1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/Decl.h" 34 #include "clang/AST/DeclCXX.h" 35 #include "clang/AST/DeclObjC.h" 36 #include "clang/AST/DeclTemplate.h" 37 #include "clang/AST/Mangle.h" 38 #include "clang/AST/RecursiveASTVisitor.h" 39 #include "clang/AST/StmtVisitor.h" 40 #include "clang/Basic/Builtins.h" 41 #include "clang/Basic/CharInfo.h" 42 #include "clang/Basic/CodeGenOptions.h" 43 #include "clang/Basic/Diagnostic.h" 44 #include "clang/Basic/FileManager.h" 45 #include "clang/Basic/Module.h" 46 #include "clang/Basic/SourceManager.h" 47 #include "clang/Basic/TargetInfo.h" 48 #include "clang/Basic/Version.h" 49 #include "clang/CodeGen/BackendUtil.h" 50 #include "clang/CodeGen/ConstantInitBuilder.h" 51 #include "clang/Frontend/FrontendDiagnostic.h" 52 #include "llvm/ADT/STLExtras.h" 53 #include "llvm/ADT/StringExtras.h" 54 #include "llvm/ADT/StringSwitch.h" 55 #include "llvm/Analysis/TargetLibraryInfo.h" 56 #include "llvm/BinaryFormat/ELF.h" 57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 58 #include "llvm/IR/AttributeMask.h" 59 #include "llvm/IR/CallingConv.h" 60 #include "llvm/IR/DataLayout.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/ProfileSummary.h" 65 #include "llvm/ProfileData/InstrProfReader.h" 66 #include "llvm/ProfileData/SampleProf.h" 67 #include "llvm/Support/CRC.h" 68 #include "llvm/Support/CodeGen.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/ConvertUTF.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/TimeProfiler.h" 73 #include "llvm/Support/xxhash.h" 74 #include "llvm/TargetParser/RISCVISAInfo.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include "llvm/TargetParser/X86TargetParser.h" 77 #include "llvm/Transforms/Utils/BuildLibCalls.h" 78 #include <optional> 79 80 using namespace clang; 81 using namespace CodeGen; 82 83 static llvm::cl::opt<bool> LimitedCoverage( 84 "limited-coverage-experimental", llvm::cl::Hidden, 85 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 86 87 static const char AnnotationSection[] = "llvm.metadata"; 88 89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 90 switch (CGM.getContext().getCXXABIKind()) { 91 case TargetCXXABI::AppleARM64: 92 case TargetCXXABI::Fuchsia: 93 case TargetCXXABI::GenericAArch64: 94 case TargetCXXABI::GenericARM: 95 case TargetCXXABI::iOS: 96 case TargetCXXABI::WatchOS: 97 case TargetCXXABI::GenericMIPS: 98 case TargetCXXABI::GenericItanium: 99 case TargetCXXABI::WebAssembly: 100 case TargetCXXABI::XL: 101 return CreateItaniumCXXABI(CGM); 102 case TargetCXXABI::Microsoft: 103 return CreateMicrosoftCXXABI(CGM); 104 } 105 106 llvm_unreachable("invalid C++ ABI kind"); 107 } 108 109 static std::unique_ptr<TargetCodeGenInfo> 110 createTargetCodeGenInfo(CodeGenModule &CGM) { 111 const TargetInfo &Target = CGM.getTarget(); 112 const llvm::Triple &Triple = Target.getTriple(); 113 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 114 115 switch (Triple.getArch()) { 116 default: 117 return createDefaultTargetCodeGenInfo(CGM); 118 119 case llvm::Triple::m68k: 120 return createM68kTargetCodeGenInfo(CGM); 121 case llvm::Triple::mips: 122 case llvm::Triple::mipsel: 123 if (Triple.getOS() == llvm::Triple::NaCl) 124 return createPNaClTargetCodeGenInfo(CGM); 125 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 126 127 case llvm::Triple::mips64: 128 case llvm::Triple::mips64el: 129 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 130 131 case llvm::Triple::avr: { 132 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 133 // on avrtiny. For passing return value, R18~R25 are used on avr, and 134 // R22~R25 are used on avrtiny. 135 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 136 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 137 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 138 } 139 140 case llvm::Triple::aarch64: 141 case llvm::Triple::aarch64_32: 142 case llvm::Triple::aarch64_be: { 143 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 144 if (Target.getABI() == "darwinpcs") 145 Kind = AArch64ABIKind::DarwinPCS; 146 else if (Triple.isOSWindows()) 147 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 148 else if (Target.getABI() == "aapcs-soft") 149 Kind = AArch64ABIKind::AAPCSSoft; 150 151 return createAArch64TargetCodeGenInfo(CGM, Kind); 152 } 153 154 case llvm::Triple::wasm32: 155 case llvm::Triple::wasm64: { 156 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 157 if (Target.getABI() == "experimental-mv") 158 Kind = WebAssemblyABIKind::ExperimentalMV; 159 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 160 } 161 162 case llvm::Triple::arm: 163 case llvm::Triple::armeb: 164 case llvm::Triple::thumb: 165 case llvm::Triple::thumbeb: { 166 if (Triple.getOS() == llvm::Triple::Win32) 167 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 168 169 ARMABIKind Kind = ARMABIKind::AAPCS; 170 StringRef ABIStr = Target.getABI(); 171 if (ABIStr == "apcs-gnu") 172 Kind = ARMABIKind::APCS; 173 else if (ABIStr == "aapcs16") 174 Kind = ARMABIKind::AAPCS16_VFP; 175 else if (CodeGenOpts.FloatABI == "hard" || 176 (CodeGenOpts.FloatABI != "soft" && 177 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 178 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 179 Triple.getEnvironment() == llvm::Triple::EABIHF))) 180 Kind = ARMABIKind::AAPCS_VFP; 181 182 return createARMTargetCodeGenInfo(CGM, Kind); 183 } 184 185 case llvm::Triple::ppc: { 186 if (Triple.isOSAIX()) 187 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 188 189 bool IsSoftFloat = 190 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 191 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 192 } 193 case llvm::Triple::ppcle: { 194 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 195 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 196 } 197 case llvm::Triple::ppc64: 198 if (Triple.isOSAIX()) 199 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 200 201 if (Triple.isOSBinFormatELF()) { 202 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 203 if (Target.getABI() == "elfv2") 204 Kind = PPC64_SVR4_ABIKind::ELFv2; 205 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 206 207 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 208 } 209 return createPPC64TargetCodeGenInfo(CGM); 210 case llvm::Triple::ppc64le: { 211 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 212 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 213 if (Target.getABI() == "elfv1") 214 Kind = PPC64_SVR4_ABIKind::ELFv1; 215 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 216 217 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 218 } 219 220 case llvm::Triple::nvptx: 221 case llvm::Triple::nvptx64: 222 return createNVPTXTargetCodeGenInfo(CGM); 223 224 case llvm::Triple::msp430: 225 return createMSP430TargetCodeGenInfo(CGM); 226 227 case llvm::Triple::riscv32: 228 case llvm::Triple::riscv64: { 229 StringRef ABIStr = Target.getABI(); 230 unsigned XLen = Target.getPointerWidth(LangAS::Default); 231 unsigned ABIFLen = 0; 232 if (ABIStr.ends_with("f")) 233 ABIFLen = 32; 234 else if (ABIStr.ends_with("d")) 235 ABIFLen = 64; 236 bool EABI = ABIStr.ends_with("e"); 237 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 238 } 239 240 case llvm::Triple::systemz: { 241 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 242 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 243 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 244 } 245 246 case llvm::Triple::tce: 247 case llvm::Triple::tcele: 248 return createTCETargetCodeGenInfo(CGM); 249 250 case llvm::Triple::x86: { 251 bool IsDarwinVectorABI = Triple.isOSDarwin(); 252 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 253 254 if (Triple.getOS() == llvm::Triple::Win32) { 255 return createWinX86_32TargetCodeGenInfo( 256 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 257 CodeGenOpts.NumRegisterParameters); 258 } 259 return createX86_32TargetCodeGenInfo( 260 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 261 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 262 } 263 264 case llvm::Triple::x86_64: { 265 StringRef ABI = Target.getABI(); 266 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 267 : ABI == "avx" ? X86AVXABILevel::AVX 268 : X86AVXABILevel::None); 269 270 switch (Triple.getOS()) { 271 case llvm::Triple::Win32: 272 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 273 default: 274 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 275 } 276 } 277 case llvm::Triple::hexagon: 278 return createHexagonTargetCodeGenInfo(CGM); 279 case llvm::Triple::lanai: 280 return createLanaiTargetCodeGenInfo(CGM); 281 case llvm::Triple::r600: 282 return createAMDGPUTargetCodeGenInfo(CGM); 283 case llvm::Triple::amdgcn: 284 return createAMDGPUTargetCodeGenInfo(CGM); 285 case llvm::Triple::sparc: 286 return createSparcV8TargetCodeGenInfo(CGM); 287 case llvm::Triple::sparcv9: 288 return createSparcV9TargetCodeGenInfo(CGM); 289 case llvm::Triple::xcore: 290 return createXCoreTargetCodeGenInfo(CGM); 291 case llvm::Triple::arc: 292 return createARCTargetCodeGenInfo(CGM); 293 case llvm::Triple::spir: 294 case llvm::Triple::spir64: 295 return createCommonSPIRTargetCodeGenInfo(CGM); 296 case llvm::Triple::spirv32: 297 case llvm::Triple::spirv64: 298 return createSPIRVTargetCodeGenInfo(CGM); 299 case llvm::Triple::ve: 300 return createVETargetCodeGenInfo(CGM); 301 case llvm::Triple::csky: { 302 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 303 bool hasFP64 = 304 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 305 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 306 : hasFP64 ? 64 307 : 32); 308 } 309 case llvm::Triple::bpfeb: 310 case llvm::Triple::bpfel: 311 return createBPFTargetCodeGenInfo(CGM); 312 case llvm::Triple::loongarch32: 313 case llvm::Triple::loongarch64: { 314 StringRef ABIStr = Target.getABI(); 315 unsigned ABIFRLen = 0; 316 if (ABIStr.ends_with("f")) 317 ABIFRLen = 32; 318 else if (ABIStr.ends_with("d")) 319 ABIFRLen = 64; 320 return createLoongArchTargetCodeGenInfo( 321 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 322 } 323 } 324 } 325 326 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 327 if (!TheTargetCodeGenInfo) 328 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 329 return *TheTargetCodeGenInfo; 330 } 331 332 CodeGenModule::CodeGenModule(ASTContext &C, 333 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 334 const HeaderSearchOptions &HSO, 335 const PreprocessorOptions &PPO, 336 const CodeGenOptions &CGO, llvm::Module &M, 337 DiagnosticsEngine &diags, 338 CoverageSourceInfo *CoverageInfo) 339 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 340 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 341 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 342 VMContext(M.getContext()), Types(*this), VTables(*this), 343 SanitizerMD(new SanitizerMetadata(*this)) { 344 345 // Initialize the type cache. 346 llvm::LLVMContext &LLVMContext = M.getContext(); 347 VoidTy = llvm::Type::getVoidTy(LLVMContext); 348 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 349 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 350 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 351 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 352 HalfTy = llvm::Type::getHalfTy(LLVMContext); 353 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 354 FloatTy = llvm::Type::getFloatTy(LLVMContext); 355 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 356 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 357 PointerAlignInBytes = 358 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 359 .getQuantity(); 360 SizeSizeInBytes = 361 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 362 IntAlignInBytes = 363 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 364 CharTy = 365 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 366 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 367 IntPtrTy = llvm::IntegerType::get(LLVMContext, 368 C.getTargetInfo().getMaxPointerWidth()); 369 Int8PtrTy = llvm::PointerType::get(LLVMContext, 370 C.getTargetAddressSpace(LangAS::Default)); 371 const llvm::DataLayout &DL = M.getDataLayout(); 372 AllocaInt8PtrTy = 373 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 374 GlobalsInt8PtrTy = 375 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 376 ConstGlobalsPtrTy = llvm::PointerType::get( 377 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 378 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 379 380 // Build C++20 Module initializers. 381 // TODO: Add Microsoft here once we know the mangling required for the 382 // initializers. 383 CXX20ModuleInits = 384 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 385 ItaniumMangleContext::MK_Itanium; 386 387 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 388 389 if (LangOpts.ObjC) 390 createObjCRuntime(); 391 if (LangOpts.OpenCL) 392 createOpenCLRuntime(); 393 if (LangOpts.OpenMP) 394 createOpenMPRuntime(); 395 if (LangOpts.CUDA) 396 createCUDARuntime(); 397 if (LangOpts.HLSL) 398 createHLSLRuntime(); 399 400 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 401 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 402 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 403 TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts, 404 getLangOpts(), getCXXABI().getMangleContext())); 405 406 // If debug info or coverage generation is enabled, create the CGDebugInfo 407 // object. 408 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 409 CodeGenOpts.CoverageNotesFile.size() || 410 CodeGenOpts.CoverageDataFile.size()) 411 DebugInfo.reset(new CGDebugInfo(*this)); 412 413 Block.GlobalUniqueCount = 0; 414 415 if (C.getLangOpts().ObjC) 416 ObjCData.reset(new ObjCEntrypoints()); 417 418 if (CodeGenOpts.hasProfileClangUse()) { 419 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 420 CodeGenOpts.ProfileInstrumentUsePath, *FS, 421 CodeGenOpts.ProfileRemappingFile); 422 // We're checking for profile read errors in CompilerInvocation, so if 423 // there was an error it should've already been caught. If it hasn't been 424 // somehow, trip an assertion. 425 assert(ReaderOrErr); 426 PGOReader = std::move(ReaderOrErr.get()); 427 } 428 429 // If coverage mapping generation is enabled, create the 430 // CoverageMappingModuleGen object. 431 if (CodeGenOpts.CoverageMapping) 432 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 433 434 // Generate the module name hash here if needed. 435 if (CodeGenOpts.UniqueInternalLinkageNames && 436 !getModule().getSourceFileName().empty()) { 437 std::string Path = getModule().getSourceFileName(); 438 // Check if a path substitution is needed from the MacroPrefixMap. 439 for (const auto &Entry : LangOpts.MacroPrefixMap) 440 if (Path.rfind(Entry.first, 0) != std::string::npos) { 441 Path = Entry.second + Path.substr(Entry.first.size()); 442 break; 443 } 444 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 445 } 446 447 // Record mregparm value now so it is visible through all of codegen. 448 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 449 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 450 CodeGenOpts.NumRegisterParameters); 451 } 452 453 CodeGenModule::~CodeGenModule() {} 454 455 void CodeGenModule::createObjCRuntime() { 456 // This is just isGNUFamily(), but we want to force implementors of 457 // new ABIs to decide how best to do this. 458 switch (LangOpts.ObjCRuntime.getKind()) { 459 case ObjCRuntime::GNUstep: 460 case ObjCRuntime::GCC: 461 case ObjCRuntime::ObjFW: 462 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 463 return; 464 465 case ObjCRuntime::FragileMacOSX: 466 case ObjCRuntime::MacOSX: 467 case ObjCRuntime::iOS: 468 case ObjCRuntime::WatchOS: 469 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 470 return; 471 } 472 llvm_unreachable("bad runtime kind"); 473 } 474 475 void CodeGenModule::createOpenCLRuntime() { 476 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 477 } 478 479 void CodeGenModule::createOpenMPRuntime() { 480 // Select a specialized code generation class based on the target, if any. 481 // If it does not exist use the default implementation. 482 switch (getTriple().getArch()) { 483 case llvm::Triple::nvptx: 484 case llvm::Triple::nvptx64: 485 case llvm::Triple::amdgcn: 486 assert(getLangOpts().OpenMPIsTargetDevice && 487 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 488 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 489 break; 490 default: 491 if (LangOpts.OpenMPSimd) 492 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 493 else 494 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 495 break; 496 } 497 } 498 499 void CodeGenModule::createCUDARuntime() { 500 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 501 } 502 503 void CodeGenModule::createHLSLRuntime() { 504 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 505 } 506 507 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 508 Replacements[Name] = C; 509 } 510 511 void CodeGenModule::applyReplacements() { 512 for (auto &I : Replacements) { 513 StringRef MangledName = I.first; 514 llvm::Constant *Replacement = I.second; 515 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 516 if (!Entry) 517 continue; 518 auto *OldF = cast<llvm::Function>(Entry); 519 auto *NewF = dyn_cast<llvm::Function>(Replacement); 520 if (!NewF) { 521 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 522 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 523 } else { 524 auto *CE = cast<llvm::ConstantExpr>(Replacement); 525 assert(CE->getOpcode() == llvm::Instruction::BitCast || 526 CE->getOpcode() == llvm::Instruction::GetElementPtr); 527 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 528 } 529 } 530 531 // Replace old with new, but keep the old order. 532 OldF->replaceAllUsesWith(Replacement); 533 if (NewF) { 534 NewF->removeFromParent(); 535 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 536 NewF); 537 } 538 OldF->eraseFromParent(); 539 } 540 } 541 542 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 543 GlobalValReplacements.push_back(std::make_pair(GV, C)); 544 } 545 546 void CodeGenModule::applyGlobalValReplacements() { 547 for (auto &I : GlobalValReplacements) { 548 llvm::GlobalValue *GV = I.first; 549 llvm::Constant *C = I.second; 550 551 GV->replaceAllUsesWith(C); 552 GV->eraseFromParent(); 553 } 554 } 555 556 // This is only used in aliases that we created and we know they have a 557 // linear structure. 558 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 559 const llvm::Constant *C; 560 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 561 C = GA->getAliasee(); 562 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 563 C = GI->getResolver(); 564 else 565 return GV; 566 567 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 568 if (!AliaseeGV) 569 return nullptr; 570 571 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 572 if (FinalGV == GV) 573 return nullptr; 574 575 return FinalGV; 576 } 577 578 static bool checkAliasedGlobal( 579 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 580 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 581 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 582 SourceRange AliasRange) { 583 GV = getAliasedGlobal(Alias); 584 if (!GV) { 585 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 586 return false; 587 } 588 589 if (GV->hasCommonLinkage()) { 590 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 591 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 592 Diags.Report(Location, diag::err_alias_to_common); 593 return false; 594 } 595 } 596 597 if (GV->isDeclaration()) { 598 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 599 Diags.Report(Location, diag::note_alias_requires_mangled_name) 600 << IsIFunc << IsIFunc; 601 // Provide a note if the given function is not found and exists as a 602 // mangled name. 603 for (const auto &[Decl, Name] : MangledDeclNames) { 604 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 605 if (ND->getName() == GV->getName()) { 606 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 607 << Name 608 << FixItHint::CreateReplacement( 609 AliasRange, 610 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 611 .str()); 612 } 613 } 614 } 615 return false; 616 } 617 618 if (IsIFunc) { 619 // Check resolver function type. 620 const auto *F = dyn_cast<llvm::Function>(GV); 621 if (!F) { 622 Diags.Report(Location, diag::err_alias_to_undefined) 623 << IsIFunc << IsIFunc; 624 return false; 625 } 626 627 llvm::FunctionType *FTy = F->getFunctionType(); 628 if (!FTy->getReturnType()->isPointerTy()) { 629 Diags.Report(Location, diag::err_ifunc_resolver_return); 630 return false; 631 } 632 } 633 634 return true; 635 } 636 637 // Emit a warning if toc-data attribute is requested for global variables that 638 // have aliases and remove the toc-data attribute. 639 static void checkAliasForTocData(llvm::GlobalVariable *GVar, 640 const CodeGenOptions &CodeGenOpts, 641 DiagnosticsEngine &Diags, 642 SourceLocation Location) { 643 if (GVar->hasAttribute("toc-data")) { 644 auto GVId = GVar->getName(); 645 // Is this a global variable specified by the user as local? 646 if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) { 647 Diags.Report(Location, diag::warn_toc_unsupported_type) 648 << GVId << "the variable has an alias"; 649 } 650 llvm::AttributeSet CurrAttributes = GVar->getAttributes(); 651 llvm::AttributeSet NewAttributes = 652 CurrAttributes.removeAttribute(GVar->getContext(), "toc-data"); 653 GVar->setAttributes(NewAttributes); 654 } 655 } 656 657 void CodeGenModule::checkAliases() { 658 // Check if the constructed aliases are well formed. It is really unfortunate 659 // that we have to do this in CodeGen, but we only construct mangled names 660 // and aliases during codegen. 661 bool Error = false; 662 DiagnosticsEngine &Diags = getDiags(); 663 for (const GlobalDecl &GD : Aliases) { 664 const auto *D = cast<ValueDecl>(GD.getDecl()); 665 SourceLocation Location; 666 SourceRange Range; 667 bool IsIFunc = D->hasAttr<IFuncAttr>(); 668 if (const Attr *A = D->getDefiningAttr()) { 669 Location = A->getLocation(); 670 Range = A->getRange(); 671 } else 672 llvm_unreachable("Not an alias or ifunc?"); 673 674 StringRef MangledName = getMangledName(GD); 675 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 676 const llvm::GlobalValue *GV = nullptr; 677 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 678 MangledDeclNames, Range)) { 679 Error = true; 680 continue; 681 } 682 683 if (getContext().getTargetInfo().getTriple().isOSAIX()) 684 if (const llvm::GlobalVariable *GVar = 685 dyn_cast<const llvm::GlobalVariable>(GV)) 686 checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar), 687 getCodeGenOpts(), Diags, Location); 688 689 llvm::Constant *Aliasee = 690 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 691 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 692 693 llvm::GlobalValue *AliaseeGV; 694 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 695 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 696 else 697 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 698 699 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 700 StringRef AliasSection = SA->getName(); 701 if (AliasSection != AliaseeGV->getSection()) 702 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 703 << AliasSection << IsIFunc << IsIFunc; 704 } 705 706 // We have to handle alias to weak aliases in here. LLVM itself disallows 707 // this since the object semantics would not match the IL one. For 708 // compatibility with gcc we implement it by just pointing the alias 709 // to its aliasee's aliasee. We also warn, since the user is probably 710 // expecting the link to be weak. 711 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 712 if (GA->isInterposable()) { 713 Diags.Report(Location, diag::warn_alias_to_weak_alias) 714 << GV->getName() << GA->getName() << IsIFunc; 715 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 716 GA->getAliasee(), Alias->getType()); 717 718 if (IsIFunc) 719 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 720 else 721 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 722 } 723 } 724 } 725 if (!Error) 726 return; 727 728 for (const GlobalDecl &GD : Aliases) { 729 StringRef MangledName = getMangledName(GD); 730 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 731 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 732 Alias->eraseFromParent(); 733 } 734 } 735 736 void CodeGenModule::clear() { 737 DeferredDeclsToEmit.clear(); 738 EmittedDeferredDecls.clear(); 739 DeferredAnnotations.clear(); 740 if (OpenMPRuntime) 741 OpenMPRuntime->clear(); 742 } 743 744 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 745 StringRef MainFile) { 746 if (!hasDiagnostics()) 747 return; 748 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 749 if (MainFile.empty()) 750 MainFile = "<stdin>"; 751 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 752 } else { 753 if (Mismatched > 0) 754 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 755 756 if (Missing > 0) 757 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 758 } 759 } 760 761 static std::optional<llvm::GlobalValue::VisibilityTypes> 762 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { 763 // Map to LLVM visibility. 764 switch (K) { 765 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: 766 return std::nullopt; 767 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: 768 return llvm::GlobalValue::DefaultVisibility; 769 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: 770 return llvm::GlobalValue::HiddenVisibility; 771 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: 772 return llvm::GlobalValue::ProtectedVisibility; 773 } 774 llvm_unreachable("unknown option value!"); 775 } 776 777 void setLLVMVisibility(llvm::GlobalValue &GV, 778 std::optional<llvm::GlobalValue::VisibilityTypes> V) { 779 if (!V) 780 return; 781 782 // Reset DSO locality before setting the visibility. This removes 783 // any effects that visibility options and annotations may have 784 // had on the DSO locality. Setting the visibility will implicitly set 785 // appropriate globals to DSO Local; however, this will be pessimistic 786 // w.r.t. to the normal compiler IRGen. 