 // ConvertUTF8toUTF16 returns the length in ToPtr. 5605 StringLength = ToPtr - &ToBuf[0]; 5606 5607 // Add an explicit null. 5608 *ToPtr = 0; 5609 return *Map.insert(std::make_pair( 5610 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5611 (StringLength + 1) * 2), 5612 nullptr)).first; 5613 } 5614 5615 ConstantAddress 5616 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5617 unsigned StringLength = 0; 5618 bool isUTF16 = false; 5619 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5620 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5621 getDataLayout().isLittleEndian(), isUTF16, 5622 StringLength); 5623 5624 if (auto *C = Entry.second) 5625 return ConstantAddress( 5626 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5627 5628 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5629 llvm::Constant *Zeros[] = { Zero, Zero }; 5630 5631 const ASTContext &Context = getContext(); 5632 const llvm::Triple &Triple = getTriple(); 5633 5634 const auto CFRuntime = getLangOpts().CFRuntime; 5635 const bool IsSwiftABI = 5636 static_cast<unsigned>(CFRuntime) >= 5637 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5638 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5639 5640 // If we don't already have it, get __CFConstantStringClassReference. 5641 if (!CFConstantStringClassRef) { 5642 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5643 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5644 Ty = llvm::ArrayType::get(Ty, 0); 5645 5646 switch (CFRuntime) { 5647 default: break; 5648 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 5649 case LangOptions::CoreFoundationABI::Swift5_0: 5650 CFConstantStringClassName = 5651 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5652 : "$s10Foundation19_NSCFConstantStringCN"; 5653 Ty = IntPtrTy; 5654 break; 5655 case LangOptions::CoreFoundationABI::Swift4_2: 5656 CFConstantStringClassName = 5657 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5658 : "$S10Foundation19_NSCFConstantStringCN"; 5659 Ty = IntPtrTy; 5660 break; 5661 case LangOptions::CoreFoundationABI::Swift4_1: 5662 CFConstantStringClassName = 5663 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5664 : "__T010Foundation19_NSCFConstantStringCN"; 5665 Ty = IntPtrTy; 5666 break; 5667 } 5668 5669 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5670 5671 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5672 llvm::GlobalValue *GV = nullptr; 5673 5674 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5675 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5676 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5677 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5678 5679 const VarDecl *VD = nullptr; 5680 for (const auto *Result : DC->lookup(&II)) 5681 if ((VD = dyn_cast<VarDecl>(Result))) 5682 break; 5683 5684 if (Triple.isOSBinFormatELF()) { 5685 if (!VD) 5686 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5687 } else { 5688 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5689 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5690 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5691 else 5692 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5693 } 5694 5695 setDSOLocal(GV); 5696 } 5697 } 5698 5699 // Decay array -> ptr 5700 CFConstantStringClassRef = 5701 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5702 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5703 } 5704 5705 QualType CFTy = Context.getCFConstantStringType(); 5706 5707 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5708 5709 ConstantInitBuilder Builder(*this); 5710 auto Fields = Builder.beginStruct(STy); 5711 5712 // Class pointer. 5713 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5714 5715 // Flags. 5716 if (IsSwiftABI) { 5717 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5718 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5719 } else { 5720 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5721 } 5722 5723 // String pointer. 5724 llvm::Constant *C = nullptr; 5725 if (isUTF16) { 5726 auto Arr = llvm::ArrayRef( 5727 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5728 Entry.first().size() / 2); 5729 C = llvm::ConstantDataArray::get(VMContext, Arr); 5730 } else { 5731 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5732 } 5733 5734 // Note: -fwritable-strings doesn't make the backing store strings of 5735 // CFStrings writable. (See <rdar://problem/10657500>) 5736 auto *GV = 5737 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5738 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5739 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5740 // Don't enforce the target's minimum global alignment, since the only use 5741 // of the string is via this class initializer. 5742 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5743 : Context.getTypeAlignInChars(Context.CharTy); 5744 GV->setAlignment(Align.getAsAlign()); 5745 5746 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5747 // Without it LLVM can merge the string with a non unnamed_addr one during 5748 // LTO. Doing that changes the section it ends in, which surprises ld64. 5749 if (Triple.isOSBinFormatMachO()) 5750 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5751 : "__TEXT,__cstring,cstring_literals"); 5752 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5753 // the static linker to adjust permissions to read-only later on. 5754 else if (Triple.isOSBinFormatELF()) 5755 GV->setSection(".rodata"); 5756 5757 // String. 5758 llvm::Constant *Str = 5759 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5760 5761 if (isUTF16) 5762 // Cast the UTF16 string to the correct type. 5763 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5764 Fields.add(Str); 5765 5766 // String length. 5767 llvm::IntegerType *LengthTy = 5768 llvm::IntegerType::get(getModule().getContext(), 5769 Context.getTargetInfo().getLongWidth()); 5770 if (IsSwiftABI) { 5771 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5772 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5773 LengthTy = Int32Ty; 5774 else 5775 LengthTy = IntPtrTy; 5776 } 5777 Fields.addInt(LengthTy, StringLength); 5778 5779 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5780 // properly aligned on 32-bit platforms. 5781 CharUnits Alignment = 5782 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5783 5784 // The struct. 