xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 23c29fea92a130313bd389f23a696165eae4a36b)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/Mangler.h"
41 #include "llvm/Target/TargetData.h"
42 #include "llvm/Support/CallSite.h"
43 #include "llvm/Support/ErrorHandling.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
48   switch (CGM.getContext().Target.getCXXABI()) {
49   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
50   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
51   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
52   }
53 
54   llvm_unreachable("invalid C++ ABI kind");
55   return *CreateItaniumCXXABI(CGM);
56 }
57 
58 
59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
60                              llvm::Module &M, const llvm::TargetData &TD,
61                              Diagnostic &diags)
62   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO),
66     TBAA(0),
67     VTables(*this), Runtime(0), DebugInfo(0), ARCData(0), RRData(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0),
74     BlockDescriptorType(0), GenericBlockLiteralType(0) {
75   if (Features.ObjC1)
76      createObjCRuntime();
77 
78   // Enable TBAA unless it's suppressed.
79   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
80     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
81                            ABI.getMangleContext());
82 
83   // If debug info or coverage generation is enabled, create the CGDebugInfo
84   // object.
85   if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
86       CodeGenOpts.EmitGcovNotes)
87     DebugInfo = new CGDebugInfo(*this);
88 
89   Block.GlobalUniqueCount = 0;
90 
91   if (C.getLangOptions().ObjCAutoRefCount)
92     ARCData = new ARCEntrypoints();
93   RRData = new RREntrypoints();
94 
95   // Initialize the type cache.
96   llvm::LLVMContext &LLVMContext = M.getContext();
97   VoidTy = llvm::Type::getVoidTy(LLVMContext);
98   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
99   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101   PointerWidthInBits = C.Target.getPointerWidth(0);
102   PointerAlignInBytes =
103     C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity();
104   IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth());
105   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
106   Int8PtrTy = Int8Ty->getPointerTo(0);
107   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
108 }
109 
110 CodeGenModule::~CodeGenModule() {
111   delete Runtime;
112   delete &ABI;
113   delete TBAA;
114   delete DebugInfo;
115   delete ARCData;
116   delete RRData;
117 }
118 
119 void CodeGenModule::createObjCRuntime() {
120   if (!Features.NeXTRuntime)
121     Runtime = CreateGNUObjCRuntime(*this);
122   else
123     Runtime = CreateMacObjCRuntime(*this);
124 }
125 
126 void CodeGenModule::Release() {
127   EmitDeferred();
128   EmitCXXGlobalInitFunc();
129   EmitCXXGlobalDtorFunc();
130   if (Runtime)
131     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
132       AddGlobalCtor(ObjCInitFunction);
133   EmitCtorList(GlobalCtors, "llvm.global_ctors");
134   EmitCtorList(GlobalDtors, "llvm.global_dtors");
135   EmitAnnotations();
136   EmitLLVMUsed();
137 
138   SimplifyPersonality();
139 
140   if (getCodeGenOpts().EmitDeclMetadata)
141     EmitDeclMetadata();
142 
143   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
144     EmitCoverageFile();
145 }
146 
147 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
148   // Make sure that this type is translated.
149   Types.UpdateCompletedType(TD);
150   if (DebugInfo)
151     DebugInfo->UpdateCompletedType(TD);
152 }
153 
154 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
155   if (!TBAA)
156     return 0;
157   return TBAA->getTBAAInfo(QTy);
158 }
159 
160 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
161                                         llvm::MDNode *TBAAInfo) {
162   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
163 }
164 
165 bool CodeGenModule::isTargetDarwin() const {
166   return getContext().Target.getTriple().isOSDarwin();
167 }
168 
169 void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) {
170   unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error);
171   getDiags().Report(Context.getFullLoc(loc), diagID);
172 }
173 
174 /// ErrorUnsupported - Print out an error that codegen doesn't support the
175 /// specified stmt yet.
176 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
177                                      bool OmitOnError) {
178   if (OmitOnError && getDiags().hasErrorOccurred())
179     return;
180   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
181                                                "cannot compile this %0 yet");
182   std::string Msg = Type;
183   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
184     << Msg << S->getSourceRange();
185 }
186 
187 /// ErrorUnsupported - Print out an error that codegen doesn't support the
188 /// specified decl yet.
189 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
190                                      bool OmitOnError) {
191   if (OmitOnError && getDiags().hasErrorOccurred())
192     return;
193   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
194                                                "cannot compile this %0 yet");
195   std::string Msg = Type;
196   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
197 }
198 
199 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
200   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
201 }
202 
203 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
204                                         const NamedDecl *D) const {
205   // Internal definitions always have default visibility.
206   if (GV->hasLocalLinkage()) {
207     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
208     return;
209   }
210 
211   // Set visibility for definitions.
212   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
213   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
214     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
215 }
216 
217 /// Set the symbol visibility of type information (vtable and RTTI)
218 /// associated with the given type.
219 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
220                                       const CXXRecordDecl *RD,
221                                       TypeVisibilityKind TVK) const {
222   setGlobalVisibility(GV, RD);
223 
224   if (!CodeGenOpts.HiddenWeakVTables)
225     return;
226 
227   // We never want to drop the visibility for RTTI names.
228   if (TVK == TVK_ForRTTIName)
229     return;
230 
231   // We want to drop the visibility to hidden for weak type symbols.
232   // This isn't possible if there might be unresolved references
233   // elsewhere that rely on this symbol being visible.
234 
235   // This should be kept roughly in sync with setThunkVisibility
236   // in CGVTables.cpp.
237 
238   // Preconditions.
239   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
240       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
241     return;
242 
243   // Don't override an explicit visibility attribute.
244   if (RD->getExplicitVisibility())
245     return;
246 
247   switch (RD->getTemplateSpecializationKind()) {
248   // We have to disable the optimization if this is an EI definition
249   // because there might be EI declarations in other shared objects.
250   case TSK_ExplicitInstantiationDefinition:
251   case TSK_ExplicitInstantiationDeclaration:
252     return;
253 
254   // Every use of a non-template class's type information has to emit it.
255   case TSK_Undeclared:
256     break;
257 
258   // In theory, implicit instantiations can ignore the possibility of
259   // an explicit instantiation declaration because there necessarily
260   // must be an EI definition somewhere with default visibility.  In
261   // practice, it's possible to have an explicit instantiation for
262   // an arbitrary template class, and linkers aren't necessarily able
263   // to deal with mixed-visibility symbols.
264   case TSK_ExplicitSpecialization:
265   case TSK_ImplicitInstantiation:
266     if (!CodeGenOpts.HiddenWeakTemplateVTables)
267       return;
268     break;
269   }
270 
271   // If there's a key function, there may be translation units
272   // that don't have the key function's definition.  But ignore
273   // this if we're emitting RTTI under -fno-rtti.
274   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
275     if (Context.getKeyFunction(RD))
276       return;
277   }
278 
279   // Otherwise, drop the visibility to hidden.
280   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
281   GV->setUnnamedAddr(true);
282 }
283 
284 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
285   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
286 
287   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
288   if (!Str.empty())
289     return Str;
290 
291   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
292     IdentifierInfo *II = ND->getIdentifier();
293     assert(II && "Attempt to mangle unnamed decl.");
294 
295     Str = II->getName();
296     return Str;
297   }
298 
299   llvm::SmallString<256> Buffer;
300   llvm::raw_svector_ostream Out(Buffer);
301   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
302     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
303   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
304     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
305   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
306     getCXXABI().getMangleContext().mangleBlock(BD, Out);
307   else
308     getCXXABI().getMangleContext().mangleName(ND, Out);
309 
310   // Allocate space for the mangled name.
311   Out.flush();
312   size_t Length = Buffer.size();
313   char *Name = MangledNamesAllocator.Allocate<char>(Length);
314   std::copy(Buffer.begin(), Buffer.end(), Name);
315 
316   Str = llvm::StringRef(Name, Length);
317 
318   return Str;
319 }
320 
321 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
322                                         const BlockDecl *BD) {
323   MangleContext &MangleCtx = getCXXABI().getMangleContext();
324   const Decl *D = GD.getDecl();
325   llvm::raw_svector_ostream Out(Buffer.getBuffer());
326   if (D == 0)
327     MangleCtx.mangleGlobalBlock(BD, Out);
328   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
329     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
330   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
331     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
332   else
333     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
334 }
335 
336 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
337   return getModule().getNamedValue(Name);
338 }
339 
340 /// AddGlobalCtor - Add a function to the list that will be called before
341 /// main() runs.
342 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
343   // FIXME: Type coercion of void()* types.
344   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
345 }
346 
347 /// AddGlobalDtor - Add a function to the list that will be called
348 /// when the module is unloaded.
349 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
350   // FIXME: Type coercion of void()* types.
351   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
352 }
353 
354 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
355   // Ctor function type is void()*.
356   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
357   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
358 
359   // Get the type of a ctor entry, { i32, void ()* }.
360   llvm::StructType *CtorStructTy =
361     llvm::StructType::get(llvm::Type::getInt32Ty(VMContext),
362                           llvm::PointerType::getUnqual(CtorFTy), NULL);
363 
364   // Construct the constructor and destructor arrays.