787 GV.setDSOLocal(false); 788 GV.setVisibility(*V); 789 } 790 791 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 792 llvm::Module &M) { 793 if (!LO.VisibilityFromDLLStorageClass) 794 return; 795 796 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility = 797 getLLVMVisibility(LO.getDLLExportVisibility()); 798 799 std::optional<llvm::GlobalValue::VisibilityTypes> 800 NoDLLStorageClassVisibility = 801 getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 802 803 std::optional<llvm::GlobalValue::VisibilityTypes> 804 ExternDeclDLLImportVisibility = 805 getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 806 807 std::optional<llvm::GlobalValue::VisibilityTypes> 808 ExternDeclNoDLLStorageClassVisibility = 809 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); 810 811 for (llvm::GlobalValue &GV : M.global_values()) { 812 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 813 continue; 814 815 if (GV.isDeclarationForLinker()) 816 setLLVMVisibility(GV, GV.getDLLStorageClass() == 817 llvm::GlobalValue::DLLImportStorageClass 818 ? ExternDeclDLLImportVisibility 819 : ExternDeclNoDLLStorageClassVisibility); 820 else 821 setLLVMVisibility(GV, GV.getDLLStorageClass() == 822 llvm::GlobalValue::DLLExportStorageClass 823 ? DLLExportVisibility 824 : NoDLLStorageClassVisibility); 825 826 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 827 } 828 } 829 830 static bool isStackProtectorOn(const LangOptions &LangOpts, 831 const llvm::Triple &Triple, 832 clang::LangOptions::StackProtectorMode Mode) { 833 if (Triple.isAMDGPU() || Triple.isNVPTX()) 834 return false; 835 return LangOpts.getStackProtector() == Mode; 836 } 837 838 void CodeGenModule::Release() { 839 Module *Primary = getContext().getCurrentNamedModule(); 840 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 841 EmitModuleInitializers(Primary); 842 EmitDeferred(); 843 DeferredDecls.insert(EmittedDeferredDecls.begin(), 844 EmittedDeferredDecls.end()); 845 EmittedDeferredDecls.clear(); 846 EmitVTablesOpportunistically(); 847 applyGlobalValReplacements(); 848 applyReplacements(); 849 emitMultiVersionFunctions(); 850 851 if (Context.getLangOpts().IncrementalExtensions && 852 GlobalTopLevelStmtBlockInFlight.first) { 853 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 854 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 855 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 856 } 857 858 // Module implementations are initialized the same way as a regular TU that 859 // imports one or more modules. 860 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 861 EmitCXXModuleInitFunc(Primary); 862 else 863 EmitCXXGlobalInitFunc(); 864 EmitCXXGlobalCleanUpFunc(); 865 registerGlobalDtorsWithAtExit(); 866 EmitCXXThreadLocalInitFunc(); 867 if (ObjCRuntime) 868 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 869 AddGlobalCtor(ObjCInitFunction); 870 if (Context.getLangOpts().CUDA && CUDARuntime) { 871 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 872 AddGlobalCtor(CudaCtorFunction); 873 } 874 if (OpenMPRuntime) { 875 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 876 OpenMPRuntime->clear(); 877 } 878 if (PGOReader) { 879 getModule().setProfileSummary( 880 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 881 llvm::ProfileSummary::PSK_Instr); 882 if (PGOStats.hasDiagnostics()) 883 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 884 } 885 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 886 return L.LexOrder < R.LexOrder; 887 }); 888 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 889 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 890 EmitGlobalAnnotations(); 891 EmitStaticExternCAliases(); 892 checkAliases(); 893 EmitDeferredUnusedCoverageMappings(); 894 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 895 CodeGenPGO(*this).setProfileVersion(getModule()); 896 if (CoverageMapping) 897 CoverageMapping->emit(); 898 if (CodeGenOpts.SanitizeCfiCrossDso) { 899 CodeGenFunction(*this).EmitCfiCheckFail(); 900 CodeGenFunction(*this).EmitCfiCheckStub(); 901 } 902 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 903 finalizeKCFITypes(); 904 emitAtAvailableLinkGuard(); 905 if (Context.getTargetInfo().getTriple().isWasm()) 906 EmitMainVoidAlias(); 907 908 if (getTriple().isAMDGPU() || 909 (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) { 910 // Emit amdhsa_code_object_version module flag, which is code object version 911 // times 100. 912 if (getTarget().getTargetOpts().CodeObjectVersion != 913 llvm::CodeObjectVersionKind::COV_None) { 914 getModule().addModuleFlag(llvm::Module::Error, 915 "amdhsa_code_object_version", 916 getTarget().getTargetOpts().CodeObjectVersion); 917 } 918 919 // Currently, "-mprintf-kind" option is only supported for HIP 920 if (LangOpts.HIP) { 921 auto *MDStr = llvm::MDString::get( 922 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 923 TargetOptions::AMDGPUPrintfKind::Hostcall) 924 ? "hostcall" 925 : "buffered"); 926 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 927 MDStr); 928 } 929 } 930 931 // Emit a global array containing all external kernels or device variables 932 // used by host functions and mark it as used for CUDA/HIP. This is necessary 933 // to get kernels or device variables in archives linked in even if these 934 // kernels or device variables are only used in host functions. 935 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 936 SmallVector<llvm::Constant *, 8> UsedArray; 937 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 938 GlobalDecl GD; 939 if (auto *FD = dyn_cast<FunctionDecl>(D)) 940 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 941 else 942 GD = GlobalDecl(D); 943 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 944 GetAddrOfGlobal(GD), Int8PtrTy)); 945 } 946 947 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 948 949 auto *GV = new llvm::GlobalVariable( 950 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 951 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 952 addCompilerUsedGlobal(GV); 953 } 954 if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) { 955 // Emit a unique ID so that host and device binaries from the same 956 // compilation unit can be associated. 957 auto *GV = new llvm::GlobalVariable( 958 getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage, 959 llvm::Constant::getNullValue(Int8Ty), 960 "__hip_cuid_" + getContext().getCUIDHash()); 961 addCompilerUsedGlobal(GV); 962 } 963 emitLLVMUsed(); 964 if (SanStats) 965 SanStats->finish(); 966 967 if (CodeGenOpts.Autolink && 968 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 969 EmitModuleLinkOptions(); 970 } 971 972 // On ELF we pass the dependent library specifiers directly to the linker 973 // without manipulating them. This is in contrast to other platforms where 974 // they are mapped to a specific linker option by the compiler. This 975 // difference is a result of the greater variety of ELF linkers and the fact 976 // that ELF linkers tend to handle libraries in a more complicated fashion 977 // than on other platforms. This forces us to defer handling the dependent 978 // libs to the linker. 979 // 980 // CUDA/HIP device and host libraries are different. Currently there is no 981 // way to differentiate dependent libraries for host or device. Existing 982 // usage of #pragma comment(lib, *) is intended for host libraries on 983 // Windows. Therefore emit llvm.dependent-libraries only for host. 984 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 985 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 986 for (auto *MD : ELFDependentLibraries) 987 NMD->addOperand(MD); 988 } 989 990 if (CodeGenOpts.DwarfVersion) { 991 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 992 CodeGenOpts.DwarfVersion); 993 } 994 995 if (CodeGenOpts.Dwarf64) 996 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 997 998 if (Context.getLangOpts().SemanticInterposition) 999 // Require various optimization to respect semantic interposition. 1000 getModule().setSemanticInterposition(true); 1001 1002 if (CodeGenOpts.EmitCodeView) { 1003 // Indicate that we want CodeView in the metadata. 1004 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 1005 } 1006 if (CodeGenOpts.CodeViewGHash) { 1007 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 1008 } 1009 if (CodeGenOpts.ControlFlowGuard) { 1010 // Function ID tables and checks for Control Flow Guard (cfguard=2). 1011 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 1012 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 1013 // Function ID tables for Control Flow Guard (cfguard=1). 1014 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 1015 } 1016 if (CodeGenOpts.EHContGuard) { 1017 // Function ID tables for EH Continuation Guard. 1018 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 1019 } 1020 if (Context.getLangOpts().Kernel) { 1021 // Note if we are compiling with /kernel. 1022 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 1023 } 1024 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 1025 // We don't support LTO with 2 with different StrictVTablePointers 1026 // FIXME: we could support it by stripping all the information introduced 1027 // by StrictVTablePointers. 1028 1029 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 1030 1031 llvm::Metadata *Ops[2] = { 1032 llvm::MDString::get(VMContext, "StrictVTablePointers"), 1033 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1034 llvm::Type::getInt32Ty(VMContext), 1))}; 1035 1036 getModule().addModuleFlag(llvm::Module::Require, 1037 "StrictVTablePointersRequirement", 1038 llvm::MDNode::get(VMContext, Ops)); 1039 } 1040 if (getModuleDebugInfo()) 1041 // We support a single version in the linked module. The LLVM 1042 // parser will drop debug info with a different version number 1043 // (and warn about it, too). 1044 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 1045 llvm::DEBUG_METADATA_VERSION); 1046 1047 // We need to record the widths of enums and wchar_t, so that we can generate 1048 // the correct build attributes in the ARM backend. wchar_size is also used by 1049 // TargetLibraryInfo. 1050 uint64_t WCharWidth = 1051 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 1052 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 1053 1054 if (getTriple().isOSzOS()) { 1055 getModule().addModuleFlag(llvm::Module::Warning, 1056 "zos_product_major_version", 1057 uint32_t(CLANG_VERSION_MAJOR)); 1058 getModule().addModuleFlag(llvm::Module::Warning, 1059 "zos_product_minor_version", 1060 uint32_t(CLANG_VERSION_MINOR)); 1061 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 1062 uint32_t(CLANG_VERSION_PATCHLEVEL)); 1063 std::string ProductId = getClangVendor() + "clang"; 1064 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1065 llvm::MDString::get(VMContext, ProductId)); 1066 1067 // Record the language because we need it for the PPA2. 1068 StringRef lang_str = languageToString( 1069 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1070 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1071 llvm::MDString::get(VMContext, lang_str)); 1072 1073 time_t TT = PreprocessorOpts.SourceDateEpoch 1074 ? *PreprocessorOpts.SourceDateEpoch 1075 : std::time(nullptr); 1076 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1077 static_cast<uint64_t>(TT)); 1078 1079 // Multiple modes will be supported here. 1080 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1081 llvm::MDString::get(VMContext, "ascii")); 1082 } 1083 1084 llvm::Triple T = Context.getTargetInfo().getTriple(); 1085 if (T.isARM() || T.isThumb()) { 1086 // The minimum width of an enum in bytes 1087 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1088 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1089 } 1090 1091 if (T.isRISCV()) { 1092 StringRef ABIStr = Target.getABI(); 1093 llvm::LLVMContext &Ctx = TheModule.getContext(); 1094 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1095 llvm::MDString::get(Ctx, ABIStr)); 1096 1097 // Add the canonical ISA string as metadata so the backend can set the ELF 1098 // attributes correctly. We use AppendUnique so LTO will keep all of the 1099 // unique ISA strings that were linked together. 1100 const std::vector<std::string> &Features = 1101 getTarget().getTargetOpts().Features; 1102 auto ParseResult = 1103 llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features); 1104 if (!errorToBool(ParseResult.takeError())) 1105 getModule().addModuleFlag( 1106 llvm::Module::AppendUnique, "riscv-isa", 1107 llvm::MDNode::get( 1108 Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString()))); 1109 } 1110 1111 if (CodeGenOpts.SanitizeCfiCrossDso) { 1112 // Indicate that we want cross-DSO control flow integrity checks. 1113 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1114 } 1115 1116 if (CodeGenOpts.WholeProgramVTables) { 1117 // Indicate whether VFE was enabled for this module, so that the 1118 // vcall_visibility metadata added under whole program vtables is handled 1119 // appropriately in the optimizer. 1120 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1121 CodeGenOpts.VirtualFunctionElimination); 1122 } 1123 1124 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1125 getModule().addModuleFlag(llvm::Module::Override, 1126 "CFI Canonical Jump Tables", 1127 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1128 } 1129 1130 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1131 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1132 // KCFI assumes patchable-function-prefix is the same for all indirectly 1133 // called functions. Store the expected offset for code generation. 1134 if (CodeGenOpts.PatchableFunctionEntryOffset) 1135 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1136 CodeGenOpts.PatchableFunctionEntryOffset); 1137 } 1138 1139 if (CodeGenOpts.CFProtectionReturn && 1140 Target.checkCFProtectionReturnSupported(getDiags())) { 1141 // Indicate that we want to instrument return control flow protection. 1142 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1143 1); 1144 } 1145 1146 if (CodeGenOpts.CFProtectionBranch && 1147 Target.checkCFProtectionBranchSupported(getDiags())) { 1148 // Indicate that we want to instrument branch control flow protection. 1149 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1150 1); 1151 } 1152 1153 if (CodeGenOpts.FunctionReturnThunks) 1154 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1155 1156 if (CodeGenOpts.IndirectBranchCSPrefix) 1157 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1158 1159 // Add module metadata for return address signing (ignoring 1160 // non-leaf/all) and stack tagging. These are actually turned on by function 1161 // attributes, but we use module metadata to emit build attributes. This is 1162 // needed for LTO, where the function attributes are inside bitcode 1163 // serialised into a global variable by the time build attributes are 1164 // emitted, so we can't access them. LTO objects could be compiled with 1165 // different flags therefore module flags are set to "Min" behavior to achieve 1166 // the same end result of the normal build where e.g BTI is off if any object 1167 // doesn't support it. 1168 if (Context.getTargetInfo().hasFeature("ptrauth") && 1169 LangOpts.getSignReturnAddressScope() != 1170 LangOptions::SignReturnAddressScopeKind::None) 1171 getModule().addModuleFlag(llvm::Module::Override, 1172 "sign-return-address-buildattr", 1); 1173 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1174 getModule().addModuleFlag(llvm::Module::Override, 1175 "tag-stack-memory-buildattr", 1); 1176 1177 if (T.isARM() || T.isThumb() || T.isAArch64()) { 1178 if (LangOpts.BranchTargetEnforcement) 1179 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1180 1); 1181 if (LangOpts.BranchProtectionPAuthLR) 1182 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1183 1); 1184 if (LangOpts.GuardedControlStack) 1185 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1186 if (LangOpts.hasSignReturnAddress()) 1187 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1188 if (LangOpts.isSignReturnAddressScopeAll()) 1189 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1190 1); 1191 if (!LangOpts.isSignReturnAddressWithAKey()) 1192 getModule().addModuleFlag(llvm::Module::Min, 1193 "sign-return-address-with-bkey", 1); 1194 1195 if (getTriple().isOSLinux()) { 1196 assert(getTriple().isOSBinFormatELF()); 1197 using namespace llvm::ELF; 1198 uint64_t PAuthABIVersion = 1199 (LangOpts.PointerAuthIntrinsics 1200 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) | 1201 (LangOpts.PointerAuthCalls 1202 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) | 1203 (LangOpts.PointerAuthReturns 1204 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) | 1205 (LangOpts.PointerAuthAuthTraps 1206 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) | 1207 (LangOpts.PointerAuthVTPtrAddressDiscrimination 1208 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) | 1209 (LangOpts.PointerAuthVTPtrTypeDiscrimination 1210 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) | 1211 (LangOpts.PointerAuthInitFini 1212 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI); 1213 static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI == 1214 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST, 1215 "Update when new enum items are defined"); 1216 if (PAuthABIVersion != 0) { 1217 getModule().addModuleFlag(llvm::Module::Error, 1218 "aarch64-elf-pauthabi-platform", 1219 AARCH64_PAUTH_PLATFORM_LLVM_LINUX); 1220 getModule().addModuleFlag(llvm::Module::Error, 1221 "aarch64-elf-pauthabi-version", 1222 PAuthABIVersion); 1223 } 1224 } 1225 } 1226 1227 if (CodeGenOpts.StackClashProtector) 1228 getModule().addModuleFlag( 1229 llvm::Module::Override, "probe-stack", 1230 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1231 1232 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1233 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1234 CodeGenOpts.StackProbeSize); 1235 1236 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1237 llvm::LLVMContext &Ctx = TheModule.getContext(); 1238 getModule().addModuleFlag( 1239 llvm::Module::Error, "MemProfProfileFilename", 1240 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1241 } 1242 1243 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1244 // Indicate whether __nvvm_reflect should be configured to flush denormal 1245 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1246 // property.) 1247 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1248 CodeGenOpts.FP32DenormalMode.Output != 1249 llvm::DenormalMode::IEEE); 1250 } 1251 1252 if (LangOpts.EHAsynch) 1253 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1254 1255 // Indicate whether this Module was compiled with -fopenmp 1256 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1257 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1258 if (getLangOpts().OpenMPIsTargetDevice) 1259 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1260 LangOpts.OpenMP); 1261 1262 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1263 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1264 EmitOpenCLMetadata(); 1265 // Emit SPIR version. 1266 if (getTriple().isSPIR()) { 1267 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1268 // opencl.spir.version named metadata. 1269 // C++ for OpenCL has a distinct mapping for version compatibility with 1270 // OpenCL. 1271 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1272 llvm::Metadata *SPIRVerElts[] = { 1273 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1274 Int32Ty, Version / 100)), 1275 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1276 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1277 llvm::NamedMDNode *SPIRVerMD = 1278 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1279 llvm::LLVMContext &Ctx = TheModule.getContext(); 1280 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1281 } 1282 } 1283 1284 // HLSL related end of code gen work items. 1285 if (LangOpts.HLSL) 1286 getHLSLRuntime().finishCodeGen(); 1287 1288 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1289 assert(PLevel < 3 && "Invalid PIC Level"); 1290 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1291 if (Context.getLangOpts().PIE) 1292 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1293 } 1294 1295 if (getCodeGenOpts().CodeModel.size() > 0) { 1296 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1297 .Case("tiny", llvm::CodeModel::Tiny) 1298 .Case("small", llvm::CodeModel::Small) 1299 .Case("kernel", llvm::CodeModel::Kernel) 1300 .Case("medium", llvm::CodeModel::Medium) 1301 .Case("large", llvm::CodeModel::Large) 1302 .Default(~0u); 1303 if (CM != ~0u) { 1304 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1305 getModule().setCodeModel(codeModel); 1306 1307 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1308 Context.getTargetInfo().getTriple().getArch() == 1309 llvm::Triple::x86_64) { 1310 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1311 } 1312 } 1313 } 1314 1315 if (CodeGenOpts.NoPLT) 1316 getModule().setRtLibUseGOT(); 1317 if (getTriple().isOSBinFormatELF() && 1318 CodeGenOpts.DirectAccessExternalData != 1319 getModule().getDirectAccessExternalData()) { 1320 getModule().setDirectAccessExternalData( 1321 CodeGenOpts.DirectAccessExternalData); 1322 } 1323 if (CodeGenOpts.UnwindTables) 1324 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1325 1326 switch (CodeGenOpts.getFramePointer()) { 1327 case CodeGenOptions::FramePointerKind::None: 1328 // 0 ("none") is the default. 1329 break; 1330 case CodeGenOptions::FramePointerKind::Reserved: 1331 getModule().setFramePointer(llvm::FramePointerKind::Reserved); 1332 break; 1333 case CodeGenOptions::FramePointerKind::NonLeaf: 1334 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1335 break; 1336 case CodeGenOptions::FramePointerKind::All: 1337 getModule().setFramePointer(llvm::FramePointerKind::All); 1338 break; 1339 } 1340 1341 SimplifyPersonality(); 1342 1343 if (getCodeGenOpts().EmitDeclMetadata) 1344 EmitDeclMetadata(); 1345 1346 if (getCodeGenOpts().CoverageNotesFile.size() || 1347 getCodeGenOpts().CoverageDataFile.size()) 1348 EmitCoverageFile(); 1349 1350 if (CGDebugInfo *DI = getModuleDebugInfo()) 1351 DI->finalize(); 1352 1353 if (getCodeGenOpts().EmitVersionIdentMetadata) 1354 EmitVersionIdentMetadata(); 1355 1356 if (!getCodeGenOpts().RecordCommandLine.empty()) 1357 EmitCommandLineMetadata(); 1358 1359 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1360 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1361 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1362 getModule().setStackProtectorGuardReg( 1363 getCodeGenOpts().StackProtectorGuardReg); 1364 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1365 getModule().setStackProtectorGuardSymbol( 1366 getCodeGenOpts().StackProtectorGuardSymbol); 1367 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1368 getModule().setStackProtectorGuardOffset( 1369 getCodeGenOpts().StackProtectorGuardOffset); 1370 if (getCodeGenOpts().StackAlignment) 1371 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1372 if (getCodeGenOpts().SkipRaxSetup) 1373 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1374 if (getLangOpts().RegCall4) 1375 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1376 1377 if (getContext().getTargetInfo().getMaxTLSAlign()) 1378 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1379 getContext().getTargetInfo().getMaxTLSAlign()); 1380 1381 getTargetCodeGenInfo().emitTargetGlobals(*this); 1382 1383 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1384 1385 EmitBackendOptionsMetadata(getCodeGenOpts()); 1386 1387 // If there is device offloading code embed it in the host now. 1388 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1389 1390 // Set visibility from DLL storage class 1391 // We do this at the end of LLVM IR generation; after any operation 1392 // that might affect the DLL storage class or the visibility, and 1393 // before anything that might act on these. 1394 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1395 1396 // Check the tail call symbols are truly undefined. 1397 if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) { 1398 for (auto &I : MustTailCallUndefinedGlobals) { 1399 if (!I.first->isDefined()) 1400 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1401 else { 1402 StringRef MangledName = getMangledName(GlobalDecl(I.first)); 1403 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1404 if (!Entry || Entry->isWeakForLinker() || 1405 Entry->isDeclarationForLinker()) 1406 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1407 } 1408 } 1409 } 1410 } 1411 1412 void CodeGenModule::EmitOpenCLMetadata() { 1413 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1414 // opencl.ocl.version named metadata node. 1415 // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL. 1416 auto CLVersion = LangOpts.getOpenCLCompatibleVersion(); 1417 1418 auto EmitVersion = [this](StringRef MDName, int Version) { 1419 llvm::Metadata *OCLVerElts[] = { 1420 llvm::ConstantAsMetadata::get( 1421 llvm::ConstantInt::get(Int32Ty, Version / 100)), 1422 llvm::ConstantAsMetadata::get( 1423 llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))}; 1424 llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName); 1425 llvm::LLVMContext &Ctx = TheModule.getContext(); 1426 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1427 }; 1428 1429 EmitVersion("opencl.ocl.version", CLVersion); 1430 if (LangOpts.OpenCLCPlusPlus) { 1431 // In addition to the OpenCL compatible version, emit the C++ version. 