5785 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5786 /*isConstant=*/false, 5787 llvm::GlobalVariable::PrivateLinkage); 5788 GV->addAttribute("objc_arc_inert"); 5789 switch (Triple.getObjectFormat()) { 5790 case llvm::Triple::UnknownObjectFormat: 5791 llvm_unreachable("unknown file format"); 5792 case llvm::Triple::DXContainer: 5793 case llvm::Triple::GOFF: 5794 case llvm::Triple::SPIRV: 5795 case llvm::Triple::XCOFF: 5796 llvm_unreachable("unimplemented"); 5797 case llvm::Triple::COFF: 5798 case llvm::Triple::ELF: 5799 case llvm::Triple::Wasm: 5800 GV->setSection("cfstring"); 5801 break; 5802 case llvm::Triple::MachO: 5803 GV->setSection("__DATA,__cfstring"); 5804 break; 5805 } 5806 Entry.second = GV; 5807 5808 return ConstantAddress(GV, GV->getValueType(), Alignment); 5809 } 5810 5811 bool CodeGenModule::getExpressionLocationsEnabled() const { 5812 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5813 } 5814 5815 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5816 if (ObjCFastEnumerationStateType.isNull()) { 5817 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5818 D->startDefinition(); 5819 5820 QualType FieldTypes[] = { 5821 Context.UnsignedLongTy, 5822 Context.getPointerType(Context.getObjCIdType()), 5823 Context.getPointerType(Context.UnsignedLongTy), 5824 Context.getConstantArrayType(Context.UnsignedLongTy, 5825 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5826 }; 5827 5828 for (size_t i = 0; i < 4; ++i) { 5829 FieldDecl *Field = FieldDecl::Create(Context, 5830 D, 5831 SourceLocation(), 5832 SourceLocation(), nullptr, 5833 FieldTypes[i], /*TInfo=*/nullptr, 5834 /*BitWidth=*/nullptr, 5835 /*Mutable=*/false, 5836 ICIS_NoInit); 5837 Field->setAccess(AS_public); 5838 D->addDecl(Field); 5839 } 5840 5841 D->completeDefinition(); 5842 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5843 } 5844 5845 return ObjCFastEnumerationStateType; 5846 } 5847 5848 llvm::Constant * 5849 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5850 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5851 5852 // Don't emit it as the address of the string, emit the string data itself 5853 // as an inline array. 5854 if (E->getCharByteWidth() == 1) { 5855 SmallString<64> Str(E->getString()); 5856 5857 // Resize the string to the right size, which is indicated by its type. 5858 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5859 Str.resize(CAT->getSize().getZExtValue()); 5860 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5861 } 5862 5863 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5864 llvm::Type *ElemTy = AType->getElementType(); 5865 unsigned NumElements = AType->getNumElements(); 5866 5867 // Wide strings have either 2-byte or 4-byte elements. 5868 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5869 SmallVector<uint16_t, 32> Elements; 5870 Elements.reserve(NumElements); 5871 5872 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5873 Elements.push_back(E->getCodeUnit(i)); 5874 Elements.resize(NumElements); 5875 return llvm::ConstantDataArray::get(VMContext, Elements); 5876 } 5877 5878 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5879 SmallVector<uint32_t, 32> Elements; 5880 Elements.reserve(NumElements); 5881 5882 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5883 Elements.push_back(E->getCodeUnit(i)); 5884 Elements.resize(NumElements); 5885 return llvm::ConstantDataArray::get(VMContext, Elements); 5886 } 5887 5888 static llvm::GlobalVariable * 5889 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5890 CodeGenModule &CGM, StringRef GlobalName, 5891 CharUnits Alignment) { 5892 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5893 CGM.GetGlobalConstantAddressSpace()); 5894 5895 llvm::Module &M = CGM.getModule(); 5896 // Create a global variable for this string 5897 auto *GV = new llvm::GlobalVariable( 5898 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5899 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5900 GV->setAlignment(Alignment.getAsAlign()); 5901 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5902 if (GV->isWeakForLinker()) { 5903 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5904 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5905 } 5906 CGM.setDSOLocal(GV); 5907 5908 return GV; 5909 } 5910 5911 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5912 /// constant array for the given string literal. 5913 ConstantAddress 5914 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5915 StringRef Name) { 5916 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5917 5918 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5919 llvm::GlobalVariable **Entry = nullptr; 5920 if (!LangOpts.WritableStrings) { 5921 Entry = &ConstantStringMap[C]; 5922 if (auto GV = *Entry) { 5923 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5924 GV->setAlignment(Alignment.getAsAlign()); 5925 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5926 GV->getValueType(), Alignment); 5927 } 5928 } 5929 5930 SmallString<256> MangledNameBuffer; 5931 StringRef GlobalVariableName; 5932 llvm::GlobalValue::LinkageTypes LT; 5933 5934 // Mangle the string literal if that's how the ABI merges duplicate strings. 5935 // Don't do it if they are writable, since we don't want writes in one TU to 5936 // affect strings in another. 5937 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5938 !LangOpts.WritableStrings) { 5939 llvm::raw_svector_ostream Out(MangledNameBuffer); 5940 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5941 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5942 GlobalVariableName = MangledNameBuffer; 5943 } else { 5944 LT = llvm::GlobalValue::PrivateLinkage; 5945 GlobalVariableName = Name; 5946 } 5947 5948 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5949 5950 CGDebugInfo *DI = getModuleDebugInfo(); 5951 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 5952 DI->AddStringLiteralDebugInfo(GV, S); 5953 5954 if (Entry) 5955 *Entry = GV; 5956 5957 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 5958 5959 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5960 GV->getValueType(), Alignment); 5961 } 5962 5963 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5964 /// array for the given ObjCEncodeExpr node. 5965 ConstantAddress 5966 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5967 std::string Str; 5968 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5969 5970 return GetAddrOfConstantCString(Str); 5971 } 5972 5973 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5974 /// the literal and a terminating '\0' character. 5975 /// The result has pointer to array type. 5976 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5977 const std::string &Str, const char *GlobalName) { 5978 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5979 CharUnits Alignment = 5980 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5981 5982 llvm::Constant *C = 5983 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5984 5985 // Don't share any string literals if strings aren't constant. 5986 llvm::GlobalVariable **Entry = nullptr; 5987 if (!LangOpts.WritableStrings) { 5988 Entry = &ConstantStringMap[C]; 5989 if (auto GV = *Entry) { 5990 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5991 GV->setAlignment(Alignment.getAsAlign()); 5992 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5993 GV->getValueType(), Alignment); 5994 } 5995 } 5996 5997 // Get the default prefix if a name wasn't specified. 5998 if (!GlobalName) 5999 GlobalName = ".str"; 6000 // Create a global variable for this. 6001 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6002 GlobalName, Alignment); 6003 if (Entry) 6004 *Entry = GV; 6005 6006 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6007 GV->getValueType(), Alignment); 6008 } 6009 6010 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6011 const MaterializeTemporaryExpr *E, const Expr *Init) { 6012 assert((E->getStorageDuration() == SD_Static || 6013 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6014 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6015 6016 // If we're not materializing a subobject of the temporary, keep the 6017 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6018 QualType MaterializedType = Init->getType(); 6019 if (Init == E->getSubExpr()) 6020 MaterializedType = E->getType(); 6021 6022 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6023 6024 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6025 if (!InsertResult.second) { 6026 // We've seen this before: either we already created it or we're in the 6027 // process of doing so. 6028 if (!InsertResult.first->second) { 6029 // We recursively re-entered this function, probably during emission of 6030 // the initializer. Create a placeholder. We'll clean this up in the 6031 // outer call, at the end of this function. 