xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 24ecd99842352ed1e6d7877e76e93c2f83ebf3f3)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
55 #include "llvm/IR/CallingConv.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/ProfileSummary.h"
61 #include "llvm/ProfileData/InstrProfReader.h"
62 #include "llvm/ProfileData/SampleProf.h"
63 #include "llvm/Support/CRC.h"
64 #include "llvm/Support/CodeGen.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/ConvertUTF.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/TimeProfiler.h"
69 #include "llvm/Support/xxhash.h"
70 #include "llvm/TargetParser/Triple.h"
71 #include "llvm/TargetParser/X86TargetParser.h"
72 #include <optional>
73 
74 using namespace clang;
75 using namespace CodeGen;
76 
77 static llvm::cl::opt<bool> LimitedCoverage(
78     "limited-coverage-experimental", llvm::cl::Hidden,
79     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
80 
81 static const char AnnotationSection[] = "llvm.metadata";
82 
83 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
84   switch (CGM.getContext().getCXXABIKind()) {
85   case TargetCXXABI::AppleARM64:
86   case TargetCXXABI::Fuchsia:
87   case TargetCXXABI::GenericAArch64:
88   case TargetCXXABI::GenericARM:
89   case TargetCXXABI::iOS:
90   case TargetCXXABI::WatchOS:
91   case TargetCXXABI::GenericMIPS:
92   case TargetCXXABI::GenericItanium:
93   case TargetCXXABI::WebAssembly:
94   case TargetCXXABI::XL:
95     return CreateItaniumCXXABI(CGM);
96   case TargetCXXABI::Microsoft:
97     return CreateMicrosoftCXXABI(CGM);
98   }
99 
100   llvm_unreachable("invalid C++ ABI kind");
101 }
102 
103 CodeGenModule::CodeGenModule(ASTContext &C,
104                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
105                              const HeaderSearchOptions &HSO,
106                              const PreprocessorOptions &PPO,
107                              const CodeGenOptions &CGO, llvm::Module &M,
108                              DiagnosticsEngine &diags,
109                              CoverageSourceInfo *CoverageInfo)
110     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
111       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
112       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
113       VMContext(M.getContext()), Types(*this), VTables(*this),
114       SanitizerMD(new SanitizerMetadata(*this)) {
115 
116   // Initialize the type cache.
117   llvm::LLVMContext &LLVMContext = M.getContext();
118   VoidTy = llvm::Type::getVoidTy(LLVMContext);
119   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
120   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
121   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
122   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
123   HalfTy = llvm::Type::getHalfTy(LLVMContext);
124   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
125   FloatTy = llvm::Type::getFloatTy(LLVMContext);
126   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
127   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
128   PointerAlignInBytes =
129       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
130           .getQuantity();
131   SizeSizeInBytes =
132     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
133   IntAlignInBytes =
134     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
135   CharTy =
136     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
137   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
138   IntPtrTy = llvm::IntegerType::get(LLVMContext,
139     C.getTargetInfo().getMaxPointerWidth());
140   Int8PtrTy = Int8Ty->getPointerTo(0);
141   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
142   const llvm::DataLayout &DL = M.getDataLayout();
143   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
144   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
145   ConstGlobalsPtrTy = Int8Ty->getPointerTo(
146       C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
147   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
148 
149   // Build C++20 Module initializers.
150   // TODO: Add Microsoft here once we know the mangling required for the
151   // initializers.
152   CXX20ModuleInits =
153       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
154                                        ItaniumMangleContext::MK_Itanium;
155 
156   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
157 
158   if (LangOpts.ObjC)
159     createObjCRuntime();
160   if (LangOpts.OpenCL)
161     createOpenCLRuntime();
162   if (LangOpts.OpenMP)
163     createOpenMPRuntime();
164   if (LangOpts.CUDA)
165     createCUDARuntime();
166   if (LangOpts.HLSL)
167     createHLSLRuntime();
168 
169   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
170   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
171       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
172     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
173                                getCXXABI().getMangleContext()));
174 
175   // If debug info or coverage generation is enabled, create the CGDebugInfo
176   // object.
177   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
178       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
179     DebugInfo.reset(new CGDebugInfo(*this));
180 
181   Block.GlobalUniqueCount = 0;
182 
183   if (C.getLangOpts().ObjC)
184     ObjCData.reset(new ObjCEntrypoints());
185 
186   if (CodeGenOpts.hasProfileClangUse()) {
187     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
188         CodeGenOpts.ProfileInstrumentUsePath, *FS,
189         CodeGenOpts.ProfileRemappingFile);
190     // We're checking for profile read errors in CompilerInvocation, so if
191     // there was an error it should've already been caught. If it hasn't been
192     // somehow, trip an assertion.
193     assert(ReaderOrErr);
194     PGOReader = std::move(ReaderOrErr.get());
195   }
196 
197   // If coverage mapping generation is enabled, create the
198   // CoverageMappingModuleGen object.
199   if (CodeGenOpts.CoverageMapping)
200     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
201 
202   // Generate the module name hash here if needed.
203   if (CodeGenOpts.UniqueInternalLinkageNames &&
204       !getModule().getSourceFileName().empty()) {
205     std::string Path = getModule().getSourceFileName();
206     // Check if a path substitution is needed from the MacroPrefixMap.
207     for (const auto &Entry : LangOpts.MacroPrefixMap)
208       if (Path.rfind(Entry.first, 0) != std::string::npos) {
209         Path = Entry.second + Path.substr(Entry.first.size());
210         break;
211       }
212     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
213   }
214 }
215 
216 CodeGenModule::~CodeGenModule() {}
217 
218 void CodeGenModule::createObjCRuntime() {
219   // This is just isGNUFamily(), but we want to force implementors of
220   // new ABIs to decide how best to do this.
221   switch (LangOpts.ObjCRuntime.getKind()) {
222   case ObjCRuntime::GNUstep:
223   case ObjCRuntime::GCC:
224   case ObjCRuntime::ObjFW:
225     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
226     return;
227 
228   case ObjCRuntime::FragileMacOSX:
229   case ObjCRuntime::MacOSX:
230   case ObjCRuntime::iOS:
231   case ObjCRuntime::WatchOS:
232     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
233     return;
234   }
235   llvm_unreachable("bad runtime kind");
236 }
237 
238 void CodeGenModule::createOpenCLRuntime() {
239   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
240 }
241 
242 void CodeGenModule::createOpenMPRuntime() {
243   // Select a specialized code generation class based on the target, if any.
244   // If it does not exist use the default implementation.
245   switch (getTriple().getArch()) {
246   case llvm::Triple::nvptx:
247   case llvm::Triple::nvptx64:
248   case llvm::Triple::amdgcn:
249     assert(getLangOpts().OpenMPIsDevice &&
250            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
251     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
252     break;
253   default:
254     if (LangOpts.OpenMPSimd)
255       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
256     else
257       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
258     break;
259   }
260 }
261 
262 void CodeGenModule::createCUDARuntime() {
263   CUDARuntime.reset(CreateNVCUDARuntime(*this));
264 }
265 
266 void CodeGenModule::createHLSLRuntime() {
267   HLSLRuntime.reset(new CGHLSLRuntime(*this));
268 }
269 
270 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
271   Replacements[Name] = C;
272 }
273 
274 void CodeGenModule::applyReplacements() {
275   for (auto &I : Replacements) {
276     StringRef MangledName = I.first();
277     llvm::Constant *Replacement = I.second;
278     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
279     if (!Entry)
280       continue;
281     auto *OldF = cast<llvm::Function>(Entry);
282     auto *NewF = dyn_cast<llvm::Function>(Replacement);
283     if (!NewF) {
284       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
285         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
286       } else {
287         auto *CE = cast<llvm::ConstantExpr>(Replacement);
288         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
289                CE->getOpcode() == llvm::Instruction::GetElementPtr);
290         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
291       }
292     }
293 
294     // Replace old with new, but keep the old order.
295     OldF->replaceAllUsesWith(Replacement);
296     if (NewF) {
297       NewF->removeFromParent();
298       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
299                                                        NewF);
300     }
301     OldF->eraseFromParent();
302   }
303 }
304 
305 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
306   GlobalValReplacements.push_back(std::make_pair(GV, C));
307 }
308 
309 void CodeGenModule::applyGlobalValReplacements() {
310   for (auto &I : GlobalValReplacements) {
311     llvm::GlobalValue *GV = I.first;
312     llvm::Constant *C = I.second;
313 
314     GV->replaceAllUsesWith(C);
315     GV->eraseFromParent();
316   }
317 }
318 
319 // This is only used in aliases that we created and we know they have a
320 // linear structure.
321 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
322   const llvm::Constant *C;
323   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
324     C = GA->getAliasee();
325   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
326     C = GI->getResolver();
327   else
328     return GV;
329 
330   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
331   if (!AliaseeGV)
332     return nullptr;
333 
334   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
335   if (FinalGV == GV)
336     return nullptr;
337 
338   return FinalGV;
339 }
340 
341 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
342                                SourceLocation Location, bool IsIFunc,
343                                const llvm::GlobalValue *Alias,
344                                const llvm::GlobalValue *&GV) {
345   GV = getAliasedGlobal(Alias);
346   if (!GV) {
347     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
348     return false;
349   }
350 
351   if (GV->isDeclaration()) {
352     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
353     return false;
354   }
355 
356   if (IsIFunc) {
357     // Check resolver function type.
358     const auto *F = dyn_cast<llvm::Function>(GV);
359     if (!F) {
360       Diags.Report(Location, diag::err_alias_to_undefined)
361           << IsIFunc << IsIFunc;
362       return false;
363     }
364 
365     llvm::FunctionType *FTy = F->getFunctionType();
366     if (!FTy->getReturnType()->isPointerTy()) {
367       Diags.Report(Location, diag::err_ifunc_resolver_return);
368       return false;
369     }
370   }
371 
372   return true;
373 }
374 
375 void CodeGenModule::checkAliases() {
376   // Check if the constructed aliases are well formed. It is really unfortunate
377   // that we have to do this in CodeGen, but we only construct mangled names
378   // and aliases during codegen.
379   bool Error = false;
380   DiagnosticsEngine &Diags = getDiags();
381   for (const GlobalDecl &GD : Aliases) {
382     const auto *D = cast<ValueDecl>(GD.getDecl());
383     SourceLocation Location;
384     bool IsIFunc = D->hasAttr<IFuncAttr>();
385     if (const Attr *A = D->getDefiningAttr())
386       Location = A->getLocation();
387     else
388       llvm_unreachable("Not an alias or ifunc?");
389 
390     StringRef MangledName = getMangledName(GD);
391     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
392     const llvm::GlobalValue *GV = nullptr;
393     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
394       Error = true;
395       continue;
396     }
397 
398     llvm::Constant *Aliasee =
399         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
400                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
401 
402     llvm::GlobalValue *AliaseeGV;
403     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
404       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
405     else
406       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
407 
408     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
409       StringRef AliasSection = SA->getName();
410       if (AliasSection != AliaseeGV->getSection())
411         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
412             << AliasSection << IsIFunc << IsIFunc;
413     }
414 
415     // We have to handle alias to weak aliases in here. LLVM itself disallows
416     // this since the object semantics would not match the IL one. For
417     // compatibility with gcc we implement it by just pointing the alias
418     // to its aliasee's aliasee. We also warn, since the user is probably
419     // expecting the link to be weak.
420     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
421       if (GA->isInterposable()) {
422         Diags.Report(Location, diag::warn_alias_to_weak_alias)
423             << GV->getName() << GA->getName() << IsIFunc;
424         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
425             GA->getAliasee(), Alias->getType());
426 
427         if (IsIFunc)
428           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
429         else
430           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
431       }
432     }
433   }
434   if (!Error)
435     return;
436 
437   for (const GlobalDecl &GD : Aliases) {
438     StringRef MangledName = getMangledName(GD);
439     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
440     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
441     Alias->eraseFromParent();
442   }
443 }
444 
445 void CodeGenModule::clear() {
446   DeferredDeclsToEmit.clear();
447   EmittedDeferredDecls.clear();
448   if (OpenMPRuntime)
449     OpenMPRuntime->clear();
450 }
451 
452 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
453                                        StringRef MainFile) {
454   if (!hasDiagnostics())
455     return;
456   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
457     if (MainFile.empty())
458       MainFile = "<stdin>";
459     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
460   } else {
461     if (Mismatched > 0)
462       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
463 
464     if (Missing > 0)
465       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
466   }
467 }
468 
469 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
470                                              llvm::Module &M) {
471   if (!LO.VisibilityFromDLLStorageClass)
472     return;
473 
474   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
475       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
476   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
477       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
478   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
479       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
480   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
481       CodeGenModule::GetLLVMVisibility(
482           LO.getExternDeclNoDLLStorageClassVisibility());
483 
484   for (llvm::GlobalValue &GV : M.global_values()) {
485     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
486       continue;
487 
488     // Reset DSO locality before setting the visibility. This removes
489     // any effects that visibility options and annotations may have
490     // had on the DSO locality. Setting the visibility will implicitly set
491     // appropriate globals to DSO Local; however, this will be pessimistic
492     // w.r.t. to the normal compiler IRGen.
493     GV.setDSOLocal(false);
494 
495     if (GV.isDeclarationForLinker()) {
496       GV.setVisibility(GV.getDLLStorageClass() ==
497                                llvm::GlobalValue::DLLImportStorageClass
498                            ? ExternDeclDLLImportVisibility
499                            : ExternDeclNoDLLStorageClassVisibility);
500     } else {
501       GV.setVisibility(GV.getDLLStorageClass() ==
502                                llvm::GlobalValue::DLLExportStorageClass
503                            ? DLLExportVisibility
504                            : NoDLLStorageClassVisibility);
505     }
506 
507     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
508   }
509 }
510 
511 void CodeGenModule::Release() {
512   Module *Primary = getContext().getNamedModuleForCodeGen();
513   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
514     EmitModuleInitializers(Primary);
515   EmitDeferred();
516   DeferredDecls.insert(EmittedDeferredDecls.begin(),
517                        EmittedDeferredDecls.end());
518   EmittedDeferredDecls.clear();
519   EmitVTablesOpportunistically();
520   applyGlobalValReplacements();
521   applyReplacements();
522   emitMultiVersionFunctions();
523 
524   if (Context.getLangOpts().IncrementalExtensions &&
525       GlobalTopLevelStmtBlockInFlight.first) {
526     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
527     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
528     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
529   }
530 
531   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
532     EmitCXXModuleInitFunc(Primary);
533   else
534     EmitCXXGlobalInitFunc();
535   EmitCXXGlobalCleanUpFunc();
536   registerGlobalDtorsWithAtExit();
537   EmitCXXThreadLocalInitFunc();
538   if (ObjCRuntime)
539     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
540       AddGlobalCtor(ObjCInitFunction);
541   if (Context.getLangOpts().CUDA && CUDARuntime) {
542     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
543       AddGlobalCtor(CudaCtorFunction);
544   }
545   if (OpenMPRuntime) {
546     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
547             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
548       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
549     }
550     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
551     OpenMPRuntime->clear();
552   }
553   if (PGOReader) {
554     getModule().setProfileSummary(
555         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
556         llvm::ProfileSummary::PSK_Instr);
557     if (PGOStats.hasDiagnostics())
558       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
559   }
560   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
561     return L.LexOrder < R.LexOrder;
562   });
563   EmitCtorList(GlobalCtors, "llvm.global_ctors");
564   EmitCtorList(GlobalDtors, "llvm.global_dtors");
565   EmitGlobalAnnotations();
566   EmitStaticExternCAliases();
567   checkAliases();
568   EmitDeferredUnusedCoverageMappings();
569   CodeGenPGO(*this).setValueProfilingFlag(getModule());
570   if (CoverageMapping)
571     CoverageMapping->emit();
572   if (CodeGenOpts.SanitizeCfiCrossDso) {
573     CodeGenFunction(*this).EmitCfiCheckFail();
574     CodeGenFunction(*this).EmitCfiCheckStub();
575   }
576   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
577     finalizeKCFITypes();
578   emitAtAvailableLinkGuard();
579   if (Context.getTargetInfo().getTriple().isWasm())
580     EmitMainVoidAlias();
581 
582   if (getTriple().isAMDGPU()) {
583     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
584     // preserve ASAN functions in bitcode libraries.
585     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
586       auto *FT = llvm::FunctionType::get(VoidTy, {});
587       auto *F = llvm::Function::Create(
588           FT, llvm::GlobalValue::ExternalLinkage,
589           "__amdgpu_device_library_preserve_asan_functions", &getModule());
590       auto *Var = new llvm::GlobalVariable(
591           getModule(), FT->getPointerTo(),
592           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
593           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
594           llvm::GlobalVariable::NotThreadLocal);
595       addCompilerUsedGlobal(Var);
596     }
597     // Emit amdgpu_code_object_version module flag, which is code object version
598     // times 100.
599     if (getTarget().getTargetOpts().CodeObjectVersion !=
600         TargetOptions::COV_None) {
601       getModule().addModuleFlag(llvm::Module::Error,
602                                 "amdgpu_code_object_version",
603                                 getTarget().getTargetOpts().CodeObjectVersion);
604     }
605   }
606 
607   // Emit a global array containing all external kernels or device variables
608   // used by host functions and mark it as used for CUDA/HIP. This is necessary
609   // to get kernels or device variables in archives linked in even if these
610   // kernels or device variables are only used in host functions.
611   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
612     SmallVector<llvm::Constant *, 8> UsedArray;
613     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
614       GlobalDecl GD;
615       if (auto *FD = dyn_cast<FunctionDecl>(D))
616         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
617       else
618         GD = GlobalDecl(D);
619       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
620           GetAddrOfGlobal(GD), Int8PtrTy));
621     }
622 
623     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
624 
625     auto *GV = new llvm::GlobalVariable(
626         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
627         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
628     addCompilerUsedGlobal(GV);
629   }
630 
631   emitLLVMUsed();
632   if (SanStats)
633     SanStats->finish();
634 
635   if (CodeGenOpts.Autolink &&
636       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
637     EmitModuleLinkOptions();
638   }
639 
640   // On ELF we pass the dependent library specifiers directly to the linker
641   // without manipulating them. This is in contrast to other platforms where
642   // they are mapped to a specific linker option by the compiler. This
643   // difference is a result of the greater variety of ELF linkers and the fact
644   // that ELF linkers tend to handle libraries in a more complicated fashion
645   // than on other platforms. This forces us to defer handling the dependent
646   // libs to the linker.
647   //
648   // CUDA/HIP device and host libraries are different. Currently there is no
649   // way to differentiate dependent libraries for host or device. Existing
650   // usage of #pragma comment(lib, *) is intended for host libraries on
651   // Windows. Therefore emit llvm.dependent-libraries only for host.
652   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
653     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
654     for (auto *MD : ELFDependentLibraries)
655       NMD->addOperand(MD);
656   }
657 
658   // Record mregparm value now so it is visible through rest of codegen.
659   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
660     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
661                               CodeGenOpts.NumRegisterParameters);
662 
663   if (CodeGenOpts.DwarfVersion) {
664     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
665                               CodeGenOpts.DwarfVersion);
666   }
667 
668   if (CodeGenOpts.Dwarf64)
669     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
670 
671   if (Context.getLangOpts().SemanticInterposition)
672     // Require various optimization to respect semantic interposition.
673     getModule().setSemanticInterposition(true);
674 
675   if (CodeGenOpts.EmitCodeView) {
676     // Indicate that we want CodeView in the metadata.
677     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
678   }
679   if (CodeGenOpts.CodeViewGHash) {
680     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
681   }
682   if (CodeGenOpts.ControlFlowGuard) {
683     // Function ID tables and checks for Control Flow Guard (cfguard=2).
684     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
685   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
686     // Function ID tables for Control Flow Guard (cfguard=1).
687     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
688   }
689   if (CodeGenOpts.EHContGuard) {
690     // Function ID tables for EH Continuation Guard.
691     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
692   }
693   if (Context.getLangOpts().Kernel) {
694     // Note if we are compiling with /kernel.
695     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
696   }
697   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
698     // We don't support LTO with 2 with different StrictVTablePointers
699     // FIXME: we could support it by stripping all the information introduced
700     // by StrictVTablePointers.
701 
702     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
703 
704     llvm::Metadata *Ops[2] = {
705               llvm::MDString::get(VMContext, "StrictVTablePointers"),
706               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
707                   llvm::Type::getInt32Ty(VMContext), 1))};
708 
709     getModule().addModuleFlag(llvm::Module::Require,
710                               "StrictVTablePointersRequirement",
711                               llvm::MDNode::get(VMContext, Ops));
712   }
713   if (getModuleDebugInfo())
714     // We support a single version in the linked module. The LLVM
715     // parser will drop debug info with a different version number
716     // (and warn about it, too).
717     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
718                               llvm::DEBUG_METADATA_VERSION);
719 
720   // We need to record the widths of enums and wchar_t, so that we can generate
721   // the correct build attributes in the ARM backend. wchar_size is also used by
722   // TargetLibraryInfo.
723   uint64_t WCharWidth =
724       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
725   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
726 
727   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
728   if (   Arch == llvm::Triple::arm
729       || Arch == llvm::Triple::armeb
730       || Arch == llvm::Triple::thumb
731       || Arch == llvm::Triple::thumbeb) {
732     // The minimum width of an enum in bytes
733     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
734     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
735   }
736 
737   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
738     StringRef ABIStr = Target.getABI();
739     llvm::LLVMContext &Ctx = TheModule.getContext();
740     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
741                               llvm::MDString::get(Ctx, ABIStr));
742   }
743 
744   if (CodeGenOpts.SanitizeCfiCrossDso) {
745     // Indicate that we want cross-DSO control flow integrity checks.
746     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
747   }
748 
749   if (CodeGenOpts.WholeProgramVTables) {
750     // Indicate whether VFE was enabled for this module, so that the
751     // vcall_visibility metadata added under whole program vtables is handled
752     // appropriately in the optimizer.
753     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
754                               CodeGenOpts.VirtualFunctionElimination);
755   }
756 
757   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
758     getModule().addModuleFlag(llvm::Module::Override,
759                               "CFI Canonical Jump Tables",
760                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
761   }
762 
763   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
764     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
765     // KCFI assumes patchable-function-prefix is the same for all indirectly
766     // called functions. Store the expected offset for code generation.
767     if (CodeGenOpts.PatchableFunctionEntryOffset)
768       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
769                                 CodeGenOpts.PatchableFunctionEntryOffset);
770   }
771 
772   if (CodeGenOpts.CFProtectionReturn &&
773       Target.checkCFProtectionReturnSupported(getDiags())) {
774     // Indicate that we want to instrument return control flow protection.
775     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
776                               1);
777   }
778 
779   if (CodeGenOpts.CFProtectionBranch &&
780       Target.checkCFProtectionBranchSupported(getDiags())) {
781     // Indicate that we want to instrument branch control flow protection.
782     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
783                               1);
784   }
785 
786   if (CodeGenOpts.FunctionReturnThunks)
787     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
788 
789   if (CodeGenOpts.IndirectBranchCSPrefix)
790     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
791 
792   // Add module metadata for return address signing (ignoring
793   // non-leaf/all) and stack tagging. These are actually turned on by function
794   // attributes, but we use module metadata to emit build attributes. This is
795   // needed for LTO, where the function attributes are inside bitcode
796   // serialised into a global variable by the time build attributes are
797   // emitted, so we can't access them. LTO objects could be compiled with
798   // different flags therefore module flags are set to "Min" behavior to achieve
799   // the same end result of the normal build where e.g BTI is off if any object
800   // doesn't support it.
801   if (Context.getTargetInfo().hasFeature("ptrauth") &&
802       LangOpts.getSignReturnAddressScope() !=
803           LangOptions::SignReturnAddressScopeKind::None)
804     getModule().addModuleFlag(llvm::Module::Override,
805                               "sign-return-address-buildattr", 1);
806   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
807     getModule().addModuleFlag(llvm::Module::Override,
808                               "tag-stack-memory-buildattr", 1);
809 
810   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
811       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
812       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
813       Arch == llvm::Triple::aarch64_be) {
814     if (LangOpts.BranchTargetEnforcement)
815       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
816                                 1);
817     if (LangOpts.hasSignReturnAddress())
818       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
819     if (LangOpts.isSignReturnAddressScopeAll())
820       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
821                                 1);
822     if (!LangOpts.isSignReturnAddressWithAKey())
823       getModule().addModuleFlag(llvm::Module::Min,
824                                 "sign-return-address-with-bkey", 1);
825   }
826 
827   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
828     llvm::LLVMContext &Ctx = TheModule.getContext();
829     getModule().addModuleFlag(
830         llvm::Module::Error, "MemProfProfileFilename",
831         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
832   }
833 
834   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
835     // Indicate whether __nvvm_reflect should be configured to flush denormal
836     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
837     // property.)
838     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
839                               CodeGenOpts.FP32DenormalMode.Output !=
840                                   llvm::DenormalMode::IEEE);
841   }
842 
843   if (LangOpts.EHAsynch)
844     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
845 
846   // Indicate whether this Module was compiled with -fopenmp
847   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
848     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
849   if (getLangOpts().OpenMPIsDevice)
850     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
851                               LangOpts.OpenMP);
852 
853   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
854   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
855     EmitOpenCLMetadata();
856     // Emit SPIR version.
857     if (getTriple().isSPIR()) {
858       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
859       // opencl.spir.version named metadata.
860       // C++ for OpenCL has a distinct mapping for version compatibility with
861       // OpenCL.
862       auto Version = LangOpts.getOpenCLCompatibleVersion();
863       llvm::Metadata *SPIRVerElts[] = {
864           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
865               Int32Ty, Version / 100)),
866           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
867               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
868       llvm::NamedMDNode *SPIRVerMD =
869           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
870       llvm::LLVMContext &Ctx = TheModule.getContext();
871       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
872     }
873   }
874 
875   // HLSL related end of code gen work items.
876   if (LangOpts.HLSL)
877     getHLSLRuntime().finishCodeGen();
878 
879   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
880     assert(PLevel < 3 && "Invalid PIC Level");
881     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
882     if (Context.getLangOpts().PIE)
883       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
884   }
885 
886   if (getCodeGenOpts().CodeModel.size() > 0) {
887     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
888                   .Case("tiny", llvm::CodeModel::Tiny)
889                   .Case("small", llvm::CodeModel::Small)
890                   .Case("kernel", llvm::CodeModel::Kernel)
891                   .Case("medium", llvm::CodeModel::Medium)
892                   .Case("large", llvm::CodeModel::Large)
893                   .Default(~0u);
894     if (CM != ~0u) {
895       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
896       getModule().setCodeModel(codeModel);
897     }
898   }
899 
900   if (CodeGenOpts.NoPLT)
901     getModule().setRtLibUseGOT();
902   if (CodeGenOpts.UnwindTables)
903     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
904 
905   switch (CodeGenOpts.getFramePointer()) {
906   case CodeGenOptions::FramePointerKind::None:
907     // 0 ("none") is the default.
908     break;
909   case CodeGenOptions::FramePointerKind::NonLeaf:
910     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
911     break;
912   case CodeGenOptions::FramePointerKind::All:
913     getModule().setFramePointer(llvm::FramePointerKind::All);
914     break;
915   }
916 
917   SimplifyPersonality();
918 
919   if (getCodeGenOpts().EmitDeclMetadata)
920     EmitDeclMetadata();
921 
922   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
923     EmitCoverageFile();
924 
925   if (CGDebugInfo *DI = getModuleDebugInfo())
926     DI->finalize();
927 
928   if (getCodeGenOpts().EmitVersionIdentMetadata)
929     EmitVersionIdentMetadata();
930 
931   if (!getCodeGenOpts().RecordCommandLine.empty())
932     EmitCommandLineMetadata();
933 
934   if (!getCodeGenOpts().StackProtectorGuard.empty())
935     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
936   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
937     getModule().setStackProtectorGuardReg(
938         getCodeGenOpts().StackProtectorGuardReg);
939   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
940     getModule().setStackProtectorGuardSymbol(
941         getCodeGenOpts().StackProtectorGuardSymbol);
942   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
943     getModule().setStackProtectorGuardOffset(
944         getCodeGenOpts().StackProtectorGuardOffset);
945   if (getCodeGenOpts().StackAlignment)
946     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
947   if (getCodeGenOpts().SkipRaxSetup)
948     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
949 
950   if (getContext().getTargetInfo().getMaxTLSAlign())
951     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
952                               getContext().getTargetInfo().getMaxTLSAlign());
953 
954   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
955 
956   EmitBackendOptionsMetadata(getCodeGenOpts());
957 
958   // If there is device offloading code embed it in the host now.