1432 EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion); 1433 } 1434 } 1435 1436 void CodeGenModule::EmitBackendOptionsMetadata( 1437 const CodeGenOptions &CodeGenOpts) { 1438 if (getTriple().isRISCV()) { 1439 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1440 CodeGenOpts.SmallDataLimit); 1441 } 1442 } 1443 1444 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1445 // Make sure that this type is translated. 1446 Types.UpdateCompletedType(TD); 1447 } 1448 1449 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1450 // Make sure that this type is translated. 1451 Types.RefreshTypeCacheForClass(RD); 1452 } 1453 1454 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1455 if (!TBAA) 1456 return nullptr; 1457 return TBAA->getTypeInfo(QTy); 1458 } 1459 1460 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1461 if (!TBAA) 1462 return TBAAAccessInfo(); 1463 if (getLangOpts().CUDAIsDevice) { 1464 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1465 // access info. 1466 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1467 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1468 nullptr) 1469 return TBAAAccessInfo(); 1470 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1471 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1472 nullptr) 1473 return TBAAAccessInfo(); 1474 } 1475 } 1476 return TBAA->getAccessInfo(AccessType); 1477 } 1478 1479 TBAAAccessInfo 1480 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1481 if (!TBAA) 1482 return TBAAAccessInfo(); 1483 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1484 } 1485 1486 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1487 if (!TBAA) 1488 return nullptr; 1489 return TBAA->getTBAAStructInfo(QTy); 1490 } 1491 1492 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1493 if (!TBAA) 1494 return nullptr; 1495 return TBAA->getBaseTypeInfo(QTy); 1496 } 1497 1498 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1499 if (!TBAA) 1500 return nullptr; 1501 return TBAA->getAccessTagInfo(Info); 1502 } 1503 1504 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1505 TBAAAccessInfo TargetInfo) { 1506 if (!TBAA) 1507 return TBAAAccessInfo(); 1508 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1509 } 1510 1511 TBAAAccessInfo 1512 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1513 TBAAAccessInfo InfoB) { 1514 if (!TBAA) 1515 return TBAAAccessInfo(); 1516 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1517 } 1518 1519 TBAAAccessInfo 1520 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1521 TBAAAccessInfo SrcInfo) { 1522 if (!TBAA) 1523 return TBAAAccessInfo(); 1524 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1525 } 1526 1527 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1528 TBAAAccessInfo TBAAInfo) { 1529 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1530 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1531 } 1532 1533 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1534 llvm::Instruction *I, const CXXRecordDecl *RD) { 1535 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1536 llvm::MDNode::get(getLLVMContext(), {})); 1537 } 1538 1539 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1540 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1541 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1542 } 1543 1544 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1545 /// specified stmt yet. 1546 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1547 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1548 "cannot compile this %0 yet"); 1549 std::string Msg = Type; 1550 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1551 << Msg << S->getSourceRange(); 1552 } 1553 1554 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1555 /// specified decl yet. 1556 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1557 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1558 "cannot compile this %0 yet"); 1559 std::string Msg = Type; 1560 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1561 } 1562 1563 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1564 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1565 } 1566 1567 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1568 const NamedDecl *D) const { 1569 // Internal definitions always have default visibility. 1570 if (GV->hasLocalLinkage()) { 1571 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1572 return; 1573 } 1574 if (!D) 1575 return; 1576 1577 // Set visibility for definitions, and for declarations if requested globally 1578 // or set explicitly. 1579 LinkageInfo LV = D->getLinkageAndVisibility(); 1580 1581 // OpenMP declare target variables must be visible to the host so they can 1582 // be registered. We require protected visibility unless the variable has 1583 // the DT_nohost modifier and does not need to be registered. 1584 if (Context.getLangOpts().OpenMP && 1585 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1586 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1587 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1588 OMPDeclareTargetDeclAttr::DT_NoHost && 1589 LV.getVisibility() == HiddenVisibility) { 1590 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1591 return; 1592 } 1593 1594 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1595 // Reject incompatible dlllstorage and visibility annotations. 1596 if (!LV.isVisibilityExplicit()) 1597 return; 1598 if (GV->hasDLLExportStorageClass()) { 1599 if (LV.getVisibility() == HiddenVisibility) 1600 getDiags().Report(D->getLocation(), 1601 diag::err_hidden_visibility_dllexport); 1602 } else if (LV.getVisibility() != DefaultVisibility) { 1603 getDiags().Report(D->getLocation(), 1604 diag::err_non_default_visibility_dllimport); 1605 } 1606 return; 1607 } 1608 1609 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1610 !GV->isDeclarationForLinker()) 1611 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1612 } 1613 1614 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1615 llvm::GlobalValue *GV) { 1616 if (GV->hasLocalLinkage()) 1617 return true; 1618 1619 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1620 return true; 1621 1622 // DLLImport explicitly marks the GV as external. 1623 if (GV->hasDLLImportStorageClass()) 1624 return false; 1625 1626 const llvm::Triple &TT = CGM.getTriple(); 1627 const auto &CGOpts = CGM.getCodeGenOpts(); 1628 if (TT.isWindowsGNUEnvironment()) { 1629 // In MinGW, variables without DLLImport can still be automatically 1630 // imported from a DLL by the linker; don't mark variables that 1631 // potentially could come from another DLL as DSO local. 1632 1633 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1634 // (and this actually happens in the public interface of libstdc++), so 1635 // such variables can't be marked as DSO local. (Native TLS variables 1636 // can't be dllimported at all, though.) 1637 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1638 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1639 CGOpts.AutoImport) 1640 return false; 1641 } 1642 1643 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1644 // remain unresolved in the link, they can be resolved to zero, which is 1645 // outside the current DSO. 1646 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1647 return false; 1648 1649 // Every other GV is local on COFF. 1650 // Make an exception for windows OS in the triple: Some firmware builds use 1651 // *-win32-macho triples. This (accidentally?) produced windows relocations 1652 // without GOT tables in older clang versions; Keep this behaviour. 1653 // FIXME: even thread local variables? 1654 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1655 return true; 1656 1657 // Only handle COFF and ELF for now. 1658 if (!TT.isOSBinFormatELF()) 1659 return false; 1660 1661 // If this is not an executable, don't assume anything is local. 1662 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1663 const auto &LOpts = CGM.getLangOpts(); 1664 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1665 // On ELF, if -fno-semantic-interposition is specified and the target 1666 // supports local aliases, there will be neither CC1 1667 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1668 // dso_local on the function if using a local alias is preferable (can avoid 1669 // PLT indirection). 1670 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1671 return false; 1672 return !(CGM.getLangOpts().SemanticInterposition || 1673 CGM.getLangOpts().HalfNoSemanticInterposition); 1674 } 1675 1676 // A definition cannot be preempted from an executable. 1677 if (!GV->isDeclarationForLinker()) 1678 return true; 1679 1680 // Most PIC code sequences that assume that a symbol is local cannot produce a 1681 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1682 // depended, it seems worth it to handle it here. 1683 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1684 return false; 1685 1686 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1687 if (TT.isPPC64()) 1688 return false; 1689 1690 if (CGOpts.DirectAccessExternalData) { 1691 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1692 // for non-thread-local variables. If the symbol is not defined in the 1693 // executable, a copy relocation will be needed at link time. dso_local is 1694 // excluded for thread-local variables because they generally don't support 1695 // copy relocations. 1696 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1697 if (!Var->isThreadLocal()) 1698 return true; 1699 1700 // -fno-pic sets dso_local on a function declaration to allow direct 1701 // accesses when taking its address (similar to a data symbol). If the 1702 // function is not defined in the executable, a canonical PLT entry will be 1703 // needed at link time. -fno-direct-access-external-data can avoid the 1704 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1705 // it could just cause trouble without providing perceptible benefits. 1706 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1707 return true; 1708 } 1709 1710 // If we can use copy relocations we can assume it is local. 1711 1712 // Otherwise don't assume it is local. 1713 return false; 1714 } 1715 1716 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1717 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1718 } 1719 1720 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1721 GlobalDecl GD) const { 1722 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1723 // C++ destructors have a few C++ ABI specific special cases. 1724 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1725 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1726 return; 1727 } 1728 setDLLImportDLLExport(GV, D); 1729 } 1730 1731 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1732 const NamedDecl *D) const { 1733 if (D && D->isExternallyVisible()) { 1734 if (D->hasAttr<DLLImportAttr>()) 1735 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1736 else if ((D->hasAttr<DLLExportAttr>() || 1737 shouldMapVisibilityToDLLExport(D)) && 1738 !GV->isDeclarationForLinker()) 1739 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1740 } 1741 } 1742 1743 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1744 GlobalDecl GD) const { 1745 setDLLImportDLLExport(GV, GD); 1746 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1747 } 1748 1749 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1750 const NamedDecl *D) const { 1751 setDLLImportDLLExport(GV, D); 1752 setGVPropertiesAux(GV, D); 1753 } 1754 1755 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1756 const NamedDecl *D) const { 1757 setGlobalVisibility(GV, D); 1758 setDSOLocal(GV); 1759 GV->setPartition(CodeGenOpts.SymbolPartition); 1760 } 1761 1762 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1763 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1764 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1765 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1766 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1767 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1768 } 1769 1770 llvm::GlobalVariable::ThreadLocalMode 1771 CodeGenModule::GetDefaultLLVMTLSModel() const { 1772 switch (CodeGenOpts.getDefaultTLSModel()) { 1773 case CodeGenOptions::GeneralDynamicTLSModel: 1774 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1775 case CodeGenOptions::LocalDynamicTLSModel: 1776 return llvm::GlobalVariable::LocalDynamicTLSModel; 1777 case CodeGenOptions::InitialExecTLSModel: 1778 return llvm::GlobalVariable::InitialExecTLSModel; 1779 case CodeGenOptions::LocalExecTLSModel: 1780 return llvm::GlobalVariable::LocalExecTLSModel; 1781 } 1782 llvm_unreachable("Invalid TLS model!"); 1783 } 1784 1785 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1786 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1787 1788 llvm::GlobalValue::ThreadLocalMode TLM; 1789 TLM = GetDefaultLLVMTLSModel(); 1790 1791 // Override the TLS model if it is explicitly specified. 1792 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1793 TLM = GetLLVMTLSModel(Attr->getModel()); 1794 } 1795 1796 GV->setThreadLocalMode(TLM); 1797 } 1798 1799 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1800 StringRef Name) { 1801 const TargetInfo &Target = CGM.getTarget(); 1802 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1803 } 1804 1805 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1806 const CPUSpecificAttr *Attr, 1807 unsigned CPUIndex, 1808 raw_ostream &Out) { 1809 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1810 // supported. 1811 if (Attr) 1812 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1813 else if (CGM.getTarget().supportsIFunc()) 1814 Out << ".resolver"; 1815 } 1816 1817 // Returns true if GD is a function decl with internal linkage and 1818 // needs a unique suffix after the mangled name. 1819 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1820 CodeGenModule &CGM) { 1821 const Decl *D = GD.getDecl(); 1822 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1823 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1824 } 1825 1826 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1827 const NamedDecl *ND, 1828 bool OmitMultiVersionMangling = false) { 1829 SmallString<256> Buffer; 1830 llvm::raw_svector_ostream Out(Buffer); 1831 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1832 if (!CGM.getModuleNameHash().empty()) 1833 MC.needsUniqueInternalLinkageNames(); 1834 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1835 if (ShouldMangle) 1836 MC.mangleName(GD.getWithDecl(ND), Out); 1837 else { 1838 IdentifierInfo *II = ND->getIdentifier(); 1839 assert(II && "Attempt to mangle unnamed decl."); 1840 const auto *FD = dyn_cast<FunctionDecl>(ND); 1841 1842 if (FD && 1843 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1844 if (CGM.getLangOpts().RegCall4) 1845 Out << "__regcall4__" << II->getName(); 1846 else 1847 Out << "__regcall3__" << II->getName(); 1848 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1849 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1850 Out << "__device_stub__" << II->getName(); 1851 } else { 1852 Out << II->getName(); 1853 } 1854 } 1855 1856 // Check if the module name hash should be appended for internal linkage 1857 // symbols. This should come before multi-version target suffixes are 1858 // appended. This is to keep the name and module hash suffix of the 1859 // internal linkage function together. The unique suffix should only be 1860 // added when name mangling is done to make sure that the final name can 1861 // be properly demangled. For example, for C functions without prototypes, 1862 // name mangling is not done and the unique suffix should not be appeneded 1863 // then. 1864 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1865 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1866 "Hash computed when not explicitly requested"); 1867 Out << CGM.getModuleNameHash(); 1868 } 1869 1870 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1871 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1872 switch (FD->getMultiVersionKind()) { 1873 case MultiVersionKind::CPUDispatch: 1874 case MultiVersionKind::CPUSpecific: 1875 AppendCPUSpecificCPUDispatchMangling(CGM, 1876 FD->getAttr<CPUSpecificAttr>(), 1877 GD.getMultiVersionIndex(), Out); 1878 break; 1879 case MultiVersionKind::Target: { 1880 auto *Attr = FD->getAttr<TargetAttr>(); 1881 assert(Attr && "Expected TargetAttr to be present " 1882 "for attribute mangling"); 1883 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1884 Info.appendAttributeMangling(Attr, Out); 1885 break; 1886 } 1887 case MultiVersionKind::TargetVersion: { 1888 auto *Attr = FD->getAttr<TargetVersionAttr>(); 1889 assert(Attr && "Expected TargetVersionAttr to be present " 1890 "for attribute mangling"); 1891 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1892 Info.appendAttributeMangling(Attr, Out); 1893 break; 1894 } 1895 case MultiVersionKind::TargetClones: { 1896 auto *Attr = FD->getAttr<TargetClonesAttr>(); 1897 assert(Attr && "Expected TargetClonesAttr to be present " 1898 "for attribute mangling"); 1899 unsigned Index = GD.getMultiVersionIndex(); 1900 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1901 Info.appendAttributeMangling(Attr, Index, Out); 1902 break; 1903 } 1904 case MultiVersionKind::None: 1905 llvm_unreachable("None multiversion type isn't valid here"); 1906 } 1907 } 1908 1909 // Make unique name for device side static file-scope variable for HIP. 1910 if (CGM.getContext().shouldExternalize(ND) && 1911 CGM.getLangOpts().GPURelocatableDeviceCode && 1912 CGM.getLangOpts().CUDAIsDevice) 1913 CGM.printPostfixForExternalizedDecl(Out, ND); 1914 1915 return std::string(Out.str()); 1916 } 1917 1918 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1919 const FunctionDecl *FD, 1920 StringRef &CurName) { 1921 if (!FD->isMultiVersion()) 1922 return; 1923 1924 // Get the name of what this would be without the 'target' attribute. This 1925 // allows us to lookup the version that was emitted when this wasn't a 1926 // multiversion function. 1927 std::string NonTargetName = 1928 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1929 GlobalDecl OtherGD; 1930 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1931 assert(OtherGD.getCanonicalDecl() 1932 .getDecl() 1933 ->getAsFunction() 1934 ->isMultiVersion() && 1935 "Other GD should now be a multiversioned function"); 1936 // OtherFD is the version of this function that was mangled BEFORE 1937 // becoming a MultiVersion function. It potentially needs to be updated. 1938 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1939 .getDecl() 1940 ->getAsFunction() 1941 ->getMostRecentDecl(); 1942 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1943 // This is so that if the initial version was already the 'default' 1944 // version, we don't try to update it. 1945 if (OtherName != NonTargetName) { 1946 // Remove instead of erase, since others may have stored the StringRef 1947 // to this. 1948 const auto ExistingRecord = Manglings.find(NonTargetName); 1949 if (ExistingRecord != std::end(Manglings)) 1950 Manglings.remove(&(*ExistingRecord)); 1951 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1952 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1953 Result.first->first(); 1954 // If this is the current decl is being created, make sure we update the name. 1955 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1956 CurName = OtherNameRef; 1957 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1958 Entry->setName(OtherName); 1959 } 1960 } 1961 } 1962 1963 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1964 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1965 1966 // Some ABIs don't have constructor variants. Make sure that base and 1967 // complete constructors get mangled the same. 1968 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1969 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1970 CXXCtorType OrigCtorType = GD.getCtorType(); 1971 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1972 if (OrigCtorType == Ctor_Base) 1973 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1974 } 1975 } 1976 1977 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1978 // static device variable depends on whether the variable is referenced by 1979 // a host or device host function. Therefore the mangled name cannot be 1980 // cached. 1981 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1982 auto FoundName = MangledDeclNames.find(CanonicalGD); 1983 if (FoundName != MangledDeclNames.end()) 1984 return FoundName->second; 1985 } 1986 1987 // Keep the first result in the case of a mangling collision. 1988 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1989 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1990 1991 // Ensure either we have different ABIs between host and device compilations, 1992 // says host compilation following MSVC ABI but device compilation follows 1993 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1994 // mangling should be the same after name stubbing. The later checking is 1995 // very important as the device kernel name being mangled in host-compilation 1996 // is used to resolve the device binaries to be executed. Inconsistent naming 1997 // result in undefined behavior. Even though we cannot check that naming 1998 // directly between host- and device-compilations, the host- and 1999 // device-mangling in host compilation could help catching certain ones. 2000 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 2001 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 2002 (getContext().getAuxTargetInfo() && 2003 (getContext().getAuxTargetInfo()->getCXXABI() != 2004 getContext().getTargetInfo().getCXXABI())) || 2005 getCUDARuntime().getDeviceSideName(ND) == 2006 getMangledNameImpl( 2007 *this, 2008 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 2009 ND)); 2010 2011 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 2012 return MangledDeclNames[CanonicalGD] = Result.first->first(); 2013 } 2014 2015 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 2016 const BlockDecl *BD) { 2017 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 2018 const Decl *D = GD.getDecl(); 2019 2020 SmallString<256> Buffer; 2021 llvm::raw_svector_ostream Out(Buffer); 2022 if (!D) 2023 MangleCtx.mangleGlobalBlock(BD, 2024 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 2025 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 2026 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 2027 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 2028 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 2029 else 2030 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 2031 2032 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 2033 return Result.first->first(); 2034 } 2035 2036 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 2037 auto it = MangledDeclNames.begin(); 2038 while (it != MangledDeclNames.end()) { 2039 if (it->second == Name) 2040 return it->first; 2041 it++; 2042 } 2043 return GlobalDecl(); 2044 } 2045 2046 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 2047 return getModule().getNamedValue(Name); 2048 } 2049 2050 /// AddGlobalCtor - Add a function to the list that will be called before 2051 /// main() runs. 2052 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 2053 unsigned LexOrder, 2054 llvm::Constant *AssociatedData) { 2055 // FIXME: Type coercion of void()* types. 2056 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 2057 } 2058 2059 /// AddGlobalDtor - Add a function to the list that will be called 2060 /// when the module is unloaded. 2061 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 2062 bool IsDtorAttrFunc) { 2063 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 2064 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 2065 DtorsUsingAtExit[Priority].push_back(Dtor); 2066 return; 2067 } 2068 2069 // FIXME: Type coercion of void()* types. 2070 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2071 } 2072 2073 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2074 if (Fns.empty()) return; 2075 2076 // Ctor function type is void()*. 2077 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 2078 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 2079 TheModule.getDataLayout().getProgramAddressSpace()); 2080 2081 // Get the type of a ctor entry, { i32, void ()*, i8* }. 2082 llvm::StructType *CtorStructTy = llvm::StructType::get( 2083 Int32Ty, CtorPFTy, VoidPtrTy); 2084 2085 // Construct the constructor and destructor arrays. 2086 ConstantInitBuilder builder(*this); 2087 auto ctors = builder.beginArray(CtorStructTy); 2088 for (const auto &I : Fns) { 2089 auto ctor = ctors.beginStruct(CtorStructTy); 2090 ctor.addInt(Int32Ty, I.Priority); 2091 ctor.add(I.Initializer); 2092 if (I.AssociatedData) 2093 ctor.add(I.AssociatedData); 2094 else 2095 ctor.addNullPointer(VoidPtrTy); 2096 ctor.finishAndAddTo(ctors); 2097 } 2098 2099 auto list = 2100 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2101 /*constant*/ false, 2102 llvm::GlobalValue::AppendingLinkage); 2103 2104 // The LTO linker doesn't seem to like it when we set an alignment 2105 // on appending variables. Take it off as a workaround. 