6032 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6033 InsertResult.first->second = new llvm::GlobalVariable( 6034 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6035 nullptr); 6036 } 6037 return ConstantAddress(InsertResult.first->second, 6038 llvm::cast<llvm::GlobalVariable>( 6039 InsertResult.first->second->stripPointerCasts()) 6040 ->getValueType(), 6041 Align); 6042 } 6043 6044 // FIXME: If an externally-visible declaration extends multiple temporaries, 6045 // we need to give each temporary the same name in every translation unit (and 6046 // we also need to make the temporaries externally-visible). 6047 SmallString<256> Name; 6048 llvm::raw_svector_ostream Out(Name); 6049 getCXXABI().getMangleContext().mangleReferenceTemporary( 6050 VD, E->getManglingNumber(), Out); 6051 6052 APValue *Value = nullptr; 6053 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 6054 // If the initializer of the extending declaration is a constant 6055 // initializer, we should have a cached constant initializer for this 6056 // temporary. Note that this might have a different value from the value 6057 // computed by evaluating the initializer if the surrounding constant 6058 // expression modifies the temporary. 6059 Value = E->getOrCreateValue(false); 6060 } 6061 6062 // Try evaluating it now, it might have a constant initializer. 6063 Expr::EvalResult EvalResult; 6064 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6065 !EvalResult.hasSideEffects()) 6066 Value = &EvalResult.Val; 6067 6068 LangAS AddrSpace = 6069 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 6070 6071 std::optional<ConstantEmitter> emitter; 6072 llvm::Constant *InitialValue = nullptr; 6073 bool Constant = false; 6074 llvm::Type *Type; 6075 if (Value) { 6076 // The temporary has a constant initializer, use it. 6077 emitter.emplace(*this); 6078 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6079 MaterializedType); 6080 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 6081 Type = InitialValue->getType(); 6082 } else { 6083 // No initializer, the initialization will be provided when we 6084 // initialize the declaration which performed lifetime extension. 6085 Type = getTypes().ConvertTypeForMem(MaterializedType); 6086 } 6087 6088 // Create a global variable for this lifetime-extended temporary. 6089 llvm::GlobalValue::LinkageTypes Linkage = 6090 getLLVMLinkageVarDefinition(VD, Constant); 6091 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6092 const VarDecl *InitVD; 6093 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6094 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6095 // Temporaries defined inside a class get linkonce_odr linkage because the 6096 // class can be defined in multiple translation units. 6097 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6098 } else { 6099 // There is no need for this temporary to have external linkage if the 6100 // VarDecl has external linkage. 6101 Linkage = llvm::GlobalVariable::InternalLinkage; 6102 } 6103 } 6104 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6105 auto *GV = new llvm::GlobalVariable( 6106 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6107 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6108 if (emitter) emitter->finalize(GV); 6109 // Don't assign dllimport or dllexport to local linkage globals. 6110 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6111 setGVProperties(GV, VD); 6112 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6113 // The reference temporary should never be dllexport. 6114 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6115 } 6116 GV->setAlignment(Align.getAsAlign()); 6117 if (supportsCOMDAT() && GV->isWeakForLinker()) 6118 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6119 if (VD->getTLSKind()) 6120 setTLSMode(GV, *VD); 6121 llvm::Constant *CV = GV; 6122 if (AddrSpace != LangAS::Default) 6123 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6124 *this, GV, AddrSpace, LangAS::Default, 6125 Type->getPointerTo( 6126 getContext().getTargetAddressSpace(LangAS::Default))); 6127 6128 // Update the map with the new temporary. If we created a placeholder above, 6129 // replace it with the new global now. 6130 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6131 if (Entry) { 6132 Entry->replaceAllUsesWith( 6133 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 6134 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6135 } 6136 Entry = CV; 6137 6138 return ConstantAddress(CV, Type, Align); 6139 } 6140 6141 /// EmitObjCPropertyImplementations - Emit information for synthesized 6142 /// properties for an implementation. 6143 void CodeGenModule::EmitObjCPropertyImplementations(const 6144 ObjCImplementationDecl *D) { 6145 for (const auto *PID : D->property_impls()) { 6146 // Dynamic is just for type-checking. 6147 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6148 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6149 6150 // Determine which methods need to be implemented, some may have 6151 // been overridden. Note that ::isPropertyAccessor is not the method 6152 // we want, that just indicates if the decl came from a 6153 // property. What we want to know is if the method is defined in 6154 // this implementation. 6155 auto *Getter = PID->getGetterMethodDecl(); 6156 if (!Getter || Getter->isSynthesizedAccessorStub()) 6157 CodeGenFunction(*this).GenerateObjCGetter( 6158 const_cast<ObjCImplementationDecl *>(D), PID); 6159 auto *Setter = PID->getSetterMethodDecl(); 6160 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6161 CodeGenFunction(*this).GenerateObjCSetter( 6162 const_cast<ObjCImplementationDecl *>(D), PID); 6163 } 6164 } 6165 } 6166 6167 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6168 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6169 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6170 ivar; ivar = ivar->getNextIvar()) 6171 if (ivar->getType().isDestructedType()) 6172 return true; 6173 6174 return false; 6175 } 6176 6177 static bool AllTrivialInitializers(CodeGenModule &CGM, 6178 ObjCImplementationDecl *D) { 6179 CodeGenFunction CGF(CGM); 6180 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6181 E = D->init_end(); B != E; ++B) { 6182 CXXCtorInitializer *CtorInitExp = *B; 6183 Expr *Init = CtorInitExp->getInit(); 6184 if (!CGF.isTrivialInitializer(Init)) 6185 return false; 6186 } 6187 return true; 6188 } 6189 6190 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6191 /// for an implementation. 