1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeGPU.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/StringSwitch.h" 51 #include "llvm/ADT/Triple.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 54 #include "llvm/IR/CallingConv.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/Intrinsics.h" 57 #include "llvm/IR/LLVMContext.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ProfileSummary.h" 60 #include "llvm/ProfileData/InstrProfReader.h" 61 #include "llvm/Support/CRC.h" 62 #include "llvm/Support/CodeGen.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/ConvertUTF.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/MD5.h" 67 #include "llvm/Support/TimeProfiler.h" 68 #include "llvm/Support/X86TargetParser.h" 69 70 using namespace clang; 71 using namespace CodeGen; 72 73 static llvm::cl::opt<bool> LimitedCoverage( 74 "limited-coverage-experimental", llvm::cl::Hidden, 75 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 76 77 static const char AnnotationSection[] = "llvm.metadata"; 78 79 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 80 switch (CGM.getContext().getCXXABIKind()) { 81 case TargetCXXABI::AppleARM64: 82 case TargetCXXABI::Fuchsia: 83 case TargetCXXABI::GenericAArch64: 84 case TargetCXXABI::GenericARM: 85 case TargetCXXABI::iOS: 86 case TargetCXXABI::WatchOS: 87 case TargetCXXABI::GenericMIPS: 88 case TargetCXXABI::GenericItanium: 89 case TargetCXXABI::WebAssembly: 90 case TargetCXXABI::XL: 91 return CreateItaniumCXXABI(CGM); 92 case TargetCXXABI::Microsoft: 93 return CreateMicrosoftCXXABI(CGM); 94 } 95 96 llvm_unreachable("invalid C++ ABI kind"); 97 } 98 99 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 100 const PreprocessorOptions &PPO, 101 const CodeGenOptions &CGO, llvm::Module &M, 102 DiagnosticsEngine &diags, 103 CoverageSourceInfo *CoverageInfo) 104 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 105 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 106 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 107 VMContext(M.getContext()), Types(*this), VTables(*this), 108 SanitizerMD(new SanitizerMetadata(*this)) { 109 110 // Initialize the type cache. 111 llvm::LLVMContext &LLVMContext = M.getContext(); 112 VoidTy = llvm::Type::getVoidTy(LLVMContext); 113 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 114 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 115 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 116 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 117 HalfTy = llvm::Type::getHalfTy(LLVMContext); 118 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 119 FloatTy = llvm::Type::getFloatTy(LLVMContext); 120 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 121 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 122 PointerAlignInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 124 SizeSizeInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 126 IntAlignInBytes = 127 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 128 CharTy = 129 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 130 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 131 IntPtrTy = llvm::IntegerType::get(LLVMContext, 132 C.getTargetInfo().getMaxPointerWidth()); 133 Int8PtrTy = Int8Ty->getPointerTo(0); 134 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 135 const llvm::DataLayout &DL = M.getDataLayout(); 136 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 137 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 138 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 139 140 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 141 142 if (LangOpts.ObjC) 143 createObjCRuntime(); 144 if (LangOpts.OpenCL) 145 createOpenCLRuntime(); 146 if (LangOpts.OpenMP) 147 createOpenMPRuntime(); 148 if (LangOpts.CUDA) 149 createCUDARuntime(); 150 if (LangOpts.HLSL) 151 createHLSLRuntime(); 152 153 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 154 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 155 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 156 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 157 getCXXABI().getMangleContext())); 158 159 // If debug info or coverage generation is enabled, create the CGDebugInfo 160 // object. 161 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 162 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 163 DebugInfo.reset(new CGDebugInfo(*this)); 164 165 Block.GlobalUniqueCount = 0; 166 167 if (C.getLangOpts().ObjC) 168 ObjCData.reset(new ObjCEntrypoints()); 169 170 if (CodeGenOpts.hasProfileClangUse()) { 171 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 172 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 173 if (auto E = ReaderOrErr.takeError()) { 174 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 175 "Could not read profile %0: %1"); 176 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 177 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 178 << EI.message(); 179 }); 180 } else 181 PGOReader = std::move(ReaderOrErr.get()); 182 } 183 184 // If coverage mapping generation is enabled, create the 185 // CoverageMappingModuleGen object. 186 if (CodeGenOpts.CoverageMapping) 187 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 188 189 // Generate the module name hash here if needed. 190 if (CodeGenOpts.UniqueInternalLinkageNames && 191 !getModule().getSourceFileName().empty()) { 192 std::string Path = getModule().getSourceFileName(); 193 // Check if a path substitution is needed from the MacroPrefixMap. 194 for (const auto &Entry : LangOpts.MacroPrefixMap) 195 if (Path.rfind(Entry.first, 0) != std::string::npos) { 196 Path = Entry.second + Path.substr(Entry.first.size()); 197 break; 198 } 199 llvm::MD5 Md5; 200 Md5.update(Path); 201 llvm::MD5::MD5Result R; 202 Md5.final(R); 203 SmallString<32> Str; 204 llvm::MD5::stringifyResult(R, Str); 205 // Convert MD5hash to Decimal. Demangler suffixes can either contain 206 // numbers or characters but not both. 207 llvm::APInt IntHash(128, Str.str(), 16); 208 // Prepend "__uniq" before the hash for tools like profilers to understand 209 // that this symbol is of internal linkage type. The "__uniq" is the 210 // pre-determined prefix that is used to tell tools that this symbol was 211 // created with -funique-internal-linakge-symbols and the tools can strip or 212 // keep the prefix as needed. 213 ModuleNameHash = (Twine(".__uniq.") + 214 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str(); 215 } 216 } 217 218 CodeGenModule::~CodeGenModule() {} 219 220 void CodeGenModule::createObjCRuntime() { 221 // This is just isGNUFamily(), but we want to force implementors of 222 // new ABIs to decide how best to do this. 223 switch (LangOpts.ObjCRuntime.getKind()) { 224 case ObjCRuntime::GNUstep: 225 case ObjCRuntime::GCC: 226 case ObjCRuntime::ObjFW: 227 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 228 return; 229 230 case ObjCRuntime::FragileMacOSX: 231 case ObjCRuntime::MacOSX: 232 case ObjCRuntime::iOS: 233 case ObjCRuntime::WatchOS: 234 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 235 return; 236 } 237 llvm_unreachable("bad runtime kind"); 238 } 239 240 void CodeGenModule::createOpenCLRuntime() { 241 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 242 } 243 244 void CodeGenModule::createOpenMPRuntime() { 245 // Select a specialized code generation class based on the target, if any. 246 // If it does not exist use the default implementation. 247 switch (getTriple().getArch()) { 248 case llvm::Triple::nvptx: 249 case llvm::Triple::nvptx64: 250 case llvm::Triple::amdgcn: 251 assert(getLangOpts().OpenMPIsDevice && 252 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 253 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 254 break; 255 default: 256 if (LangOpts.OpenMPSimd) 257 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 258 else 259 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 260 break; 261 } 262 } 263 264 void CodeGenModule::createCUDARuntime() { 265 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 266 } 267 268 void CodeGenModule::createHLSLRuntime() { 269 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 270 } 271 272 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 273 Replacements[Name] = C; 274 } 275 276 void CodeGenModule::applyReplacements() { 277 for (auto &I : Replacements) { 278 StringRef MangledName = I.first(); 279 llvm::Constant *Replacement = I.second; 280 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 281 if (!Entry) 282 continue; 283 auto *OldF = cast<llvm::Function>(Entry); 284 auto *NewF = dyn_cast<llvm::Function>(Replacement); 285 if (!NewF) { 286 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 287 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 288 } else { 289 auto *CE = cast<llvm::ConstantExpr>(Replacement); 290 assert(CE->getOpcode() == llvm::Instruction::BitCast || 291 CE->getOpcode() == llvm::Instruction::GetElementPtr); 292 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 293 } 294 } 295 296 // Replace old with new, but keep the old order. 297 OldF->replaceAllUsesWith(Replacement); 298 if (NewF) { 299 NewF->removeFromParent(); 300 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 301 NewF); 302 } 303 OldF->eraseFromParent(); 304 } 305 } 306 307 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 308 GlobalValReplacements.push_back(std::make_pair(GV, C)); 309 } 310 311 void CodeGenModule::applyGlobalValReplacements() { 312 for (auto &I : GlobalValReplacements) { 313 llvm::GlobalValue *GV = I.first; 314 llvm::Constant *C = I.second; 315 316 GV->replaceAllUsesWith(C); 317 GV->eraseFromParent(); 318 } 319 } 320 321 // This is only used in aliases that we created and we know they have a 322 // linear structure. 323 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 324 const llvm::Constant *C; 325 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 326 C = GA->getAliasee(); 327 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 328 C = GI->getResolver(); 329 else 330 return GV; 331 332 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 333 if (!AliaseeGV) 334 return nullptr; 335 336 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 337 if (FinalGV == GV) 338 return nullptr; 339 340 return FinalGV; 341 } 342 343 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 344 SourceLocation Location, bool IsIFunc, 345 const llvm::GlobalValue *Alias, 346 const llvm::GlobalValue *&GV) { 347 GV = getAliasedGlobal(Alias); 348 if (!GV) { 349 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 350 return false; 351 } 352 353 if (GV->isDeclaration()) { 354 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 355 return false; 356 } 357 358 if (IsIFunc) { 359 // Check resolver function type. 360 const auto *F = dyn_cast<llvm::Function>(GV); 361 if (!F) { 362 Diags.Report(Location, diag::err_alias_to_undefined) 363 << IsIFunc << IsIFunc; 364 return false; 365 } 366 367 llvm::FunctionType *FTy = F->getFunctionType(); 368 if (!FTy->getReturnType()->isPointerTy()) { 369 Diags.Report(Location, diag::err_ifunc_resolver_return); 370 return false; 371 } 372 } 373 374 return true; 375 } 376 377 void CodeGenModule::checkAliases() { 378 // Check if the constructed aliases are well formed. It is really unfortunate 379 // that we have to do this in CodeGen, but we only construct mangled names 380 // and aliases during codegen. 381 bool Error = false; 382 DiagnosticsEngine &Diags = getDiags(); 383 for (const GlobalDecl &GD : Aliases) { 384 const auto *D = cast<ValueDecl>(GD.getDecl()); 385 SourceLocation Location; 386 bool IsIFunc = D->hasAttr<IFuncAttr>(); 387 if (const Attr *A = D->getDefiningAttr()) 388 Location = A->getLocation(); 389 else 390 llvm_unreachable("Not an alias or ifunc?"); 391 392 StringRef MangledName = getMangledName(GD); 393 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 394 const llvm::GlobalValue *GV = nullptr; 395 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 396 Error = true; 397 continue; 398 } 399 400 llvm::Constant *Aliasee = 401 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 402 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 403 404 llvm::GlobalValue *AliaseeGV; 405 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 406 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 407 else 408 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 409 410 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 411 StringRef AliasSection = SA->getName(); 412 if (AliasSection != AliaseeGV->getSection()) 413 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 414 << AliasSection << IsIFunc << IsIFunc; 415 } 416 417 // We have to handle alias to weak aliases in here. LLVM itself disallows 418 // this since the object semantics would not match the IL one. For 419 // compatibility with gcc we implement it by just pointing the alias 420 // to its aliasee's aliasee. We also warn, since the user is probably 421 // expecting the link to be weak. 422 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 423 if (GA->isInterposable()) { 424 Diags.Report(Location, diag::warn_alias_to_weak_alias) 425 << GV->getName() << GA->getName() << IsIFunc; 426 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 427 GA->getAliasee(), Alias->getType()); 428 429 if (IsIFunc) 430 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 431 else 432 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 433 } 434 } 435 } 436 if (!Error) 437 return; 438 439 for (const GlobalDecl &GD : Aliases) { 440 StringRef MangledName = getMangledName(GD); 441 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 442 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 443 Alias->eraseFromParent(); 444 } 445 } 446 447 void CodeGenModule::clear() { 448 DeferredDeclsToEmit.clear(); 449 EmittedDeferredDecls.clear(); 450 if (OpenMPRuntime) 451 OpenMPRuntime->clear(); 452 } 453 454 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 455 StringRef MainFile) { 456 if (!hasDiagnostics()) 457 return; 458 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 459 if (MainFile.empty()) 460 MainFile = "<stdin>"; 461 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 462 } else { 463 if (Mismatched > 0) 464 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 465 466 if (Missing > 0) 467 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 468 } 469 } 470 471 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 472 llvm::Module &M) { 473 if (!LO.VisibilityFromDLLStorageClass) 474 return; 475 476 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 477 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 478 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 479 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 480 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 481 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 482 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 483 CodeGenModule::GetLLVMVisibility( 484 LO.getExternDeclNoDLLStorageClassVisibility()); 485 486 for (llvm::GlobalValue &GV : M.global_values()) { 487 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 488 continue; 489 490 // Reset DSO locality before setting the visibility. This removes 491 // any effects that visibility options and annotations may have 492 // had on the DSO locality. Setting the visibility will implicitly set 493 // appropriate globals to DSO Local; however, this will be pessimistic 494 // w.r.t. to the normal compiler IRGen. 495 GV.setDSOLocal(false); 496 497 if (GV.isDeclarationForLinker()) { 498 GV.setVisibility(GV.getDLLStorageClass() == 499 llvm::GlobalValue::DLLImportStorageClass 500 ? ExternDeclDLLImportVisibility 501 : ExternDeclNoDLLStorageClassVisibility); 502 } else { 503 GV.setVisibility(GV.getDLLStorageClass() == 504 llvm::GlobalValue::DLLExportStorageClass 505 ? DLLExportVisibility 506 : NoDLLStorageClassVisibility); 507 } 508 509 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 510 } 511 } 512 513 void CodeGenModule::Release() { 514 EmitDeferred(); 515 DeferredDecls.insert(EmittedDeferredDecls.begin(), 516 EmittedDeferredDecls.end()); 517 EmittedDeferredDecls.clear(); 518 EmitVTablesOpportunistically(); 519 applyGlobalValReplacements(); 520 applyReplacements(); 521 emitMultiVersionFunctions(); 522 EmitCXXGlobalInitFunc(); 523 EmitCXXGlobalCleanUpFunc(); 524 registerGlobalDtorsWithAtExit(); 525 EmitCXXThreadLocalInitFunc(); 526 if (ObjCRuntime) 527 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 528 AddGlobalCtor(ObjCInitFunction); 529 if (Context.getLangOpts().CUDA && CUDARuntime) { 530 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 531 AddGlobalCtor(CudaCtorFunction); 532 } 533 if (OpenMPRuntime) { 534 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 535 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 536 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 537 } 538 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 539 OpenMPRuntime->clear(); 540 } 541 if (PGOReader) { 542 getModule().setProfileSummary( 543 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 544 llvm::ProfileSummary::PSK_Instr); 545 if (PGOStats.hasDiagnostics()) 546 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 547 } 548 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 549 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 550 EmitGlobalAnnotations(); 551 EmitStaticExternCAliases(); 552 checkAliases(); 553 EmitDeferredUnusedCoverageMappings(); 554 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 555 if (CoverageMapping) 556 CoverageMapping->emit(); 557 if (CodeGenOpts.SanitizeCfiCrossDso) { 558 CodeGenFunction(*this).EmitCfiCheckFail(); 559 CodeGenFunction(*this).EmitCfiCheckStub(); 560 } 561 emitAtAvailableLinkGuard(); 562 if (Context.getTargetInfo().getTriple().isWasm()) 563 EmitMainVoidAlias(); 564 565 if (getTriple().isAMDGPU()) { 566 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 567 // preserve ASAN functions in bitcode libraries. 568 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 569 auto *FT = llvm::FunctionType::get(VoidTy, {}); 570 auto *F = llvm::Function::Create( 571 FT, llvm::GlobalValue::ExternalLinkage, 572 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 573 auto *Var = new llvm::GlobalVariable( 574 getModule(), FT->getPointerTo(), 575 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 576 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 577 llvm::GlobalVariable::NotThreadLocal); 578 addCompilerUsedGlobal(Var); 579 } 580 // Emit amdgpu_code_object_version module flag, which is code object version 581 // times 100. 582 // ToDo: Enable module flag for all code object version when ROCm device 583 // library is ready. 584 if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) { 585 getModule().addModuleFlag(llvm::Module::Error, 586 "amdgpu_code_object_version", 587 getTarget().getTargetOpts().CodeObjectVersion); 588 } 589 } 590 591 // Emit a global array containing all external kernels or device variables 592 // used by host functions and mark it as used for CUDA/HIP. This is necessary 593 // to get kernels or device variables in archives linked in even if these 594 // kernels or device variables are only used in host functions. 595 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 596 SmallVector<llvm::Constant *, 8> UsedArray; 597 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 598 GlobalDecl GD; 599 if (auto *FD = dyn_cast<FunctionDecl>(D)) 600 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 601 else 602 GD = GlobalDecl(D); 603 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 604 GetAddrOfGlobal(GD), Int8PtrTy)); 605 } 606 607 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 608 609 auto *GV = new llvm::GlobalVariable( 610 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 611 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 612 addCompilerUsedGlobal(GV); 613 } 614 615 emitLLVMUsed(); 616 if (SanStats) 617 SanStats->finish(); 618 619 if (CodeGenOpts.Autolink && 620 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 621 EmitModuleLinkOptions(); 622 } 623 624 // On ELF we pass the dependent library specifiers directly to the linker 625 // without manipulating them. This is in contrast to other platforms where 626 // they are mapped to a specific linker option by the compiler. This 627 // difference is a result of the greater variety of ELF linkers and the fact 628 // that ELF linkers tend to handle libraries in a more complicated fashion 629 // than on other platforms. This forces us to defer handling the dependent 630 // libs to the linker. 631 // 632 // CUDA/HIP device and host libraries are different. Currently there is no 633 // way to differentiate dependent libraries for host or device. Existing 634 // usage of #pragma comment(lib, *) is intended for host libraries on 635 // Windows. Therefore emit llvm.dependent-libraries only for host. 636 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 637 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 638 for (auto *MD : ELFDependentLibraries) 639 NMD->addOperand(MD); 640 } 641 642 // Record mregparm value now so it is visible through rest of codegen. 643 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 644 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 645 CodeGenOpts.NumRegisterParameters); 646 647 if (CodeGenOpts.DwarfVersion) { 648 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 649 CodeGenOpts.DwarfVersion); 650 } 651 652 if (CodeGenOpts.Dwarf64) 653 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 654 655 if (Context.getLangOpts().SemanticInterposition) 656 // Require various optimization to respect semantic interposition. 657 getModule().setSemanticInterposition(true); 658 659 if (CodeGenOpts.EmitCodeView) { 660 // Indicate that we want CodeView in the metadata. 661 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 662 } 663 if (CodeGenOpts.CodeViewGHash) { 664 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 665 } 666 if (CodeGenOpts.ControlFlowGuard) { 667 // Function ID tables and checks for Control Flow Guard (cfguard=2). 668 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 669 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 670 // Function ID tables for Control Flow Guard (cfguard=1). 671 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 672 } 673 if (CodeGenOpts.EHContGuard) { 674 // Function ID tables for EH Continuation Guard. 675 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 676 } 677 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 678 // We don't support LTO with 2 with different StrictVTablePointers 679 // FIXME: we could support it by stripping all the information introduced 680 // by StrictVTablePointers. 681 682 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 683 684 llvm::Metadata *Ops[2] = { 685 llvm::MDString::get(VMContext, "StrictVTablePointers"), 686 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 687 llvm::Type::getInt32Ty(VMContext), 1))}; 688 689 getModule().addModuleFlag(llvm::Module::Require, 690 "StrictVTablePointersRequirement", 691 llvm::MDNode::get(VMContext, Ops)); 692 } 693 if (getModuleDebugInfo()) 694 // We support a single version in the linked module. The LLVM 695 // parser will drop debug info with a different version number 696 // (and warn about it, too). 697 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 698 llvm::DEBUG_METADATA_VERSION); 699 700 // We need to record the widths of enums and wchar_t, so that we can generate 701 // the correct build attributes in the ARM backend. wchar_size is also used by 702 // TargetLibraryInfo. 703 uint64_t WCharWidth = 704 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 705 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 706 707 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 708 if ( Arch == llvm::Triple::arm 709 || Arch == llvm::Triple::armeb 710 || Arch == llvm::Triple::thumb 711 || Arch == llvm::Triple::thumbeb) { 712 // The minimum width of an enum in bytes 713 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 714 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 715 } 716 717 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 718 StringRef ABIStr = Target.getABI(); 719 llvm::LLVMContext &Ctx = TheModule.getContext(); 720 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 721 llvm::MDString::get(Ctx, ABIStr)); 722 } 723 724 if (CodeGenOpts.SanitizeCfiCrossDso) { 725 // Indicate that we want cross-DSO control flow integrity checks. 726 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 727 } 728 729 if (CodeGenOpts.WholeProgramVTables) { 730 // Indicate whether VFE was enabled for this module, so that the 731 // vcall_visibility metadata added under whole program vtables is handled 732 // appropriately in the optimizer. 733 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 734 CodeGenOpts.VirtualFunctionElimination); 735 } 736 737 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 738 getModule().addModuleFlag(llvm::Module::Override, 739 "CFI Canonical Jump Tables", 740 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 741 } 742 743 if (CodeGenOpts.CFProtectionReturn && 744 Target.checkCFProtectionReturnSupported(getDiags())) { 745 // Indicate that we want to instrument return control flow protection. 746 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 747 1); 748 } 749 750 if (CodeGenOpts.CFProtectionBranch && 751 Target.checkCFProtectionBranchSupported(getDiags())) { 752 // Indicate that we want to instrument branch control flow protection. 753 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 754 1); 755 } 756 757 if (CodeGenOpts.IBTSeal) 758 getModule().addModuleFlag(llvm::Module::Min, "ibt-seal", 1); 759 760 if (CodeGenOpts.FunctionReturnThunks) 761 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 762 763 // Add module metadata for return address signing (ignoring 764 // non-leaf/all) and stack tagging. These are actually turned on by function 765 // attributes, but we use module metadata to emit build attributes. This is 766 // needed for LTO, where the function attributes are inside bitcode 767 // serialised into a global variable by the time build attributes are 768 // emitted, so we can't access them. LTO objects could be compiled with 769 // different flags therefore module flags are set to "Min" behavior to achieve 770 // the same end result of the normal build where e.g BTI is off if any object 771 // doesn't support it. 772 if (Context.getTargetInfo().hasFeature("ptrauth") && 773 LangOpts.getSignReturnAddressScope() != 774 LangOptions::SignReturnAddressScopeKind::None) 775 getModule().addModuleFlag(llvm::Module::Override, 776 "sign-return-address-buildattr", 1); 777 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 778 getModule().addModuleFlag(llvm::Module::Override, 779 "tag-stack-memory-buildattr", 1); 780 781 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 782 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 783 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 784 Arch == llvm::Triple::aarch64_be) { 785 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 786 LangOpts.BranchTargetEnforcement); 787 788 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 789 LangOpts.hasSignReturnAddress()); 790 791 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 792 LangOpts.isSignReturnAddressScopeAll()); 793 794 getModule().addModuleFlag(llvm::Module::Min, 795 "sign-return-address-with-bkey", 796 !LangOpts.isSignReturnAddressWithAKey()); 797 } 798 799 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 800 llvm::LLVMContext &Ctx = TheModule.getContext(); 801 getModule().addModuleFlag( 802 llvm::Module::Error, "MemProfProfileFilename", 803 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 804 } 805 806 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 807 // Indicate whether __nvvm_reflect should be configured to flush denormal 808 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 809 // property.) 810 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 811 CodeGenOpts.FP32DenormalMode.Output != 812 llvm::DenormalMode::IEEE); 813 } 814 815 if (LangOpts.EHAsynch) 816 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 817 818 // Indicate whether this Module was compiled with -fopenmp 819 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 820 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 821 if (getLangOpts().OpenMPIsDevice) 822 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 823 LangOpts.OpenMP); 824 825 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 826 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 827 EmitOpenCLMetadata(); 828 // Emit SPIR version. 829 if (getTriple().isSPIR()) { 830 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 831 // opencl.spir.version named metadata. 832 // C++ for OpenCL has a distinct mapping for version compatibility with 833 // OpenCL. 834 auto Version = LangOpts.getOpenCLCompatibleVersion(); 835 llvm::Metadata *SPIRVerElts[] = { 836 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 837 Int32Ty, Version / 100)), 838 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 839 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 840 llvm::NamedMDNode *SPIRVerMD = 841 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 842 llvm::LLVMContext &Ctx = TheModule.getContext(); 843 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 844 } 845 } 846 847 // HLSL related end of code gen work items. 848 if (LangOpts.HLSL) 849 getHLSLRuntime().finishCodeGen(); 850 851 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 852 assert(PLevel < 3 && "Invalid PIC Level"); 853 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 854 if (Context.getLangOpts().PIE) 855 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 856 } 857 858 if (getCodeGenOpts().CodeModel.size() > 0) { 859 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 860 .Case("tiny", llvm::CodeModel::Tiny) 861 .Case("small", llvm::CodeModel::Small) 862 .Case("kernel", llvm::CodeModel::Kernel) 863 .Case("medium", llvm::CodeModel::Medium) 864 .Case("large", llvm::CodeModel::Large) 865 .Default(~0u); 866 if (CM != ~0u) { 867 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 868 getModule().setCodeModel(codeModel); 869 } 870 } 871 872 if (CodeGenOpts.NoPLT) 873 getModule().setRtLibUseGOT(); 874 if (CodeGenOpts.UnwindTables) 875 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 876 877 switch (CodeGenOpts.getFramePointer()) { 878 case CodeGenOptions::FramePointerKind::None: 879 // 0 ("none") is the default. 880 break; 881 case CodeGenOptions::FramePointerKind::NonLeaf: 882 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 883 break; 884 case CodeGenOptions::FramePointerKind::All: 885 getModule().setFramePointer(llvm::FramePointerKind::All); 886 break; 887 } 888 889 SimplifyPersonality(); 890 891 if (getCodeGenOpts().EmitDeclMetadata) 892 EmitDeclMetadata(); 893 894 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 895 EmitCoverageFile(); 896 897 if (CGDebugInfo *DI = getModuleDebugInfo()) 898 DI->finalize(); 899 900 if (getCodeGenOpts().EmitVersionIdentMetadata) 901 EmitVersionIdentMetadata(); 902 903 if (!getCodeGenOpts().RecordCommandLine.empty()) 904 EmitCommandLineMetadata(); 905 906 if (!getCodeGenOpts().StackProtectorGuard.empty()) 907 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 908 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 909 getModule().setStackProtectorGuardReg( 910 getCodeGenOpts().StackProtectorGuardReg); 911 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 912 getModule().setStackProtectorGuardSymbol( 913 getCodeGenOpts().StackProtectorGuardSymbol); 914 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 915 getModule().setStackProtectorGuardOffset( 916 getCodeGenOpts().StackProtectorGuardOffset); 917 if (getCodeGenOpts().StackAlignment) 918 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 919 if (getCodeGenOpts().SkipRaxSetup) 920 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 921 922 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 923 924 EmitBackendOptionsMetadata(getCodeGenOpts()); 925 926 // If there is device offloading code embed it in the host now. 927 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 928 929 // Set visibility from DLL storage class 930 // We do this at the end of LLVM IR generation; after any operation 931 // that might affect the DLL storage class or the visibility, and 932 // before anything that might act on these. 