2106 list->setAlignment(std::nullopt); 2107 2108 Fns.clear(); 2109 } 2110 2111 llvm::GlobalValue::LinkageTypes 2112 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2113 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2114 2115 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2116 2117 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2118 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2119 2120 return getLLVMLinkageForDeclarator(D, Linkage); 2121 } 2122 2123 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2124 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2125 if (!MDS) return nullptr; 2126 2127 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2128 } 2129 2130 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2131 if (auto *FnType = T->getAs<FunctionProtoType>()) 2132 T = getContext().getFunctionType( 2133 FnType->getReturnType(), FnType->getParamTypes(), 2134 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2135 2136 std::string OutName; 2137 llvm::raw_string_ostream Out(OutName); 2138 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2139 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2140 2141 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2142 Out << ".normalized"; 2143 2144 return llvm::ConstantInt::get(Int32Ty, 2145 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2146 } 2147 2148 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2149 const CGFunctionInfo &Info, 2150 llvm::Function *F, bool IsThunk) { 2151 unsigned CallingConv; 2152 llvm::AttributeList PAL; 2153 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2154 /*AttrOnCallSite=*/false, IsThunk); 2155 if (CallingConv == llvm::CallingConv::X86_VectorCall && 2156 getTarget().getTriple().isWindowsArm64EC()) { 2157 SourceLocation Loc; 2158 if (const Decl *D = GD.getDecl()) 2159 Loc = D->getLocation(); 2160 2161 Error(Loc, "__vectorcall calling convention is not currently supported"); 2162 } 2163 F->setAttributes(PAL); 2164 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2165 } 2166 2167 static void removeImageAccessQualifier(std::string& TyName) { 2168 std::string ReadOnlyQual("__read_only"); 2169 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2170 if (ReadOnlyPos != std::string::npos) 2171 // "+ 1" for the space after access qualifier. 2172 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2173 else { 2174 std::string WriteOnlyQual("__write_only"); 2175 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2176 if (WriteOnlyPos != std::string::npos) 2177 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2178 else { 2179 std::string ReadWriteQual("__read_write"); 2180 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2181 if (ReadWritePos != std::string::npos) 2182 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2183 } 2184 } 2185 } 2186 2187 // Returns the address space id that should be produced to the 2188 // kernel_arg_addr_space metadata. This is always fixed to the ids 2189 // as specified in the SPIR 2.0 specification in order to differentiate 2190 // for example in clGetKernelArgInfo() implementation between the address 2191 // spaces with targets without unique mapping to the OpenCL address spaces 2192 // (basically all single AS CPUs). 2193 static unsigned ArgInfoAddressSpace(LangAS AS) { 2194 switch (AS) { 2195 case LangAS::opencl_global: 2196 return 1; 2197 case LangAS::opencl_constant: 2198 return 2; 2199 case LangAS::opencl_local: 2200 return 3; 2201 case LangAS::opencl_generic: 2202 return 4; // Not in SPIR 2.0 specs. 2203 case LangAS::opencl_global_device: 2204 return 5; 2205 case LangAS::opencl_global_host: 2206 return 6; 2207 default: 2208 return 0; // Assume private. 2209 } 2210 } 2211 2212 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2213 const FunctionDecl *FD, 2214 CodeGenFunction *CGF) { 2215 assert(((FD && CGF) || (!FD && !CGF)) && 2216 "Incorrect use - FD and CGF should either be both null or not!"); 2217 // Create MDNodes that represent the kernel arg metadata. 2218 // Each MDNode is a list in the form of "key", N number of values which is 2219 // the same number of values as their are kernel arguments. 2220 2221 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2222 2223 // MDNode for the kernel argument address space qualifiers. 2224 SmallVector<llvm::Metadata *, 8> addressQuals; 2225 2226 // MDNode for the kernel argument access qualifiers (images only). 2227 SmallVector<llvm::Metadata *, 8> accessQuals; 2228 2229 // MDNode for the kernel argument type names. 2230 SmallVector<llvm::Metadata *, 8> argTypeNames; 2231 2232 // MDNode for the kernel argument base type names. 2233 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2234 2235 // MDNode for the kernel argument type qualifiers. 2236 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2237 2238 // MDNode for the kernel argument names. 2239 SmallVector<llvm::Metadata *, 8> argNames; 2240 2241 if (FD && CGF) 2242 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2243 const ParmVarDecl *parm = FD->getParamDecl(i); 2244 // Get argument name. 2245 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2246 2247 if (!getLangOpts().OpenCL) 2248 continue; 2249 QualType ty = parm->getType(); 2250 std::string typeQuals; 2251 2252 // Get image and pipe access qualifier: 2253 if (ty->isImageType() || ty->isPipeType()) { 2254 const Decl *PDecl = parm; 2255 if (const auto *TD = ty->getAs<TypedefType>()) 2256 PDecl = TD->getDecl(); 2257 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2258 if (A && A->isWriteOnly()) 2259 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2260 else if (A && A->isReadWrite()) 2261 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2262 else 2263 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2264 } else 2265 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2266 2267 auto getTypeSpelling = [&](QualType Ty) { 2268 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2269 2270 if (Ty.isCanonical()) { 2271 StringRef typeNameRef = typeName; 2272 // Turn "unsigned type" to "utype" 2273 if (typeNameRef.consume_front("unsigned ")) 2274 return std::string("u") + typeNameRef.str(); 2275 if (typeNameRef.consume_front("signed ")) 2276 return typeNameRef.str(); 2277 } 2278 2279 return typeName; 2280 }; 2281 2282 if (ty->isPointerType()) { 2283 QualType pointeeTy = ty->getPointeeType(); 2284 2285 // Get address qualifier. 2286 addressQuals.push_back( 2287 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2288 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2289 2290 // Get argument type name. 2291 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2292 std::string baseTypeName = 2293 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2294 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2295 argBaseTypeNames.push_back( 2296 llvm::MDString::get(VMContext, baseTypeName)); 2297 2298 // Get argument type qualifiers: 2299 if (ty.isRestrictQualified()) 2300 typeQuals = "restrict"; 2301 if (pointeeTy.isConstQualified() || 2302 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2303 typeQuals += typeQuals.empty() ? "const" : " const"; 2304 if (pointeeTy.isVolatileQualified()) 2305 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2306 } else { 2307 uint32_t AddrSpc = 0; 2308 bool isPipe = ty->isPipeType(); 2309 if (ty->isImageType() || isPipe) 2310 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2311 2312 addressQuals.push_back( 2313 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2314 2315 // Get argument type name. 2316 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2317 std::string typeName = getTypeSpelling(ty); 2318 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2319 2320 // Remove access qualifiers on images 2321 // (as they are inseparable from type in clang implementation, 2322 // but OpenCL spec provides a special query to get access qualifier 2323 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2324 if (ty->isImageType()) { 2325 removeImageAccessQualifier(typeName); 2326 removeImageAccessQualifier(baseTypeName); 2327 } 2328 2329 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2330 argBaseTypeNames.push_back( 2331 llvm::MDString::get(VMContext, baseTypeName)); 2332 2333 if (isPipe) 2334 typeQuals = "pipe"; 2335 } 2336 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2337 } 2338 2339 if (getLangOpts().OpenCL) { 2340 Fn->setMetadata("kernel_arg_addr_space", 2341 llvm::MDNode::get(VMContext, addressQuals)); 2342 Fn->setMetadata("kernel_arg_access_qual", 2343 llvm::MDNode::get(VMContext, accessQuals)); 2344 Fn->setMetadata("kernel_arg_type", 2345 llvm::MDNode::get(VMContext, argTypeNames)); 2346 Fn->setMetadata("kernel_arg_base_type", 2347 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2348 Fn->setMetadata("kernel_arg_type_qual", 2349 llvm::MDNode::get(VMContext, argTypeQuals)); 2350 } 2351 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2352 getCodeGenOpts().HIPSaveKernelArgName) 2353 Fn->setMetadata("kernel_arg_name", 2354 llvm::MDNode::get(VMContext, argNames)); 2355 } 2356 2357 /// Determines whether the language options require us to model 2358 /// unwind exceptions. We treat -fexceptions as mandating this 2359 /// except under the fragile ObjC ABI with only ObjC exceptions 2360 /// enabled. This means, for example, that C with -fexceptions 2361 /// enables this. 2362 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2363 // If exceptions are completely disabled, obviously this is false. 2364 if (!LangOpts.Exceptions) return false; 2365 2366 // If C++ exceptions are enabled, this is true. 2367 if (LangOpts.CXXExceptions) return true; 2368 2369 // If ObjC exceptions are enabled, this depends on the ABI. 2370 if (LangOpts.ObjCExceptions) { 2371 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2372 } 2373 2374 return true; 2375 } 2376 2377 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2378 const CXXMethodDecl *MD) { 2379 // Check that the type metadata can ever actually be used by a call. 2380 if (!CGM.getCodeGenOpts().LTOUnit || 2381 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2382 return false; 2383 2384 // Only functions whose address can be taken with a member function pointer 2385 // need this sort of type metadata. 2386 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2387 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2388 } 2389 2390 SmallVector<const CXXRecordDecl *, 0> 2391 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2392 llvm::SetVector<const CXXRecordDecl *> MostBases; 2393 2394 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2395 CollectMostBases = [&](const CXXRecordDecl *RD) { 2396 if (RD->getNumBases() == 0) 2397 MostBases.insert(RD); 2398 for (const CXXBaseSpecifier &B : RD->bases()) 2399 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2400 }; 2401 CollectMostBases(RD); 2402 return MostBases.takeVector(); 2403 } 2404 2405 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2406 llvm::Function *F) { 2407 llvm::AttrBuilder B(F->getContext()); 2408 2409 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2410 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2411 2412 if (CodeGenOpts.StackClashProtector) 2413 B.addAttribute("probe-stack", "inline-asm"); 2414 2415 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2416 B.addAttribute("stack-probe-size", 2417 std::to_string(CodeGenOpts.StackProbeSize)); 2418 2419 if (!hasUnwindExceptions(LangOpts)) 2420 B.addAttribute(llvm::Attribute::NoUnwind); 2421 2422 if (D && D->hasAttr<NoStackProtectorAttr>()) 2423 ; // Do nothing. 2424 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2425 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2426 B.addAttribute(llvm::Attribute::StackProtectStrong); 2427 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2428 B.addAttribute(llvm::Attribute::StackProtect); 2429 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2430 B.addAttribute(llvm::Attribute::StackProtectStrong); 2431 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2432 B.addAttribute(llvm::Attribute::StackProtectReq); 2433 2434 if (!D) { 2435 // If we don't have a declaration to control inlining, the function isn't 2436 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2437 // disabled, mark the function as noinline. 2438 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2439 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2440 B.addAttribute(llvm::Attribute::NoInline); 2441 2442 F->addFnAttrs(B); 2443 return; 2444 } 2445 2446 // Handle SME attributes that apply to function definitions, 2447 // rather than to function prototypes. 2448 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2449 B.addAttribute("aarch64_pstate_sm_body"); 2450 2451 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2452 if (Attr->isNewZA()) 2453 B.addAttribute("aarch64_new_za"); 2454 if (Attr->isNewZT0()) 2455 B.addAttribute("aarch64_new_zt0"); 2456 } 2457 2458 // Track whether we need to add the optnone LLVM attribute, 2459 // starting with the default for this optimization level. 2460 bool ShouldAddOptNone = 2461 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2462 // We can't add optnone in the following cases, it won't pass the verifier. 2463 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2464 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2465 2466 // Add optnone, but do so only if the function isn't always_inline. 2467 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2468 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2469 B.addAttribute(llvm::Attribute::OptimizeNone); 2470 2471 // OptimizeNone implies noinline; we should not be inlining such functions. 2472 B.addAttribute(llvm::Attribute::NoInline); 2473 2474 // We still need to handle naked functions even though optnone subsumes 2475 // much of their semantics. 2476 if (D->hasAttr<NakedAttr>()) 2477 B.addAttribute(llvm::Attribute::Naked); 2478 2479 // OptimizeNone wins over OptimizeForSize and MinSize. 2480 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2481 F->removeFnAttr(llvm::Attribute::MinSize); 2482 } else if (D->hasAttr<NakedAttr>()) { 2483 // Naked implies noinline: we should not be inlining such functions. 2484 B.addAttribute(llvm::Attribute::Naked); 2485 B.addAttribute(llvm::Attribute::NoInline); 2486 } else if (D->hasAttr<NoDuplicateAttr>()) { 2487 B.addAttribute(llvm::Attribute::NoDuplicate); 2488 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2489 // Add noinline if the function isn't always_inline. 2490 B.addAttribute(llvm::Attribute::NoInline); 2491 } else if (D->hasAttr<AlwaysInlineAttr>() && 2492 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2493 // (noinline wins over always_inline, and we can't specify both in IR) 2494 B.addAttribute(llvm::Attribute::AlwaysInline); 2495 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2496 // If we're not inlining, then force everything that isn't always_inline to 2497 // carry an explicit noinline attribute. 2498 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2499 B.addAttribute(llvm::Attribute::NoInline); 2500 } else { 2501 // Otherwise, propagate the inline hint attribute and potentially use its 2502 // absence to mark things as noinline. 2503 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2504 // Search function and template pattern redeclarations for inline. 2505 auto CheckForInline = [](const FunctionDecl *FD) { 2506 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2507 return Redecl->isInlineSpecified(); 2508 }; 2509 if (any_of(FD->redecls(), CheckRedeclForInline)) 2510 return true; 2511 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2512 if (!Pattern) 2513 return false; 2514 return any_of(Pattern->redecls(), CheckRedeclForInline); 2515 }; 2516 if (CheckForInline(FD)) { 2517 B.addAttribute(llvm::Attribute::InlineHint); 2518 } else if (CodeGenOpts.getInlining() == 2519 CodeGenOptions::OnlyHintInlining && 2520 !FD->isInlined() && 2521 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2522 B.addAttribute(llvm::Attribute::NoInline); 2523 } 2524 } 2525 } 2526 2527 // Add other optimization related attributes if we are optimizing this 2528 // function. 2529 if (!D->hasAttr<OptimizeNoneAttr>()) { 2530 if (D->hasAttr<ColdAttr>()) { 2531 if (!ShouldAddOptNone) 2532 B.addAttribute(llvm::Attribute::OptimizeForSize); 2533 B.addAttribute(llvm::Attribute::Cold); 2534 } 2535 if (D->hasAttr<HotAttr>()) 2536 B.addAttribute(llvm::Attribute::Hot); 2537 if (D->hasAttr<MinSizeAttr>()) 2538 B.addAttribute(llvm::Attribute::MinSize); 2539 } 2540 2541 F->addFnAttrs(B); 2542 2543 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2544 if (alignment) 2545 F->setAlignment(llvm::Align(alignment)); 2546 2547 if (!D->hasAttr<AlignedAttr>()) 2548 if (LangOpts.FunctionAlignment) 2549 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2550 2551 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2552 // reserve a bit for differentiating between virtual and non-virtual member 2553 // functions. If the current target's C++ ABI requires this and this is a 2554 // member function, set its alignment accordingly. 2555 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2556 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2557 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2558 } 2559 2560 // In the cross-dso CFI mode with canonical jump tables, we want !type 2561 // attributes on definitions only. 2562 if (CodeGenOpts.SanitizeCfiCrossDso && 2563 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2564 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2565 // Skip available_externally functions. They won't be codegen'ed in the 2566 // current module anyway. 2567 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2568 CreateFunctionTypeMetadataForIcall(FD, F); 2569 } 2570 } 2571 2572 // Emit type metadata on member functions for member function pointer checks. 2573 // These are only ever necessary on definitions; we're guaranteed that the 2574 // definition will be present in the LTO unit as a result of LTO visibility. 2575 auto *MD = dyn_cast<CXXMethodDecl>(D); 2576 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2577 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2578 llvm::Metadata *Id = 2579 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2580 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2581 F->addTypeMetadata(0, Id); 2582 } 2583 } 2584 } 2585 2586 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2587 const Decl *D = GD.getDecl(); 2588 if (isa_and_nonnull<NamedDecl>(D)) 2589 setGVProperties(GV, GD); 2590 else 2591 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2592 2593 if (D && D->hasAttr<UsedAttr>()) 2594 addUsedOrCompilerUsedGlobal(GV); 2595 2596 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2597 VD && 2598 ((CodeGenOpts.KeepPersistentStorageVariables && 2599 (VD->getStorageDuration() == SD_Static || 2600 VD->getStorageDuration() == SD_Thread)) || 2601 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2602 VD->getType().isConstQualified()))) 2603 addUsedOrCompilerUsedGlobal(GV); 2604 } 2605 2606 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2607 llvm::AttrBuilder &Attrs, 2608 bool SetTargetFeatures) { 2609 // Add target-cpu and target-features attributes to functions. If 2610 // we have a decl for the function and it has a target attribute then 2611 // parse that and add it to the feature set. 2612 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2613 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2614 std::vector<std::string> Features; 2615 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2616 FD = FD ? FD->getMostRecentDecl() : FD; 2617 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2618 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2619 assert((!TD || !TV) && "both target_version and target specified"); 2620 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2621 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2622 bool AddedAttr = false; 2623 if (TD || TV || SD || TC) { 2624 llvm::StringMap<bool> FeatureMap; 2625 getContext().getFunctionFeatureMap(FeatureMap, GD); 2626 2627 // Produce the canonical string for this set of features. 2628 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2629 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2630 2631 // Now add the target-cpu and target-features to the function. 2632 // While we populated the feature map above, we still need to 2633 // get and parse the target attribute so we can get the cpu for 2634 // the function. 2635 if (TD) { 2636 ParsedTargetAttr ParsedAttr = 2637 Target.parseTargetAttr(TD->getFeaturesStr()); 2638 if (!ParsedAttr.CPU.empty() && 2639 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2640 TargetCPU = ParsedAttr.CPU; 2641 TuneCPU = ""; // Clear the tune CPU. 2642 } 2643 if (!ParsedAttr.Tune.empty() && 2644 getTarget().isValidCPUName(ParsedAttr.Tune)) 2645 TuneCPU = ParsedAttr.Tune; 2646 } 2647 2648 if (SD) { 2649 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2650 // favor this processor. 2651 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2652 } 2653 } else { 2654 // Otherwise just add the existing target cpu and target features to the 2655 // function. 2656 Features = getTarget().getTargetOpts().Features; 2657 } 2658 2659 if (!TargetCPU.empty()) { 2660 Attrs.addAttribute("target-cpu", TargetCPU); 2661 AddedAttr = true; 2662 } 2663 if (!TuneCPU.empty()) { 2664 Attrs.addAttribute("tune-cpu", TuneCPU); 2665 AddedAttr = true; 2666 } 2667 if (!Features.empty() && SetTargetFeatures) { 2668 llvm::erase_if(Features, [&](const std::string& F) { 2669 return getTarget().isReadOnlyFeature(F.substr(1)); 2670 }); 2671 llvm::sort(Features); 2672 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2673 AddedAttr = true; 2674 } 2675 2676 return AddedAttr; 2677 } 2678 2679 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2680 llvm::GlobalObject *GO) { 2681 const Decl *D = GD.getDecl(); 2682 SetCommonAttributes(GD, GO); 2683 2684 if (D) { 2685 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2686 if (D->hasAttr<RetainAttr>()) 2687 addUsedGlobal(GV); 2688 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2689 GV->addAttribute("bss-section", SA->getName()); 2690 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2691 GV->addAttribute("data-section", SA->getName()); 2692 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2693 GV->addAttribute("rodata-section", SA->getName()); 2694 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2695 GV->addAttribute("relro-section", SA->getName()); 2696 } 2697 2698 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2699 if (D->hasAttr<RetainAttr>()) 2700 addUsedGlobal(F); 2701 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2702 if (!D->getAttr<SectionAttr>()) 2703 F->setSection(SA->getName()); 2704 2705 llvm::AttrBuilder Attrs(F->getContext()); 2706 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2707 // We know that GetCPUAndFeaturesAttributes will always have the 2708 // newest set, since it has the newest possible FunctionDecl, so the 2709 // new ones should replace the old. 2710 llvm::AttributeMask RemoveAttrs; 2711 RemoveAttrs.addAttribute("target-cpu"); 2712 RemoveAttrs.addAttribute("target-features"); 2713 RemoveAttrs.addAttribute("tune-cpu"); 2714 F->removeFnAttrs(RemoveAttrs); 2715 F->addFnAttrs(Attrs); 2716 } 2717 } 2718 2719 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2720 GO->setSection(CSA->getName()); 2721 else if (const auto *SA = D->getAttr<SectionAttr>()) 2722 GO->setSection(SA->getName()); 2723 } 2724 2725 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2726 } 2727 2728 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2729 llvm::Function *F, 2730 const CGFunctionInfo &FI) { 2731 const Decl *D = GD.getDecl(); 2732 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2733 SetLLVMFunctionAttributesForDefinition(D, F); 2734 2735 F->setLinkage(llvm::Function::InternalLinkage); 2736 2737 setNonAliasAttributes(GD, F); 2738 } 2739 2740 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2741 // Set linkage and visibility in case we never see a definition. 2742 LinkageInfo LV = ND->getLinkageAndVisibility(); 2743 // Don't set internal linkage on declarations. 2744 // "extern_weak" is overloaded in LLVM; we probably should have 2745 // separate linkage types for this. 2746 if (isExternallyVisible(LV.getLinkage()) && 2747 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2748 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2749 } 2750 2751 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2752 llvm::Function *F) { 2753 // Only if we are checking indirect calls. 2754 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2755 return; 2756 2757 // Non-static class methods are handled via vtable or member function pointer 2758 // checks elsewhere. 2759 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2760 return; 2761 2762 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2763 F->addTypeMetadata(0, MD); 2764 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2765 2766 // Emit a hash-based bit set entry for cross-DSO calls. 2767 if (CodeGenOpts.SanitizeCfiCrossDso) 2768 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2769 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2770 } 2771 2772 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2773 llvm::LLVMContext &Ctx = F->getContext(); 2774 llvm::MDBuilder MDB(Ctx); 2775 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2776 llvm::MDNode::get( 2777 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2778 } 2779 2780 static bool allowKCFIIdentifier(StringRef Name) { 2781 // KCFI type identifier constants are only necessary for external assembly 2782 // functions, which means it's safe to skip unusual names. Subset of 2783 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2784 return llvm::all_of(Name, [](const char &C) { 2785 return llvm::isAlnum(C) || C == '_' || C == '.'; 2786 }); 2787 } 2788 2789 void CodeGenModule::finalizeKCFITypes() { 2790 llvm::Module &M = getModule(); 2791 for (auto &F : M.functions()) { 2792 // Remove KCFI type metadata from non-address-taken local functions. 