6192 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6193 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6194 if (needsDestructMethod(D)) { 6195 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6196 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6197 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6198 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6199 getContext().VoidTy, nullptr, D, 6200 /*isInstance=*/true, /*isVariadic=*/false, 6201 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6202 /*isImplicitlyDeclared=*/true, 6203 /*isDefined=*/false, ObjCMethodDecl::Required); 6204 D->addInstanceMethod(DTORMethod); 6205 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6206 D->setHasDestructors(true); 6207 } 6208 6209 // If the implementation doesn't have any ivar initializers, we don't need 6210 // a .cxx_construct. 6211 if (D->getNumIvarInitializers() == 0 || 6212 AllTrivialInitializers(*this, D)) 6213 return; 6214 6215 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6216 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6217 // The constructor returns 'self'. 6218 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6219 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6220 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6221 /*isVariadic=*/false, 6222 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6223 /*isImplicitlyDeclared=*/true, 6224 /*isDefined=*/false, ObjCMethodDecl::Required); 6225 D->addInstanceMethod(CTORMethod); 6226 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6227 D->setHasNonZeroConstructors(true); 6228 } 6229 6230 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6231 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6232 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 6233 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6234 ErrorUnsupported(LSD, "linkage spec"); 6235 return; 6236 } 6237 6238 EmitDeclContext(LSD); 6239 } 6240 6241 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6242 std::unique_ptr<CodeGenFunction> &CurCGF = 6243 GlobalTopLevelStmtBlockInFlight.first; 6244 6245 // We emitted a top-level stmt but after it there is initialization. 6246 // Stop squashing the top-level stmts into a single function. 6247 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6248 CurCGF->FinishFunction(D->getEndLoc()); 6249 CurCGF = nullptr; 6250 } 6251 6252 if (!CurCGF) { 6253 // void __stmts__N(void) 6254 // FIXME: Ask the ABI name mangler to pick a name. 6255 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6256 FunctionArgList Args; 6257 QualType RetTy = getContext().VoidTy; 6258 const CGFunctionInfo &FnInfo = 6259 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6260 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6261 llvm::Function *Fn = llvm::Function::Create( 6262 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6263 6264 CurCGF.reset(new CodeGenFunction(*this)); 6265 GlobalTopLevelStmtBlockInFlight.second = D; 6266 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6267 D->getBeginLoc(), D->getBeginLoc()); 6268 CXXGlobalInits.push_back(Fn); 6269 } 6270 6271 CurCGF->EmitStmt(D->getStmt()); 6272 } 6273 6274 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6275 for (auto *I : DC->decls()) { 6276 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6277 // are themselves considered "top-level", so EmitTopLevelDecl on an 6278 // ObjCImplDecl does not recursively visit them. We need to do that in 6279 // case they're nested inside another construct (LinkageSpecDecl / 6280 // ExportDecl) that does stop them from being considered "top-level". 6281 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6282 for (auto *M : OID->methods()) 6283 EmitTopLevelDecl(M); 6284 } 6285 6286 EmitTopLevelDecl(I); 6287 } 6288 } 6289 6290 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6291 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6292 // Ignore dependent declarations. 6293 if (D->isTemplated()) 6294 return; 6295 6296 // Consteval function shouldn't be emitted. 6297 if (auto *FD = dyn_cast<FunctionDecl>(D)) 6298 if (FD->isConsteval()) 6299 return; 6300 6301 switch (D->getKind()) { 6302 case Decl::CXXConversion: 6303 case Decl::CXXMethod: 6304 case Decl::Function: 6305 EmitGlobal(cast<FunctionDecl>(D)); 6306 // Always provide some coverage mapping 6307 // even for the functions that aren't emitted. 6308 AddDeferredUnusedCoverageMapping(D); 6309 break; 6310 6311 case Decl::CXXDeductionGuide: 6312 // Function-like, but does not result in code emission. 6313 break; 6314 6315 case Decl::Var: 6316 case Decl::Decomposition: 6317 case Decl::VarTemplateSpecialization: 6318 EmitGlobal(cast<VarDecl>(D)); 6319 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6320 for (auto *B : DD->bindings()) 6321 if (auto *HD = B->getHoldingVar()) 6322 EmitGlobal(HD); 6323 break; 6324 6325 // Indirect fields from global anonymous structs and unions can be 6326 // ignored; only the actual variable requires IR gen support. 6327 case Decl::IndirectField: 6328 break; 6329 6330 // C++ Decls 6331 case Decl::Namespace: 6332 EmitDeclContext(cast<NamespaceDecl>(D)); 6333 break; 6334 case Decl::ClassTemplateSpecialization: { 6335 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6336 if (CGDebugInfo *DI = getModuleDebugInfo()) 6337 if (Spec->getSpecializationKind() == 6338 TSK_ExplicitInstantiationDefinition && 6339 Spec->hasDefinition()) 6340 DI->completeTemplateDefinition(*Spec); 6341 } [[fallthrough]]; 6342 case Decl::CXXRecord: { 6343 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6344 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6345 if (CRD->hasDefinition()) 6346 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6347 if (auto *ES = D->getASTContext().getExternalSource()) 6348 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6349 DI->completeUnusedClass(*CRD); 6350 } 6351 // Emit any static data members, they may be definitions. 6352 for (auto *I : CRD->decls()) 6353 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6354 EmitTopLevelDecl(I); 6355 break; 6356 } 6357 // No code generation needed. 6358 case Decl::UsingShadow: 6359 case Decl::ClassTemplate: 6360 case Decl::VarTemplate: 6361 case Decl::Concept: 6362 case Decl::VarTemplatePartialSpecialization: 6363 case Decl::FunctionTemplate: 6364 case Decl::TypeAliasTemplate: 6365 case Decl::Block: 6366 case Decl::Empty: 6367 case Decl::Binding: 6368 break; 6369 case Decl::Using: // using X; [C++] 6370 if (CGDebugInfo *DI = getModuleDebugInfo()) 6371 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6372 break; 6373 case Decl::UsingEnum: // using enum X; [C++] 6374 if (CGDebugInfo *DI = getModuleDebugInfo()) 6375 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6376 break; 6377 case Decl::NamespaceAlias: 6378 if (CGDebugInfo *DI = getModuleDebugInfo()) 6379 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6380 break; 6381 case Decl::UsingDirective: // using namespace X; [C++] 6382 if (CGDebugInfo *DI = getModuleDebugInfo()) 6383 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6384 break; 6385 case Decl::CXXConstructor: 6386 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6387 break; 6388 case Decl::CXXDestructor: 6389 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6390 break; 6391 6392 case Decl::StaticAssert: 6393 // Nothing to do. 6394 break; 6395 6396 // Objective-C Decls 6397 6398 // Forward declarations, no (immediate) code generation. 