959   EmbedObject(&getModule(), CodeGenOpts, getDiags());
960 
961   // Set visibility from DLL storage class
962   // We do this at the end of LLVM IR generation; after any operation
963   // that might affect the DLL storage class or the visibility, and
964   // before anything that might act on these.
965   setVisibilityFromDLLStorageClass(LangOpts, getModule());
966 }
967 
968 void CodeGenModule::EmitOpenCLMetadata() {
969   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
970   // opencl.ocl.version named metadata node.
971   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
972   auto Version = LangOpts.getOpenCLCompatibleVersion();
973   llvm::Metadata *OCLVerElts[] = {
974       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
975           Int32Ty, Version / 100)),
976       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
977           Int32Ty, (Version % 100) / 10))};
978   llvm::NamedMDNode *OCLVerMD =
979       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
980   llvm::LLVMContext &Ctx = TheModule.getContext();
981   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
982 }
983 
984 void CodeGenModule::EmitBackendOptionsMetadata(
985     const CodeGenOptions CodeGenOpts) {
986   if (getTriple().isRISCV()) {
987     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
988                               CodeGenOpts.SmallDataLimit);
989   }
990 }
991 
992 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
993   // Make sure that this type is translated.
994   Types.UpdateCompletedType(TD);
995 }
996 
997 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
998   // Make sure that this type is translated.
999   Types.RefreshTypeCacheForClass(RD);
1000 }
1001 
1002 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1003   if (!TBAA)
1004     return nullptr;
1005   return TBAA->getTypeInfo(QTy);
1006 }
1007 
1008 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1009   if (!TBAA)
1010     return TBAAAccessInfo();
1011   if (getLangOpts().CUDAIsDevice) {
1012     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1013     // access info.
1014     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1015       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1016           nullptr)
1017         return TBAAAccessInfo();
1018     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1019       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1020           nullptr)
1021         return TBAAAccessInfo();
1022     }
1023   }
1024   return TBAA->getAccessInfo(AccessType);
1025 }
1026 
1027 TBAAAccessInfo
1028 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1029   if (!TBAA)
1030     return TBAAAccessInfo();
1031   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1032 }
1033 
1034 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1035   if (!TBAA)
1036     return nullptr;
1037   return TBAA->getTBAAStructInfo(QTy);
1038 }
1039 
1040 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1041   if (!TBAA)
1042     return nullptr;
1043   return TBAA->getBaseTypeInfo(QTy);
1044 }
1045 
1046 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1047   if (!TBAA)
1048     return nullptr;
1049   return TBAA->getAccessTagInfo(Info);
1050 }
1051 
1052 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1053                                                    TBAAAccessInfo TargetInfo) {
1054   if (!TBAA)
1055     return TBAAAccessInfo();
1056   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1057 }
1058 
1059 TBAAAccessInfo
1060 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1061                                                    TBAAAccessInfo InfoB) {
1062   if (!TBAA)
1063     return TBAAAccessInfo();
1064   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1065 }
1066 
1067 TBAAAccessInfo
1068 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1069                                               TBAAAccessInfo SrcInfo) {
1070   if (!TBAA)
1071     return TBAAAccessInfo();
1072   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1073 }
1074 
1075 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1076                                                 TBAAAccessInfo TBAAInfo) {
1077   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1078     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1079 }
1080 
1081 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1082     llvm::Instruction *I, const CXXRecordDecl *RD) {
1083   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1084                  llvm::MDNode::get(getLLVMContext(), {}));
1085 }
1086 
1087 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1088   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1089   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1090 }
1091 
1092 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1093 /// specified stmt yet.
1094 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1095   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1096                                                "cannot compile this %0 yet");
1097   std::string Msg = Type;
1098   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1099       << Msg << S->getSourceRange();
1100 }
1101 
1102 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1103 /// specified decl yet.
1104 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1105   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1106                                                "cannot compile this %0 yet");
1107   std::string Msg = Type;
1108   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1109 }
1110 
1111 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1112   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1113 }
1114 
1115 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1116                                         const NamedDecl *D) const {
1117   // Internal definitions always have default visibility.
1118   if (GV->hasLocalLinkage()) {
1119     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1120     return;
1121   }
1122   if (!D)
1123     return;
1124   // Set visibility for definitions, and for declarations if requested globally
1125   // or set explicitly.
1126   LinkageInfo LV = D->getLinkageAndVisibility();
1127   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1128     // Reject incompatible dlllstorage and visibility annotations.
1129     if (!LV.isVisibilityExplicit())
1130       return;
1131     if (GV->hasDLLExportStorageClass()) {
1132       if (LV.getVisibility() == HiddenVisibility)
1133         getDiags().Report(D->getLocation(),
1134                           diag::err_hidden_visibility_dllexport);
1135     } else if (LV.getVisibility() != DefaultVisibility) {
1136       getDiags().Report(D->getLocation(),
1137                         diag::err_non_default_visibility_dllimport);
1138     }
1139     return;
1140   }
1141 
1142   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1143       !GV->isDeclarationForLinker())
1144     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1145 }
1146 
1147 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1148                                  llvm::GlobalValue *GV) {
1149   if (GV->hasLocalLinkage())
1150     return true;
1151 
1152   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1153     return true;
1154 
1155   // DLLImport explicitly marks the GV as external.
1156   if (GV->hasDLLImportStorageClass())
1157     return false;
1158 
1159   const llvm::Triple &TT = CGM.getTriple();
1160   if (TT.isWindowsGNUEnvironment()) {
1161     // In MinGW, variables without DLLImport can still be automatically
1162     // imported from a DLL by the linker; don't mark variables that
1163     // potentially could come from another DLL as DSO local.
1164 
1165     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1166     // (and this actually happens in the public interface of libstdc++), so
1167     // such variables can't be marked as DSO local. (Native TLS variables
1168     // can't be dllimported at all, though.)
1169     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1170         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1171       return false;
1172   }
1173 
1174   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1175   // remain unresolved in the link, they can be resolved to zero, which is
1176   // outside the current DSO.
1177   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1178     return false;
1179 
1180   // Every other GV is local on COFF.
1181   // Make an exception for windows OS in the triple: Some firmware builds use
1182   // *-win32-macho triples. This (accidentally?) produced windows relocations
1183   // without GOT tables in older clang versions; Keep this behaviour.
1184   // FIXME: even thread local variables?
1185   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1186     return true;
1187 
1188   // Only handle COFF and ELF for now.
1189   if (!TT.isOSBinFormatELF())
1190     return false;
1191 
1192   // If this is not an executable, don't assume anything is local.
1193   const auto &CGOpts = CGM.getCodeGenOpts();
1194   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1195   const auto &LOpts = CGM.getLangOpts();
1196   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1197     // On ELF, if -fno-semantic-interposition is specified and the target
1198     // supports local aliases, there will be neither CC1
1199     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1200     // dso_local on the function if using a local alias is preferable (can avoid
1201     // PLT indirection).
1202     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1203       return false;
1204     return !(CGM.getLangOpts().SemanticInterposition ||
1205              CGM.getLangOpts().HalfNoSemanticInterposition);
1206   }
1207 
1208   // A definition cannot be preempted from an executable.
1209   if (!GV->isDeclarationForLinker())
1210     return true;
1211 
1212   // Most PIC code sequences that assume that a symbol is local cannot produce a
1213   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1214   // depended, it seems worth it to handle it here.
1215   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1216     return false;
1217 
1218   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1219   if (TT.isPPC64())
1220     return false;
1221 
1222   if (CGOpts.DirectAccessExternalData) {
1223     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1224     // for non-thread-local variables. If the symbol is not defined in the
1225     // executable, a copy relocation will be needed at link time. dso_local is
1226     // excluded for thread-local variables because they generally don't support
1227     // copy relocations.
1228     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1229       if (!Var->isThreadLocal())
1230         return true;
1231 
1232     // -fno-pic sets dso_local on a function declaration to allow direct
1233     // accesses when taking its address (similar to a data symbol). If the
1234     // function is not defined in the executable, a canonical PLT entry will be
1235     // needed at link time. -fno-direct-access-external-data can avoid the
1236     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1237     // it could just cause trouble without providing perceptible benefits.
1238     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1239       return true;
1240   }
1241 
1242   // If we can use copy relocations we can assume it is local.
1243 
1244   // Otherwise don't assume it is local.
1245   return false;
1246 }
1247 
1248 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1249   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1250 }
1251 
1252 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1253                                           GlobalDecl GD) const {
1254   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1255   // C++ destructors have a few C++ ABI specific special cases.
1256   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1257     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1258     return;
1259   }
1260   setDLLImportDLLExport(GV, D);
1261 }
1262 
1263 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1264                                           const NamedDecl *D) const {
1265   if (D && D->isExternallyVisible()) {
1266     if (D->hasAttr<DLLImportAttr>())
1267       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1268     else if ((D->hasAttr<DLLExportAttr>() ||
1269               shouldMapVisibilityToDLLExport(D)) &&
1270              !GV->isDeclarationForLinker())
1271       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1272   }
1273 }
1274 
1275 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1276                                     GlobalDecl GD) const {
1277   setDLLImportDLLExport(GV, GD);
1278   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1279 }
1280 
1281 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1282                                     const NamedDecl *D) const {
1283   setDLLImportDLLExport(GV, D);
1284   setGVPropertiesAux(GV, D);
1285 }
1286 
1287 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1288                                        const NamedDecl *D) const {
1289   setGlobalVisibility(GV, D);
1290   setDSOLocal(GV);
1291   GV->setPartition(CodeGenOpts.SymbolPartition);
1292 }
1293 
1294 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1295   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1296       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1297       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1298       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1299       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1300 }
1301 
1302 llvm::GlobalVariable::ThreadLocalMode
1303 CodeGenModule::GetDefaultLLVMTLSModel() const {
1304   switch (CodeGenOpts.getDefaultTLSModel()) {
1305   case CodeGenOptions::GeneralDynamicTLSModel:
1306     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1307   case CodeGenOptions::LocalDynamicTLSModel:
1308     return llvm::GlobalVariable::LocalDynamicTLSModel;
1309   case CodeGenOptions::InitialExecTLSModel:
1310     return llvm::GlobalVariable::InitialExecTLSModel;
1311   case CodeGenOptions::LocalExecTLSModel:
1312     return llvm::GlobalVariable::LocalExecTLSModel;
1313   }
1314   llvm_unreachable("Invalid TLS model!");
1315 }
1316 
1317 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1318   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1319 
1320   llvm::GlobalValue::ThreadLocalMode TLM;
1321   TLM = GetDefaultLLVMTLSModel();
1322 
1323   // Override the TLS model if it is explicitly specified.
1324   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1325     TLM = GetLLVMTLSModel(Attr->getModel());
1326   }
1327 
1328   GV->setThreadLocalMode(TLM);
1329 }
1330 
1331 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1332                                           StringRef Name) {
1333   const TargetInfo &Target = CGM.getTarget();
1334   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1335 }
1336 
1337 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1338                                                  const CPUSpecificAttr *Attr,
1339                                                  unsigned CPUIndex,
1340                                                  raw_ostream &Out) {
1341   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1342   // supported.
1343   if (Attr)
1344     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1345   else if (CGM.getTarget().supportsIFunc())
1346     Out << ".resolver";
1347 }
1348 
1349 static void AppendTargetVersionMangling(const CodeGenModule &CGM,
1350                                         const TargetVersionAttr *Attr,
1351                                         raw_ostream &Out) {
1352   if (Attr->isDefaultVersion())
1353     return;
1354   Out << "._";
1355   llvm::SmallVector<StringRef, 8> Feats;
1356   Attr->getFeatures(Feats);
1357   for (const auto &Feat : Feats) {
1358     Out << 'M';
1359     Out << Feat;
1360   }
1361 }
1362 
1363 static void AppendTargetMangling(const CodeGenModule &CGM,
1364                                  const TargetAttr *Attr, raw_ostream &Out) {
1365   if (Attr->isDefaultVersion())
1366     return;
1367 
1368   Out << '.';
1369   const TargetInfo &Target = CGM.getTarget();
1370   ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
1371   llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
1372     // Multiversioning doesn't allow "no-${feature}", so we can
1373     // only have "+" prefixes here.
1374     assert(LHS.startswith("+") && RHS.startswith("+") &&
1375            "Features should always have a prefix.");
1376     return Target.multiVersionSortPriority(LHS.substr(1)) >
1377            Target.multiVersionSortPriority(RHS.substr(1));
1378   });
1379 
1380   bool IsFirst = true;
1381 
1382   if (!Info.CPU.empty()) {
1383     IsFirst = false;
1384     Out << "arch_" << Info.CPU;
1385   }
1386 
1387   for (StringRef Feat : Info.Features) {
1388     if (!IsFirst)
1389       Out << '_';
1390     IsFirst = false;
1391     Out << Feat.substr(1);
1392   }
1393 }
1394 
1395 // Returns true if GD is a function decl with internal linkage and
1396 // needs a unique suffix after the mangled name.
1397 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1398                                         CodeGenModule &CGM) {
1399   const Decl *D = GD.getDecl();
1400   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1401          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1402 }
1403 
1404 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1405                                        const TargetClonesAttr *Attr,
1406                                        unsigned VersionIndex,
1407                                        raw_ostream &Out) {
1408   if (CGM.getTarget().getTriple().isAArch64()) {
1409     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1410     if (FeatureStr == "default")
1411       return;
1412     Out << "._";
1413     SmallVector<StringRef, 8> Features;
1414     FeatureStr.split(Features, "+");
1415     for (auto &Feat : Features) {
1416       Out << 'M';
1417       Out << Feat;
1418     }
1419   } else {
1420     Out << '.';
1421     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1422     if (FeatureStr.startswith("arch="))
1423       Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1424     else
1425       Out << FeatureStr;
1426 
1427     Out << '.' << Attr->getMangledIndex(VersionIndex);
1428   }
1429 }
1430 
1431 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1432                                       const NamedDecl *ND,
1433                                       bool OmitMultiVersionMangling = false) {
1434   SmallString<256> Buffer;
1435   llvm::raw_svector_ostream Out(Buffer);
1436   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1437   if (!CGM.getModuleNameHash().empty())
1438     MC.needsUniqueInternalLinkageNames();
1439   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1440   if (ShouldMangle)
1441     MC.mangleName(GD.getWithDecl(ND), Out);
1442   else {
1443     IdentifierInfo *II = ND->getIdentifier();
1444     assert(II && "Attempt to mangle unnamed decl.");
1445     const auto *FD = dyn_cast<FunctionDecl>(ND);
1446 
1447     if (FD &&
1448         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1449       Out << "__regcall3__" << II->getName();
1450     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1451                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1452       Out << "__device_stub__" << II->getName();
1453     } else {
1454       Out << II->getName();
1455     }
1456   }
1457 
1458   // Check if the module name hash should be appended for internal linkage
1459   // symbols.   This should come before multi-version target suffixes are
1460   // appended. This is to keep the name and module hash suffix of the
1461   // internal linkage function together.  The unique suffix should only be
1462   // added when name mangling is done to make sure that the final name can
1463   // be properly demangled.  For example, for C functions without prototypes,
1464   // name mangling is not done and the unique suffix should not be appeneded
1465   // then.
1466   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1467     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1468            "Hash computed when not explicitly requested");
1469     Out << CGM.getModuleNameHash();
1470   }
1471 
1472   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1473     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1474       switch (FD->getMultiVersionKind()) {
1475       case MultiVersionKind::CPUDispatch:
1476       case MultiVersionKind::CPUSpecific:
1477         AppendCPUSpecificCPUDispatchMangling(CGM,
1478                                              FD->getAttr<CPUSpecificAttr>(),
1479                                              GD.getMultiVersionIndex(), Out);
1480         break;
1481       case MultiVersionKind::Target:
1482         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1483         break;
1484       case MultiVersionKind::TargetVersion:
1485         AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out);
1486         break;
1487       case MultiVersionKind::TargetClones:
1488         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1489                                    GD.getMultiVersionIndex(), Out);
1490         break;
1491       case MultiVersionKind::None:
1492         llvm_unreachable("None multiversion type isn't valid here");
1493       }
1494     }
1495 
1496   // Make unique name for device side static file-scope variable for HIP.
1497   if (CGM.getContext().shouldExternalize(ND) &&
1498       CGM.getLangOpts().GPURelocatableDeviceCode &&
1499       CGM.getLangOpts().CUDAIsDevice)
1500     CGM.printPostfixForExternalizedDecl(Out, ND);
1501 
1502   return std::string(Out.str());
1503 }
1504 
1505 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1506                                             const FunctionDecl *FD,
1507                                             StringRef &CurName) {
1508   if (!FD->isMultiVersion())
1509     return;
1510 
1511   // Get the name of what this would be without the 'target' attribute.  This
1512   // allows us to lookup the version that was emitted when this wasn't a
1513   // multiversion function.
1514   std::string NonTargetName =
1515       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1516   GlobalDecl OtherGD;
1517   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1518     assert(OtherGD.getCanonicalDecl()
1519                .getDecl()
1520                ->getAsFunction()
1521                ->isMultiVersion() &&
1522            "Other GD should now be a multiversioned function");
1523     // OtherFD is the version of this function that was mangled BEFORE
1524     // becoming a MultiVersion function.  It potentially needs to be updated.
1525     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1526                                       .getDecl()
1527                                       ->getAsFunction()
1528                                       ->getMostRecentDecl();
1529     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1530     // This is so that if the initial version was already the 'default'
1531     // version, we don't try to update it.
1532     if (OtherName != NonTargetName) {
1533       // Remove instead of erase, since others may have stored the StringRef
1534       // to this.
1535       const auto ExistingRecord = Manglings.find(NonTargetName);
1536       if (ExistingRecord != std::end(Manglings))
1537         Manglings.remove(&(*ExistingRecord));
1538       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1539       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1540           Result.first->first();
1541       // If this is the current decl is being created, make sure we update the name.
1542       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1543         CurName = OtherNameRef;
1544       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1545         Entry->setName(OtherName);
1546     }
1547   }
1548 }
1549 
1550 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1551   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1552 
1553   // Some ABIs don't have constructor variants.  Make sure that base and
1554   // complete constructors get mangled the same.
1555   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1556     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1557       CXXCtorType OrigCtorType = GD.getCtorType();
1558       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1559       if (OrigCtorType == Ctor_Base)
1560         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1561     }
1562   }
1563 
1564   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1565   // static device variable depends on whether the variable is referenced by
1566   // a host or device host function. Therefore the mangled name cannot be
1567   // cached.
1568   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1569     auto FoundName = MangledDeclNames.find(CanonicalGD);
1570     if (FoundName != MangledDeclNames.end())
1571       return FoundName->second;
1572   }
1573 
1574   // Keep the first result in the case of a mangling collision.
1575   const auto *ND = cast<NamedDecl>(GD.getDecl());
1576   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1577 
1578   // Ensure either we have different ABIs between host and device compilations,
1579   // says host compilation following MSVC ABI but device compilation follows
1580   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1581   // mangling should be the same after name stubbing. The later checking is
1582   // very important as the device kernel name being mangled in host-compilation
1583   // is used to resolve the device binaries to be executed. Inconsistent naming
1584   // result in undefined behavior. Even though we cannot check that naming
1585   // directly between host- and device-compilations, the host- and
1586   // device-mangling in host compilation could help catching certain ones.
1587   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1588          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1589          (getContext().getAuxTargetInfo() &&
1590           (getContext().getAuxTargetInfo()->getCXXABI() !=
1591            getContext().getTargetInfo().getCXXABI())) ||
1592          getCUDARuntime().getDeviceSideName(ND) ==
1593              getMangledNameImpl(
1594                  *this,
1595                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1596                  ND));
1597 
1598   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1599   return MangledDeclNames[CanonicalGD] = Result.first->first();
1600 }
1601 
1602 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1603                                              const BlockDecl *BD) {
1604   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1605   const Decl *D = GD.getDecl();
1606 
1607   SmallString<256> Buffer;
1608   llvm::raw_svector_ostream Out(Buffer);
1609   if (!D)
1610     MangleCtx.mangleGlobalBlock(BD,
1611       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1612   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1613     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1614   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1615     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1616   else
1617     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1618 
1619   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1620   return Result.first->first();
1621 }
1622 
1623 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1624   auto it = MangledDeclNames.begin();
1625   while (it != MangledDeclNames.end()) {
1626     if (it->second == Name)
1627       return it->first;
1628     it++;
1629   }
1630   return GlobalDecl();
1631 }
1632 
1633 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1634   return getModule().getNamedValue(Name);
1635 }
1636 
1637 /// AddGlobalCtor - Add a function to the list that will be called before
1638 /// main() runs.
1639 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1640                                   unsigned LexOrder,
1641                                   llvm::Constant *AssociatedData) {
1642   // FIXME: Type coercion of void()* types.
1643   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1644 }
1645 
1646 /// AddGlobalDtor - Add a function to the list that will be called
1647 /// when the module is unloaded.
1648 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1649                                   bool IsDtorAttrFunc) {
1650   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1651       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1652     DtorsUsingAtExit[Priority].push_back(Dtor);
1653     return;
1654   }
1655 
1656   // FIXME: Type coercion of void()* types.
1657   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1658 }
1659 
1660 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1661   if (Fns.empty()) return;
1662 
1663   // Ctor function type is void()*.
1664   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1665   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1666       TheModule.getDataLayout().getProgramAddressSpace());
1667 
1668   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1669   llvm::StructType *CtorStructTy = llvm::StructType::get(
1670       Int32Ty, CtorPFTy, VoidPtrTy);
1671 
1672   // Construct the constructor and destructor arrays.
1673   ConstantInitBuilder builder(*this);
1674   auto ctors = builder.beginArray(CtorStructTy);
1675   for (const auto &I : Fns) {
1676     auto ctor = ctors.beginStruct(CtorStructTy);
1677     ctor.addInt(Int32Ty, I.Priority);
1678     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1679     if (I.AssociatedData)
1680       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1681     else
1682       ctor.addNullPointer(VoidPtrTy);
1683     ctor.finishAndAddTo(ctors);
1684   }
1685 
1686   auto list =
1687     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1688                                 /*constant*/ false,
1689                                 llvm::GlobalValue::AppendingLinkage);
1690 
1691   // The LTO linker doesn't seem to like it when we set an alignment
1692   // on appending variables.  Take it off as a workaround.
1693   list->setAlignment(std::nullopt);
1694 
1695   Fns.clear();
1696 }
1697 
1698 llvm::GlobalValue::LinkageTypes
1699 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1700   const auto *D = cast<FunctionDecl>(GD.getDecl());
1701 
1702   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1703 
1704   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1705     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1706 
1707   if (isa<CXXConstructorDecl>(D) &&
1708       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1709       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1710     // Our approach to inheriting constructors is fundamentally different from
1711     // that used by the MS ABI, so keep our inheriting constructor thunks
1712     // internal rather than trying to pick an unambiguous mangling for them.
1713     return llvm::GlobalValue::InternalLinkage;
1714   }
1715 
1716   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1717 }
1718 
1719 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1720   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1721   if (!MDS) return nullptr;
1722 
1723   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1724 }
1725 
1726 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1727   if (auto *FnType = T->getAs<FunctionProtoType>())
1728     T = getContext().getFunctionType(
1729         FnType->getReturnType(), FnType->getParamTypes(),
1730         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1731 
1732   std::string OutName;
1733   llvm::raw_string_ostream Out(OutName);
1734   getCXXABI().getMangleContext().mangleTypeName(
1735       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
1736 
1737   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
1738     Out << ".normalized";
1739 
1740   return llvm::ConstantInt::get(Int32Ty,
1741                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
1742 }
1743 
1744 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1745                                               const CGFunctionInfo &Info,
1746                                               llvm::Function *F, bool IsThunk) {
1747   unsigned CallingConv;
1748   llvm::AttributeList PAL;
1749   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1750                          /*AttrOnCallSite=*/false, IsThunk);
1751   F->setAttributes(PAL);
1752   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1753 }
1754 
1755 static void removeImageAccessQualifier(std::string& TyName) {
1756   std::string ReadOnlyQual("__read_only");
1757   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1758   if (ReadOnlyPos != std::string::npos)
1759     // "+ 1" for the space after access qualifier.
1760     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1761   else {
1762     std::string WriteOnlyQual("__write_only");
1763     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1764     if (WriteOnlyPos != std::string::npos)
1765       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1766     else {
1767       std::string ReadWriteQual("__read_write");
1768       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1769       if (ReadWritePos != std::string::npos)
1770         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1771     }
1772   }
1773 }
1774 
1775 // Returns the address space id that should be produced to the
1776 // kernel_arg_addr_space metadata. This is always fixed to the ids
1777 // as specified in the SPIR 2.0 specification in order to differentiate
1778 // for example in clGetKernelArgInfo() implementation between the address
1779 // spaces with targets without unique mapping to the OpenCL address spaces
1780 // (basically all single AS CPUs).
1781 static unsigned ArgInfoAddressSpace(LangAS AS) {
1782   switch (AS) {
1783   case LangAS::opencl_global:
1784     return 1;
1785   case LangAS::opencl_constant:
1786     return 2;
1787   case LangAS::opencl_local:
1788     return 3;
1789   case LangAS::opencl_generic:
1790     return 4; // Not in SPIR 2.0 specs.
1791   case LangAS::opencl_global_device:
1792     return 5;
1793   case LangAS::opencl_global_host:
1794     return 6;
1795   default:
1796     return 0; // Assume private.
1797   }
1798 }
1799 
1800 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1801                                          const FunctionDecl *FD,
1802                                          CodeGenFunction *CGF) {
1803   assert(((FD && CGF) || (!FD && !CGF)) &&
1804          "Incorrect use - FD and CGF should either be both null or not!");
1805   // Create MDNodes that represent the kernel arg metadata.
1806   // Each MDNode is a list in the form of "key", N number of values which is
1807   // the same number of values as their are kernel arguments.
1808 
1809   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1810 
1811   // MDNode for the kernel argument address space qualifiers.
1812   SmallVector<llvm::Metadata *, 8> addressQuals;
1813 
1814   // MDNode for the kernel argument access qualifiers (images only).
1815   SmallVector<llvm::Metadata *, 8> accessQuals;
1816 
1817   // MDNode for the kernel argument type names.
1818   SmallVector<llvm::Metadata *, 8> argTypeNames;
1819 
1820   // MDNode for the kernel argument base type names.
1821   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1822 
1823   // MDNode for the kernel argument type qualifiers.
1824   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1825 
1826   // MDNode for the kernel argument names.
1827   SmallVector<llvm::Metadata *, 8> argNames;
1828 
1829   if (FD && CGF)
1830     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1831       const ParmVarDecl *parm = FD->getParamDecl(i);
1832       // Get argument name.
1833       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1834 
1835       if (!getLangOpts().OpenCL)
1836         continue;
1837       QualType ty = parm->getType();
1838       std::string typeQuals;
1839 
1840       // Get image and pipe access qualifier:
1841       if (ty->isImageType() || ty->isPipeType()) {
1842         const Decl *PDecl = parm;
1843         if (const auto *TD = ty->getAs<TypedefType>())
1844           PDecl = TD->getDecl();
1845         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1846         if (A && A->isWriteOnly())
1847           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1848         else if (A && A->isReadWrite())
1849           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1850         else
1851           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1852       } else
1853         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1854 
1855       auto getTypeSpelling = [&](QualType Ty) {
1856         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1857 
1858         if (Ty.isCanonical()) {
1859           StringRef typeNameRef = typeName;
1860           // Turn "unsigned type" to "utype"
1861           if (typeNameRef.consume_front("unsigned "))
1862             return std::string("u") + typeNameRef.str();
1863           if (typeNameRef.consume_front("signed "))
1864             return typeNameRef.str();
1865         }
1866 
1867         return typeName;
1868       };
1869 
1870       if (ty->isPointerType()) {
1871         QualType pointeeTy = ty->getPointeeType();
1872 
1873         // Get address qualifier.