2793 bool AddressTaken = F.hasAddressTaken(); 2794 if (!AddressTaken && F.hasLocalLinkage()) 2795 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2796 2797 // Generate a constant with the expected KCFI type identifier for all 2798 // address-taken function declarations to support annotating indirectly 2799 // called assembly functions. 2800 if (!AddressTaken || !F.isDeclaration()) 2801 continue; 2802 2803 const llvm::ConstantInt *Type; 2804 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2805 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2806 else 2807 continue; 2808 2809 StringRef Name = F.getName(); 2810 if (!allowKCFIIdentifier(Name)) 2811 continue; 2812 2813 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2814 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2815 .str(); 2816 M.appendModuleInlineAsm(Asm); 2817 } 2818 } 2819 2820 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2821 bool IsIncompleteFunction, 2822 bool IsThunk) { 2823 2824 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2825 // If this is an intrinsic function, set the function's attributes 2826 // to the intrinsic's attributes. 2827 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2828 return; 2829 } 2830 2831 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2832 2833 if (!IsIncompleteFunction) 2834 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2835 IsThunk); 2836 2837 // Add the Returned attribute for "this", except for iOS 5 and earlier 2838 // where substantial code, including the libstdc++ dylib, was compiled with 2839 // GCC and does not actually return "this". 2840 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2841 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2842 assert(!F->arg_empty() && 2843 F->arg_begin()->getType() 2844 ->canLosslesslyBitCastTo(F->getReturnType()) && 2845 "unexpected this return"); 2846 F->addParamAttr(0, llvm::Attribute::Returned); 2847 } 2848 2849 // Only a few attributes are set on declarations; these may later be 2850 // overridden by a definition. 2851 2852 setLinkageForGV(F, FD); 2853 setGVProperties(F, FD); 2854 2855 // Setup target-specific attributes. 2856 if (!IsIncompleteFunction && F->isDeclaration()) 2857 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2858 2859 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2860 F->setSection(CSA->getName()); 2861 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2862 F->setSection(SA->getName()); 2863 2864 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2865 if (EA->isError()) 2866 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2867 else if (EA->isWarning()) 2868 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2869 } 2870 2871 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2872 if (FD->isInlineBuiltinDeclaration()) { 2873 const FunctionDecl *FDBody; 2874 bool HasBody = FD->hasBody(FDBody); 2875 (void)HasBody; 2876 assert(HasBody && "Inline builtin declarations should always have an " 2877 "available body!"); 2878 if (shouldEmitFunction(FDBody)) 2879 F->addFnAttr(llvm::Attribute::NoBuiltin); 2880 } 2881 2882 if (FD->isReplaceableGlobalAllocationFunction()) { 2883 // A replaceable global allocation function does not act like a builtin by 2884 // default, only if it is invoked by a new-expression or delete-expression. 2885 F->addFnAttr(llvm::Attribute::NoBuiltin); 2886 } 2887 2888 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2889 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2890 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2891 if (MD->isVirtual()) 2892 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2893 2894 // Don't emit entries for function declarations in the cross-DSO mode. This 2895 // is handled with better precision by the receiving DSO. But if jump tables 2896 // are non-canonical then we need type metadata in order to produce the local 2897 // jump table. 2898 if (!CodeGenOpts.SanitizeCfiCrossDso || 2899 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2900 CreateFunctionTypeMetadataForIcall(FD, F); 2901 2902 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2903 setKCFIType(FD, F); 2904 2905 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2906 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2907 2908 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2909 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2910 2911 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2912 // Annotate the callback behavior as metadata: 2913 // - The callback callee (as argument number). 2914 // - The callback payloads (as argument numbers). 2915 llvm::LLVMContext &Ctx = F->getContext(); 2916 llvm::MDBuilder MDB(Ctx); 2917 2918 // The payload indices are all but the first one in the encoding. The first 2919 // identifies the callback callee. 2920 int CalleeIdx = *CB->encoding_begin(); 2921 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2922 F->addMetadata(llvm::LLVMContext::MD_callback, 2923 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2924 CalleeIdx, PayloadIndices, 2925 /* VarArgsArePassed */ false)})); 2926 } 2927 } 2928 2929 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2930 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2931 "Only globals with definition can force usage."); 2932 LLVMUsed.emplace_back(GV); 2933 } 2934 2935 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2936 assert(!GV->isDeclaration() && 2937 "Only globals with definition can force usage."); 2938 LLVMCompilerUsed.emplace_back(GV); 2939 } 2940 2941 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2942 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2943 "Only globals with definition can force usage."); 2944 if (getTriple().isOSBinFormatELF()) 2945 LLVMCompilerUsed.emplace_back(GV); 2946 else 2947 LLVMUsed.emplace_back(GV); 2948 } 2949 2950 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2951 std::vector<llvm::WeakTrackingVH> &List) { 2952 // Don't create llvm.used if there is no need. 2953 if (List.empty()) 2954 return; 2955 2956 // Convert List to what ConstantArray needs. 2957 SmallVector<llvm::Constant*, 8> UsedArray; 2958 UsedArray.resize(List.size()); 2959 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2960 UsedArray[i] = 2961 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2962 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2963 } 2964 2965 if (UsedArray.empty()) 2966 return; 2967 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2968 2969 auto *GV = new llvm::GlobalVariable( 2970 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2971 llvm::ConstantArray::get(ATy, UsedArray), Name); 2972 2973 GV->setSection("llvm.metadata"); 2974 } 2975 2976 void CodeGenModule::emitLLVMUsed() { 2977 emitUsed(*this, "llvm.used", LLVMUsed); 2978 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2979 } 2980 2981 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2982 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2983 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2984 } 2985 2986 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2987 llvm::SmallString<32> Opt; 2988 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2989 if (Opt.empty()) 2990 return; 2991 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2992 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2993 } 2994 2995 void CodeGenModule::AddDependentLib(StringRef Lib) { 2996 auto &C = getLLVMContext(); 2997 if (getTarget().getTriple().isOSBinFormatELF()) { 2998 ELFDependentLibraries.push_back( 2999 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 3000 return; 3001 } 3002 3003 llvm::SmallString<24> Opt; 3004 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 3005 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3006 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 3007 } 3008 3009 /// Add link options implied by the given module, including modules 3010 /// it depends on, using a postorder walk. 3011 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 3012 SmallVectorImpl<llvm::MDNode *> &Metadata, 3013 llvm::SmallPtrSet<Module *, 16> &Visited) { 3014 // Import this module's parent. 3015 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 3016 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 3017 } 3018 3019 // Import this module's dependencies. 3020 for (Module *Import : llvm::reverse(Mod->Imports)) { 3021 if (Visited.insert(Import).second) 3022 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 3023 } 3024 3025 // Add linker options to link against the libraries/frameworks 3026 // described by this module. 3027 llvm::LLVMContext &Context = CGM.getLLVMContext(); 3028 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 3029 3030 // For modules that use export_as for linking, use that module 3031 // name instead. 3032 if (Mod->UseExportAsModuleLinkName) 3033 return; 3034 3035 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 3036 // Link against a framework. Frameworks are currently Darwin only, so we 3037 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 3038 if (LL.IsFramework) { 3039 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3040 llvm::MDString::get(Context, LL.Library)}; 3041 3042 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3043 continue; 3044 } 3045 3046 // Link against a library. 3047 if (IsELF) { 3048 llvm::Metadata *Args[2] = { 3049 llvm::MDString::get(Context, "lib"), 3050 llvm::MDString::get(Context, LL.Library), 3051 }; 3052 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3053 } else { 3054 llvm::SmallString<24> Opt; 3055 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 3056 auto *OptString = llvm::MDString::get(Context, Opt); 3057 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 3058 } 3059 } 3060 } 3061 3062 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 3063 assert(Primary->isNamedModuleUnit() && 3064 "We should only emit module initializers for named modules."); 3065 3066 // Emit the initializers in the order that sub-modules appear in the 3067 // source, first Global Module Fragments, if present. 3068 if (auto GMF = Primary->getGlobalModuleFragment()) { 3069 for (Decl *D : getContext().getModuleInitializers(GMF)) { 3070 if (isa<ImportDecl>(D)) 3071 continue; 3072 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 3073 EmitTopLevelDecl(D); 3074 } 3075 } 3076 // Second any associated with the module, itself. 3077 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3078 // Skip import decls, the inits for those are called explicitly. 3079 if (isa<ImportDecl>(D)) 3080 continue; 3081 EmitTopLevelDecl(D); 3082 } 3083 // Third any associated with the Privat eMOdule Fragment, if present. 3084 if (auto PMF = Primary->getPrivateModuleFragment()) { 3085 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3086 // Skip import decls, the inits for those are called explicitly. 3087 if (isa<ImportDecl>(D)) 3088 continue; 3089 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3090 EmitTopLevelDecl(D); 3091 } 3092 } 3093 } 3094 3095 void CodeGenModule::EmitModuleLinkOptions() { 3096 // Collect the set of all of the modules we want to visit to emit link 3097 // options, which is essentially the imported modules and all of their 3098 // non-explicit child modules. 3099 llvm::SetVector<clang::Module *> LinkModules; 3100 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3101 SmallVector<clang::Module *, 16> Stack; 3102 3103 // Seed the stack with imported modules. 3104 for (Module *M : ImportedModules) { 3105 // Do not add any link flags when an implementation TU of a module imports 3106 // a header of that same module. 3107 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3108 !getLangOpts().isCompilingModule()) 3109 continue; 3110 if (Visited.insert(M).second) 3111 Stack.push_back(M); 3112 } 3113 3114 // Find all of the modules to import, making a little effort to prune 3115 // non-leaf modules. 3116 while (!Stack.empty()) { 3117 clang::Module *Mod = Stack.pop_back_val(); 3118 3119 bool AnyChildren = false; 3120 3121 // Visit the submodules of this module. 3122 for (const auto &SM : Mod->submodules()) { 3123 // Skip explicit children; they need to be explicitly imported to be 3124 // linked against. 3125 if (SM->IsExplicit) 3126 continue; 3127 3128 if (Visited.insert(SM).second) { 3129 Stack.push_back(SM); 3130 AnyChildren = true; 3131 } 3132 } 3133 3134 // We didn't find any children, so add this module to the list of 3135 // modules to link against. 3136 if (!AnyChildren) { 3137 LinkModules.insert(Mod); 3138 } 3139 } 3140 3141 // Add link options for all of the imported modules in reverse topological 3142 // order. We don't do anything to try to order import link flags with respect 3143 // to linker options inserted by things like #pragma comment(). 3144 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3145 Visited.clear(); 3146 for (Module *M : LinkModules) 3147 if (Visited.insert(M).second) 3148 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3149 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3150 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3151 3152 // Add the linker options metadata flag. 3153 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3154 for (auto *MD : LinkerOptionsMetadata) 3155 NMD->addOperand(MD); 3156 } 3157 3158 void CodeGenModule::EmitDeferred() { 3159 // Emit deferred declare target declarations. 3160 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3161 getOpenMPRuntime().emitDeferredTargetDecls(); 3162 3163 // Emit code for any potentially referenced deferred decls. Since a 3164 // previously unused static decl may become used during the generation of code 3165 // for a static function, iterate until no changes are made. 3166 3167 if (!DeferredVTables.empty()) { 3168 EmitDeferredVTables(); 3169 3170 // Emitting a vtable doesn't directly cause more vtables to 3171 // become deferred, although it can cause functions to be 3172 // emitted that then need those vtables. 3173 assert(DeferredVTables.empty()); 3174 } 3175 3176 // Emit CUDA/HIP static device variables referenced by host code only. 3177 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3178 // needed for further handling. 3179 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3180 llvm::append_range(DeferredDeclsToEmit, 3181 getContext().CUDADeviceVarODRUsedByHost); 3182 3183 // Stop if we're out of both deferred vtables and deferred declarations. 3184 if (DeferredDeclsToEmit.empty()) 3185 return; 3186 3187 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3188 // work, it will not interfere with this. 3189 std::vector<GlobalDecl> CurDeclsToEmit; 3190 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3191 3192 for (GlobalDecl &D : CurDeclsToEmit) { 3193 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3194 // to get GlobalValue with exactly the type we need, not something that 3195 // might had been created for another decl with the same mangled name but 3196 // different type. 3197 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3198 GetAddrOfGlobal(D, ForDefinition)); 3199 3200 // In case of different address spaces, we may still get a cast, even with 3201 // IsForDefinition equal to true. Query mangled names table to get 3202 // GlobalValue. 3203 if (!GV) 3204 GV = GetGlobalValue(getMangledName(D)); 3205 3206 // Make sure GetGlobalValue returned non-null. 3207 assert(GV); 3208 3209 // Check to see if we've already emitted this. This is necessary 3210 // for a couple of reasons: first, decls can end up in the 3211 // deferred-decls queue multiple times, and second, decls can end 3212 // up with definitions in unusual ways (e.g. by an extern inline 3213 // function acquiring a strong function redefinition). Just 3214 // ignore these cases. 3215 if (!GV->isDeclaration()) 3216 continue; 3217 3218 // If this is OpenMP, check if it is legal to emit this global normally. 3219 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3220 continue; 3221 3222 // Otherwise, emit the definition and move on to the next one. 3223 EmitGlobalDefinition(D, GV); 3224 3225 // If we found out that we need to emit more decls, do that recursively. 3226 // This has the advantage that the decls are emitted in a DFS and related 3227 // ones are close together, which is convenient for testing. 3228 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3229 EmitDeferred(); 3230 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3231 } 3232 } 3233 } 3234 3235 void CodeGenModule::EmitVTablesOpportunistically() { 3236 // Try to emit external vtables as available_externally if they have emitted 3237 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3238 // is not allowed to create new references to things that need to be emitted 3239 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3240 3241 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3242 && "Only emit opportunistic vtables with optimizations"); 3243 3244 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3245 assert(getVTables().isVTableExternal(RD) && 3246 "This queue should only contain external vtables"); 3247 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3248 VTables.GenerateClassData(RD); 3249 } 3250 OpportunisticVTables.clear(); 3251 } 3252 3253 void CodeGenModule::EmitGlobalAnnotations() { 3254 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3255 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3256 if (GV) 3257 AddGlobalAnnotations(VD, GV); 3258 } 3259 DeferredAnnotations.clear(); 3260 3261 if (Annotations.empty()) 3262 return; 3263 3264 // Create a new global variable for the ConstantStruct in the Module. 3265 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3266 Annotations[0]->getType(), Annotations.size()), Annotations); 3267 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3268 llvm::GlobalValue::AppendingLinkage, 3269 Array, "llvm.global.annotations"); 3270 gv->setSection(AnnotationSection); 3271 } 3272 3273 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3274 llvm::Constant *&AStr = AnnotationStrings[Str]; 3275 if (AStr) 3276 return AStr; 3277 3278 // Not found yet, create a new global. 3279 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3280 auto *gv = new llvm::GlobalVariable( 3281 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3282 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3283 ConstGlobalsPtrTy->getAddressSpace()); 3284 gv->setSection(AnnotationSection); 3285 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3286 AStr = gv; 3287 return gv; 3288 } 3289 3290 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3291 SourceManager &SM = getContext().getSourceManager(); 3292 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3293 if (PLoc.isValid()) 3294 return EmitAnnotationString(PLoc.getFilename()); 3295 return EmitAnnotationString(SM.getBufferName(Loc)); 3296 } 3297 3298 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3299 SourceManager &SM = getContext().getSourceManager(); 3300 PresumedLoc PLoc = SM.getPresumedLoc(L); 3301 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3302 SM.getExpansionLineNumber(L); 3303 return llvm::ConstantInt::get(Int32Ty, LineNo); 3304 } 3305 3306 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3307 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3308 if (Exprs.empty()) 3309 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3310 3311 llvm::FoldingSetNodeID ID; 3312 for (Expr *E : Exprs) { 3313 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3314 } 3315 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3316 if (Lookup) 3317 return Lookup; 3318 3319 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3320 LLVMArgs.reserve(Exprs.size()); 3321 ConstantEmitter ConstEmiter(*this); 3322 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3323 const auto *CE = cast<clang::ConstantExpr>(E); 3324 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3325 CE->getType()); 3326 }); 3327 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3328 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3329 llvm::GlobalValue::PrivateLinkage, Struct, 3330 ".args"); 3331 GV->setSection(AnnotationSection); 3332 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3333 3334 Lookup = GV; 3335 return GV; 3336 } 3337 3338 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3339 const AnnotateAttr *AA, 3340 SourceLocation L) { 3341 // Get the globals for file name, annotation, and the line number. 3342 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3343 *UnitGV = EmitAnnotationUnit(L), 3344 *LineNoCst = EmitAnnotationLineNo(L), 3345 *Args = EmitAnnotationArgs(AA); 3346 3347 llvm::Constant *GVInGlobalsAS = GV; 3348 if (GV->getAddressSpace() != 3349 getDataLayout().getDefaultGlobalsAddressSpace()) { 3350 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3351 GV, 3352 llvm::PointerType::get( 3353 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3354 } 3355 3356 // Create the ConstantStruct for the global annotation. 3357 llvm::Constant *Fields[] = { 3358 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3359 }; 3360 return llvm::ConstantStruct::getAnon(Fields); 3361 } 3362 3363 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3364 llvm::GlobalValue *GV) { 3365 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3366 // Get the struct elements for these annotations. 3367 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3368 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3369 } 3370 3371 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3372 SourceLocation Loc) const { 3373 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3374 // NoSanitize by function name. 3375 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3376 return true; 3377 // NoSanitize by location. Check "mainfile" prefix. 3378 auto &SM = Context.getSourceManager(); 3379 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3380 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3381 return true; 3382 3383 // Check "src" prefix. 3384 if (Loc.isValid()) 3385 return NoSanitizeL.containsLocation(Kind, Loc); 3386 // If location is unknown, this may be a compiler-generated function. Assume 3387 // it's located in the main file. 3388 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3389 } 3390 3391 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3392 llvm::GlobalVariable *GV, 3393 SourceLocation Loc, QualType Ty, 3394 StringRef Category) const { 3395 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3396 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3397 return true; 3398 auto &SM = Context.getSourceManager(); 3399 if (NoSanitizeL.containsMainFile( 3400 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3401 Category)) 3402 return true; 3403 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3404 return true; 3405 3406 // Check global type. 3407 if (!Ty.isNull()) { 3408 // Drill down the array types: if global variable of a fixed type is 3409 // not sanitized, we also don't instrument arrays of them. 3410 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3411 Ty = AT->getElementType(); 3412 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3413 // Only record types (classes, structs etc.) are ignored. 3414 if (Ty->isRecordType()) { 3415 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3416 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3417 return true; 3418 } 3419 } 3420 return false; 3421 } 3422 3423 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3424 StringRef Category) const { 3425 const auto &XRayFilter = getContext().getXRayFilter(); 3426 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3427 auto Attr = ImbueAttr::NONE; 3428 if (Loc.isValid()) 3429 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3430 if (Attr == ImbueAttr::NONE) 3431 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3432 switch (Attr) { 3433 case ImbueAttr::NONE: 3434 return false; 3435 case ImbueAttr::ALWAYS: 3436 Fn->addFnAttr("function-instrument", "xray-always"); 3437 break; 3438 case ImbueAttr::ALWAYS_ARG1: 3439 Fn->addFnAttr("function-instrument", "xray-always"); 3440 Fn->addFnAttr("xray-log-args", "1"); 3441 break; 3442 case ImbueAttr::NEVER: 3443 Fn->addFnAttr("function-instrument", "xray-never"); 3444 break; 3445 } 3446 return true; 3447 } 3448 3449 ProfileList::ExclusionType 3450 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3451 SourceLocation Loc) const { 3452 const auto &ProfileList = getContext().getProfileList(); 3453 // If the profile list is empty, then instrument everything. 3454 if (ProfileList.isEmpty()) 3455 return ProfileList::Allow; 3456 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3457 // First, check the function name. 3458 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3459 return *V; 3460 // Next, check the source location. 3461 if (Loc.isValid()) 3462 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3463 return *V; 3464 // If location is unknown, this may be a compiler-generated function. Assume 3465 // it's located in the main file. 3466 auto &SM = Context.getSourceManager(); 3467 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3468 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3469 return *V; 3470 return ProfileList.getDefault(Kind); 3471 } 3472 3473 ProfileList::ExclusionType 3474 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3475 SourceLocation Loc) const { 3476 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3477 if (V != ProfileList::Allow) 3478 return V; 3479 3480 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3481 if (NumGroups > 1) { 3482 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3483 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3484 return ProfileList::Skip; 3485 } 3486 return ProfileList::Allow; 3487 } 3488 3489 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3490 // Never defer when EmitAllDecls is specified. 