6399 case Decl::ObjCInterface: 6400 case Decl::ObjCCategory: 6401 break; 6402 6403 case Decl::ObjCProtocol: { 6404 auto *Proto = cast<ObjCProtocolDecl>(D); 6405 if (Proto->isThisDeclarationADefinition()) 6406 ObjCRuntime->GenerateProtocol(Proto); 6407 break; 6408 } 6409 6410 case Decl::ObjCCategoryImpl: 6411 // Categories have properties but don't support synthesize so we 6412 // can ignore them here. 6413 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6414 break; 6415 6416 case Decl::ObjCImplementation: { 6417 auto *OMD = cast<ObjCImplementationDecl>(D); 6418 EmitObjCPropertyImplementations(OMD); 6419 EmitObjCIvarInitializations(OMD); 6420 ObjCRuntime->GenerateClass(OMD); 6421 // Emit global variable debug information. 6422 if (CGDebugInfo *DI = getModuleDebugInfo()) 6423 if (getCodeGenOpts().hasReducedDebugInfo()) 6424 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6425 OMD->getClassInterface()), OMD->getLocation()); 6426 break; 6427 } 6428 case Decl::ObjCMethod: { 6429 auto *OMD = cast<ObjCMethodDecl>(D); 6430 // If this is not a prototype, emit the body. 6431 if (OMD->getBody()) 6432 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6433 break; 6434 } 6435 case Decl::ObjCCompatibleAlias: 6436 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6437 break; 6438 6439 case Decl::PragmaComment: { 6440 const auto *PCD = cast<PragmaCommentDecl>(D); 6441 switch (PCD->getCommentKind()) { 6442 case PCK_Unknown: 6443 llvm_unreachable("unexpected pragma comment kind"); 6444 case PCK_Linker: 6445 AppendLinkerOptions(PCD->getArg()); 6446 break; 6447 case PCK_Lib: 6448 AddDependentLib(PCD->getArg()); 6449 break; 6450 case PCK_Compiler: 6451 case PCK_ExeStr: 6452 case PCK_User: 6453 break; // We ignore all of these. 6454 } 6455 break; 6456 } 6457 6458 case Decl::PragmaDetectMismatch: { 6459 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6460 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6461 break; 6462 } 6463 6464 case Decl::LinkageSpec: 6465 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6466 break; 6467 6468 case Decl::FileScopeAsm: { 6469 // File-scope asm is ignored during device-side CUDA compilation. 6470 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6471 break; 6472 // File-scope asm is ignored during device-side OpenMP compilation. 6473 if (LangOpts.OpenMPIsDevice) 6474 break; 6475 // File-scope asm is ignored during device-side SYCL compilation. 6476 if (LangOpts.SYCLIsDevice) 6477 break; 6478 auto *AD = cast<FileScopeAsmDecl>(D); 6479 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6480 break; 6481 } 6482 6483 case Decl::TopLevelStmt: 6484 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6485 break; 6486 6487 case Decl::Import: { 6488 auto *Import = cast<ImportDecl>(D); 6489 6490 // If we've already imported this module, we're done. 6491 if (!ImportedModules.insert(Import->getImportedModule())) 6492 break; 6493 6494 // Emit debug information for direct imports. 6495 if (!Import->getImportedOwningModule()) { 6496 if (CGDebugInfo *DI = getModuleDebugInfo()) 6497 DI->EmitImportDecl(*Import); 6498 } 6499 6500 // For C++ standard modules we are done - we will call the module 6501 // initializer for imported modules, and that will likewise call those for 6502 // any imports it has. 6503 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6504 !Import->getImportedOwningModule()->isModuleMapModule()) 6505 break; 6506 6507 // For clang C++ module map modules the initializers for sub-modules are 6508 // emitted here. 6509 6510 // Find all of the submodules and emit the module initializers. 6511 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6512 SmallVector<clang::Module *, 16> Stack; 6513 Visited.insert(Import->getImportedModule()); 6514 Stack.push_back(Import->getImportedModule()); 6515 6516 while (!Stack.empty()) { 6517 clang::Module *Mod = Stack.pop_back_val(); 6518 if (!EmittedModuleInitializers.insert(Mod).second) 6519 continue; 6520 6521 for (auto *D : Context.getModuleInitializers(Mod)) 6522 EmitTopLevelDecl(D); 6523 6524 // Visit the submodules of this module. 6525 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6526 SubEnd = Mod->submodule_end(); 6527 Sub != SubEnd; ++Sub) { 6528 // Skip explicit children; they need to be explicitly imported to emit 6529 // the initializers. 6530 if ((*Sub)->IsExplicit) 6531 continue; 6532 6533 if (Visited.insert(*Sub).second) 6534 Stack.push_back(*Sub); 6535 } 6536 } 6537 break; 6538 } 6539 6540 case Decl::Export: 6541 EmitDeclContext(cast<ExportDecl>(D)); 6542 break; 6543 6544 case Decl::OMPThreadPrivate: 6545 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6546 break; 6547 6548 case Decl::OMPAllocate: 6549 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6550 break; 6551 6552 case Decl::OMPDeclareReduction: 6553 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6554 break; 6555 6556 case Decl::OMPDeclareMapper: 6557 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6558 break; 6559 6560 case Decl::OMPRequires: 6561 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6562 break; 6563 6564 case Decl::Typedef: 6565 case Decl::TypeAlias: // using foo = bar; [C++11] 6566 if (CGDebugInfo *DI = getModuleDebugInfo()) 6567 DI->EmitAndRetainType( 6568 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6569 break; 6570 6571 case Decl::Record: 6572 if (CGDebugInfo *DI = getModuleDebugInfo()) 6573 if (cast<RecordDecl>(D)->getDefinition()) 6574 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6575 break; 6576 6577 case Decl::Enum: 6578 if (CGDebugInfo *DI = getModuleDebugInfo()) 6579 if (cast<EnumDecl>(D)->getDefinition()) 6580 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6581 break; 6582 6583 case Decl::HLSLBuffer: 6584 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 6585 break; 6586 6587 default: 6588 // Make sure we handled everything we should, every other kind is a 6589 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6590 // function. Need to recode Decl::Kind to do that easily. 6591 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6592 break; 6593 } 6594 } 6595 6596 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6597 // Do we need to generate coverage mapping? 6598 if (!CodeGenOpts.CoverageMapping) 6599 return; 6600 switch (D->getKind()) { 6601 case Decl::CXXConversion: 6602 case Decl::CXXMethod: 6603 case Decl::Function: 6604 case Decl::ObjCMethod: 6605 case Decl::CXXConstructor: 6606 case Decl::CXXDestructor: { 6607 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6608 break; 6609 SourceManager &SM = getContext().getSourceManager(); 6610 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6611 break; 6612 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6613 if (I == DeferredEmptyCoverageMappingDecls.end()) 6614 DeferredEmptyCoverageMappingDecls[D] = true; 6615 break; 6616 } 6617 default: 6618 break; 6619 }; 6620 } 6621 6622 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6623 // Do we need to generate coverage mapping? 