933 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 934 } 935 936 void CodeGenModule::EmitOpenCLMetadata() { 937 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 938 // opencl.ocl.version named metadata node. 939 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 940 auto Version = LangOpts.getOpenCLCompatibleVersion(); 941 llvm::Metadata *OCLVerElts[] = { 942 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 943 Int32Ty, Version / 100)), 944 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 945 Int32Ty, (Version % 100) / 10))}; 946 llvm::NamedMDNode *OCLVerMD = 947 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 948 llvm::LLVMContext &Ctx = TheModule.getContext(); 949 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 950 } 951 952 void CodeGenModule::EmitBackendOptionsMetadata( 953 const CodeGenOptions CodeGenOpts) { 954 switch (getTriple().getArch()) { 955 default: 956 break; 957 case llvm::Triple::riscv32: 958 case llvm::Triple::riscv64: 959 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 960 CodeGenOpts.SmallDataLimit); 961 break; 962 } 963 } 964 965 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 966 // Make sure that this type is translated. 967 Types.UpdateCompletedType(TD); 968 } 969 970 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 971 // Make sure that this type is translated. 972 Types.RefreshTypeCacheForClass(RD); 973 } 974 975 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 976 if (!TBAA) 977 return nullptr; 978 return TBAA->getTypeInfo(QTy); 979 } 980 981 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 982 if (!TBAA) 983 return TBAAAccessInfo(); 984 if (getLangOpts().CUDAIsDevice) { 985 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 986 // access info. 987 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 988 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 989 nullptr) 990 return TBAAAccessInfo(); 991 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 992 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 993 nullptr) 994 return TBAAAccessInfo(); 995 } 996 } 997 return TBAA->getAccessInfo(AccessType); 998 } 999 1000 TBAAAccessInfo 1001 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1002 if (!TBAA) 1003 return TBAAAccessInfo(); 1004 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1005 } 1006 1007 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1008 if (!TBAA) 1009 return nullptr; 1010 return TBAA->getTBAAStructInfo(QTy); 1011 } 1012 1013 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1014 if (!TBAA) 1015 return nullptr; 1016 return TBAA->getBaseTypeInfo(QTy); 1017 } 1018 1019 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1020 if (!TBAA) 1021 return nullptr; 1022 return TBAA->getAccessTagInfo(Info); 1023 } 1024 1025 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1026 TBAAAccessInfo TargetInfo) { 1027 if (!TBAA) 1028 return TBAAAccessInfo(); 1029 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1030 } 1031 1032 TBAAAccessInfo 1033 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1034 TBAAAccessInfo InfoB) { 1035 if (!TBAA) 1036 return TBAAAccessInfo(); 1037 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1038 } 1039 1040 TBAAAccessInfo 1041 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1042 TBAAAccessInfo SrcInfo) { 1043 if (!TBAA) 1044 return TBAAAccessInfo(); 1045 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1046 } 1047 1048 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1049 TBAAAccessInfo TBAAInfo) { 1050 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1051 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1052 } 1053 1054 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1055 llvm::Instruction *I, const CXXRecordDecl *RD) { 1056 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1057 llvm::MDNode::get(getLLVMContext(), {})); 1058 } 1059 1060 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1061 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1062 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1063 } 1064 1065 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1066 /// specified stmt yet. 1067 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1068 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1069 "cannot compile this %0 yet"); 1070 std::string Msg = Type; 1071 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1072 << Msg << S->getSourceRange(); 1073 } 1074 1075 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1076 /// specified decl yet. 1077 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1078 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1079 "cannot compile this %0 yet"); 1080 std::string Msg = Type; 1081 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1082 } 1083 1084 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1085 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1086 } 1087 1088 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1089 const NamedDecl *D) const { 1090 if (GV->hasDLLImportStorageClass()) 1091 return; 1092 // Internal definitions always have default visibility. 1093 if (GV->hasLocalLinkage()) { 1094 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1095 return; 1096 } 1097 if (!D) 1098 return; 1099 // Set visibility for definitions, and for declarations if requested globally 1100 // or set explicitly. 1101 LinkageInfo LV = D->getLinkageAndVisibility(); 1102 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1103 !GV->isDeclarationForLinker()) 1104 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1105 } 1106 1107 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1108 llvm::GlobalValue *GV) { 1109 if (GV->hasLocalLinkage()) 1110 return true; 1111 1112 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1113 return true; 1114 1115 // DLLImport explicitly marks the GV as external. 1116 if (GV->hasDLLImportStorageClass()) 1117 return false; 1118 1119 const llvm::Triple &TT = CGM.getTriple(); 1120 if (TT.isWindowsGNUEnvironment()) { 1121 // In MinGW, variables without DLLImport can still be automatically 1122 // imported from a DLL by the linker; don't mark variables that 1123 // potentially could come from another DLL as DSO local. 1124 1125 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1126 // (and this actually happens in the public interface of libstdc++), so 1127 // such variables can't be marked as DSO local. (Native TLS variables 1128 // can't be dllimported at all, though.) 1129 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1130 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1131 return false; 1132 } 1133 1134 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1135 // remain unresolved in the link, they can be resolved to zero, which is 1136 // outside the current DSO. 1137 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1138 return false; 1139 1140 // Every other GV is local on COFF. 1141 // Make an exception for windows OS in the triple: Some firmware builds use 1142 // *-win32-macho triples. This (accidentally?) produced windows relocations 1143 // without GOT tables in older clang versions; Keep this behaviour. 1144 // FIXME: even thread local variables? 1145 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1146 return true; 1147 1148 // Only handle COFF and ELF for now. 1149 if (!TT.isOSBinFormatELF()) 1150 return false; 1151 1152 // If this is not an executable, don't assume anything is local. 1153 const auto &CGOpts = CGM.getCodeGenOpts(); 1154 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1155 const auto &LOpts = CGM.getLangOpts(); 1156 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1157 // On ELF, if -fno-semantic-interposition is specified and the target 1158 // supports local aliases, there will be neither CC1 1159 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1160 // dso_local on the function if using a local alias is preferable (can avoid 1161 // PLT indirection). 1162 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1163 return false; 1164 return !(CGM.getLangOpts().SemanticInterposition || 1165 CGM.getLangOpts().HalfNoSemanticInterposition); 1166 } 1167 1168 // A definition cannot be preempted from an executable. 1169 if (!GV->isDeclarationForLinker()) 1170 return true; 1171 1172 // Most PIC code sequences that assume that a symbol is local cannot produce a 1173 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1174 // depended, it seems worth it to handle it here. 1175 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1176 return false; 1177 1178 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1179 if (TT.isPPC64()) 1180 return false; 1181 1182 if (CGOpts.DirectAccessExternalData) { 1183 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1184 // for non-thread-local variables. If the symbol is not defined in the 1185 // executable, a copy relocation will be needed at link time. dso_local is 1186 // excluded for thread-local variables because they generally don't support 1187 // copy relocations. 1188 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1189 if (!Var->isThreadLocal()) 1190 return true; 1191 1192 // -fno-pic sets dso_local on a function declaration to allow direct 1193 // accesses when taking its address (similar to a data symbol). If the 1194 // function is not defined in the executable, a canonical PLT entry will be 1195 // needed at link time. -fno-direct-access-external-data can avoid the 1196 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1197 // it could just cause trouble without providing perceptible benefits. 1198 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1199 return true; 1200 } 1201 1202 // If we can use copy relocations we can assume it is local. 1203 1204 // Otherwise don't assume it is local. 1205 return false; 1206 } 1207 1208 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1209 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1210 } 1211 1212 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1213 GlobalDecl GD) const { 1214 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1215 // C++ destructors have a few C++ ABI specific special cases. 1216 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1217 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1218 return; 1219 } 1220 setDLLImportDLLExport(GV, D); 1221 } 1222 1223 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1224 const NamedDecl *D) const { 1225 if (D && D->isExternallyVisible()) { 1226 if (D->hasAttr<DLLImportAttr>()) 1227 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1228 else if ((D->hasAttr<DLLExportAttr>() || 1229 shouldMapVisibilityToDLLExport(D)) && 1230 !GV->isDeclarationForLinker()) 1231 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1232 } 1233 } 1234 1235 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1236 GlobalDecl GD) const { 1237 setDLLImportDLLExport(GV, GD); 1238 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1239 } 1240 1241 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1242 const NamedDecl *D) const { 1243 setDLLImportDLLExport(GV, D); 1244 setGVPropertiesAux(GV, D); 1245 } 1246 1247 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1248 const NamedDecl *D) const { 1249 setGlobalVisibility(GV, D); 1250 setDSOLocal(GV); 1251 GV->setPartition(CodeGenOpts.SymbolPartition); 1252 } 1253 1254 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1255 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1256 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1257 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1258 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1259 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1260 } 1261 1262 llvm::GlobalVariable::ThreadLocalMode 1263 CodeGenModule::GetDefaultLLVMTLSModel() const { 1264 switch (CodeGenOpts.getDefaultTLSModel()) { 1265 case CodeGenOptions::GeneralDynamicTLSModel: 1266 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1267 case CodeGenOptions::LocalDynamicTLSModel: 1268 return llvm::GlobalVariable::LocalDynamicTLSModel; 1269 case CodeGenOptions::InitialExecTLSModel: 1270 return llvm::GlobalVariable::InitialExecTLSModel; 1271 case CodeGenOptions::LocalExecTLSModel: 1272 return llvm::GlobalVariable::LocalExecTLSModel; 1273 } 1274 llvm_unreachable("Invalid TLS model!"); 1275 } 1276 1277 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1278 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1279 1280 llvm::GlobalValue::ThreadLocalMode TLM; 1281 TLM = GetDefaultLLVMTLSModel(); 1282 1283 // Override the TLS model if it is explicitly specified. 1284 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1285 TLM = GetLLVMTLSModel(Attr->getModel()); 1286 } 1287 1288 GV->setThreadLocalMode(TLM); 1289 } 1290 1291 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1292 StringRef Name) { 1293 const TargetInfo &Target = CGM.getTarget(); 1294 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1295 } 1296 1297 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1298 const CPUSpecificAttr *Attr, 1299 unsigned CPUIndex, 1300 raw_ostream &Out) { 1301 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1302 // supported. 1303 if (Attr) 1304 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1305 else if (CGM.getTarget().supportsIFunc()) 1306 Out << ".resolver"; 1307 } 1308 1309 static void AppendTargetMangling(const CodeGenModule &CGM, 1310 const TargetAttr *Attr, raw_ostream &Out) { 1311 if (Attr->isDefaultVersion()) 1312 return; 1313 1314 Out << '.'; 1315 const TargetInfo &Target = CGM.getTarget(); 1316 ParsedTargetAttr Info = 1317 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1318 // Multiversioning doesn't allow "no-${feature}", so we can 1319 // only have "+" prefixes here. 1320 assert(LHS.startswith("+") && RHS.startswith("+") && 1321 "Features should always have a prefix."); 1322 return Target.multiVersionSortPriority(LHS.substr(1)) > 1323 Target.multiVersionSortPriority(RHS.substr(1)); 1324 }); 1325 1326 bool IsFirst = true; 1327 1328 if (!Info.Architecture.empty()) { 1329 IsFirst = false; 1330 Out << "arch_" << Info.Architecture; 1331 } 1332 1333 for (StringRef Feat : Info.Features) { 1334 if (!IsFirst) 1335 Out << '_'; 1336 IsFirst = false; 1337 Out << Feat.substr(1); 1338 } 1339 } 1340 1341 // Returns true if GD is a function decl with internal linkage and 1342 // needs a unique suffix after the mangled name. 1343 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1344 CodeGenModule &CGM) { 1345 const Decl *D = GD.getDecl(); 1346 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1347 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1348 } 1349 1350 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1351 const TargetClonesAttr *Attr, 1352 unsigned VersionIndex, 1353 raw_ostream &Out) { 1354 Out << '.'; 1355 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1356 if (FeatureStr.startswith("arch=")) 1357 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1358 else 1359 Out << FeatureStr; 1360 1361 Out << '.' << Attr->getMangledIndex(VersionIndex); 1362 } 1363 1364 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1365 const NamedDecl *ND, 1366 bool OmitMultiVersionMangling = false) { 1367 SmallString<256> Buffer; 1368 llvm::raw_svector_ostream Out(Buffer); 1369 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1370 if (!CGM.getModuleNameHash().empty()) 1371 MC.needsUniqueInternalLinkageNames(); 1372 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1373 if (ShouldMangle) 1374 MC.mangleName(GD.getWithDecl(ND), Out); 1375 else { 1376 IdentifierInfo *II = ND->getIdentifier(); 1377 assert(II && "Attempt to mangle unnamed decl."); 1378 const auto *FD = dyn_cast<FunctionDecl>(ND); 1379 1380 if (FD && 1381 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1382 Out << "__regcall3__" << II->getName(); 1383 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1384 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1385 Out << "__device_stub__" << II->getName(); 1386 } else { 1387 Out << II->getName(); 1388 } 1389 } 1390 1391 // Check if the module name hash should be appended for internal linkage 1392 // symbols. This should come before multi-version target suffixes are 1393 // appended. This is to keep the name and module hash suffix of the 1394 // internal linkage function together. The unique suffix should only be 1395 // added when name mangling is done to make sure that the final name can 1396 // be properly demangled. For example, for C functions without prototypes, 1397 // name mangling is not done and the unique suffix should not be appeneded 1398 // then. 1399 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1400 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1401 "Hash computed when not explicitly requested"); 1402 Out << CGM.getModuleNameHash(); 1403 } 1404 1405 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1406 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1407 switch (FD->getMultiVersionKind()) { 1408 case MultiVersionKind::CPUDispatch: 1409 case MultiVersionKind::CPUSpecific: 1410 AppendCPUSpecificCPUDispatchMangling(CGM, 1411 FD->getAttr<CPUSpecificAttr>(), 1412 GD.getMultiVersionIndex(), Out); 1413 break; 1414 case MultiVersionKind::Target: 1415 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1416 break; 1417 case MultiVersionKind::TargetClones: 1418 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1419 GD.getMultiVersionIndex(), Out); 1420 break; 1421 case MultiVersionKind::None: 1422 llvm_unreachable("None multiversion type isn't valid here"); 1423 } 1424 } 1425 1426 // Make unique name for device side static file-scope variable for HIP. 1427 if (CGM.getContext().shouldExternalize(ND) && 1428 CGM.getLangOpts().GPURelocatableDeviceCode && 1429 CGM.getLangOpts().CUDAIsDevice) 1430 CGM.printPostfixForExternalizedDecl(Out, ND); 1431 1432 return std::string(Out.str()); 1433 } 1434 1435 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1436 const FunctionDecl *FD, 1437 StringRef &CurName) { 1438 if (!FD->isMultiVersion()) 1439 return; 1440 1441 // Get the name of what this would be without the 'target' attribute. This 1442 // allows us to lookup the version that was emitted when this wasn't a 1443 // multiversion function. 1444 std::string NonTargetName = 1445 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1446 GlobalDecl OtherGD; 1447 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1448 assert(OtherGD.getCanonicalDecl() 1449 .getDecl() 1450 ->getAsFunction() 1451 ->isMultiVersion() && 1452 "Other GD should now be a multiversioned function"); 1453 // OtherFD is the version of this function that was mangled BEFORE 1454 // becoming a MultiVersion function. It potentially needs to be updated. 1455 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1456 .getDecl() 1457 ->getAsFunction() 1458 ->getMostRecentDecl(); 1459 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1460 // This is so that if the initial version was already the 'default' 1461 // version, we don't try to update it. 1462 if (OtherName != NonTargetName) { 1463 // Remove instead of erase, since others may have stored the StringRef 1464 // to this. 1465 const auto ExistingRecord = Manglings.find(NonTargetName); 1466 if (ExistingRecord != std::end(Manglings)) 1467 Manglings.remove(&(*ExistingRecord)); 1468 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1469 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1470 Result.first->first(); 1471 // If this is the current decl is being created, make sure we update the name. 1472 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1473 CurName = OtherNameRef; 1474 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1475 Entry->setName(OtherName); 1476 } 1477 } 1478 } 1479 1480 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1481 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1482 1483 // Some ABIs don't have constructor variants. Make sure that base and 1484 // complete constructors get mangled the same. 1485 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1486 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1487 CXXCtorType OrigCtorType = GD.getCtorType(); 1488 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1489 if (OrigCtorType == Ctor_Base) 1490 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1491 } 1492 } 1493 1494 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1495 // static device variable depends on whether the variable is referenced by 1496 // a host or device host function. Therefore the mangled name cannot be 1497 // cached. 1498 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1499 auto FoundName = MangledDeclNames.find(CanonicalGD); 1500 if (FoundName != MangledDeclNames.end()) 1501 return FoundName->second; 1502 } 1503 1504 // Keep the first result in the case of a mangling collision. 1505 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1506 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1507 1508 // Ensure either we have different ABIs between host and device compilations, 1509 // says host compilation following MSVC ABI but device compilation follows 1510 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1511 // mangling should be the same after name stubbing. The later checking is 1512 // very important as the device kernel name being mangled in host-compilation 1513 // is used to resolve the device binaries to be executed. Inconsistent naming 1514 // result in undefined behavior. Even though we cannot check that naming 1515 // directly between host- and device-compilations, the host- and 1516 // device-mangling in host compilation could help catching certain ones. 1517 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1518 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1519 (getContext().getAuxTargetInfo() && 1520 (getContext().getAuxTargetInfo()->getCXXABI() != 1521 getContext().getTargetInfo().getCXXABI())) || 1522 getCUDARuntime().getDeviceSideName(ND) == 1523 getMangledNameImpl( 1524 *this, 1525 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1526 ND)); 1527 1528 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1529 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1530 } 1531 1532 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1533 const BlockDecl *BD) { 1534 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1535 const Decl *D = GD.getDecl(); 1536 1537 SmallString<256> Buffer; 1538 llvm::raw_svector_ostream Out(Buffer); 1539 if (!D) 1540 MangleCtx.mangleGlobalBlock(BD, 1541 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1542 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1543 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1544 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1545 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1546 else 1547 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1548 1549 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1550 return Result.first->first(); 1551 } 1552 1553 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1554 auto it = MangledDeclNames.begin(); 1555 while (it != MangledDeclNames.end()) { 1556 if (it->second == Name) 1557 return it->first; 1558 it++; 1559 } 1560 return GlobalDecl(); 1561 } 1562 1563 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1564 return getModule().getNamedValue(Name); 1565 } 1566 1567 /// AddGlobalCtor - Add a function to the list that will be called before 1568 /// main() runs. 1569 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1570 llvm::Constant *AssociatedData) { 1571 // FIXME: Type coercion of void()* types. 1572 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1573 } 1574 1575 /// AddGlobalDtor - Add a function to the list that will be called 1576 /// when the module is unloaded. 1577 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1578 bool IsDtorAttrFunc) { 1579 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1580 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1581 DtorsUsingAtExit[Priority].push_back(Dtor); 1582 return; 1583 } 1584 1585 // FIXME: Type coercion of void()* types. 1586 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1587 } 1588 1589 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1590 if (Fns.empty()) return; 1591 1592 // Ctor function type is void()*. 1593 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1594 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1595 TheModule.getDataLayout().getProgramAddressSpace()); 1596 1597 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1598 llvm::StructType *CtorStructTy = llvm::StructType::get( 1599 Int32Ty, CtorPFTy, VoidPtrTy); 1600 1601 // Construct the constructor and destructor arrays. 1602 ConstantInitBuilder builder(*this); 1603 auto ctors = builder.beginArray(CtorStructTy); 1604 for (const auto &I : Fns) { 1605 auto ctor = ctors.beginStruct(CtorStructTy); 1606 ctor.addInt(Int32Ty, I.Priority); 1607 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1608 if (I.AssociatedData) 1609 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1610 else 1611 ctor.addNullPointer(VoidPtrTy); 1612 ctor.finishAndAddTo(ctors); 1613 } 1614 1615 auto list = 1616 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1617 /*constant*/ false, 1618 llvm::GlobalValue::AppendingLinkage); 1619 1620 // The LTO linker doesn't seem to like it when we set an alignment 1621 // on appending variables. Take it off as a workaround. 1622 list->setAlignment(llvm::None); 1623 1624 Fns.clear(); 1625 } 1626 1627 llvm::GlobalValue::LinkageTypes 1628 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1629 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1630 1631 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1632 1633 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1634 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1635 1636 if (isa<CXXConstructorDecl>(D) && 1637 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1638 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1639 // Our approach to inheriting constructors is fundamentally different from 1640 // that used by the MS ABI, so keep our inheriting constructor thunks 1641 // internal rather than trying to pick an unambiguous mangling for them. 1642 return llvm::GlobalValue::InternalLinkage; 1643 } 1644 1645 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1646 } 1647 1648 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1649 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1650 if (!MDS) return nullptr; 1651 1652 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1653 } 1654 1655 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1656 const CGFunctionInfo &Info, 1657 llvm::Function *F, bool IsThunk) { 1658 unsigned CallingConv; 1659 llvm::AttributeList PAL; 1660 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1661 /*AttrOnCallSite=*/false, IsThunk); 1662 F->setAttributes(PAL); 1663 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1664 } 1665 1666 static void removeImageAccessQualifier(std::string& TyName) { 1667 std::string ReadOnlyQual("__read_only"); 1668 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1669 if (ReadOnlyPos != std::string::npos) 1670 // "+ 1" for the space after access qualifier. 1671 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1672 else { 1673 std::string WriteOnlyQual("__write_only"); 1674 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1675 if (WriteOnlyPos != std::string::npos) 1676 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1677 else { 1678 std::string ReadWriteQual("__read_write"); 1679 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1680 if (ReadWritePos != std::string::npos) 1681 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1682 } 1683 } 1684 } 1685 1686 // Returns the address space id that should be produced to the 1687 // kernel_arg_addr_space metadata. This is always fixed to the ids 1688 // as specified in the SPIR 2.0 specification in order to differentiate 1689 // for example in clGetKernelArgInfo() implementation between the address 1690 // spaces with targets without unique mapping to the OpenCL address spaces 1691 // (basically all single AS CPUs). 1692 static unsigned ArgInfoAddressSpace(LangAS AS) { 1693 switch (AS) { 1694 case LangAS::opencl_global: 1695 return 1; 1696 case LangAS::opencl_constant: 1697 return 2; 1698 case LangAS::opencl_local: 1699 return 3; 1700 case LangAS::opencl_generic: 1701 return 4; // Not in SPIR 2.0 specs. 1702 case LangAS::opencl_global_device: 1703 return 5; 1704 case LangAS::opencl_global_host: 1705 return 6; 1706 default: 1707 return 0; // Assume private. 1708 } 1709 } 1710 1711 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 1712 const FunctionDecl *FD, 1713 CodeGenFunction *CGF) { 1714 assert(((FD && CGF) || (!FD && !CGF)) && 1715 "Incorrect use - FD and CGF should either be both null or not!"); 1716 // Create MDNodes that represent the kernel arg metadata. 1717 // Each MDNode is a list in the form of "key", N number of values which is 1718 // the same number of values as their are kernel arguments. 1719 1720 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1721 1722 // MDNode for the kernel argument address space qualifiers. 1723 SmallVector<llvm::Metadata *, 8> addressQuals; 1724 1725 // MDNode for the kernel argument access qualifiers (images only). 1726 SmallVector<llvm::Metadata *, 8> accessQuals; 1727 1728 // MDNode for the kernel argument type names. 1729 SmallVector<llvm::Metadata *, 8> argTypeNames; 1730 1731 // MDNode for the kernel argument base type names. 1732 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1733 1734 // MDNode for the kernel argument type qualifiers. 1735 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1736 1737 // MDNode for the kernel argument names. 1738 SmallVector<llvm::Metadata *, 8> argNames; 1739 1740 if (FD && CGF) 1741 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1742 const ParmVarDecl *parm = FD->getParamDecl(i); 1743 // Get argument name. 1744 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1745 1746 if (!getLangOpts().OpenCL) 1747 continue; 1748 QualType ty = parm->getType(); 1749 std::string typeQuals; 1750 1751 // Get image and pipe access qualifier: 1752 if (ty->isImageType() || ty->isPipeType()) { 1753 const Decl *PDecl = parm; 1754 if (auto *TD = dyn_cast<TypedefType>(ty)) 1755 PDecl = TD->getDecl(); 1756 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1757 if (A && A->isWriteOnly()) 1758 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1759 else if (A && A->isReadWrite()) 1760 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1761 else 1762 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1763 } else 1764 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1765 1766 auto getTypeSpelling = [&](QualType Ty) { 1767 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1768 1769 if (Ty.isCanonical()) { 1770 StringRef typeNameRef = typeName; 1771 // Turn "unsigned type" to "utype" 1772 if (typeNameRef.consume_front("unsigned ")) 1773 return std::string("u") + typeNameRef.str(); 1774 if (typeNameRef.consume_front("signed ")) 1775 return typeNameRef.str(); 1776 } 1777 1778 return typeName; 1779 }; 1780 1781 if (ty->isPointerType()) { 1782 QualType pointeeTy = ty->getPointeeType(); 1783 1784 // Get address qualifier. 