3491 if (LangOpts.EmitAllDecls) 3492 return true; 3493 3494 const auto *VD = dyn_cast<VarDecl>(Global); 3495 if (VD && 3496 ((CodeGenOpts.KeepPersistentStorageVariables && 3497 (VD->getStorageDuration() == SD_Static || 3498 VD->getStorageDuration() == SD_Thread)) || 3499 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3500 VD->getType().isConstQualified()))) 3501 return true; 3502 3503 return getContext().DeclMustBeEmitted(Global); 3504 } 3505 3506 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3507 // In OpenMP 5.0 variables and function may be marked as 3508 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3509 // that they must be emitted on the host/device. To be sure we need to have 3510 // seen a declare target with an explicit mentioning of the function, we know 3511 // we have if the level of the declare target attribute is -1. Note that we 3512 // check somewhere else if we should emit this at all. 3513 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3514 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3515 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3516 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3517 return false; 3518 } 3519 3520 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3521 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3522 // Implicit template instantiations may change linkage if they are later 3523 // explicitly instantiated, so they should not be emitted eagerly. 3524 return false; 3525 // Defer until all versions have been semantically checked. 3526 if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion()) 3527 return false; 3528 } 3529 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3530 if (Context.getInlineVariableDefinitionKind(VD) == 3531 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3532 // A definition of an inline constexpr static data member may change 3533 // linkage later if it's redeclared outside the class. 3534 return false; 3535 if (CXX20ModuleInits && VD->getOwningModule() && 3536 !VD->getOwningModule()->isModuleMapModule()) { 3537 // For CXX20, module-owned initializers need to be deferred, since it is 3538 // not known at this point if they will be run for the current module or 3539 // as part of the initializer for an imported one. 3540 return false; 3541 } 3542 } 3543 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3544 // codegen for global variables, because they may be marked as threadprivate. 3545 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3546 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3547 !Global->getType().isConstantStorage(getContext(), false, false) && 3548 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3549 return false; 3550 3551 return true; 3552 } 3553 3554 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3555 StringRef Name = getMangledName(GD); 3556 3557 // The UUID descriptor should be pointer aligned. 3558 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3559 3560 // Look for an existing global. 3561 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3562 return ConstantAddress(GV, GV->getValueType(), Alignment); 3563 3564 ConstantEmitter Emitter(*this); 3565 llvm::Constant *Init; 3566 3567 APValue &V = GD->getAsAPValue(); 3568 if (!V.isAbsent()) { 3569 // If possible, emit the APValue version of the initializer. In particular, 3570 // this gets the type of the constant right. 3571 Init = Emitter.emitForInitializer( 3572 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3573 } else { 3574 // As a fallback, directly construct the constant. 3575 // FIXME: This may get padding wrong under esoteric struct layout rules. 3576 // MSVC appears to create a complete type 'struct __s_GUID' that it 3577 // presumably uses to represent these constants. 3578 MSGuidDecl::Parts Parts = GD->getParts(); 3579 llvm::Constant *Fields[4] = { 3580 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3581 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3582 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3583 llvm::ConstantDataArray::getRaw( 3584 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3585 Int8Ty)}; 3586 Init = llvm::ConstantStruct::getAnon(Fields); 3587 } 3588 3589 auto *GV = new llvm::GlobalVariable( 3590 getModule(), Init->getType(), 3591 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3592 if (supportsCOMDAT()) 3593 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3594 setDSOLocal(GV); 3595 3596 if (!V.isAbsent()) { 3597 Emitter.finalize(GV); 3598 return ConstantAddress(GV, GV->getValueType(), Alignment); 3599 } 3600 3601 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3602 return ConstantAddress(GV, Ty, Alignment); 3603 } 3604 3605 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3606 const UnnamedGlobalConstantDecl *GCD) { 3607 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3608 3609 llvm::GlobalVariable **Entry = nullptr; 3610 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3611 if (*Entry) 3612 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3613 3614 ConstantEmitter Emitter(*this); 3615 llvm::Constant *Init; 3616 3617 const APValue &V = GCD->getValue(); 3618 3619 assert(!V.isAbsent()); 3620 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3621 GCD->getType()); 3622 3623 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3624 /*isConstant=*/true, 3625 llvm::GlobalValue::PrivateLinkage, Init, 3626 ".constant"); 3627 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3628 GV->setAlignment(Alignment.getAsAlign()); 3629 3630 Emitter.finalize(GV); 3631 3632 *Entry = GV; 3633 return ConstantAddress(GV, GV->getValueType(), Alignment); 3634 } 3635 3636 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3637 const TemplateParamObjectDecl *TPO) { 3638 StringRef Name = getMangledName(TPO); 3639 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3640 3641 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3642 return ConstantAddress(GV, GV->getValueType(), Alignment); 3643 3644 ConstantEmitter Emitter(*this); 3645 llvm::Constant *Init = Emitter.emitForInitializer( 3646 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3647 3648 if (!Init) { 3649 ErrorUnsupported(TPO, "template parameter object"); 3650 return ConstantAddress::invalid(); 3651 } 3652 3653 llvm::GlobalValue::LinkageTypes Linkage = 3654 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3655 ? llvm::GlobalValue::LinkOnceODRLinkage 3656 : llvm::GlobalValue::InternalLinkage; 3657 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3658 /*isConstant=*/true, Linkage, Init, Name); 3659 setGVProperties(GV, TPO); 3660 if (supportsCOMDAT()) 3661 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3662 Emitter.finalize(GV); 3663 3664 return ConstantAddress(GV, GV->getValueType(), Alignment); 3665 } 3666 3667 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3668 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3669 assert(AA && "No alias?"); 3670 3671 CharUnits Alignment = getContext().getDeclAlign(VD); 3672 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3673 3674 // See if there is already something with the target's name in the module. 3675 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3676 if (Entry) 3677 return ConstantAddress(Entry, DeclTy, Alignment); 3678 3679 llvm::Constant *Aliasee; 3680 if (isa<llvm::FunctionType>(DeclTy)) 3681 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3682 GlobalDecl(cast<FunctionDecl>(VD)), 3683 /*ForVTable=*/false); 3684 else 3685 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3686 nullptr); 3687 3688 auto *F = cast<llvm::GlobalValue>(Aliasee); 3689 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3690 WeakRefReferences.insert(F); 3691 3692 return ConstantAddress(Aliasee, DeclTy, Alignment); 3693 } 3694 3695 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3696 if (!D) 3697 return false; 3698 if (auto *A = D->getAttr<AttrT>()) 3699 return A->isImplicit(); 3700 return D->isImplicit(); 3701 } 3702 3703 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const { 3704 assert(LangOpts.CUDA && "Should not be called by non-CUDA languages"); 3705 // We need to emit host-side 'shadows' for all global 3706 // device-side variables because the CUDA runtime needs their 3707 // size and host-side address in order to provide access to 3708 // their device-side incarnations. 3709 return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() || 3710 Global->hasAttr<CUDAConstantAttr>() || 3711 Global->hasAttr<CUDASharedAttr>() || 3712 Global->getType()->isCUDADeviceBuiltinSurfaceType() || 3713 Global->getType()->isCUDADeviceBuiltinTextureType(); 3714 } 3715 3716 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3717 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3718 3719 // Weak references don't produce any output by themselves. 3720 if (Global->hasAttr<WeakRefAttr>()) 3721 return; 3722 3723 // If this is an alias definition (which otherwise looks like a declaration) 3724 // emit it now. 3725 if (Global->hasAttr<AliasAttr>()) 3726 return EmitAliasDefinition(GD); 3727 3728 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3729 if (Global->hasAttr<IFuncAttr>()) 3730 return emitIFuncDefinition(GD); 3731 3732 // If this is a cpu_dispatch multiversion function, emit the resolver. 3733 if (Global->hasAttr<CPUDispatchAttr>()) 3734 return emitCPUDispatchDefinition(GD); 3735 3736 // If this is CUDA, be selective about which declarations we emit. 3737 // Non-constexpr non-lambda implicit host device functions are not emitted 3738 // unless they are used on device side. 3739 if (LangOpts.CUDA) { 3740 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3741 "Expected Variable or Function"); 3742 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3743 if (!shouldEmitCUDAGlobalVar(VD)) 3744 return; 3745 } else if (LangOpts.CUDAIsDevice) { 3746 const auto *FD = dyn_cast<FunctionDecl>(Global); 3747 if ((!Global->hasAttr<CUDADeviceAttr>() || 3748 (LangOpts.OffloadImplicitHostDeviceTemplates && 3749 hasImplicitAttr<CUDAHostAttr>(FD) && 3750 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3751 !isLambdaCallOperator(FD) && 3752 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3753 !Global->hasAttr<CUDAGlobalAttr>() && 3754 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3755 !Global->hasAttr<CUDAHostAttr>())) 3756 return; 3757 // Device-only functions are the only things we skip. 3758 } else if (!Global->hasAttr<CUDAHostAttr>() && 3759 Global->hasAttr<CUDADeviceAttr>()) 3760 return; 3761 } 3762 3763 if (LangOpts.OpenMP) { 3764 // If this is OpenMP, check if it is legal to emit this global normally. 3765 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3766 return; 3767 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3768 if (MustBeEmitted(Global)) 3769 EmitOMPDeclareReduction(DRD); 3770 return; 3771 } 3772 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3773 if (MustBeEmitted(Global)) 3774 EmitOMPDeclareMapper(DMD); 3775 return; 3776 } 3777 } 3778 3779 // Ignore declarations, they will be emitted on their first use. 3780 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3781 // Update deferred annotations with the latest declaration if the function 3782 // function was already used or defined. 3783 if (FD->hasAttr<AnnotateAttr>()) { 3784 StringRef MangledName = getMangledName(GD); 3785 if (GetGlobalValue(MangledName)) 3786 DeferredAnnotations[MangledName] = FD; 3787 } 3788 3789 // Forward declarations are emitted lazily on first use. 3790 if (!FD->doesThisDeclarationHaveABody()) { 3791 if (!FD->doesDeclarationForceExternallyVisibleDefinition() && 3792 (!FD->isMultiVersion() || 3793 !FD->getASTContext().getTargetInfo().getTriple().isAArch64())) 3794 return; 3795 3796 StringRef MangledName = getMangledName(GD); 3797 3798 // Compute the function info and LLVM type. 3799 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3800 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3801 3802 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3803 /*DontDefer=*/false); 3804 return; 3805 } 3806 } else { 3807 const auto *VD = cast<VarDecl>(Global); 3808 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3809 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3810 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3811 if (LangOpts.OpenMP) { 3812 // Emit declaration of the must-be-emitted declare target variable. 3813 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3814 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3815 3816 // If this variable has external storage and doesn't require special 3817 // link handling we defer to its canonical definition. 3818 if (VD->hasExternalStorage() && 3819 Res != OMPDeclareTargetDeclAttr::MT_Link) 3820 return; 3821 3822 bool UnifiedMemoryEnabled = 3823 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3824 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3825 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3826 !UnifiedMemoryEnabled) { 3827 (void)GetAddrOfGlobalVar(VD); 3828 } else { 3829 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3830 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3831 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3832 UnifiedMemoryEnabled)) && 3833 "Link clause or to clause with unified memory expected."); 3834 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3835 } 3836 3837 return; 3838 } 3839 } 3840 // If this declaration may have caused an inline variable definition to 3841 // change linkage, make sure that it's emitted. 3842 if (Context.getInlineVariableDefinitionKind(VD) == 3843 ASTContext::InlineVariableDefinitionKind::Strong) 3844 GetAddrOfGlobalVar(VD); 3845 return; 3846 } 3847 } 3848 3849 // Defer code generation to first use when possible, e.g. if this is an inline 3850 // function. If the global must always be emitted, do it eagerly if possible 3851 // to benefit from cache locality. 3852 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3853 // Emit the definition if it can't be deferred. 3854 EmitGlobalDefinition(GD); 3855 addEmittedDeferredDecl(GD); 3856 return; 3857 } 3858 3859 // If we're deferring emission of a C++ variable with an 3860 // initializer, remember the order in which it appeared in the file. 3861 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3862 cast<VarDecl>(Global)->hasInit()) { 3863 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3864 CXXGlobalInits.push_back(nullptr); 3865 } 3866 3867 StringRef MangledName = getMangledName(GD); 3868 if (GetGlobalValue(MangledName) != nullptr) { 3869 // The value has already been used and should therefore be emitted. 3870 addDeferredDeclToEmit(GD); 3871 } else if (MustBeEmitted(Global)) { 3872 // The value must be emitted, but cannot be emitted eagerly. 3873 assert(!MayBeEmittedEagerly(Global)); 3874 addDeferredDeclToEmit(GD); 3875 } else { 3876 // Otherwise, remember that we saw a deferred decl with this name. The 3877 // first use of the mangled name will cause it to move into 3878 // DeferredDeclsToEmit. 3879 DeferredDecls[MangledName] = GD; 3880 } 3881 } 3882 3883 // Check if T is a class type with a destructor that's not dllimport. 3884 static bool HasNonDllImportDtor(QualType T) { 3885 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3886 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3887 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3888 return true; 3889 3890 return false; 3891 } 3892 3893 namespace { 3894 struct FunctionIsDirectlyRecursive 3895 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3896 const StringRef Name; 3897 const Builtin::Context &BI; 3898 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3899 : Name(N), BI(C) {} 3900 3901 bool VisitCallExpr(const CallExpr *E) { 3902 const FunctionDecl *FD = E->getDirectCallee(); 3903 if (!FD) 3904 return false; 3905 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3906 if (Attr && Name == Attr->getLabel()) 3907 return true; 3908 unsigned BuiltinID = FD->getBuiltinID(); 3909 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3910 return false; 3911 StringRef BuiltinName = BI.getName(BuiltinID); 3912 if (BuiltinName.starts_with("__builtin_") && 3913 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3914 return true; 3915 } 3916 return false; 3917 } 3918 3919 bool VisitStmt(const Stmt *S) { 3920 for (const Stmt *Child : S->children()) 3921 if (Child && this->Visit(Child)) 3922 return true; 3923 return false; 3924 } 3925 }; 3926 3927 // Make sure we're not referencing non-imported vars or functions. 3928 struct DLLImportFunctionVisitor 3929 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3930 bool SafeToInline = true; 3931 3932 bool shouldVisitImplicitCode() const { return true; } 3933 3934 bool VisitVarDecl(VarDecl *VD) { 3935 if (VD->getTLSKind()) { 3936 // A thread-local variable cannot be imported. 3937 SafeToInline = false; 3938 return SafeToInline; 3939 } 3940 3941 // A variable definition might imply a destructor call. 3942 if (VD->isThisDeclarationADefinition()) 3943 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3944 3945 return SafeToInline; 3946 } 3947 3948 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3949 if (const auto *D = E->getTemporary()->getDestructor()) 3950 SafeToInline = D->hasAttr<DLLImportAttr>(); 3951 return SafeToInline; 3952 } 3953 3954 bool VisitDeclRefExpr(DeclRefExpr *E) { 3955 ValueDecl *VD = E->getDecl(); 3956 if (isa<FunctionDecl>(VD)) 3957 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3958 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3959 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3960 return SafeToInline; 3961 } 3962 3963 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3964 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3965 return SafeToInline; 3966 } 3967 3968 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3969 CXXMethodDecl *M = E->getMethodDecl(); 3970 if (!M) { 3971 // Call through a pointer to member function. This is safe to inline. 3972 SafeToInline = true; 3973 } else { 3974 SafeToInline = M->hasAttr<DLLImportAttr>(); 3975 } 3976 return SafeToInline; 3977 } 3978 3979 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3980 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3981 return SafeToInline; 3982 } 3983 3984 bool VisitCXXNewExpr(CXXNewExpr *E) { 3985 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3986 return SafeToInline; 3987 } 3988 }; 3989 } 3990 3991 // isTriviallyRecursive - Check if this function calls another 3992 // decl that, because of the asm attribute or the other decl being a builtin, 3993 // ends up pointing to itself. 3994 bool 3995 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3996 StringRef Name; 3997 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3998 // asm labels are a special kind of mangling we have to support. 3999 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 4000 if (!Attr) 4001 return false; 4002 Name = Attr->getLabel(); 4003 } else { 4004 Name = FD->getName(); 4005 } 4006 4007 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 4008 const Stmt *Body = FD->getBody(); 4009 return Body ? Walker.Visit(Body) : false; 4010 } 4011 4012 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 4013 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 4014 return true; 4015 4016 const auto *F = cast<FunctionDecl>(GD.getDecl()); 4017 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 4018 return false; 4019 4020 // We don't import function bodies from other named module units since that 4021 // behavior may break ABI compatibility of the current unit. 4022 if (const Module *M = F->getOwningModule(); 4023 M && M->getTopLevelModule()->isNamedModule() && 4024 getContext().getCurrentNamedModule() != M->getTopLevelModule()) { 4025 // There are practices to mark template member function as always-inline 4026 // and mark the template as extern explicit instantiation but not give 4027 // the definition for member function. So we have to emit the function 4028 // from explicitly instantiation with always-inline. 4029 // 4030 // See https://github.com/llvm/llvm-project/issues/86893 for details. 4031 // 4032 // TODO: Maybe it is better to give it a warning if we call a non-inline 4033 // function from other module units which is marked as always-inline. 4034 if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) { 4035 return false; 4036 } 4037 } 4038 4039 if (F->hasAttr<NoInlineAttr>()) 4040 return false; 4041 4042 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 4043 // Check whether it would be safe to inline this dllimport function. 4044 DLLImportFunctionVisitor Visitor; 4045 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 4046 if (!Visitor.SafeToInline) 4047 return false; 4048 4049 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 4050 // Implicit destructor invocations aren't captured in the AST, so the 4051 // check above can't see them. Check for them manually here. 4052 for (const Decl *Member : Dtor->getParent()->decls()) 4053 if (isa<FieldDecl>(Member)) 4054 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 4055 return false; 4056 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 4057 if (HasNonDllImportDtor(B.getType())) 4058 return false; 4059 } 4060 } 4061 4062 // Inline builtins declaration must be emitted. They often are fortified 4063 // functions. 4064 if (F->isInlineBuiltinDeclaration()) 4065 return true; 4066 4067 // PR9614. Avoid cases where the source code is lying to us. An available 4068 // externally function should have an equivalent function somewhere else, 4069 // but a function that calls itself through asm label/`__builtin_` trickery is 4070 // clearly not equivalent to the real implementation. 4071 // This happens in glibc's btowc and in some configure checks. 4072 return !isTriviallyRecursive(F); 4073 } 4074 4075 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 4076 return CodeGenOpts.OptimizationLevel > 0; 4077 } 4078 4079 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 4080 llvm::GlobalValue *GV) { 4081 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4082 4083 if (FD->isCPUSpecificMultiVersion()) { 4084 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 4085 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 4086 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4087 } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) { 4088 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) 4089 // AArch64 favors the default target version over the clone if any. 4090 if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) && 4091 TC->isFirstOfVersion(I)) 4092 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4093 // Ensure that the resolver function is also emitted. 4094 GetOrCreateMultiVersionResolver(GD); 4095 } else 4096 EmitGlobalFunctionDefinition(GD, GV); 4097 4098 // Defer the resolver emission until we can reason whether the TU 4099 // contains a default target version implementation. 4100 if (FD->isTargetVersionMultiVersion()) 4101 AddDeferredMultiVersionResolverToEmit(GD); 4102 } 4103 4104 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4105 const auto *D = cast<ValueDecl>(GD.getDecl()); 4106 4107 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4108 Context.getSourceManager(), 4109 "Generating code for declaration"); 4110 4111 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4112 // At -O0, don't generate IR for functions with available_externally 4113 // linkage. 4114 if (!shouldEmitFunction(GD)) 4115 return; 4116 4117 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4118 std::string Name; 4119 llvm::raw_string_ostream OS(Name); 4120 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4121 /*Qualified=*/true); 4122 return Name; 4123 }); 4124 4125 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4126 // Make sure to emit the definition(s) before we emit the thunks. 4127 // This is necessary for the generation of certain thunks. 