6624 if (!CodeGenOpts.CoverageMapping) 6625 return; 6626 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6627 if (Fn->isTemplateInstantiation()) 6628 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6629 } 6630 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6631 if (I == DeferredEmptyCoverageMappingDecls.end()) 6632 DeferredEmptyCoverageMappingDecls[D] = false; 6633 else 6634 I->second = false; 6635 } 6636 6637 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6638 // We call takeVector() here to avoid use-after-free. 6639 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6640 // we deserialize function bodies to emit coverage info for them, and that 6641 // deserializes more declarations. How should we handle that case? 6642 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6643 if (!Entry.second) 6644 continue; 6645 const Decl *D = Entry.first; 6646 switch (D->getKind()) { 6647 case Decl::CXXConversion: 6648 case Decl::CXXMethod: 6649 case Decl::Function: 6650 case Decl::ObjCMethod: { 6651 CodeGenPGO PGO(*this); 6652 GlobalDecl GD(cast<FunctionDecl>(D)); 6653 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6654 getFunctionLinkage(GD)); 6655 break; 6656 } 6657 case Decl::CXXConstructor: { 6658 CodeGenPGO PGO(*this); 6659 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6660 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6661 getFunctionLinkage(GD)); 6662 break; 6663 } 6664 case Decl::CXXDestructor: { 6665 CodeGenPGO PGO(*this); 6666 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6667 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6668 getFunctionLinkage(GD)); 6669 break; 6670 } 6671 default: 6672 break; 6673 }; 6674 } 6675 } 6676 6677 void CodeGenModule::EmitMainVoidAlias() { 6678 // In order to transition away from "__original_main" gracefully, emit an 6679 // alias for "main" in the no-argument case so that libc can detect when 6680 // new-style no-argument main is in used. 6681 if (llvm::Function *F = getModule().getFunction("main")) { 6682 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6683 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6684 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6685 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6686 } 6687 } 6688 } 6689 6690 /// Turns the given pointer into a constant. 6691 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6692 const void *Ptr) { 6693 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6694 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6695 return llvm::ConstantInt::get(i64, PtrInt); 6696 } 6697 6698 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6699 llvm::NamedMDNode *&GlobalMetadata, 6700 GlobalDecl D, 6701 llvm::GlobalValue *Addr) { 6702 if (!GlobalMetadata) 6703 GlobalMetadata = 6704 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6705 6706 // TODO: should we report variant information for ctors/dtors? 6707 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6708 llvm::ConstantAsMetadata::get(GetPointerConstant( 6709 CGM.getLLVMContext(), D.getDecl()))}; 6710 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6711 } 6712 6713 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6714 llvm::GlobalValue *CppFunc) { 6715 // Store the list of ifuncs we need to replace uses in. 6716 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6717 // List of ConstantExprs that we should be able to delete when we're done 6718 // here. 6719 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6720 6721 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6722 if (Elem == CppFunc) 6723 return false; 6724 6725 // First make sure that all users of this are ifuncs (or ifuncs via a 6726 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6727 // later. 6728 for (llvm::User *User : Elem->users()) { 6729 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6730 // ifunc directly. In any other case, just give up, as we don't know what we 6731 // could break by changing those. 6732 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6733 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6734 return false; 6735 6736 for (llvm::User *CEUser : ConstExpr->users()) { 6737 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6738 IFuncs.push_back(IFunc); 6739 } else { 6740 return false; 6741 } 6742 } 6743 CEs.push_back(ConstExpr); 6744 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6745 IFuncs.push_back(IFunc); 6746 } else { 6747 // This user is one we don't know how to handle, so fail redirection. This 6748 // will result in an ifunc retaining a resolver name that will ultimately 6749 // fail to be resolved to a defined function. 6750 return false; 6751 } 6752 } 6753 6754 // Now we know this is a valid case where we can do this alias replacement, we 6755 // need to remove all of the references to Elem (and the bitcasts!) so we can 6756 // delete it. 6757 for (llvm::GlobalIFunc *IFunc : IFuncs) 6758 IFunc->setResolver(nullptr); 6759 for (llvm::ConstantExpr *ConstExpr : CEs) 6760 ConstExpr->destroyConstant(); 6761 6762 // We should now be out of uses for the 'old' version of this function, so we 6763 // can erase it as well. 6764 Elem->eraseFromParent(); 6765 6766 for (llvm::GlobalIFunc *IFunc : IFuncs) { 6767 // The type of the resolver is always just a function-type that returns the 6768 // type of the IFunc, so create that here. If the type of the actual 6769 // resolver doesn't match, it just gets bitcast to the right thing. 6770 auto *ResolverTy = 6771 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 6772 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 6773 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 6774 IFunc->setResolver(Resolver); 6775 } 6776 return true; 6777 } 6778 6779 /// For each function which is declared within an extern "C" region and marked 6780 /// as 'used', but has internal linkage, create an alias from the unmangled 6781 /// name to the mangled name if possible. People expect to be able to refer 6782 /// to such functions with an unmangled name from inline assembly within the 6783 /// same translation unit. 6784 void CodeGenModule::EmitStaticExternCAliases() { 6785 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6786 return; 6787 for (auto &I : StaticExternCValues) { 6788 IdentifierInfo *Name = I.first; 6789 llvm::GlobalValue *Val = I.second; 6790 6791 // If Val is null, that implies there were multiple declarations that each 6792 // had a claim to the unmangled name. In this case, generation of the alias 6793 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 6794 if (!Val) 6795 break; 6796 6797 llvm::GlobalValue *ExistingElem = 6798 getModule().getNamedValue(Name->getName()); 6799 6800 // If there is either not something already by this name, or we were able to 6801 // replace all uses from IFuncs, create the alias. 6802 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 6803 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6804 } 6805 } 6806 6807 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6808 GlobalDecl &Result) const { 6809 auto Res = Manglings.find(MangledName); 6810 if (Res == Manglings.end()) 6811 return false; 6812 Result = Res->getValue(); 6813 return true; 6814 } 6815 6816 /// Emits metadata nodes associating all the global values in the 6817 /// current module with the Decls they came from. This is useful for 6818 /// projects using IR gen as a subroutine. 6819 /// 6820 /// Since there's currently no way to associate an MDNode directly 6821 /// with an llvm::GlobalValue, we create a global named metadata 6822 /// with the name 'clang.global.decl.ptrs'. 6823 void CodeGenModule::EmitDeclMetadata() { 6824 llvm::NamedMDNode *GlobalMetadata = nullptr; 6825 6826 for (auto &I : MangledDeclNames) { 6827 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6828 // Some mangled names don't necessarily have an associated GlobalValue 6829 // in this module, e.g. if we mangled it for DebugInfo. 