365   std::vector<llvm::Constant*> Ctors;
366   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
367     std::vector<llvm::Constant*> S;
368     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
369                 I->second, false));
370     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
371     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
372   }
373 
374   if (!Ctors.empty()) {
375     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
376     new llvm::GlobalVariable(TheModule, AT, false,
377                              llvm::GlobalValue::AppendingLinkage,
378                              llvm::ConstantArray::get(AT, Ctors),
379                              GlobalName);
380   }
381 }
382 
383 void CodeGenModule::EmitAnnotations() {
384   if (Annotations.empty())
385     return;
386 
387   // Create a new global variable for the ConstantStruct in the Module.
388   llvm::Constant *Array =
389   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
390                                                 Annotations.size()),
391                            Annotations);
392   llvm::GlobalValue *gv =
393   new llvm::GlobalVariable(TheModule, Array->getType(), false,
394                            llvm::GlobalValue::AppendingLinkage, Array,
395                            "llvm.global.annotations");
396   gv->setSection("llvm.metadata");
397 }
398 
399 llvm::GlobalValue::LinkageTypes
400 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
401   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
402 
403   if (Linkage == GVA_Internal)
404     return llvm::Function::InternalLinkage;
405 
406   if (D->hasAttr<DLLExportAttr>())
407     return llvm::Function::DLLExportLinkage;
408 
409   if (D->hasAttr<WeakAttr>())
410     return llvm::Function::WeakAnyLinkage;
411 
412   // In C99 mode, 'inline' functions are guaranteed to have a strong
413   // definition somewhere else, so we can use available_externally linkage.
414   if (Linkage == GVA_C99Inline)
415     return llvm::Function::AvailableExternallyLinkage;
416 
417   // In C++, the compiler has to emit a definition in every translation unit
418   // that references the function.  We should use linkonce_odr because
419   // a) if all references in this translation unit are optimized away, we
420   // don't need to codegen it.  b) if the function persists, it needs to be
421   // merged with other definitions. c) C++ has the ODR, so we know the
422   // definition is dependable.
423   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
424     return !Context.getLangOptions().AppleKext
425              ? llvm::Function::LinkOnceODRLinkage
426              : llvm::Function::InternalLinkage;
427 
428   // An explicit instantiation of a template has weak linkage, since
429   // explicit instantiations can occur in multiple translation units
430   // and must all be equivalent. However, we are not allowed to
431   // throw away these explicit instantiations.
432   if (Linkage == GVA_ExplicitTemplateInstantiation)
433     return !Context.getLangOptions().AppleKext
434              ? llvm::Function::WeakODRLinkage
435              : llvm::Function::InternalLinkage;
436 
437   // Otherwise, we have strong external linkage.
438   assert(Linkage == GVA_StrongExternal);
439   return llvm::Function::ExternalLinkage;
440 }
441 
442 
443 /// SetFunctionDefinitionAttributes - Set attributes for a global.
444 ///
445 /// FIXME: This is currently only done for aliases and functions, but not for
446 /// variables (these details are set in EmitGlobalVarDefinition for variables).
447 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
448                                                     llvm::GlobalValue *GV) {
449   SetCommonAttributes(D, GV);
450 }
451 
452 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
453                                               const CGFunctionInfo &Info,
454                                               llvm::Function *F) {
455   unsigned CallingConv;
456   AttributeListType AttributeList;
457   ConstructAttributeList(Info, D, AttributeList, CallingConv);
458   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
459                                           AttributeList.size()));
460   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
461 }
462 
463 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
464                                                            llvm::Function *F) {
465   if (CodeGenOpts.UnwindTables)
466     F->setHasUWTable();
467 
468   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
469     F->addFnAttr(llvm::Attribute::NoUnwind);
470 
471   if (D->hasAttr<AlwaysInlineAttr>())
472     F->addFnAttr(llvm::Attribute::AlwaysInline);
473 
474   if (D->hasAttr<NakedAttr>())
475     F->addFnAttr(llvm::Attribute::Naked);
476 
477   if (D->hasAttr<NoInlineAttr>())
478     F->addFnAttr(llvm::Attribute::NoInline);
479 
480   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
481     F->setUnnamedAddr(true);
482 
483   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
484     F->addFnAttr(llvm::Attribute::StackProtect);
485   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
486     F->addFnAttr(llvm::Attribute::StackProtectReq);
487 
488   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
489   if (alignment)
490     F->setAlignment(alignment);
491 
492   // C++ ABI requires 2-byte alignment for member functions.
493   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
494     F->setAlignment(2);
495 }
496 
497 void CodeGenModule::SetCommonAttributes(const Decl *D,
498                                         llvm::GlobalValue *GV) {
499   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
500     setGlobalVisibility(GV, ND);
501   else
502     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
503 
504   if (D->hasAttr<UsedAttr>())
505     AddUsedGlobal(GV);
506 
507   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
508     GV->setSection(SA->getName());
509 
510   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
511 }
512 
513 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
514                                                   llvm::Function *F,
515                                                   const CGFunctionInfo &FI) {
516   SetLLVMFunctionAttributes(D, FI, F);
517   SetLLVMFunctionAttributesForDefinition(D, F);
518 
519   F->setLinkage(llvm::Function::InternalLinkage);
520 
521   SetCommonAttributes(D, F);
522 }
523 
524 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
525                                           llvm::Function *F,
526                                           bool IsIncompleteFunction) {
527   if (unsigned IID = F->getIntrinsicID()) {
528     // If this is an intrinsic function, set the function's attributes
529     // to the intrinsic's attributes.
530     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
531     return;
532   }
533 
534   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
535 
536   if (!IsIncompleteFunction)
537     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
538 
539   // Only a few attributes are set on declarations; these may later be
540   // overridden by a definition.
541 
542   if (FD->hasAttr<DLLImportAttr>()) {
543     F->setLinkage(llvm::Function::DLLImportLinkage);
544   } else if (FD->hasAttr<WeakAttr>() ||
545              FD->isWeakImported()) {
546     // "extern_weak" is overloaded in LLVM; we probably should have
547     // separate linkage types for this.
548     F->setLinkage(llvm::Function::ExternalWeakLinkage);
549   } else {
550     F->setLinkage(llvm::Function::ExternalLinkage);
551 
552     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
553     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
554       F->setVisibility(GetLLVMVisibility(LV.visibility()));
555     }
556   }
557 
558   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
559     F->setSection(SA->getName());
560 }
561 
562 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
563   assert(!GV->isDeclaration() &&
564          "Only globals with definition can force usage.");
565   LLVMUsed.push_back(GV);
566 }
567 
568 void CodeGenModule::EmitLLVMUsed() {
569   // Don't create llvm.used if there is no need.
570   if (LLVMUsed.empty())
571     return;
572 
573   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
574 
575   // Convert LLVMUsed to what ConstantArray needs.
576   std::vector<llvm::Constant*> UsedArray;
577   UsedArray.resize(LLVMUsed.size());
578   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
579     UsedArray[i] =
580      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
581                                       i8PTy);
582   }
583 
584   if (UsedArray.empty())
585     return;
586   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
587 
588   llvm::GlobalVariable *GV =
589     new llvm::GlobalVariable(getModule(), ATy, false,
590                              llvm::GlobalValue::AppendingLinkage,
591                              llvm::ConstantArray::get(ATy, UsedArray),
592                              "llvm.used");
593 
594   GV->setSection("llvm.metadata");
595 }
596 
597 void CodeGenModule::EmitDeferred() {
598   // Emit code for any potentially referenced deferred decls.  Since a
599   // previously unused static decl may become used during the generation of code
600   // for a static function, iterate until no  changes are made.
601 
602   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
603     if (!DeferredVTables.empty()) {
604       const CXXRecordDecl *RD = DeferredVTables.back();
605       DeferredVTables.pop_back();
606       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
607       continue;
608     }
609 
610     GlobalDecl D = DeferredDeclsToEmit.back();
611     DeferredDeclsToEmit.pop_back();
612 
613     // Check to see if we've already emitted this.  This is necessary
614     // for a couple of reasons: first, decls can end up in the
615     // deferred-decls queue multiple times, and second, decls can end
616     // up with definitions in unusual ways (e.g. by an extern inline
617     // function acquiring a strong function redefinition).  Just
618     // ignore these cases.
619     //
620     // TODO: That said, looking this up multiple times is very wasteful.
621     llvm::StringRef Name = getMangledName(D);
622     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
623     assert(CGRef && "Deferred decl wasn't referenced?");
624 
625     if (!CGRef->isDeclaration())
626       continue;
627 
628     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
629     // purposes an alias counts as a definition.
630     if (isa<llvm::GlobalAlias>(CGRef))
631       continue;
632 
633     // Otherwise, emit the definition and move on to the next one.
634     EmitGlobalDefinition(D);
635   }
636 }
637 
638 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
639 /// annotation information for a given GlobalValue.  The annotation struct is
640 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
641 /// GlobalValue being annotated.  The second field is the constant string
642 /// created from the AnnotateAttr's annotation.  The third field is a constant
643 /// string containing the name of the translation unit.  The fourth field is
644 /// the line number in the file of the annotated value declaration.
645 ///
646 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
647 ///        appears to.
648 ///
649 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
650                                                 const AnnotateAttr *AA,
651                                                 unsigned LineNo) {
652   llvm::Module *M = &getModule();
653 
654   // get [N x i8] constants for the annotation string, and the filename string
655   // which are the 2nd and 3rd elements of the global annotation structure.