4128 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4129 ABI->emitCXXStructor(GD); 4130 else if (FD->isMultiVersion()) 4131 EmitMultiVersionFunctionDefinition(GD, GV); 4132 else 4133 EmitGlobalFunctionDefinition(GD, GV); 4134 4135 if (Method->isVirtual()) 4136 getVTables().EmitThunks(GD); 4137 4138 return; 4139 } 4140 4141 if (FD->isMultiVersion()) 4142 return EmitMultiVersionFunctionDefinition(GD, GV); 4143 return EmitGlobalFunctionDefinition(GD, GV); 4144 } 4145 4146 if (const auto *VD = dyn_cast<VarDecl>(D)) 4147 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4148 4149 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4150 } 4151 4152 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4153 llvm::Function *NewFn); 4154 4155 static unsigned 4156 TargetMVPriority(const TargetInfo &TI, 4157 const CodeGenFunction::MultiVersionResolverOption &RO) { 4158 unsigned Priority = 0; 4159 unsigned NumFeatures = 0; 4160 for (StringRef Feat : RO.Conditions.Features) { 4161 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4162 NumFeatures++; 4163 } 4164 4165 if (!RO.Conditions.Architecture.empty()) 4166 Priority = std::max( 4167 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4168 4169 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4170 4171 return Priority; 4172 } 4173 4174 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4175 // TU can forward declare the function without causing problems. Particularly 4176 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4177 // work with internal linkage functions, so that the same function name can be 4178 // used with internal linkage in multiple TUs. 4179 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 4180 GlobalDecl GD) { 4181 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4182 if (FD->getFormalLinkage() == Linkage::Internal) 4183 return llvm::GlobalValue::InternalLinkage; 4184 return llvm::GlobalValue::WeakODRLinkage; 4185 } 4186 4187 static FunctionDecl *createDefaultTargetVersionFrom(const FunctionDecl *FD) { 4188 auto *DeclCtx = const_cast<DeclContext *>(FD->getDeclContext()); 4189 TypeSourceInfo *TInfo = FD->getTypeSourceInfo(); 4190 StorageClass SC = FD->getStorageClass(); 4191 DeclarationName Name = FD->getNameInfo().getName(); 4192 4193 FunctionDecl *NewDecl = 4194 FunctionDecl::Create(FD->getASTContext(), DeclCtx, FD->getBeginLoc(), 4195 FD->getEndLoc(), Name, TInfo->getType(), TInfo, SC); 4196 4197 NewDecl->setIsMultiVersion(); 4198 NewDecl->addAttr(TargetVersionAttr::CreateImplicit( 4199 NewDecl->getASTContext(), "default", NewDecl->getSourceRange())); 4200 4201 return NewDecl; 4202 } 4203 4204 void CodeGenModule::emitMultiVersionFunctions() { 4205 std::vector<GlobalDecl> MVFuncsToEmit; 4206 MultiVersionFuncs.swap(MVFuncsToEmit); 4207 for (GlobalDecl GD : MVFuncsToEmit) { 4208 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4209 assert(FD && "Expected a FunctionDecl"); 4210 4211 auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) { 4212 GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx}; 4213 StringRef MangledName = getMangledName(CurGD); 4214 llvm::Constant *Func = GetGlobalValue(MangledName); 4215 if (!Func) { 4216 if (Decl->isDefined()) { 4217 EmitGlobalFunctionDefinition(CurGD, nullptr); 4218 Func = GetGlobalValue(MangledName); 4219 } else { 4220 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD); 4221 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4222 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4223 /*DontDefer=*/false, ForDefinition); 4224 } 4225 assert(Func && "This should have just been created"); 4226 } 4227 return cast<llvm::Function>(Func); 4228 }; 4229 4230 bool HasDefaultDecl = !FD->isTargetVersionMultiVersion(); 4231 bool ShouldEmitResolver = 4232 !getContext().getTargetInfo().getTriple().isAArch64(); 4233 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4234 4235 getContext().forEachMultiversionedFunctionVersion( 4236 FD, [&](const FunctionDecl *CurFD) { 4237 llvm::SmallVector<StringRef, 8> Feats; 4238 4239 if (const auto *TA = CurFD->getAttr<TargetAttr>()) { 4240 TA->getAddedFeatures(Feats); 4241 llvm::Function *Func = createFunction(CurFD); 4242 Options.emplace_back(Func, TA->getArchitecture(), Feats); 4243 } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) { 4244 bool HasDefaultDef = TVA->isDefaultVersion() && 4245 CurFD->doesThisDeclarationHaveABody(); 4246 HasDefaultDecl |= TVA->isDefaultVersion(); 4247 ShouldEmitResolver |= (CurFD->isUsed() || HasDefaultDef); 4248 TVA->getFeatures(Feats); 4249 llvm::Function *Func = createFunction(CurFD); 4250 Options.emplace_back(Func, /*Architecture*/ "", Feats); 4251 } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) { 4252 ShouldEmitResolver |= CurFD->doesThisDeclarationHaveABody(); 4253 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) { 4254 if (!TC->isFirstOfVersion(I)) 4255 continue; 4256 4257 llvm::Function *Func = createFunction(CurFD, I); 4258 StringRef Architecture; 4259 Feats.clear(); 4260 if (getTarget().getTriple().isAArch64()) 4261 TC->getFeatures(Feats, I); 4262 else { 4263 StringRef Version = TC->getFeatureStr(I); 4264 if (Version.starts_with("arch=")) 4265 Architecture = Version.drop_front(sizeof("arch=") - 1); 4266 else if (Version != "default") 4267 Feats.push_back(Version); 4268 } 4269 Options.emplace_back(Func, Architecture, Feats); 4270 } 4271 } else 4272 llvm_unreachable("unexpected MultiVersionKind"); 4273 }); 4274 4275 if (!ShouldEmitResolver) 4276 continue; 4277 4278 if (!HasDefaultDecl) { 4279 FunctionDecl *NewFD = createDefaultTargetVersionFrom(FD); 4280 llvm::Function *Func = createFunction(NewFD); 4281 llvm::SmallVector<StringRef, 1> Feats; 4282 Options.emplace_back(Func, /*Architecture*/ "", Feats); 4283 } 4284 4285 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4286 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4287 ResolverConstant = IFunc->getResolver(); 4288 if (FD->isTargetClonesMultiVersion() && 4289 !getTarget().getTriple().isAArch64()) { 4290 std::string MangledName = getMangledNameImpl( 4291 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4292 if (!GetGlobalValue(MangledName + ".ifunc")) { 4293 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4294 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4295 // In prior versions of Clang, the mangling for ifuncs incorrectly 4296 // included an .ifunc suffix. This alias is generated for backward 4297 // compatibility. It is deprecated, and may be removed in the future. 4298 auto *Alias = llvm::GlobalAlias::create( 4299 DeclTy, 0, getMultiversionLinkage(*this, GD), 4300 MangledName + ".ifunc", IFunc, &getModule()); 4301 SetCommonAttributes(FD, Alias); 4302 } 4303 } 4304 } 4305 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4306 4307 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4308 4309 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4310 ResolverFunc->setComdat( 4311 getModule().getOrInsertComdat(ResolverFunc->getName())); 4312 4313 const TargetInfo &TI = getTarget(); 4314 llvm::stable_sort( 4315 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4316 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4317 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4318 }); 4319 CodeGenFunction CGF(*this); 4320 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4321 } 4322 4323 // Ensure that any additions to the deferred decls list caused by emitting a 4324 // variant are emitted. This can happen when the variant itself is inline and 4325 // calls a function without linkage. 4326 if (!MVFuncsToEmit.empty()) 4327 EmitDeferred(); 4328 4329 // Ensure that any additions to the multiversion funcs list from either the 4330 // deferred decls or the multiversion functions themselves are emitted. 4331 if (!MultiVersionFuncs.empty()) 4332 emitMultiVersionFunctions(); 4333 } 4334 4335 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4336 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4337 assert(FD && "Not a FunctionDecl?"); 4338 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4339 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4340 assert(DD && "Not a cpu_dispatch Function?"); 4341 4342 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4343 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4344 4345 StringRef ResolverName = getMangledName(GD); 4346 UpdateMultiVersionNames(GD, FD, ResolverName); 4347 4348 llvm::Type *ResolverType; 4349 GlobalDecl ResolverGD; 4350 if (getTarget().supportsIFunc()) { 4351 ResolverType = llvm::FunctionType::get( 4352 llvm::PointerType::get(DeclTy, 4353 getTypes().getTargetAddressSpace(FD->getType())), 4354 false); 4355 } 4356 else { 4357 ResolverType = DeclTy; 4358 ResolverGD = GD; 4359 } 4360 4361 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4362 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4363 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4364 if (supportsCOMDAT()) 4365 ResolverFunc->setComdat( 4366 getModule().getOrInsertComdat(ResolverFunc->getName())); 4367 4368 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4369 const TargetInfo &Target = getTarget(); 4370 unsigned Index = 0; 4371 for (const IdentifierInfo *II : DD->cpus()) { 4372 // Get the name of the target function so we can look it up/create it. 4373 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4374 getCPUSpecificMangling(*this, II->getName()); 4375 4376 llvm::Constant *Func = GetGlobalValue(MangledName); 4377 4378 if (!Func) { 4379 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4380 if (ExistingDecl.getDecl() && 4381 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4382 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4383 Func = GetGlobalValue(MangledName); 4384 } else { 4385 if (!ExistingDecl.getDecl()) 4386 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4387 4388 Func = GetOrCreateLLVMFunction( 4389 MangledName, DeclTy, ExistingDecl, 4390 /*ForVTable=*/false, /*DontDefer=*/true, 4391 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4392 } 4393 } 4394 4395 llvm::SmallVector<StringRef, 32> Features; 4396 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4397 llvm::transform(Features, Features.begin(), 4398 [](StringRef Str) { return Str.substr(1); }); 4399 llvm::erase_if(Features, [&Target](StringRef Feat) { 4400 return !Target.validateCpuSupports(Feat); 4401 }); 4402 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4403 ++Index; 4404 } 4405 4406 llvm::stable_sort( 4407 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4408 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4409 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4410 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4411 }); 4412 4413 // If the list contains multiple 'default' versions, such as when it contains 4414 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4415 // always run on at least a 'pentium'). We do this by deleting the 'least 4416 // advanced' (read, lowest mangling letter). 4417 while (Options.size() > 1 && 4418 llvm::all_of(llvm::X86::getCpuSupportsMask( 4419 (Options.end() - 2)->Conditions.Features), 4420 [](auto X) { return X == 0; })) { 4421 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4422 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4423 if (LHSName.compare(RHSName) < 0) 4424 Options.erase(Options.end() - 2); 4425 else 4426 Options.erase(Options.end() - 1); 4427 } 4428 4429 CodeGenFunction CGF(*this); 4430 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4431 4432 if (getTarget().supportsIFunc()) { 4433 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4434 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4435 4436 // Fix up function declarations that were created for cpu_specific before 4437 // cpu_dispatch was known 4438 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4439 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 4440 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4441 &getModule()); 4442 GI->takeName(IFunc); 4443 IFunc->replaceAllUsesWith(GI); 4444 IFunc->eraseFromParent(); 4445 IFunc = GI; 4446 } 4447 4448 std::string AliasName = getMangledNameImpl( 4449 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4450 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4451 if (!AliasFunc) { 4452 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4453 &getModule()); 4454 SetCommonAttributes(GD, GA); 4455 } 4456 } 4457 } 4458 4459 /// Adds a declaration to the list of multi version functions if not present. 4460 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) { 4461 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4462 assert(FD && "Not a FunctionDecl?"); 4463 4464 if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) { 4465 std::string MangledName = 4466 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4467 if (!DeferredResolversToEmit.insert(MangledName).second) 4468 return; 4469 } 4470 MultiVersionFuncs.push_back(GD); 4471 } 4472 4473 /// If a dispatcher for the specified mangled name is not in the module, create 4474 /// and return an llvm Function with the specified type. 4475 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4476 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4477 assert(FD && "Not a FunctionDecl?"); 4478 4479 std::string MangledName = 4480 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4481 4482 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4483 // a separate resolver). 4484 std::string ResolverName = MangledName; 4485 if (getTarget().supportsIFunc()) { 4486 switch (FD->getMultiVersionKind()) { 4487 case MultiVersionKind::None: 4488 llvm_unreachable("unexpected MultiVersionKind::None for resolver"); 4489 case MultiVersionKind::Target: 4490 case MultiVersionKind::CPUSpecific: 4491 case MultiVersionKind::CPUDispatch: 4492 ResolverName += ".ifunc"; 4493 break; 4494 case MultiVersionKind::TargetClones: 4495 case MultiVersionKind::TargetVersion: 4496 break; 4497 } 4498 } else if (FD->isTargetMultiVersion()) { 4499 ResolverName += ".resolver"; 4500 } 4501 4502 // If the resolver has already been created, just return it. 4503 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 4504 return ResolverGV; 4505 4506 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4507 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4508 4509 // The resolver needs to be created. For target and target_clones, defer 4510 // creation until the end of the TU. 4511 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4512 AddDeferredMultiVersionResolverToEmit(GD); 4513 4514 // For cpu_specific, don't create an ifunc yet because we don't know if the 4515 // cpu_dispatch will be emitted in this translation unit. 4516 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4517 llvm::Type *ResolverType = llvm::FunctionType::get( 4518 llvm::PointerType::get(DeclTy, 4519 getTypes().getTargetAddressSpace(FD->getType())), 4520 false); 4521 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4522 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4523 /*ForVTable=*/false); 4524 llvm::GlobalIFunc *GIF = 4525 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4526 "", Resolver, &getModule()); 4527 GIF->setName(ResolverName); 4528 SetCommonAttributes(FD, GIF); 4529 4530 return GIF; 4531 } 4532 4533 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4534 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4535 assert(isa<llvm::GlobalValue>(Resolver) && 4536 "Resolver should be created for the first time"); 4537 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4538 return Resolver; 4539 } 4540 4541 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D, 4542 const llvm::GlobalValue *GV) const { 4543 auto SC = GV->getDLLStorageClass(); 4544 if (SC == llvm::GlobalValue::DefaultStorageClass) 4545 return false; 4546 const Decl *MRD = D->getMostRecentDecl(); 4547 return (((SC == llvm::GlobalValue::DLLImportStorageClass && 4548 !MRD->hasAttr<DLLImportAttr>()) || 4549 (SC == llvm::GlobalValue::DLLExportStorageClass && 4550 !MRD->hasAttr<DLLExportAttr>())) && 4551 !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD))); 4552 } 4553 4554 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4555 /// module, create and return an llvm Function with the specified type. If there 4556 /// is something in the module with the specified name, return it potentially 4557 /// bitcasted to the right type. 4558 /// 4559 /// If D is non-null, it specifies a decl that correspond to this. This is used 4560 /// to set the attributes on the function when it is first created. 4561 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4562 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4563 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4564 ForDefinition_t IsForDefinition) { 4565 const Decl *D = GD.getDecl(); 4566 4567 // Any attempts to use a MultiVersion function should result in retrieving 4568 // the iFunc instead. Name Mangling will handle the rest of the changes. 4569 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4570 // For the device mark the function as one that should be emitted. 4571 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4572 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4573 !DontDefer && !IsForDefinition) { 4574 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4575 GlobalDecl GDDef; 4576 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4577 GDDef = GlobalDecl(CD, GD.getCtorType()); 4578 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4579 GDDef = GlobalDecl(DD, GD.getDtorType()); 4580 else 4581 GDDef = GlobalDecl(FDDef); 4582 EmitGlobal(GDDef); 4583 } 4584 } 4585 4586 if (FD->isMultiVersion()) { 4587 UpdateMultiVersionNames(GD, FD, MangledName); 4588 if (FD->getASTContext().getTargetInfo().getTriple().isAArch64() && 4589 !FD->isUsed()) 4590 AddDeferredMultiVersionResolverToEmit(GD); 4591 else if (!IsForDefinition) 4592 return GetOrCreateMultiVersionResolver(GD); 4593 } 4594 } 4595 4596 // Lookup the entry, lazily creating it if necessary. 4597 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4598 if (Entry) { 4599 if (WeakRefReferences.erase(Entry)) { 4600 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4601 if (FD && !FD->hasAttr<WeakAttr>()) 4602 Entry->setLinkage(llvm::Function::ExternalLinkage); 4603 } 4604 4605 // Handle dropped DLL attributes. 4606 if (D && shouldDropDLLAttribute(D, Entry)) { 4607 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4608 setDSOLocal(Entry); 4609 } 4610 4611 // If there are two attempts to define the same mangled name, issue an 4612 // error. 4613 if (IsForDefinition && !Entry->isDeclaration()) { 4614 GlobalDecl OtherGD; 4615 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4616 // to make sure that we issue an error only once. 4617 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4618 (GD.getCanonicalDecl().getDecl() != 4619 OtherGD.getCanonicalDecl().getDecl()) && 4620 DiagnosedConflictingDefinitions.insert(GD).second) { 4621 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4622 << MangledName; 4623 getDiags().Report(OtherGD.getDecl()->getLocation(), 4624 diag::note_previous_definition); 4625 } 4626 } 4627 4628 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4629 (Entry->getValueType() == Ty)) { 4630 return Entry; 4631 } 4632 4633 // Make sure the result is of the correct type. 4634 // (If function is requested for a definition, we always need to create a new 4635 // function, not just return a bitcast.) 4636 if (!IsForDefinition) 4637 return Entry; 4638 } 4639 4640 // This function doesn't have a complete type (for example, the return 4641 // type is an incomplete struct). Use a fake type instead, and make 4642 // sure not to try to set attributes. 4643 bool IsIncompleteFunction = false; 4644 4645 llvm::FunctionType *FTy; 4646 if (isa<llvm::FunctionType>(Ty)) { 4647 FTy = cast<llvm::FunctionType>(Ty); 4648 } else { 4649 FTy = llvm::FunctionType::get(VoidTy, false); 4650 IsIncompleteFunction = true; 4651 } 4652 4653 llvm::Function *F = 4654 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4655 Entry ? StringRef() : MangledName, &getModule()); 4656 4657 // Store the declaration associated with this function so it is potentially 4658 // updated by further declarations or definitions and emitted at the end. 4659 if (D && D->hasAttr<AnnotateAttr>()) 4660 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4661 4662 // If we already created a function with the same mangled name (but different 4663 // type) before, take its name and add it to the list of functions to be 4664 // replaced with F at the end of CodeGen. 4665 // 4666 // This happens if there is a prototype for a function (e.g. "int f()") and 4667 // then a definition of a different type (e.g. "int f(int x)"). 4668 if (Entry) { 4669 F->takeName(Entry); 4670 4671 // This might be an implementation of a function without a prototype, in 4672 // which case, try to do special replacement of calls which match the new 4673 // prototype. The really key thing here is that we also potentially drop 4674 // arguments from the call site so as to make a direct call, which makes the 4675 // inliner happier and suppresses a number of optimizer warnings (!) about 4676 // dropping arguments. 4677 if (!Entry->use_empty()) { 4678 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4679 Entry->removeDeadConstantUsers(); 4680 } 4681 4682 addGlobalValReplacement(Entry, F); 4683 } 4684 4685 assert(F->getName() == MangledName && "name was uniqued!"); 4686 if (D) 4687 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4688 if (ExtraAttrs.hasFnAttrs()) { 4689 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4690 F->addFnAttrs(B); 4691 } 4692 4693 if (!DontDefer) { 4694 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4695 // each other bottoming out with the base dtor. Therefore we emit non-base 4696 // dtors on usage, even if there is no dtor definition in the TU. 4697 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4698 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4699 GD.getDtorType())) 4700 addDeferredDeclToEmit(GD); 4701 4702 // This is the first use or definition of a mangled name. If there is a 4703 // deferred decl with this name, remember that we need to emit it at the end 4704 // of the file. 4705 auto DDI = DeferredDecls.find(MangledName); 4706 if (DDI != DeferredDecls.end()) { 4707 // Move the potentially referenced deferred decl to the 4708 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4709 // don't need it anymore). 4710 addDeferredDeclToEmit(DDI->second); 4711 DeferredDecls.erase(DDI); 4712 4713 // Otherwise, there are cases we have to worry about where we're 4714 // using a declaration for which we must emit a definition but where 4715 // we might not find a top-level definition: 4716 // - member functions defined inline in their classes 4717 // - friend functions defined inline in some class 4718 // - special member functions with implicit definitions 4719 // If we ever change our AST traversal to walk into class methods, 4720 // this will be unnecessary. 4721 // 4722 // We also don't emit a definition for a function if it's going to be an 4723 // entry in a vtable, unless it's already marked as used. 4724 } else if (getLangOpts().CPlusPlus && D) { 4725 // Look for a declaration that's lexically in a record. 4726 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4727 FD = FD->getPreviousDecl()) { 4728 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4729 if (FD->doesThisDeclarationHaveABody()) { 4730 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4731 break; 4732 } 4733 } 4734 } 4735 } 4736 } 4737 4738 // Make sure the result is of the requested type. 4739 if (!IsIncompleteFunction) { 4740 assert(F->getFunctionType() == Ty); 4741 return F; 4742 } 4743 4744 return F; 4745 } 4746 4747 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4748 /// non-null, then this function will use the specified type if it has to 4749 /// create it (this occurs when we see a definition of the function). 4750 llvm::Constant * 4751 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4752 bool DontDefer, 4753 ForDefinition_t IsForDefinition) { 4754 // If there was no specific requested type, just convert it now. 4755 if (!Ty) { 4756 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4757 Ty = getTypes().ConvertType(FD->getType()); 4758 } 4759 4760 // Devirtualized destructor calls may come through here instead of via 4761 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4762 // of the complete destructor when necessary. 4763 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4764 if (getTarget().getCXXABI().isMicrosoft() && 4765 GD.getDtorType() == Dtor_Complete && 4766 DD->getParent()->getNumVBases() == 0) 4767 GD = GlobalDecl(DD, Dtor_Base); 4768 } 4769 4770 StringRef MangledName = getMangledName(GD); 4771 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4772 /*IsThunk=*/false, llvm::AttributeList(), 4773 IsForDefinition); 4774 // Returns kernel handle for HIP kernel stub function. 4775 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4776 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4777 auto *Handle = getCUDARuntime().getKernelHandle( 4778 cast<llvm::Function>(F->stripPointerCasts()), GD); 4779 if (IsForDefinition) 4780 return F; 4781 return Handle; 4782 } 4783 return F; 4784 } 4785 4786 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4787 llvm::GlobalValue *F = 4788 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4789 4790 return llvm::NoCFIValue::get(F); 4791 } 4792 4793 static const FunctionDecl * 4794 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4795 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4796 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4797 4798 IdentifierInfo &CII = C.Idents.get(Name); 4799 for (const auto *Result : DC->lookup(&CII)) 4800 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4801 return FD; 4802 4803 if (!C.getLangOpts().CPlusPlus) 4804 return nullptr; 4805 4806 // Demangle the premangled name from getTerminateFn() 4807 IdentifierInfo &CXXII = 4808 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4809 ? C.Idents.get("terminate") 4810 : C.Idents.get(Name); 4811 4812 for (const auto &N : {"__cxxabiv1", "std"}) { 4813 IdentifierInfo &NS = C.Idents.get(N); 4814 for (const auto *Result : DC->lookup(&NS)) { 4815 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4816 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4817 for (const auto *Result : LSD->lookup(&NS)) 4818 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4819 break; 4820 4821 if (ND) 4822 for (const auto *Result : ND->lookup(&CXXII)) 4823 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4824 return FD; 4825 } 4826 } 4827 4828 return nullptr; 4829 } 4830 4831 /// CreateRuntimeFunction - Create a new runtime function with the specified 4832 /// type and name. 4833 llvm::FunctionCallee 4834 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4835 llvm::AttributeList ExtraAttrs, bool Local, 4836 bool AssumeConvergent) { 4837 if (AssumeConvergent) { 4838 ExtraAttrs = 4839 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4840 } 4841 4842 llvm::Constant *C = 4843 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4844 /*DontDefer=*/false, /*IsThunk=*/false, 4845 ExtraAttrs); 4846 4847 if (auto *F = dyn_cast<llvm::Function>(C)) { 4848 if (F->empty()) { 4849 F->setCallingConv(getRuntimeCC()); 4850 4851 // In Windows Itanium environments, try to mark runtime functions 4852 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4853 // will link their standard library statically or dynamically. Marking 4854 // functions imported when they are not imported can cause linker errors 4855 // and warnings. 