1785 addressQuals.push_back( 1786 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1787 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1788 1789 // Get argument type name. 1790 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1791 std::string baseTypeName = 1792 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1793 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1794 argBaseTypeNames.push_back( 1795 llvm::MDString::get(VMContext, baseTypeName)); 1796 1797 // Get argument type qualifiers: 1798 if (ty.isRestrictQualified()) 1799 typeQuals = "restrict"; 1800 if (pointeeTy.isConstQualified() || 1801 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1802 typeQuals += typeQuals.empty() ? "const" : " const"; 1803 if (pointeeTy.isVolatileQualified()) 1804 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1805 } else { 1806 uint32_t AddrSpc = 0; 1807 bool isPipe = ty->isPipeType(); 1808 if (ty->isImageType() || isPipe) 1809 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1810 1811 addressQuals.push_back( 1812 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1813 1814 // Get argument type name. 1815 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1816 std::string typeName = getTypeSpelling(ty); 1817 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1818 1819 // Remove access qualifiers on images 1820 // (as they are inseparable from type in clang implementation, 1821 // but OpenCL spec provides a special query to get access qualifier 1822 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1823 if (ty->isImageType()) { 1824 removeImageAccessQualifier(typeName); 1825 removeImageAccessQualifier(baseTypeName); 1826 } 1827 1828 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1829 argBaseTypeNames.push_back( 1830 llvm::MDString::get(VMContext, baseTypeName)); 1831 1832 if (isPipe) 1833 typeQuals = "pipe"; 1834 } 1835 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1836 } 1837 1838 if (getLangOpts().OpenCL) { 1839 Fn->setMetadata("kernel_arg_addr_space", 1840 llvm::MDNode::get(VMContext, addressQuals)); 1841 Fn->setMetadata("kernel_arg_access_qual", 1842 llvm::MDNode::get(VMContext, accessQuals)); 1843 Fn->setMetadata("kernel_arg_type", 1844 llvm::MDNode::get(VMContext, argTypeNames)); 1845 Fn->setMetadata("kernel_arg_base_type", 1846 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1847 Fn->setMetadata("kernel_arg_type_qual", 1848 llvm::MDNode::get(VMContext, argTypeQuals)); 1849 } 1850 if (getCodeGenOpts().EmitOpenCLArgMetadata || 1851 getCodeGenOpts().HIPSaveKernelArgName) 1852 Fn->setMetadata("kernel_arg_name", 1853 llvm::MDNode::get(VMContext, argNames)); 1854 } 1855 1856 /// Determines whether the language options require us to model 1857 /// unwind exceptions. We treat -fexceptions as mandating this 1858 /// except under the fragile ObjC ABI with only ObjC exceptions 1859 /// enabled. This means, for example, that C with -fexceptions 1860 /// enables this. 1861 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1862 // If exceptions are completely disabled, obviously this is false. 1863 if (!LangOpts.Exceptions) return false; 1864 1865 // If C++ exceptions are enabled, this is true. 1866 if (LangOpts.CXXExceptions) return true; 1867 1868 // If ObjC exceptions are enabled, this depends on the ABI. 1869 if (LangOpts.ObjCExceptions) { 1870 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1871 } 1872 1873 return true; 1874 } 1875 1876 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1877 const CXXMethodDecl *MD) { 1878 // Check that the type metadata can ever actually be used by a call. 1879 if (!CGM.getCodeGenOpts().LTOUnit || 1880 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1881 return false; 1882 1883 // Only functions whose address can be taken with a member function pointer 1884 // need this sort of type metadata. 1885 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1886 !isa<CXXDestructorDecl>(MD); 1887 } 1888 1889 std::vector<const CXXRecordDecl *> 1890 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1891 llvm::SetVector<const CXXRecordDecl *> MostBases; 1892 1893 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1894 CollectMostBases = [&](const CXXRecordDecl *RD) { 1895 if (RD->getNumBases() == 0) 1896 MostBases.insert(RD); 1897 for (const CXXBaseSpecifier &B : RD->bases()) 1898 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1899 }; 1900 CollectMostBases(RD); 1901 return MostBases.takeVector(); 1902 } 1903 1904 llvm::GlobalVariable * 1905 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) { 1906 auto It = RTTIProxyMap.find(Addr); 1907 if (It != RTTIProxyMap.end()) 1908 return It->second; 1909 1910 auto *FTRTTIProxy = new llvm::GlobalVariable( 1911 TheModule, Addr->getType(), 1912 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr, 1913 "__llvm_rtti_proxy"); 1914 FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1915 1916 RTTIProxyMap[Addr] = FTRTTIProxy; 1917 return FTRTTIProxy; 1918 } 1919 1920 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1921 llvm::Function *F) { 1922 llvm::AttrBuilder B(F->getContext()); 1923 1924 if (CodeGenOpts.UnwindTables) 1925 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1926 1927 if (CodeGenOpts.StackClashProtector) 1928 B.addAttribute("probe-stack", "inline-asm"); 1929 1930 if (!hasUnwindExceptions(LangOpts)) 1931 B.addAttribute(llvm::Attribute::NoUnwind); 1932 1933 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1934 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1935 B.addAttribute(llvm::Attribute::StackProtect); 1936 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1937 B.addAttribute(llvm::Attribute::StackProtectStrong); 1938 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1939 B.addAttribute(llvm::Attribute::StackProtectReq); 1940 } 1941 1942 if (!D) { 1943 // If we don't have a declaration to control inlining, the function isn't 1944 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1945 // disabled, mark the function as noinline. 1946 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1947 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1948 B.addAttribute(llvm::Attribute::NoInline); 1949 1950 F->addFnAttrs(B); 1951 return; 1952 } 1953 1954 // Track whether we need to add the optnone LLVM attribute, 1955 // starting with the default for this optimization level. 1956 bool ShouldAddOptNone = 1957 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1958 // We can't add optnone in the following cases, it won't pass the verifier. 1959 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1960 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1961 1962 // Add optnone, but do so only if the function isn't always_inline. 1963 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1964 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1965 B.addAttribute(llvm::Attribute::OptimizeNone); 1966 1967 // OptimizeNone implies noinline; we should not be inlining such functions. 1968 B.addAttribute(llvm::Attribute::NoInline); 1969 1970 // We still need to handle naked functions even though optnone subsumes 1971 // much of their semantics. 1972 if (D->hasAttr<NakedAttr>()) 1973 B.addAttribute(llvm::Attribute::Naked); 1974 1975 // OptimizeNone wins over OptimizeForSize and MinSize. 1976 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1977 F->removeFnAttr(llvm::Attribute::MinSize); 1978 } else if (D->hasAttr<NakedAttr>()) { 1979 // Naked implies noinline: we should not be inlining such functions. 1980 B.addAttribute(llvm::Attribute::Naked); 1981 B.addAttribute(llvm::Attribute::NoInline); 1982 } else if (D->hasAttr<NoDuplicateAttr>()) { 1983 B.addAttribute(llvm::Attribute::NoDuplicate); 1984 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1985 // Add noinline if the function isn't always_inline. 1986 B.addAttribute(llvm::Attribute::NoInline); 1987 } else if (D->hasAttr<AlwaysInlineAttr>() && 1988 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1989 // (noinline wins over always_inline, and we can't specify both in IR) 1990 B.addAttribute(llvm::Attribute::AlwaysInline); 1991 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1992 // If we're not inlining, then force everything that isn't always_inline to 1993 // carry an explicit noinline attribute. 1994 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1995 B.addAttribute(llvm::Attribute::NoInline); 1996 } else { 1997 // Otherwise, propagate the inline hint attribute and potentially use its 1998 // absence to mark things as noinline. 1999 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2000 // Search function and template pattern redeclarations for inline. 2001 auto CheckForInline = [](const FunctionDecl *FD) { 2002 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2003 return Redecl->isInlineSpecified(); 2004 }; 2005 if (any_of(FD->redecls(), CheckRedeclForInline)) 2006 return true; 2007 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2008 if (!Pattern) 2009 return false; 2010 return any_of(Pattern->redecls(), CheckRedeclForInline); 2011 }; 2012 if (CheckForInline(FD)) { 2013 B.addAttribute(llvm::Attribute::InlineHint); 2014 } else if (CodeGenOpts.getInlining() == 2015 CodeGenOptions::OnlyHintInlining && 2016 !FD->isInlined() && 2017 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2018 B.addAttribute(llvm::Attribute::NoInline); 2019 } 2020 } 2021 } 2022 2023 // Add other optimization related attributes if we are optimizing this 2024 // function. 2025 if (!D->hasAttr<OptimizeNoneAttr>()) { 2026 if (D->hasAttr<ColdAttr>()) { 2027 if (!ShouldAddOptNone) 2028 B.addAttribute(llvm::Attribute::OptimizeForSize); 2029 B.addAttribute(llvm::Attribute::Cold); 2030 } 2031 if (D->hasAttr<HotAttr>()) 2032 B.addAttribute(llvm::Attribute::Hot); 2033 if (D->hasAttr<MinSizeAttr>()) 2034 B.addAttribute(llvm::Attribute::MinSize); 2035 } 2036 2037 F->addFnAttrs(B); 2038 2039 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2040 if (alignment) 2041 F->setAlignment(llvm::Align(alignment)); 2042 2043 if (!D->hasAttr<AlignedAttr>()) 2044 if (LangOpts.FunctionAlignment) 2045 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2046 2047 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2048 // reserve a bit for differentiating between virtual and non-virtual member 2049 // functions. If the current target's C++ ABI requires this and this is a 2050 // member function, set its alignment accordingly. 2051 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2052 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 2053 F->setAlignment(llvm::Align(2)); 2054 } 2055 2056 // In the cross-dso CFI mode with canonical jump tables, we want !type 2057 // attributes on definitions only. 2058 if (CodeGenOpts.SanitizeCfiCrossDso && 2059 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2060 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2061 // Skip available_externally functions. They won't be codegen'ed in the 2062 // current module anyway. 2063 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2064 CreateFunctionTypeMetadataForIcall(FD, F); 2065 } 2066 } 2067 2068 // Emit type metadata on member functions for member function pointer checks. 2069 // These are only ever necessary on definitions; we're guaranteed that the 2070 // definition will be present in the LTO unit as a result of LTO visibility. 2071 auto *MD = dyn_cast<CXXMethodDecl>(D); 2072 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2073 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2074 llvm::Metadata *Id = 2075 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2076 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2077 F->addTypeMetadata(0, Id); 2078 } 2079 } 2080 } 2081 2082 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2083 llvm::Function *F) { 2084 if (D->hasAttr<StrictFPAttr>()) { 2085 llvm::AttrBuilder FuncAttrs(F->getContext()); 2086 FuncAttrs.addAttribute("strictfp"); 2087 F->addFnAttrs(FuncAttrs); 2088 } 2089 } 2090 2091 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2092 const Decl *D = GD.getDecl(); 2093 if (isa_and_nonnull<NamedDecl>(D)) 2094 setGVProperties(GV, GD); 2095 else 2096 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2097 2098 if (D && D->hasAttr<UsedAttr>()) 2099 addUsedOrCompilerUsedGlobal(GV); 2100 2101 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2102 const auto *VD = cast<VarDecl>(D); 2103 if (VD->getType().isConstQualified() && 2104 VD->getStorageDuration() == SD_Static) 2105 addUsedOrCompilerUsedGlobal(GV); 2106 } 2107 } 2108 2109 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2110 llvm::AttrBuilder &Attrs) { 2111 // Add target-cpu and target-features attributes to functions. If 2112 // we have a decl for the function and it has a target attribute then 2113 // parse that and add it to the feature set. 2114 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2115 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2116 std::vector<std::string> Features; 2117 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2118 FD = FD ? FD->getMostRecentDecl() : FD; 2119 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2120 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2121 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2122 bool AddedAttr = false; 2123 if (TD || SD || TC) { 2124 llvm::StringMap<bool> FeatureMap; 2125 getContext().getFunctionFeatureMap(FeatureMap, GD); 2126 2127 // Produce the canonical string for this set of features. 2128 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2129 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2130 2131 // Now add the target-cpu and target-features to the function. 2132 // While we populated the feature map above, we still need to 2133 // get and parse the target attribute so we can get the cpu for 2134 // the function. 2135 if (TD) { 2136 ParsedTargetAttr ParsedAttr = TD->parse(); 2137 if (!ParsedAttr.Architecture.empty() && 2138 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 2139 TargetCPU = ParsedAttr.Architecture; 2140 TuneCPU = ""; // Clear the tune CPU. 2141 } 2142 if (!ParsedAttr.Tune.empty() && 2143 getTarget().isValidCPUName(ParsedAttr.Tune)) 2144 TuneCPU = ParsedAttr.Tune; 2145 } 2146 2147 if (SD) { 2148 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2149 // favor this processor. 2150 TuneCPU = getTarget().getCPUSpecificTuneName( 2151 SD->getCPUName(GD.getMultiVersionIndex())->getName()); 2152 } 2153 } else { 2154 // Otherwise just add the existing target cpu and target features to the 2155 // function. 2156 Features = getTarget().getTargetOpts().Features; 2157 } 2158 2159 if (!TargetCPU.empty()) { 2160 Attrs.addAttribute("target-cpu", TargetCPU); 2161 AddedAttr = true; 2162 } 2163 if (!TuneCPU.empty()) { 2164 Attrs.addAttribute("tune-cpu", TuneCPU); 2165 AddedAttr = true; 2166 } 2167 if (!Features.empty()) { 2168 llvm::sort(Features); 2169 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2170 AddedAttr = true; 2171 } 2172 2173 return AddedAttr; 2174 } 2175 2176 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2177 llvm::GlobalObject *GO) { 2178 const Decl *D = GD.getDecl(); 2179 SetCommonAttributes(GD, GO); 2180 2181 if (D) { 2182 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2183 if (D->hasAttr<RetainAttr>()) 2184 addUsedGlobal(GV); 2185 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2186 GV->addAttribute("bss-section", SA->getName()); 2187 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2188 GV->addAttribute("data-section", SA->getName()); 2189 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2190 GV->addAttribute("rodata-section", SA->getName()); 2191 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2192 GV->addAttribute("relro-section", SA->getName()); 2193 } 2194 2195 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2196 if (D->hasAttr<RetainAttr>()) 2197 addUsedGlobal(F); 2198 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2199 if (!D->getAttr<SectionAttr>()) 2200 F->addFnAttr("implicit-section-name", SA->getName()); 2201 2202 llvm::AttrBuilder Attrs(F->getContext()); 2203 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2204 // We know that GetCPUAndFeaturesAttributes will always have the 2205 // newest set, since it has the newest possible FunctionDecl, so the 2206 // new ones should replace the old. 2207 llvm::AttributeMask RemoveAttrs; 2208 RemoveAttrs.addAttribute("target-cpu"); 2209 RemoveAttrs.addAttribute("target-features"); 2210 RemoveAttrs.addAttribute("tune-cpu"); 2211 F->removeFnAttrs(RemoveAttrs); 2212 F->addFnAttrs(Attrs); 2213 } 2214 } 2215 2216 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2217 GO->setSection(CSA->getName()); 2218 else if (const auto *SA = D->getAttr<SectionAttr>()) 2219 GO->setSection(SA->getName()); 2220 } 2221 2222 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2223 } 2224 2225 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2226 llvm::Function *F, 2227 const CGFunctionInfo &FI) { 2228 const Decl *D = GD.getDecl(); 2229 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2230 SetLLVMFunctionAttributesForDefinition(D, F); 2231 2232 F->setLinkage(llvm::Function::InternalLinkage); 2233 2234 setNonAliasAttributes(GD, F); 2235 } 2236 2237 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2238 // Set linkage and visibility in case we never see a definition. 2239 LinkageInfo LV = ND->getLinkageAndVisibility(); 2240 // Don't set internal linkage on declarations. 2241 // "extern_weak" is overloaded in LLVM; we probably should have 2242 // separate linkage types for this. 2243 if (isExternallyVisible(LV.getLinkage()) && 2244 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2245 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2246 } 2247 2248 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2249 llvm::Function *F) { 2250 // Only if we are checking indirect calls. 2251 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2252 return; 2253 2254 // Non-static class methods are handled via vtable or member function pointer 2255 // checks elsewhere. 2256 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2257 return; 2258 2259 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2260 F->addTypeMetadata(0, MD); 2261 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2262 2263 // Emit a hash-based bit set entry for cross-DSO calls. 2264 if (CodeGenOpts.SanitizeCfiCrossDso) 2265 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2266 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2267 } 2268 2269 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2270 bool IsIncompleteFunction, 2271 bool IsThunk) { 2272 2273 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2274 // If this is an intrinsic function, set the function's attributes 2275 // to the intrinsic's attributes. 2276 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2277 return; 2278 } 2279 2280 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2281 2282 if (!IsIncompleteFunction) 2283 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2284 IsThunk); 2285 2286 // Add the Returned attribute for "this", except for iOS 5 and earlier 2287 // where substantial code, including the libstdc++ dylib, was compiled with 2288 // GCC and does not actually return "this". 2289 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2290 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2291 assert(!F->arg_empty() && 2292 F->arg_begin()->getType() 2293 ->canLosslesslyBitCastTo(F->getReturnType()) && 2294 "unexpected this return"); 2295 F->addParamAttr(0, llvm::Attribute::Returned); 2296 } 2297 2298 // Only a few attributes are set on declarations; these may later be 2299 // overridden by a definition. 2300 2301 setLinkageForGV(F, FD); 2302 setGVProperties(F, FD); 2303 2304 // Setup target-specific attributes. 2305 if (!IsIncompleteFunction && F->isDeclaration()) 2306 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2307 2308 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2309 F->setSection(CSA->getName()); 2310 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2311 F->setSection(SA->getName()); 2312 2313 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2314 if (EA->isError()) 2315 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2316 else if (EA->isWarning()) 2317 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2318 } 2319 2320 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2321 if (FD->isInlineBuiltinDeclaration()) { 2322 const FunctionDecl *FDBody; 2323 bool HasBody = FD->hasBody(FDBody); 2324 (void)HasBody; 2325 assert(HasBody && "Inline builtin declarations should always have an " 2326 "available body!"); 2327 if (shouldEmitFunction(FDBody)) 2328 F->addFnAttr(llvm::Attribute::NoBuiltin); 2329 } 2330 2331 if (FD->isReplaceableGlobalAllocationFunction()) { 2332 // A replaceable global allocation function does not act like a builtin by 2333 // default, only if it is invoked by a new-expression or delete-expression. 2334 F->addFnAttr(llvm::Attribute::NoBuiltin); 2335 } 2336 2337 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2338 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2339 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2340 if (MD->isVirtual()) 2341 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2342 2343 // Don't emit entries for function declarations in the cross-DSO mode. This 2344 // is handled with better precision by the receiving DSO. But if jump tables 2345 // are non-canonical then we need type metadata in order to produce the local 2346 // jump table. 2347 if (!CodeGenOpts.SanitizeCfiCrossDso || 2348 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2349 CreateFunctionTypeMetadataForIcall(FD, F); 2350 2351 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2352 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2353 2354 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2355 // Annotate the callback behavior as metadata: 2356 // - The callback callee (as argument number). 2357 // - The callback payloads (as argument numbers). 2358 llvm::LLVMContext &Ctx = F->getContext(); 2359 llvm::MDBuilder MDB(Ctx); 2360 2361 // The payload indices are all but the first one in the encoding. The first 2362 // identifies the callback callee. 2363 int CalleeIdx = *CB->encoding_begin(); 2364 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2365 F->addMetadata(llvm::LLVMContext::MD_callback, 2366 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2367 CalleeIdx, PayloadIndices, 2368 /* VarArgsArePassed */ false)})); 2369 } 2370 } 2371 2372 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2373 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2374 "Only globals with definition can force usage."); 2375 LLVMUsed.emplace_back(GV); 2376 } 2377 2378 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2379 assert(!GV->isDeclaration() && 2380 "Only globals with definition can force usage."); 2381 LLVMCompilerUsed.emplace_back(GV); 2382 } 2383 2384 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2385 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2386 "Only globals with definition can force usage."); 2387 if (getTriple().isOSBinFormatELF()) 2388 LLVMCompilerUsed.emplace_back(GV); 2389 else 2390 LLVMUsed.emplace_back(GV); 2391 } 2392 2393 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2394 std::vector<llvm::WeakTrackingVH> &List) { 2395 // Don't create llvm.used if there is no need. 2396 if (List.empty()) 2397 return; 2398 2399 // Convert List to what ConstantArray needs. 2400 SmallVector<llvm::Constant*, 8> UsedArray; 2401 UsedArray.resize(List.size()); 2402 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2403 UsedArray[i] = 2404 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2405 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2406 } 2407 2408 if (UsedArray.empty()) 2409 return; 2410 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2411 2412 auto *GV = new llvm::GlobalVariable( 2413 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2414 llvm::ConstantArray::get(ATy, UsedArray), Name); 2415 2416 GV->setSection("llvm.metadata"); 2417 } 2418 2419 void CodeGenModule::emitLLVMUsed() { 2420 emitUsed(*this, "llvm.used", LLVMUsed); 2421 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2422 } 2423 2424 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2425 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2426 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2427 } 2428 2429 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2430 llvm::SmallString<32> Opt; 2431 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2432 if (Opt.empty()) 2433 return; 2434 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2435 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2436 } 2437 2438 void CodeGenModule::AddDependentLib(StringRef Lib) { 2439 auto &C = getLLVMContext(); 2440 if (getTarget().getTriple().isOSBinFormatELF()) { 2441 ELFDependentLibraries.push_back( 2442 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2443 return; 2444 } 2445 2446 llvm::SmallString<24> Opt; 2447 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2448 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2449 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2450 } 2451 2452 /// Add link options implied by the given module, including modules 2453 /// it depends on, using a postorder walk. 2454 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2455 SmallVectorImpl<llvm::MDNode *> &Metadata, 2456 llvm::SmallPtrSet<Module *, 16> &Visited) { 2457 // Import this module's parent. 2458 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2459 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2460 } 2461 2462 // Import this module's dependencies. 2463 for (Module *Import : llvm::reverse(Mod->Imports)) { 2464 if (Visited.insert(Import).second) 2465 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2466 } 2467 2468 // Add linker options to link against the libraries/frameworks 2469 // described by this module. 2470 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2471 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2472 2473 // For modules that use export_as for linking, use that module 2474 // name instead. 2475 if (Mod->UseExportAsModuleLinkName) 2476 return; 2477 2478 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2479 // Link against a framework. Frameworks are currently Darwin only, so we 2480 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2481 if (LL.IsFramework) { 2482 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2483 llvm::MDString::get(Context, LL.Library)}; 2484 2485 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2486 continue; 2487 } 2488 2489 // Link against a library. 2490 if (IsELF) { 2491 llvm::Metadata *Args[2] = { 2492 llvm::MDString::get(Context, "lib"), 2493 llvm::MDString::get(Context, LL.Library), 2494 }; 2495 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2496 } else { 2497 llvm::SmallString<24> Opt; 2498 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2499 auto *OptString = llvm::MDString::get(Context, Opt); 2500 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2501 } 2502 } 2503 } 2504 2505 void CodeGenModule::EmitModuleLinkOptions() { 2506 // Collect the set of all of the modules we want to visit to emit link 2507 // options, which is essentially the imported modules and all of their 2508 // non-explicit child modules. 2509 llvm::SetVector<clang::Module *> LinkModules; 2510 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2511 SmallVector<clang::Module *, 16> Stack; 2512 2513 // Seed the stack with imported modules. 2514 for (Module *M : ImportedModules) { 2515 // Do not add any link flags when an implementation TU of a module imports 2516 // a header of that same module. 2517 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2518 !getLangOpts().isCompilingModule()) 2519 continue; 2520 if (Visited.insert(M).second) 2521 Stack.push_back(M); 2522 } 2523 2524 // Find all of the modules to import, making a little effort to prune 2525 // non-leaf modules. 2526 while (!Stack.empty()) { 2527 clang::Module *Mod = Stack.pop_back_val(); 2528 2529 bool AnyChildren = false; 2530 2531 // Visit the submodules of this module. 2532 for (const auto &SM : Mod->submodules()) { 2533 // Skip explicit children; they need to be explicitly imported to be 2534 // linked against. 2535 if (SM->IsExplicit) 2536 continue; 2537 2538 if (Visited.insert(SM).second) { 2539 Stack.push_back(SM); 2540 AnyChildren = true; 2541 } 2542 } 2543 2544 // We didn't find any children, so add this module to the list of 2545 // modules to link against. 2546 if (!AnyChildren) { 2547 LinkModules.insert(Mod); 2548 } 2549 } 2550 2551 // Add link options for all of the imported modules in reverse topological 2552 // order. We don't do anything to try to order import link flags with respect 2553 // to linker options inserted by things like #pragma comment(). 2554 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2555 Visited.clear(); 2556 for (Module *M : LinkModules) 2557 if (Visited.insert(M).second) 2558 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2559 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2560 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2561 2562 // Add the linker options metadata flag. 2563 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2564 for (auto *MD : LinkerOptionsMetadata) 2565 NMD->addOperand(MD); 2566 } 2567 2568 void CodeGenModule::EmitDeferred() { 2569 // Emit deferred declare target declarations. 2570 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2571 getOpenMPRuntime().emitDeferredTargetDecls(); 2572 2573 // Emit code for any potentially referenced deferred decls. Since a 2574 // previously unused static decl may become used during the generation of code 2575 // for a static function, iterate until no changes are made. 2576 2577 if (!DeferredVTables.empty()) { 2578 EmitDeferredVTables(); 2579 2580 // Emitting a vtable doesn't directly cause more vtables to 2581 // become deferred, although it can cause functions to be 2582 // emitted that then need those vtables. 2583 assert(DeferredVTables.empty()); 2584 } 2585 2586 // Emit CUDA/HIP static device variables referenced by host code only. 2587 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2588 // needed for further handling. 2589 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2590 llvm::append_range(DeferredDeclsToEmit, 2591 getContext().CUDADeviceVarODRUsedByHost); 2592 2593 // Stop if we're out of both deferred vtables and deferred declarations. 2594 if (DeferredDeclsToEmit.empty()) 2595 return; 2596 2597 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2598 // work, it will not interfere with this. 2599 std::vector<GlobalDecl> CurDeclsToEmit; 2600 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2601 2602 for (GlobalDecl &D : CurDeclsToEmit) { 2603 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2604 // to get GlobalValue with exactly the type we need, not something that 2605 // might had been created for another decl with the same mangled name but 2606 // different type. 2607 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2608 GetAddrOfGlobal(D, ForDefinition)); 2609 2610 // In case of different address spaces, we may still get a cast, even with 2611 // IsForDefinition equal to true. Query mangled names table to get 2612 // GlobalValue. 