656   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
657   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
658                                                   AA->getAnnotation(), true);
659   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
660                                                   M->getModuleIdentifier(),
661                                                   true);
662 
663   // Get the two global values corresponding to the ConstantArrays we just
664   // created to hold the bytes of the strings.
665   llvm::GlobalValue *annoGV =
666     new llvm::GlobalVariable(*M, anno->getType(), false,
667                              llvm::GlobalValue::PrivateLinkage, anno,
668                              GV->getName());
669   // translation unit name string, emitted into the llvm.metadata section.
670   llvm::GlobalValue *unitGV =
671     new llvm::GlobalVariable(*M, unit->getType(), false,
672                              llvm::GlobalValue::PrivateLinkage, unit,
673                              ".str");
674   unitGV->setUnnamedAddr(true);
675 
676   // Create the ConstantStruct for the global annotation.
677   llvm::Constant *Fields[4] = {
678     llvm::ConstantExpr::getBitCast(GV, SBP),
679     llvm::ConstantExpr::getBitCast(annoGV, SBP),
680     llvm::ConstantExpr::getBitCast(unitGV, SBP),
681     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
682   };
683   return llvm::ConstantStruct::getAnon(Fields);
684 }
685 
686 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
687   // Never defer when EmitAllDecls is specified.
688   if (Features.EmitAllDecls)
689     return false;
690 
691   return !getContext().DeclMustBeEmitted(Global);
692 }
693 
694 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
695   const AliasAttr *AA = VD->getAttr<AliasAttr>();
696   assert(AA && "No alias?");
697 
698   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
699 
700   // See if there is already something with the target's name in the module.
701   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
702 
703   llvm::Constant *Aliasee;
704   if (isa<llvm::FunctionType>(DeclTy))
705     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
706                                       /*ForVTable=*/false);
707   else
708     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
709                                     llvm::PointerType::getUnqual(DeclTy), 0);
710   if (!Entry) {
711     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
712     F->setLinkage(llvm::Function::ExternalWeakLinkage);
713     WeakRefReferences.insert(F);
714   }
715 
716   return Aliasee;
717 }
718 
719 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
720   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
721 
722   // Weak references don't produce any output by themselves.
723   if (Global->hasAttr<WeakRefAttr>())
724     return;
725 
726   // If this is an alias definition (which otherwise looks like a declaration)
727   // emit it now.
728   if (Global->hasAttr<AliasAttr>())
729     return EmitAliasDefinition(GD);
730 
731   // Ignore declarations, they will be emitted on their first use.
732   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
733     if (FD->getIdentifier()) {
734       llvm::StringRef Name = FD->getName();
735       if (Name == "_Block_object_assign") {
736         BlockObjectAssignDecl = FD;
737       } else if (Name == "_Block_object_dispose") {
738         BlockObjectDisposeDecl = FD;
739       }
740     }
741 
742     // Forward declarations are emitted lazily on first use.
743     if (!FD->doesThisDeclarationHaveABody())
744       return;
745   } else {
746     const VarDecl *VD = cast<VarDecl>(Global);
747     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
748 
749     if (VD->getIdentifier()) {
750       llvm::StringRef Name = VD->getName();
751       if (Name == "_NSConcreteGlobalBlock") {
752         NSConcreteGlobalBlockDecl = VD;
753       } else if (Name == "_NSConcreteStackBlock") {
754         NSConcreteStackBlockDecl = VD;
755       }
756     }
757 
758 
759     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
760       return;
761   }
762 
763   // Defer code generation when possible if this is a static definition, inline
764   // function etc.  These we only want to emit if they are used.
765   if (!MayDeferGeneration(Global)) {
766     // Emit the definition if it can't be deferred.
767     EmitGlobalDefinition(GD);
768     return;
769   }
770 
771   // If we're deferring emission of a C++ variable with an
772   // initializer, remember the order in which it appeared in the file.
773   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
774       cast<VarDecl>(Global)->hasInit()) {
775     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
776     CXXGlobalInits.push_back(0);
777   }
778 
779   // If the value has already been used, add it directly to the
780   // DeferredDeclsToEmit list.
781   llvm::StringRef MangledName = getMangledName(GD);
782   if (GetGlobalValue(MangledName))
783     DeferredDeclsToEmit.push_back(GD);
784   else {
785     // Otherwise, remember that we saw a deferred decl with this name.  The
786     // first use of the mangled name will cause it to move into
787     // DeferredDeclsToEmit.
788     DeferredDecls[MangledName] = GD;
789   }
790 }
791 
792 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
793   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
794 
795   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
796                                  Context.getSourceManager(),
797                                  "Generating code for declaration");
798 
799   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
800     // At -O0, don't generate IR for functions with available_externally
801     // linkage.
802     if (CodeGenOpts.OptimizationLevel == 0 &&
803         !Function->hasAttr<AlwaysInlineAttr>() &&
804         getFunctionLinkage(Function)
805                                   == llvm::Function::AvailableExternallyLinkage)
806       return;
807 
808     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
809       // Make sure to emit the definition(s) before we emit the thunks.
810       // This is necessary for the generation of certain thunks.
811       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
812         EmitCXXConstructor(CD, GD.getCtorType());
813       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
814         EmitCXXDestructor(DD, GD.getDtorType());
815       else
816         EmitGlobalFunctionDefinition(GD);
817 
818       if (Method->isVirtual())
819         getVTables().EmitThunks(GD);
820 
821       return;
822     }
823 
824     return EmitGlobalFunctionDefinition(GD);
825   }
826 
827   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
828     return EmitGlobalVarDefinition(VD);
829 
830   assert(0 && "Invalid argument to EmitGlobalDefinition()");
831 }
832 
833 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
834 /// module, create and return an llvm Function with the specified type. If there
835 /// is something in the module with the specified name, return it potentially
836 /// bitcasted to the right type.
837 ///
838 /// If D is non-null, it specifies a decl that correspond to this.  This is used
839 /// to set the attributes on the function when it is first created.
840 llvm::Constant *
841 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
842                                        const llvm::Type *Ty,
843                                        GlobalDecl D, bool ForVTable,
844                                        llvm::Attributes ExtraAttrs) {
845   // Lookup the entry, lazily creating it if necessary.
846   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
847   if (Entry) {
848     if (WeakRefReferences.count(Entry)) {
849       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
850       if (FD && !FD->hasAttr<WeakAttr>())
851         Entry->setLinkage(llvm::Function::ExternalLinkage);
852 
853       WeakRefReferences.erase(Entry);
854     }
855 
856     if (Entry->getType()->getElementType() == Ty)
857       return Entry;
858 
859     // Make sure the result is of the correct type.
860     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
861     return llvm::ConstantExpr::getBitCast(Entry, PTy);
862   }
863 
864   // This function doesn't have a complete type (for example, the return
865   // type is an incomplete struct). Use a fake type instead, and make
866   // sure not to try to set attributes.
867   bool IsIncompleteFunction = false;
868 
869   const llvm::FunctionType *FTy;
870   if (isa<llvm::FunctionType>(Ty)) {
871     FTy = cast<llvm::FunctionType>(Ty);
872   } else {
873     FTy = llvm::FunctionType::get(VoidTy, false);
874     IsIncompleteFunction = true;
875   }
876 
877   llvm::Function *F = llvm::Function::Create(FTy,
878                                              llvm::Function::ExternalLinkage,
879                                              MangledName, &getModule());
880   assert(F->getName() == MangledName && "name was uniqued!");
881   if (D.getDecl())
882     SetFunctionAttributes(D, F, IsIncompleteFunction);
883   if (ExtraAttrs != llvm::Attribute::None)
884     F->addFnAttr(ExtraAttrs);
885 
886   // This is the first use or definition of a mangled name.  If there is a
887   // deferred decl with this name, remember that we need to emit it at the end
888   // of the file.
889   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
890   if (DDI != DeferredDecls.end()) {
891     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
892     // list, and remove it from DeferredDecls (since we don't need it anymore).
893     DeferredDeclsToEmit.push_back(DDI->second);
894     DeferredDecls.erase(DDI);
895 
896   // Otherwise, there are cases we have to worry about where we're
897   // using a declaration for which we must emit a definition but where
898   // we might not find a top-level definition:
899   //   - member functions defined inline in their classes
900   //   - friend functions defined inline in some class
901   //   - special member functions with implicit definitions
902   // If we ever change our AST traversal to walk into class methods,
903   // this will be unnecessary.
904   //
905   // We also don't emit a definition for a function if it's going to be an entry
906   // in a vtable, unless it's already marked as used.
907   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
908     // Look for a declaration that's lexically in a record.
909     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
910     do {
911       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
912         if (FD->isImplicit() && !ForVTable) {
913           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
914           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
915           break;
916         } else if (FD->doesThisDeclarationHaveABody()) {
917           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
918           break;
919         }
920       }
921       FD = FD->getPreviousDeclaration();
922     } while (FD);
923   }
924 
925   // Make sure the result is of the requested type.
926   if (!IsIncompleteFunction) {
927     assert(F->getType()->getElementType() == Ty);
928     return F;
929   }
930 
931   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
932   return llvm::ConstantExpr::getBitCast(F, PTy);
933 }
934 
935 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
936 /// non-null, then this function will use the specified type if it has to
937 /// create it (this occurs when we see a definition of the function).