1874         addressQuals.push_back(
1875             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1876                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1877 
1878         // Get argument type name.
1879         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1880         std::string baseTypeName =
1881             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1882         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1883         argBaseTypeNames.push_back(
1884             llvm::MDString::get(VMContext, baseTypeName));
1885 
1886         // Get argument type qualifiers:
1887         if (ty.isRestrictQualified())
1888           typeQuals = "restrict";
1889         if (pointeeTy.isConstQualified() ||
1890             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1891           typeQuals += typeQuals.empty() ? "const" : " const";
1892         if (pointeeTy.isVolatileQualified())
1893           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1894       } else {
1895         uint32_t AddrSpc = 0;
1896         bool isPipe = ty->isPipeType();
1897         if (ty->isImageType() || isPipe)
1898           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1899 
1900         addressQuals.push_back(
1901             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1902 
1903         // Get argument type name.
1904         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1905         std::string typeName = getTypeSpelling(ty);
1906         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1907 
1908         // Remove access qualifiers on images
1909         // (as they are inseparable from type in clang implementation,
1910         // but OpenCL spec provides a special query to get access qualifier
1911         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1912         if (ty->isImageType()) {
1913           removeImageAccessQualifier(typeName);
1914           removeImageAccessQualifier(baseTypeName);
1915         }
1916 
1917         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1918         argBaseTypeNames.push_back(
1919             llvm::MDString::get(VMContext, baseTypeName));
1920 
1921         if (isPipe)
1922           typeQuals = "pipe";
1923       }
1924       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1925     }
1926 
1927   if (getLangOpts().OpenCL) {
1928     Fn->setMetadata("kernel_arg_addr_space",
1929                     llvm::MDNode::get(VMContext, addressQuals));
1930     Fn->setMetadata("kernel_arg_access_qual",
1931                     llvm::MDNode::get(VMContext, accessQuals));
1932     Fn->setMetadata("kernel_arg_type",
1933                     llvm::MDNode::get(VMContext, argTypeNames));
1934     Fn->setMetadata("kernel_arg_base_type",
1935                     llvm::MDNode::get(VMContext, argBaseTypeNames));
1936     Fn->setMetadata("kernel_arg_type_qual",
1937                     llvm::MDNode::get(VMContext, argTypeQuals));
1938   }
1939   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1940       getCodeGenOpts().HIPSaveKernelArgName)
1941     Fn->setMetadata("kernel_arg_name",
1942                     llvm::MDNode::get(VMContext, argNames));
1943 }
1944 
1945 /// Determines whether the language options require us to model
1946 /// unwind exceptions.  We treat -fexceptions as mandating this
1947 /// except under the fragile ObjC ABI with only ObjC exceptions
1948 /// enabled.  This means, for example, that C with -fexceptions
1949 /// enables this.
1950 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1951   // If exceptions are completely disabled, obviously this is false.
1952   if (!LangOpts.Exceptions) return false;
1953 
1954   // If C++ exceptions are enabled, this is true.
1955   if (LangOpts.CXXExceptions) return true;
1956 
1957   // If ObjC exceptions are enabled, this depends on the ABI.
1958   if (LangOpts.ObjCExceptions) {
1959     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1960   }
1961 
1962   return true;
1963 }
1964 
1965 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1966                                                       const CXXMethodDecl *MD) {
1967   // Check that the type metadata can ever actually be used by a call.
1968   if (!CGM.getCodeGenOpts().LTOUnit ||
1969       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1970     return false;
1971 
1972   // Only functions whose address can be taken with a member function pointer
1973   // need this sort of type metadata.
1974   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1975          !isa<CXXDestructorDecl>(MD);
1976 }
1977 
1978 std::vector<const CXXRecordDecl *>
1979 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1980   llvm::SetVector<const CXXRecordDecl *> MostBases;
1981 
1982   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1983   CollectMostBases = [&](const CXXRecordDecl *RD) {
1984     if (RD->getNumBases() == 0)
1985       MostBases.insert(RD);
1986     for (const CXXBaseSpecifier &B : RD->bases())
1987       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1988   };
1989   CollectMostBases(RD);
1990   return MostBases.takeVector();
1991 }
1992 
1993 llvm::GlobalVariable *
1994 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
1995   auto It = RTTIProxyMap.find(Addr);
1996   if (It != RTTIProxyMap.end())
1997     return It->second;
1998 
1999   auto *FTRTTIProxy = new llvm::GlobalVariable(
2000       TheModule, Addr->getType(),
2001       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
2002       "__llvm_rtti_proxy");
2003   FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2004 
2005   RTTIProxyMap[Addr] = FTRTTIProxy;
2006   return FTRTTIProxy;
2007 }
2008 
2009 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2010                                                            llvm::Function *F) {
2011   llvm::AttrBuilder B(F->getContext());
2012 
2013   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2014     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2015 
2016   if (CodeGenOpts.StackClashProtector)
2017     B.addAttribute("probe-stack", "inline-asm");
2018 
2019   if (!hasUnwindExceptions(LangOpts))
2020     B.addAttribute(llvm::Attribute::NoUnwind);
2021 
2022   if (D && D->hasAttr<NoStackProtectorAttr>())
2023     ; // Do nothing.
2024   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2025            LangOpts.getStackProtector() == LangOptions::SSPOn)
2026     B.addAttribute(llvm::Attribute::StackProtectStrong);
2027   else if (LangOpts.getStackProtector() == LangOptions::SSPOn)
2028     B.addAttribute(llvm::Attribute::StackProtect);
2029   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
2030     B.addAttribute(llvm::Attribute::StackProtectStrong);
2031   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
2032     B.addAttribute(llvm::Attribute::StackProtectReq);
2033 
2034   if (!D) {
2035     // If we don't have a declaration to control inlining, the function isn't
2036     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2037     // disabled, mark the function as noinline.
2038     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2039         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2040       B.addAttribute(llvm::Attribute::NoInline);
2041 
2042     F->addFnAttrs(B);
2043     return;
2044   }
2045 
2046   // Track whether we need to add the optnone LLVM attribute,
2047   // starting with the default for this optimization level.
2048   bool ShouldAddOptNone =
2049       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2050   // We can't add optnone in the following cases, it won't pass the verifier.
2051   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2052   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2053 
2054   // Add optnone, but do so only if the function isn't always_inline.
2055   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2056       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2057     B.addAttribute(llvm::Attribute::OptimizeNone);
2058 
2059     // OptimizeNone implies noinline; we should not be inlining such functions.
2060     B.addAttribute(llvm::Attribute::NoInline);
2061 
2062     // We still need to handle naked functions even though optnone subsumes
2063     // much of their semantics.
2064     if (D->hasAttr<NakedAttr>())
2065       B.addAttribute(llvm::Attribute::Naked);
2066 
2067     // OptimizeNone wins over OptimizeForSize and MinSize.
2068     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2069     F->removeFnAttr(llvm::Attribute::MinSize);
2070   } else if (D->hasAttr<NakedAttr>()) {
2071     // Naked implies noinline: we should not be inlining such functions.
2072     B.addAttribute(llvm::Attribute::Naked);
2073     B.addAttribute(llvm::Attribute::NoInline);
2074   } else if (D->hasAttr<NoDuplicateAttr>()) {
2075     B.addAttribute(llvm::Attribute::NoDuplicate);
2076   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2077     // Add noinline if the function isn't always_inline.
2078     B.addAttribute(llvm::Attribute::NoInline);
2079   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2080              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2081     // (noinline wins over always_inline, and we can't specify both in IR)
2082     B.addAttribute(llvm::Attribute::AlwaysInline);
2083   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2084     // If we're not inlining, then force everything that isn't always_inline to
2085     // carry an explicit noinline attribute.
2086     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2087       B.addAttribute(llvm::Attribute::NoInline);
2088   } else {
2089     // Otherwise, propagate the inline hint attribute and potentially use its
2090     // absence to mark things as noinline.
2091     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2092       // Search function and template pattern redeclarations for inline.
2093       auto CheckForInline = [](const FunctionDecl *FD) {
2094         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2095           return Redecl->isInlineSpecified();
2096         };
2097         if (any_of(FD->redecls(), CheckRedeclForInline))
2098           return true;
2099         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2100         if (!Pattern)
2101           return false;
2102         return any_of(Pattern->redecls(), CheckRedeclForInline);
2103       };
2104       if (CheckForInline(FD)) {
2105         B.addAttribute(llvm::Attribute::InlineHint);
2106       } else if (CodeGenOpts.getInlining() ==
2107                      CodeGenOptions::OnlyHintInlining &&
2108                  !FD->isInlined() &&
2109                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2110         B.addAttribute(llvm::Attribute::NoInline);
2111       }
2112     }
2113   }
2114 
2115   // Add other optimization related attributes if we are optimizing this
2116   // function.
2117   if (!D->hasAttr<OptimizeNoneAttr>()) {
2118     if (D->hasAttr<ColdAttr>()) {
2119       if (!ShouldAddOptNone)
2120         B.addAttribute(llvm::Attribute::OptimizeForSize);
2121       B.addAttribute(llvm::Attribute::Cold);
2122     }
2123     if (D->hasAttr<HotAttr>())
2124       B.addAttribute(llvm::Attribute::Hot);
2125     if (D->hasAttr<MinSizeAttr>())
2126       B.addAttribute(llvm::Attribute::MinSize);
2127   }
2128 
2129   F->addFnAttrs(B);
2130 
2131   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2132   if (alignment)
2133     F->setAlignment(llvm::Align(alignment));
2134 
2135   if (!D->hasAttr<AlignedAttr>())
2136     if (LangOpts.FunctionAlignment)
2137       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2138 
2139   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2140   // reserve a bit for differentiating between virtual and non-virtual member
2141   // functions. If the current target's C++ ABI requires this and this is a
2142   // member function, set its alignment accordingly.
2143   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2144     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2145       F->setAlignment(llvm::Align(2));
2146   }
2147 
2148   // In the cross-dso CFI mode with canonical jump tables, we want !type
2149   // attributes on definitions only.
2150   if (CodeGenOpts.SanitizeCfiCrossDso &&
2151       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2152     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2153       // Skip available_externally functions. They won't be codegen'ed in the
2154       // current module anyway.
2155       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2156         CreateFunctionTypeMetadataForIcall(FD, F);
2157     }
2158   }
2159 
2160   // Emit type metadata on member functions for member function pointer checks.
2161   // These are only ever necessary on definitions; we're guaranteed that the
2162   // definition will be present in the LTO unit as a result of LTO visibility.
2163   auto *MD = dyn_cast<CXXMethodDecl>(D);
2164   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2165     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2166       llvm::Metadata *Id =
2167           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2168               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2169       F->addTypeMetadata(0, Id);
2170     }
2171   }
2172 }
2173 
2174 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2175                                                   llvm::Function *F) {
2176   if (D->hasAttr<StrictFPAttr>()) {
2177     llvm::AttrBuilder FuncAttrs(F->getContext());
2178     FuncAttrs.addAttribute("strictfp");
2179     F->addFnAttrs(FuncAttrs);
2180   }
2181 }
2182 
2183 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2184   const Decl *D = GD.getDecl();
2185   if (isa_and_nonnull<NamedDecl>(D))
2186     setGVProperties(GV, GD);
2187   else
2188     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2189 
2190   if (D && D->hasAttr<UsedAttr>())
2191     addUsedOrCompilerUsedGlobal(GV);
2192 
2193   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2194     const auto *VD = cast<VarDecl>(D);
2195     if (VD->getType().isConstQualified() &&
2196         VD->getStorageDuration() == SD_Static)
2197       addUsedOrCompilerUsedGlobal(GV);
2198   }
2199 }
2200 
2201 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2202                                                 llvm::AttrBuilder &Attrs) {
2203   // Add target-cpu and target-features attributes to functions. If
2204   // we have a decl for the function and it has a target attribute then
2205   // parse that and add it to the feature set.
2206   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2207   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2208   std::vector<std::string> Features;
2209   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2210   FD = FD ? FD->getMostRecentDecl() : FD;
2211   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2212   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2213   assert((!TD || !TV) && "both target_version and target specified");
2214   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2215   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2216   bool AddedAttr = false;
2217   if (TD || TV || SD || TC) {
2218     llvm::StringMap<bool> FeatureMap;
2219     getContext().getFunctionFeatureMap(FeatureMap, GD);
2220 
2221     // Produce the canonical string for this set of features.
2222     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2223       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2224 
2225     // Now add the target-cpu and target-features to the function.
2226     // While we populated the feature map above, we still need to
2227     // get and parse the target attribute so we can get the cpu for
2228     // the function.
2229     if (TD) {
2230       ParsedTargetAttr ParsedAttr =
2231           Target.parseTargetAttr(TD->getFeaturesStr());
2232       if (!ParsedAttr.CPU.empty() &&
2233           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2234         TargetCPU = ParsedAttr.CPU;
2235         TuneCPU = ""; // Clear the tune CPU.
2236       }
2237       if (!ParsedAttr.Tune.empty() &&
2238           getTarget().isValidCPUName(ParsedAttr.Tune))
2239         TuneCPU = ParsedAttr.Tune;
2240     }
2241 
2242     if (SD) {
2243       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2244       // favor this processor.
2245       TuneCPU = getTarget().getCPUSpecificTuneName(
2246           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2247     }
2248   } else {
2249     // Otherwise just add the existing target cpu and target features to the
2250     // function.
2251     Features = getTarget().getTargetOpts().Features;
2252   }
2253 
2254   if (!TargetCPU.empty()) {
2255     Attrs.addAttribute("target-cpu", TargetCPU);
2256     AddedAttr = true;
2257   }
2258   if (!TuneCPU.empty()) {
2259     Attrs.addAttribute("tune-cpu", TuneCPU);
2260     AddedAttr = true;
2261   }
2262   if (!Features.empty()) {
2263     llvm::sort(Features);
2264     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2265     AddedAttr = true;
2266   }
2267 
2268   return AddedAttr;
2269 }
2270 
2271 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2272                                           llvm::GlobalObject *GO) {
2273   const Decl *D = GD.getDecl();
2274   SetCommonAttributes(GD, GO);
2275 
2276   if (D) {
2277     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2278       if (D->hasAttr<RetainAttr>())
2279         addUsedGlobal(GV);
2280       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2281         GV->addAttribute("bss-section", SA->getName());
2282       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2283         GV->addAttribute("data-section", SA->getName());
2284       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2285         GV->addAttribute("rodata-section", SA->getName());
2286       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2287         GV->addAttribute("relro-section", SA->getName());
2288     }
2289 
2290     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2291       if (D->hasAttr<RetainAttr>())
2292         addUsedGlobal(F);
2293       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2294         if (!D->getAttr<SectionAttr>())
2295           F->addFnAttr("implicit-section-name", SA->getName());
2296 
2297       llvm::AttrBuilder Attrs(F->getContext());
2298       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2299         // We know that GetCPUAndFeaturesAttributes will always have the
2300         // newest set, since it has the newest possible FunctionDecl, so the
2301         // new ones should replace the old.
2302         llvm::AttributeMask RemoveAttrs;
2303         RemoveAttrs.addAttribute("target-cpu");
2304         RemoveAttrs.addAttribute("target-features");
2305         RemoveAttrs.addAttribute("tune-cpu");
2306         F->removeFnAttrs(RemoveAttrs);
2307         F->addFnAttrs(Attrs);
2308       }
2309     }
2310 
2311     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2312       GO->setSection(CSA->getName());
2313     else if (const auto *SA = D->getAttr<SectionAttr>())
2314       GO->setSection(SA->getName());
2315   }
2316 
2317   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2318 }
2319 
2320 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2321                                                   llvm::Function *F,
2322                                                   const CGFunctionInfo &FI) {
2323   const Decl *D = GD.getDecl();
2324   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2325   SetLLVMFunctionAttributesForDefinition(D, F);
2326 
2327   F->setLinkage(llvm::Function::InternalLinkage);
2328 
2329   setNonAliasAttributes(GD, F);
2330 }
2331 
2332 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2333   // Set linkage and visibility in case we never see a definition.
2334   LinkageInfo LV = ND->getLinkageAndVisibility();
2335   // Don't set internal linkage on declarations.
2336   // "extern_weak" is overloaded in LLVM; we probably should have
2337   // separate linkage types for this.
2338   if (isExternallyVisible(LV.getLinkage()) &&
2339       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2340     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2341 }
2342 
2343 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2344                                                        llvm::Function *F) {
2345   // Only if we are checking indirect calls.
2346   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2347     return;
2348 
2349   // Non-static class methods are handled via vtable or member function pointer
2350   // checks elsewhere.
2351   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2352     return;
2353 
2354   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2355   F->addTypeMetadata(0, MD);
2356   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2357 
2358   // Emit a hash-based bit set entry for cross-DSO calls.
2359   if (CodeGenOpts.SanitizeCfiCrossDso)
2360     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2361       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2362 }
2363 
2364 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2365   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2366     return;
2367 
2368   llvm::LLVMContext &Ctx = F->getContext();
2369   llvm::MDBuilder MDB(Ctx);
2370   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2371                  llvm::MDNode::get(
2372                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2373 }
2374 
2375 static bool allowKCFIIdentifier(StringRef Name) {
2376   // KCFI type identifier constants are only necessary for external assembly
2377   // functions, which means it's safe to skip unusual names. Subset of
2378   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2379   return llvm::all_of(Name, [](const char &C) {
2380     return llvm::isAlnum(C) || C == '_' || C == '.';
2381   });
2382 }
2383 
2384 void CodeGenModule::finalizeKCFITypes() {
2385   llvm::Module &M = getModule();
2386   for (auto &F : M.functions()) {
2387     // Remove KCFI type metadata from non-address-taken local functions.
2388     bool AddressTaken = F.hasAddressTaken();
2389     if (!AddressTaken && F.hasLocalLinkage())
2390       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2391 
2392     // Generate a constant with the expected KCFI type identifier for all
2393     // address-taken function declarations to support annotating indirectly
2394     // called assembly functions.
2395     if (!AddressTaken || !F.isDeclaration())
2396       continue;
2397 
2398     const llvm::ConstantInt *Type;
2399     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2400       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2401     else
2402       continue;
2403 
2404     StringRef Name = F.getName();
2405     if (!allowKCFIIdentifier(Name))
2406       continue;
2407 
2408     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2409                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2410                           .str();
2411     M.appendModuleInlineAsm(Asm);
2412   }
2413 }
2414 
2415 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2416                                           bool IsIncompleteFunction,
2417                                           bool IsThunk) {
2418 
2419   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2420     // If this is an intrinsic function, set the function's attributes
2421     // to the intrinsic's attributes.
2422     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2423     return;
2424   }
2425 
2426   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2427 
2428   if (!IsIncompleteFunction)
2429     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2430                               IsThunk);
2431 
2432   // Add the Returned attribute for "this", except for iOS 5 and earlier
2433   // where substantial code, including the libstdc++ dylib, was compiled with
2434   // GCC and does not actually return "this".
2435   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2436       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2437     assert(!F->arg_empty() &&
2438            F->arg_begin()->getType()
2439              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2440            "unexpected this return");
2441     F->addParamAttr(0, llvm::Attribute::Returned);
2442   }
2443 
2444   // Only a few attributes are set on declarations; these may later be
2445   // overridden by a definition.
2446 
2447   setLinkageForGV(F, FD);
2448   setGVProperties(F, FD);
2449 
2450   // Setup target-specific attributes.
2451   if (!IsIncompleteFunction && F->isDeclaration())
2452     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2453 
2454   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2455     F->setSection(CSA->getName());
2456   else if (const auto *SA = FD->getAttr<SectionAttr>())
2457      F->setSection(SA->getName());
2458 
2459   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2460     if (EA->isError())
2461       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2462     else if (EA->isWarning())
2463       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2464   }
2465 
2466   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2467   if (FD->isInlineBuiltinDeclaration()) {
2468     const FunctionDecl *FDBody;
2469     bool HasBody = FD->hasBody(FDBody);
2470     (void)HasBody;
2471     assert(HasBody && "Inline builtin declarations should always have an "
2472                       "available body!");
2473     if (shouldEmitFunction(FDBody))
2474       F->addFnAttr(llvm::Attribute::NoBuiltin);
2475   }
2476 
2477   if (FD->isReplaceableGlobalAllocationFunction()) {
2478     // A replaceable global allocation function does not act like a builtin by
2479     // default, only if it is invoked by a new-expression or delete-expression.
2480     F->addFnAttr(llvm::Attribute::NoBuiltin);
2481   }
2482 
2483   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2484     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2485   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2486     if (MD->isVirtual())
2487       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2488 
2489   // Don't emit entries for function declarations in the cross-DSO mode. This
2490   // is handled with better precision by the receiving DSO. But if jump tables
2491   // are non-canonical then we need type metadata in order to produce the local
2492   // jump table.
2493   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2494       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2495     CreateFunctionTypeMetadataForIcall(FD, F);
2496 
2497   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2498     setKCFIType(FD, F);
2499 
2500   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2501     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2502 
2503   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2504     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2505 
2506   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2507     // Annotate the callback behavior as metadata:
2508     //  - The callback callee (as argument number).
2509     //  - The callback payloads (as argument numbers).
2510     llvm::LLVMContext &Ctx = F->getContext();
2511     llvm::MDBuilder MDB(Ctx);
2512 
2513     // The payload indices are all but the first one in the encoding. The first
2514     // identifies the callback callee.
2515     int CalleeIdx = *CB->encoding_begin();
2516     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2517     F->addMetadata(llvm::LLVMContext::MD_callback,
2518                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2519                                                CalleeIdx, PayloadIndices,
2520                                                /* VarArgsArePassed */ false)}));
2521   }
2522 }
2523 
2524 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2525   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2526          "Only globals with definition can force usage.");
2527   LLVMUsed.emplace_back(GV);
2528 }
2529 
2530 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2531   assert(!GV->isDeclaration() &&
2532          "Only globals with definition can force usage.");
2533   LLVMCompilerUsed.emplace_back(GV);
2534 }
2535 
2536 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2537   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2538          "Only globals with definition can force usage.");
2539   if (getTriple().isOSBinFormatELF())
2540     LLVMCompilerUsed.emplace_back(GV);
2541   else
2542     LLVMUsed.emplace_back(GV);
2543 }
2544 
2545 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2546                      std::vector<llvm::WeakTrackingVH> &List) {
2547   // Don't create llvm.used if there is no need.
2548   if (List.empty())
2549     return;
2550 
2551   // Convert List to what ConstantArray needs.
2552   SmallVector<llvm::Constant*, 8> UsedArray;
2553   UsedArray.resize(List.size());
2554   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2555     UsedArray[i] =
2556         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2557             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2558   }
2559 
2560   if (UsedArray.empty())
2561     return;
2562   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2563 
2564   auto *GV = new llvm::GlobalVariable(
2565       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2566       llvm::ConstantArray::get(ATy, UsedArray), Name);
2567 
2568   GV->setSection("llvm.metadata");
2569 }
2570 
2571 void CodeGenModule::emitLLVMUsed() {
2572   emitUsed(*this, "llvm.used", LLVMUsed);
2573   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2574 }
2575 
2576 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2577   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2578   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2579 }
2580 
2581 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2582   llvm::SmallString<32> Opt;
2583   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2584   if (Opt.empty())
2585     return;
2586   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2587   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2588 }
2589 
2590 void CodeGenModule::AddDependentLib(StringRef Lib) {
2591   auto &C = getLLVMContext();
2592   if (getTarget().getTriple().isOSBinFormatELF()) {
2593       ELFDependentLibraries.push_back(
2594         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2595     return;
2596   }
2597 
2598   llvm::SmallString<24> Opt;
2599   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2600   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2601   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2602 }
2603 
2604 /// Add link options implied by the given module, including modules
2605 /// it depends on, using a postorder walk.
2606 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2607                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2608                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2609   // Import this module's parent.
2610   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2611     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2612   }
2613 
2614   // Import this module's dependencies.
2615   for (Module *Import : llvm::reverse(Mod->Imports)) {
2616     if (Visited.insert(Import).second)
2617       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2618   }
2619 
2620   // Add linker options to link against the libraries/frameworks
2621   // described by this module.
2622   llvm::LLVMContext &Context = CGM.getLLVMContext();
2623   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2624 
2625   // For modules that use export_as for linking, use that module
2626   // name instead.
2627   if (Mod->UseExportAsModuleLinkName)
2628     return;
2629 
2630   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2631     // Link against a framework.  Frameworks are currently Darwin only, so we
2632     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2633     if (LL.IsFramework) {
2634       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2635                                  llvm::MDString::get(Context, LL.Library)};
2636 
2637       Metadata.push_back(llvm::MDNode::get(Context, Args));
2638       continue;
2639     }
2640 
2641     // Link against a library.
2642     if (IsELF) {
2643       llvm::Metadata *Args[2] = {
2644           llvm::MDString::get(Context, "lib"),
2645           llvm::MDString::get(Context, LL.Library),
2646       };
2647       Metadata.push_back(llvm::MDNode::get(Context, Args));
2648     } else {
2649       llvm::SmallString<24> Opt;
2650       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2651       auto *OptString = llvm::MDString::get(Context, Opt);
2652       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2653     }
2654   }
2655 }
2656 
2657 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2658   // Emit the initializers in the order that sub-modules appear in the
2659   // source, first Global Module Fragments, if present.
2660   if (auto GMF = Primary->getGlobalModuleFragment()) {
2661     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2662       if (isa<ImportDecl>(D))
2663         continue;
2664       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2665       EmitTopLevelDecl(D);
2666     }
2667   }
2668   // Second any associated with the module, itself.
2669   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2670     // Skip import decls, the inits for those are called explicitly.
2671     if (isa<ImportDecl>(D))
2672       continue;
2673     EmitTopLevelDecl(D);
2674   }
2675   // Third any associated with the Privat eMOdule Fragment, if present.
2676   if (auto PMF = Primary->getPrivateModuleFragment()) {
2677     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2678       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2679       EmitTopLevelDecl(D);
2680     }
2681   }
2682 }
2683 
2684 void CodeGenModule::EmitModuleLinkOptions() {
2685   // Collect the set of all of the modules we want to visit to emit link
2686   // options, which is essentially the imported modules and all of their
2687   // non-explicit child modules.
2688   llvm::SetVector<clang::Module *> LinkModules;
2689   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2690   SmallVector<clang::Module *, 16> Stack;
2691 
2692   // Seed the stack with imported modules.
2693   for (Module *M : ImportedModules) {
2694     // Do not add any link flags when an implementation TU of a module imports
2695     // a header of that same module.
2696     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2697         !getLangOpts().isCompilingModule())
2698       continue;
2699     if (Visited.insert(M).second)
2700       Stack.push_back(M);
2701   }
2702 
2703   // Find all of the modules to import, making a little effort to prune
2704   // non-leaf modules.
2705   while (!Stack.empty()) {
2706     clang::Module *Mod = Stack.pop_back_val();
2707 
2708     bool AnyChildren = false;
2709 
2710     // Visit the submodules of this module.
2711     for (const auto &SM : Mod->submodules()) {
2712       // Skip explicit children; they need to be explicitly imported to be
2713       // linked against.
2714       if (SM->IsExplicit)
2715         continue;
2716 
2717       if (Visited.insert(SM).second) {
2718         Stack.push_back(SM);
2719         AnyChildren = true;
2720       }
2721     }
2722 
2723     // We didn't find any children, so add this module to the list of
2724     // modules to link against.
2725     if (!AnyChildren) {
2726       LinkModules.insert(Mod);
2727     }
2728   }
2729 
2730   // Add link options for all of the imported modules in reverse topological
2731   // order.  We don't do anything to try to order import link flags with respect
2732   // to linker options inserted by things like #pragma comment().
2733   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2734   Visited.clear();
2735   for (Module *M : LinkModules)
2736     if (Visited.insert(M).second)
2737       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2738   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2739   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2740 
2741   // Add the linker options metadata flag.