2613 if (!GV) 2614 GV = GetGlobalValue(getMangledName(D)); 2615 2616 // Make sure GetGlobalValue returned non-null. 2617 assert(GV); 2618 2619 // Check to see if we've already emitted this. This is necessary 2620 // for a couple of reasons: first, decls can end up in the 2621 // deferred-decls queue multiple times, and second, decls can end 2622 // up with definitions in unusual ways (e.g. by an extern inline 2623 // function acquiring a strong function redefinition). Just 2624 // ignore these cases. 2625 if (!GV->isDeclaration()) 2626 continue; 2627 2628 // If this is OpenMP, check if it is legal to emit this global normally. 2629 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2630 continue; 2631 2632 // Otherwise, emit the definition and move on to the next one. 2633 EmitGlobalDefinition(D, GV); 2634 2635 // If we found out that we need to emit more decls, do that recursively. 2636 // This has the advantage that the decls are emitted in a DFS and related 2637 // ones are close together, which is convenient for testing. 2638 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2639 EmitDeferred(); 2640 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2641 } 2642 } 2643 } 2644 2645 void CodeGenModule::EmitVTablesOpportunistically() { 2646 // Try to emit external vtables as available_externally if they have emitted 2647 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2648 // is not allowed to create new references to things that need to be emitted 2649 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2650 2651 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2652 && "Only emit opportunistic vtables with optimizations"); 2653 2654 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2655 assert(getVTables().isVTableExternal(RD) && 2656 "This queue should only contain external vtables"); 2657 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2658 VTables.GenerateClassData(RD); 2659 } 2660 OpportunisticVTables.clear(); 2661 } 2662 2663 void CodeGenModule::EmitGlobalAnnotations() { 2664 if (Annotations.empty()) 2665 return; 2666 2667 // Create a new global variable for the ConstantStruct in the Module. 2668 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2669 Annotations[0]->getType(), Annotations.size()), Annotations); 2670 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2671 llvm::GlobalValue::AppendingLinkage, 2672 Array, "llvm.global.annotations"); 2673 gv->setSection(AnnotationSection); 2674 } 2675 2676 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2677 llvm::Constant *&AStr = AnnotationStrings[Str]; 2678 if (AStr) 2679 return AStr; 2680 2681 // Not found yet, create a new global. 2682 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2683 auto *gv = 2684 new llvm::GlobalVariable(getModule(), s->getType(), true, 2685 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2686 gv->setSection(AnnotationSection); 2687 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2688 AStr = gv; 2689 return gv; 2690 } 2691 2692 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2693 SourceManager &SM = getContext().getSourceManager(); 2694 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2695 if (PLoc.isValid()) 2696 return EmitAnnotationString(PLoc.getFilename()); 2697 return EmitAnnotationString(SM.getBufferName(Loc)); 2698 } 2699 2700 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2701 SourceManager &SM = getContext().getSourceManager(); 2702 PresumedLoc PLoc = SM.getPresumedLoc(L); 2703 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2704 SM.getExpansionLineNumber(L); 2705 return llvm::ConstantInt::get(Int32Ty, LineNo); 2706 } 2707 2708 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2709 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2710 if (Exprs.empty()) 2711 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy); 2712 2713 llvm::FoldingSetNodeID ID; 2714 for (Expr *E : Exprs) { 2715 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2716 } 2717 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2718 if (Lookup) 2719 return Lookup; 2720 2721 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2722 LLVMArgs.reserve(Exprs.size()); 2723 ConstantEmitter ConstEmiter(*this); 2724 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2725 const auto *CE = cast<clang::ConstantExpr>(E); 2726 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2727 CE->getType()); 2728 }); 2729 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2730 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2731 llvm::GlobalValue::PrivateLinkage, Struct, 2732 ".args"); 2733 GV->setSection(AnnotationSection); 2734 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2735 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2736 2737 Lookup = Bitcasted; 2738 return Bitcasted; 2739 } 2740 2741 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2742 const AnnotateAttr *AA, 2743 SourceLocation L) { 2744 // Get the globals for file name, annotation, and the line number. 2745 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2746 *UnitGV = EmitAnnotationUnit(L), 2747 *LineNoCst = EmitAnnotationLineNo(L), 2748 *Args = EmitAnnotationArgs(AA); 2749 2750 llvm::Constant *GVInGlobalsAS = GV; 2751 if (GV->getAddressSpace() != 2752 getDataLayout().getDefaultGlobalsAddressSpace()) { 2753 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2754 GV, GV->getValueType()->getPointerTo( 2755 getDataLayout().getDefaultGlobalsAddressSpace())); 2756 } 2757 2758 // Create the ConstantStruct for the global annotation. 2759 llvm::Constant *Fields[] = { 2760 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2761 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy), 2762 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy), 2763 LineNoCst, 2764 Args, 2765 }; 2766 return llvm::ConstantStruct::getAnon(Fields); 2767 } 2768 2769 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2770 llvm::GlobalValue *GV) { 2771 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2772 // Get the struct elements for these annotations. 2773 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2774 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2775 } 2776 2777 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2778 SourceLocation Loc) const { 2779 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2780 // NoSanitize by function name. 2781 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2782 return true; 2783 // NoSanitize by location. Check "mainfile" prefix. 2784 auto &SM = Context.getSourceManager(); 2785 const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID()); 2786 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 2787 return true; 2788 2789 // Check "src" prefix. 2790 if (Loc.isValid()) 2791 return NoSanitizeL.containsLocation(Kind, Loc); 2792 // If location is unknown, this may be a compiler-generated function. Assume 2793 // it's located in the main file. 2794 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 2795 } 2796 2797 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 2798 llvm::GlobalVariable *GV, 2799 SourceLocation Loc, QualType Ty, 2800 StringRef Category) const { 2801 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2802 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 2803 return true; 2804 auto &SM = Context.getSourceManager(); 2805 if (NoSanitizeL.containsMainFile( 2806 Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category)) 2807 return true; 2808 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 2809 return true; 2810 2811 // Check global type. 2812 if (!Ty.isNull()) { 2813 // Drill down the array types: if global variable of a fixed type is 2814 // not sanitized, we also don't instrument arrays of them. 2815 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2816 Ty = AT->getElementType(); 2817 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2818 // Only record types (classes, structs etc.) are ignored. 2819 if (Ty->isRecordType()) { 2820 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2821 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 2822 return true; 2823 } 2824 } 2825 return false; 2826 } 2827 2828 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2829 StringRef Category) const { 2830 const auto &XRayFilter = getContext().getXRayFilter(); 2831 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2832 auto Attr = ImbueAttr::NONE; 2833 if (Loc.isValid()) 2834 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2835 if (Attr == ImbueAttr::NONE) 2836 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2837 switch (Attr) { 2838 case ImbueAttr::NONE: 2839 return false; 2840 case ImbueAttr::ALWAYS: 2841 Fn->addFnAttr("function-instrument", "xray-always"); 2842 break; 2843 case ImbueAttr::ALWAYS_ARG1: 2844 Fn->addFnAttr("function-instrument", "xray-always"); 2845 Fn->addFnAttr("xray-log-args", "1"); 2846 break; 2847 case ImbueAttr::NEVER: 2848 Fn->addFnAttr("function-instrument", "xray-never"); 2849 break; 2850 } 2851 return true; 2852 } 2853 2854 bool CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 2855 SourceLocation Loc) const { 2856 const auto &ProfileList = getContext().getProfileList(); 2857 // If the profile list is empty, then instrument everything. 2858 if (ProfileList.isEmpty()) 2859 return false; 2860 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2861 // First, check the function name. 2862 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2863 if (V) 2864 return *V; 2865 // Next, check the source location. 2866 if (Loc.isValid()) { 2867 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2868 if (V) 2869 return *V; 2870 } 2871 // If location is unknown, this may be a compiler-generated function. Assume 2872 // it's located in the main file. 2873 auto &SM = Context.getSourceManager(); 2874 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2875 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2876 if (V) 2877 return *V; 2878 } 2879 return ProfileList.getDefault(); 2880 } 2881 2882 bool CodeGenModule::isFunctionBlockedFromProfileInstr( 2883 llvm::Function *Fn, SourceLocation Loc) const { 2884 if (isFunctionBlockedByProfileList(Fn, Loc)) 2885 return true; 2886 2887 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 2888 if (NumGroups > 1) { 2889 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 2890 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 2891 return true; 2892 } 2893 return false; 2894 } 2895 2896 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2897 // Never defer when EmitAllDecls is specified. 2898 if (LangOpts.EmitAllDecls) 2899 return true; 2900 2901 if (CodeGenOpts.KeepStaticConsts) { 2902 const auto *VD = dyn_cast<VarDecl>(Global); 2903 if (VD && VD->getType().isConstQualified() && 2904 VD->getStorageDuration() == SD_Static) 2905 return true; 2906 } 2907 2908 return getContext().DeclMustBeEmitted(Global); 2909 } 2910 2911 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2912 // In OpenMP 5.0 variables and function may be marked as 2913 // device_type(host/nohost) and we should not emit them eagerly unless we sure 2914 // that they must be emitted on the host/device. To be sure we need to have 2915 // seen a declare target with an explicit mentioning of the function, we know 2916 // we have if the level of the declare target attribute is -1. Note that we 2917 // check somewhere else if we should emit this at all. 2918 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 2919 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 2920 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 2921 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 2922 return false; 2923 } 2924 2925 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2926 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2927 // Implicit template instantiations may change linkage if they are later 2928 // explicitly instantiated, so they should not be emitted eagerly. 2929 return false; 2930 } 2931 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2932 if (Context.getInlineVariableDefinitionKind(VD) == 2933 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2934 // A definition of an inline constexpr static data member may change 2935 // linkage later if it's redeclared outside the class. 2936 return false; 2937 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2938 // codegen for global variables, because they may be marked as threadprivate. 2939 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2940 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2941 !isTypeConstant(Global->getType(), false) && 2942 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2943 return false; 2944 2945 return true; 2946 } 2947 2948 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2949 StringRef Name = getMangledName(GD); 2950 2951 // The UUID descriptor should be pointer aligned. 2952 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2953 2954 // Look for an existing global. 2955 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2956 return ConstantAddress(GV, GV->getValueType(), Alignment); 2957 2958 ConstantEmitter Emitter(*this); 2959 llvm::Constant *Init; 2960 2961 APValue &V = GD->getAsAPValue(); 2962 if (!V.isAbsent()) { 2963 // If possible, emit the APValue version of the initializer. In particular, 2964 // this gets the type of the constant right. 2965 Init = Emitter.emitForInitializer( 2966 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2967 } else { 2968 // As a fallback, directly construct the constant. 2969 // FIXME: This may get padding wrong under esoteric struct layout rules. 2970 // MSVC appears to create a complete type 'struct __s_GUID' that it 2971 // presumably uses to represent these constants. 2972 MSGuidDecl::Parts Parts = GD->getParts(); 2973 llvm::Constant *Fields[4] = { 2974 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2975 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2976 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2977 llvm::ConstantDataArray::getRaw( 2978 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2979 Int8Ty)}; 2980 Init = llvm::ConstantStruct::getAnon(Fields); 2981 } 2982 2983 auto *GV = new llvm::GlobalVariable( 2984 getModule(), Init->getType(), 2985 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2986 if (supportsCOMDAT()) 2987 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2988 setDSOLocal(GV); 2989 2990 if (!V.isAbsent()) { 2991 Emitter.finalize(GV); 2992 return ConstantAddress(GV, GV->getValueType(), Alignment); 2993 } 2994 2995 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2996 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 2997 GV, Ty->getPointerTo(GV->getAddressSpace())); 2998 return ConstantAddress(Addr, Ty, Alignment); 2999 } 3000 3001 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3002 const UnnamedGlobalConstantDecl *GCD) { 3003 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3004 3005 llvm::GlobalVariable **Entry = nullptr; 3006 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3007 if (*Entry) 3008 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3009 3010 ConstantEmitter Emitter(*this); 3011 llvm::Constant *Init; 3012 3013 const APValue &V = GCD->getValue(); 3014 3015 assert(!V.isAbsent()); 3016 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3017 GCD->getType()); 3018 3019 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3020 /*isConstant=*/true, 3021 llvm::GlobalValue::PrivateLinkage, Init, 3022 ".constant"); 3023 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3024 GV->setAlignment(Alignment.getAsAlign()); 3025 3026 Emitter.finalize(GV); 3027 3028 *Entry = GV; 3029 return ConstantAddress(GV, GV->getValueType(), Alignment); 3030 } 3031 3032 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3033 const TemplateParamObjectDecl *TPO) { 3034 StringRef Name = getMangledName(TPO); 3035 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3036 3037 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3038 return ConstantAddress(GV, GV->getValueType(), Alignment); 3039 3040 ConstantEmitter Emitter(*this); 3041 llvm::Constant *Init = Emitter.emitForInitializer( 3042 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3043 3044 if (!Init) { 3045 ErrorUnsupported(TPO, "template parameter object"); 3046 return ConstantAddress::invalid(); 3047 } 3048 3049 auto *GV = new llvm::GlobalVariable( 3050 getModule(), Init->getType(), 3051 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3052 if (supportsCOMDAT()) 3053 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3054 Emitter.finalize(GV); 3055 3056 return ConstantAddress(GV, GV->getValueType(), Alignment); 3057 } 3058 3059 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3060 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3061 assert(AA && "No alias?"); 3062 3063 CharUnits Alignment = getContext().getDeclAlign(VD); 3064 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3065 3066 // See if there is already something with the target's name in the module. 3067 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3068 if (Entry) { 3069 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 3070 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3071 return ConstantAddress(Ptr, DeclTy, Alignment); 3072 } 3073 3074 llvm::Constant *Aliasee; 3075 if (isa<llvm::FunctionType>(DeclTy)) 3076 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3077 GlobalDecl(cast<FunctionDecl>(VD)), 3078 /*ForVTable=*/false); 3079 else 3080 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3081 nullptr); 3082 3083 auto *F = cast<llvm::GlobalValue>(Aliasee); 3084 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3085 WeakRefReferences.insert(F); 3086 3087 return ConstantAddress(Aliasee, DeclTy, Alignment); 3088 } 3089 3090 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3091 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3092 3093 // Weak references don't produce any output by themselves. 3094 if (Global->hasAttr<WeakRefAttr>()) 3095 return; 3096 3097 // If this is an alias definition (which otherwise looks like a declaration) 3098 // emit it now. 3099 if (Global->hasAttr<AliasAttr>()) 3100 return EmitAliasDefinition(GD); 3101 3102 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3103 if (Global->hasAttr<IFuncAttr>()) 3104 return emitIFuncDefinition(GD); 3105 3106 // If this is a cpu_dispatch multiversion function, emit the resolver. 3107 if (Global->hasAttr<CPUDispatchAttr>()) 3108 return emitCPUDispatchDefinition(GD); 3109 3110 // If this is CUDA, be selective about which declarations we emit. 3111 if (LangOpts.CUDA) { 3112 if (LangOpts.CUDAIsDevice) { 3113 if (!Global->hasAttr<CUDADeviceAttr>() && 3114 !Global->hasAttr<CUDAGlobalAttr>() && 3115 !Global->hasAttr<CUDAConstantAttr>() && 3116 !Global->hasAttr<CUDASharedAttr>() && 3117 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3118 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3119 return; 3120 } else { 3121 // We need to emit host-side 'shadows' for all global 3122 // device-side variables because the CUDA runtime needs their 3123 // size and host-side address in order to provide access to 3124 // their device-side incarnations. 3125 3126 // So device-only functions are the only things we skip. 3127 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3128 Global->hasAttr<CUDADeviceAttr>()) 3129 return; 3130 3131 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3132 "Expected Variable or Function"); 3133 } 3134 } 3135 3136 if (LangOpts.OpenMP) { 3137 // If this is OpenMP, check if it is legal to emit this global normally. 3138 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3139 return; 3140 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3141 if (MustBeEmitted(Global)) 3142 EmitOMPDeclareReduction(DRD); 3143 return; 3144 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3145 if (MustBeEmitted(Global)) 3146 EmitOMPDeclareMapper(DMD); 3147 return; 3148 } 3149 } 3150 3151 // Ignore declarations, they will be emitted on their first use. 3152 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3153 // Forward declarations are emitted lazily on first use. 3154 if (!FD->doesThisDeclarationHaveABody()) { 3155 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3156 return; 3157 3158 StringRef MangledName = getMangledName(GD); 3159 3160 // Compute the function info and LLVM type. 3161 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3162 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3163 3164 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3165 /*DontDefer=*/false); 3166 return; 3167 } 3168 } else { 3169 const auto *VD = cast<VarDecl>(Global); 3170 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3171 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3172 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3173 if (LangOpts.OpenMP) { 3174 // Emit declaration of the must-be-emitted declare target variable. 3175 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3176 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3177 bool UnifiedMemoryEnabled = 3178 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3179 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 3180 !UnifiedMemoryEnabled) { 3181 (void)GetAddrOfGlobalVar(VD); 3182 } else { 3183 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3184 (*Res == OMPDeclareTargetDeclAttr::MT_To && 3185 UnifiedMemoryEnabled)) && 3186 "Link clause or to clause with unified memory expected."); 3187 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3188 } 3189 3190 return; 3191 } 3192 } 3193 // If this declaration may have caused an inline variable definition to 3194 // change linkage, make sure that it's emitted. 3195 if (Context.getInlineVariableDefinitionKind(VD) == 3196 ASTContext::InlineVariableDefinitionKind::Strong) 3197 GetAddrOfGlobalVar(VD); 3198 return; 3199 } 3200 } 3201 3202 // Defer code generation to first use when possible, e.g. if this is an inline 3203 // function. If the global must always be emitted, do it eagerly if possible 3204 // to benefit from cache locality. 3205 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3206 // Emit the definition if it can't be deferred. 3207 EmitGlobalDefinition(GD); 3208 return; 3209 } 3210 3211 // If we're deferring emission of a C++ variable with an 3212 // initializer, remember the order in which it appeared in the file. 3213 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3214 cast<VarDecl>(Global)->hasInit()) { 3215 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3216 CXXGlobalInits.push_back(nullptr); 3217 } 3218 3219 StringRef MangledName = getMangledName(GD); 3220 if (GetGlobalValue(MangledName) != nullptr) { 3221 // The value has already been used and should therefore be emitted. 3222 addDeferredDeclToEmit(GD); 3223 } else if (MustBeEmitted(Global)) { 3224 // The value must be emitted, but cannot be emitted eagerly. 3225 assert(!MayBeEmittedEagerly(Global)); 3226 addDeferredDeclToEmit(GD); 3227 } else { 3228 // Otherwise, remember that we saw a deferred decl with this name. The 3229 // first use of the mangled name will cause it to move into 3230 // DeferredDeclsToEmit. 3231 DeferredDecls[MangledName] = GD; 3232 } 3233 } 3234 3235 // Check if T is a class type with a destructor that's not dllimport. 3236 static bool HasNonDllImportDtor(QualType T) { 3237 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3238 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3239 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3240 return true; 3241 3242 return false; 3243 } 3244 3245 namespace { 3246 struct FunctionIsDirectlyRecursive 3247 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3248 const StringRef Name; 3249 const Builtin::Context &BI; 3250 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3251 : Name(N), BI(C) {} 3252 3253 bool VisitCallExpr(const CallExpr *E) { 3254 const FunctionDecl *FD = E->getDirectCallee(); 3255 if (!FD) 3256 return false; 3257 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3258 if (Attr && Name == Attr->getLabel()) 3259 return true; 3260 unsigned BuiltinID = FD->getBuiltinID(); 3261 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3262 return false; 3263 StringRef BuiltinName = BI.getName(BuiltinID); 3264 if (BuiltinName.startswith("__builtin_") && 3265 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3266 return true; 3267 } 3268 return false; 3269 } 3270 3271 bool VisitStmt(const Stmt *S) { 3272 for (const Stmt *Child : S->children()) 3273 if (Child && this->Visit(Child)) 3274 return true; 3275 return false; 3276 } 3277 }; 3278 3279 // Make sure we're not referencing non-imported vars or functions. 3280 struct DLLImportFunctionVisitor 3281 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3282 bool SafeToInline = true; 3283 3284 bool shouldVisitImplicitCode() const { return true; } 3285 3286 bool VisitVarDecl(VarDecl *VD) { 3287 if (VD->getTLSKind()) { 3288 // A thread-local variable cannot be imported. 3289 SafeToInline = false; 3290 return SafeToInline; 3291 } 3292 3293 // A variable definition might imply a destructor call. 3294 if (VD->isThisDeclarationADefinition()) 3295 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3296 3297 return SafeToInline; 3298 } 3299 3300 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3301 if (const auto *D = E->getTemporary()->getDestructor()) 3302 SafeToInline = D->hasAttr<DLLImportAttr>(); 3303 return SafeToInline; 3304 } 3305 3306 bool VisitDeclRefExpr(DeclRefExpr *E) { 3307 ValueDecl *VD = E->getDecl(); 3308 if (isa<FunctionDecl>(VD)) 3309 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3310 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3311 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3312 return SafeToInline; 3313 } 3314 3315 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3316 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3317 return SafeToInline; 3318 } 3319 3320 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3321 CXXMethodDecl *M = E->getMethodDecl(); 3322 if (!M) { 3323 // Call through a pointer to member function. This is safe to inline. 3324 SafeToInline = true; 3325 } else { 3326 SafeToInline = M->hasAttr<DLLImportAttr>(); 3327 } 3328 return SafeToInline; 3329 } 3330 3331 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3332 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3333 return SafeToInline; 3334 } 3335 3336 bool VisitCXXNewExpr(CXXNewExpr *E) { 3337 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3338 return SafeToInline; 3339 } 3340 }; 3341 } 3342 3343 // isTriviallyRecursive - Check if this function calls another 3344 // decl that, because of the asm attribute or the other decl being a builtin, 3345 // ends up pointing to itself. 3346 bool 3347 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3348 StringRef Name; 3349 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3350 // asm labels are a special kind of mangling we have to support. 3351 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3352 if (!Attr) 3353 return false; 3354 Name = Attr->getLabel(); 3355 } else { 3356 Name = FD->getName(); 3357 } 3358 3359 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3360 const Stmt *Body = FD->getBody(); 3361 return Body ? Walker.Visit(Body) : false; 3362 } 3363 3364 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3365 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3366 return true; 3367 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3368 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3369 return false; 3370 3371 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3372 // Check whether it would be safe to inline this dllimport function. 3373 DLLImportFunctionVisitor Visitor; 3374 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3375 if (!Visitor.SafeToInline) 3376 return false; 3377 3378 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3379 // Implicit destructor invocations aren't captured in the AST, so the 3380 // check above can't see them. Check for them manually here. 3381 for (const Decl *Member : Dtor->getParent()->decls()) 3382 if (isa<FieldDecl>(Member)) 3383 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3384 return false; 3385 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3386 if (HasNonDllImportDtor(B.getType())) 3387 return false; 3388 } 3389 } 3390 3391 // Inline builtins declaration must be emitted. They often are fortified 3392 // functions. 3393 if (F->isInlineBuiltinDeclaration()) 3394 return true; 3395 3396 // PR9614. Avoid cases where the source code is lying to us. An available 3397 // externally function should have an equivalent function somewhere else, 3398 // but a function that calls itself through asm label/`__builtin_` trickery is 3399 // clearly not equivalent to the real implementation. 3400 // This happens in glibc's btowc and in some configure checks. 3401 return !isTriviallyRecursive(F); 3402 } 3403 3404 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3405 return CodeGenOpts.OptimizationLevel > 0; 3406 } 3407 3408 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3409 llvm::GlobalValue *GV) { 3410 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3411 3412 if (FD->isCPUSpecificMultiVersion()) { 3413 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3414 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3415 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3416 } else if (FD->isTargetClonesMultiVersion()) { 3417 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3418 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3419 if (Clone->isFirstOfVersion(I)) 3420 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3421 // Ensure that the resolver function is also emitted. 3422 GetOrCreateMultiVersionResolver(GD); 3423 } else 3424 EmitGlobalFunctionDefinition(GD, GV); 3425 } 3426 3427 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3428 const auto *D = cast<ValueDecl>(GD.getDecl()); 3429 3430 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3431 Context.getSourceManager(), 3432 "Generating code for declaration"); 3433 3434 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3435 // At -O0, don't generate IR for functions with available_externally 3436 // linkage. 3437 if (!shouldEmitFunction(GD)) 3438 return; 3439 3440 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3441 std::string Name; 3442 llvm::raw_string_ostream OS(Name); 3443 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3444 /*Qualified=*/true); 3445 return Name; 3446 }); 3447 3448 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3449 // Make sure to emit the definition(s) before we emit the thunks. 3450 // This is necessary for the generation of certain thunks. 