938 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
939                                                  const llvm::Type *Ty,
940                                                  bool ForVTable) {
941   // If there was no specific requested type, just convert it now.
942   if (!Ty)
943     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
944 
945   llvm::StringRef MangledName = getMangledName(GD);
946   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
947 }
948 
949 /// CreateRuntimeFunction - Create a new runtime function with the specified
950 /// type and name.
951 llvm::Constant *
952 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
953                                      llvm::StringRef Name,
954                                      llvm::Attributes ExtraAttrs) {
955   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
956                                  ExtraAttrs);
957 }
958 
959 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D,
960                                  bool ConstantInit) {
961   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
962     return false;
963 
964   if (Context.getLangOptions().CPlusPlus) {
965     if (const RecordType *Record
966           = Context.getBaseElementType(D->getType())->getAs<RecordType>())
967       return ConstantInit &&
968              cast<CXXRecordDecl>(Record->getDecl())->isPOD() &&
969              !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields();
970   }
971 
972   return true;
973 }
974 
975 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
976 /// create and return an llvm GlobalVariable with the specified type.  If there
977 /// is something in the module with the specified name, return it potentially
978 /// bitcasted to the right type.
979 ///
980 /// If D is non-null, it specifies a decl that correspond to this.  This is used
981 /// to set the attributes on the global when it is first created.
982 llvm::Constant *
983 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
984                                      const llvm::PointerType *Ty,
985                                      const VarDecl *D,
986                                      bool UnnamedAddr) {
987   // Lookup the entry, lazily creating it if necessary.
988   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
989   if (Entry) {
990     if (WeakRefReferences.count(Entry)) {
991       if (D && !D->hasAttr<WeakAttr>())
992         Entry->setLinkage(llvm::Function::ExternalLinkage);
993 
994       WeakRefReferences.erase(Entry);
995     }
996 
997     if (UnnamedAddr)
998       Entry->setUnnamedAddr(true);
999 
1000     if (Entry->getType() == Ty)
1001       return Entry;
1002 
1003     // Make sure the result is of the correct type.
1004     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1005   }
1006 
1007   // This is the first use or definition of a mangled name.  If there is a
1008   // deferred decl with this name, remember that we need to emit it at the end
1009   // of the file.
1010   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1011   if (DDI != DeferredDecls.end()) {
1012     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1013     // list, and remove it from DeferredDecls (since we don't need it anymore).
1014     DeferredDeclsToEmit.push_back(DDI->second);
1015     DeferredDecls.erase(DDI);
1016   }
1017 
1018   llvm::GlobalVariable *GV =
1019     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1020                              llvm::GlobalValue::ExternalLinkage,
1021                              0, MangledName, 0,
1022                              false, Ty->getAddressSpace());
1023 
1024   // Handle things which are present even on external declarations.
1025   if (D) {
1026     // FIXME: This code is overly simple and should be merged with other global
1027     // handling.
1028     GV->setConstant(DeclIsConstantGlobal(Context, D, false));
1029 
1030     // Set linkage and visibility in case we never see a definition.
1031     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1032     if (LV.linkage() != ExternalLinkage) {
1033       // Don't set internal linkage on declarations.
1034     } else {
1035       if (D->hasAttr<DLLImportAttr>())
1036         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1037       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1038         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1039 
1040       // Set visibility on a declaration only if it's explicit.
1041       if (LV.visibilityExplicit())
1042         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1043     }
1044 
1045     GV->setThreadLocal(D->isThreadSpecified());
1046   }
1047 
1048   return GV;
1049 }
1050 
1051 
1052 llvm::GlobalVariable *
1053 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
1054                                       const llvm::Type *Ty,
1055                                       llvm::GlobalValue::LinkageTypes Linkage) {
1056   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1057   llvm::GlobalVariable *OldGV = 0;
1058 
1059 
1060   if (GV) {
1061     // Check if the variable has the right type.
1062     if (GV->getType()->getElementType() == Ty)
1063       return GV;
1064 
1065     // Because C++ name mangling, the only way we can end up with an already
1066     // existing global with the same name is if it has been declared extern "C".
1067       assert(GV->isDeclaration() && "Declaration has wrong type!");
1068     OldGV = GV;
1069   }
1070 
1071   // Create a new variable.
1072   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1073                                 Linkage, 0, Name);
1074 
1075   if (OldGV) {
1076     // Replace occurrences of the old variable if needed.
1077     GV->takeName(OldGV);
1078 
1079     if (!OldGV->use_empty()) {
1080       llvm::Constant *NewPtrForOldDecl =
1081       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1082       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1083     }
1084 
1085     OldGV->eraseFromParent();
1086   }
1087 
1088   return GV;
1089 }
1090 
1091 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1092 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1093 /// then it will be greated with the specified type instead of whatever the
1094 /// normal requested type would be.
1095 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1096                                                   const llvm::Type *Ty) {
1097   assert(D->hasGlobalStorage() && "Not a global variable");
1098   QualType ASTTy = D->getType();
1099   if (Ty == 0)
1100     Ty = getTypes().ConvertTypeForMem(ASTTy);
1101 
1102   const llvm::PointerType *PTy =
1103     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1104 
1105   llvm::StringRef MangledName = getMangledName(D);
1106   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1107 }
1108 
1109 /// CreateRuntimeVariable - Create a new runtime global variable with the
1110 /// specified type and name.
1111 llvm::Constant *
1112 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1113                                      llvm::StringRef Name) {
1114   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1115                                true);
1116 }
1117 
1118 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1119   assert(!D->getInit() && "Cannot emit definite definitions here!");
1120 
1121   if (MayDeferGeneration(D)) {
1122     // If we have not seen a reference to this variable yet, place it
1123     // into the deferred declarations table to be emitted if needed
1124     // later.
1125     llvm::StringRef MangledName = getMangledName(D);
1126     if (!GetGlobalValue(MangledName)) {
1127       DeferredDecls[MangledName] = D;
1128       return;
1129     }
1130   }
1131 
1132   // The tentative definition is the only definition.
1133   EmitGlobalVarDefinition(D);
1134 }
1135 
1136 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1137   if (DefinitionRequired)
1138     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1139 }
1140 
1141 llvm::GlobalVariable::LinkageTypes
1142 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1143   if (RD->getLinkage() != ExternalLinkage)
1144     return llvm::GlobalVariable::InternalLinkage;
1145 
1146   if (const CXXMethodDecl *KeyFunction
1147                                     = RD->getASTContext().getKeyFunction(RD)) {
1148     // If this class has a key function, use that to determine the linkage of
1149     // the vtable.
1150     const FunctionDecl *Def = 0;
1151     if (KeyFunction->hasBody(Def))
1152       KeyFunction = cast<CXXMethodDecl>(Def);
1153 
1154     switch (KeyFunction->getTemplateSpecializationKind()) {
1155       case TSK_Undeclared:
1156       case TSK_ExplicitSpecialization:
1157         // When compiling with optimizations turned on, we emit all vtables,
1158         // even if the key function is not defined in the current translation
1159         // unit. If this is the case, use available_externally linkage.
1160         if (!Def && CodeGenOpts.OptimizationLevel)
1161           return llvm::GlobalVariable::AvailableExternallyLinkage;
1162 
1163         if (KeyFunction->isInlined())
1164           return !Context.getLangOptions().AppleKext ?
1165                    llvm::GlobalVariable::LinkOnceODRLinkage :
1166                    llvm::Function::InternalLinkage;
1167 
1168         return llvm::GlobalVariable::ExternalLinkage;
1169 
1170       case TSK_ImplicitInstantiation:
1171         return !Context.getLangOptions().AppleKext ?
1172                  llvm::GlobalVariable::LinkOnceODRLinkage :
1173                  llvm::Function::InternalLinkage;
1174 
1175       case TSK_ExplicitInstantiationDefinition:
1176         return !Context.getLangOptions().AppleKext ?
1177                  llvm::GlobalVariable::WeakODRLinkage :
1178                  llvm::Function::InternalLinkage;
1179 
1180       case TSK_ExplicitInstantiationDeclaration:
1181         // FIXME: Use available_externally linkage. However, this currently
1182         // breaks LLVM's build due to undefined symbols.
1183         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1184         return !Context.getLangOptions().AppleKext ?
1185                  llvm::GlobalVariable::LinkOnceODRLinkage :
1186                  llvm::Function::InternalLinkage;
1187     }
1188   }
1189 
1190   if (Context.getLangOptions().AppleKext)
1191     return llvm::Function::InternalLinkage;
1192 
1193   switch (RD->getTemplateSpecializationKind()) {
1194   case TSK_Undeclared:
1195   case TSK_ExplicitSpecialization:
1196   case TSK_ImplicitInstantiation:
1197     // FIXME: Use available_externally linkage. However, this currently
1198     // breaks LLVM's build due to undefined symbols.
1199     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1200   case TSK_ExplicitInstantiationDeclaration:
1201     return llvm::GlobalVariable::LinkOnceODRLinkage;
1202 
1203   case TSK_ExplicitInstantiationDefinition:
1204       return llvm::GlobalVariable::WeakODRLinkage;
1205   }
1206 
1207   // Silence GCC warning.