2742   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2743   for (auto *MD : LinkerOptionsMetadata)
2744     NMD->addOperand(MD);
2745 }
2746 
2747 void CodeGenModule::EmitDeferred() {
2748   // Emit deferred declare target declarations.
2749   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2750     getOpenMPRuntime().emitDeferredTargetDecls();
2751 
2752   // Emit code for any potentially referenced deferred decls.  Since a
2753   // previously unused static decl may become used during the generation of code
2754   // for a static function, iterate until no changes are made.
2755 
2756   if (!DeferredVTables.empty()) {
2757     EmitDeferredVTables();
2758 
2759     // Emitting a vtable doesn't directly cause more vtables to
2760     // become deferred, although it can cause functions to be
2761     // emitted that then need those vtables.
2762     assert(DeferredVTables.empty());
2763   }
2764 
2765   // Emit CUDA/HIP static device variables referenced by host code only.
2766   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2767   // needed for further handling.
2768   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2769     llvm::append_range(DeferredDeclsToEmit,
2770                        getContext().CUDADeviceVarODRUsedByHost);
2771 
2772   // Stop if we're out of both deferred vtables and deferred declarations.
2773   if (DeferredDeclsToEmit.empty())
2774     return;
2775 
2776   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2777   // work, it will not interfere with this.
2778   std::vector<GlobalDecl> CurDeclsToEmit;
2779   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2780 
2781   for (GlobalDecl &D : CurDeclsToEmit) {
2782     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2783     // to get GlobalValue with exactly the type we need, not something that
2784     // might had been created for another decl with the same mangled name but
2785     // different type.
2786     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2787         GetAddrOfGlobal(D, ForDefinition));
2788 
2789     // In case of different address spaces, we may still get a cast, even with
2790     // IsForDefinition equal to true. Query mangled names table to get
2791     // GlobalValue.
2792     if (!GV)
2793       GV = GetGlobalValue(getMangledName(D));
2794 
2795     // Make sure GetGlobalValue returned non-null.
2796     assert(GV);
2797 
2798     // Check to see if we've already emitted this.  This is necessary
2799     // for a couple of reasons: first, decls can end up in the
2800     // deferred-decls queue multiple times, and second, decls can end
2801     // up with definitions in unusual ways (e.g. by an extern inline
2802     // function acquiring a strong function redefinition).  Just
2803     // ignore these cases.
2804     if (!GV->isDeclaration())
2805       continue;
2806 
2807     // If this is OpenMP, check if it is legal to emit this global normally.
2808     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2809       continue;
2810 
2811     // Otherwise, emit the definition and move on to the next one.
2812     EmitGlobalDefinition(D, GV);
2813 
2814     // If we found out that we need to emit more decls, do that recursively.
2815     // This has the advantage that the decls are emitted in a DFS and related
2816     // ones are close together, which is convenient for testing.
2817     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2818       EmitDeferred();
2819       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2820     }
2821   }
2822 }
2823 
2824 void CodeGenModule::EmitVTablesOpportunistically() {
2825   // Try to emit external vtables as available_externally if they have emitted
2826   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2827   // is not allowed to create new references to things that need to be emitted
2828   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2829 
2830   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2831          && "Only emit opportunistic vtables with optimizations");
2832 
2833   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2834     assert(getVTables().isVTableExternal(RD) &&
2835            "This queue should only contain external vtables");
2836     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2837       VTables.GenerateClassData(RD);
2838   }
2839   OpportunisticVTables.clear();
2840 }
2841 
2842 void CodeGenModule::EmitGlobalAnnotations() {
2843   if (Annotations.empty())
2844     return;
2845 
2846   // Create a new global variable for the ConstantStruct in the Module.
2847   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2848     Annotations[0]->getType(), Annotations.size()), Annotations);
2849   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2850                                       llvm::GlobalValue::AppendingLinkage,
2851                                       Array, "llvm.global.annotations");
2852   gv->setSection(AnnotationSection);
2853 }
2854 
2855 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2856   llvm::Constant *&AStr = AnnotationStrings[Str];
2857   if (AStr)
2858     return AStr;
2859 
2860   // Not found yet, create a new global.
2861   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2862   auto *gv = new llvm::GlobalVariable(
2863       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
2864       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
2865       ConstGlobalsPtrTy->getAddressSpace());
2866   gv->setSection(AnnotationSection);
2867   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2868   AStr = gv;
2869   return gv;
2870 }
2871 
2872 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2873   SourceManager &SM = getContext().getSourceManager();
2874   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2875   if (PLoc.isValid())
2876     return EmitAnnotationString(PLoc.getFilename());
2877   return EmitAnnotationString(SM.getBufferName(Loc));
2878 }
2879 
2880 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2881   SourceManager &SM = getContext().getSourceManager();
2882   PresumedLoc PLoc = SM.getPresumedLoc(L);
2883   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2884     SM.getExpansionLineNumber(L);
2885   return llvm::ConstantInt::get(Int32Ty, LineNo);
2886 }
2887 
2888 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2889   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2890   if (Exprs.empty())
2891     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
2892 
2893   llvm::FoldingSetNodeID ID;
2894   for (Expr *E : Exprs) {
2895     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2896   }
2897   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2898   if (Lookup)
2899     return Lookup;
2900 
2901   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2902   LLVMArgs.reserve(Exprs.size());
2903   ConstantEmitter ConstEmiter(*this);
2904   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2905     const auto *CE = cast<clang::ConstantExpr>(E);
2906     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2907                                     CE->getType());
2908   });
2909   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2910   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2911                                       llvm::GlobalValue::PrivateLinkage, Struct,
2912                                       ".args");
2913   GV->setSection(AnnotationSection);
2914   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2915   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2916 
2917   Lookup = Bitcasted;
2918   return Bitcasted;
2919 }
2920 
2921 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2922                                                 const AnnotateAttr *AA,
2923                                                 SourceLocation L) {
2924   // Get the globals for file name, annotation, and the line number.
2925   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2926                  *UnitGV = EmitAnnotationUnit(L),
2927                  *LineNoCst = EmitAnnotationLineNo(L),
2928                  *Args = EmitAnnotationArgs(AA);
2929 
2930   llvm::Constant *GVInGlobalsAS = GV;
2931   if (GV->getAddressSpace() !=
2932       getDataLayout().getDefaultGlobalsAddressSpace()) {
2933     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2934         GV, GV->getValueType()->getPointerTo(
2935                 getDataLayout().getDefaultGlobalsAddressSpace()));
2936   }
2937 
2938   // Create the ConstantStruct for the global annotation.
2939   llvm::Constant *Fields[] = {
2940       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2941       llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy),
2942       llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy),
2943       LineNoCst,
2944       Args,
2945   };
2946   return llvm::ConstantStruct::getAnon(Fields);
2947 }
2948 
2949 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2950                                          llvm::GlobalValue *GV) {
2951   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2952   // Get the struct elements for these annotations.
2953   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2954     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2955 }
2956 
2957 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2958                                        SourceLocation Loc) const {
2959   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2960   // NoSanitize by function name.
2961   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2962     return true;
2963   // NoSanitize by location. Check "mainfile" prefix.
2964   auto &SM = Context.getSourceManager();
2965   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
2966   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
2967     return true;
2968 
2969   // Check "src" prefix.
2970   if (Loc.isValid())
2971     return NoSanitizeL.containsLocation(Kind, Loc);
2972   // If location is unknown, this may be a compiler-generated function. Assume
2973   // it's located in the main file.
2974   return NoSanitizeL.containsFile(Kind, MainFile.getName());
2975 }
2976 
2977 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2978                                        llvm::GlobalVariable *GV,
2979                                        SourceLocation Loc, QualType Ty,
2980                                        StringRef Category) const {
2981   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2982   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2983     return true;
2984   auto &SM = Context.getSourceManager();
2985   if (NoSanitizeL.containsMainFile(
2986           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
2987     return true;
2988   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2989     return true;
2990 
2991   // Check global type.
2992   if (!Ty.isNull()) {
2993     // Drill down the array types: if global variable of a fixed type is
2994     // not sanitized, we also don't instrument arrays of them.
2995     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2996       Ty = AT->getElementType();
2997     Ty = Ty.getCanonicalType().getUnqualifiedType();
2998     // Only record types (classes, structs etc.) are ignored.
2999     if (Ty->isRecordType()) {
3000       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3001       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3002         return true;
3003     }
3004   }
3005   return false;
3006 }
3007 
3008 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3009                                    StringRef Category) const {
3010   const auto &XRayFilter = getContext().getXRayFilter();
3011   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3012   auto Attr = ImbueAttr::NONE;
3013   if (Loc.isValid())
3014     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3015   if (Attr == ImbueAttr::NONE)
3016     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3017   switch (Attr) {
3018   case ImbueAttr::NONE:
3019     return false;
3020   case ImbueAttr::ALWAYS:
3021     Fn->addFnAttr("function-instrument", "xray-always");
3022     break;
3023   case ImbueAttr::ALWAYS_ARG1:
3024     Fn->addFnAttr("function-instrument", "xray-always");
3025     Fn->addFnAttr("xray-log-args", "1");
3026     break;
3027   case ImbueAttr::NEVER:
3028     Fn->addFnAttr("function-instrument", "xray-never");
3029     break;
3030   }
3031   return true;
3032 }
3033 
3034 ProfileList::ExclusionType
3035 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3036                                               SourceLocation Loc) const {
3037   const auto &ProfileList = getContext().getProfileList();
3038   // If the profile list is empty, then instrument everything.
3039   if (ProfileList.isEmpty())
3040     return ProfileList::Allow;
3041   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3042   // First, check the function name.
3043   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3044     return *V;
3045   // Next, check the source location.
3046   if (Loc.isValid())
3047     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3048       return *V;
3049   // If location is unknown, this may be a compiler-generated function. Assume
3050   // it's located in the main file.
3051   auto &SM = Context.getSourceManager();
3052   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
3053     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3054       return *V;
3055   return ProfileList.getDefault(Kind);
3056 }
3057 
3058 ProfileList::ExclusionType
3059 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3060                                                  SourceLocation Loc) const {
3061   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3062   if (V != ProfileList::Allow)
3063     return V;
3064 
3065   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3066   if (NumGroups > 1) {
3067     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3068     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3069       return ProfileList::Skip;
3070   }
3071   return ProfileList::Allow;
3072 }
3073 
3074 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3075   // Never defer when EmitAllDecls is specified.
3076   if (LangOpts.EmitAllDecls)
3077     return true;
3078 
3079   if (CodeGenOpts.KeepStaticConsts) {
3080     const auto *VD = dyn_cast<VarDecl>(Global);
3081     if (VD && VD->getType().isConstQualified() &&
3082         VD->getStorageDuration() == SD_Static)
3083       return true;
3084   }
3085 
3086   return getContext().DeclMustBeEmitted(Global);
3087 }
3088 
3089 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3090   // In OpenMP 5.0 variables and function may be marked as
3091   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3092   // that they must be emitted on the host/device. To be sure we need to have
3093   // seen a declare target with an explicit mentioning of the function, we know
3094   // we have if the level of the declare target attribute is -1. Note that we
3095   // check somewhere else if we should emit this at all.
3096   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3097     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3098         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3099     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3100       return false;
3101   }
3102 
3103   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3104     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3105       // Implicit template instantiations may change linkage if they are later
3106       // explicitly instantiated, so they should not be emitted eagerly.
3107       return false;
3108   }
3109   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3110     if (Context.getInlineVariableDefinitionKind(VD) ==
3111         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3112       // A definition of an inline constexpr static data member may change
3113       // linkage later if it's redeclared outside the class.
3114       return false;
3115     if (CXX20ModuleInits && VD->getOwningModule() &&
3116         !VD->getOwningModule()->isModuleMapModule()) {
3117       // For CXX20, module-owned initializers need to be deferred, since it is
3118       // not known at this point if they will be run for the current module or
3119       // as part of the initializer for an imported one.
3120       return false;
3121     }
3122   }
3123   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3124   // codegen for global variables, because they may be marked as threadprivate.
3125   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3126       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3127       !isTypeConstant(Global->getType(), false) &&
3128       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3129     return false;
3130 
3131   return true;
3132 }
3133 
3134 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3135   StringRef Name = getMangledName(GD);
3136 
3137   // The UUID descriptor should be pointer aligned.
3138   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3139 
3140   // Look for an existing global.
3141   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3142     return ConstantAddress(GV, GV->getValueType(), Alignment);
3143 
3144   ConstantEmitter Emitter(*this);
3145   llvm::Constant *Init;
3146 
3147   APValue &V = GD->getAsAPValue();
3148   if (!V.isAbsent()) {
3149     // If possible, emit the APValue version of the initializer. In particular,
3150     // this gets the type of the constant right.
3151     Init = Emitter.emitForInitializer(
3152         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3153   } else {
3154     // As a fallback, directly construct the constant.
3155     // FIXME: This may get padding wrong under esoteric struct layout rules.
3156     // MSVC appears to create a complete type 'struct __s_GUID' that it
3157     // presumably uses to represent these constants.
3158     MSGuidDecl::Parts Parts = GD->getParts();
3159     llvm::Constant *Fields[4] = {
3160         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3161         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3162         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3163         llvm::ConstantDataArray::getRaw(
3164             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3165             Int8Ty)};
3166     Init = llvm::ConstantStruct::getAnon(Fields);
3167   }
3168 
3169   auto *GV = new llvm::GlobalVariable(
3170       getModule(), Init->getType(),
3171       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3172   if (supportsCOMDAT())
3173     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3174   setDSOLocal(GV);
3175 
3176   if (!V.isAbsent()) {
3177     Emitter.finalize(GV);
3178     return ConstantAddress(GV, GV->getValueType(), Alignment);
3179   }
3180 
3181   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3182   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3183       GV, Ty->getPointerTo(GV->getAddressSpace()));
3184   return ConstantAddress(Addr, Ty, Alignment);
3185 }
3186 
3187 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3188     const UnnamedGlobalConstantDecl *GCD) {
3189   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3190 
3191   llvm::GlobalVariable **Entry = nullptr;
3192   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3193   if (*Entry)
3194     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3195 
3196   ConstantEmitter Emitter(*this);
3197   llvm::Constant *Init;
3198 
3199   const APValue &V = GCD->getValue();
3200 
3201   assert(!V.isAbsent());
3202   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3203                                     GCD->getType());
3204 
3205   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3206                                       /*isConstant=*/true,
3207                                       llvm::GlobalValue::PrivateLinkage, Init,
3208                                       ".constant");
3209   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3210   GV->setAlignment(Alignment.getAsAlign());
3211 
3212   Emitter.finalize(GV);
3213 
3214   *Entry = GV;
3215   return ConstantAddress(GV, GV->getValueType(), Alignment);
3216 }
3217 
3218 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3219     const TemplateParamObjectDecl *TPO) {
3220   StringRef Name = getMangledName(TPO);
3221   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3222 
3223   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3224     return ConstantAddress(GV, GV->getValueType(), Alignment);
3225 
3226   ConstantEmitter Emitter(*this);
3227   llvm::Constant *Init = Emitter.emitForInitializer(
3228         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3229 
3230   if (!Init) {
3231     ErrorUnsupported(TPO, "template parameter object");
3232     return ConstantAddress::invalid();
3233   }
3234 
3235   auto *GV = new llvm::GlobalVariable(
3236       getModule(), Init->getType(),
3237       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3238   if (supportsCOMDAT())
3239     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3240   Emitter.finalize(GV);
3241 
3242   return ConstantAddress(GV, GV->getValueType(), Alignment);
3243 }
3244 
3245 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3246   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3247   assert(AA && "No alias?");
3248 
3249   CharUnits Alignment = getContext().getDeclAlign(VD);
3250   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3251 
3252   // See if there is already something with the target's name in the module.
3253   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3254   if (Entry) {
3255     unsigned AS = getTypes().getTargetAddressSpace(VD->getType());
3256     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3257     return ConstantAddress(Ptr, DeclTy, Alignment);
3258   }
3259 
3260   llvm::Constant *Aliasee;
3261   if (isa<llvm::FunctionType>(DeclTy))
3262     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3263                                       GlobalDecl(cast<FunctionDecl>(VD)),
3264                                       /*ForVTable=*/false);
3265   else
3266     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3267                                     nullptr);
3268 
3269   auto *F = cast<llvm::GlobalValue>(Aliasee);
3270   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3271   WeakRefReferences.insert(F);
3272 
3273   return ConstantAddress(Aliasee, DeclTy, Alignment);
3274 }
3275 
3276 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3277   const auto *Global = cast<ValueDecl>(GD.getDecl());
3278 
3279   // Weak references don't produce any output by themselves.
3280   if (Global->hasAttr<WeakRefAttr>())
3281     return;
3282 
3283   // If this is an alias definition (which otherwise looks like a declaration)
3284   // emit it now.
3285   if (Global->hasAttr<AliasAttr>())
3286     return EmitAliasDefinition(GD);
3287 
3288   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3289   if (Global->hasAttr<IFuncAttr>())
3290     return emitIFuncDefinition(GD);
3291 
3292   // If this is a cpu_dispatch multiversion function, emit the resolver.
3293   if (Global->hasAttr<CPUDispatchAttr>())
3294     return emitCPUDispatchDefinition(GD);
3295 
3296   // If this is CUDA, be selective about which declarations we emit.
3297   if (LangOpts.CUDA) {
3298     if (LangOpts.CUDAIsDevice) {
3299       if (!Global->hasAttr<CUDADeviceAttr>() &&
3300           !Global->hasAttr<CUDAGlobalAttr>() &&
3301           !Global->hasAttr<CUDAConstantAttr>() &&
3302           !Global->hasAttr<CUDASharedAttr>() &&
3303           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3304           !Global->getType()->isCUDADeviceBuiltinTextureType())
3305         return;
3306     } else {
3307       // We need to emit host-side 'shadows' for all global
3308       // device-side variables because the CUDA runtime needs their
3309       // size and host-side address in order to provide access to
3310       // their device-side incarnations.
3311 
3312       // So device-only functions are the only things we skip.
3313       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3314           Global->hasAttr<CUDADeviceAttr>())
3315         return;
3316 
3317       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3318              "Expected Variable or Function");
3319     }
3320   }
3321 
3322   if (LangOpts.OpenMP) {
3323     // If this is OpenMP, check if it is legal to emit this global normally.
3324     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3325       return;
3326     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3327       if (MustBeEmitted(Global))
3328         EmitOMPDeclareReduction(DRD);
3329       return;
3330     }
3331     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3332       if (MustBeEmitted(Global))
3333         EmitOMPDeclareMapper(DMD);
3334       return;
3335     }
3336   }
3337 
3338   // Ignore declarations, they will be emitted on their first use.
3339   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3340     // Forward declarations are emitted lazily on first use.
3341     if (!FD->doesThisDeclarationHaveABody()) {
3342       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3343         return;
3344 
3345       StringRef MangledName = getMangledName(GD);
3346 
3347       // Compute the function info and LLVM type.
3348       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3349       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3350 
3351       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3352                               /*DontDefer=*/false);
3353       return;
3354     }
3355   } else {
3356     const auto *VD = cast<VarDecl>(Global);
3357     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3358     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3359         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3360       if (LangOpts.OpenMP) {
3361         // Emit declaration of the must-be-emitted declare target variable.
3362         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3363                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3364           bool UnifiedMemoryEnabled =
3365               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3366           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3367                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3368               !UnifiedMemoryEnabled) {
3369             (void)GetAddrOfGlobalVar(VD);
3370           } else {
3371             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3372                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3373                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3374                      UnifiedMemoryEnabled)) &&
3375                    "Link clause or to clause with unified memory expected.");
3376             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3377           }
3378 
3379           return;
3380         }
3381       }
3382       // If this declaration may have caused an inline variable definition to
3383       // change linkage, make sure that it's emitted.
3384       if (Context.getInlineVariableDefinitionKind(VD) ==
3385           ASTContext::InlineVariableDefinitionKind::Strong)
3386         GetAddrOfGlobalVar(VD);
3387       return;
3388     }
3389   }
3390 
3391   // Defer code generation to first use when possible, e.g. if this is an inline
3392   // function. If the global must always be emitted, do it eagerly if possible
3393   // to benefit from cache locality.
3394   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3395     // Emit the definition if it can't be deferred.
3396     EmitGlobalDefinition(GD);
3397     return;
3398   }
3399 
3400   // If we're deferring emission of a C++ variable with an
3401   // initializer, remember the order in which it appeared in the file.
3402   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3403       cast<VarDecl>(Global)->hasInit()) {
3404     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3405     CXXGlobalInits.push_back(nullptr);
3406   }
3407 
3408   StringRef MangledName = getMangledName(GD);
3409   if (GetGlobalValue(MangledName) != nullptr) {
3410     // The value has already been used and should therefore be emitted.
3411     addDeferredDeclToEmit(GD);
3412   } else if (MustBeEmitted(Global)) {
3413     // The value must be emitted, but cannot be emitted eagerly.
3414     assert(!MayBeEmittedEagerly(Global));
3415     addDeferredDeclToEmit(GD);
3416     EmittedDeferredDecls[MangledName] = GD;
3417   } else {
3418     // Otherwise, remember that we saw a deferred decl with this name.  The
3419     // first use of the mangled name will cause it to move into
3420     // DeferredDeclsToEmit.
3421     DeferredDecls[MangledName] = GD;
3422   }
3423 }
3424 
3425 // Check if T is a class type with a destructor that's not dllimport.
3426 static bool HasNonDllImportDtor(QualType T) {
3427   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3428     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3429       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3430         return true;
3431 
3432   return false;
3433 }
3434 
3435 namespace {
3436   struct FunctionIsDirectlyRecursive
3437       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3438     const StringRef Name;
3439     const Builtin::Context &BI;
3440     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3441         : Name(N), BI(C) {}
3442 
3443     bool VisitCallExpr(const CallExpr *E) {
3444       const FunctionDecl *FD = E->getDirectCallee();
3445       if (!FD)
3446         return false;
3447       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3448       if (Attr && Name == Attr->getLabel())
3449         return true;
3450       unsigned BuiltinID = FD->getBuiltinID();
3451       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3452         return false;
3453       StringRef BuiltinName = BI.getName(BuiltinID);
3454       if (BuiltinName.startswith("__builtin_") &&
3455           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3456         return true;
3457       }
3458       return false;
3459     }
3460 
3461     bool VisitStmt(const Stmt *S) {
3462       for (const Stmt *Child : S->children())
3463         if (Child && this->Visit(Child))
3464           return true;
3465       return false;
3466     }
3467   };
3468 
3469   // Make sure we're not referencing non-imported vars or functions.
3470   struct DLLImportFunctionVisitor
3471       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3472     bool SafeToInline = true;
3473 
3474     bool shouldVisitImplicitCode() const { return true; }
3475 
3476     bool VisitVarDecl(VarDecl *VD) {
3477       if (VD->getTLSKind()) {
3478         // A thread-local variable cannot be imported.
3479         SafeToInline = false;
3480         return SafeToInline;
3481       }
3482 
3483       // A variable definition might imply a destructor call.
3484       if (VD->isThisDeclarationADefinition())
3485         SafeToInline = !HasNonDllImportDtor(VD->getType());
3486 
3487       return SafeToInline;
3488     }
3489 
3490     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3491       if (const auto *D = E->getTemporary()->getDestructor())
3492         SafeToInline = D->hasAttr<DLLImportAttr>();
3493       return SafeToInline;
3494     }
3495 
3496     bool VisitDeclRefExpr(DeclRefExpr *E) {
3497       ValueDecl *VD = E->getDecl();
3498       if (isa<FunctionDecl>(VD))
3499         SafeToInline = VD->hasAttr<DLLImportAttr>();
3500       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3501         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3502       return SafeToInline;
3503     }
3504 
3505     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3506       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3507       return SafeToInline;
3508     }
3509 
3510     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3511       CXXMethodDecl *M = E->getMethodDecl();
3512       if (!M) {
3513         // Call through a pointer to member function. This is safe to inline.
3514         SafeToInline = true;
3515       } else {
3516         SafeToInline = M->hasAttr<DLLImportAttr>();
3517       }
3518       return SafeToInline;
3519     }
3520 
3521     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3522       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3523       return SafeToInline;
3524     }
3525 
3526     bool VisitCXXNewExpr(CXXNewExpr *E) {
3527       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3528       return SafeToInline;
3529     }
3530   };
3531 }
3532 
3533 // isTriviallyRecursive - Check if this function calls another
3534 // decl that, because of the asm attribute or the other decl being a builtin,
3535 // ends up pointing to itself.
3536 bool
3537 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3538   StringRef Name;
3539   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3540     // asm labels are a special kind of mangling we have to support.
3541     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3542     if (!Attr)
3543       return false;
3544     Name = Attr->getLabel();
3545   } else {
3546     Name = FD->getName();
3547   }
3548 
3549   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3550   const Stmt *Body = FD->getBody();
3551   return Body ? Walker.Visit(Body) : false;
3552 }
3553 
3554 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3555   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3556     return true;
3557   const auto *F = cast<FunctionDecl>(GD.getDecl());
3558   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3559     return false;
3560 
3561   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3562     // Check whether it would be safe to inline this dllimport function.
3563     DLLImportFunctionVisitor Visitor;
3564     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3565     if (!Visitor.SafeToInline)
3566       return false;
3567 
3568     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3569       // Implicit destructor invocations aren't captured in the AST, so the
3570       // check above can't see them. Check for them manually here.
3571       for (const Decl *Member : Dtor->getParent()->decls())
3572         if (isa<FieldDecl>(Member))
3573           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3574             return false;
3575       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3576         if (HasNonDllImportDtor(B.getType()))
3577           return false;
3578     }
3579   }
3580 
3581   // Inline builtins declaration must be emitted. They often are fortified
3582   // functions.
3583   if (F->isInlineBuiltinDeclaration())
3584     return true;
3585 
3586   // PR9614. Avoid cases where the source code is lying to us. An available
3587   // externally function should have an equivalent function somewhere else,
3588   // but a function that calls itself through asm label/`__builtin_` trickery is
3589   // clearly not equivalent to the real implementation.
3590   // This happens in glibc's btowc and in some configure checks.
3591   return !isTriviallyRecursive(F);
3592 }
3593 
3594 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3595   return CodeGenOpts.OptimizationLevel > 0;
3596 }
3597 
3598 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3599                                                        llvm::GlobalValue *GV) {
3600   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3601 
3602   if (FD->isCPUSpecificMultiVersion()) {
3603     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3604     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3605       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3606   } else if (FD->isTargetClonesMultiVersion()) {
3607     auto *Clone = FD->getAttr<TargetClonesAttr>();
3608     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3609       if (Clone->isFirstOfVersion(I))
3610         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3611     // Ensure that the resolver function is also emitted.
3612     GetOrCreateMultiVersionResolver(GD);
3613   } else
3614     EmitGlobalFunctionDefinition(GD, GV);
3615 }
3616 
3617 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3618   const auto *D = cast<ValueDecl>(GD.getDecl());
3619 
3620   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3621                                  Context.getSourceManager(),
3622                                  "Generating code for declaration");
3623 
3624   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3625     // At -O0, don't generate IR for functions with available_externally
3626     // linkage.
3627     if (!shouldEmitFunction(GD))
3628       return;
3629 
3630     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3631       std::string Name;
3632       llvm::raw_string_ostream OS(Name);
3633       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3634                                /*Qualified=*/true);
3635       return Name;
3636     });
3637 
3638     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3639       // Make sure to emit the definition(s) before we emit the thunks.
3640       // This is necessary for the generation of certain thunks.