3451 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3452 ABI->emitCXXStructor(GD); 3453 else if (FD->isMultiVersion()) 3454 EmitMultiVersionFunctionDefinition(GD, GV); 3455 else 3456 EmitGlobalFunctionDefinition(GD, GV); 3457 3458 if (Method->isVirtual()) 3459 getVTables().EmitThunks(GD); 3460 3461 return; 3462 } 3463 3464 if (FD->isMultiVersion()) 3465 return EmitMultiVersionFunctionDefinition(GD, GV); 3466 return EmitGlobalFunctionDefinition(GD, GV); 3467 } 3468 3469 if (const auto *VD = dyn_cast<VarDecl>(D)) 3470 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3471 3472 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3473 } 3474 3475 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3476 llvm::Function *NewFn); 3477 3478 static unsigned 3479 TargetMVPriority(const TargetInfo &TI, 3480 const CodeGenFunction::MultiVersionResolverOption &RO) { 3481 unsigned Priority = 0; 3482 for (StringRef Feat : RO.Conditions.Features) 3483 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3484 3485 if (!RO.Conditions.Architecture.empty()) 3486 Priority = std::max( 3487 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3488 return Priority; 3489 } 3490 3491 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3492 // TU can forward declare the function without causing problems. Particularly 3493 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3494 // work with internal linkage functions, so that the same function name can be 3495 // used with internal linkage in multiple TUs. 3496 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3497 GlobalDecl GD) { 3498 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3499 if (FD->getFormalLinkage() == InternalLinkage) 3500 return llvm::GlobalValue::InternalLinkage; 3501 return llvm::GlobalValue::WeakODRLinkage; 3502 } 3503 3504 void CodeGenModule::emitMultiVersionFunctions() { 3505 std::vector<GlobalDecl> MVFuncsToEmit; 3506 MultiVersionFuncs.swap(MVFuncsToEmit); 3507 for (GlobalDecl GD : MVFuncsToEmit) { 3508 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3509 assert(FD && "Expected a FunctionDecl"); 3510 3511 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3512 if (FD->isTargetMultiVersion()) { 3513 getContext().forEachMultiversionedFunctionVersion( 3514 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3515 GlobalDecl CurGD{ 3516 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3517 StringRef MangledName = getMangledName(CurGD); 3518 llvm::Constant *Func = GetGlobalValue(MangledName); 3519 if (!Func) { 3520 if (CurFD->isDefined()) { 3521 EmitGlobalFunctionDefinition(CurGD, nullptr); 3522 Func = GetGlobalValue(MangledName); 3523 } else { 3524 const CGFunctionInfo &FI = 3525 getTypes().arrangeGlobalDeclaration(GD); 3526 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3527 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3528 /*DontDefer=*/false, ForDefinition); 3529 } 3530 assert(Func && "This should have just been created"); 3531 } 3532 3533 const auto *TA = CurFD->getAttr<TargetAttr>(); 3534 llvm::SmallVector<StringRef, 8> Feats; 3535 TA->getAddedFeatures(Feats); 3536 3537 Options.emplace_back(cast<llvm::Function>(Func), 3538 TA->getArchitecture(), Feats); 3539 }); 3540 } else if (FD->isTargetClonesMultiVersion()) { 3541 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3542 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3543 ++VersionIndex) { 3544 if (!TC->isFirstOfVersion(VersionIndex)) 3545 continue; 3546 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 3547 VersionIndex}; 3548 StringRef Version = TC->getFeatureStr(VersionIndex); 3549 StringRef MangledName = getMangledName(CurGD); 3550 llvm::Constant *Func = GetGlobalValue(MangledName); 3551 if (!Func) { 3552 if (FD->isDefined()) { 3553 EmitGlobalFunctionDefinition(CurGD, nullptr); 3554 Func = GetGlobalValue(MangledName); 3555 } else { 3556 const CGFunctionInfo &FI = 3557 getTypes().arrangeGlobalDeclaration(CurGD); 3558 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3559 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3560 /*DontDefer=*/false, ForDefinition); 3561 } 3562 assert(Func && "This should have just been created"); 3563 } 3564 3565 StringRef Architecture; 3566 llvm::SmallVector<StringRef, 1> Feature; 3567 3568 if (Version.startswith("arch=")) 3569 Architecture = Version.drop_front(sizeof("arch=") - 1); 3570 else if (Version != "default") 3571 Feature.push_back(Version); 3572 3573 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3574 } 3575 } else { 3576 assert(0 && "Expected a target or target_clones multiversion function"); 3577 continue; 3578 } 3579 3580 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 3581 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 3582 ResolverConstant = IFunc->getResolver(); 3583 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 3584 3585 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3586 3587 if (supportsCOMDAT()) 3588 ResolverFunc->setComdat( 3589 getModule().getOrInsertComdat(ResolverFunc->getName())); 3590 3591 const TargetInfo &TI = getTarget(); 3592 llvm::stable_sort( 3593 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3594 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3595 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3596 }); 3597 CodeGenFunction CGF(*this); 3598 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3599 } 3600 3601 // Ensure that any additions to the deferred decls list caused by emitting a 3602 // variant are emitted. This can happen when the variant itself is inline and 3603 // calls a function without linkage. 3604 if (!MVFuncsToEmit.empty()) 3605 EmitDeferred(); 3606 3607 // Ensure that any additions to the multiversion funcs list from either the 3608 // deferred decls or the multiversion functions themselves are emitted. 3609 if (!MultiVersionFuncs.empty()) 3610 emitMultiVersionFunctions(); 3611 } 3612 3613 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3614 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3615 assert(FD && "Not a FunctionDecl?"); 3616 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3617 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3618 assert(DD && "Not a cpu_dispatch Function?"); 3619 3620 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3621 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3622 3623 StringRef ResolverName = getMangledName(GD); 3624 UpdateMultiVersionNames(GD, FD, ResolverName); 3625 3626 llvm::Type *ResolverType; 3627 GlobalDecl ResolverGD; 3628 if (getTarget().supportsIFunc()) { 3629 ResolverType = llvm::FunctionType::get( 3630 llvm::PointerType::get(DeclTy, 3631 Context.getTargetAddressSpace(FD->getType())), 3632 false); 3633 } 3634 else { 3635 ResolverType = DeclTy; 3636 ResolverGD = GD; 3637 } 3638 3639 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3640 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3641 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3642 if (supportsCOMDAT()) 3643 ResolverFunc->setComdat( 3644 getModule().getOrInsertComdat(ResolverFunc->getName())); 3645 3646 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3647 const TargetInfo &Target = getTarget(); 3648 unsigned Index = 0; 3649 for (const IdentifierInfo *II : DD->cpus()) { 3650 // Get the name of the target function so we can look it up/create it. 3651 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3652 getCPUSpecificMangling(*this, II->getName()); 3653 3654 llvm::Constant *Func = GetGlobalValue(MangledName); 3655 3656 if (!Func) { 3657 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3658 if (ExistingDecl.getDecl() && 3659 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3660 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3661 Func = GetGlobalValue(MangledName); 3662 } else { 3663 if (!ExistingDecl.getDecl()) 3664 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3665 3666 Func = GetOrCreateLLVMFunction( 3667 MangledName, DeclTy, ExistingDecl, 3668 /*ForVTable=*/false, /*DontDefer=*/true, 3669 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3670 } 3671 } 3672 3673 llvm::SmallVector<StringRef, 32> Features; 3674 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3675 llvm::transform(Features, Features.begin(), 3676 [](StringRef Str) { return Str.substr(1); }); 3677 llvm::erase_if(Features, [&Target](StringRef Feat) { 3678 return !Target.validateCpuSupports(Feat); 3679 }); 3680 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3681 ++Index; 3682 } 3683 3684 llvm::stable_sort( 3685 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3686 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3687 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3688 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3689 }); 3690 3691 // If the list contains multiple 'default' versions, such as when it contains 3692 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3693 // always run on at least a 'pentium'). We do this by deleting the 'least 3694 // advanced' (read, lowest mangling letter). 3695 while (Options.size() > 1 && 3696 llvm::X86::getCpuSupportsMask( 3697 (Options.end() - 2)->Conditions.Features) == 0) { 3698 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3699 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3700 if (LHSName.compare(RHSName) < 0) 3701 Options.erase(Options.end() - 2); 3702 else 3703 Options.erase(Options.end() - 1); 3704 } 3705 3706 CodeGenFunction CGF(*this); 3707 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3708 3709 if (getTarget().supportsIFunc()) { 3710 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3711 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 3712 3713 // Fix up function declarations that were created for cpu_specific before 3714 // cpu_dispatch was known 3715 if (!isa<llvm::GlobalIFunc>(IFunc)) { 3716 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3717 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3718 &getModule()); 3719 GI->takeName(IFunc); 3720 IFunc->replaceAllUsesWith(GI); 3721 IFunc->eraseFromParent(); 3722 IFunc = GI; 3723 } 3724 3725 std::string AliasName = getMangledNameImpl( 3726 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3727 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3728 if (!AliasFunc) { 3729 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3730 &getModule()); 3731 SetCommonAttributes(GD, GA); 3732 } 3733 } 3734 } 3735 3736 /// If a dispatcher for the specified mangled name is not in the module, create 3737 /// and return an llvm Function with the specified type. 3738 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 3739 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3740 assert(FD && "Not a FunctionDecl?"); 3741 3742 std::string MangledName = 3743 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3744 3745 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3746 // a separate resolver). 3747 std::string ResolverName = MangledName; 3748 if (getTarget().supportsIFunc()) 3749 ResolverName += ".ifunc"; 3750 else if (FD->isTargetMultiVersion()) 3751 ResolverName += ".resolver"; 3752 3753 // If the resolver has already been created, just return it. 3754 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3755 return ResolverGV; 3756 3757 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3758 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3759 3760 // The resolver needs to be created. For target and target_clones, defer 3761 // creation until the end of the TU. 3762 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 3763 MultiVersionFuncs.push_back(GD); 3764 3765 // For cpu_specific, don't create an ifunc yet because we don't know if the 3766 // cpu_dispatch will be emitted in this translation unit. 3767 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 3768 llvm::Type *ResolverType = llvm::FunctionType::get( 3769 llvm::PointerType::get( 3770 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3771 false); 3772 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3773 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3774 /*ForVTable=*/false); 3775 llvm::GlobalIFunc *GIF = 3776 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3777 "", Resolver, &getModule()); 3778 GIF->setName(ResolverName); 3779 SetCommonAttributes(FD, GIF); 3780 3781 return GIF; 3782 } 3783 3784 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3785 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3786 assert(isa<llvm::GlobalValue>(Resolver) && 3787 "Resolver should be created for the first time"); 3788 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3789 return Resolver; 3790 } 3791 3792 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3793 /// module, create and return an llvm Function with the specified type. If there 3794 /// is something in the module with the specified name, return it potentially 3795 /// bitcasted to the right type. 3796 /// 3797 /// If D is non-null, it specifies a decl that correspond to this. This is used 3798 /// to set the attributes on the function when it is first created. 3799 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3800 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3801 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3802 ForDefinition_t IsForDefinition) { 3803 const Decl *D = GD.getDecl(); 3804 3805 // Any attempts to use a MultiVersion function should result in retrieving 3806 // the iFunc instead. Name Mangling will handle the rest of the changes. 3807 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3808 // For the device mark the function as one that should be emitted. 3809 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3810 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3811 !DontDefer && !IsForDefinition) { 3812 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3813 GlobalDecl GDDef; 3814 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3815 GDDef = GlobalDecl(CD, GD.getCtorType()); 3816 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3817 GDDef = GlobalDecl(DD, GD.getDtorType()); 3818 else 3819 GDDef = GlobalDecl(FDDef); 3820 EmitGlobal(GDDef); 3821 } 3822 } 3823 3824 if (FD->isMultiVersion()) { 3825 UpdateMultiVersionNames(GD, FD, MangledName); 3826 if (!IsForDefinition) 3827 return GetOrCreateMultiVersionResolver(GD); 3828 } 3829 } 3830 3831 // Lookup the entry, lazily creating it if necessary. 3832 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3833 if (Entry) { 3834 if (WeakRefReferences.erase(Entry)) { 3835 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3836 if (FD && !FD->hasAttr<WeakAttr>()) 3837 Entry->setLinkage(llvm::Function::ExternalLinkage); 3838 } 3839 3840 // Handle dropped DLL attributes. 3841 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 3842 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 3843 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3844 setDSOLocal(Entry); 3845 } 3846 3847 // If there are two attempts to define the same mangled name, issue an 3848 // error. 3849 if (IsForDefinition && !Entry->isDeclaration()) { 3850 GlobalDecl OtherGD; 3851 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3852 // to make sure that we issue an error only once. 3853 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3854 (GD.getCanonicalDecl().getDecl() != 3855 OtherGD.getCanonicalDecl().getDecl()) && 3856 DiagnosedConflictingDefinitions.insert(GD).second) { 3857 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3858 << MangledName; 3859 getDiags().Report(OtherGD.getDecl()->getLocation(), 3860 diag::note_previous_definition); 3861 } 3862 } 3863 3864 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3865 (Entry->getValueType() == Ty)) { 3866 return Entry; 3867 } 3868 3869 // Make sure the result is of the correct type. 3870 // (If function is requested for a definition, we always need to create a new 3871 // function, not just return a bitcast.) 3872 if (!IsForDefinition) 3873 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3874 } 3875 3876 // This function doesn't have a complete type (for example, the return 3877 // type is an incomplete struct). Use a fake type instead, and make 3878 // sure not to try to set attributes. 3879 bool IsIncompleteFunction = false; 3880 3881 llvm::FunctionType *FTy; 3882 if (isa<llvm::FunctionType>(Ty)) { 3883 FTy = cast<llvm::FunctionType>(Ty); 3884 } else { 3885 FTy = llvm::FunctionType::get(VoidTy, false); 3886 IsIncompleteFunction = true; 3887 } 3888 3889 llvm::Function *F = 3890 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3891 Entry ? StringRef() : MangledName, &getModule()); 3892 3893 // If we already created a function with the same mangled name (but different 3894 // type) before, take its name and add it to the list of functions to be 3895 // replaced with F at the end of CodeGen. 3896 // 3897 // This happens if there is a prototype for a function (e.g. "int f()") and 3898 // then a definition of a different type (e.g. "int f(int x)"). 3899 if (Entry) { 3900 F->takeName(Entry); 3901 3902 // This might be an implementation of a function without a prototype, in 3903 // which case, try to do special replacement of calls which match the new 3904 // prototype. The really key thing here is that we also potentially drop 3905 // arguments from the call site so as to make a direct call, which makes the 3906 // inliner happier and suppresses a number of optimizer warnings (!) about 3907 // dropping arguments. 3908 if (!Entry->use_empty()) { 3909 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3910 Entry->removeDeadConstantUsers(); 3911 } 3912 3913 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3914 F, Entry->getValueType()->getPointerTo()); 3915 addGlobalValReplacement(Entry, BC); 3916 } 3917 3918 assert(F->getName() == MangledName && "name was uniqued!"); 3919 if (D) 3920 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3921 if (ExtraAttrs.hasFnAttrs()) { 3922 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 3923 F->addFnAttrs(B); 3924 } 3925 3926 if (!DontDefer) { 3927 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3928 // each other bottoming out with the base dtor. Therefore we emit non-base 3929 // dtors on usage, even if there is no dtor definition in the TU. 3930 if (D && isa<CXXDestructorDecl>(D) && 3931 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3932 GD.getDtorType())) 3933 addDeferredDeclToEmit(GD); 3934 3935 // This is the first use or definition of a mangled name. If there is a 3936 // deferred decl with this name, remember that we need to emit it at the end 3937 // of the file. 3938 auto DDI = DeferredDecls.find(MangledName); 3939 if (DDI != DeferredDecls.end()) { 3940 // Move the potentially referenced deferred decl to the 3941 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3942 // don't need it anymore). 3943 addDeferredDeclToEmit(DDI->second); 3944 DeferredDecls.erase(DDI); 3945 3946 // Otherwise, there are cases we have to worry about where we're 3947 // using a declaration for which we must emit a definition but where 3948 // we might not find a top-level definition: 3949 // - member functions defined inline in their classes 3950 // - friend functions defined inline in some class 3951 // - special member functions with implicit definitions 3952 // If we ever change our AST traversal to walk into class methods, 3953 // this will be unnecessary. 3954 // 3955 // We also don't emit a definition for a function if it's going to be an 3956 // entry in a vtable, unless it's already marked as used. 3957 } else if (getLangOpts().CPlusPlus && D) { 3958 // Look for a declaration that's lexically in a record. 3959 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3960 FD = FD->getPreviousDecl()) { 3961 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3962 if (FD->doesThisDeclarationHaveABody()) { 3963 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3964 break; 3965 } 3966 } 3967 } 3968 } 3969 } 3970 3971 // Make sure the result is of the requested type. 3972 if (!IsIncompleteFunction) { 3973 assert(F->getFunctionType() == Ty); 3974 return F; 3975 } 3976 3977 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3978 return llvm::ConstantExpr::getBitCast(F, PTy); 3979 } 3980 3981 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3982 /// non-null, then this function will use the specified type if it has to 3983 /// create it (this occurs when we see a definition of the function). 3984 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3985 llvm::Type *Ty, 3986 bool ForVTable, 3987 bool DontDefer, 3988 ForDefinition_t IsForDefinition) { 3989 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3990 "consteval function should never be emitted"); 3991 // If there was no specific requested type, just convert it now. 3992 if (!Ty) { 3993 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3994 Ty = getTypes().ConvertType(FD->getType()); 3995 } 3996 3997 // Devirtualized destructor calls may come through here instead of via 3998 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3999 // of the complete destructor when necessary. 4000 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4001 if (getTarget().getCXXABI().isMicrosoft() && 4002 GD.getDtorType() == Dtor_Complete && 4003 DD->getParent()->getNumVBases() == 0) 4004 GD = GlobalDecl(DD, Dtor_Base); 4005 } 4006 4007 StringRef MangledName = getMangledName(GD); 4008 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4009 /*IsThunk=*/false, llvm::AttributeList(), 4010 IsForDefinition); 4011 // Returns kernel handle for HIP kernel stub function. 4012 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4013 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4014 auto *Handle = getCUDARuntime().getKernelHandle( 4015 cast<llvm::Function>(F->stripPointerCasts()), GD); 4016 if (IsForDefinition) 4017 return F; 4018 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 4019 } 4020 return F; 4021 } 4022 4023 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4024 llvm::GlobalValue *F = 4025 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4026 4027 return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F), 4028 llvm::Type::getInt8PtrTy(VMContext)); 4029 } 4030 4031 static const FunctionDecl * 4032 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4033 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4034 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4035 4036 IdentifierInfo &CII = C.Idents.get(Name); 4037 for (const auto *Result : DC->lookup(&CII)) 4038 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4039 return FD; 4040 4041 if (!C.getLangOpts().CPlusPlus) 4042 return nullptr; 4043 4044 // Demangle the premangled name from getTerminateFn() 4045 IdentifierInfo &CXXII = 4046 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4047 ? C.Idents.get("terminate") 4048 : C.Idents.get(Name); 4049 4050 for (const auto &N : {"__cxxabiv1", "std"}) { 4051 IdentifierInfo &NS = C.Idents.get(N); 4052 for (const auto *Result : DC->lookup(&NS)) { 4053 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4054 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4055 for (const auto *Result : LSD->lookup(&NS)) 4056 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4057 break; 4058 4059 if (ND) 4060 for (const auto *Result : ND->lookup(&CXXII)) 4061 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4062 return FD; 4063 } 4064 } 4065 4066 return nullptr; 4067 } 4068 4069 /// CreateRuntimeFunction - Create a new runtime function with the specified 4070 /// type and name. 4071 llvm::FunctionCallee 4072 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4073 llvm::AttributeList ExtraAttrs, bool Local, 4074 bool AssumeConvergent) { 4075 if (AssumeConvergent) { 4076 ExtraAttrs = 4077 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4078 } 4079 4080 llvm::Constant *C = 4081 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4082 /*DontDefer=*/false, /*IsThunk=*/false, 4083 ExtraAttrs); 4084 4085 if (auto *F = dyn_cast<llvm::Function>(C)) { 4086 if (F->empty()) { 4087 F->setCallingConv(getRuntimeCC()); 4088 4089 // In Windows Itanium environments, try to mark runtime functions 4090 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4091 // will link their standard library statically or dynamically. Marking 4092 // functions imported when they are not imported can cause linker errors 4093 // and warnings. 4094 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4095 !getCodeGenOpts().LTOVisibilityPublicStd) { 4096 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4097 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4098 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4099 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4100 } 4101 } 4102 setDSOLocal(F); 4103 } 4104 } 4105 4106 return {FTy, C}; 4107 } 4108 4109 /// isTypeConstant - Determine whether an object of this type can be emitted 4110 /// as a constant. 4111 /// 4112 /// If ExcludeCtor is true, the duration when the object's constructor runs 4113 /// will not be considered. The caller will need to verify that the object is 4114 /// not written to during its construction. 4115 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4116 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4117 return false; 4118 4119 if (Context.getLangOpts().CPlusPlus) { 4120 if (const CXXRecordDecl *Record 4121 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4122 return ExcludeCtor && !Record->hasMutableFields() && 4123 Record->hasTrivialDestructor(); 4124 } 4125 4126 return true; 4127 } 4128 4129 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4130 /// create and return an llvm GlobalVariable with the specified type and address 4131 /// space. If there is something in the module with the specified name, return 4132 /// it potentially bitcasted to the right type. 4133 /// 4134 /// If D is non-null, it specifies a decl that correspond to this. This is used 4135 /// to set the attributes on the global when it is first created. 4136 /// 4137 /// If IsForDefinition is true, it is guaranteed that an actual global with 4138 /// type Ty will be returned, not conversion of a variable with the same 4139 /// mangled name but some other type. 4140 llvm::Constant * 4141 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4142 LangAS AddrSpace, const VarDecl *D, 4143 ForDefinition_t IsForDefinition) { 4144 // Lookup the entry, lazily creating it if necessary. 4145 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4146 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4147 if (Entry) { 4148 if (WeakRefReferences.erase(Entry)) { 4149 if (D && !D->hasAttr<WeakAttr>()) 4150 Entry->setLinkage(llvm::Function::ExternalLinkage); 4151 } 4152 4153 // Handle dropped DLL attributes. 4154 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4155 !shouldMapVisibilityToDLLExport(D)) 4156 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4157 4158 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4159 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4160 4161 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4162 return Entry; 4163 4164 // If there are two attempts to define the same mangled name, issue an 4165 // error. 4166 if (IsForDefinition && !Entry->isDeclaration()) { 4167 GlobalDecl OtherGD; 4168 const VarDecl *OtherD; 4169 4170 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4171 // to make sure that we issue an error only once. 4172 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4173 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4174 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4175 OtherD->hasInit() && 4176 DiagnosedConflictingDefinitions.insert(D).second) { 4177 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4178 << MangledName; 4179 getDiags().Report(OtherGD.getDecl()->getLocation(), 4180 diag::note_previous_definition); 4181 } 4182 } 4183 4184 // Make sure the result is of the correct type. 4185 if (Entry->getType()->getAddressSpace() != TargetAS) { 4186 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4187 Ty->getPointerTo(TargetAS)); 4188 } 4189 4190 // (If global is requested for a definition, we always need to create a new 4191 // global, not just return a bitcast.) 4192 if (!IsForDefinition) 4193 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4194 } 4195 4196 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4197 4198 auto *GV = new llvm::GlobalVariable( 4199 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4200 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4201 getContext().getTargetAddressSpace(DAddrSpace)); 4202 4203 // If we already created a global with the same mangled name (but different 4204 // type) before, take its name and remove it from its parent. 4205 if (Entry) { 4206 GV->takeName(Entry); 4207 4208 if (!Entry->use_empty()) { 4209 llvm::Constant *NewPtrForOldDecl = 4210 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4211 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4212 } 4213 4214 Entry->eraseFromParent(); 4215 } 4216 4217 // This is the first use or definition of a mangled name. If there is a 4218 // deferred decl with this name, remember that we need to emit it at the end 4219 // of the file. 4220 auto DDI = DeferredDecls.find(MangledName); 4221 if (DDI != DeferredDecls.end()) { 4222 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4223 // list, and remove it from DeferredDecls (since we don't need it anymore). 4224 addDeferredDeclToEmit(DDI->second); 4225 DeferredDecls.erase(DDI); 4226 } 4227 4228 // Handle things which are present even on external declarations. 4229 if (D) { 4230 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4231 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4232 4233 // FIXME: This code is overly simple and should be merged with other global 4234 // handling. 4235 GV->setConstant(isTypeConstant(D->getType(), false)); 4236 4237 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4238 4239 setLinkageForGV(GV, D); 4240 4241 if (D->getTLSKind()) { 4242 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4243 CXXThreadLocals.push_back(D); 4244 setTLSMode(GV, *D); 4245 } 4246 4247 setGVProperties(GV, D); 4248 4249 // If required by the ABI, treat declarations of static data members with 4250 // inline initializers as definitions. 4251 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4252 EmitGlobalVarDefinition(D); 4253 } 4254 4255 // Emit section information for extern variables. 4256 if (D->hasExternalStorage()) { 4257 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4258 GV->setSection(SA->getName()); 4259 } 4260 4261 // Handle XCore specific ABI requirements. 4262 if (getTriple().getArch() == llvm::Triple::xcore && 4263 D->getLanguageLinkage() == CLanguageLinkage && 4264 D->getType().isConstant(Context) && 4265 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4266 GV->setSection(".cp.rodata"); 4267 4268 // Check if we a have a const declaration with an initializer, we may be 4269 // able to emit it as available_externally to expose it's value to the 4270 // optimizer. 4271 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4272 D->getType().isConstQualified() && !GV->hasInitializer() && 4273 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4274 const auto *Record = 4275 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4276 bool HasMutableFields = Record && Record->hasMutableFields(); 4277 if (!HasMutableFields) { 4278 const VarDecl *InitDecl; 4279 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4280 if (InitExpr) { 4281 ConstantEmitter emitter(*this); 4282 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4283 if (Init) { 4284 auto *InitType = Init->getType(); 4285 if (GV->getValueType() != InitType) { 4286 // The type of the initializer does not match the definition. 4287 // This happens when an initializer has a different type from 4288 // the type of the global (because of padding at the end of a 4289 // structure for instance). 4290 GV->setName(StringRef()); 4291 // Make a new global with the correct type, this is now guaranteed 4292 // to work. 4293 auto *NewGV = cast<llvm::GlobalVariable>( 4294 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4295 ->stripPointerCasts()); 4296 4297 // Erase the old global, since it is no longer used. 4298 GV->eraseFromParent(); 4299 GV = NewGV; 4300 } else { 4301 GV->setInitializer(Init); 4302 GV->setConstant(true); 4303 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4304 } 4305 emitter.finalize(GV); 4306 } 4307 } 4308 } 4309 } 4310 } 4311 4312 if (GV->isDeclaration()) { 4313 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4314 // External HIP managed variables needed to be recorded for transformation 4315 // in both device and host compilations. 