6830 if (Addr) 6831 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6832 } 6833 } 6834 6835 /// Emits metadata nodes for all the local variables in the current 6836 /// function. 6837 void CodeGenFunction::EmitDeclMetadata() { 6838 if (LocalDeclMap.empty()) return; 6839 6840 llvm::LLVMContext &Context = getLLVMContext(); 6841 6842 // Find the unique metadata ID for this name. 6843 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6844 6845 llvm::NamedMDNode *GlobalMetadata = nullptr; 6846 6847 for (auto &I : LocalDeclMap) { 6848 const Decl *D = I.first; 6849 llvm::Value *Addr = I.second.getPointer(); 6850 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6851 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6852 Alloca->setMetadata( 6853 DeclPtrKind, llvm::MDNode::get( 6854 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6855 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6856 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6857 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6858 } 6859 } 6860 } 6861 6862 void CodeGenModule::EmitVersionIdentMetadata() { 6863 llvm::NamedMDNode *IdentMetadata = 6864 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6865 std::string Version = getClangFullVersion(); 6866 llvm::LLVMContext &Ctx = TheModule.getContext(); 6867 6868 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6869 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6870 } 6871 6872 void CodeGenModule::EmitCommandLineMetadata() { 6873 llvm::NamedMDNode *CommandLineMetadata = 6874 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6875 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6876 llvm::LLVMContext &Ctx = TheModule.getContext(); 6877 6878 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6879 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6880 } 6881 6882 void CodeGenModule::EmitCoverageFile() { 6883 if (getCodeGenOpts().CoverageDataFile.empty() && 6884 getCodeGenOpts().CoverageNotesFile.empty()) 6885 return; 6886 6887 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6888 if (!CUNode) 6889 return; 6890 6891 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6892 llvm::LLVMContext &Ctx = TheModule.getContext(); 6893 auto *CoverageDataFile = 6894 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6895 auto *CoverageNotesFile = 6896 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6897 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6898 llvm::MDNode *CU = CUNode->getOperand(i); 6899 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6900 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6901 } 6902 } 6903 6904 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6905 bool ForEH) { 6906 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6907 // FIXME: should we even be calling this method if RTTI is disabled 6908 // and it's not for EH? 6909 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6910 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6911 getTriple().isNVPTX())) 6912 return llvm::Constant::getNullValue(Int8PtrTy); 6913 6914 if (ForEH && Ty->isObjCObjectPointerType() && 6915 LangOpts.ObjCRuntime.isGNUFamily()) 6916 return ObjCRuntime->GetEHType(Ty); 6917 6918 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6919 } 6920 6921 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6922 // Do not emit threadprivates in simd-only mode. 6923 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6924 return; 6925 for (auto RefExpr : D->varlists()) { 6926 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6927 bool PerformInit = 6928 VD->getAnyInitializer() && 6929 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6930 /*ForRef=*/false); 6931 6932 Address Addr(GetAddrOfGlobalVar(VD), 6933 getTypes().ConvertTypeForMem(VD->getType()), 6934 getContext().getDeclAlign(VD)); 6935 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6936 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6937 CXXGlobalInits.push_back(InitFunction); 6938 } 6939 } 6940 6941 llvm::Metadata * 6942 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6943 StringRef Suffix) { 6944 if (auto *FnType = T->getAs<FunctionProtoType>()) 6945 T = getContext().getFunctionType( 6946 FnType->getReturnType(), FnType->getParamTypes(), 6947 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6948 6949 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6950 if (InternalId) 6951 return InternalId; 6952 6953 if (isExternallyVisible(T->getLinkage())) { 6954 std::string OutName; 6955 llvm::raw_string_ostream Out(OutName); 6956 getCXXABI().getMangleContext().mangleTypeName( 6957 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 6958 6959 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 6960 Out << ".normalized"; 6961 6962 Out << Suffix; 6963 6964 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6965 } else { 6966 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6967 llvm::ArrayRef<llvm::Metadata *>()); 6968 } 6969 6970 return InternalId; 6971 } 6972 6973 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6974 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6975 } 6976 6977 llvm::Metadata * 6978 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6979 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6980 } 6981 6982 // Generalize pointer types to a void pointer with the qualifiers of the 6983 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6984 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6985 // 'void *'. 6986 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6987 if (!Ty->isPointerType()) 6988 return Ty; 6989 6990 return Ctx.getPointerType( 6991 QualType(Ctx.VoidTy).withCVRQualifiers( 6992 Ty->getPointeeType().getCVRQualifiers())); 6993 } 6994 6995 // Apply type generalization to a FunctionType's return and argument types 6996 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6997 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6998 SmallVector<QualType, 8> GeneralizedParams; 6999 for (auto &Param : FnType->param_types()) 7000 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7001 7002 return Ctx.getFunctionType( 7003 GeneralizeType(Ctx, FnType->getReturnType()), 7004 GeneralizedParams, FnType->getExtProtoInfo()); 7005 } 7006 7007 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7008 return Ctx.getFunctionNoProtoType( 7009 GeneralizeType(Ctx, FnType->getReturnType())); 7010 7011 llvm_unreachable("Encountered unknown FunctionType"); 7012 } 7013 7014 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7015 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7016 GeneralizedMetadataIdMap, ".generalized"); 7017 } 7018 7019 /// Returns whether this module needs the "all-vtables" type identifier. 