3641       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3642         ABI->emitCXXStructor(GD);
3643       else if (FD->isMultiVersion())
3644         EmitMultiVersionFunctionDefinition(GD, GV);
3645       else
3646         EmitGlobalFunctionDefinition(GD, GV);
3647 
3648       if (Method->isVirtual())
3649         getVTables().EmitThunks(GD);
3650 
3651       return;
3652     }
3653 
3654     if (FD->isMultiVersion())
3655       return EmitMultiVersionFunctionDefinition(GD, GV);
3656     return EmitGlobalFunctionDefinition(GD, GV);
3657   }
3658 
3659   if (const auto *VD = dyn_cast<VarDecl>(D))
3660     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3661 
3662   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3663 }
3664 
3665 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3666                                                       llvm::Function *NewFn);
3667 
3668 static unsigned
3669 TargetMVPriority(const TargetInfo &TI,
3670                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3671   unsigned Priority = 0;
3672   unsigned NumFeatures = 0;
3673   for (StringRef Feat : RO.Conditions.Features) {
3674     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3675     NumFeatures++;
3676   }
3677 
3678   if (!RO.Conditions.Architecture.empty())
3679     Priority = std::max(
3680         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3681 
3682   Priority += TI.multiVersionFeatureCost() * NumFeatures;
3683 
3684   return Priority;
3685 }
3686 
3687 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3688 // TU can forward declare the function without causing problems.  Particularly
3689 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3690 // work with internal linkage functions, so that the same function name can be
3691 // used with internal linkage in multiple TUs.
3692 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3693                                                        GlobalDecl GD) {
3694   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3695   if (FD->getFormalLinkage() == InternalLinkage)
3696     return llvm::GlobalValue::InternalLinkage;
3697   return llvm::GlobalValue::WeakODRLinkage;
3698 }
3699 
3700 void CodeGenModule::emitMultiVersionFunctions() {
3701   std::vector<GlobalDecl> MVFuncsToEmit;
3702   MultiVersionFuncs.swap(MVFuncsToEmit);
3703   for (GlobalDecl GD : MVFuncsToEmit) {
3704     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3705     assert(FD && "Expected a FunctionDecl");
3706 
3707     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3708     if (FD->isTargetMultiVersion()) {
3709       getContext().forEachMultiversionedFunctionVersion(
3710           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3711             GlobalDecl CurGD{
3712                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3713             StringRef MangledName = getMangledName(CurGD);
3714             llvm::Constant *Func = GetGlobalValue(MangledName);
3715             if (!Func) {
3716               if (CurFD->isDefined()) {
3717                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3718                 Func = GetGlobalValue(MangledName);
3719               } else {
3720                 const CGFunctionInfo &FI =
3721                     getTypes().arrangeGlobalDeclaration(GD);
3722                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3723                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3724                                          /*DontDefer=*/false, ForDefinition);
3725               }
3726               assert(Func && "This should have just been created");
3727             }
3728             if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) {
3729               const auto *TA = CurFD->getAttr<TargetAttr>();
3730               llvm::SmallVector<StringRef, 8> Feats;
3731               TA->getAddedFeatures(Feats);
3732               Options.emplace_back(cast<llvm::Function>(Func),
3733                                    TA->getArchitecture(), Feats);
3734             } else {
3735               const auto *TVA = CurFD->getAttr<TargetVersionAttr>();
3736               llvm::SmallVector<StringRef, 8> Feats;
3737               TVA->getFeatures(Feats);
3738               Options.emplace_back(cast<llvm::Function>(Func),
3739                                    /*Architecture*/ "", Feats);
3740             }
3741           });
3742     } else if (FD->isTargetClonesMultiVersion()) {
3743       const auto *TC = FD->getAttr<TargetClonesAttr>();
3744       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3745            ++VersionIndex) {
3746         if (!TC->isFirstOfVersion(VersionIndex))
3747           continue;
3748         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3749                          VersionIndex};
3750         StringRef Version = TC->getFeatureStr(VersionIndex);
3751         StringRef MangledName = getMangledName(CurGD);
3752         llvm::Constant *Func = GetGlobalValue(MangledName);
3753         if (!Func) {
3754           if (FD->isDefined()) {
3755             EmitGlobalFunctionDefinition(CurGD, nullptr);
3756             Func = GetGlobalValue(MangledName);
3757           } else {
3758             const CGFunctionInfo &FI =
3759                 getTypes().arrangeGlobalDeclaration(CurGD);
3760             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3761             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3762                                      /*DontDefer=*/false, ForDefinition);
3763           }
3764           assert(Func && "This should have just been created");
3765         }
3766 
3767         StringRef Architecture;
3768         llvm::SmallVector<StringRef, 1> Feature;
3769 
3770         if (getTarget().getTriple().isAArch64()) {
3771           if (Version != "default") {
3772             llvm::SmallVector<StringRef, 8> VerFeats;
3773             Version.split(VerFeats, "+");
3774             for (auto &CurFeat : VerFeats)
3775               Feature.push_back(CurFeat.trim());
3776           }
3777         } else {
3778           if (Version.startswith("arch="))
3779             Architecture = Version.drop_front(sizeof("arch=") - 1);
3780           else if (Version != "default")
3781             Feature.push_back(Version);
3782         }
3783 
3784         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3785       }
3786     } else {
3787       assert(0 && "Expected a target or target_clones multiversion function");
3788       continue;
3789     }
3790 
3791     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3792     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3793       ResolverConstant = IFunc->getResolver();
3794     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3795 
3796     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3797 
3798     if (supportsCOMDAT())
3799       ResolverFunc->setComdat(
3800           getModule().getOrInsertComdat(ResolverFunc->getName()));
3801 
3802     const TargetInfo &TI = getTarget();
3803     llvm::stable_sort(
3804         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3805                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3806           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3807         });
3808     CodeGenFunction CGF(*this);
3809     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3810   }
3811 
3812   // Ensure that any additions to the deferred decls list caused by emitting a
3813   // variant are emitted.  This can happen when the variant itself is inline and
3814   // calls a function without linkage.
3815   if (!MVFuncsToEmit.empty())
3816     EmitDeferred();
3817 
3818   // Ensure that any additions to the multiversion funcs list from either the
3819   // deferred decls or the multiversion functions themselves are emitted.
3820   if (!MultiVersionFuncs.empty())
3821     emitMultiVersionFunctions();
3822 }
3823 
3824 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3825   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3826   assert(FD && "Not a FunctionDecl?");
3827   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3828   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3829   assert(DD && "Not a cpu_dispatch Function?");
3830 
3831   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3832   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3833 
3834   StringRef ResolverName = getMangledName(GD);
3835   UpdateMultiVersionNames(GD, FD, ResolverName);
3836 
3837   llvm::Type *ResolverType;
3838   GlobalDecl ResolverGD;
3839   if (getTarget().supportsIFunc()) {
3840     ResolverType = llvm::FunctionType::get(
3841         llvm::PointerType::get(DeclTy,
3842                                getTypes().getTargetAddressSpace(FD->getType())),
3843         false);
3844   }
3845   else {
3846     ResolverType = DeclTy;
3847     ResolverGD = GD;
3848   }
3849 
3850   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3851       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3852   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3853   if (supportsCOMDAT())
3854     ResolverFunc->setComdat(
3855         getModule().getOrInsertComdat(ResolverFunc->getName()));
3856 
3857   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3858   const TargetInfo &Target = getTarget();
3859   unsigned Index = 0;
3860   for (const IdentifierInfo *II : DD->cpus()) {
3861     // Get the name of the target function so we can look it up/create it.
3862     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3863                               getCPUSpecificMangling(*this, II->getName());
3864 
3865     llvm::Constant *Func = GetGlobalValue(MangledName);
3866 
3867     if (!Func) {
3868       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3869       if (ExistingDecl.getDecl() &&
3870           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3871         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3872         Func = GetGlobalValue(MangledName);
3873       } else {
3874         if (!ExistingDecl.getDecl())
3875           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3876 
3877       Func = GetOrCreateLLVMFunction(
3878           MangledName, DeclTy, ExistingDecl,
3879           /*ForVTable=*/false, /*DontDefer=*/true,
3880           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3881       }
3882     }
3883 
3884     llvm::SmallVector<StringRef, 32> Features;
3885     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3886     llvm::transform(Features, Features.begin(),
3887                     [](StringRef Str) { return Str.substr(1); });
3888     llvm::erase_if(Features, [&Target](StringRef Feat) {
3889       return !Target.validateCpuSupports(Feat);
3890     });
3891     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3892     ++Index;
3893   }
3894 
3895   llvm::stable_sort(
3896       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3897                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3898         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3899                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3900       });
3901 
3902   // If the list contains multiple 'default' versions, such as when it contains
3903   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3904   // always run on at least a 'pentium'). We do this by deleting the 'least
3905   // advanced' (read, lowest mangling letter).
3906   while (Options.size() > 1 &&
3907          llvm::X86::getCpuSupportsMask(
3908              (Options.end() - 2)->Conditions.Features) == 0) {
3909     StringRef LHSName = (Options.end() - 2)->Function->getName();
3910     StringRef RHSName = (Options.end() - 1)->Function->getName();
3911     if (LHSName.compare(RHSName) < 0)
3912       Options.erase(Options.end() - 2);
3913     else
3914       Options.erase(Options.end() - 1);
3915   }
3916 
3917   CodeGenFunction CGF(*this);
3918   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3919 
3920   if (getTarget().supportsIFunc()) {
3921     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3922     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3923 
3924     // Fix up function declarations that were created for cpu_specific before
3925     // cpu_dispatch was known
3926     if (!isa<llvm::GlobalIFunc>(IFunc)) {
3927       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3928       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3929                                            &getModule());
3930       GI->takeName(IFunc);
3931       IFunc->replaceAllUsesWith(GI);
3932       IFunc->eraseFromParent();
3933       IFunc = GI;
3934     }
3935 
3936     std::string AliasName = getMangledNameImpl(
3937         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3938     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3939     if (!AliasFunc) {
3940       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3941                                            &getModule());
3942       SetCommonAttributes(GD, GA);
3943     }
3944   }
3945 }
3946 
3947 /// If a dispatcher for the specified mangled name is not in the module, create
3948 /// and return an llvm Function with the specified type.
3949 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3950   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3951   assert(FD && "Not a FunctionDecl?");
3952 
3953   std::string MangledName =
3954       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3955 
3956   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3957   // a separate resolver).
3958   std::string ResolverName = MangledName;
3959   if (getTarget().supportsIFunc())
3960     ResolverName += ".ifunc";
3961   else if (FD->isTargetMultiVersion())
3962     ResolverName += ".resolver";
3963 
3964   // If the resolver has already been created, just return it.
3965   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3966     return ResolverGV;
3967 
3968   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3969   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3970 
3971   // The resolver needs to be created. For target and target_clones, defer
3972   // creation until the end of the TU.
3973   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3974     MultiVersionFuncs.push_back(GD);
3975 
3976   // For cpu_specific, don't create an ifunc yet because we don't know if the
3977   // cpu_dispatch will be emitted in this translation unit.
3978   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3979     llvm::Type *ResolverType = llvm::FunctionType::get(
3980         llvm::PointerType::get(DeclTy,
3981                                getTypes().getTargetAddressSpace(FD->getType())),
3982         false);
3983     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3984         MangledName + ".resolver", ResolverType, GlobalDecl{},
3985         /*ForVTable=*/false);
3986     llvm::GlobalIFunc *GIF =
3987         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3988                                   "", Resolver, &getModule());
3989     GIF->setName(ResolverName);
3990     SetCommonAttributes(FD, GIF);
3991 
3992     return GIF;
3993   }
3994 
3995   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3996       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3997   assert(isa<llvm::GlobalValue>(Resolver) &&
3998          "Resolver should be created for the first time");
3999   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4000   return Resolver;
4001 }
4002 
4003 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4004 /// module, create and return an llvm Function with the specified type. If there
4005 /// is something in the module with the specified name, return it potentially
4006 /// bitcasted to the right type.
4007 ///
4008 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4009 /// to set the attributes on the function when it is first created.
4010 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4011     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4012     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4013     ForDefinition_t IsForDefinition) {
4014   const Decl *D = GD.getDecl();
4015 
4016   // Any attempts to use a MultiVersion function should result in retrieving
4017   // the iFunc instead. Name Mangling will handle the rest of the changes.
4018   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4019     // For the device mark the function as one that should be emitted.
4020     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
4021         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4022         !DontDefer && !IsForDefinition) {
4023       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4024         GlobalDecl GDDef;
4025         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4026           GDDef = GlobalDecl(CD, GD.getCtorType());
4027         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4028           GDDef = GlobalDecl(DD, GD.getDtorType());
4029         else
4030           GDDef = GlobalDecl(FDDef);
4031         EmitGlobal(GDDef);
4032       }
4033     }
4034 
4035     if (FD->isMultiVersion()) {
4036       UpdateMultiVersionNames(GD, FD, MangledName);
4037       if (!IsForDefinition)
4038         return GetOrCreateMultiVersionResolver(GD);
4039     }
4040   }
4041 
4042   // Lookup the entry, lazily creating it if necessary.
4043   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4044   if (Entry) {
4045     if (WeakRefReferences.erase(Entry)) {
4046       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4047       if (FD && !FD->hasAttr<WeakAttr>())
4048         Entry->setLinkage(llvm::Function::ExternalLinkage);
4049     }
4050 
4051     // Handle dropped DLL attributes.
4052     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4053         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4054       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4055       setDSOLocal(Entry);
4056     }
4057 
4058     // If there are two attempts to define the same mangled name, issue an
4059     // error.
4060     if (IsForDefinition && !Entry->isDeclaration()) {
4061       GlobalDecl OtherGD;
4062       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4063       // to make sure that we issue an error only once.
4064       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4065           (GD.getCanonicalDecl().getDecl() !=
4066            OtherGD.getCanonicalDecl().getDecl()) &&
4067           DiagnosedConflictingDefinitions.insert(GD).second) {
4068         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4069             << MangledName;
4070         getDiags().Report(OtherGD.getDecl()->getLocation(),
4071                           diag::note_previous_definition);
4072       }
4073     }
4074 
4075     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4076         (Entry->getValueType() == Ty)) {
4077       return Entry;
4078     }
4079 
4080     // Make sure the result is of the correct type.
4081     // (If function is requested for a definition, we always need to create a new
4082     // function, not just return a bitcast.)
4083     if (!IsForDefinition)
4084       return llvm::ConstantExpr::getBitCast(
4085           Entry, Ty->getPointerTo(Entry->getAddressSpace()));
4086   }
4087 
4088   // This function doesn't have a complete type (for example, the return
4089   // type is an incomplete struct). Use a fake type instead, and make
4090   // sure not to try to set attributes.
4091   bool IsIncompleteFunction = false;
4092 
4093   llvm::FunctionType *FTy;
4094   if (isa<llvm::FunctionType>(Ty)) {
4095     FTy = cast<llvm::FunctionType>(Ty);
4096   } else {
4097     FTy = llvm::FunctionType::get(VoidTy, false);
4098     IsIncompleteFunction = true;
4099   }
4100 
4101   llvm::Function *F =
4102       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4103                              Entry ? StringRef() : MangledName, &getModule());
4104 
4105   // If we already created a function with the same mangled name (but different
4106   // type) before, take its name and add it to the list of functions to be
4107   // replaced with F at the end of CodeGen.
4108   //
4109   // This happens if there is a prototype for a function (e.g. "int f()") and
4110   // then a definition of a different type (e.g. "int f(int x)").
4111   if (Entry) {
4112     F->takeName(Entry);
4113 
4114     // This might be an implementation of a function without a prototype, in
4115     // which case, try to do special replacement of calls which match the new
4116     // prototype.  The really key thing here is that we also potentially drop
4117     // arguments from the call site so as to make a direct call, which makes the
4118     // inliner happier and suppresses a number of optimizer warnings (!) about
4119     // dropping arguments.
4120     if (!Entry->use_empty()) {
4121       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4122       Entry->removeDeadConstantUsers();
4123     }
4124 
4125     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4126         F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace()));
4127     addGlobalValReplacement(Entry, BC);
4128   }
4129 
4130   assert(F->getName() == MangledName && "name was uniqued!");
4131   if (D)
4132     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4133   if (ExtraAttrs.hasFnAttrs()) {
4134     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4135     F->addFnAttrs(B);
4136   }
4137 
4138   if (!DontDefer) {
4139     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4140     // each other bottoming out with the base dtor.  Therefore we emit non-base
4141     // dtors on usage, even if there is no dtor definition in the TU.
4142     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4143         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4144                                            GD.getDtorType()))
4145       addDeferredDeclToEmit(GD);
4146 
4147     // This is the first use or definition of a mangled name.  If there is a
4148     // deferred decl with this name, remember that we need to emit it at the end
4149     // of the file.
4150     auto DDI = DeferredDecls.find(MangledName);
4151     if (DDI != DeferredDecls.end()) {
4152       // Move the potentially referenced deferred decl to the
4153       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4154       // don't need it anymore).
4155       addDeferredDeclToEmit(DDI->second);
4156       EmittedDeferredDecls[DDI->first] = DDI->second;
4157       DeferredDecls.erase(DDI);
4158 
4159       // Otherwise, there are cases we have to worry about where we're
4160       // using a declaration for which we must emit a definition but where
4161       // we might not find a top-level definition:
4162       //   - member functions defined inline in their classes
4163       //   - friend functions defined inline in some class
4164       //   - special member functions with implicit definitions
4165       // If we ever change our AST traversal to walk into class methods,
4166       // this will be unnecessary.
4167       //
4168       // We also don't emit a definition for a function if it's going to be an
4169       // entry in a vtable, unless it's already marked as used.
4170     } else if (getLangOpts().CPlusPlus && D) {
4171       // Look for a declaration that's lexically in a record.
4172       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4173            FD = FD->getPreviousDecl()) {
4174         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4175           if (FD->doesThisDeclarationHaveABody()) {
4176             addDeferredDeclToEmit(GD.getWithDecl(FD));
4177             break;
4178           }
4179         }
4180       }
4181     }
4182   }
4183 
4184   // Make sure the result is of the requested type.
4185   if (!IsIncompleteFunction) {
4186     assert(F->getFunctionType() == Ty);
4187     return F;
4188   }
4189 
4190   return llvm::ConstantExpr::getBitCast(F,
4191                                         Ty->getPointerTo(F->getAddressSpace()));
4192 }
4193 
4194 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4195 /// non-null, then this function will use the specified type if it has to
4196 /// create it (this occurs when we see a definition of the function).
4197 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4198                                                  llvm::Type *Ty,
4199                                                  bool ForVTable,
4200                                                  bool DontDefer,
4201                                               ForDefinition_t IsForDefinition) {
4202   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
4203          "consteval function should never be emitted");
4204   // If there was no specific requested type, just convert it now.
4205   if (!Ty) {
4206     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4207     Ty = getTypes().ConvertType(FD->getType());
4208   }
4209 
4210   // Devirtualized destructor calls may come through here instead of via
4211   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4212   // of the complete destructor when necessary.
4213   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4214     if (getTarget().getCXXABI().isMicrosoft() &&
4215         GD.getDtorType() == Dtor_Complete &&
4216         DD->getParent()->getNumVBases() == 0)
4217       GD = GlobalDecl(DD, Dtor_Base);
4218   }
4219 
4220   StringRef MangledName = getMangledName(GD);
4221   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4222                                     /*IsThunk=*/false, llvm::AttributeList(),
4223                                     IsForDefinition);
4224   // Returns kernel handle for HIP kernel stub function.
4225   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4226       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4227     auto *Handle = getCUDARuntime().getKernelHandle(
4228         cast<llvm::Function>(F->stripPointerCasts()), GD);
4229     if (IsForDefinition)
4230       return F;
4231     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4232   }
4233   return F;
4234 }
4235 
4236 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4237   llvm::GlobalValue *F =
4238       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4239 
4240   return llvm::ConstantExpr::getBitCast(
4241       llvm::NoCFIValue::get(F),
4242       llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace()));
4243 }
4244 
4245 static const FunctionDecl *
4246 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4247   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4248   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4249 
4250   IdentifierInfo &CII = C.Idents.get(Name);
4251   for (const auto *Result : DC->lookup(&CII))
4252     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4253       return FD;
4254 
4255   if (!C.getLangOpts().CPlusPlus)
4256     return nullptr;
4257 
4258   // Demangle the premangled name from getTerminateFn()
4259   IdentifierInfo &CXXII =
4260       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4261           ? C.Idents.get("terminate")
4262           : C.Idents.get(Name);
4263 
4264   for (const auto &N : {"__cxxabiv1", "std"}) {
4265     IdentifierInfo &NS = C.Idents.get(N);
4266     for (const auto *Result : DC->lookup(&NS)) {
4267       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4268       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4269         for (const auto *Result : LSD->lookup(&NS))
4270           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4271             break;
4272 
4273       if (ND)
4274         for (const auto *Result : ND->lookup(&CXXII))
4275           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4276             return FD;
4277     }
4278   }
4279 
4280   return nullptr;
4281 }
4282 
4283 /// CreateRuntimeFunction - Create a new runtime function with the specified
4284 /// type and name.
4285 llvm::FunctionCallee
4286 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4287                                      llvm::AttributeList ExtraAttrs, bool Local,
4288                                      bool AssumeConvergent) {
4289   if (AssumeConvergent) {
4290     ExtraAttrs =
4291         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4292   }
4293 
4294   llvm::Constant *C =
4295       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4296                               /*DontDefer=*/false, /*IsThunk=*/false,
4297                               ExtraAttrs);
4298 
4299   if (auto *F = dyn_cast<llvm::Function>(C)) {
4300     if (F->empty()) {
4301       F->setCallingConv(getRuntimeCC());
4302 
4303       // In Windows Itanium environments, try to mark runtime functions
4304       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4305       // will link their standard library statically or dynamically. Marking
4306       // functions imported when they are not imported can cause linker errors
4307       // and warnings.
4308       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4309           !getCodeGenOpts().LTOVisibilityPublicStd) {
4310         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4311         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4312           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4313           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4314         }
4315       }
4316       setDSOLocal(F);
4317     }
4318   }
4319 
4320   return {FTy, C};
4321 }
4322 
4323 /// isTypeConstant - Determine whether an object of this type can be emitted
4324 /// as a constant.
4325 ///
4326 /// If ExcludeCtor is true, the duration when the object's constructor runs
4327 /// will not be considered. The caller will need to verify that the object is
4328 /// not written to during its construction.
4329 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4330   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4331     return false;
4332 
4333   if (Context.getLangOpts().CPlusPlus) {
4334     if (const CXXRecordDecl *Record
4335           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4336       return ExcludeCtor && !Record->hasMutableFields() &&
4337              Record->hasTrivialDestructor();
4338   }
4339 
4340   return true;
4341 }
4342 
4343 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4344 /// create and return an llvm GlobalVariable with the specified type and address
4345 /// space. If there is something in the module with the specified name, return
4346 /// it potentially bitcasted to the right type.
4347 ///
4348 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4349 /// to set the attributes on the global when it is first created.
4350 ///
4351 /// If IsForDefinition is true, it is guaranteed that an actual global with
4352 /// type Ty will be returned, not conversion of a variable with the same
4353 /// mangled name but some other type.
4354 llvm::Constant *
4355 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4356                                      LangAS AddrSpace, const VarDecl *D,
4357                                      ForDefinition_t IsForDefinition) {
4358   // Lookup the entry, lazily creating it if necessary.
4359   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4360   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4361   if (Entry) {
4362     if (WeakRefReferences.erase(Entry)) {
4363       if (D && !D->hasAttr<WeakAttr>())
4364         Entry->setLinkage(llvm::Function::ExternalLinkage);
4365     }
4366 
4367     // Handle dropped DLL attributes.
4368     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4369         !shouldMapVisibilityToDLLExport(D))
4370       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4371 
4372     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4373       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4374 
4375     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4376       return Entry;
4377 
4378     // If there are two attempts to define the same mangled name, issue an
4379     // error.
4380     if (IsForDefinition && !Entry->isDeclaration()) {
4381       GlobalDecl OtherGD;
4382       const VarDecl *OtherD;
4383 
4384       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4385       // to make sure that we issue an error only once.
4386       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4387           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4388           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4389           OtherD->hasInit() &&
4390           DiagnosedConflictingDefinitions.insert(D).second) {
4391         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4392             << MangledName;
4393         getDiags().Report(OtherGD.getDecl()->getLocation(),
4394                           diag::note_previous_definition);
4395       }
4396     }
4397 
4398     // Make sure the result is of the correct type.
4399     if (Entry->getType()->getAddressSpace() != TargetAS) {
4400       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4401                                                   Ty->getPointerTo(TargetAS));
4402     }
4403 
4404     // (If global is requested for a definition, we always need to create a new
4405     // global, not just return a bitcast.)
4406     if (!IsForDefinition)
4407       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4408   }
4409 
4410   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4411 
4412   auto *GV = new llvm::GlobalVariable(
4413       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4414       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4415       getContext().getTargetAddressSpace(DAddrSpace));
4416 
4417   // If we already created a global with the same mangled name (but different
4418   // type) before, take its name and remove it from its parent.
4419   if (Entry) {
4420     GV->takeName(Entry);
4421 
4422     if (!Entry->use_empty()) {
4423       llvm::Constant *NewPtrForOldDecl =
4424           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4425       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4426     }
4427 
4428     Entry->eraseFromParent();
4429   }
4430 
4431   // This is the first use or definition of a mangled name.  If there is a
4432   // deferred decl with this name, remember that we need to emit it at the end
4433   // of the file.
4434   auto DDI = DeferredDecls.find(MangledName);
4435   if (DDI != DeferredDecls.end()) {
4436     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4437     // list, and remove it from DeferredDecls (since we don't need it anymore).
4438     addDeferredDeclToEmit(DDI->second);
4439     EmittedDeferredDecls[DDI->first] = DDI->second;
4440     DeferredDecls.erase(DDI);
4441   }
4442 
4443   // Handle things which are present even on external declarations.
4444   if (D) {
4445     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4446       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4447 
4448     // FIXME: This code is overly simple and should be merged with other global
4449     // handling.
4450     GV->setConstant(isTypeConstant(D->getType(), false));
4451 
4452     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4453 
4454     setLinkageForGV(GV, D);
4455 
4456     if (D->getTLSKind()) {
4457       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4458         CXXThreadLocals.push_back(D);
4459       setTLSMode(GV, *D);
4460     }
4461 
4462     setGVProperties(GV, D);
4463 
4464     // If required by the ABI, treat declarations of static data members with
4465     // inline initializers as definitions.
4466     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4467       EmitGlobalVarDefinition(D);
4468     }
4469 
4470     // Emit section information for extern variables.
4471     if (D->hasExternalStorage()) {
4472       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4473         GV->setSection(SA->getName());
4474     }
4475 
4476     // Handle XCore specific ABI requirements.
4477     if (getTriple().getArch() == llvm::Triple::xcore &&
4478         D->getLanguageLinkage() == CLanguageLinkage &&
4479         D->getType().isConstant(Context) &&
4480         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4481       GV->setSection(".cp.rodata");
4482 
4483     // Check if we a have a const declaration with an initializer, we may be
4484     // able to emit it as available_externally to expose it's value to the
4485     // optimizer.
4486     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4487         D->getType().isConstQualified() && !GV->hasInitializer() &&
4488         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4489       const auto *Record =
4490           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4491       bool HasMutableFields = Record && Record->hasMutableFields();
4492       if (!HasMutableFields) {
4493         const VarDecl *InitDecl;
4494         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4495         if (InitExpr) {
4496           ConstantEmitter emitter(*this);
4497           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4498           if (Init) {
4499             auto *InitType = Init->getType();
4500             if (GV->getValueType() != InitType) {
4501               // The type of the initializer does not match the definition.
4502               // This happens when an initializer has a different type from
4503               // the type of the global (because of padding at the end of a
4504               // structure for instance).
4505               GV->setName(StringRef());
4506               // Make a new global with the correct type, this is now guaranteed
4507               // to work.
4508               auto *NewGV = cast<llvm::GlobalVariable>(
4509                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4510                       ->stripPointerCasts());
4511 
4512               // Erase the old global, since it is no longer used.
4513               GV->eraseFromParent();
4514               GV = NewGV;
4515             } else {
4516               GV->setInitializer(Init);
4517               GV->setConstant(true);
4518               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4519             }
4520             emitter.finalize(GV);
4521           }
4522         }
4523       }
4524     }
4525   }
4526 
4527   if (GV->isDeclaration()) {
4528     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4529     // External HIP managed variables needed to be recorded for transformation
4530     // in both device and host compilations.