4316 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4317 D->hasExternalStorage()) 4318 getCUDARuntime().handleVarRegistration(D, *GV); 4319 } 4320 4321 if (D) 4322 SanitizerMD->reportGlobal(GV, *D); 4323 4324 LangAS ExpectedAS = 4325 D ? D->getType().getAddressSpace() 4326 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4327 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4328 if (DAddrSpace != ExpectedAS) { 4329 return getTargetCodeGenInfo().performAddrSpaceCast( 4330 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4331 } 4332 4333 return GV; 4334 } 4335 4336 llvm::Constant * 4337 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4338 const Decl *D = GD.getDecl(); 4339 4340 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4341 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4342 /*DontDefer=*/false, IsForDefinition); 4343 4344 if (isa<CXXMethodDecl>(D)) { 4345 auto FInfo = 4346 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4347 auto Ty = getTypes().GetFunctionType(*FInfo); 4348 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4349 IsForDefinition); 4350 } 4351 4352 if (isa<FunctionDecl>(D)) { 4353 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4354 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4355 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4356 IsForDefinition); 4357 } 4358 4359 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4360 } 4361 4362 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4363 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4364 unsigned Alignment) { 4365 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4366 llvm::GlobalVariable *OldGV = nullptr; 4367 4368 if (GV) { 4369 // Check if the variable has the right type. 4370 if (GV->getValueType() == Ty) 4371 return GV; 4372 4373 // Because C++ name mangling, the only way we can end up with an already 4374 // existing global with the same name is if it has been declared extern "C". 4375 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4376 OldGV = GV; 4377 } 4378 4379 // Create a new variable. 4380 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4381 Linkage, nullptr, Name); 4382 4383 if (OldGV) { 4384 // Replace occurrences of the old variable if needed. 4385 GV->takeName(OldGV); 4386 4387 if (!OldGV->use_empty()) { 4388 llvm::Constant *NewPtrForOldDecl = 4389 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4390 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4391 } 4392 4393 OldGV->eraseFromParent(); 4394 } 4395 4396 if (supportsCOMDAT() && GV->isWeakForLinker() && 4397 !GV->hasAvailableExternallyLinkage()) 4398 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4399 4400 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4401 4402 return GV; 4403 } 4404 4405 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4406 /// given global variable. If Ty is non-null and if the global doesn't exist, 4407 /// then it will be created with the specified type instead of whatever the 4408 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4409 /// that an actual global with type Ty will be returned, not conversion of a 4410 /// variable with the same mangled name but some other type. 4411 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4412 llvm::Type *Ty, 4413 ForDefinition_t IsForDefinition) { 4414 assert(D->hasGlobalStorage() && "Not a global variable"); 4415 QualType ASTTy = D->getType(); 4416 if (!Ty) 4417 Ty = getTypes().ConvertTypeForMem(ASTTy); 4418 4419 StringRef MangledName = getMangledName(D); 4420 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4421 IsForDefinition); 4422 } 4423 4424 /// CreateRuntimeVariable - Create a new runtime global variable with the 4425 /// specified type and name. 4426 llvm::Constant * 4427 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4428 StringRef Name) { 4429 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4430 : LangAS::Default; 4431 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4432 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4433 return Ret; 4434 } 4435 4436 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4437 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4438 4439 StringRef MangledName = getMangledName(D); 4440 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4441 4442 // We already have a definition, not declaration, with the same mangled name. 4443 // Emitting of declaration is not required (and actually overwrites emitted 4444 // definition). 4445 if (GV && !GV->isDeclaration()) 4446 return; 4447 4448 // If we have not seen a reference to this variable yet, place it into the 4449 // deferred declarations table to be emitted if needed later. 4450 if (!MustBeEmitted(D) && !GV) { 4451 DeferredDecls[MangledName] = D; 4452 return; 4453 } 4454 4455 // The tentative definition is the only definition. 4456 EmitGlobalVarDefinition(D); 4457 } 4458 4459 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4460 EmitExternalVarDeclaration(D); 4461 } 4462 4463 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4464 return Context.toCharUnitsFromBits( 4465 getDataLayout().getTypeStoreSizeInBits(Ty)); 4466 } 4467 4468 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4469 if (LangOpts.OpenCL) { 4470 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4471 assert(AS == LangAS::opencl_global || 4472 AS == LangAS::opencl_global_device || 4473 AS == LangAS::opencl_global_host || 4474 AS == LangAS::opencl_constant || 4475 AS == LangAS::opencl_local || 4476 AS >= LangAS::FirstTargetAddressSpace); 4477 return AS; 4478 } 4479 4480 if (LangOpts.SYCLIsDevice && 4481 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4482 return LangAS::sycl_global; 4483 4484 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4485 if (D && D->hasAttr<CUDAConstantAttr>()) 4486 return LangAS::cuda_constant; 4487 else if (D && D->hasAttr<CUDASharedAttr>()) 4488 return LangAS::cuda_shared; 4489 else if (D && D->hasAttr<CUDADeviceAttr>()) 4490 return LangAS::cuda_device; 4491 else if (D && D->getType().isConstQualified()) 4492 return LangAS::cuda_constant; 4493 else 4494 return LangAS::cuda_device; 4495 } 4496 4497 if (LangOpts.OpenMP) { 4498 LangAS AS; 4499 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4500 return AS; 4501 } 4502 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4503 } 4504 4505 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4506 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4507 if (LangOpts.OpenCL) 4508 return LangAS::opencl_constant; 4509 if (LangOpts.SYCLIsDevice) 4510 return LangAS::sycl_global; 4511 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4512 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4513 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4514 // with OpVariable instructions with Generic storage class which is not 4515 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4516 // UniformConstant storage class is not viable as pointers to it may not be 4517 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4518 return LangAS::cuda_device; 4519 if (auto AS = getTarget().getConstantAddressSpace()) 4520 return *AS; 4521 return LangAS::Default; 4522 } 4523 4524 // In address space agnostic languages, string literals are in default address 4525 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4526 // emitted in constant address space in LLVM IR. To be consistent with other 4527 // parts of AST, string literal global variables in constant address space 4528 // need to be casted to default address space before being put into address 4529 // map and referenced by other part of CodeGen. 4530 // In OpenCL, string literals are in constant address space in AST, therefore 4531 // they should not be casted to default address space. 4532 static llvm::Constant * 4533 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4534 llvm::GlobalVariable *GV) { 4535 llvm::Constant *Cast = GV; 4536 if (!CGM.getLangOpts().OpenCL) { 4537 auto AS = CGM.GetGlobalConstantAddressSpace(); 4538 if (AS != LangAS::Default) 4539 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4540 CGM, GV, AS, LangAS::Default, 4541 GV->getValueType()->getPointerTo( 4542 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4543 } 4544 return Cast; 4545 } 4546 4547 template<typename SomeDecl> 4548 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4549 llvm::GlobalValue *GV) { 4550 if (!getLangOpts().CPlusPlus) 4551 return; 4552 4553 // Must have 'used' attribute, or else inline assembly can't rely on 4554 // the name existing. 4555 if (!D->template hasAttr<UsedAttr>()) 4556 return; 4557 4558 // Must have internal linkage and an ordinary name. 4559 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4560 return; 4561 4562 // Must be in an extern "C" context. Entities declared directly within 4563 // a record are not extern "C" even if the record is in such a context. 4564 const SomeDecl *First = D->getFirstDecl(); 4565 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4566 return; 4567 4568 // OK, this is an internal linkage entity inside an extern "C" linkage 4569 // specification. Make a note of that so we can give it the "expected" 4570 // mangled name if nothing else is using that name. 4571 std::pair<StaticExternCMap::iterator, bool> R = 4572 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4573 4574 // If we have multiple internal linkage entities with the same name 4575 // in extern "C" regions, none of them gets that name. 4576 if (!R.second) 4577 R.first->second = nullptr; 4578 } 4579 4580 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4581 if (!CGM.supportsCOMDAT()) 4582 return false; 4583 4584 if (D.hasAttr<SelectAnyAttr>()) 4585 return true; 4586 4587 GVALinkage Linkage; 4588 if (auto *VD = dyn_cast<VarDecl>(&D)) 4589 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4590 else 4591 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4592 4593 switch (Linkage) { 4594 case GVA_Internal: 4595 case GVA_AvailableExternally: 4596 case GVA_StrongExternal: 4597 return false; 4598 case GVA_DiscardableODR: 4599 case GVA_StrongODR: 4600 return true; 4601 } 4602 llvm_unreachable("No such linkage"); 4603 } 4604 4605 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4606 llvm::GlobalObject &GO) { 4607 if (!shouldBeInCOMDAT(*this, D)) 4608 return; 4609 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4610 } 4611 4612 /// Pass IsTentative as true if you want to create a tentative definition. 4613 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4614 bool IsTentative) { 4615 // OpenCL global variables of sampler type are translated to function calls, 4616 // therefore no need to be translated. 4617 QualType ASTTy = D->getType(); 4618 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4619 return; 4620 4621 // If this is OpenMP device, check if it is legal to emit this global 4622 // normally. 4623 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4624 OpenMPRuntime->emitTargetGlobalVariable(D)) 4625 return; 4626 4627 llvm::TrackingVH<llvm::Constant> Init; 4628 bool NeedsGlobalCtor = false; 4629 bool NeedsGlobalDtor = 4630 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4631 4632 const VarDecl *InitDecl; 4633 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4634 4635 Optional<ConstantEmitter> emitter; 4636 4637 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4638 // as part of their declaration." Sema has already checked for 4639 // error cases, so we just need to set Init to UndefValue. 4640 bool IsCUDASharedVar = 4641 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4642 // Shadows of initialized device-side global variables are also left 4643 // undefined. 4644 // Managed Variables should be initialized on both host side and device side. 4645 bool IsCUDAShadowVar = 4646 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4647 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4648 D->hasAttr<CUDASharedAttr>()); 4649 bool IsCUDADeviceShadowVar = 4650 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4651 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4652 D->getType()->isCUDADeviceBuiltinTextureType()); 4653 if (getLangOpts().CUDA && 4654 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4655 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4656 else if (D->hasAttr<LoaderUninitializedAttr>()) 4657 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4658 else if (!InitExpr) { 4659 // This is a tentative definition; tentative definitions are 4660 // implicitly initialized with { 0 }. 4661 // 4662 // Note that tentative definitions are only emitted at the end of 4663 // a translation unit, so they should never have incomplete 4664 // type. In addition, EmitTentativeDefinition makes sure that we 4665 // never attempt to emit a tentative definition if a real one 4666 // exists. A use may still exists, however, so we still may need 4667 // to do a RAUW. 4668 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4669 Init = EmitNullConstant(D->getType()); 4670 } else { 4671 initializedGlobalDecl = GlobalDecl(D); 4672 emitter.emplace(*this); 4673 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4674 if (!Initializer) { 4675 QualType T = InitExpr->getType(); 4676 if (D->getType()->isReferenceType()) 4677 T = D->getType(); 4678 4679 if (getLangOpts().CPlusPlus) { 4680 if (InitDecl->hasFlexibleArrayInit(getContext())) 4681 ErrorUnsupported(D, "flexible array initializer"); 4682 Init = EmitNullConstant(T); 4683 NeedsGlobalCtor = true; 4684 } else { 4685 ErrorUnsupported(D, "static initializer"); 4686 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4687 } 4688 } else { 4689 Init = Initializer; 4690 // We don't need an initializer, so remove the entry for the delayed 4691 // initializer position (just in case this entry was delayed) if we 4692 // also don't need to register a destructor. 4693 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4694 DelayedCXXInitPosition.erase(D); 4695 4696 #ifndef NDEBUG 4697 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 4698 InitDecl->getFlexibleArrayInitChars(getContext()); 4699 CharUnits CstSize = CharUnits::fromQuantity( 4700 getDataLayout().getTypeAllocSize(Init->getType())); 4701 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 4702 #endif 4703 } 4704 } 4705 4706 llvm::Type* InitType = Init->getType(); 4707 llvm::Constant *Entry = 4708 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4709 4710 // Strip off pointer casts if we got them. 4711 Entry = Entry->stripPointerCasts(); 4712 4713 // Entry is now either a Function or GlobalVariable. 4714 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4715 4716 // We have a definition after a declaration with the wrong type. 4717 // We must make a new GlobalVariable* and update everything that used OldGV 4718 // (a declaration or tentative definition) with the new GlobalVariable* 4719 // (which will be a definition). 4720 // 4721 // This happens if there is a prototype for a global (e.g. 4722 // "extern int x[];") and then a definition of a different type (e.g. 4723 // "int x[10];"). This also happens when an initializer has a different type 4724 // from the type of the global (this happens with unions). 4725 if (!GV || GV->getValueType() != InitType || 4726 GV->getType()->getAddressSpace() != 4727 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4728 4729 // Move the old entry aside so that we'll create a new one. 4730 Entry->setName(StringRef()); 4731 4732 // Make a new global with the correct type, this is now guaranteed to work. 4733 GV = cast<llvm::GlobalVariable>( 4734 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4735 ->stripPointerCasts()); 4736 4737 // Replace all uses of the old global with the new global 4738 llvm::Constant *NewPtrForOldDecl = 4739 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4740 Entry->getType()); 4741 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4742 4743 // Erase the old global, since it is no longer used. 4744 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4745 } 4746 4747 MaybeHandleStaticInExternC(D, GV); 4748 4749 if (D->hasAttr<AnnotateAttr>()) 4750 AddGlobalAnnotations(D, GV); 4751 4752 // Set the llvm linkage type as appropriate. 4753 llvm::GlobalValue::LinkageTypes Linkage = 4754 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4755 4756 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4757 // the device. [...]" 4758 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4759 // __device__, declares a variable that: [...] 4760 // Is accessible from all the threads within the grid and from the host 4761 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4762 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4763 if (GV && LangOpts.CUDA) { 4764 if (LangOpts.CUDAIsDevice) { 4765 if (Linkage != llvm::GlobalValue::InternalLinkage && 4766 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4767 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4768 D->getType()->isCUDADeviceBuiltinTextureType())) 4769 GV->setExternallyInitialized(true); 4770 } else { 4771 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4772 } 4773 getCUDARuntime().handleVarRegistration(D, *GV); 4774 } 4775 4776 GV->setInitializer(Init); 4777 if (emitter) 4778 emitter->finalize(GV); 4779 4780 // If it is safe to mark the global 'constant', do so now. 4781 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4782 isTypeConstant(D->getType(), true)); 4783 4784 // If it is in a read-only section, mark it 'constant'. 4785 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4786 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4787 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4788 GV->setConstant(true); 4789 } 4790 4791 CharUnits AlignVal = getContext().getDeclAlign(D); 4792 // Check for alignment specifed in an 'omp allocate' directive. 4793 if (llvm::Optional<CharUnits> AlignValFromAllocate = 4794 getOMPAllocateAlignment(D)) 4795 AlignVal = *AlignValFromAllocate; 4796 GV->setAlignment(AlignVal.getAsAlign()); 4797 4798 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4799 // function is only defined alongside the variable, not also alongside 4800 // callers. Normally, all accesses to a thread_local go through the 4801 // thread-wrapper in order to ensure initialization has occurred, underlying 4802 // variable will never be used other than the thread-wrapper, so it can be 4803 // converted to internal linkage. 4804 // 4805 // However, if the variable has the 'constinit' attribute, it _can_ be 4806 // referenced directly, without calling the thread-wrapper, so the linkage 4807 // must not be changed. 4808 // 4809 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4810 // weak or linkonce, the de-duplication semantics are important to preserve, 4811 // so we don't change the linkage. 4812 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4813 Linkage == llvm::GlobalValue::ExternalLinkage && 4814 Context.getTargetInfo().getTriple().isOSDarwin() && 4815 !D->hasAttr<ConstInitAttr>()) 4816 Linkage = llvm::GlobalValue::InternalLinkage; 4817 4818 GV->setLinkage(Linkage); 4819 if (D->hasAttr<DLLImportAttr>()) 4820 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4821 else if (D->hasAttr<DLLExportAttr>()) 4822 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4823 else 4824 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4825 4826 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4827 // common vars aren't constant even if declared const. 4828 GV->setConstant(false); 4829 // Tentative definition of global variables may be initialized with 4830 // non-zero null pointers. In this case they should have weak linkage 4831 // since common linkage must have zero initializer and must not have 4832 // explicit section therefore cannot have non-zero initial value. 4833 if (!GV->getInitializer()->isNullValue()) 4834 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4835 } 4836 4837 setNonAliasAttributes(D, GV); 4838 4839 if (D->getTLSKind() && !GV->isThreadLocal()) { 4840 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4841 CXXThreadLocals.push_back(D); 4842 setTLSMode(GV, *D); 4843 } 4844 4845 maybeSetTrivialComdat(*D, *GV); 4846 4847 // Emit the initializer function if necessary. 4848 if (NeedsGlobalCtor || NeedsGlobalDtor) 4849 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4850 4851 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 4852 4853 // Emit global variable debug information. 4854 if (CGDebugInfo *DI = getModuleDebugInfo()) 4855 if (getCodeGenOpts().hasReducedDebugInfo()) 4856 DI->EmitGlobalVariable(GV, D); 4857 } 4858 4859 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4860 if (CGDebugInfo *DI = getModuleDebugInfo()) 4861 if (getCodeGenOpts().hasReducedDebugInfo()) { 4862 QualType ASTTy = D->getType(); 4863 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4864 llvm::Constant *GV = 4865 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 4866 DI->EmitExternalVariable( 4867 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4868 } 4869 } 4870 4871 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4872 CodeGenModule &CGM, const VarDecl *D, 4873 bool NoCommon) { 4874 // Don't give variables common linkage if -fno-common was specified unless it 4875 // was overridden by a NoCommon attribute. 4876 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4877 return true; 4878 4879 // C11 6.9.2/2: 4880 // A declaration of an identifier for an object that has file scope without 4881 // an initializer, and without a storage-class specifier or with the 4882 // storage-class specifier static, constitutes a tentative definition. 4883 if (D->getInit() || D->hasExternalStorage()) 4884 return true; 4885 4886 // A variable cannot be both common and exist in a section. 4887 if (D->hasAttr<SectionAttr>()) 4888 return true; 4889 4890 // A variable cannot be both common and exist in a section. 4891 // We don't try to determine which is the right section in the front-end. 4892 // If no specialized section name is applicable, it will resort to default. 4893 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4894 D->hasAttr<PragmaClangDataSectionAttr>() || 4895 D->hasAttr<PragmaClangRelroSectionAttr>() || 4896 D->hasAttr<PragmaClangRodataSectionAttr>()) 4897 return true; 4898 4899 // Thread local vars aren't considered common linkage. 4900 if (D->getTLSKind()) 4901 return true; 4902 4903 // Tentative definitions marked with WeakImportAttr are true definitions. 4904 if (D->hasAttr<WeakImportAttr>()) 4905 return true; 4906 4907 // A variable cannot be both common and exist in a comdat. 4908 if (shouldBeInCOMDAT(CGM, *D)) 4909 return true; 4910 4911 // Declarations with a required alignment do not have common linkage in MSVC 4912 // mode. 4913 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4914 if (D->hasAttr<AlignedAttr>()) 4915 return true; 4916 QualType VarType = D->getType(); 4917 if (Context.isAlignmentRequired(VarType)) 4918 return true; 4919 4920 if (const auto *RT = VarType->getAs<RecordType>()) { 4921 const RecordDecl *RD = RT->getDecl(); 4922 for (const FieldDecl *FD : RD->fields()) { 4923 if (FD->isBitField()) 4924 continue; 4925 if (FD->hasAttr<AlignedAttr>()) 4926 return true; 4927 if (Context.isAlignmentRequired(FD->getType())) 4928 return true; 4929 } 4930 } 4931 } 4932 4933 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4934 // common symbols, so symbols with greater alignment requirements cannot be 4935 // common. 4936 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4937 // alignments for common symbols via the aligncomm directive, so this 4938 // restriction only applies to MSVC environments. 4939 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4940 Context.getTypeAlignIfKnown(D->getType()) > 4941 Context.toBits(CharUnits::fromQuantity(32))) 4942 return true; 4943 4944 return false; 4945 } 4946 4947 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4948 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4949 if (Linkage == GVA_Internal) 4950 return llvm::Function::InternalLinkage; 4951 4952 if (D->hasAttr<WeakAttr>()) 4953 return llvm::GlobalVariable::WeakAnyLinkage; 4954 4955 if (const auto *FD = D->getAsFunction()) 4956 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4957 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4958 4959 // We are guaranteed to have a strong definition somewhere else, 4960 // so we can use available_externally linkage. 4961 if (Linkage == GVA_AvailableExternally) 4962 return llvm::GlobalValue::AvailableExternallyLinkage; 4963 4964 // Note that Apple's kernel linker doesn't support symbol 4965 // coalescing, so we need to avoid linkonce and weak linkages there. 4966 // Normally, this means we just map to internal, but for explicit 4967 // instantiations we'll map to external. 4968 4969 // In C++, the compiler has to emit a definition in every translation unit 4970 // that references the function. We should use linkonce_odr because 4971 // a) if all references in this translation unit are optimized away, we 4972 // don't need to codegen it. b) if the function persists, it needs to be 4973 // merged with other definitions. c) C++ has the ODR, so we know the 4974 // definition is dependable. 4975 if (Linkage == GVA_DiscardableODR) 4976 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4977 : llvm::Function::InternalLinkage; 4978 4979 // An explicit instantiation of a template has weak linkage, since 4980 // explicit instantiations can occur in multiple translation units 4981 // and must all be equivalent. However, we are not allowed to 4982 // throw away these explicit instantiations. 4983 // 4984 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4985 // so say that CUDA templates are either external (for kernels) or internal. 4986 // This lets llvm perform aggressive inter-procedural optimizations. For 4987 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4988 // therefore we need to follow the normal linkage paradigm. 4989 if (Linkage == GVA_StrongODR) { 4990 if (getLangOpts().AppleKext) 4991 return llvm::Function::ExternalLinkage; 4992 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4993 !getLangOpts().GPURelocatableDeviceCode) 4994 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4995 : llvm::Function::InternalLinkage; 4996 return llvm::Function::WeakODRLinkage; 4997 } 4998 4999 // C++ doesn't have tentative definitions and thus cannot have common 5000 // linkage. 5001 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5002 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5003 CodeGenOpts.NoCommon)) 5004 return llvm::GlobalVariable::CommonLinkage; 5005 5006 // selectany symbols are externally visible, so use weak instead of 5007 // linkonce. MSVC optimizes away references to const selectany globals, so 5008 // all definitions should be the same and ODR linkage should be used. 5009 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5010 if (D->hasAttr<SelectAnyAttr>()) 5011 return llvm::GlobalVariable::WeakODRLinkage; 5012 5013 // Otherwise, we have strong external linkage. 5014 assert(Linkage == GVA_StrongExternal); 5015 return llvm::GlobalVariable::ExternalLinkage; 5016 } 5017 5018 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 5019 const VarDecl *VD, bool IsConstant) { 5020 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5021 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 5022 } 5023 5024 /// Replace the uses of a function that was declared with a non-proto type. 5025 /// We want to silently drop extra arguments from call sites 5026 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5027 llvm::Function *newFn) { 5028 // Fast path. 5029 if (old->use_empty()) return; 5030 5031 llvm::Type *newRetTy = newFn->getReturnType(); 5032 SmallVector<llvm::Value*, 4> newArgs; 5033 5034 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5035 ui != ue; ) { 5036 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5037 llvm::User *user = use->getUser(); 5038 5039 // Recognize and replace uses of bitcasts. Most calls to 5040 // unprototyped functions will use bitcasts. 5041 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5042 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5043 replaceUsesOfNonProtoConstant(bitcast, newFn); 5044 continue; 5045 } 5046 5047 // Recognize calls to the function. 5048 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5049 if (!callSite) continue; 5050 if (!callSite->isCallee(&*use)) 5051 continue; 5052 5053 // If the return types don't match exactly, then we can't 5054 // transform this call unless it's dead. 5055 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5056 continue; 5057 5058 // Get the call site's attribute list. 5059 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5060 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5061 5062 // If the function was passed too few arguments, don't transform. 5063 unsigned newNumArgs = newFn->arg_size(); 5064 if (callSite->arg_size() < newNumArgs) 5065 continue; 5066 5067 // If extra arguments were passed, we silently drop them. 5068 // If any of the types mismatch, we don't transform. 5069 unsigned argNo = 0; 5070 bool dontTransform = false; 5071 for (llvm::Argument &A : newFn->args()) { 5072 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5073 dontTransform = true; 5074 break; 5075 } 5076 5077 // Add any parameter attributes. 5078 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5079 argNo++; 5080 } 5081 if (dontTransform) 5082 continue; 5083 5084 // Okay, we can transform this. Create the new call instruction and copy 5085 // over the required information. 5086 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5087 5088 // Copy over any operand bundles. 5089 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5090 callSite->getOperandBundlesAsDefs(newBundles); 5091 5092 llvm::CallBase *newCall; 5093 if (isa<llvm::CallInst>(callSite)) { 5094 newCall = 5095 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5096 } else { 5097 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5098 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5099 oldInvoke->getUnwindDest(), newArgs, 5100 newBundles, "", callSite); 5101 } 5102 newArgs.clear(); // for the next iteration 5103 5104 if (!newCall->getType()->isVoidTy()) 5105 newCall->takeName(callSite); 5106 newCall->setAttributes( 5107 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5108 oldAttrs.getRetAttrs(), newArgAttrs)); 5109 newCall->setCallingConv(callSite->getCallingConv()); 5110 5111 // Finally, remove the old call, replacing any uses with the new one. 5112 if (!callSite->use_empty()) 5113 callSite->replaceAllUsesWith(newCall); 5114 5115 // Copy debug location attached to CI. 5116 if (callSite->getDebugLoc()) 5117 newCall->setDebugLoc(callSite->getDebugLoc()); 5118 5119 callSite->eraseFromParent(); 5120 } 5121 } 5122 5123 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5124 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5125 /// existing call uses of the old function in the module, this adjusts them to 5126 /// call the new function directly. 5127 /// 5128 /// This is not just a cleanup: the always_inline pass requires direct calls to 5129 /// functions to be able to inline them. If there is a bitcast in the way, it 5130 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5131 /// run at -O0. 