7020 bool CodeGenModule::NeedAllVtablesTypeId() const { 7021 // Returns true if at least one of vtable-based CFI checkers is enabled and 7022 // is not in the trapping mode. 7023 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7024 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7025 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7026 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7027 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7028 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7029 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7030 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7031 } 7032 7033 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7034 CharUnits Offset, 7035 const CXXRecordDecl *RD) { 7036 llvm::Metadata *MD = 7037 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7038 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7039 7040 if (CodeGenOpts.SanitizeCfiCrossDso) 7041 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7042 VTable->addTypeMetadata(Offset.getQuantity(), 7043 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7044 7045 if (NeedAllVtablesTypeId()) { 7046 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7047 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7048 } 7049 } 7050 7051 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7052 if (!SanStats) 7053 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7054 7055 return *SanStats; 7056 } 7057 7058 llvm::Value * 7059 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7060 CodeGenFunction &CGF) { 7061 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7062 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7063 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7064 auto *Call = CGF.EmitRuntimeCall( 7065 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7066 return Call; 7067 } 7068 7069 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7070 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7071 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7072 /* forPointeeType= */ true); 7073 } 7074 7075 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7076 LValueBaseInfo *BaseInfo, 7077 TBAAAccessInfo *TBAAInfo, 7078 bool forPointeeType) { 7079 if (TBAAInfo) 7080 *TBAAInfo = getTBAAAccessInfo(T); 7081 7082 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7083 // that doesn't return the information we need to compute BaseInfo. 7084 7085 // Honor alignment typedef attributes even on incomplete types. 7086 // We also honor them straight for C++ class types, even as pointees; 7087 // there's an expressivity gap here. 7088 if (auto TT = T->getAs<TypedefType>()) { 7089 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7090 if (BaseInfo) 7091 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7092 return getContext().toCharUnitsFromBits(Align); 7093 } 7094 } 7095 7096 bool AlignForArray = T->isArrayType(); 7097 7098 // Analyze the base element type, so we don't get confused by incomplete 7099 // array types. 7100 T = getContext().getBaseElementType(T); 7101 7102 if (T->isIncompleteType()) { 7103 // We could try to replicate the logic from 7104 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7105 // type is incomplete, so it's impossible to test. We could try to reuse 7106 // getTypeAlignIfKnown, but that doesn't return the information we need 7107 // to set BaseInfo. So just ignore the possibility that the alignment is 7108 // greater than one. 7109 if (BaseInfo) 7110 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7111 return CharUnits::One(); 7112 } 7113 7114 if (BaseInfo) 7115 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7116 7117 CharUnits Alignment; 7118 const CXXRecordDecl *RD; 7119 if (T.getQualifiers().hasUnaligned()) { 7120 Alignment = CharUnits::One(); 7121 } else if (forPointeeType && !AlignForArray && 7122 (RD = T->getAsCXXRecordDecl())) { 7123 // For C++ class pointees, we don't know whether we're pointing at a 7124 // base or a complete object, so we generally need to use the 7125 // non-virtual alignment. 7126 Alignment = getClassPointerAlignment(RD); 7127 } else { 7128 Alignment = getContext().getTypeAlignInChars(T); 7129 } 7130 7131 // Cap to the global maximum type alignment unless the alignment 7132 // was somehow explicit on the type. 7133 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7134 if (Alignment.getQuantity() > MaxAlign && 7135 !getContext().isAlignmentRequired(T)) 7136 Alignment = CharUnits::fromQuantity(MaxAlign); 7137 } 7138 return Alignment; 7139 } 7140 7141 bool CodeGenModule::stopAutoInit() { 7142 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7143 if (StopAfter) { 7144 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7145 // used 7146 if (NumAutoVarInit >= StopAfter) { 7147 return true; 7148 } 7149 if (!NumAutoVarInit) { 7150 unsigned DiagID = getDiags().getCustomDiagID( 7151 DiagnosticsEngine::Warning, 7152 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7153 "number of times ftrivial-auto-var-init=%1 gets applied."); 7154 getDiags().Report(DiagID) 7155 << StopAfter 7156 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7157 LangOptions::TrivialAutoVarInitKind::Zero 7158 ? "zero" 7159 : "pattern"); 7160 } 7161 ++NumAutoVarInit; 7162 } 7163 return false; 7164 } 7165 7166 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7167 const Decl *D) const { 7168 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7169 // postfix beginning with '.' since the symbol name can be demangled. 7170 if (LangOpts.HIP) 7171 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7172 else 7173 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7174 7175 // If the CUID is not specified we try to generate a unique postfix. 7176 if (getLangOpts().CUID.empty()) { 7177 SourceManager &SM = getContext().getSourceManager(); 7178 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7179 assert(PLoc.isValid() && "Source location is expected to be valid."); 7180 7181 // Get the hash of the user defined macros. 7182 llvm::MD5 Hash; 7183 llvm::MD5::MD5Result Result; 7184 for (const auto &Arg : PreprocessorOpts.Macros) 7185 Hash.update(Arg.first); 7186 Hash.final(Result); 7187 7188 // Get the UniqueID for the file containing the decl. 7189 llvm::sys::fs::UniqueID ID; 7190 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7191 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7192 assert(PLoc.isValid() && "Source location is expected to be valid."); 7193 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7194 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7195 << PLoc.getFilename() << EC.message(); 7196 } 7197 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7198 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7199 } else { 7200 OS << getContext().getCUIDHash(); 7201 } 7202 } 7203 7204 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7205 assert(DeferredDeclsToEmit.empty() && 7206 "Should have emitted all decls deferred to emit."); 7207 assert(NewBuilder->DeferredDecls.empty() && 7208 "Newly created module should not have deferred decls"); 7209 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7210 7211 assert(NewBuilder->DeferredVTables.empty() && 7212 "Newly created module should not have deferred vtables"); 7213 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7214 7215 assert(NewBuilder->MangledDeclNames.empty() && 7216 "Newly created module should not have mangled decl names"); 7217 assert(NewBuilder->Manglings.empty() && 7218 "Newly created module should not have manglings"); 7219 NewBuilder->Manglings = std::move(Manglings); 7220 7221 assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied"); 7222 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7223 7224 NewBuilder->TBAA = std::move(TBAA); 7225 7226 assert(NewBuilder->EmittedDeferredDecls.empty() && 7227 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7228 7229 NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls); 7230 7231 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7232 } 7233