4531     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4532         D->hasExternalStorage())
4533       getCUDARuntime().handleVarRegistration(D, *GV);
4534   }
4535 
4536   if (D)
4537     SanitizerMD->reportGlobal(GV, *D);
4538 
4539   LangAS ExpectedAS =
4540       D ? D->getType().getAddressSpace()
4541         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4542   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4543   if (DAddrSpace != ExpectedAS) {
4544     return getTargetCodeGenInfo().performAddrSpaceCast(
4545         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4546   }
4547 
4548   return GV;
4549 }
4550 
4551 llvm::Constant *
4552 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4553   const Decl *D = GD.getDecl();
4554 
4555   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4556     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4557                                 /*DontDefer=*/false, IsForDefinition);
4558 
4559   if (isa<CXXMethodDecl>(D)) {
4560     auto FInfo =
4561         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4562     auto Ty = getTypes().GetFunctionType(*FInfo);
4563     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4564                              IsForDefinition);
4565   }
4566 
4567   if (isa<FunctionDecl>(D)) {
4568     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4569     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4570     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4571                              IsForDefinition);
4572   }
4573 
4574   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4575 }
4576 
4577 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4578     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4579     llvm::Align Alignment) {
4580   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4581   llvm::GlobalVariable *OldGV = nullptr;
4582 
4583   if (GV) {
4584     // Check if the variable has the right type.
4585     if (GV->getValueType() == Ty)
4586       return GV;
4587 
4588     // Because C++ name mangling, the only way we can end up with an already
4589     // existing global with the same name is if it has been declared extern "C".
4590     assert(GV->isDeclaration() && "Declaration has wrong type!");
4591     OldGV = GV;
4592   }
4593 
4594   // Create a new variable.
4595   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4596                                 Linkage, nullptr, Name);
4597 
4598   if (OldGV) {
4599     // Replace occurrences of the old variable if needed.
4600     GV->takeName(OldGV);
4601 
4602     if (!OldGV->use_empty()) {
4603       llvm::Constant *NewPtrForOldDecl =
4604       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4605       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4606     }
4607 
4608     OldGV->eraseFromParent();
4609   }
4610 
4611   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4612       !GV->hasAvailableExternallyLinkage())
4613     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4614 
4615   GV->setAlignment(Alignment);
4616 
4617   return GV;
4618 }
4619 
4620 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4621 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4622 /// then it will be created with the specified type instead of whatever the
4623 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4624 /// that an actual global with type Ty will be returned, not conversion of a
4625 /// variable with the same mangled name but some other type.
4626 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4627                                                   llvm::Type *Ty,
4628                                            ForDefinition_t IsForDefinition) {
4629   assert(D->hasGlobalStorage() && "Not a global variable");
4630   QualType ASTTy = D->getType();
4631   if (!Ty)
4632     Ty = getTypes().ConvertTypeForMem(ASTTy);
4633 
4634   StringRef MangledName = getMangledName(D);
4635   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4636                                IsForDefinition);
4637 }
4638 
4639 /// CreateRuntimeVariable - Create a new runtime global variable with the
4640 /// specified type and name.
4641 llvm::Constant *
4642 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4643                                      StringRef Name) {
4644   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4645                                                        : LangAS::Default;
4646   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4647   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4648   return Ret;
4649 }
4650 
4651 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4652   assert(!D->getInit() && "Cannot emit definite definitions here!");
4653 
4654   StringRef MangledName = getMangledName(D);
4655   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4656 
4657   // We already have a definition, not declaration, with the same mangled name.
4658   // Emitting of declaration is not required (and actually overwrites emitted
4659   // definition).
4660   if (GV && !GV->isDeclaration())
4661     return;
4662 
4663   // If we have not seen a reference to this variable yet, place it into the
4664   // deferred declarations table to be emitted if needed later.
4665   if (!MustBeEmitted(D) && !GV) {
4666       DeferredDecls[MangledName] = D;
4667       return;
4668   }
4669 
4670   // The tentative definition is the only definition.
4671   EmitGlobalVarDefinition(D);
4672 }
4673 
4674 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4675   EmitExternalVarDeclaration(D);
4676 }
4677 
4678 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4679   return Context.toCharUnitsFromBits(
4680       getDataLayout().getTypeStoreSizeInBits(Ty));
4681 }
4682 
4683 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4684   if (LangOpts.OpenCL) {
4685     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4686     assert(AS == LangAS::opencl_global ||
4687            AS == LangAS::opencl_global_device ||
4688            AS == LangAS::opencl_global_host ||
4689            AS == LangAS::opencl_constant ||
4690            AS == LangAS::opencl_local ||
4691            AS >= LangAS::FirstTargetAddressSpace);
4692     return AS;
4693   }
4694 
4695   if (LangOpts.SYCLIsDevice &&
4696       (!D || D->getType().getAddressSpace() == LangAS::Default))
4697     return LangAS::sycl_global;
4698 
4699   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4700     if (D) {
4701       if (D->hasAttr<CUDAConstantAttr>())
4702         return LangAS::cuda_constant;
4703       if (D->hasAttr<CUDASharedAttr>())
4704         return LangAS::cuda_shared;
4705       if (D->hasAttr<CUDADeviceAttr>())
4706         return LangAS::cuda_device;
4707       if (D->getType().isConstQualified())
4708         return LangAS::cuda_constant;
4709     }
4710     return LangAS::cuda_device;
4711   }
4712 
4713   if (LangOpts.OpenMP) {
4714     LangAS AS;
4715     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4716       return AS;
4717   }
4718   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4719 }
4720 
4721 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4722   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4723   if (LangOpts.OpenCL)
4724     return LangAS::opencl_constant;
4725   if (LangOpts.SYCLIsDevice)
4726     return LangAS::sycl_global;
4727   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4728     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4729     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4730     // with OpVariable instructions with Generic storage class which is not
4731     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4732     // UniformConstant storage class is not viable as pointers to it may not be
4733     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4734     return LangAS::cuda_device;
4735   if (auto AS = getTarget().getConstantAddressSpace())
4736     return *AS;
4737   return LangAS::Default;
4738 }
4739 
4740 // In address space agnostic languages, string literals are in default address
4741 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4742 // emitted in constant address space in LLVM IR. To be consistent with other
4743 // parts of AST, string literal global variables in constant address space
4744 // need to be casted to default address space before being put into address
4745 // map and referenced by other part of CodeGen.
4746 // In OpenCL, string literals are in constant address space in AST, therefore
4747 // they should not be casted to default address space.
4748 static llvm::Constant *
4749 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4750                                        llvm::GlobalVariable *GV) {
4751   llvm::Constant *Cast = GV;
4752   if (!CGM.getLangOpts().OpenCL) {
4753     auto AS = CGM.GetGlobalConstantAddressSpace();
4754     if (AS != LangAS::Default)
4755       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4756           CGM, GV, AS, LangAS::Default,
4757           GV->getValueType()->getPointerTo(
4758               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4759   }
4760   return Cast;
4761 }
4762 
4763 template<typename SomeDecl>
4764 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4765                                                llvm::GlobalValue *GV) {
4766   if (!getLangOpts().CPlusPlus)
4767     return;
4768 
4769   // Must have 'used' attribute, or else inline assembly can't rely on
4770   // the name existing.
4771   if (!D->template hasAttr<UsedAttr>())
4772     return;
4773 
4774   // Must have internal linkage and an ordinary name.
4775   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4776     return;
4777 
4778   // Must be in an extern "C" context. Entities declared directly within
4779   // a record are not extern "C" even if the record is in such a context.
4780   const SomeDecl *First = D->getFirstDecl();
4781   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4782     return;
4783 
4784   // OK, this is an internal linkage entity inside an extern "C" linkage
4785   // specification. Make a note of that so we can give it the "expected"
4786   // mangled name if nothing else is using that name.
4787   std::pair<StaticExternCMap::iterator, bool> R =
4788       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4789 
4790   // If we have multiple internal linkage entities with the same name
4791   // in extern "C" regions, none of them gets that name.
4792   if (!R.second)
4793     R.first->second = nullptr;
4794 }
4795 
4796 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4797   if (!CGM.supportsCOMDAT())
4798     return false;
4799 
4800   if (D.hasAttr<SelectAnyAttr>())
4801     return true;
4802 
4803   GVALinkage Linkage;
4804   if (auto *VD = dyn_cast<VarDecl>(&D))
4805     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4806   else
4807     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4808 
4809   switch (Linkage) {
4810   case GVA_Internal:
4811   case GVA_AvailableExternally:
4812   case GVA_StrongExternal:
4813     return false;
4814   case GVA_DiscardableODR:
4815   case GVA_StrongODR:
4816     return true;
4817   }
4818   llvm_unreachable("No such linkage");
4819 }
4820 
4821 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4822                                           llvm::GlobalObject &GO) {
4823   if (!shouldBeInCOMDAT(*this, D))
4824     return;
4825   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4826 }
4827 
4828 /// Pass IsTentative as true if you want to create a tentative definition.
4829 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4830                                             bool IsTentative) {
4831   // OpenCL global variables of sampler type are translated to function calls,
4832   // therefore no need to be translated.
4833   QualType ASTTy = D->getType();
4834   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4835     return;
4836 
4837   // If this is OpenMP device, check if it is legal to emit this global
4838   // normally.
4839   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4840       OpenMPRuntime->emitTargetGlobalVariable(D))
4841     return;
4842 
4843   llvm::TrackingVH<llvm::Constant> Init;
4844   bool NeedsGlobalCtor = false;
4845   // Whether the definition of the variable is available externally.
4846   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
4847   // since this is the job for its original source.
4848   bool IsDefinitionAvailableExternally =
4849       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
4850   bool NeedsGlobalDtor =
4851       !IsDefinitionAvailableExternally &&
4852       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4853 
4854   const VarDecl *InitDecl;
4855   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4856 
4857   std::optional<ConstantEmitter> emitter;
4858 
4859   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4860   // as part of their declaration."  Sema has already checked for
4861   // error cases, so we just need to set Init to UndefValue.
4862   bool IsCUDASharedVar =
4863       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4864   // Shadows of initialized device-side global variables are also left
4865   // undefined.
4866   // Managed Variables should be initialized on both host side and device side.
4867   bool IsCUDAShadowVar =
4868       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4869       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4870        D->hasAttr<CUDASharedAttr>());
4871   bool IsCUDADeviceShadowVar =
4872       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4873       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4874        D->getType()->isCUDADeviceBuiltinTextureType());
4875   if (getLangOpts().CUDA &&
4876       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4877     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4878   else if (D->hasAttr<LoaderUninitializedAttr>())
4879     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4880   else if (!InitExpr) {
4881     // This is a tentative definition; tentative definitions are
4882     // implicitly initialized with { 0 }.
4883     //
4884     // Note that tentative definitions are only emitted at the end of
4885     // a translation unit, so they should never have incomplete
4886     // type. In addition, EmitTentativeDefinition makes sure that we
4887     // never attempt to emit a tentative definition if a real one
4888     // exists. A use may still exists, however, so we still may need
4889     // to do a RAUW.
4890     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4891     Init = EmitNullConstant(D->getType());
4892   } else {
4893     initializedGlobalDecl = GlobalDecl(D);
4894     emitter.emplace(*this);
4895     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4896     if (!Initializer) {
4897       QualType T = InitExpr->getType();
4898       if (D->getType()->isReferenceType())
4899         T = D->getType();
4900 
4901       if (getLangOpts().CPlusPlus) {
4902         if (InitDecl->hasFlexibleArrayInit(getContext()))
4903           ErrorUnsupported(D, "flexible array initializer");
4904         Init = EmitNullConstant(T);
4905 
4906         if (!IsDefinitionAvailableExternally)
4907           NeedsGlobalCtor = true;
4908       } else {
4909         ErrorUnsupported(D, "static initializer");
4910         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4911       }
4912     } else {
4913       Init = Initializer;
4914       // We don't need an initializer, so remove the entry for the delayed
4915       // initializer position (just in case this entry was delayed) if we
4916       // also don't need to register a destructor.
4917       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4918         DelayedCXXInitPosition.erase(D);
4919 
4920 #ifndef NDEBUG
4921       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4922                           InitDecl->getFlexibleArrayInitChars(getContext());
4923       CharUnits CstSize = CharUnits::fromQuantity(
4924           getDataLayout().getTypeAllocSize(Init->getType()));
4925       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4926 #endif
4927     }
4928   }
4929 
4930   llvm::Type* InitType = Init->getType();
4931   llvm::Constant *Entry =
4932       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4933 
4934   // Strip off pointer casts if we got them.
4935   Entry = Entry->stripPointerCasts();
4936 
4937   // Entry is now either a Function or GlobalVariable.
4938   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4939 
4940   // We have a definition after a declaration with the wrong type.
4941   // We must make a new GlobalVariable* and update everything that used OldGV
4942   // (a declaration or tentative definition) with the new GlobalVariable*
4943   // (which will be a definition).
4944   //
4945   // This happens if there is a prototype for a global (e.g.
4946   // "extern int x[];") and then a definition of a different type (e.g.
4947   // "int x[10];"). This also happens when an initializer has a different type
4948   // from the type of the global (this happens with unions).
4949   if (!GV || GV->getValueType() != InitType ||
4950       GV->getType()->getAddressSpace() !=
4951           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4952 
4953     // Move the old entry aside so that we'll create a new one.
4954     Entry->setName(StringRef());
4955 
4956     // Make a new global with the correct type, this is now guaranteed to work.
4957     GV = cast<llvm::GlobalVariable>(
4958         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4959             ->stripPointerCasts());
4960 
4961     // Replace all uses of the old global with the new global
4962     llvm::Constant *NewPtrForOldDecl =
4963         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4964                                                              Entry->getType());
4965     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4966 
4967     // Erase the old global, since it is no longer used.
4968     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4969   }
4970 
4971   MaybeHandleStaticInExternC(D, GV);
4972 
4973   if (D->hasAttr<AnnotateAttr>())
4974     AddGlobalAnnotations(D, GV);
4975 
4976   // Set the llvm linkage type as appropriate.
4977   llvm::GlobalValue::LinkageTypes Linkage =
4978       getLLVMLinkageVarDefinition(D, GV->isConstant());
4979 
4980   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4981   // the device. [...]"
4982   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4983   // __device__, declares a variable that: [...]
4984   // Is accessible from all the threads within the grid and from the host
4985   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4986   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4987   if (GV && LangOpts.CUDA) {
4988     if (LangOpts.CUDAIsDevice) {
4989       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4990           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4991            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4992            D->getType()->isCUDADeviceBuiltinTextureType()))
4993         GV->setExternallyInitialized(true);
4994     } else {
4995       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4996     }
4997     getCUDARuntime().handleVarRegistration(D, *GV);
4998   }
4999 
5000   GV->setInitializer(Init);
5001   if (emitter)
5002     emitter->finalize(GV);
5003 
5004   // If it is safe to mark the global 'constant', do so now.
5005   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5006                   isTypeConstant(D->getType(), true));
5007 
5008   // If it is in a read-only section, mark it 'constant'.
5009   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5010     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5011     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5012       GV->setConstant(true);
5013   }
5014 
5015   CharUnits AlignVal = getContext().getDeclAlign(D);
5016   // Check for alignment specifed in an 'omp allocate' directive.
5017   if (std::optional<CharUnits> AlignValFromAllocate =
5018           getOMPAllocateAlignment(D))
5019     AlignVal = *AlignValFromAllocate;
5020   GV->setAlignment(AlignVal.getAsAlign());
5021 
5022   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5023   // function is only defined alongside the variable, not also alongside
5024   // callers. Normally, all accesses to a thread_local go through the
5025   // thread-wrapper in order to ensure initialization has occurred, underlying
5026   // variable will never be used other than the thread-wrapper, so it can be
5027   // converted to internal linkage.
5028   //
5029   // However, if the variable has the 'constinit' attribute, it _can_ be
5030   // referenced directly, without calling the thread-wrapper, so the linkage
5031   // must not be changed.
5032   //
5033   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5034   // weak or linkonce, the de-duplication semantics are important to preserve,
5035   // so we don't change the linkage.
5036   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5037       Linkage == llvm::GlobalValue::ExternalLinkage &&
5038       Context.getTargetInfo().getTriple().isOSDarwin() &&
5039       !D->hasAttr<ConstInitAttr>())
5040     Linkage = llvm::GlobalValue::InternalLinkage;
5041 
5042   GV->setLinkage(Linkage);
5043   if (D->hasAttr<DLLImportAttr>())
5044     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5045   else if (D->hasAttr<DLLExportAttr>())
5046     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5047   else
5048     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5049 
5050   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5051     // common vars aren't constant even if declared const.
5052     GV->setConstant(false);
5053     // Tentative definition of global variables may be initialized with
5054     // non-zero null pointers. In this case they should have weak linkage
5055     // since common linkage must have zero initializer and must not have
5056     // explicit section therefore cannot have non-zero initial value.
5057     if (!GV->getInitializer()->isNullValue())
5058       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5059   }
5060 
5061   setNonAliasAttributes(D, GV);
5062 
5063   if (D->getTLSKind() && !GV->isThreadLocal()) {
5064     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5065       CXXThreadLocals.push_back(D);
5066     setTLSMode(GV, *D);
5067   }
5068 
5069   maybeSetTrivialComdat(*D, *GV);
5070 
5071   // Emit the initializer function if necessary.
5072   if (NeedsGlobalCtor || NeedsGlobalDtor)
5073     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5074 
5075   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5076 
5077   // Emit global variable debug information.
5078   if (CGDebugInfo *DI = getModuleDebugInfo())
5079     if (getCodeGenOpts().hasReducedDebugInfo())
5080       DI->EmitGlobalVariable(GV, D);
5081 }
5082 
5083 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5084   if (CGDebugInfo *DI = getModuleDebugInfo())
5085     if (getCodeGenOpts().hasReducedDebugInfo()) {
5086       QualType ASTTy = D->getType();
5087       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5088       llvm::Constant *GV =
5089           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5090       DI->EmitExternalVariable(
5091           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5092     }
5093 }
5094 
5095 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5096                                       CodeGenModule &CGM, const VarDecl *D,
5097                                       bool NoCommon) {
5098   // Don't give variables common linkage if -fno-common was specified unless it
5099   // was overridden by a NoCommon attribute.
5100   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5101     return true;
5102 
5103   // C11 6.9.2/2:
5104   //   A declaration of an identifier for an object that has file scope without
5105   //   an initializer, and without a storage-class specifier or with the
5106   //   storage-class specifier static, constitutes a tentative definition.
5107   if (D->getInit() || D->hasExternalStorage())
5108     return true;
5109 
5110   // A variable cannot be both common and exist in a section.
5111   if (D->hasAttr<SectionAttr>())
5112     return true;
5113 
5114   // A variable cannot be both common and exist in a section.
5115   // We don't try to determine which is the right section in the front-end.
5116   // If no specialized section name is applicable, it will resort to default.
5117   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5118       D->hasAttr<PragmaClangDataSectionAttr>() ||
5119       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5120       D->hasAttr<PragmaClangRodataSectionAttr>())
5121     return true;
5122 
5123   // Thread local vars aren't considered common linkage.
5124   if (D->getTLSKind())
5125     return true;
5126 
5127   // Tentative definitions marked with WeakImportAttr are true definitions.
5128   if (D->hasAttr<WeakImportAttr>())
5129     return true;
5130 
5131   // A variable cannot be both common and exist in a comdat.
5132   if (shouldBeInCOMDAT(CGM, *D))
5133     return true;
5134 
5135   // Declarations with a required alignment do not have common linkage in MSVC
5136   // mode.
5137   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5138     if (D->hasAttr<AlignedAttr>())
5139       return true;
5140     QualType VarType = D->getType();
5141     if (Context.isAlignmentRequired(VarType))
5142       return true;
5143 
5144     if (const auto *RT = VarType->getAs<RecordType>()) {
5145       const RecordDecl *RD = RT->getDecl();
5146       for (const FieldDecl *FD : RD->fields()) {
5147         if (FD->isBitField())
5148           continue;
5149         if (FD->hasAttr<AlignedAttr>())
5150           return true;
5151         if (Context.isAlignmentRequired(FD->getType()))
5152           return true;
5153       }
5154     }
5155   }
5156 
5157   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5158   // common symbols, so symbols with greater alignment requirements cannot be
5159   // common.
5160   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5161   // alignments for common symbols via the aligncomm directive, so this
5162   // restriction only applies to MSVC environments.
5163   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5164       Context.getTypeAlignIfKnown(D->getType()) >
5165           Context.toBits(CharUnits::fromQuantity(32)))
5166     return true;
5167 
5168   return false;
5169 }
5170 
5171 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
5172     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
5173   if (Linkage == GVA_Internal)
5174     return llvm::Function::InternalLinkage;
5175 
5176   if (D->hasAttr<WeakAttr>())
5177     return llvm::GlobalVariable::WeakAnyLinkage;
5178 
5179   if (const auto *FD = D->getAsFunction())
5180     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5181       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5182 
5183   // We are guaranteed to have a strong definition somewhere else,
5184   // so we can use available_externally linkage.
5185   if (Linkage == GVA_AvailableExternally)
5186     return llvm::GlobalValue::AvailableExternallyLinkage;
5187 
5188   // Note that Apple's kernel linker doesn't support symbol
5189   // coalescing, so we need to avoid linkonce and weak linkages there.
5190   // Normally, this means we just map to internal, but for explicit
5191   // instantiations we'll map to external.
5192 
5193   // In C++, the compiler has to emit a definition in every translation unit
5194   // that references the function.  We should use linkonce_odr because
5195   // a) if all references in this translation unit are optimized away, we
5196   // don't need to codegen it.  b) if the function persists, it needs to be
5197   // merged with other definitions. c) C++ has the ODR, so we know the
5198   // definition is dependable.
5199   if (Linkage == GVA_DiscardableODR)
5200     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5201                                             : llvm::Function::InternalLinkage;
5202 
5203   // An explicit instantiation of a template has weak linkage, since
5204   // explicit instantiations can occur in multiple translation units
5205   // and must all be equivalent. However, we are not allowed to
5206   // throw away these explicit instantiations.
5207   //
5208   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5209   // so say that CUDA templates are either external (for kernels) or internal.
5210   // This lets llvm perform aggressive inter-procedural optimizations. For
5211   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5212   // therefore we need to follow the normal linkage paradigm.
5213   if (Linkage == GVA_StrongODR) {
5214     if (getLangOpts().AppleKext)
5215       return llvm::Function::ExternalLinkage;
5216     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5217         !getLangOpts().GPURelocatableDeviceCode)
5218       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5219                                           : llvm::Function::InternalLinkage;
5220     return llvm::Function::WeakODRLinkage;
5221   }
5222 
5223   // C++ doesn't have tentative definitions and thus cannot have common
5224   // linkage.
5225   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5226       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5227                                  CodeGenOpts.NoCommon))
5228     return llvm::GlobalVariable::CommonLinkage;
5229 
5230   // selectany symbols are externally visible, so use weak instead of
5231   // linkonce.  MSVC optimizes away references to const selectany globals, so
5232   // all definitions should be the same and ODR linkage should be used.
5233   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5234   if (D->hasAttr<SelectAnyAttr>())
5235     return llvm::GlobalVariable::WeakODRLinkage;
5236 
5237   // Otherwise, we have strong external linkage.
5238   assert(Linkage == GVA_StrongExternal);
5239   return llvm::GlobalVariable::ExternalLinkage;
5240 }
5241 
5242 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5243     const VarDecl *VD, bool IsConstant) {
5244   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5245   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5246 }
5247 
5248 /// Replace the uses of a function that was declared with a non-proto type.
5249 /// We want to silently drop extra arguments from call sites
5250 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5251                                           llvm::Function *newFn) {
5252   // Fast path.
5253   if (old->use_empty()) return;
5254 
5255   llvm::Type *newRetTy = newFn->getReturnType();
5256   SmallVector<llvm::Value*, 4> newArgs;
5257 
5258   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5259          ui != ue; ) {
5260     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5261     llvm::User *user = use->getUser();
5262 
5263     // Recognize and replace uses of bitcasts.  Most calls to
5264     // unprototyped functions will use bitcasts.
5265     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5266       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5267         replaceUsesOfNonProtoConstant(bitcast, newFn);
5268       continue;
5269     }
5270 
5271     // Recognize calls to the function.
5272     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5273     if (!callSite) continue;
5274     if (!callSite->isCallee(&*use))
5275       continue;
5276 
5277     // If the return types don't match exactly, then we can't
5278     // transform this call unless it's dead.
5279     if (callSite->getType() != newRetTy && !callSite->use_empty())
5280       continue;
5281 
5282     // Get the call site's attribute list.
5283     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5284     llvm::AttributeList oldAttrs = callSite->getAttributes();
5285 
5286     // If the function was passed too few arguments, don't transform.
5287     unsigned newNumArgs = newFn->arg_size();
5288     if (callSite->arg_size() < newNumArgs)
5289       continue;
5290 
5291     // If extra arguments were passed, we silently drop them.
5292     // If any of the types mismatch, we don't transform.
5293     unsigned argNo = 0;
5294     bool dontTransform = false;
5295     for (llvm::Argument &A : newFn->args()) {
5296       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5297         dontTransform = true;
5298         break;
5299       }
5300 
5301       // Add any parameter attributes.
5302       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5303       argNo++;
5304     }
5305     if (dontTransform)
5306       continue;
5307 
5308     // Okay, we can transform this.  Create the new call instruction and copy
5309     // over the required information.
5310     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5311 
5312     // Copy over any operand bundles.
5313     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5314     callSite->getOperandBundlesAsDefs(newBundles);
5315 
5316     llvm::CallBase *newCall;
5317     if (isa<llvm::CallInst>(callSite)) {
5318       newCall =
5319           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5320     } else {
5321       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5322       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5323                                          oldInvoke->getUnwindDest(), newArgs,
5324                                          newBundles, "", callSite);
5325     }
5326     newArgs.clear(); // for the next iteration
5327 
5328     if (!newCall->getType()->isVoidTy())
5329       newCall->takeName(callSite);
5330     newCall->setAttributes(
5331         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5332                                  oldAttrs.getRetAttrs(), newArgAttrs));
5333     newCall->setCallingConv(callSite->getCallingConv());
5334 
5335     // Finally, remove the old call, replacing any uses with the new one.
5336     if (!callSite->use_empty())
5337       callSite->replaceAllUsesWith(newCall);
5338 
5339     // Copy debug location attached to CI.
5340     if (callSite->getDebugLoc())
5341       newCall->setDebugLoc(callSite->getDebugLoc());
5342 
5343     callSite->eraseFromParent();
5344   }
5345 }
5346 
5347 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5348 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5349 /// existing call uses of the old function in the module, this adjusts them to
5350 /// call the new function directly.
5351 ///
5352 /// This is not just a cleanup: the always_inline pass requires direct calls to
5353 /// functions to be able to inline them.  If there is a bitcast in the way, it
5354 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5355 /// run at -O0.
5356 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5357                                                       llvm::Function *NewFn) {
5358   // If we're redefining a global as a function, don't transform it.
5359   if (!isa<llvm::Function>(Old)) return;
5360 
5361   replaceUsesOfNonProtoConstant(Old, NewFn);
5362 }
5363 
5364 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5365   auto DK = VD->isThisDeclarationADefinition();
5366   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5367     return;
5368 
5369   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5370   // If we have a definition, this might be a deferred decl. If the
5371   // instantiation is explicit, make sure we emit it at the end.
5372   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5373     GetAddrOfGlobalVar(VD);
5374 
5375   EmitTopLevelDecl(VD);
5376 }
5377 
5378 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5379                                                  llvm::GlobalValue *GV) {
5380   const auto *D = cast<FunctionDecl>(GD.getDecl());
5381 
5382   // Compute the function info and LLVM type.
5383   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5384   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5385 
5386   // Get or create the prototype for the function.
5387   if (!GV || (GV->getValueType() != Ty))
5388     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5389                                                    /*DontDefer=*/true,
5390                                                    ForDefinition));
5391 
5392   // Already emitted.