5132 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5133 llvm::Function *NewFn) { 5134 // If we're redefining a global as a function, don't transform it. 5135 if (!isa<llvm::Function>(Old)) return; 5136 5137 replaceUsesOfNonProtoConstant(Old, NewFn); 5138 } 5139 5140 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5141 auto DK = VD->isThisDeclarationADefinition(); 5142 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5143 return; 5144 5145 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5146 // If we have a definition, this might be a deferred decl. If the 5147 // instantiation is explicit, make sure we emit it at the end. 5148 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5149 GetAddrOfGlobalVar(VD); 5150 5151 EmitTopLevelDecl(VD); 5152 } 5153 5154 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5155 llvm::GlobalValue *GV) { 5156 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5157 5158 // Compute the function info and LLVM type. 5159 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5160 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5161 5162 // Get or create the prototype for the function. 5163 if (!GV || (GV->getValueType() != Ty)) 5164 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5165 /*DontDefer=*/true, 5166 ForDefinition)); 5167 5168 // Already emitted. 5169 if (!GV->isDeclaration()) 5170 return; 5171 5172 // We need to set linkage and visibility on the function before 5173 // generating code for it because various parts of IR generation 5174 // want to propagate this information down (e.g. to local static 5175 // declarations). 5176 auto *Fn = cast<llvm::Function>(GV); 5177 setFunctionLinkage(GD, Fn); 5178 5179 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5180 setGVProperties(Fn, GD); 5181 5182 MaybeHandleStaticInExternC(D, Fn); 5183 5184 maybeSetTrivialComdat(*D, *Fn); 5185 5186 // Set CodeGen attributes that represent floating point environment. 5187 setLLVMFunctionFEnvAttributes(D, Fn); 5188 5189 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5190 5191 setNonAliasAttributes(GD, Fn); 5192 SetLLVMFunctionAttributesForDefinition(D, Fn); 5193 5194 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5195 AddGlobalCtor(Fn, CA->getPriority()); 5196 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5197 AddGlobalDtor(Fn, DA->getPriority(), true); 5198 if (D->hasAttr<AnnotateAttr>()) 5199 AddGlobalAnnotations(D, Fn); 5200 } 5201 5202 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5203 const auto *D = cast<ValueDecl>(GD.getDecl()); 5204 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5205 assert(AA && "Not an alias?"); 5206 5207 StringRef MangledName = getMangledName(GD); 5208 5209 if (AA->getAliasee() == MangledName) { 5210 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5211 return; 5212 } 5213 5214 // If there is a definition in the module, then it wins over the alias. 5215 // This is dubious, but allow it to be safe. Just ignore the alias. 5216 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5217 if (Entry && !Entry->isDeclaration()) 5218 return; 5219 5220 Aliases.push_back(GD); 5221 5222 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5223 5224 // Create a reference to the named value. This ensures that it is emitted 5225 // if a deferred decl. 5226 llvm::Constant *Aliasee; 5227 llvm::GlobalValue::LinkageTypes LT; 5228 if (isa<llvm::FunctionType>(DeclTy)) { 5229 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5230 /*ForVTable=*/false); 5231 LT = getFunctionLinkage(GD); 5232 } else { 5233 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5234 /*D=*/nullptr); 5235 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5236 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5237 else 5238 LT = getFunctionLinkage(GD); 5239 } 5240 5241 // Create the new alias itself, but don't set a name yet. 5242 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5243 auto *GA = 5244 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5245 5246 if (Entry) { 5247 if (GA->getAliasee() == Entry) { 5248 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5249 return; 5250 } 5251 5252 assert(Entry->isDeclaration()); 5253 5254 // If there is a declaration in the module, then we had an extern followed 5255 // by the alias, as in: 5256 // extern int test6(); 5257 // ... 5258 // int test6() __attribute__((alias("test7"))); 5259 // 5260 // Remove it and replace uses of it with the alias. 5261 GA->takeName(Entry); 5262 5263 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5264 Entry->getType())); 5265 Entry->eraseFromParent(); 5266 } else { 5267 GA->setName(MangledName); 5268 } 5269 5270 // Set attributes which are particular to an alias; this is a 5271 // specialization of the attributes which may be set on a global 5272 // variable/function. 5273 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5274 D->isWeakImported()) { 5275 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5276 } 5277 5278 if (const auto *VD = dyn_cast<VarDecl>(D)) 5279 if (VD->getTLSKind()) 5280 setTLSMode(GA, *VD); 5281 5282 SetCommonAttributes(GD, GA); 5283 5284 // Emit global alias debug information. 5285 if (isa<VarDecl>(D)) 5286 if (CGDebugInfo *DI = getModuleDebugInfo()) 5287 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()), GD); 5288 } 5289 5290 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5291 const auto *D = cast<ValueDecl>(GD.getDecl()); 5292 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5293 assert(IFA && "Not an ifunc?"); 5294 5295 StringRef MangledName = getMangledName(GD); 5296 5297 if (IFA->getResolver() == MangledName) { 5298 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5299 return; 5300 } 5301 5302 // Report an error if some definition overrides ifunc. 5303 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5304 if (Entry && !Entry->isDeclaration()) { 5305 GlobalDecl OtherGD; 5306 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5307 DiagnosedConflictingDefinitions.insert(GD).second) { 5308 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5309 << MangledName; 5310 Diags.Report(OtherGD.getDecl()->getLocation(), 5311 diag::note_previous_definition); 5312 } 5313 return; 5314 } 5315 5316 Aliases.push_back(GD); 5317 5318 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5319 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5320 llvm::Constant *Resolver = 5321 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5322 /*ForVTable=*/false); 5323 llvm::GlobalIFunc *GIF = 5324 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5325 "", Resolver, &getModule()); 5326 if (Entry) { 5327 if (GIF->getResolver() == Entry) { 5328 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5329 return; 5330 } 5331 assert(Entry->isDeclaration()); 5332 5333 // If there is a declaration in the module, then we had an extern followed 5334 // by the ifunc, as in: 5335 // extern int test(); 5336 // ... 5337 // int test() __attribute__((ifunc("resolver"))); 5338 // 5339 // Remove it and replace uses of it with the ifunc. 5340 GIF->takeName(Entry); 5341 5342 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5343 Entry->getType())); 5344 Entry->eraseFromParent(); 5345 } else 5346 GIF->setName(MangledName); 5347 5348 SetCommonAttributes(GD, GIF); 5349 } 5350 5351 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5352 ArrayRef<llvm::Type*> Tys) { 5353 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5354 Tys); 5355 } 5356 5357 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5358 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5359 const StringLiteral *Literal, bool TargetIsLSB, 5360 bool &IsUTF16, unsigned &StringLength) { 5361 StringRef String = Literal->getString(); 5362 unsigned NumBytes = String.size(); 5363 5364 // Check for simple case. 5365 if (!Literal->containsNonAsciiOrNull()) { 5366 StringLength = NumBytes; 5367 return *Map.insert(std::make_pair(String, nullptr)).first; 5368 } 5369 5370 // Otherwise, convert the UTF8 literals into a string of shorts. 5371 IsUTF16 = true; 5372 5373 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5374 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5375 llvm::UTF16 *ToPtr = &ToBuf[0]; 5376 5377 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5378 ToPtr + NumBytes, llvm::strictConversion); 5379 5380 // ConvertUTF8toUTF16 returns the length in ToPtr. 5381 StringLength = ToPtr - &ToBuf[0]; 5382 5383 // Add an explicit null. 5384 *ToPtr = 0; 5385 return *Map.insert(std::make_pair( 5386 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5387 (StringLength + 1) * 2), 5388 nullptr)).first; 5389 } 5390 5391 ConstantAddress 5392 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5393 unsigned StringLength = 0; 5394 bool isUTF16 = false; 5395 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5396 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5397 getDataLayout().isLittleEndian(), isUTF16, 5398 StringLength); 5399 5400 if (auto *C = Entry.second) 5401 return ConstantAddress( 5402 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5403 5404 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5405 llvm::Constant *Zeros[] = { Zero, Zero }; 5406 5407 const ASTContext &Context = getContext(); 5408 const llvm::Triple &Triple = getTriple(); 5409 5410 const auto CFRuntime = getLangOpts().CFRuntime; 5411 const bool IsSwiftABI = 5412 static_cast<unsigned>(CFRuntime) >= 5413 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5414 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5415 5416 // If we don't already have it, get __CFConstantStringClassReference. 5417 if (!CFConstantStringClassRef) { 5418 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5419 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5420 Ty = llvm::ArrayType::get(Ty, 0); 5421 5422 switch (CFRuntime) { 5423 default: break; 5424 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5425 case LangOptions::CoreFoundationABI::Swift5_0: 5426 CFConstantStringClassName = 5427 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5428 : "$s10Foundation19_NSCFConstantStringCN"; 5429 Ty = IntPtrTy; 5430 break; 5431 case LangOptions::CoreFoundationABI::Swift4_2: 5432 CFConstantStringClassName = 5433 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5434 : "$S10Foundation19_NSCFConstantStringCN"; 5435 Ty = IntPtrTy; 5436 break; 5437 case LangOptions::CoreFoundationABI::Swift4_1: 5438 CFConstantStringClassName = 5439 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5440 : "__T010Foundation19_NSCFConstantStringCN"; 5441 Ty = IntPtrTy; 5442 break; 5443 } 5444 5445 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5446 5447 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5448 llvm::GlobalValue *GV = nullptr; 5449 5450 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5451 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5452 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5453 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5454 5455 const VarDecl *VD = nullptr; 5456 for (const auto *Result : DC->lookup(&II)) 5457 if ((VD = dyn_cast<VarDecl>(Result))) 5458 break; 5459 5460 if (Triple.isOSBinFormatELF()) { 5461 if (!VD) 5462 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5463 } else { 5464 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5465 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5466 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5467 else 5468 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5469 } 5470 5471 setDSOLocal(GV); 5472 } 5473 } 5474 5475 // Decay array -> ptr 5476 CFConstantStringClassRef = 5477 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5478 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5479 } 5480 5481 QualType CFTy = Context.getCFConstantStringType(); 5482 5483 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5484 5485 ConstantInitBuilder Builder(*this); 5486 auto Fields = Builder.beginStruct(STy); 5487 5488 // Class pointer. 5489 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5490 5491 // Flags. 5492 if (IsSwiftABI) { 5493 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5494 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5495 } else { 5496 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5497 } 5498 5499 // String pointer. 5500 llvm::Constant *C = nullptr; 5501 if (isUTF16) { 5502 auto Arr = llvm::makeArrayRef( 5503 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5504 Entry.first().size() / 2); 5505 C = llvm::ConstantDataArray::get(VMContext, Arr); 5506 } else { 5507 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5508 } 5509 5510 // Note: -fwritable-strings doesn't make the backing store strings of 5511 // CFStrings writable. (See <rdar://problem/10657500>) 5512 auto *GV = 5513 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5514 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5515 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5516 // Don't enforce the target's minimum global alignment, since the only use 5517 // of the string is via this class initializer. 5518 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5519 : Context.getTypeAlignInChars(Context.CharTy); 5520 GV->setAlignment(Align.getAsAlign()); 5521 5522 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5523 // Without it LLVM can merge the string with a non unnamed_addr one during 5524 // LTO. Doing that changes the section it ends in, which surprises ld64. 5525 if (Triple.isOSBinFormatMachO()) 5526 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5527 : "__TEXT,__cstring,cstring_literals"); 5528 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5529 // the static linker to adjust permissions to read-only later on. 5530 else if (Triple.isOSBinFormatELF()) 5531 GV->setSection(".rodata"); 5532 5533 // String. 5534 llvm::Constant *Str = 5535 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5536 5537 if (isUTF16) 5538 // Cast the UTF16 string to the correct type. 5539 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5540 Fields.add(Str); 5541 5542 // String length. 5543 llvm::IntegerType *LengthTy = 5544 llvm::IntegerType::get(getModule().getContext(), 5545 Context.getTargetInfo().getLongWidth()); 5546 if (IsSwiftABI) { 5547 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5548 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5549 LengthTy = Int32Ty; 5550 else 5551 LengthTy = IntPtrTy; 5552 } 5553 Fields.addInt(LengthTy, StringLength); 5554 5555 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5556 // properly aligned on 32-bit platforms. 5557 CharUnits Alignment = 5558 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5559 5560 // The struct. 5561 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5562 /*isConstant=*/false, 5563 llvm::GlobalVariable::PrivateLinkage); 5564 GV->addAttribute("objc_arc_inert"); 5565 switch (Triple.getObjectFormat()) { 5566 case llvm::Triple::UnknownObjectFormat: 5567 llvm_unreachable("unknown file format"); 5568 case llvm::Triple::DXContainer: 5569 case llvm::Triple::GOFF: 5570 case llvm::Triple::SPIRV: 5571 case llvm::Triple::XCOFF: 5572 llvm_unreachable("unimplemented"); 5573 case llvm::Triple::COFF: 5574 case llvm::Triple::ELF: 5575 case llvm::Triple::Wasm: 5576 GV->setSection("cfstring"); 5577 break; 5578 case llvm::Triple::MachO: 5579 GV->setSection("__DATA,__cfstring"); 5580 break; 5581 } 5582 Entry.second = GV; 5583 5584 return ConstantAddress(GV, GV->getValueType(), Alignment); 5585 } 5586 5587 bool CodeGenModule::getExpressionLocationsEnabled() const { 5588 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5589 } 5590 5591 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5592 if (ObjCFastEnumerationStateType.isNull()) { 5593 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5594 D->startDefinition(); 5595 5596 QualType FieldTypes[] = { 5597 Context.UnsignedLongTy, 5598 Context.getPointerType(Context.getObjCIdType()), 5599 Context.getPointerType(Context.UnsignedLongTy), 5600 Context.getConstantArrayType(Context.UnsignedLongTy, 5601 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5602 }; 5603 5604 for (size_t i = 0; i < 4; ++i) { 5605 FieldDecl *Field = FieldDecl::Create(Context, 5606 D, 5607 SourceLocation(), 5608 SourceLocation(), nullptr, 5609 FieldTypes[i], /*TInfo=*/nullptr, 5610 /*BitWidth=*/nullptr, 5611 /*Mutable=*/false, 5612 ICIS_NoInit); 5613 Field->setAccess(AS_public); 5614 D->addDecl(Field); 5615 } 5616 5617 D->completeDefinition(); 5618 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5619 } 5620 5621 return ObjCFastEnumerationStateType; 5622 } 5623 5624 llvm::Constant * 5625 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5626 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5627 5628 // Don't emit it as the address of the string, emit the string data itself 5629 // as an inline array. 5630 if (E->getCharByteWidth() == 1) { 5631 SmallString<64> Str(E->getString()); 5632 5633 // Resize the string to the right size, which is indicated by its type. 5634 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5635 Str.resize(CAT->getSize().getZExtValue()); 5636 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5637 } 5638 5639 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5640 llvm::Type *ElemTy = AType->getElementType(); 5641 unsigned NumElements = AType->getNumElements(); 5642 5643 // Wide strings have either 2-byte or 4-byte elements. 5644 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5645 SmallVector<uint16_t, 32> Elements; 5646 Elements.reserve(NumElements); 5647 5648 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5649 Elements.push_back(E->getCodeUnit(i)); 5650 Elements.resize(NumElements); 5651 return llvm::ConstantDataArray::get(VMContext, Elements); 5652 } 5653 5654 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5655 SmallVector<uint32_t, 32> Elements; 5656 Elements.reserve(NumElements); 5657 5658 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5659 Elements.push_back(E->getCodeUnit(i)); 5660 Elements.resize(NumElements); 5661 return llvm::ConstantDataArray::get(VMContext, Elements); 5662 } 5663 5664 static llvm::GlobalVariable * 5665 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5666 CodeGenModule &CGM, StringRef GlobalName, 5667 CharUnits Alignment) { 5668 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5669 CGM.GetGlobalConstantAddressSpace()); 5670 5671 llvm::Module &M = CGM.getModule(); 5672 // Create a global variable for this string 5673 auto *GV = new llvm::GlobalVariable( 5674 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5675 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5676 GV->setAlignment(Alignment.getAsAlign()); 5677 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5678 if (GV->isWeakForLinker()) { 5679 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5680 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5681 } 5682 CGM.setDSOLocal(GV); 5683 5684 return GV; 5685 } 5686 5687 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5688 /// constant array for the given string literal. 5689 ConstantAddress 5690 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5691 StringRef Name) { 5692 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5693 5694 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5695 llvm::GlobalVariable **Entry = nullptr; 5696 if (!LangOpts.WritableStrings) { 5697 Entry = &ConstantStringMap[C]; 5698 if (auto GV = *Entry) { 5699 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5700 GV->setAlignment(Alignment.getAsAlign()); 5701 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5702 GV->getValueType(), Alignment); 5703 } 5704 } 5705 5706 SmallString<256> MangledNameBuffer; 5707 StringRef GlobalVariableName; 5708 llvm::GlobalValue::LinkageTypes LT; 5709 5710 // Mangle the string literal if that's how the ABI merges duplicate strings. 5711 // Don't do it if they are writable, since we don't want writes in one TU to 5712 // affect strings in another. 5713 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5714 !LangOpts.WritableStrings) { 5715 llvm::raw_svector_ostream Out(MangledNameBuffer); 5716 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5717 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5718 GlobalVariableName = MangledNameBuffer; 5719 } else { 5720 LT = llvm::GlobalValue::PrivateLinkage; 5721 GlobalVariableName = Name; 5722 } 5723 5724 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5725 5726 CGDebugInfo *DI = getModuleDebugInfo(); 5727 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 5728 DI->AddStringLiteralDebugInfo(GV, S); 5729 5730 if (Entry) 5731 *Entry = GV; 5732 5733 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 5734 5735 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5736 GV->getValueType(), Alignment); 5737 } 5738 5739 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5740 /// array for the given ObjCEncodeExpr node. 5741 ConstantAddress 5742 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5743 std::string Str; 5744 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5745 5746 return GetAddrOfConstantCString(Str); 5747 } 5748 5749 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5750 /// the literal and a terminating '\0' character. 5751 /// The result has pointer to array type. 5752 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5753 const std::string &Str, const char *GlobalName) { 5754 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5755 CharUnits Alignment = 5756 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5757 5758 llvm::Constant *C = 5759 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5760 5761 // Don't share any string literals if strings aren't constant. 5762 llvm::GlobalVariable **Entry = nullptr; 5763 if (!LangOpts.WritableStrings) { 5764 Entry = &ConstantStringMap[C]; 5765 if (auto GV = *Entry) { 5766 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5767 GV->setAlignment(Alignment.getAsAlign()); 5768 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5769 GV->getValueType(), Alignment); 5770 } 5771 } 5772 5773 // Get the default prefix if a name wasn't specified. 5774 if (!GlobalName) 5775 GlobalName = ".str"; 5776 // Create a global variable for this. 5777 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5778 GlobalName, Alignment); 5779 if (Entry) 5780 *Entry = GV; 5781 5782 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5783 GV->getValueType(), Alignment); 5784 } 5785 5786 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5787 const MaterializeTemporaryExpr *E, const Expr *Init) { 5788 assert((E->getStorageDuration() == SD_Static || 5789 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5790 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5791 5792 // If we're not materializing a subobject of the temporary, keep the 5793 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5794 QualType MaterializedType = Init->getType(); 5795 if (Init == E->getSubExpr()) 5796 MaterializedType = E->getType(); 5797 5798 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5799 5800 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5801 if (!InsertResult.second) { 5802 // We've seen this before: either we already created it or we're in the 5803 // process of doing so. 5804 if (!InsertResult.first->second) { 5805 // We recursively re-entered this function, probably during emission of 5806 // the initializer. Create a placeholder. We'll clean this up in the 5807 // outer call, at the end of this function. 5808 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5809 InsertResult.first->second = new llvm::GlobalVariable( 5810 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5811 nullptr); 5812 } 5813 return ConstantAddress(InsertResult.first->second, 5814 llvm::cast<llvm::GlobalVariable>( 5815 InsertResult.first->second->stripPointerCasts()) 5816 ->getValueType(), 5817 Align); 5818 } 5819 5820 // FIXME: If an externally-visible declaration extends multiple temporaries, 5821 // we need to give each temporary the same name in every translation unit (and 5822 // we also need to make the temporaries externally-visible). 5823 SmallString<256> Name; 5824 llvm::raw_svector_ostream Out(Name); 5825 getCXXABI().getMangleContext().mangleReferenceTemporary( 5826 VD, E->getManglingNumber(), Out); 5827 5828 APValue *Value = nullptr; 5829 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5830 // If the initializer of the extending declaration is a constant 5831 // initializer, we should have a cached constant initializer for this 5832 // temporary. Note that this might have a different value from the value 5833 // computed by evaluating the initializer if the surrounding constant 5834 // expression modifies the temporary. 5835 Value = E->getOrCreateValue(false); 5836 } 5837 5838 // Try evaluating it now, it might have a constant initializer. 5839 Expr::EvalResult EvalResult; 5840 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5841 !EvalResult.hasSideEffects()) 5842 Value = &EvalResult.Val; 5843 5844 LangAS AddrSpace = 5845 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5846 5847 Optional<ConstantEmitter> emitter; 5848 llvm::Constant *InitialValue = nullptr; 5849 bool Constant = false; 5850 llvm::Type *Type; 5851 if (Value) { 5852 // The temporary has a constant initializer, use it. 5853 emitter.emplace(*this); 5854 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5855 MaterializedType); 5856 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5857 Type = InitialValue->getType(); 5858 } else { 5859 // No initializer, the initialization will be provided when we 5860 // initialize the declaration which performed lifetime extension. 5861 Type = getTypes().ConvertTypeForMem(MaterializedType); 5862 } 5863 5864 // Create a global variable for this lifetime-extended temporary. 5865 llvm::GlobalValue::LinkageTypes Linkage = 5866 getLLVMLinkageVarDefinition(VD, Constant); 5867 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5868 const VarDecl *InitVD; 5869 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5870 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5871 // Temporaries defined inside a class get linkonce_odr linkage because the 5872 // class can be defined in multiple translation units. 5873 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5874 } else { 5875 // There is no need for this temporary to have external linkage if the 5876 // VarDecl has external linkage. 5877 Linkage = llvm::GlobalVariable::InternalLinkage; 5878 } 5879 } 5880 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5881 auto *GV = new llvm::GlobalVariable( 5882 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5883 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5884 if (emitter) emitter->finalize(GV); 5885 setGVProperties(GV, VD); 5886 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 5887 // The reference temporary should never be dllexport. 5888 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5889 GV->setAlignment(Align.getAsAlign()); 5890 if (supportsCOMDAT() && GV->isWeakForLinker()) 5891 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5892 if (VD->getTLSKind()) 5893 setTLSMode(GV, *VD); 5894 llvm::Constant *CV = GV; 5895 if (AddrSpace != LangAS::Default) 5896 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5897 *this, GV, AddrSpace, LangAS::Default, 5898 Type->getPointerTo( 5899 getContext().getTargetAddressSpace(LangAS::Default))); 5900 5901 // Update the map with the new temporary. If we created a placeholder above, 5902 // replace it with the new global now. 5903 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5904 if (Entry) { 5905 Entry->replaceAllUsesWith( 5906 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5907 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5908 } 5909 Entry = CV; 5910 5911 return ConstantAddress(CV, Type, Align); 5912 } 5913 5914 /// EmitObjCPropertyImplementations - Emit information for synthesized 5915 /// properties for an implementation. 5916 void CodeGenModule::EmitObjCPropertyImplementations(const 5917 ObjCImplementationDecl *D) { 5918 for (const auto *PID : D->property_impls()) { 5919 // Dynamic is just for type-checking. 5920 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5921 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5922 5923 // Determine which methods need to be implemented, some may have 5924 // been overridden. Note that ::isPropertyAccessor is not the method 5925 // we want, that just indicates if the decl came from a 5926 // property. What we want to know is if the method is defined in 5927 // this implementation. 5928 auto *Getter = PID->getGetterMethodDecl(); 5929 if (!Getter || Getter->isSynthesizedAccessorStub()) 5930 CodeGenFunction(*this).GenerateObjCGetter( 5931 const_cast<ObjCImplementationDecl *>(D), PID); 5932 auto *Setter = PID->getSetterMethodDecl(); 5933 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5934 CodeGenFunction(*this).GenerateObjCSetter( 5935 const_cast<ObjCImplementationDecl *>(D), PID); 5936 } 5937 } 5938 } 5939 5940 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5941 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5942 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5943 ivar; ivar = ivar->getNextIvar()) 5944 if (ivar->getType().isDestructedType()) 5945 return true; 5946 5947 return false; 5948 } 5949 5950 static bool AllTrivialInitializers(CodeGenModule &CGM, 5951 ObjCImplementationDecl *D) { 5952 CodeGenFunction CGF(CGM); 5953 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5954 E = D->init_end(); B != E; ++B) { 5955 CXXCtorInitializer *CtorInitExp = *B; 5956 Expr *Init = CtorInitExp->getInit(); 5957 if (!CGF.isTrivialInitializer(Init)) 5958 return false; 5959 } 5960 return true; 5961 } 5962 5963 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5964 /// for an implementation. 5965 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5966 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5967 if (needsDestructMethod(D)) { 5968 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5969 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5970 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5971 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5972 getContext().VoidTy, nullptr, D, 5973 /*isInstance=*/true, /*isVariadic=*/false, 5974 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5975 /*isImplicitlyDeclared=*/true, 5976 /*isDefined=*/false, ObjCMethodDecl::Required); 5977 D->addInstanceMethod(DTORMethod); 5978 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5979 D->setHasDestructors(true); 5980 } 5981 5982 // If the implementation doesn't have any ivar initializers, we don't need 5983 // a .cxx_construct. 5984 if (D->getNumIvarInitializers() == 0 || 5985 AllTrivialInitializers(*this, D)) 5986 return; 5987 5988 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5989 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5990 // The constructor returns 'self'. 5991 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5992 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5993 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5994 /*isVariadic=*/false, 5995 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5996 /*isImplicitlyDeclared=*/true, 5997 /*isDefined=*/false, ObjCMethodDecl::Required); 5998 D->addInstanceMethod(CTORMethod); 5999 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6000 D->setHasNonZeroConstructors(true); 6001 } 6002 6003 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6004 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6005 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 6006 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6007 ErrorUnsupported(LSD, "linkage spec"); 6008 return; 6009 } 6010 6011 EmitDeclContext(LSD); 6012 } 6013 6014 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6015 for (auto *I : DC->decls()) { 6016 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6017 // are themselves considered "top-level", so EmitTopLevelDecl on an 6018 // ObjCImplDecl does not recursively visit them. We need to do that in 6019 // case they're nested inside another construct (LinkageSpecDecl / 6020 // ExportDecl) that does stop them from being considered "top-level". 