1208   return llvm::GlobalVariable::LinkOnceODRLinkage;
1209 }
1210 
1211 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1212     return Context.toCharUnitsFromBits(
1213       TheTargetData.getTypeStoreSizeInBits(Ty));
1214 }
1215 
1216 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1217   llvm::Constant *Init = 0;
1218   QualType ASTTy = D->getType();
1219   bool NonConstInit = false;
1220 
1221   const Expr *InitExpr = D->getAnyInitializer();
1222 
1223   if (!InitExpr) {
1224     // This is a tentative definition; tentative definitions are
1225     // implicitly initialized with { 0 }.
1226     //
1227     // Note that tentative definitions are only emitted at the end of
1228     // a translation unit, so they should never have incomplete
1229     // type. In addition, EmitTentativeDefinition makes sure that we
1230     // never attempt to emit a tentative definition if a real one
1231     // exists. A use may still exists, however, so we still may need
1232     // to do a RAUW.
1233     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1234     Init = EmitNullConstant(D->getType());
1235   } else {
1236     Init = EmitConstantExpr(InitExpr, D->getType());
1237     if (!Init) {
1238       QualType T = InitExpr->getType();
1239       if (D->getType()->isReferenceType())
1240         T = D->getType();
1241 
1242       if (getLangOptions().CPlusPlus) {
1243         Init = EmitNullConstant(T);
1244         NonConstInit = true;
1245       } else {
1246         ErrorUnsupported(D, "static initializer");
1247         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1248       }
1249     } else {
1250       // We don't need an initializer, so remove the entry for the delayed
1251       // initializer position (just in case this entry was delayed).
1252       if (getLangOptions().CPlusPlus)
1253         DelayedCXXInitPosition.erase(D);
1254     }
1255   }
1256 
1257   const llvm::Type* InitType = Init->getType();
1258   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1259 
1260   // Strip off a bitcast if we got one back.
1261   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1262     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1263            // all zero index gep.
1264            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1265     Entry = CE->getOperand(0);
1266   }
1267 
1268   // Entry is now either a Function or GlobalVariable.
1269   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1270 
1271   // We have a definition after a declaration with the wrong type.
1272   // We must make a new GlobalVariable* and update everything that used OldGV
1273   // (a declaration or tentative definition) with the new GlobalVariable*
1274   // (which will be a definition).
1275   //
1276   // This happens if there is a prototype for a global (e.g.
1277   // "extern int x[];") and then a definition of a different type (e.g.
1278   // "int x[10];"). This also happens when an initializer has a different type
1279   // from the type of the global (this happens with unions).
1280   if (GV == 0 ||
1281       GV->getType()->getElementType() != InitType ||
1282       GV->getType()->getAddressSpace() !=
1283         getContext().getTargetAddressSpace(ASTTy)) {
1284 
1285     // Move the old entry aside so that we'll create a new one.
1286     Entry->setName(llvm::StringRef());
1287 
1288     // Make a new global with the correct type, this is now guaranteed to work.
1289     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1290 
1291     // Replace all uses of the old global with the new global
1292     llvm::Constant *NewPtrForOldDecl =
1293         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1294     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1295 
1296     // Erase the old global, since it is no longer used.
1297     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1298   }
1299 
1300   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1301     SourceManager &SM = Context.getSourceManager();
1302     AddAnnotation(EmitAnnotateAttr(GV, AA,
1303                               SM.getInstantiationLineNumber(D->getLocation())));
1304   }
1305 
1306   GV->setInitializer(Init);
1307 
1308   // If it is safe to mark the global 'constant', do so now.
1309   GV->setConstant(false);
1310   if (!NonConstInit && DeclIsConstantGlobal(Context, D, true))
1311     GV->setConstant(true);
1312 
1313   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1314 
1315   // Set the llvm linkage type as appropriate.
1316   llvm::GlobalValue::LinkageTypes Linkage =
1317     GetLLVMLinkageVarDefinition(D, GV);
1318   GV->setLinkage(Linkage);
1319   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1320     // common vars aren't constant even if declared const.
1321     GV->setConstant(false);
1322 
1323   SetCommonAttributes(D, GV);
1324 
1325   // Emit the initializer function if necessary.
1326   if (NonConstInit)
1327     EmitCXXGlobalVarDeclInitFunc(D, GV);
1328 
1329   // Emit global variable debug information.
1330   if (CGDebugInfo *DI = getModuleDebugInfo()) {
1331     DI->setLocation(D->getLocation());
1332     DI->EmitGlobalVariable(GV, D);
1333   }
1334 }
1335 
1336 llvm::GlobalValue::LinkageTypes
1337 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1338                                            llvm::GlobalVariable *GV) {
1339   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1340   if (Linkage == GVA_Internal)
1341     return llvm::Function::InternalLinkage;
1342   else if (D->hasAttr<DLLImportAttr>())
1343     return llvm::Function::DLLImportLinkage;
1344   else if (D->hasAttr<DLLExportAttr>())
1345     return llvm::Function::DLLExportLinkage;
1346   else if (D->hasAttr<WeakAttr>()) {
1347     if (GV->isConstant())
1348       return llvm::GlobalVariable::WeakODRLinkage;
1349     else
1350       return llvm::GlobalVariable::WeakAnyLinkage;
1351   } else if (Linkage == GVA_TemplateInstantiation ||
1352              Linkage == GVA_ExplicitTemplateInstantiation)
1353     return llvm::GlobalVariable::WeakODRLinkage;
1354   else if (!getLangOptions().CPlusPlus &&
1355            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1356              D->getAttr<CommonAttr>()) &&
1357            !D->hasExternalStorage() && !D->getInit() &&
1358            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1359            !D->getAttr<WeakImportAttr>()) {
1360     // Thread local vars aren't considered common linkage.
1361     return llvm::GlobalVariable::CommonLinkage;
1362   }
1363   return llvm::GlobalVariable::ExternalLinkage;
1364 }
1365 
1366 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1367 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1368 /// existing call uses of the old function in the module, this adjusts them to
1369 /// call the new function directly.
1370 ///
1371 /// This is not just a cleanup: the always_inline pass requires direct calls to
1372 /// functions to be able to inline them.  If there is a bitcast in the way, it
1373 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1374 /// run at -O0.
1375 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1376                                                       llvm::Function *NewFn) {
1377   // If we're redefining a global as a function, don't transform it.
1378   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1379   if (OldFn == 0) return;
1380 
1381   const llvm::Type *NewRetTy = NewFn->getReturnType();
1382   llvm::SmallVector<llvm::Value*, 4> ArgList;
1383 
1384   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1385        UI != E; ) {
1386     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1387     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1388     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1389     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1390     llvm::CallSite CS(CI);
1391     if (!CI || !CS.isCallee(I)) continue;
1392 
1393     // If the return types don't match exactly, and if the call isn't dead, then
1394     // we can't transform this call.
1395     if (CI->getType() != NewRetTy && !CI->use_empty())
1396       continue;
1397 
1398     // If the function was passed too few arguments, don't transform.  If extra
1399     // arguments were passed, we silently drop them.  If any of the types
1400     // mismatch, we don't transform.
1401     unsigned ArgNo = 0;
1402     bool DontTransform = false;
1403     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1404          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1405       if (CS.arg_size() == ArgNo ||
1406           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1407         DontTransform = true;
1408         break;
1409       }
1410     }
1411     if (DontTransform)
1412       continue;
1413 
1414     // Okay, we can transform this.  Create the new call instruction and copy
1415     // over the required information.
1416     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1417     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1418                                                      ArgList.end(), "", CI);
1419     ArgList.clear();
1420     if (!NewCall->getType()->isVoidTy())
1421       NewCall->takeName(CI);
1422     NewCall->setAttributes(CI->getAttributes());
1423     NewCall->setCallingConv(CI->getCallingConv());
1424 
1425     // Finally, remove the old call, replacing any uses with the new one.
1426     if (!CI->use_empty())
1427       CI->replaceAllUsesWith(NewCall);
1428 
1429     // Copy debug location attached to CI.
1430     if (!CI->getDebugLoc().isUnknown())
1431       NewCall->setDebugLoc(CI->getDebugLoc());
1432     CI->eraseFromParent();
1433   }
1434 }
1435 
1436 
1437 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1438   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1439 
1440   // Compute the function info and LLVM type.
1441   const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1442   bool variadic = false;
1443   if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1444     variadic = fpt->isVariadic();
1445   const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false);
1446 
1447   // Get or create the prototype for the function.
1448   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1449 
1450   // Strip off a bitcast if we got one back.
1451   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1452     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1453     Entry = CE->getOperand(0);
1454   }
1455 
1456 
1457   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1458     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1459 
1460     // If the types mismatch then we have to rewrite the definition.
1461     assert(OldFn->isDeclaration() &&
1462            "Shouldn't replace non-declaration");
1463 
1464     // F is the Function* for the one with the wrong type, we must make a new
1465     // Function* and update everything that used F (a declaration) with the new
1466     // Function* (which will be a definition).
1467     //
1468     // This happens if there is a prototype for a function
1469     // (e.g. "int f()") and then a definition of a different type
1470     // (e.g. "int f(int x)").  Move the old function aside so that it
1471     // doesn't interfere with GetAddrOfFunction.