5393   if (!GV->isDeclaration())
5394     return;
5395 
5396   // We need to set linkage and visibility on the function before
5397   // generating code for it because various parts of IR generation
5398   // want to propagate this information down (e.g. to local static
5399   // declarations).
5400   auto *Fn = cast<llvm::Function>(GV);
5401   setFunctionLinkage(GD, Fn);
5402 
5403   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5404   setGVProperties(Fn, GD);
5405 
5406   MaybeHandleStaticInExternC(D, Fn);
5407 
5408   maybeSetTrivialComdat(*D, *Fn);
5409 
5410   // Set CodeGen attributes that represent floating point environment.
5411   setLLVMFunctionFEnvAttributes(D, Fn);
5412 
5413   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5414 
5415   setNonAliasAttributes(GD, Fn);
5416   SetLLVMFunctionAttributesForDefinition(D, Fn);
5417 
5418   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5419     AddGlobalCtor(Fn, CA->getPriority());
5420   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5421     AddGlobalDtor(Fn, DA->getPriority(), true);
5422   if (D->hasAttr<AnnotateAttr>())
5423     AddGlobalAnnotations(D, Fn);
5424 }
5425 
5426 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5427   const auto *D = cast<ValueDecl>(GD.getDecl());
5428   const AliasAttr *AA = D->getAttr<AliasAttr>();
5429   assert(AA && "Not an alias?");
5430 
5431   StringRef MangledName = getMangledName(GD);
5432 
5433   if (AA->getAliasee() == MangledName) {
5434     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5435     return;
5436   }
5437 
5438   // If there is a definition in the module, then it wins over the alias.
5439   // This is dubious, but allow it to be safe.  Just ignore the alias.
5440   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5441   if (Entry && !Entry->isDeclaration())
5442     return;
5443 
5444   Aliases.push_back(GD);
5445 
5446   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5447 
5448   // Create a reference to the named value.  This ensures that it is emitted
5449   // if a deferred decl.
5450   llvm::Constant *Aliasee;
5451   llvm::GlobalValue::LinkageTypes LT;
5452   if (isa<llvm::FunctionType>(DeclTy)) {
5453     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5454                                       /*ForVTable=*/false);
5455     LT = getFunctionLinkage(GD);
5456   } else {
5457     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5458                                     /*D=*/nullptr);
5459     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5460       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5461     else
5462       LT = getFunctionLinkage(GD);
5463   }
5464 
5465   // Create the new alias itself, but don't set a name yet.
5466   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5467   auto *GA =
5468       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5469 
5470   if (Entry) {
5471     if (GA->getAliasee() == Entry) {
5472       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5473       return;
5474     }
5475 
5476     assert(Entry->isDeclaration());
5477 
5478     // If there is a declaration in the module, then we had an extern followed
5479     // by the alias, as in:
5480     //   extern int test6();
5481     //   ...
5482     //   int test6() __attribute__((alias("test7")));
5483     //
5484     // Remove it and replace uses of it with the alias.
5485     GA->takeName(Entry);
5486 
5487     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5488                                                           Entry->getType()));
5489     Entry->eraseFromParent();
5490   } else {
5491     GA->setName(MangledName);
5492   }
5493 
5494   // Set attributes which are particular to an alias; this is a
5495   // specialization of the attributes which may be set on a global
5496   // variable/function.
5497   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5498       D->isWeakImported()) {
5499     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5500   }
5501 
5502   if (const auto *VD = dyn_cast<VarDecl>(D))
5503     if (VD->getTLSKind())
5504       setTLSMode(GA, *VD);
5505 
5506   SetCommonAttributes(GD, GA);
5507 
5508   // Emit global alias debug information.
5509   if (isa<VarDecl>(D))
5510     if (CGDebugInfo *DI = getModuleDebugInfo())
5511       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5512 }
5513 
5514 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5515   const auto *D = cast<ValueDecl>(GD.getDecl());
5516   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5517   assert(IFA && "Not an ifunc?");
5518 
5519   StringRef MangledName = getMangledName(GD);
5520 
5521   if (IFA->getResolver() == MangledName) {
5522     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5523     return;
5524   }
5525 
5526   // Report an error if some definition overrides ifunc.
5527   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5528   if (Entry && !Entry->isDeclaration()) {
5529     GlobalDecl OtherGD;
5530     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5531         DiagnosedConflictingDefinitions.insert(GD).second) {
5532       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5533           << MangledName;
5534       Diags.Report(OtherGD.getDecl()->getLocation(),
5535                    diag::note_previous_definition);
5536     }
5537     return;
5538   }
5539 
5540   Aliases.push_back(GD);
5541 
5542   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5543   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5544   llvm::Constant *Resolver =
5545       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5546                               /*ForVTable=*/false);
5547   llvm::GlobalIFunc *GIF =
5548       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5549                                 "", Resolver, &getModule());
5550   if (Entry) {
5551     if (GIF->getResolver() == Entry) {
5552       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5553       return;
5554     }
5555     assert(Entry->isDeclaration());
5556 
5557     // If there is a declaration in the module, then we had an extern followed
5558     // by the ifunc, as in:
5559     //   extern int test();
5560     //   ...
5561     //   int test() __attribute__((ifunc("resolver")));
5562     //
5563     // Remove it and replace uses of it with the ifunc.
5564     GIF->takeName(Entry);
5565 
5566     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5567                                                           Entry->getType()));
5568     Entry->eraseFromParent();
5569   } else
5570     GIF->setName(MangledName);
5571 
5572   SetCommonAttributes(GD, GIF);
5573 }
5574 
5575 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5576                                             ArrayRef<llvm::Type*> Tys) {
5577   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5578                                          Tys);
5579 }
5580 
5581 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5582 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5583                          const StringLiteral *Literal, bool TargetIsLSB,
5584                          bool &IsUTF16, unsigned &StringLength) {
5585   StringRef String = Literal->getString();
5586   unsigned NumBytes = String.size();
5587 
5588   // Check for simple case.
5589   if (!Literal->containsNonAsciiOrNull()) {
5590     StringLength = NumBytes;
5591     return *Map.insert(std::make_pair(String, nullptr)).first;
5592   }
5593 
5594   // Otherwise, convert the UTF8 literals into a string of shorts.
5595   IsUTF16 = true;
5596 
5597   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5598   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5599   llvm::UTF16 *ToPtr = &ToBuf[0];
5600 
5601   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5602                                  ToPtr + NumBytes, llvm::strictConversion);
5603 
5604   // ConvertUTF8toUTF16 returns the length in ToPtr.
5605   StringLength = ToPtr - &ToBuf[0];
5606 
5607   // Add an explicit null.
5608   *ToPtr = 0;
5609   return *Map.insert(std::make_pair(
5610                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5611                                    (StringLength + 1) * 2),
5612                          nullptr)).first;
5613 }
5614 
5615 ConstantAddress
5616 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5617   unsigned StringLength = 0;
5618   bool isUTF16 = false;
5619   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5620       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5621                                getDataLayout().isLittleEndian(), isUTF16,
5622                                StringLength);
5623 
5624   if (auto *C = Entry.second)
5625     return ConstantAddress(
5626         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5627 
5628   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5629   llvm::Constant *Zeros[] = { Zero, Zero };
5630 
5631   const ASTContext &Context = getContext();
5632   const llvm::Triple &Triple = getTriple();
5633 
5634   const auto CFRuntime = getLangOpts().CFRuntime;
5635   const bool IsSwiftABI =
5636       static_cast<unsigned>(CFRuntime) >=
5637       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5638   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5639 
5640   // If we don't already have it, get __CFConstantStringClassReference.
5641   if (!CFConstantStringClassRef) {
5642     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5643     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5644     Ty = llvm::ArrayType::get(Ty, 0);
5645 
5646     switch (CFRuntime) {
5647     default: break;
5648     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5649     case LangOptions::CoreFoundationABI::Swift5_0:
5650       CFConstantStringClassName =
5651           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5652                               : "$s10Foundation19_NSCFConstantStringCN";
5653       Ty = IntPtrTy;
5654       break;
5655     case LangOptions::CoreFoundationABI::Swift4_2:
5656       CFConstantStringClassName =
5657           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5658                               : "$S10Foundation19_NSCFConstantStringCN";
5659       Ty = IntPtrTy;
5660       break;
5661     case LangOptions::CoreFoundationABI::Swift4_1:
5662       CFConstantStringClassName =
5663           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5664                               : "__T010Foundation19_NSCFConstantStringCN";
5665       Ty = IntPtrTy;
5666       break;
5667     }
5668 
5669     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5670 
5671     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5672       llvm::GlobalValue *GV = nullptr;
5673 
5674       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5675         IdentifierInfo &II = Context.Idents.get(GV->getName());
5676         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5677         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5678 
5679         const VarDecl *VD = nullptr;
5680         for (const auto *Result : DC->lookup(&II))
5681           if ((VD = dyn_cast<VarDecl>(Result)))
5682             break;
5683 
5684         if (Triple.isOSBinFormatELF()) {
5685           if (!VD)
5686             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5687         } else {
5688           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5689           if (!VD || !VD->hasAttr<DLLExportAttr>())
5690             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5691           else
5692             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5693         }
5694 
5695         setDSOLocal(GV);
5696       }
5697     }
5698 
5699     // Decay array -> ptr
5700     CFConstantStringClassRef =
5701         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5702                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5703   }
5704 
5705   QualType CFTy = Context.getCFConstantStringType();
5706 
5707   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5708 
5709   ConstantInitBuilder Builder(*this);
5710   auto Fields = Builder.beginStruct(STy);
5711 
5712   // Class pointer.
5713   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5714 
5715   // Flags.
5716   if (IsSwiftABI) {
5717     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5718     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5719   } else {
5720     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5721   }
5722 
5723   // String pointer.
5724   llvm::Constant *C = nullptr;
5725   if (isUTF16) {
5726     auto Arr = llvm::ArrayRef(
5727         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5728         Entry.first().size() / 2);
5729     C = llvm::ConstantDataArray::get(VMContext, Arr);
5730   } else {
5731     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5732   }
5733 
5734   // Note: -fwritable-strings doesn't make the backing store strings of
5735   // CFStrings writable. (See <rdar://problem/10657500>)
5736   auto *GV =
5737       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5738                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5739   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5740   // Don't enforce the target's minimum global alignment, since the only use
5741   // of the string is via this class initializer.
5742   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5743                             : Context.getTypeAlignInChars(Context.CharTy);
5744   GV->setAlignment(Align.getAsAlign());
5745 
5746   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5747   // Without it LLVM can merge the string with a non unnamed_addr one during
5748   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5749   if (Triple.isOSBinFormatMachO())
5750     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5751                            : "__TEXT,__cstring,cstring_literals");
5752   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5753   // the static linker to adjust permissions to read-only later on.
5754   else if (Triple.isOSBinFormatELF())
5755     GV->setSection(".rodata");
5756 
5757   // String.
5758   llvm::Constant *Str =
5759       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5760 
5761   if (isUTF16)
5762     // Cast the UTF16 string to the correct type.
5763     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5764   Fields.add(Str);
5765 
5766   // String length.
5767   llvm::IntegerType *LengthTy =
5768       llvm::IntegerType::get(getModule().getContext(),
5769                              Context.getTargetInfo().getLongWidth());
5770   if (IsSwiftABI) {
5771     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5772         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5773       LengthTy = Int32Ty;
5774     else
5775       LengthTy = IntPtrTy;
5776   }
5777   Fields.addInt(LengthTy, StringLength);
5778 
5779   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5780   // properly aligned on 32-bit platforms.
5781   CharUnits Alignment =
5782       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5783 
5784   // The struct.
5785   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5786                                     /*isConstant=*/false,
5787                                     llvm::GlobalVariable::PrivateLinkage);
5788   GV->addAttribute("objc_arc_inert");
5789   switch (Triple.getObjectFormat()) {
5790   case llvm::Triple::UnknownObjectFormat:
5791     llvm_unreachable("unknown file format");
5792   case llvm::Triple::DXContainer:
5793   case llvm::Triple::GOFF:
5794   case llvm::Triple::SPIRV:
5795   case llvm::Triple::XCOFF:
5796     llvm_unreachable("unimplemented");
5797   case llvm::Triple::COFF:
5798   case llvm::Triple::ELF:
5799   case llvm::Triple::Wasm:
5800     GV->setSection("cfstring");
5801     break;
5802   case llvm::Triple::MachO:
5803     GV->setSection("__DATA,__cfstring");
5804     break;
5805   }
5806   Entry.second = GV;
5807 
5808   return ConstantAddress(GV, GV->getValueType(), Alignment);
5809 }
5810 
5811 bool CodeGenModule::getExpressionLocationsEnabled() const {
5812   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5813 }
5814 
5815 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5816   if (ObjCFastEnumerationStateType.isNull()) {
5817     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5818     D->startDefinition();
5819 
5820     QualType FieldTypes[] = {
5821       Context.UnsignedLongTy,
5822       Context.getPointerType(Context.getObjCIdType()),
5823       Context.getPointerType(Context.UnsignedLongTy),
5824       Context.getConstantArrayType(Context.UnsignedLongTy,
5825                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5826     };
5827 
5828     for (size_t i = 0; i < 4; ++i) {
5829       FieldDecl *Field = FieldDecl::Create(Context,
5830                                            D,
5831                                            SourceLocation(),
5832                                            SourceLocation(), nullptr,
5833                                            FieldTypes[i], /*TInfo=*/nullptr,
5834                                            /*BitWidth=*/nullptr,
5835                                            /*Mutable=*/false,
5836                                            ICIS_NoInit);
5837       Field->setAccess(AS_public);
5838       D->addDecl(Field);
5839     }
5840 
5841     D->completeDefinition();
5842     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5843   }
5844 
5845   return ObjCFastEnumerationStateType;
5846 }
5847 
5848 llvm::Constant *
5849 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5850   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5851 
5852   // Don't emit it as the address of the string, emit the string data itself
5853   // as an inline array.
5854   if (E->getCharByteWidth() == 1) {
5855     SmallString<64> Str(E->getString());
5856 
5857     // Resize the string to the right size, which is indicated by its type.
5858     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5859     Str.resize(CAT->getSize().getZExtValue());
5860     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5861   }
5862 
5863   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5864   llvm::Type *ElemTy = AType->getElementType();
5865   unsigned NumElements = AType->getNumElements();
5866 
5867   // Wide strings have either 2-byte or 4-byte elements.
5868   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5869     SmallVector<uint16_t, 32> Elements;
5870     Elements.reserve(NumElements);
5871 
5872     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5873       Elements.push_back(E->getCodeUnit(i));
5874     Elements.resize(NumElements);
5875     return llvm::ConstantDataArray::get(VMContext, Elements);
5876   }
5877 
5878   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5879   SmallVector<uint32_t, 32> Elements;
5880   Elements.reserve(NumElements);
5881 
5882   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5883     Elements.push_back(E->getCodeUnit(i));
5884   Elements.resize(NumElements);
5885   return llvm::ConstantDataArray::get(VMContext, Elements);
5886 }
5887 
5888 static llvm::GlobalVariable *
5889 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5890                       CodeGenModule &CGM, StringRef GlobalName,
5891                       CharUnits Alignment) {
5892   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5893       CGM.GetGlobalConstantAddressSpace());
5894 
5895   llvm::Module &M = CGM.getModule();
5896   // Create a global variable for this string
5897   auto *GV = new llvm::GlobalVariable(
5898       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5899       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5900   GV->setAlignment(Alignment.getAsAlign());
5901   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5902   if (GV->isWeakForLinker()) {
5903     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5904     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5905   }
5906   CGM.setDSOLocal(GV);
5907 
5908   return GV;
5909 }
5910 
5911 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5912 /// constant array for the given string literal.
5913 ConstantAddress
5914 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5915                                                   StringRef Name) {
5916   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5917 
5918   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5919   llvm::GlobalVariable **Entry = nullptr;
5920   if (!LangOpts.WritableStrings) {
5921     Entry = &ConstantStringMap[C];
5922     if (auto GV = *Entry) {
5923       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5924         GV->setAlignment(Alignment.getAsAlign());
5925       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5926                              GV->getValueType(), Alignment);
5927     }
5928   }
5929 
5930   SmallString<256> MangledNameBuffer;
5931   StringRef GlobalVariableName;
5932   llvm::GlobalValue::LinkageTypes LT;
5933 
5934   // Mangle the string literal if that's how the ABI merges duplicate strings.
5935   // Don't do it if they are writable, since we don't want writes in one TU to
5936   // affect strings in another.
5937   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5938       !LangOpts.WritableStrings) {
5939     llvm::raw_svector_ostream Out(MangledNameBuffer);
5940     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5941     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5942     GlobalVariableName = MangledNameBuffer;
5943   } else {
5944     LT = llvm::GlobalValue::PrivateLinkage;
5945     GlobalVariableName = Name;
5946   }
5947 
5948   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5949 
5950   CGDebugInfo *DI = getModuleDebugInfo();
5951   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5952     DI->AddStringLiteralDebugInfo(GV, S);
5953 
5954   if (Entry)
5955     *Entry = GV;
5956 
5957   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5958 
5959   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5960                          GV->getValueType(), Alignment);
5961 }
5962 
5963 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5964 /// array for the given ObjCEncodeExpr node.
5965 ConstantAddress
5966 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5967   std::string Str;
5968   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5969 
5970   return GetAddrOfConstantCString(Str);
5971 }
5972 
5973 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5974 /// the literal and a terminating '\0' character.
5975 /// The result has pointer to array type.
5976 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5977     const std::string &Str, const char *GlobalName) {
5978   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5979   CharUnits Alignment =
5980     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5981 
5982   llvm::Constant *C =
5983       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5984 
5985   // Don't share any string literals if strings aren't constant.
5986   llvm::GlobalVariable **Entry = nullptr;
5987   if (!LangOpts.WritableStrings) {
5988     Entry = &ConstantStringMap[C];
5989     if (auto GV = *Entry) {
5990       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5991         GV->setAlignment(Alignment.getAsAlign());
5992       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5993                              GV->getValueType(), Alignment);
5994     }
5995   }
5996 
5997   // Get the default prefix if a name wasn't specified.
5998   if (!GlobalName)
5999     GlobalName = ".str";
6000   // Create a global variable for this.
6001   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6002                                   GlobalName, Alignment);
6003   if (Entry)
6004     *Entry = GV;
6005 
6006   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6007                          GV->getValueType(), Alignment);
6008 }
6009 
6010 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6011     const MaterializeTemporaryExpr *E, const Expr *Init) {
6012   assert((E->getStorageDuration() == SD_Static ||
6013           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6014   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6015 
6016   // If we're not materializing a subobject of the temporary, keep the
6017   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6018   QualType MaterializedType = Init->getType();
6019   if (Init == E->getSubExpr())
6020     MaterializedType = E->getType();
6021 
6022   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6023 
6024   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6025   if (!InsertResult.second) {
6026     // We've seen this before: either we already created it or we're in the
6027     // process of doing so.
6028     if (!InsertResult.first->second) {
6029       // We recursively re-entered this function, probably during emission of
6030       // the initializer. Create a placeholder. We'll clean this up in the
6031       // outer call, at the end of this function.
6032       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6033       InsertResult.first->second = new llvm::GlobalVariable(
6034           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6035           nullptr);
6036     }
6037     return ConstantAddress(InsertResult.first->second,
6038                            llvm::cast<llvm::GlobalVariable>(
6039                                InsertResult.first->second->stripPointerCasts())
6040                                ->getValueType(),
6041                            Align);
6042   }
6043 
6044   // FIXME: If an externally-visible declaration extends multiple temporaries,
6045   // we need to give each temporary the same name in every translation unit (and
6046   // we also need to make the temporaries externally-visible).
6047   SmallString<256> Name;
6048   llvm::raw_svector_ostream Out(Name);
6049   getCXXABI().getMangleContext().mangleReferenceTemporary(
6050       VD, E->getManglingNumber(), Out);
6051 
6052   APValue *Value = nullptr;
6053   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
6054     // If the initializer of the extending declaration is a constant
6055     // initializer, we should have a cached constant initializer for this
6056     // temporary. Note that this might have a different value from the value
6057     // computed by evaluating the initializer if the surrounding constant
6058     // expression modifies the temporary.
6059     Value = E->getOrCreateValue(false);
6060   }
6061 
6062   // Try evaluating it now, it might have a constant initializer.
6063   Expr::EvalResult EvalResult;
6064   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6065       !EvalResult.hasSideEffects())
6066     Value = &EvalResult.Val;
6067 
6068   LangAS AddrSpace =
6069       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
6070 
6071   std::optional<ConstantEmitter> emitter;
6072   llvm::Constant *InitialValue = nullptr;
6073   bool Constant = false;
6074   llvm::Type *Type;
6075   if (Value) {
6076     // The temporary has a constant initializer, use it.
6077     emitter.emplace(*this);
6078     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6079                                                MaterializedType);
6080     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
6081     Type = InitialValue->getType();
6082   } else {
6083     // No initializer, the initialization will be provided when we
6084     // initialize the declaration which performed lifetime extension.
6085     Type = getTypes().ConvertTypeForMem(MaterializedType);
6086   }
6087 
6088   // Create a global variable for this lifetime-extended temporary.
6089   llvm::GlobalValue::LinkageTypes Linkage =
6090       getLLVMLinkageVarDefinition(VD, Constant);
6091   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6092     const VarDecl *InitVD;
6093     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6094         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6095       // Temporaries defined inside a class get linkonce_odr linkage because the
6096       // class can be defined in multiple translation units.
6097       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6098     } else {
6099       // There is no need for this temporary to have external linkage if the
6100       // VarDecl has external linkage.
6101       Linkage = llvm::GlobalVariable::InternalLinkage;
6102     }
6103   }
6104   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6105   auto *GV = new llvm::GlobalVariable(
6106       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6107       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6108   if (emitter) emitter->finalize(GV);
6109   // Don't assign dllimport or dllexport to local linkage globals.
6110   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6111     setGVProperties(GV, VD);
6112     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6113       // The reference temporary should never be dllexport.
6114       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6115   }
6116   GV->setAlignment(Align.getAsAlign());
6117   if (supportsCOMDAT() && GV->isWeakForLinker())
6118     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6119   if (VD->getTLSKind())
6120     setTLSMode(GV, *VD);
6121   llvm::Constant *CV = GV;
6122   if (AddrSpace != LangAS::Default)
6123     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6124         *this, GV, AddrSpace, LangAS::Default,
6125         Type->getPointerTo(
6126             getContext().getTargetAddressSpace(LangAS::Default)));
6127 
6128   // Update the map with the new temporary. If we created a placeholder above,
6129   // replace it with the new global now.
6130   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6131   if (Entry) {
6132     Entry->replaceAllUsesWith(
6133         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
6134     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6135   }
6136   Entry = CV;
6137 
6138   return ConstantAddress(CV, Type, Align);
6139 }
6140 
6141 /// EmitObjCPropertyImplementations - Emit information for synthesized
6142 /// properties for an implementation.
6143 void CodeGenModule::EmitObjCPropertyImplementations(const
6144                                                     ObjCImplementationDecl *D) {
6145   for (const auto *PID : D->property_impls()) {
6146     // Dynamic is just for type-checking.
6147     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6148       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6149 
6150       // Determine which methods need to be implemented, some may have
6151       // been overridden. Note that ::isPropertyAccessor is not the method
6152       // we want, that just indicates if the decl came from a
6153       // property. What we want to know is if the method is defined in
6154       // this implementation.
6155       auto *Getter = PID->getGetterMethodDecl();
6156       if (!Getter || Getter->isSynthesizedAccessorStub())
6157         CodeGenFunction(*this).GenerateObjCGetter(
6158             const_cast<ObjCImplementationDecl *>(D), PID);
6159       auto *Setter = PID->getSetterMethodDecl();
6160       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6161         CodeGenFunction(*this).GenerateObjCSetter(
6162                                  const_cast<ObjCImplementationDecl *>(D), PID);
6163     }
6164   }
6165 }
6166 
6167 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6168   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6169   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6170        ivar; ivar = ivar->getNextIvar())
6171     if (ivar->getType().isDestructedType())
6172       return true;
6173 
6174   return false;
6175 }
6176 
6177 static bool AllTrivialInitializers(CodeGenModule &CGM,
6178                                    ObjCImplementationDecl *D) {
6179   CodeGenFunction CGF(CGM);
6180   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6181        E = D->init_end(); B != E; ++B) {
6182     CXXCtorInitializer *CtorInitExp = *B;
6183     Expr *Init = CtorInitExp->getInit();
6184     if (!CGF.isTrivialInitializer(Init))
6185       return false;
6186   }
6187   return true;
6188 }
6189 
6190 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6191 /// for an implementation.
6192 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6193   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6194   if (needsDestructMethod(D)) {
6195     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6196     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6197     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6198         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6199         getContext().VoidTy, nullptr, D,
6200         /*isInstance=*/true, /*isVariadic=*/false,
6201         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6202         /*isImplicitlyDeclared=*/true,
6203         /*isDefined=*/false, ObjCMethodDecl::Required);
6204     D->addInstanceMethod(DTORMethod);
6205     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6206     D->setHasDestructors(true);
6207   }
6208 
6209   // If the implementation doesn't have any ivar initializers, we don't need
6210   // a .cxx_construct.
6211   if (D->getNumIvarInitializers() == 0 ||
6212       AllTrivialInitializers(*this, D))
6213     return;
6214 
6215   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6216   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6217   // The constructor returns 'self'.
6218   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6219       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6220       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6221       /*isVariadic=*/false,
6222       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6223       /*isImplicitlyDeclared=*/true,
6224       /*isDefined=*/false, ObjCMethodDecl::Required);
6225   D->addInstanceMethod(CTORMethod);
6226   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6227   D->setHasNonZeroConstructors(true);
6228 }
6229 
6230 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6231 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6232   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6233       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6234     ErrorUnsupported(LSD, "linkage spec");
6235     return;
6236   }
6237 
6238   EmitDeclContext(LSD);
6239 }
6240 
6241 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6242   std::unique_ptr<CodeGenFunction> &CurCGF =
6243       GlobalTopLevelStmtBlockInFlight.first;
6244 
6245   // We emitted a top-level stmt but after it there is initialization.
6246   // Stop squashing the top-level stmts into a single function.
6247   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6248     CurCGF->FinishFunction(D->getEndLoc());
6249     CurCGF = nullptr;
6250   }
6251 
6252   if (!CurCGF) {
6253     // void __stmts__N(void)
6254     // FIXME: Ask the ABI name mangler to pick a name.
6255     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6256     FunctionArgList Args;
6257     QualType RetTy = getContext().VoidTy;
6258     const CGFunctionInfo &FnInfo =
6259         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6260     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6261     llvm::Function *Fn = llvm::Function::Create(
6262         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6263 
6264     CurCGF.reset(new CodeGenFunction(*this));
6265     GlobalTopLevelStmtBlockInFlight.second = D;
6266     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6267                           D->getBeginLoc(), D->getBeginLoc());
6268     CXXGlobalInits.push_back(Fn);
6269   }
6270 
6271   CurCGF->EmitStmt(D->getStmt());
6272 }
6273 
6274 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6275   for (auto *I : DC->decls()) {
6276     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6277     // are themselves considered "top-level", so EmitTopLevelDecl on an
6278     // ObjCImplDecl does not recursively visit them. We need to do that in
6279     // case they're nested inside another construct (LinkageSpecDecl /
6280     // ExportDecl) that does stop them from being considered "top-level".
6281     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6282       for (auto *M : OID->methods())
6283         EmitTopLevelDecl(M);
6284     }
6285 
6286     EmitTopLevelDecl(I);
6287   }
6288 }
6289 
6290 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6291 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6292   // Ignore dependent declarations.
6293   if (D->isTemplated())
6294     return;
6295 
6296   // Consteval function shouldn't be emitted.
6297   if (auto *FD = dyn_cast<FunctionDecl>(D))
6298     if (FD->isConsteval())
6299       return;
6300 
6301   switch (D->getKind()) {
6302   case Decl::CXXConversion:
6303   case Decl::CXXMethod:
6304   case Decl::Function:
6305     EmitGlobal(cast<FunctionDecl>(D));
6306     // Always provide some coverage mapping
6307     // even for the functions that aren't emitted.