6021 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6022 for (auto *M : OID->methods()) 6023 EmitTopLevelDecl(M); 6024 } 6025 6026 EmitTopLevelDecl(I); 6027 } 6028 } 6029 6030 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6031 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6032 // Ignore dependent declarations. 6033 if (D->isTemplated()) 6034 return; 6035 6036 // Consteval function shouldn't be emitted. 6037 if (auto *FD = dyn_cast<FunctionDecl>(D)) 6038 if (FD->isConsteval()) 6039 return; 6040 6041 switch (D->getKind()) { 6042 case Decl::CXXConversion: 6043 case Decl::CXXMethod: 6044 case Decl::Function: 6045 EmitGlobal(cast<FunctionDecl>(D)); 6046 // Always provide some coverage mapping 6047 // even for the functions that aren't emitted. 6048 AddDeferredUnusedCoverageMapping(D); 6049 break; 6050 6051 case Decl::CXXDeductionGuide: 6052 // Function-like, but does not result in code emission. 6053 break; 6054 6055 case Decl::Var: 6056 case Decl::Decomposition: 6057 case Decl::VarTemplateSpecialization: 6058 EmitGlobal(cast<VarDecl>(D)); 6059 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6060 for (auto *B : DD->bindings()) 6061 if (auto *HD = B->getHoldingVar()) 6062 EmitGlobal(HD); 6063 break; 6064 6065 // Indirect fields from global anonymous structs and unions can be 6066 // ignored; only the actual variable requires IR gen support. 6067 case Decl::IndirectField: 6068 break; 6069 6070 // C++ Decls 6071 case Decl::Namespace: 6072 EmitDeclContext(cast<NamespaceDecl>(D)); 6073 break; 6074 case Decl::ClassTemplateSpecialization: { 6075 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6076 if (CGDebugInfo *DI = getModuleDebugInfo()) 6077 if (Spec->getSpecializationKind() == 6078 TSK_ExplicitInstantiationDefinition && 6079 Spec->hasDefinition()) 6080 DI->completeTemplateDefinition(*Spec); 6081 } LLVM_FALLTHROUGH; 6082 case Decl::CXXRecord: { 6083 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6084 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6085 if (CRD->hasDefinition()) 6086 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6087 if (auto *ES = D->getASTContext().getExternalSource()) 6088 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6089 DI->completeUnusedClass(*CRD); 6090 } 6091 // Emit any static data members, they may be definitions. 6092 for (auto *I : CRD->decls()) 6093 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6094 EmitTopLevelDecl(I); 6095 break; 6096 } 6097 // No code generation needed. 6098 case Decl::UsingShadow: 6099 case Decl::ClassTemplate: 6100 case Decl::VarTemplate: 6101 case Decl::Concept: 6102 case Decl::VarTemplatePartialSpecialization: 6103 case Decl::FunctionTemplate: 6104 case Decl::TypeAliasTemplate: 6105 case Decl::Block: 6106 case Decl::Empty: 6107 case Decl::Binding: 6108 break; 6109 case Decl::Using: // using X; [C++] 6110 if (CGDebugInfo *DI = getModuleDebugInfo()) 6111 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6112 break; 6113 case Decl::UsingEnum: // using enum X; [C++] 6114 if (CGDebugInfo *DI = getModuleDebugInfo()) 6115 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6116 break; 6117 case Decl::NamespaceAlias: 6118 if (CGDebugInfo *DI = getModuleDebugInfo()) 6119 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6120 break; 6121 case Decl::UsingDirective: // using namespace X; [C++] 6122 if (CGDebugInfo *DI = getModuleDebugInfo()) 6123 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6124 break; 6125 case Decl::CXXConstructor: 6126 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6127 break; 6128 case Decl::CXXDestructor: 6129 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6130 break; 6131 6132 case Decl::StaticAssert: 6133 // Nothing to do. 6134 break; 6135 6136 // Objective-C Decls 6137 6138 // Forward declarations, no (immediate) code generation. 6139 case Decl::ObjCInterface: 6140 case Decl::ObjCCategory: 6141 break; 6142 6143 case Decl::ObjCProtocol: { 6144 auto *Proto = cast<ObjCProtocolDecl>(D); 6145 if (Proto->isThisDeclarationADefinition()) 6146 ObjCRuntime->GenerateProtocol(Proto); 6147 break; 6148 } 6149 6150 case Decl::ObjCCategoryImpl: 6151 // Categories have properties but don't support synthesize so we 6152 // can ignore them here. 6153 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6154 break; 6155 6156 case Decl::ObjCImplementation: { 6157 auto *OMD = cast<ObjCImplementationDecl>(D); 6158 EmitObjCPropertyImplementations(OMD); 6159 EmitObjCIvarInitializations(OMD); 6160 ObjCRuntime->GenerateClass(OMD); 6161 // Emit global variable debug information. 6162 if (CGDebugInfo *DI = getModuleDebugInfo()) 6163 if (getCodeGenOpts().hasReducedDebugInfo()) 6164 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6165 OMD->getClassInterface()), OMD->getLocation()); 6166 break; 6167 } 6168 case Decl::ObjCMethod: { 6169 auto *OMD = cast<ObjCMethodDecl>(D); 6170 // If this is not a prototype, emit the body. 6171 if (OMD->getBody()) 6172 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6173 break; 6174 } 6175 case Decl::ObjCCompatibleAlias: 6176 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6177 break; 6178 6179 case Decl::PragmaComment: { 6180 const auto *PCD = cast<PragmaCommentDecl>(D); 6181 switch (PCD->getCommentKind()) { 6182 case PCK_Unknown: 6183 llvm_unreachable("unexpected pragma comment kind"); 6184 case PCK_Linker: 6185 AppendLinkerOptions(PCD->getArg()); 6186 break; 6187 case PCK_Lib: 6188 AddDependentLib(PCD->getArg()); 6189 break; 6190 case PCK_Compiler: 6191 case PCK_ExeStr: 6192 case PCK_User: 6193 break; // We ignore all of these. 6194 } 6195 break; 6196 } 6197 6198 case Decl::PragmaDetectMismatch: { 6199 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6200 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6201 break; 6202 } 6203 6204 case Decl::LinkageSpec: 6205 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6206 break; 6207 6208 case Decl::FileScopeAsm: { 6209 // File-scope asm is ignored during device-side CUDA compilation. 6210 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6211 break; 6212 // File-scope asm is ignored during device-side OpenMP compilation. 6213 if (LangOpts.OpenMPIsDevice) 6214 break; 6215 // File-scope asm is ignored during device-side SYCL compilation. 6216 if (LangOpts.SYCLIsDevice) 6217 break; 6218 auto *AD = cast<FileScopeAsmDecl>(D); 6219 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6220 break; 6221 } 6222 6223 case Decl::Import: { 6224 auto *Import = cast<ImportDecl>(D); 6225 6226 // If we've already imported this module, we're done. 6227 if (!ImportedModules.insert(Import->getImportedModule())) 6228 break; 6229 6230 // Emit debug information for direct imports. 6231 if (!Import->getImportedOwningModule()) { 6232 if (CGDebugInfo *DI = getModuleDebugInfo()) 6233 DI->EmitImportDecl(*Import); 6234 } 6235 6236 // Find all of the submodules and emit the module initializers. 6237 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6238 SmallVector<clang::Module *, 16> Stack; 6239 Visited.insert(Import->getImportedModule()); 6240 Stack.push_back(Import->getImportedModule()); 6241 6242 while (!Stack.empty()) { 6243 clang::Module *Mod = Stack.pop_back_val(); 6244 if (!EmittedModuleInitializers.insert(Mod).second) 6245 continue; 6246 6247 for (auto *D : Context.getModuleInitializers(Mod)) 6248 EmitTopLevelDecl(D); 6249 6250 // Visit the submodules of this module. 6251 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6252 SubEnd = Mod->submodule_end(); 6253 Sub != SubEnd; ++Sub) { 6254 // Skip explicit children; they need to be explicitly imported to emit 6255 // the initializers. 6256 if ((*Sub)->IsExplicit) 6257 continue; 6258 6259 if (Visited.insert(*Sub).second) 6260 Stack.push_back(*Sub); 6261 } 6262 } 6263 break; 6264 } 6265 6266 case Decl::Export: 6267 EmitDeclContext(cast<ExportDecl>(D)); 6268 break; 6269 6270 case Decl::OMPThreadPrivate: 6271 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6272 break; 6273 6274 case Decl::OMPAllocate: 6275 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6276 break; 6277 6278 case Decl::OMPDeclareReduction: 6279 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6280 break; 6281 6282 case Decl::OMPDeclareMapper: 6283 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6284 break; 6285 6286 case Decl::OMPRequires: 6287 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6288 break; 6289 6290 case Decl::Typedef: 6291 case Decl::TypeAlias: // using foo = bar; [C++11] 6292 if (CGDebugInfo *DI = getModuleDebugInfo()) 6293 DI->EmitAndRetainType( 6294 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6295 break; 6296 6297 case Decl::Record: 6298 if (CGDebugInfo *DI = getModuleDebugInfo()) 6299 if (cast<RecordDecl>(D)->getDefinition()) 6300 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6301 break; 6302 6303 case Decl::Enum: 6304 if (CGDebugInfo *DI = getModuleDebugInfo()) 6305 if (cast<EnumDecl>(D)->getDefinition()) 6306 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6307 break; 6308 6309 default: 6310 // Make sure we handled everything we should, every other kind is a 6311 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6312 // function. Need to recode Decl::Kind to do that easily. 6313 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6314 break; 6315 } 6316 } 6317 6318 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6319 // Do we need to generate coverage mapping? 6320 if (!CodeGenOpts.CoverageMapping) 6321 return; 6322 switch (D->getKind()) { 6323 case Decl::CXXConversion: 6324 case Decl::CXXMethod: 6325 case Decl::Function: 6326 case Decl::ObjCMethod: 6327 case Decl::CXXConstructor: 6328 case Decl::CXXDestructor: { 6329 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6330 break; 6331 SourceManager &SM = getContext().getSourceManager(); 6332 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6333 break; 6334 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6335 if (I == DeferredEmptyCoverageMappingDecls.end()) 6336 DeferredEmptyCoverageMappingDecls[D] = true; 6337 break; 6338 } 6339 default: 6340 break; 6341 }; 6342 } 6343 6344 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6345 // Do we need to generate coverage mapping? 6346 if (!CodeGenOpts.CoverageMapping) 6347 return; 6348 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6349 if (Fn->isTemplateInstantiation()) 6350 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6351 } 6352 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6353 if (I == DeferredEmptyCoverageMappingDecls.end()) 6354 DeferredEmptyCoverageMappingDecls[D] = false; 6355 else 6356 I->second = false; 6357 } 6358 6359 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6360 // We call takeVector() here to avoid use-after-free. 6361 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6362 // we deserialize function bodies to emit coverage info for them, and that 6363 // deserializes more declarations. How should we handle that case? 6364 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6365 if (!Entry.second) 6366 continue; 6367 const Decl *D = Entry.first; 6368 switch (D->getKind()) { 6369 case Decl::CXXConversion: 6370 case Decl::CXXMethod: 6371 case Decl::Function: 6372 case Decl::ObjCMethod: { 6373 CodeGenPGO PGO(*this); 6374 GlobalDecl GD(cast<FunctionDecl>(D)); 6375 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6376 getFunctionLinkage(GD)); 6377 break; 6378 } 6379 case Decl::CXXConstructor: { 6380 CodeGenPGO PGO(*this); 6381 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6382 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6383 getFunctionLinkage(GD)); 6384 break; 6385 } 6386 case Decl::CXXDestructor: { 6387 CodeGenPGO PGO(*this); 6388 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6389 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6390 getFunctionLinkage(GD)); 6391 break; 6392 } 6393 default: 6394 break; 6395 }; 6396 } 6397 } 6398 6399 void CodeGenModule::EmitMainVoidAlias() { 6400 // In order to transition away from "__original_main" gracefully, emit an 6401 // alias for "main" in the no-argument case so that libc can detect when 6402 // new-style no-argument main is in used. 6403 if (llvm::Function *F = getModule().getFunction("main")) { 6404 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6405 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6406 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6407 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6408 } 6409 } 6410 } 6411 6412 /// Turns the given pointer into a constant. 6413 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6414 const void *Ptr) { 6415 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6416 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6417 return llvm::ConstantInt::get(i64, PtrInt); 6418 } 6419 6420 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6421 llvm::NamedMDNode *&GlobalMetadata, 6422 GlobalDecl D, 6423 llvm::GlobalValue *Addr) { 6424 if (!GlobalMetadata) 6425 GlobalMetadata = 6426 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6427 6428 // TODO: should we report variant information for ctors/dtors? 6429 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6430 llvm::ConstantAsMetadata::get(GetPointerConstant( 6431 CGM.getLLVMContext(), D.getDecl()))}; 6432 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6433 } 6434 6435 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6436 llvm::GlobalValue *CppFunc) { 6437 // Store the list of ifuncs we need to replace uses in. 6438 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6439 // List of ConstantExprs that we should be able to delete when we're done 6440 // here. 6441 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6442 6443 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6444 if (Elem == CppFunc) 6445 return false; 6446 6447 // First make sure that all users of this are ifuncs (or ifuncs via a 6448 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6449 // later. 6450 for (llvm::User *User : Elem->users()) { 6451 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6452 // ifunc directly. In any other case, just give up, as we don't know what we 6453 // could break by changing those. 6454 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6455 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6456 return false; 6457 6458 for (llvm::User *CEUser : ConstExpr->users()) { 6459 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6460 IFuncs.push_back(IFunc); 6461 } else { 6462 return false; 6463 } 6464 } 6465 CEs.push_back(ConstExpr); 6466 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6467 IFuncs.push_back(IFunc); 6468 } else { 6469 // This user is one we don't know how to handle, so fail redirection. This 6470 // will result in an ifunc retaining a resolver name that will ultimately 6471 // fail to be resolved to a defined function. 6472 return false; 6473 } 6474 } 6475 6476 // Now we know this is a valid case where we can do this alias replacement, we 6477 // need to remove all of the references to Elem (and the bitcasts!) so we can 6478 // delete it. 6479 for (llvm::GlobalIFunc *IFunc : IFuncs) 6480 IFunc->setResolver(nullptr); 6481 for (llvm::ConstantExpr *ConstExpr : CEs) 6482 ConstExpr->destroyConstant(); 6483 6484 // We should now be out of uses for the 'old' version of this function, so we 6485 // can erase it as well. 6486 Elem->eraseFromParent(); 6487 6488 for (llvm::GlobalIFunc *IFunc : IFuncs) { 6489 // The type of the resolver is always just a function-type that returns the 6490 // type of the IFunc, so create that here. If the type of the actual 6491 // resolver doesn't match, it just gets bitcast to the right thing. 6492 auto *ResolverTy = 6493 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 6494 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 6495 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 6496 IFunc->setResolver(Resolver); 6497 } 6498 return true; 6499 } 6500 6501 /// For each function which is declared within an extern "C" region and marked 6502 /// as 'used', but has internal linkage, create an alias from the unmangled 6503 /// name to the mangled name if possible. People expect to be able to refer 6504 /// to such functions with an unmangled name from inline assembly within the 6505 /// same translation unit. 6506 void CodeGenModule::EmitStaticExternCAliases() { 6507 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6508 return; 6509 for (auto &I : StaticExternCValues) { 6510 IdentifierInfo *Name = I.first; 6511 llvm::GlobalValue *Val = I.second; 6512 6513 // If Val is null, that implies there were multiple declarations that each 6514 // had a claim to the unmangled name. In this case, generation of the alias 6515 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 6516 if (!Val) 6517 break; 6518 6519 llvm::GlobalValue *ExistingElem = 6520 getModule().getNamedValue(Name->getName()); 6521 6522 // If there is either not something already by this name, or we were able to 6523 // replace all uses from IFuncs, create the alias. 6524 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 6525 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6526 } 6527 } 6528 6529 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6530 GlobalDecl &Result) const { 6531 auto Res = Manglings.find(MangledName); 6532 if (Res == Manglings.end()) 6533 return false; 6534 Result = Res->getValue(); 6535 return true; 6536 } 6537 6538 /// Emits metadata nodes associating all the global values in the 6539 /// current module with the Decls they came from. This is useful for 6540 /// projects using IR gen as a subroutine. 6541 /// 6542 /// Since there's currently no way to associate an MDNode directly 6543 /// with an llvm::GlobalValue, we create a global named metadata 6544 /// with the name 'clang.global.decl.ptrs'. 6545 void CodeGenModule::EmitDeclMetadata() { 6546 llvm::NamedMDNode *GlobalMetadata = nullptr; 6547 6548 for (auto &I : MangledDeclNames) { 6549 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6550 // Some mangled names don't necessarily have an associated GlobalValue 6551 // in this module, e.g. if we mangled it for DebugInfo. 6552 if (Addr) 6553 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6554 } 6555 } 6556 6557 /// Emits metadata nodes for all the local variables in the current 6558 /// function. 6559 void CodeGenFunction::EmitDeclMetadata() { 6560 if (LocalDeclMap.empty()) return; 6561 6562 llvm::LLVMContext &Context = getLLVMContext(); 6563 6564 // Find the unique metadata ID for this name. 6565 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6566 6567 llvm::NamedMDNode *GlobalMetadata = nullptr; 6568 6569 for (auto &I : LocalDeclMap) { 6570 const Decl *D = I.first; 6571 llvm::Value *Addr = I.second.getPointer(); 6572 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6573 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6574 Alloca->setMetadata( 6575 DeclPtrKind, llvm::MDNode::get( 6576 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6577 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6578 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6579 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6580 } 6581 } 6582 } 6583 6584 void CodeGenModule::EmitVersionIdentMetadata() { 6585 llvm::NamedMDNode *IdentMetadata = 6586 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6587 std::string Version = getClangFullVersion(); 6588 llvm::LLVMContext &Ctx = TheModule.getContext(); 6589 6590 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6591 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6592 } 6593 6594 void CodeGenModule::EmitCommandLineMetadata() { 6595 llvm::NamedMDNode *CommandLineMetadata = 6596 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6597 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6598 llvm::LLVMContext &Ctx = TheModule.getContext(); 6599 6600 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6601 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6602 } 6603 6604 void CodeGenModule::EmitCoverageFile() { 6605 if (getCodeGenOpts().CoverageDataFile.empty() && 6606 getCodeGenOpts().CoverageNotesFile.empty()) 6607 return; 6608 6609 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6610 if (!CUNode) 6611 return; 6612 6613 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6614 llvm::LLVMContext &Ctx = TheModule.getContext(); 6615 auto *CoverageDataFile = 6616 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6617 auto *CoverageNotesFile = 6618 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6619 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6620 llvm::MDNode *CU = CUNode->getOperand(i); 6621 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6622 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6623 } 6624 } 6625 6626 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6627 bool ForEH) { 6628 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6629 // FIXME: should we even be calling this method if RTTI is disabled 6630 // and it's not for EH? 6631 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6632 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6633 getTriple().isNVPTX())) 6634 return llvm::Constant::getNullValue(Int8PtrTy); 6635 6636 if (ForEH && Ty->isObjCObjectPointerType() && 6637 LangOpts.ObjCRuntime.isGNUFamily()) 6638 return ObjCRuntime->GetEHType(Ty); 6639 6640 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6641 } 6642 6643 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6644 // Do not emit threadprivates in simd-only mode. 6645 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6646 return; 6647 for (auto RefExpr : D->varlists()) { 6648 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6649 bool PerformInit = 6650 VD->getAnyInitializer() && 6651 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6652 /*ForRef=*/false); 6653 6654 Address Addr(GetAddrOfGlobalVar(VD), 6655 getTypes().ConvertTypeForMem(VD->getType()), 6656 getContext().getDeclAlign(VD)); 6657 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6658 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6659 CXXGlobalInits.push_back(InitFunction); 6660 } 6661 } 6662 6663 llvm::Metadata * 6664 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6665 StringRef Suffix) { 6666 if (auto *FnType = T->getAs<FunctionProtoType>()) 6667 T = getContext().getFunctionType( 6668 FnType->getReturnType(), FnType->getParamTypes(), 6669 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6670 6671 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6672 if (InternalId) 6673 return InternalId; 6674 6675 if (isExternallyVisible(T->getLinkage())) { 6676 std::string OutName; 6677 llvm::raw_string_ostream Out(OutName); 6678 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6679 Out << Suffix; 6680 6681 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6682 } else { 6683 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6684 llvm::ArrayRef<llvm::Metadata *>()); 6685 } 6686 6687 return InternalId; 6688 } 6689 6690 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6691 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6692 } 6693 6694 llvm::Metadata * 6695 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6696 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6697 } 6698 6699 // Generalize pointer types to a void pointer with the qualifiers of the 6700 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6701 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6702 // 'void *'. 6703 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6704 if (!Ty->isPointerType()) 6705 return Ty; 6706 6707 return Ctx.getPointerType( 6708 QualType(Ctx.VoidTy).withCVRQualifiers( 6709 Ty->getPointeeType().getCVRQualifiers())); 6710 } 6711 6712 // Apply type generalization to a FunctionType's return and argument types 6713 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6714 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6715 SmallVector<QualType, 8> GeneralizedParams; 6716 for (auto &Param : FnType->param_types()) 6717 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6718 6719 return Ctx.getFunctionType( 6720 GeneralizeType(Ctx, FnType->getReturnType()), 6721 GeneralizedParams, FnType->getExtProtoInfo()); 6722 } 6723 6724 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6725 return Ctx.getFunctionNoProtoType( 6726 GeneralizeType(Ctx, FnType->getReturnType())); 6727 6728 llvm_unreachable("Encountered unknown FunctionType"); 6729 } 6730 6731 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6732 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6733 GeneralizedMetadataIdMap, ".generalized"); 6734 } 6735 6736 /// Returns whether this module needs the "all-vtables" type identifier. 6737 bool CodeGenModule::NeedAllVtablesTypeId() const { 6738 // Returns true if at least one of vtable-based CFI checkers is enabled and 6739 // is not in the trapping mode. 6740 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6741 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6742 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6743 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6744 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6745 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6746 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6747 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6748 } 6749 6750 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6751 CharUnits Offset, 6752 const CXXRecordDecl *RD) { 6753 llvm::Metadata *MD = 6754 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6755 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6756 6757 if (CodeGenOpts.SanitizeCfiCrossDso) 6758 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6759 VTable->addTypeMetadata(Offset.getQuantity(), 6760 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6761 6762 if (NeedAllVtablesTypeId()) { 6763 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6764 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6765 } 6766 } 6767 6768 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6769 if (!SanStats) 6770 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6771 6772 return *SanStats; 6773 } 6774 6775 llvm::Value * 6776 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6777 CodeGenFunction &CGF) { 6778 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6779 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6780 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6781 auto *Call = CGF.EmitRuntimeCall( 6782 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6783 return Call; 6784 } 6785 6786 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6787 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6788 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6789 /* forPointeeType= */ true); 6790 } 6791 6792 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6793 LValueBaseInfo *BaseInfo, 6794 TBAAAccessInfo *TBAAInfo, 6795 bool forPointeeType) { 6796 if (TBAAInfo) 6797 *TBAAInfo = getTBAAAccessInfo(T); 6798 6799 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6800 // that doesn't return the information we need to compute BaseInfo. 6801 6802 // Honor alignment typedef attributes even on incomplete types. 6803 // We also honor them straight for C++ class types, even as pointees; 6804 // there's an expressivity gap here. 6805 if (auto TT = T->getAs<TypedefType>()) { 6806 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6807 if (BaseInfo) 6808 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6809 return getContext().toCharUnitsFromBits(Align); 6810 } 6811 } 6812 6813 bool AlignForArray = T->isArrayType(); 6814 6815 // Analyze the base element type, so we don't get confused by incomplete 6816 // array types. 6817 T = getContext().getBaseElementType(T); 6818 6819 if (T->isIncompleteType()) { 6820 // We could try to replicate the logic from 6821 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6822 // type is incomplete, so it's impossible to test. We could try to reuse 6823 // getTypeAlignIfKnown, but that doesn't return the information we need 6824 // to set BaseInfo. So just ignore the possibility that the alignment is 6825 // greater than one. 6826 if (BaseInfo) 6827 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6828 return CharUnits::One(); 6829 } 6830 6831 if (BaseInfo) 6832 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6833 6834 CharUnits Alignment; 6835 const CXXRecordDecl *RD; 6836 if (T.getQualifiers().hasUnaligned()) { 6837 Alignment = CharUnits::One(); 6838 } else if (forPointeeType && !AlignForArray && 6839 (RD = T->getAsCXXRecordDecl())) { 6840 // For C++ class pointees, we don't know whether we're pointing at a 6841 // base or a complete object, so we generally need to use the 6842 // non-virtual alignment. 6843 Alignment = getClassPointerAlignment(RD); 6844 } else { 6845 Alignment = getContext().getTypeAlignInChars(T); 6846 } 6847 6848 // Cap to the global maximum type alignment unless the alignment 6849 // was somehow explicit on the type. 6850 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6851 if (Alignment.getQuantity() > MaxAlign && 6852 !getContext().isAlignmentRequired(T)) 6853 Alignment = CharUnits::fromQuantity(MaxAlign); 6854 } 6855 return Alignment; 6856 } 6857 6858 bool CodeGenModule::stopAutoInit() { 6859 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6860 if (StopAfter) { 6861 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6862 // used 6863 if (NumAutoVarInit >= StopAfter) { 6864 return true; 6865 } 6866 if (!NumAutoVarInit) { 6867 unsigned DiagID = getDiags().getCustomDiagID( 6868 DiagnosticsEngine::Warning, 6869 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6870 "number of times ftrivial-auto-var-init=%1 gets applied."); 6871 getDiags().Report(DiagID) 6872 << StopAfter 6873 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6874 LangOptions::TrivialAutoVarInitKind::Zero 6875 ? "zero" 6876 : "pattern"); 6877 } 6878 ++NumAutoVarInit; 6879 } 6880 return false; 6881 } 6882 6883 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 6884 const Decl *D) const { 6885 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 6886 // postfix beginning with '.' since the symbol name can be demangled. 6887 if (LangOpts.HIP) 6888 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 6889 else 6890 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 6891 6892 // If the CUID is not specified we try to generate a unique postfix. 6893 if (getLangOpts().CUID.empty()) { 6894 SourceManager &SM = getContext().getSourceManager(); 6895 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 6896 assert(PLoc.isValid() && "Source location is expected to be valid."); 6897 6898 // Get the hash of the user defined macros. 6899 llvm::MD5 Hash; 6900 llvm::MD5::MD5Result Result; 6901 for (const auto &Arg : PreprocessorOpts.Macros) 6902 Hash.update(Arg.first); 6903 Hash.final(Result); 6904 6905 // Get the UniqueID for the file containing the decl. 6906 llvm::sys::fs::UniqueID ID; 6907 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 6908 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 6909 assert(PLoc.isValid() && "Source location is expected to be valid."); 6910 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 6911 SM.getDiagnostics().Report(diag::err_cannot_open_file) 6912 << PLoc.getFilename() << EC.message(); 6913 } 6914 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 6915 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 6916 } else { 6917 OS << getContext().getCUIDHash(); 6918 } 6919 } 6920