1472     OldFn->setName(llvm::StringRef());
1473     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1474 
1475     // If this is an implementation of a function without a prototype, try to
1476     // replace any existing uses of the function (which may be calls) with uses
1477     // of the new function
1478     if (D->getType()->isFunctionNoProtoType()) {
1479       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1480       OldFn->removeDeadConstantUsers();
1481     }
1482 
1483     // Replace uses of F with the Function we will endow with a body.
1484     if (!Entry->use_empty()) {
1485       llvm::Constant *NewPtrForOldDecl =
1486         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1487       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1488     }
1489 
1490     // Ok, delete the old function now, which is dead.
1491     OldFn->eraseFromParent();
1492 
1493     Entry = NewFn;
1494   }
1495 
1496   // We need to set linkage and visibility on the function before
1497   // generating code for it because various parts of IR generation
1498   // want to propagate this information down (e.g. to local static
1499   // declarations).
1500   llvm::Function *Fn = cast<llvm::Function>(Entry);
1501   setFunctionLinkage(D, Fn);
1502 
1503   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1504   setGlobalVisibility(Fn, D);
1505 
1506   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1507 
1508   SetFunctionDefinitionAttributes(D, Fn);
1509   SetLLVMFunctionAttributesForDefinition(D, Fn);
1510 
1511   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1512     AddGlobalCtor(Fn, CA->getPriority());
1513   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1514     AddGlobalDtor(Fn, DA->getPriority());
1515 }
1516 
1517 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1518   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1519   const AliasAttr *AA = D->getAttr<AliasAttr>();
1520   assert(AA && "Not an alias?");
1521 
1522   llvm::StringRef MangledName = getMangledName(GD);
1523 
1524   // If there is a definition in the module, then it wins over the alias.
1525   // This is dubious, but allow it to be safe.  Just ignore the alias.
1526   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1527   if (Entry && !Entry->isDeclaration())
1528     return;
1529 
1530   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1531 
1532   // Create a reference to the named value.  This ensures that it is emitted
1533   // if a deferred decl.
1534   llvm::Constant *Aliasee;
1535   if (isa<llvm::FunctionType>(DeclTy))
1536     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1537                                       /*ForVTable=*/false);
1538   else
1539     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1540                                     llvm::PointerType::getUnqual(DeclTy), 0);
1541 
1542   // Create the new alias itself, but don't set a name yet.
1543   llvm::GlobalValue *GA =
1544     new llvm::GlobalAlias(Aliasee->getType(),
1545                           llvm::Function::ExternalLinkage,
1546                           "", Aliasee, &getModule());
1547 
1548   if (Entry) {
1549     assert(Entry->isDeclaration());
1550 
1551     // If there is a declaration in the module, then we had an extern followed
1552     // by the alias, as in:
1553     //   extern int test6();
1554     //   ...
1555     //   int test6() __attribute__((alias("test7")));
1556     //
1557     // Remove it and replace uses of it with the alias.
1558     GA->takeName(Entry);
1559 
1560     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1561                                                           Entry->getType()));
1562     Entry->eraseFromParent();
1563   } else {
1564     GA->setName(MangledName);
1565   }
1566 
1567   // Set attributes which are particular to an alias; this is a
1568   // specialization of the attributes which may be set on a global
1569   // variable/function.
1570   if (D->hasAttr<DLLExportAttr>()) {
1571     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1572       // The dllexport attribute is ignored for undefined symbols.
1573       if (FD->hasBody())
1574         GA->setLinkage(llvm::Function::DLLExportLinkage);
1575     } else {
1576       GA->setLinkage(llvm::Function::DLLExportLinkage);
1577     }
1578   } else if (D->hasAttr<WeakAttr>() ||
1579              D->hasAttr<WeakRefAttr>() ||
1580              D->isWeakImported()) {
1581     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1582   }
1583 
1584   SetCommonAttributes(D, GA);
1585 }
1586 
1587 /// getBuiltinLibFunction - Given a builtin id for a function like
1588 /// "__builtin_fabsf", return a Function* for "fabsf".
1589 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1590                                                   unsigned BuiltinID) {
1591   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1592           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1593          "isn't a lib fn");
1594 
1595   // Get the name, skip over the __builtin_ prefix (if necessary).
1596   llvm::StringRef Name;
1597   GlobalDecl D(FD);
1598 
1599   // If the builtin has been declared explicitly with an assembler label,
1600   // use the mangled name. This differs from the plain label on platforms
1601   // that prefix labels.
1602   if (FD->hasAttr<AsmLabelAttr>())
1603     Name = getMangledName(D);
1604   else if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1605     Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
1606   else
1607     Name = Context.BuiltinInfo.GetName(BuiltinID);
1608 
1609 
1610   const llvm::FunctionType *Ty =
1611     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1612 
1613   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
1614 }
1615 
1616 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1617                                             unsigned NumTys) {
1618   return llvm::Intrinsic::getDeclaration(&getModule(),
1619                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1620 }
1621 
1622 static llvm::StringMapEntry<llvm::Constant*> &
1623 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1624                          const StringLiteral *Literal,
1625                          bool TargetIsLSB,
1626                          bool &IsUTF16,
1627                          unsigned &StringLength) {
1628   llvm::StringRef String = Literal->getString();
1629   unsigned NumBytes = String.size();
1630 
1631   // Check for simple case.
1632   if (!Literal->containsNonAsciiOrNull()) {
1633     StringLength = NumBytes;
1634     return Map.GetOrCreateValue(String);
1635   }
1636 
1637   // Otherwise, convert the UTF8 literals into a byte string.
1638   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1639   const UTF8 *FromPtr = (UTF8 *)String.data();
1640   UTF16 *ToPtr = &ToBuf[0];
1641 
1642   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1643                            &ToPtr, ToPtr + NumBytes,
1644                            strictConversion);
1645 
1646   // ConvertUTF8toUTF16 returns the length in ToPtr.
1647   StringLength = ToPtr - &ToBuf[0];
1648 
1649   // Render the UTF-16 string into a byte array and convert to the target byte
1650   // order.
1651   //
1652   // FIXME: This isn't something we should need to do here.
1653   llvm::SmallString<128> AsBytes;
1654   AsBytes.reserve(StringLength * 2);
1655   for (unsigned i = 0; i != StringLength; ++i) {
1656     unsigned short Val = ToBuf[i];
1657     if (TargetIsLSB) {
1658       AsBytes.push_back(Val & 0xFF);
1659       AsBytes.push_back(Val >> 8);
1660     } else {
1661       AsBytes.push_back(Val >> 8);
1662       AsBytes.push_back(Val & 0xFF);
1663     }
1664   }
1665   // Append one extra null character, the second is automatically added by our
1666   // caller.
1667   AsBytes.push_back(0);
1668 
1669   IsUTF16 = true;
1670   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1671 }
1672 
1673 static llvm::StringMapEntry<llvm::Constant*> &
1674 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1675 		       const StringLiteral *Literal,
1676 		       unsigned &StringLength)
1677 {
1678 	llvm::StringRef String = Literal->getString();
1679 	StringLength = String.size();
1680 	return Map.GetOrCreateValue(String);
1681 }
1682 
1683 llvm::Constant *
1684 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1685   unsigned StringLength = 0;
1686   bool isUTF16 = false;
1687   llvm::StringMapEntry<llvm::Constant*> &Entry =
1688     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1689                              getTargetData().isLittleEndian(),
1690                              isUTF16, StringLength);
1691 
1692   if (llvm::Constant *C = Entry.getValue())
1693     return C;
1694 
1695   llvm::Constant *Zero =
1696       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1697   llvm::Constant *Zeros[] = { Zero, Zero };
1698 
1699   // If we don't already have it, get __CFConstantStringClassReference.
1700   if (!CFConstantStringClassRef) {
1701     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1702     Ty = llvm::ArrayType::get(Ty, 0);
1703     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1704                                            "__CFConstantStringClassReference");
1705     // Decay array -> ptr
1706     CFConstantStringClassRef =
1707       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1708   }
1709 
1710   QualType CFTy = getContext().getCFConstantStringType();
1711 
1712   const llvm::StructType *STy =
1713     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1714 
1715   std::vector<llvm::Constant*> Fields(4);
1716 
1717   // Class pointer.
1718   Fields[0] = CFConstantStringClassRef;
1719 
1720   // Flags.
1721   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1722   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1723     llvm::ConstantInt::get(Ty, 0x07C8);
1724 
1725   // String pointer.
1726   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1727 
1728   llvm::GlobalValue::LinkageTypes Linkage;
1729   bool isConstant;
1730   if (isUTF16) {
1731     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1732     Linkage = llvm::GlobalValue::InternalLinkage;
1733     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1734     // does make plain ascii ones writable.
1735     isConstant = true;
1736   } else {
1737     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1738     // when using private linkage. It is not clear if this is a bug in ld
1739     // or a reasonable new restriction.
1740     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1741     isConstant = !Features.WritableStrings;
1742   }
1743 
1744   llvm::GlobalVariable *GV =
1745     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1746                              ".str");
1747   GV->setUnnamedAddr(true);
1748   if (isUTF16) {
1749     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1750     GV->setAlignment(Align.getQuantity());
1751   } else {
1752     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1753     GV->setAlignment(Align.getQuantity());
1754   }
1755   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1756 
1757   // String length.