6308     AddDeferredUnusedCoverageMapping(D);
6309     break;
6310 
6311   case Decl::CXXDeductionGuide:
6312     // Function-like, but does not result in code emission.
6313     break;
6314 
6315   case Decl::Var:
6316   case Decl::Decomposition:
6317   case Decl::VarTemplateSpecialization:
6318     EmitGlobal(cast<VarDecl>(D));
6319     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6320       for (auto *B : DD->bindings())
6321         if (auto *HD = B->getHoldingVar())
6322           EmitGlobal(HD);
6323     break;
6324 
6325   // Indirect fields from global anonymous structs and unions can be
6326   // ignored; only the actual variable requires IR gen support.
6327   case Decl::IndirectField:
6328     break;
6329 
6330   // C++ Decls
6331   case Decl::Namespace:
6332     EmitDeclContext(cast<NamespaceDecl>(D));
6333     break;
6334   case Decl::ClassTemplateSpecialization: {
6335     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6336     if (CGDebugInfo *DI = getModuleDebugInfo())
6337       if (Spec->getSpecializationKind() ==
6338               TSK_ExplicitInstantiationDefinition &&
6339           Spec->hasDefinition())
6340         DI->completeTemplateDefinition(*Spec);
6341   } [[fallthrough]];
6342   case Decl::CXXRecord: {
6343     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6344     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6345       if (CRD->hasDefinition())
6346         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6347       if (auto *ES = D->getASTContext().getExternalSource())
6348         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6349           DI->completeUnusedClass(*CRD);
6350     }
6351     // Emit any static data members, they may be definitions.
6352     for (auto *I : CRD->decls())
6353       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6354         EmitTopLevelDecl(I);
6355     break;
6356   }
6357     // No code generation needed.
6358   case Decl::UsingShadow:
6359   case Decl::ClassTemplate:
6360   case Decl::VarTemplate:
6361   case Decl::Concept:
6362   case Decl::VarTemplatePartialSpecialization:
6363   case Decl::FunctionTemplate:
6364   case Decl::TypeAliasTemplate:
6365   case Decl::Block:
6366   case Decl::Empty:
6367   case Decl::Binding:
6368     break;
6369   case Decl::Using:          // using X; [C++]
6370     if (CGDebugInfo *DI = getModuleDebugInfo())
6371         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6372     break;
6373   case Decl::UsingEnum: // using enum X; [C++]
6374     if (CGDebugInfo *DI = getModuleDebugInfo())
6375       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6376     break;
6377   case Decl::NamespaceAlias:
6378     if (CGDebugInfo *DI = getModuleDebugInfo())
6379         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6380     break;
6381   case Decl::UsingDirective: // using namespace X; [C++]
6382     if (CGDebugInfo *DI = getModuleDebugInfo())
6383       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6384     break;
6385   case Decl::CXXConstructor:
6386     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6387     break;
6388   case Decl::CXXDestructor:
6389     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6390     break;
6391 
6392   case Decl::StaticAssert:
6393     // Nothing to do.
6394     break;
6395 
6396   // Objective-C Decls
6397 
6398   // Forward declarations, no (immediate) code generation.
6399   case Decl::ObjCInterface:
6400   case Decl::ObjCCategory:
6401     break;
6402 
6403   case Decl::ObjCProtocol: {
6404     auto *Proto = cast<ObjCProtocolDecl>(D);
6405     if (Proto->isThisDeclarationADefinition())
6406       ObjCRuntime->GenerateProtocol(Proto);
6407     break;
6408   }
6409 
6410   case Decl::ObjCCategoryImpl:
6411     // Categories have properties but don't support synthesize so we
6412     // can ignore them here.
6413     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6414     break;
6415 
6416   case Decl::ObjCImplementation: {
6417     auto *OMD = cast<ObjCImplementationDecl>(D);
6418     EmitObjCPropertyImplementations(OMD);
6419     EmitObjCIvarInitializations(OMD);
6420     ObjCRuntime->GenerateClass(OMD);
6421     // Emit global variable debug information.
6422     if (CGDebugInfo *DI = getModuleDebugInfo())
6423       if (getCodeGenOpts().hasReducedDebugInfo())
6424         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6425             OMD->getClassInterface()), OMD->getLocation());
6426     break;
6427   }
6428   case Decl::ObjCMethod: {
6429     auto *OMD = cast<ObjCMethodDecl>(D);
6430     // If this is not a prototype, emit the body.
6431     if (OMD->getBody())
6432       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6433     break;
6434   }
6435   case Decl::ObjCCompatibleAlias:
6436     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6437     break;
6438 
6439   case Decl::PragmaComment: {
6440     const auto *PCD = cast<PragmaCommentDecl>(D);
6441     switch (PCD->getCommentKind()) {
6442     case PCK_Unknown:
6443       llvm_unreachable("unexpected pragma comment kind");
6444     case PCK_Linker:
6445       AppendLinkerOptions(PCD->getArg());
6446       break;
6447     case PCK_Lib:
6448         AddDependentLib(PCD->getArg());
6449       break;
6450     case PCK_Compiler:
6451     case PCK_ExeStr:
6452     case PCK_User:
6453       break; // We ignore all of these.
6454     }
6455     break;
6456   }
6457 
6458   case Decl::PragmaDetectMismatch: {
6459     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6460     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6461     break;
6462   }
6463 
6464   case Decl::LinkageSpec:
6465     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6466     break;
6467 
6468   case Decl::FileScopeAsm: {
6469     // File-scope asm is ignored during device-side CUDA compilation.
6470     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6471       break;
6472     // File-scope asm is ignored during device-side OpenMP compilation.
6473     if (LangOpts.OpenMPIsDevice)
6474       break;
6475     // File-scope asm is ignored during device-side SYCL compilation.
6476     if (LangOpts.SYCLIsDevice)
6477       break;
6478     auto *AD = cast<FileScopeAsmDecl>(D);
6479     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6480     break;
6481   }
6482 
6483   case Decl::TopLevelStmt:
6484     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
6485     break;
6486 
6487   case Decl::Import: {
6488     auto *Import = cast<ImportDecl>(D);
6489 
6490     // If we've already imported this module, we're done.
6491     if (!ImportedModules.insert(Import->getImportedModule()))
6492       break;
6493 
6494     // Emit debug information for direct imports.
6495     if (!Import->getImportedOwningModule()) {
6496       if (CGDebugInfo *DI = getModuleDebugInfo())
6497         DI->EmitImportDecl(*Import);
6498     }
6499 
6500     // For C++ standard modules we are done - we will call the module
6501     // initializer for imported modules, and that will likewise call those for
6502     // any imports it has.
6503     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6504         !Import->getImportedOwningModule()->isModuleMapModule())
6505       break;
6506 
6507     // For clang C++ module map modules the initializers for sub-modules are
6508     // emitted here.
6509 
6510     // Find all of the submodules and emit the module initializers.
6511     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6512     SmallVector<clang::Module *, 16> Stack;
6513     Visited.insert(Import->getImportedModule());
6514     Stack.push_back(Import->getImportedModule());
6515 
6516     while (!Stack.empty()) {
6517       clang::Module *Mod = Stack.pop_back_val();
6518       if (!EmittedModuleInitializers.insert(Mod).second)
6519         continue;
6520 
6521       for (auto *D : Context.getModuleInitializers(Mod))
6522         EmitTopLevelDecl(D);
6523 
6524       // Visit the submodules of this module.
6525       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6526                                              SubEnd = Mod->submodule_end();
6527            Sub != SubEnd; ++Sub) {
6528         // Skip explicit children; they need to be explicitly imported to emit
6529         // the initializers.
6530         if ((*Sub)->IsExplicit)
6531           continue;
6532 
6533         if (Visited.insert(*Sub).second)
6534           Stack.push_back(*Sub);
6535       }
6536     }
6537     break;
6538   }
6539 
6540   case Decl::Export:
6541     EmitDeclContext(cast<ExportDecl>(D));
6542     break;
6543 
6544   case Decl::OMPThreadPrivate:
6545     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6546     break;
6547 
6548   case Decl::OMPAllocate:
6549     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6550     break;
6551 
6552   case Decl::OMPDeclareReduction:
6553     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6554     break;
6555 
6556   case Decl::OMPDeclareMapper:
6557     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6558     break;
6559 
6560   case Decl::OMPRequires:
6561     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6562     break;
6563 
6564   case Decl::Typedef:
6565   case Decl::TypeAlias: // using foo = bar; [C++11]
6566     if (CGDebugInfo *DI = getModuleDebugInfo())
6567       DI->EmitAndRetainType(
6568           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6569     break;
6570 
6571   case Decl::Record:
6572     if (CGDebugInfo *DI = getModuleDebugInfo())
6573       if (cast<RecordDecl>(D)->getDefinition())
6574         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6575     break;
6576 
6577   case Decl::Enum:
6578     if (CGDebugInfo *DI = getModuleDebugInfo())
6579       if (cast<EnumDecl>(D)->getDefinition())
6580         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6581     break;
6582 
6583   case Decl::HLSLBuffer:
6584     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
6585     break;
6586 
6587   default:
6588     // Make sure we handled everything we should, every other kind is a
6589     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6590     // function. Need to recode Decl::Kind to do that easily.
6591     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6592     break;
6593   }
6594 }
6595 
6596 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6597   // Do we need to generate coverage mapping?
6598   if (!CodeGenOpts.CoverageMapping)
6599     return;
6600   switch (D->getKind()) {
6601   case Decl::CXXConversion:
6602   case Decl::CXXMethod:
6603   case Decl::Function:
6604   case Decl::ObjCMethod:
6605   case Decl::CXXConstructor:
6606   case Decl::CXXDestructor: {
6607     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6608       break;
6609     SourceManager &SM = getContext().getSourceManager();
6610     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6611       break;
6612     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6613     if (I == DeferredEmptyCoverageMappingDecls.end())
6614       DeferredEmptyCoverageMappingDecls[D] = true;
6615     break;
6616   }
6617   default:
6618     break;
6619   };
6620 }
6621 
6622 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6623   // Do we need to generate coverage mapping?
6624   if (!CodeGenOpts.CoverageMapping)
6625     return;
6626   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6627     if (Fn->isTemplateInstantiation())
6628       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6629   }
6630   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6631   if (I == DeferredEmptyCoverageMappingDecls.end())
6632     DeferredEmptyCoverageMappingDecls[D] = false;
6633   else
6634     I->second = false;
6635 }
6636 
6637 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6638   // We call takeVector() here to avoid use-after-free.
6639   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6640   // we deserialize function bodies to emit coverage info for them, and that
6641   // deserializes more declarations. How should we handle that case?
6642   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6643     if (!Entry.second)
6644       continue;
6645     const Decl *D = Entry.first;
6646     switch (D->getKind()) {
6647     case Decl::CXXConversion:
6648     case Decl::CXXMethod:
6649     case Decl::Function:
6650     case Decl::ObjCMethod: {
6651       CodeGenPGO PGO(*this);
6652       GlobalDecl GD(cast<FunctionDecl>(D));
6653       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6654                                   getFunctionLinkage(GD));
6655       break;
6656     }
6657     case Decl::CXXConstructor: {
6658       CodeGenPGO PGO(*this);
6659       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6660       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6661                                   getFunctionLinkage(GD));
6662       break;
6663     }
6664     case Decl::CXXDestructor: {
6665       CodeGenPGO PGO(*this);
6666       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6667       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6668                                   getFunctionLinkage(GD));
6669       break;
6670     }
6671     default:
6672       break;
6673     };
6674   }
6675 }
6676 
6677 void CodeGenModule::EmitMainVoidAlias() {
6678   // In order to transition away from "__original_main" gracefully, emit an
6679   // alias for "main" in the no-argument case so that libc can detect when
6680   // new-style no-argument main is in used.
6681   if (llvm::Function *F = getModule().getFunction("main")) {
6682     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6683         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6684       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6685       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6686     }
6687   }
6688 }
6689 
6690 /// Turns the given pointer into a constant.
6691 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6692                                           const void *Ptr) {
6693   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6694   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6695   return llvm::ConstantInt::get(i64, PtrInt);
6696 }
6697 
6698 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6699                                    llvm::NamedMDNode *&GlobalMetadata,
6700                                    GlobalDecl D,
6701                                    llvm::GlobalValue *Addr) {
6702   if (!GlobalMetadata)
6703     GlobalMetadata =
6704       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6705 
6706   // TODO: should we report variant information for ctors/dtors?
6707   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6708                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6709                                CGM.getLLVMContext(), D.getDecl()))};
6710   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6711 }
6712 
6713 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6714                                                  llvm::GlobalValue *CppFunc) {
6715   // Store the list of ifuncs we need to replace uses in.
6716   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6717   // List of ConstantExprs that we should be able to delete when we're done
6718   // here.
6719   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6720 
6721   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6722   if (Elem == CppFunc)
6723     return false;
6724 
6725   // First make sure that all users of this are ifuncs (or ifuncs via a
6726   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6727   // later.
6728   for (llvm::User *User : Elem->users()) {
6729     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6730     // ifunc directly. In any other case, just give up, as we don't know what we
6731     // could break by changing those.
6732     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6733       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6734         return false;
6735 
6736       for (llvm::User *CEUser : ConstExpr->users()) {
6737         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6738           IFuncs.push_back(IFunc);
6739         } else {
6740           return false;
6741         }
6742       }
6743       CEs.push_back(ConstExpr);
6744     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6745       IFuncs.push_back(IFunc);
6746     } else {
6747       // This user is one we don't know how to handle, so fail redirection. This
6748       // will result in an ifunc retaining a resolver name that will ultimately
6749       // fail to be resolved to a defined function.
6750       return false;
6751     }
6752   }
6753 
6754   // Now we know this is a valid case where we can do this alias replacement, we
6755   // need to remove all of the references to Elem (and the bitcasts!) so we can
6756   // delete it.
6757   for (llvm::GlobalIFunc *IFunc : IFuncs)
6758     IFunc->setResolver(nullptr);
6759   for (llvm::ConstantExpr *ConstExpr : CEs)
6760     ConstExpr->destroyConstant();
6761 
6762   // We should now be out of uses for the 'old' version of this function, so we
6763   // can erase it as well.
6764   Elem->eraseFromParent();
6765 
6766   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6767     // The type of the resolver is always just a function-type that returns the
6768     // type of the IFunc, so create that here. If the type of the actual
6769     // resolver doesn't match, it just gets bitcast to the right thing.
6770     auto *ResolverTy =
6771         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6772     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6773         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6774     IFunc->setResolver(Resolver);
6775   }
6776   return true;
6777 }
6778 
6779 /// For each function which is declared within an extern "C" region and marked
6780 /// as 'used', but has internal linkage, create an alias from the unmangled
6781 /// name to the mangled name if possible. People expect to be able to refer
6782 /// to such functions with an unmangled name from inline assembly within the
6783 /// same translation unit.
6784 void CodeGenModule::EmitStaticExternCAliases() {
6785   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6786     return;
6787   for (auto &I : StaticExternCValues) {
6788     IdentifierInfo *Name = I.first;
6789     llvm::GlobalValue *Val = I.second;
6790 
6791     // If Val is null, that implies there were multiple declarations that each
6792     // had a claim to the unmangled name. In this case, generation of the alias
6793     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6794     if (!Val)
6795       break;
6796 
6797     llvm::GlobalValue *ExistingElem =
6798         getModule().getNamedValue(Name->getName());
6799 
6800     // If there is either not something already by this name, or we were able to
6801     // replace all uses from IFuncs, create the alias.
6802     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6803       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6804   }
6805 }
6806 
6807 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6808                                              GlobalDecl &Result) const {
6809   auto Res = Manglings.find(MangledName);
6810   if (Res == Manglings.end())
6811     return false;
6812   Result = Res->getValue();
6813   return true;
6814 }
6815 
6816 /// Emits metadata nodes associating all the global values in the
6817 /// current module with the Decls they came from.  This is useful for
6818 /// projects using IR gen as a subroutine.
6819 ///
6820 /// Since there's currently no way to associate an MDNode directly
6821 /// with an llvm::GlobalValue, we create a global named metadata
6822 /// with the name 'clang.global.decl.ptrs'.
6823 void CodeGenModule::EmitDeclMetadata() {
6824   llvm::NamedMDNode *GlobalMetadata = nullptr;
6825 
6826   for (auto &I : MangledDeclNames) {
6827     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6828     // Some mangled names don't necessarily have an associated GlobalValue
6829     // in this module, e.g. if we mangled it for DebugInfo.
6830     if (Addr)
6831       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6832   }
6833 }
6834 
6835 /// Emits metadata nodes for all the local variables in the current
6836 /// function.
6837 void CodeGenFunction::EmitDeclMetadata() {
6838   if (LocalDeclMap.empty()) return;
6839 
6840   llvm::LLVMContext &Context = getLLVMContext();
6841 
6842   // Find the unique metadata ID for this name.
6843   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6844 
6845   llvm::NamedMDNode *GlobalMetadata = nullptr;
6846 
6847   for (auto &I : LocalDeclMap) {
6848     const Decl *D = I.first;
6849     llvm::Value *Addr = I.second.getPointer();
6850     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6851       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6852       Alloca->setMetadata(
6853           DeclPtrKind, llvm::MDNode::get(
6854                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6855     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6856       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6857       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6858     }
6859   }
6860 }
6861 
6862 void CodeGenModule::EmitVersionIdentMetadata() {
6863   llvm::NamedMDNode *IdentMetadata =
6864     TheModule.getOrInsertNamedMetadata("llvm.ident");
6865   std::string Version = getClangFullVersion();
6866   llvm::LLVMContext &Ctx = TheModule.getContext();
6867 
6868   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6869   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6870 }
6871 
6872 void CodeGenModule::EmitCommandLineMetadata() {
6873   llvm::NamedMDNode *CommandLineMetadata =
6874     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6875   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6876   llvm::LLVMContext &Ctx = TheModule.getContext();
6877 
6878   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6879   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6880 }
6881 
6882 void CodeGenModule::EmitCoverageFile() {
6883   if (getCodeGenOpts().CoverageDataFile.empty() &&
6884       getCodeGenOpts().CoverageNotesFile.empty())
6885     return;
6886 
6887   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6888   if (!CUNode)
6889     return;
6890 
6891   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6892   llvm::LLVMContext &Ctx = TheModule.getContext();
6893   auto *CoverageDataFile =
6894       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6895   auto *CoverageNotesFile =
6896       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6897   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6898     llvm::MDNode *CU = CUNode->getOperand(i);
6899     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6900     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6901   }
6902 }
6903 
6904 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6905                                                        bool ForEH) {
6906   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6907   // FIXME: should we even be calling this method if RTTI is disabled
6908   // and it's not for EH?
6909   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6910       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6911        getTriple().isNVPTX()))
6912     return llvm::Constant::getNullValue(Int8PtrTy);
6913 
6914   if (ForEH && Ty->isObjCObjectPointerType() &&
6915       LangOpts.ObjCRuntime.isGNUFamily())
6916     return ObjCRuntime->GetEHType(Ty);
6917 
6918   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6919 }
6920 
6921 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6922   // Do not emit threadprivates in simd-only mode.
6923   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6924     return;
6925   for (auto RefExpr : D->varlists()) {
6926     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6927     bool PerformInit =
6928         VD->getAnyInitializer() &&
6929         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6930                                                         /*ForRef=*/false);
6931 
6932     Address Addr(GetAddrOfGlobalVar(VD),
6933                  getTypes().ConvertTypeForMem(VD->getType()),
6934                  getContext().getDeclAlign(VD));
6935     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6936             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6937       CXXGlobalInits.push_back(InitFunction);
6938   }
6939 }
6940 
6941 llvm::Metadata *
6942 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6943                                             StringRef Suffix) {
6944   if (auto *FnType = T->getAs<FunctionProtoType>())
6945     T = getContext().getFunctionType(
6946         FnType->getReturnType(), FnType->getParamTypes(),
6947         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6948 
6949   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6950   if (InternalId)
6951     return InternalId;
6952 
6953   if (isExternallyVisible(T->getLinkage())) {
6954     std::string OutName;
6955     llvm::raw_string_ostream Out(OutName);
6956     getCXXABI().getMangleContext().mangleTypeName(
6957         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
6958 
6959     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
6960       Out << ".normalized";
6961 
6962     Out << Suffix;
6963 
6964     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6965   } else {
6966     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6967                                            llvm::ArrayRef<llvm::Metadata *>());
6968   }
6969 
6970   return InternalId;
6971 }
6972 
6973 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6974   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6975 }
6976 
6977 llvm::Metadata *
6978 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6979   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6980 }
6981 
6982 // Generalize pointer types to a void pointer with the qualifiers of the
6983 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6984 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6985 // 'void *'.
6986 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6987   if (!Ty->isPointerType())
6988     return Ty;
6989 
6990   return Ctx.getPointerType(
6991       QualType(Ctx.VoidTy).withCVRQualifiers(
6992           Ty->getPointeeType().getCVRQualifiers()));
6993 }
6994 
6995 // Apply type generalization to a FunctionType's return and argument types
6996 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6997   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6998     SmallVector<QualType, 8> GeneralizedParams;
6999     for (auto &Param : FnType->param_types())
7000       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7001 
7002     return Ctx.getFunctionType(
7003         GeneralizeType(Ctx, FnType->getReturnType()),
7004         GeneralizedParams, FnType->getExtProtoInfo());
7005   }
7006 
7007   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7008     return Ctx.getFunctionNoProtoType(
7009         GeneralizeType(Ctx, FnType->getReturnType()));
7010 
7011   llvm_unreachable("Encountered unknown FunctionType");
7012 }
7013 
7014 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7015   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7016                                       GeneralizedMetadataIdMap, ".generalized");
7017 }
7018 
7019 /// Returns whether this module needs the "all-vtables" type identifier.
7020 bool CodeGenModule::NeedAllVtablesTypeId() const {
7021   // Returns true if at least one of vtable-based CFI checkers is enabled and
7022   // is not in the trapping mode.
7023   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7024            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7025           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7026            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7027           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7028            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7029           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7030            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7031 }
7032 
7033 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7034                                           CharUnits Offset,
7035                                           const CXXRecordDecl *RD) {
7036   llvm::Metadata *MD =
7037       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7038   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7039 
7040   if (CodeGenOpts.SanitizeCfiCrossDso)
7041     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7042       VTable->addTypeMetadata(Offset.getQuantity(),
7043                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7044 
7045   if (NeedAllVtablesTypeId()) {
7046     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7047     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7048   }
7049 }
7050 
7051 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7052   if (!SanStats)
7053     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7054 
7055   return *SanStats;
7056 }
7057 
7058 llvm::Value *
7059 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7060                                                   CodeGenFunction &CGF) {
7061   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7062   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7063   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7064   auto *Call = CGF.EmitRuntimeCall(
7065       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7066   return Call;
7067 }
7068 
7069 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7070     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7071   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7072                                  /* forPointeeType= */ true);
7073 }
7074 
7075 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7076                                                  LValueBaseInfo *BaseInfo,
7077                                                  TBAAAccessInfo *TBAAInfo,
7078                                                  bool forPointeeType) {
7079   if (TBAAInfo)
7080     *TBAAInfo = getTBAAAccessInfo(T);
7081 
7082   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7083   // that doesn't return the information we need to compute BaseInfo.
7084 
7085   // Honor alignment typedef attributes even on incomplete types.
7086   // We also honor them straight for C++ class types, even as pointees;
7087   // there's an expressivity gap here.
7088   if (auto TT = T->getAs<TypedefType>()) {
7089     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7090       if (BaseInfo)
7091         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7092       return getContext().toCharUnitsFromBits(Align);
7093     }
7094   }
7095 
7096   bool AlignForArray = T->isArrayType();
7097 
7098   // Analyze the base element type, so we don't get confused by incomplete
7099   // array types.
7100   T = getContext().getBaseElementType(T);
7101 
7102   if (T->isIncompleteType()) {
7103     // We could try to replicate the logic from
7104     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7105     // type is incomplete, so it's impossible to test. We could try to reuse
7106     // getTypeAlignIfKnown, but that doesn't return the information we need
7107     // to set BaseInfo.  So just ignore the possibility that the alignment is
7108     // greater than one.
7109     if (BaseInfo)
7110       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7111     return CharUnits::One();
7112   }
7113 
7114   if (BaseInfo)
7115     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7116 
7117   CharUnits Alignment;
7118   const CXXRecordDecl *RD;
7119   if (T.getQualifiers().hasUnaligned()) {
7120     Alignment = CharUnits::One();
7121   } else if (forPointeeType && !AlignForArray &&
7122              (RD = T->getAsCXXRecordDecl())) {
7123     // For C++ class pointees, we don't know whether we're pointing at a
7124     // base or a complete object, so we generally need to use the
7125     // non-virtual alignment.
7126     Alignment = getClassPointerAlignment(RD);
7127   } else {
7128     Alignment = getContext().getTypeAlignInChars(T);
7129   }
7130 
7131   // Cap to the global maximum type alignment unless the alignment
7132   // was somehow explicit on the type.
7133   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7134     if (Alignment.getQuantity() > MaxAlign &&
7135         !getContext().isAlignmentRequired(T))
7136       Alignment = CharUnits::fromQuantity(MaxAlign);
7137   }
7138   return Alignment;
7139 }
7140 
7141 bool CodeGenModule::stopAutoInit() {
7142   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7143   if (StopAfter) {
7144     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7145     // used
7146     if (NumAutoVarInit >= StopAfter) {
7147       return true;
7148     }
7149     if (!NumAutoVarInit) {
7150       unsigned DiagID = getDiags().getCustomDiagID(
7151           DiagnosticsEngine::Warning,
7152           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7153           "number of times ftrivial-auto-var-init=%1 gets applied.");
7154       getDiags().Report(DiagID)
7155           << StopAfter
7156           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7157                       LangOptions::TrivialAutoVarInitKind::Zero
7158                   ? "zero"
7159                   : "pattern");
7160     }
7161     ++NumAutoVarInit;
7162   }
7163   return false;
7164 }
7165 
7166 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7167                                                     const Decl *D) const {
7168   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7169   // postfix beginning with '.' since the symbol name can be demangled.
7170   if (LangOpts.HIP)
7171     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7172   else
7173     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7174 
7175   // If the CUID is not specified we try to generate a unique postfix.
7176   if (getLangOpts().CUID.empty()) {
7177     SourceManager &SM = getContext().getSourceManager();
7178     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7179     assert(PLoc.isValid() && "Source location is expected to be valid.");
7180 
7181     // Get the hash of the user defined macros.
7182     llvm::MD5 Hash;
7183     llvm::MD5::MD5Result Result;
7184     for (const auto &Arg : PreprocessorOpts.Macros)
7185       Hash.update(Arg.first);
7186     Hash.final(Result);
7187 
7188     // Get the UniqueID for the file containing the decl.
7189     llvm::sys::fs::UniqueID ID;
7190     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7191       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7192       assert(PLoc.isValid() && "Source location is expected to be valid.");
7193       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7194         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7195             << PLoc.getFilename() << EC.message();
7196     }
7197     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7198        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7199   } else {
7200     OS << getContext().getCUIDHash();
7201   }
7202 }
7203 
7204 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7205   assert(DeferredDeclsToEmit.empty() &&
7206          "Should have emitted all decls deferred to emit.");
7207   assert(NewBuilder->DeferredDecls.empty() &&
7208          "Newly created module should not have deferred decls");
7209   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7210 
7211   assert(NewBuilder->DeferredVTables.empty() &&
7212          "Newly created module should not have deferred vtables");
7213   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7214 
7215   assert(NewBuilder->MangledDeclNames.empty() &&
7216          "Newly created module should not have mangled decl names");
7217   assert(NewBuilder->Manglings.empty() &&
7218          "Newly created module should not have manglings");
7219   NewBuilder->Manglings = std::move(Manglings);
7220 
7221   assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied");
7222   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7223 
7224   NewBuilder->TBAA = std::move(TBAA);
7225 
7226   assert(NewBuilder->EmittedDeferredDecls.empty() &&
7227          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7228 
7229   NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7230 
7231   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7232 }
7233