1758   Ty = getTypes().ConvertType(getContext().LongTy);
1759   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1760 
1761   // The struct.
1762   C = llvm::ConstantStruct::get(STy, Fields);
1763   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1764                                 llvm::GlobalVariable::PrivateLinkage, C,
1765                                 "_unnamed_cfstring_");
1766   if (const char *Sect = getContext().Target.getCFStringSection())
1767     GV->setSection(Sect);
1768   Entry.setValue(GV);
1769 
1770   return GV;
1771 }
1772 
1773 llvm::Constant *
1774 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1775   unsigned StringLength = 0;
1776   llvm::StringMapEntry<llvm::Constant*> &Entry =
1777     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
1778 
1779   if (llvm::Constant *C = Entry.getValue())
1780     return C;
1781 
1782   llvm::Constant *Zero =
1783   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1784   llvm::Constant *Zeros[] = { Zero, Zero };
1785 
1786   // If we don't already have it, get _NSConstantStringClassReference.
1787   if (!ConstantStringClassRef) {
1788     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1789     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1790     llvm::Constant *GV;
1791     if (Features.ObjCNonFragileABI) {
1792       std::string str =
1793         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1794                             : "OBJC_CLASS_$_" + StringClass;
1795       GV = getObjCRuntime().GetClassGlobal(str);
1796       // Make sure the result is of the correct type.
1797       const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1798       ConstantStringClassRef =
1799         llvm::ConstantExpr::getBitCast(GV, PTy);
1800     } else {
1801       std::string str =
1802         StringClass.empty() ? "_NSConstantStringClassReference"
1803                             : "_" + StringClass + "ClassReference";
1804       const llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
1805       GV = CreateRuntimeVariable(PTy, str);
1806       // Decay array -> ptr
1807       ConstantStringClassRef =
1808         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1809     }
1810   }
1811 
1812   QualType NSTy = getContext().getNSConstantStringType();
1813 
1814   const llvm::StructType *STy =
1815   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1816 
1817   std::vector<llvm::Constant*> Fields(3);
1818 
1819   // Class pointer.
1820   Fields[0] = ConstantStringClassRef;
1821 
1822   // String pointer.
1823   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1824 
1825   llvm::GlobalValue::LinkageTypes Linkage;
1826   bool isConstant;
1827   Linkage = llvm::GlobalValue::PrivateLinkage;
1828   isConstant = !Features.WritableStrings;
1829 
1830   llvm::GlobalVariable *GV =
1831   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1832                            ".str");
1833   GV->setUnnamedAddr(true);
1834   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1835   GV->setAlignment(Align.getQuantity());
1836   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1837 
1838   // String length.
1839   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1840   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1841 
1842   // The struct.
1843   C = llvm::ConstantStruct::get(STy, Fields);
1844   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1845                                 llvm::GlobalVariable::PrivateLinkage, C,
1846                                 "_unnamed_nsstring_");
1847   // FIXME. Fix section.
1848   if (const char *Sect =
1849         Features.ObjCNonFragileABI
1850           ? getContext().Target.getNSStringNonFragileABISection()
1851           : getContext().Target.getNSStringSection())
1852     GV->setSection(Sect);
1853   Entry.setValue(GV);
1854 
1855   return GV;
1856 }
1857 
1858 /// GetStringForStringLiteral - Return the appropriate bytes for a
1859 /// string literal, properly padded to match the literal type.
1860 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1861   const ASTContext &Context = getContext();
1862   const ConstantArrayType *CAT =
1863     Context.getAsConstantArrayType(E->getType());
1864   assert(CAT && "String isn't pointer or array!");
1865 
1866   // Resize the string to the right size.
1867   uint64_t RealLen = CAT->getSize().getZExtValue();
1868 
1869   if (E->isWide())
1870     RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1871 
1872   std::string Str = E->getString().str();
1873   Str.resize(RealLen, '\0');
1874 
1875   return Str;
1876 }
1877 
1878 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1879 /// constant array for the given string literal.
1880 llvm::Constant *
1881 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1882   // FIXME: This can be more efficient.
1883   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1884   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1885   if (S->isWide()) {
1886     llvm::Type *DestTy =
1887         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1888     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1889   }
1890   return C;
1891 }
1892 
1893 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1894 /// array for the given ObjCEncodeExpr node.
1895 llvm::Constant *
1896 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1897   std::string Str;
1898   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1899 
1900   return GetAddrOfConstantCString(Str);
1901 }
1902 
1903 
1904 /// GenerateWritableString -- Creates storage for a string literal.
1905 static llvm::Constant *GenerateStringLiteral(llvm::StringRef str,
1906                                              bool constant,
1907                                              CodeGenModule &CGM,
1908                                              const char *GlobalName) {
1909   // Create Constant for this string literal. Don't add a '\0'.
1910   llvm::Constant *C =
1911       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1912 
1913   // Create a global variable for this string
1914   llvm::GlobalVariable *GV =
1915     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1916                              llvm::GlobalValue::PrivateLinkage,
1917                              C, GlobalName);
1918   GV->setAlignment(1);
1919   GV->setUnnamedAddr(true);
1920   return GV;
1921 }
1922 
1923 /// GetAddrOfConstantString - Returns a pointer to a character array
1924 /// containing the literal. This contents are exactly that of the
1925 /// given string, i.e. it will not be null terminated automatically;
1926 /// see GetAddrOfConstantCString. Note that whether the result is
1927 /// actually a pointer to an LLVM constant depends on
1928 /// Feature.WriteableStrings.
1929 ///
1930 /// The result has pointer to array type.
1931 llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str,
1932                                                        const char *GlobalName) {
1933   bool IsConstant = !Features.WritableStrings;
1934 
1935   // Get the default prefix if a name wasn't specified.
1936   if (!GlobalName)
1937     GlobalName = ".str";
1938 
1939   // Don't share any string literals if strings aren't constant.
1940   if (!IsConstant)
1941     return GenerateStringLiteral(Str, false, *this, GlobalName);
1942 
1943   llvm::StringMapEntry<llvm::Constant *> &Entry =
1944     ConstantStringMap.GetOrCreateValue(Str);
1945 
1946   if (Entry.getValue())
1947     return Entry.getValue();
1948 
1949   // Create a global variable for this.
1950   llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName);
1951   Entry.setValue(C);
1952   return C;
1953 }
1954 
1955 /// GetAddrOfConstantCString - Returns a pointer to a character
1956 /// array containing the literal and a terminating '\0'
1957 /// character. The result has pointer to array type.
1958 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
1959                                                         const char *GlobalName){
1960   llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1);
1961   return GetAddrOfConstantString(StrWithNull, GlobalName);
1962 }
1963 
1964 /// EmitObjCPropertyImplementations - Emit information for synthesized
1965 /// properties for an implementation.
1966 void CodeGenModule::EmitObjCPropertyImplementations(const
1967                                                     ObjCImplementationDecl *D) {
1968   for (ObjCImplementationDecl::propimpl_iterator
1969          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1970     ObjCPropertyImplDecl *PID = *i;
1971 
1972     // Dynamic is just for type-checking.
1973     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1974       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1975 
1976       // Determine which methods need to be implemented, some may have
1977       // been overridden. Note that ::isSynthesized is not the method
1978       // we want, that just indicates if the decl came from a
1979       // property. What we want to know is if the method is defined in
1980       // this implementation.
1981       if (!D->getInstanceMethod(PD->getGetterName()))
1982         CodeGenFunction(*this).GenerateObjCGetter(
1983                                  const_cast<ObjCImplementationDecl *>(D), PID);
1984       if (!PD->isReadOnly() &&
1985           !D->getInstanceMethod(PD->getSetterName()))
1986         CodeGenFunction(*this).GenerateObjCSetter(
1987                                  const_cast<ObjCImplementationDecl *>(D), PID);
1988     }
1989   }
1990 }
1991 
1992 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
1993   ObjCInterfaceDecl *iface
1994     = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface());
1995   for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1996        ivar; ivar = ivar->getNextIvar())
1997     if (ivar->getType().isDestructedType())
1998       return true;
1999 
2000   return false;
2001 }
2002 
2003 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2004 /// for an implementation.
2005 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2006   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2007   if (needsDestructMethod(D)) {
2008     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2009     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2010     ObjCMethodDecl *DTORMethod =
2011       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2012                              cxxSelector, getContext().VoidTy, 0, D, true,
2013                              false, true, false, ObjCMethodDecl::Required);
2014     D->addInstanceMethod(DTORMethod);
2015     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2016     D->setHasCXXStructors(true);
2017   }
2018 
2019   // If the implementation doesn't have any ivar initializers, we don't need
2020   // a .cxx_construct.
2021   if (D->getNumIvarInitializers() == 0)
2022     return;
2023 
2024   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2025   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2026   // The constructor returns 'self'.
2027   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2028                                                 D->getLocation(),
2029                                                 D->getLocation(), cxxSelector,
2030                                                 getContext().getObjCIdType(), 0,
2031                                                 D, true, false, true, false,
2032                                                 ObjCMethodDecl::Required);
2033   D->addInstanceMethod(CTORMethod);
2034   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2035   D->setHasCXXStructors(true);
2036 }
2037 
2038 /// EmitNamespace - Emit all declarations in a namespace.
2039 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2040   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2041        I != E; ++I)
2042     EmitTopLevelDecl(*I);
2043 }
2044 
2045 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2046 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2047   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2048       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2049     ErrorUnsupported(LSD, "linkage spec");
2050     return;
2051   }
2052 
2053   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2054        I != E; ++I)
2055     EmitTopLevelDecl(*I);
2056 }
2057 
2058 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2059 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2060   // If an error has occurred, stop code generation, but continue
2061   // parsing and semantic analysis (to ensure all warnings and errors
2062   // are emitted).
2063   if (Diags.hasErrorOccurred())
2064     return;
2065 
2066   // Ignore dependent declarations.
2067   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2068     return;
2069 
2070   switch (D->getKind()) {
2071   case Decl::CXXConversion:
2072   case Decl::CXXMethod:
2073   case Decl::Function:
2074     // Skip function templates
2075     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2076         cast<FunctionDecl>(D)->isLateTemplateParsed())
2077       return;
2078 
2079     EmitGlobal(cast<FunctionDecl>(D));
2080     break;
2081 
2082   case Decl::Var:
2083     EmitGlobal(cast<VarDecl>(D));
2084     break;
2085 
2086   // Indirect fields from global anonymous structs and unions can be
2087   // ignored; only the actual variable requires IR gen support.
2088   case Decl::IndirectField:
2089     break;
2090 
2091   // C++ Decls
2092   case Decl::Namespace:
2093     EmitNamespace(cast<NamespaceDecl>(D));
2094     break;
2095     // No code generation needed.
2096   case Decl::UsingShadow:
2097   case Decl::Using:
2098   case Decl::UsingDirective:
2099   case Decl::ClassTemplate:
2100   case Decl::FunctionTemplate:
2101   case Decl::TypeAliasTemplate:
2102   case Decl::NamespaceAlias:
2103   case Decl::Block:
2104     break;
2105   case Decl::CXXConstructor:
2106     // Skip function templates
2107     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2108         cast<FunctionDecl>(D)->isLateTemplateParsed())
2109       return;
2110 
2111     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2112     break;
2113   case Decl::CXXDestructor:
2114     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2115       return;
2116     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2117     break;
2118 
2119   case Decl::StaticAssert:
2120     // Nothing to do.
2121     break;
2122 
2123   // Objective-C Decls
2124 
2125   // Forward declarations, no (immediate) code generation.
2126   case Decl::ObjCClass:
2127   case Decl::ObjCForwardProtocol:
2128   case Decl::ObjCInterface:
2129     break;
2130 
2131   case Decl::ObjCCategory: {
2132     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2133     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2134       Context.ResetObjCLayout(CD->getClassInterface());
2135     break;
2136   }
2137 
2138   case Decl::ObjCProtocol:
2139     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2140     break;
2141 
2142   case Decl::ObjCCategoryImpl:
2143     // Categories have properties but don't support synthesize so we
2144     // can ignore them here.
2145     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2146     break;
2147 
2148   case Decl::ObjCImplementation: {
2149     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2150     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2151       Context.ResetObjCLayout(OMD->getClassInterface());
2152     EmitObjCPropertyImplementations(OMD);
2153     EmitObjCIvarInitializations(OMD);
2154     Runtime->GenerateClass(OMD);
2155     break;
2156   }
2157   case Decl::ObjCMethod: {
2158     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2159     // If this is not a prototype, emit the body.
2160     if (OMD->getBody())
2161       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2162     break;
2163   }
2164   case Decl::ObjCCompatibleAlias:
2165     // compatibility-alias is a directive and has no code gen.
2166     break;
2167 
2168   case Decl::LinkageSpec:
2169     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2170     break;
2171 
2172   case Decl::FileScopeAsm: {
2173     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2174     llvm::StringRef AsmString = AD->getAsmString()->getString();
2175 
2176     const std::string &S = getModule().getModuleInlineAsm();
2177     if (S.empty())
2178       getModule().setModuleInlineAsm(AsmString);
2179     else
2180       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2181     break;
2182   }
2183 
2184   default:
2185     // Make sure we handled everything we should, every other kind is a
2186     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2187     // function. Need to recode Decl::Kind to do that easily.
2188     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2189   }
2190 }
2191 
2192 /// Turns the given pointer into a constant.
2193 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2194                                           const void *Ptr) {
2195   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2196   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2197   return llvm::ConstantInt::get(i64, PtrInt);
2198 }
2199 
2200 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2201                                    llvm::NamedMDNode *&GlobalMetadata,
2202                                    GlobalDecl D,
2203                                    llvm::GlobalValue *Addr) {
2204   if (!GlobalMetadata)
2205     GlobalMetadata =
2206       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2207 
2208   // TODO: should we report variant information for ctors/dtors?
2209   llvm::Value *Ops[] = {
2210     Addr,
2211     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2212   };
2213   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2214 }
2215 
2216 /// Emits metadata nodes associating all the global values in the
2217 /// current module with the Decls they came from.  This is useful for
2218 /// projects using IR gen as a subroutine.
2219 ///
2220 /// Since there's currently no way to associate an MDNode directly
2221 /// with an llvm::GlobalValue, we create a global named metadata
2222 /// with the name 'clang.global.decl.ptrs'.
2223 void CodeGenModule::EmitDeclMetadata() {
2224   llvm::NamedMDNode *GlobalMetadata = 0;
2225 
2226   // StaticLocalDeclMap
2227   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2228          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2229        I != E; ++I) {
2230     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2231     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2232   }
2233 }
2234 
2235 /// Emits metadata nodes for all the local variables in the current
2236 /// function.
2237 void CodeGenFunction::EmitDeclMetadata() {
2238   if (LocalDeclMap.empty()) return;
2239 
2240   llvm::LLVMContext &Context = getLLVMContext();
2241 
2242   // Find the unique metadata ID for this name.
2243   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2244 
2245   llvm::NamedMDNode *GlobalMetadata = 0;
2246 
2247   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2248          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2249     const Decl *D = I->first;
2250     llvm::Value *Addr = I->second;
2251 
2252     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2253       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2254       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2255     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2256       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2257       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2258     }
2259   }
2260 }
2261 
2262 void CodeGenModule::EmitCoverageFile() {
2263   if (!getCodeGenOpts().CoverageFile.empty()) {
2264     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2265       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2266       llvm::LLVMContext &Ctx = TheModule.getContext();
2267       llvm::MDString *CoverageFile =
2268           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2269       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2270         llvm::MDNode *CU = CUNode->getOperand(i);
2271         llvm::Value *node[] = { CoverageFile, CU };
2272         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2273         GCov->addOperand(N);
2274       }
2275     }
2276   }
2277 }
2278 
2279 ///@name Custom Runtime Function Interfaces
2280 ///@{
2281 //
2282 // FIXME: These can be eliminated once we can have clients just get the required
2283 // AST nodes from the builtin tables.
2284 
2285 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2286   if (BlockObjectDispose)
2287     return BlockObjectDispose;
2288 
2289   // If we saw an explicit decl, use that.
2290   if (BlockObjectDisposeDecl) {
2291     return BlockObjectDispose = GetAddrOfFunction(
2292       BlockObjectDisposeDecl,
2293       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2294   }
2295 
2296   // Otherwise construct the function by hand.
2297   const llvm::Type *args[] = { Int8PtrTy, Int32Ty };
2298   const llvm::FunctionType *fty
2299     = llvm::FunctionType::get(VoidTy, args, false);
2300   return BlockObjectDispose =
2301     CreateRuntimeFunction(fty, "_Block_object_dispose");
2302 }
2303 
2304 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2305   if (BlockObjectAssign)
2306     return BlockObjectAssign;
2307 
2308   // If we saw an explicit decl, use that.
2309   if (BlockObjectAssignDecl) {
2310     return BlockObjectAssign = GetAddrOfFunction(
2311       BlockObjectAssignDecl,
2312       getTypes().GetFunctionType(BlockObjectAssignDecl));
2313   }
2314 
2315   // Otherwise construct the function by hand.
2316   const llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty };
2317   const llvm::FunctionType *fty
2318     = llvm::FunctionType::get(VoidTy, args, false);
2319   return BlockObjectAssign =
2320     CreateRuntimeFunction(fty, "_Block_object_assign");
2321 }
2322 
2323 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2324   if (NSConcreteGlobalBlock)
2325     return NSConcreteGlobalBlock;
2326 
2327   // If we saw an explicit decl, use that.
2328   if (NSConcreteGlobalBlockDecl) {
2329     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2330       NSConcreteGlobalBlockDecl,
2331       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2332   }
2333 
2334   // Otherwise construct the variable by hand.
2335   return NSConcreteGlobalBlock =
2336     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2337 }
2338 
2339 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2340   if (NSConcreteStackBlock)
2341     return NSConcreteStackBlock;
2342 
2343   // If we saw an explicit decl, use that.
2344   if (NSConcreteStackBlockDecl) {
2345     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2346       NSConcreteStackBlockDecl,
2347       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2348   }
2349 
2350   // Otherwise construct the variable by hand.
2351   return NSConcreteStackBlock =
2352     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2353 }
2354 
2355 ///@}
2356