4856 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4857 !getCodeGenOpts().LTOVisibilityPublicStd) { 4858 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4859 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4860 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4861 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4862 } 4863 } 4864 setDSOLocal(F); 4865 // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead 4866 // of trying to approximate the attributes using the LLVM function 4867 // signature. This requires revising the API of CreateRuntimeFunction(). 4868 markRegisterParameterAttributes(F); 4869 } 4870 } 4871 4872 return {FTy, C}; 4873 } 4874 4875 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4876 /// create and return an llvm GlobalVariable with the specified type and address 4877 /// space. If there is something in the module with the specified name, return 4878 /// it potentially bitcasted to the right type. 4879 /// 4880 /// If D is non-null, it specifies a decl that correspond to this. This is used 4881 /// to set the attributes on the global when it is first created. 4882 /// 4883 /// If IsForDefinition is true, it is guaranteed that an actual global with 4884 /// type Ty will be returned, not conversion of a variable with the same 4885 /// mangled name but some other type. 4886 llvm::Constant * 4887 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4888 LangAS AddrSpace, const VarDecl *D, 4889 ForDefinition_t IsForDefinition) { 4890 // Lookup the entry, lazily creating it if necessary. 4891 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4892 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4893 if (Entry) { 4894 if (WeakRefReferences.erase(Entry)) { 4895 if (D && !D->hasAttr<WeakAttr>()) 4896 Entry->setLinkage(llvm::Function::ExternalLinkage); 4897 } 4898 4899 // Handle dropped DLL attributes. 4900 if (D && shouldDropDLLAttribute(D, Entry)) 4901 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4902 4903 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4904 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4905 4906 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4907 return Entry; 4908 4909 // If there are two attempts to define the same mangled name, issue an 4910 // error. 4911 if (IsForDefinition && !Entry->isDeclaration()) { 4912 GlobalDecl OtherGD; 4913 const VarDecl *OtherD; 4914 4915 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4916 // to make sure that we issue an error only once. 4917 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4918 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4919 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4920 OtherD->hasInit() && 4921 DiagnosedConflictingDefinitions.insert(D).second) { 4922 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4923 << MangledName; 4924 getDiags().Report(OtherGD.getDecl()->getLocation(), 4925 diag::note_previous_definition); 4926 } 4927 } 4928 4929 // Make sure the result is of the correct type. 4930 if (Entry->getType()->getAddressSpace() != TargetAS) 4931 return llvm::ConstantExpr::getAddrSpaceCast( 4932 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 4933 4934 // (If global is requested for a definition, we always need to create a new 4935 // global, not just return a bitcast.) 4936 if (!IsForDefinition) 4937 return Entry; 4938 } 4939 4940 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4941 4942 auto *GV = new llvm::GlobalVariable( 4943 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4944 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4945 getContext().getTargetAddressSpace(DAddrSpace)); 4946 4947 // If we already created a global with the same mangled name (but different 4948 // type) before, take its name and remove it from its parent. 4949 if (Entry) { 4950 GV->takeName(Entry); 4951 4952 if (!Entry->use_empty()) { 4953 Entry->replaceAllUsesWith(GV); 4954 } 4955 4956 Entry->eraseFromParent(); 4957 } 4958 4959 // This is the first use or definition of a mangled name. If there is a 4960 // deferred decl with this name, remember that we need to emit it at the end 4961 // of the file. 4962 auto DDI = DeferredDecls.find(MangledName); 4963 if (DDI != DeferredDecls.end()) { 4964 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4965 // list, and remove it from DeferredDecls (since we don't need it anymore). 4966 addDeferredDeclToEmit(DDI->second); 4967 DeferredDecls.erase(DDI); 4968 } 4969 4970 // Handle things which are present even on external declarations. 4971 if (D) { 4972 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4973 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4974 4975 // FIXME: This code is overly simple and should be merged with other global 4976 // handling. 4977 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 4978 4979 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4980 4981 setLinkageForGV(GV, D); 4982 4983 if (D->getTLSKind()) { 4984 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4985 CXXThreadLocals.push_back(D); 4986 setTLSMode(GV, *D); 4987 } 4988 4989 setGVProperties(GV, D); 4990 4991 // If required by the ABI, treat declarations of static data members with 4992 // inline initializers as definitions. 4993 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4994 EmitGlobalVarDefinition(D); 4995 } 4996 4997 // Emit section information for extern variables. 4998 if (D->hasExternalStorage()) { 4999 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 5000 GV->setSection(SA->getName()); 5001 } 5002 5003 // Handle XCore specific ABI requirements. 5004 if (getTriple().getArch() == llvm::Triple::xcore && 5005 D->getLanguageLinkage() == CLanguageLinkage && 5006 D->getType().isConstant(Context) && 5007 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 5008 GV->setSection(".cp.rodata"); 5009 5010 // Handle code model attribute 5011 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 5012 GV->setCodeModel(CMA->getModel()); 5013 5014 // Check if we a have a const declaration with an initializer, we may be 5015 // able to emit it as available_externally to expose it's value to the 5016 // optimizer. 5017 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 5018 D->getType().isConstQualified() && !GV->hasInitializer() && 5019 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 5020 const auto *Record = 5021 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 5022 bool HasMutableFields = Record && Record->hasMutableFields(); 5023 if (!HasMutableFields) { 5024 const VarDecl *InitDecl; 5025 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5026 if (InitExpr) { 5027 ConstantEmitter emitter(*this); 5028 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 5029 if (Init) { 5030 auto *InitType = Init->getType(); 5031 if (GV->getValueType() != InitType) { 5032 // The type of the initializer does not match the definition. 5033 // This happens when an initializer has a different type from 5034 // the type of the global (because of padding at the end of a 5035 // structure for instance). 5036 GV->setName(StringRef()); 5037 // Make a new global with the correct type, this is now guaranteed 5038 // to work. 5039 auto *NewGV = cast<llvm::GlobalVariable>( 5040 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 5041 ->stripPointerCasts()); 5042 5043 // Erase the old global, since it is no longer used. 5044 GV->eraseFromParent(); 5045 GV = NewGV; 5046 } else { 5047 GV->setInitializer(Init); 5048 GV->setConstant(true); 5049 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 5050 } 5051 emitter.finalize(GV); 5052 } 5053 } 5054 } 5055 } 5056 } 5057 5058 if (D && 5059 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 5060 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 5061 // External HIP managed variables needed to be recorded for transformation 5062 // in both device and host compilations. 5063 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 5064 D->hasExternalStorage()) 5065 getCUDARuntime().handleVarRegistration(D, *GV); 5066 } 5067 5068 if (D) 5069 SanitizerMD->reportGlobal(GV, *D); 5070 5071 LangAS ExpectedAS = 5072 D ? D->getType().getAddressSpace() 5073 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 5074 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 5075 if (DAddrSpace != ExpectedAS) { 5076 return getTargetCodeGenInfo().performAddrSpaceCast( 5077 *this, GV, DAddrSpace, ExpectedAS, 5078 llvm::PointerType::get(getLLVMContext(), TargetAS)); 5079 } 5080 5081 return GV; 5082 } 5083 5084 llvm::Constant * 5085 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 5086 const Decl *D = GD.getDecl(); 5087 5088 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 5089 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 5090 /*DontDefer=*/false, IsForDefinition); 5091 5092 if (isa<CXXMethodDecl>(D)) { 5093 auto FInfo = 5094 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 5095 auto Ty = getTypes().GetFunctionType(*FInfo); 5096 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5097 IsForDefinition); 5098 } 5099 5100 if (isa<FunctionDecl>(D)) { 5101 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5102 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5103 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5104 IsForDefinition); 5105 } 5106 5107 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 5108 } 5109 5110 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 5111 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 5112 llvm::Align Alignment) { 5113 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 5114 llvm::GlobalVariable *OldGV = nullptr; 5115 5116 if (GV) { 5117 // Check if the variable has the right type. 5118 if (GV->getValueType() == Ty) 5119 return GV; 5120 5121 // Because C++ name mangling, the only way we can end up with an already 5122 // existing global with the same name is if it has been declared extern "C". 5123 assert(GV->isDeclaration() && "Declaration has wrong type!"); 5124 OldGV = GV; 5125 } 5126 5127 // Create a new variable. 5128 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 5129 Linkage, nullptr, Name); 5130 5131 if (OldGV) { 5132 // Replace occurrences of the old variable if needed. 5133 GV->takeName(OldGV); 5134 5135 if (!OldGV->use_empty()) { 5136 OldGV->replaceAllUsesWith(GV); 5137 } 5138 5139 OldGV->eraseFromParent(); 5140 } 5141 5142 if (supportsCOMDAT() && GV->isWeakForLinker() && 5143 !GV->hasAvailableExternallyLinkage()) 5144 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5145 5146 GV->setAlignment(Alignment); 5147 5148 return GV; 5149 } 5150 5151 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5152 /// given global variable. If Ty is non-null and if the global doesn't exist, 5153 /// then it will be created with the specified type instead of whatever the 5154 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5155 /// that an actual global with type Ty will be returned, not conversion of a 5156 /// variable with the same mangled name but some other type. 5157 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5158 llvm::Type *Ty, 5159 ForDefinition_t IsForDefinition) { 5160 assert(D->hasGlobalStorage() && "Not a global variable"); 5161 QualType ASTTy = D->getType(); 5162 if (!Ty) 5163 Ty = getTypes().ConvertTypeForMem(ASTTy); 5164 5165 StringRef MangledName = getMangledName(D); 5166 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5167 IsForDefinition); 5168 } 5169 5170 /// CreateRuntimeVariable - Create a new runtime global variable with the 5171 /// specified type and name. 5172 llvm::Constant * 5173 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5174 StringRef Name) { 5175 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5176 : LangAS::Default; 5177 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5178 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5179 return Ret; 5180 } 5181 5182 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5183 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5184 5185 StringRef MangledName = getMangledName(D); 5186 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5187 5188 // We already have a definition, not declaration, with the same mangled name. 5189 // Emitting of declaration is not required (and actually overwrites emitted 5190 // definition). 5191 if (GV && !GV->isDeclaration()) 5192 return; 5193 5194 // If we have not seen a reference to this variable yet, place it into the 5195 // deferred declarations table to be emitted if needed later. 5196 if (!MustBeEmitted(D) && !GV) { 5197 DeferredDecls[MangledName] = D; 5198 return; 5199 } 5200 5201 // The tentative definition is the only definition. 5202 EmitGlobalVarDefinition(D); 5203 } 5204 5205 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) { 5206 if (auto const *V = dyn_cast<const VarDecl>(D)) 5207 EmitExternalVarDeclaration(V); 5208 if (auto const *FD = dyn_cast<const FunctionDecl>(D)) 5209 EmitExternalFunctionDeclaration(FD); 5210 } 5211 5212 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5213 return Context.toCharUnitsFromBits( 5214 getDataLayout().getTypeStoreSizeInBits(Ty)); 5215 } 5216 5217 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5218 if (LangOpts.OpenCL) { 5219 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5220 assert(AS == LangAS::opencl_global || 5221 AS == LangAS::opencl_global_device || 5222 AS == LangAS::opencl_global_host || 5223 AS == LangAS::opencl_constant || 5224 AS == LangAS::opencl_local || 5225 AS >= LangAS::FirstTargetAddressSpace); 5226 return AS; 5227 } 5228 5229 if (LangOpts.SYCLIsDevice && 5230 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5231 return LangAS::sycl_global; 5232 5233 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5234 if (D) { 5235 if (D->hasAttr<CUDAConstantAttr>()) 5236 return LangAS::cuda_constant; 5237 if (D->hasAttr<CUDASharedAttr>()) 5238 return LangAS::cuda_shared; 5239 if (D->hasAttr<CUDADeviceAttr>()) 5240 return LangAS::cuda_device; 5241 if (D->getType().isConstQualified()) 5242 return LangAS::cuda_constant; 5243 } 5244 return LangAS::cuda_device; 5245 } 5246 5247 if (LangOpts.OpenMP) { 5248 LangAS AS; 5249 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5250 return AS; 5251 } 5252 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5253 } 5254 5255 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5256 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5257 if (LangOpts.OpenCL) 5258 return LangAS::opencl_constant; 5259 if (LangOpts.SYCLIsDevice) 5260 return LangAS::sycl_global; 5261 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5262 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5263 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5264 // with OpVariable instructions with Generic storage class which is not 5265 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5266 // UniformConstant storage class is not viable as pointers to it may not be 5267 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5268 return LangAS::cuda_device; 5269 if (auto AS = getTarget().getConstantAddressSpace()) 5270 return *AS; 5271 return LangAS::Default; 5272 } 5273 5274 // In address space agnostic languages, string literals are in default address 5275 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5276 // emitted in constant address space in LLVM IR. To be consistent with other 5277 // parts of AST, string literal global variables in constant address space 5278 // need to be casted to default address space before being put into address 5279 // map and referenced by other part of CodeGen. 5280 // In OpenCL, string literals are in constant address space in AST, therefore 5281 // they should not be casted to default address space. 5282 static llvm::Constant * 5283 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5284 llvm::GlobalVariable *GV) { 5285 llvm::Constant *Cast = GV; 5286 if (!CGM.getLangOpts().OpenCL) { 5287 auto AS = CGM.GetGlobalConstantAddressSpace(); 5288 if (AS != LangAS::Default) 5289 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5290 CGM, GV, AS, LangAS::Default, 5291 llvm::PointerType::get( 5292 CGM.getLLVMContext(), 5293 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5294 } 5295 return Cast; 5296 } 5297 5298 template<typename SomeDecl> 5299 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5300 llvm::GlobalValue *GV) { 5301 if (!getLangOpts().CPlusPlus) 5302 return; 5303 5304 // Must have 'used' attribute, or else inline assembly can't rely on 5305 // the name existing. 5306 if (!D->template hasAttr<UsedAttr>()) 5307 return; 5308 5309 // Must have internal linkage and an ordinary name. 5310 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5311 return; 5312 5313 // Must be in an extern "C" context. Entities declared directly within 5314 // a record are not extern "C" even if the record is in such a context. 5315 const SomeDecl *First = D->getFirstDecl(); 5316 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5317 return; 5318 5319 // OK, this is an internal linkage entity inside an extern "C" linkage 5320 // specification. Make a note of that so we can give it the "expected" 5321 // mangled name if nothing else is using that name. 5322 std::pair<StaticExternCMap::iterator, bool> R = 5323 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5324 5325 // If we have multiple internal linkage entities with the same name 5326 // in extern "C" regions, none of them gets that name. 5327 if (!R.second) 5328 R.first->second = nullptr; 5329 } 5330 5331 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5332 if (!CGM.supportsCOMDAT()) 5333 return false; 5334 5335 if (D.hasAttr<SelectAnyAttr>()) 5336 return true; 5337 5338 GVALinkage Linkage; 5339 if (auto *VD = dyn_cast<VarDecl>(&D)) 5340 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5341 else 5342 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5343 5344 switch (Linkage) { 5345 case GVA_Internal: 5346 case GVA_AvailableExternally: 5347 case GVA_StrongExternal: 5348 return false; 5349 case GVA_DiscardableODR: 5350 case GVA_StrongODR: 5351 return true; 5352 } 5353 llvm_unreachable("No such linkage"); 5354 } 5355 5356 bool CodeGenModule::supportsCOMDAT() const { 5357 return getTriple().supportsCOMDAT(); 5358 } 5359 5360 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5361 llvm::GlobalObject &GO) { 5362 if (!shouldBeInCOMDAT(*this, D)) 5363 return; 5364 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5365 } 5366 5367 /// Pass IsTentative as true if you want to create a tentative definition. 5368 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5369 bool IsTentative) { 5370 // OpenCL global variables of sampler type are translated to function calls, 5371 // therefore no need to be translated. 5372 QualType ASTTy = D->getType(); 5373 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5374 return; 5375 5376 // If this is OpenMP device, check if it is legal to emit this global 5377 // normally. 5378 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5379 OpenMPRuntime->emitTargetGlobalVariable(D)) 5380 return; 5381 5382 llvm::TrackingVH<llvm::Constant> Init; 5383 bool NeedsGlobalCtor = false; 5384 // Whether the definition of the variable is available externally. 5385 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5386 // since this is the job for its original source. 5387 bool IsDefinitionAvailableExternally = 5388 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5389 bool NeedsGlobalDtor = 5390 !IsDefinitionAvailableExternally && 5391 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5392 5393 // It is helpless to emit the definition for an available_externally variable 5394 // which can't be marked as const. 5395 // We don't need to check if it needs global ctor or dtor. See the above 5396 // comment for ideas. 5397 if (IsDefinitionAvailableExternally && 5398 (!D->hasConstantInitialization() || 5399 // TODO: Update this when we have interface to check constexpr 5400 // destructor. 5401 D->needsDestruction(getContext()) || 5402 !D->getType().isConstantStorage(getContext(), true, true))) 5403 return; 5404 5405 const VarDecl *InitDecl; 5406 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5407 5408 std::optional<ConstantEmitter> emitter; 5409 5410 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5411 // as part of their declaration." Sema has already checked for 5412 // error cases, so we just need to set Init to UndefValue. 5413 bool IsCUDASharedVar = 5414 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5415 // Shadows of initialized device-side global variables are also left 5416 // undefined. 5417 // Managed Variables should be initialized on both host side and device side. 5418 bool IsCUDAShadowVar = 5419 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5420 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5421 D->hasAttr<CUDASharedAttr>()); 5422 bool IsCUDADeviceShadowVar = 5423 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5424 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5425 D->getType()->isCUDADeviceBuiltinTextureType()); 5426 if (getLangOpts().CUDA && 5427 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5428 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5429 else if (D->hasAttr<LoaderUninitializedAttr>()) 5430 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5431 else if (!InitExpr) { 5432 // This is a tentative definition; tentative definitions are 5433 // implicitly initialized with { 0 }. 5434 // 5435 // Note that tentative definitions are only emitted at the end of 5436 // a translation unit, so they should never have incomplete 5437 // type. In addition, EmitTentativeDefinition makes sure that we 5438 // never attempt to emit a tentative definition if a real one 5439 // exists. A use may still exists, however, so we still may need 5440 // to do a RAUW. 5441 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5442 Init = EmitNullConstant(D->getType()); 5443 } else { 5444 initializedGlobalDecl = GlobalDecl(D); 5445 emitter.emplace(*this); 5446 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5447 if (!Initializer) { 5448 QualType T = InitExpr->getType(); 5449 if (D->getType()->isReferenceType()) 5450 T = D->getType(); 5451 5452 if (getLangOpts().CPlusPlus) { 5453 if (InitDecl->hasFlexibleArrayInit(getContext())) 5454 ErrorUnsupported(D, "flexible array initializer"); 5455 Init = EmitNullConstant(T); 5456 5457 if (!IsDefinitionAvailableExternally) 5458 NeedsGlobalCtor = true; 5459 } else { 5460 ErrorUnsupported(D, "static initializer"); 5461 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5462 } 5463 } else { 5464 Init = Initializer; 5465 // We don't need an initializer, so remove the entry for the delayed 5466 // initializer position (just in case this entry was delayed) if we 5467 // also don't need to register a destructor. 5468 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5469 DelayedCXXInitPosition.erase(D); 5470 5471 #ifndef NDEBUG 5472 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5473 InitDecl->getFlexibleArrayInitChars(getContext()); 5474 CharUnits CstSize = CharUnits::fromQuantity( 5475 getDataLayout().getTypeAllocSize(Init->getType())); 5476 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5477 #endif 5478 } 5479 } 5480 5481 llvm::Type* InitType = Init->getType(); 5482 llvm::Constant *Entry = 5483 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5484 5485 // Strip off pointer casts if we got them. 5486 Entry = Entry->stripPointerCasts(); 5487 5488 // Entry is now either a Function or GlobalVariable. 5489 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5490 5491 // We have a definition after a declaration with the wrong type. 5492 // We must make a new GlobalVariable* and update everything that used OldGV 5493 // (a declaration or tentative definition) with the new GlobalVariable* 5494 // (which will be a definition). 5495 // 5496 // This happens if there is a prototype for a global (e.g. 5497 // "extern int x[];") and then a definition of a different type (e.g. 5498 // "int x[10];"). This also happens when an initializer has a different type 5499 // from the type of the global (this happens with unions). 5500 if (!GV || GV->getValueType() != InitType || 5501 GV->getType()->getAddressSpace() != 5502 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5503 5504 // Move the old entry aside so that we'll create a new one. 5505 Entry->setName(StringRef()); 5506 5507 // Make a new global with the correct type, this is now guaranteed to work. 5508 GV = cast<llvm::GlobalVariable>( 5509 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5510 ->stripPointerCasts()); 5511 5512 // Replace all uses of the old global with the new global 5513 llvm::Constant *NewPtrForOldDecl = 5514 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5515 Entry->getType()); 5516 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5517 5518 // Erase the old global, since it is no longer used. 5519 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5520 } 5521 5522 MaybeHandleStaticInExternC(D, GV); 5523 5524 if (D->hasAttr<AnnotateAttr>()) 5525 AddGlobalAnnotations(D, GV); 5526 5527 // Set the llvm linkage type as appropriate. 5528 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5529 5530 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5531 // the device. [...]" 5532 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5533 // __device__, declares a variable that: [...] 5534 // Is accessible from all the threads within the grid and from the host 5535 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5536 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5537 if (LangOpts.CUDA) { 5538 if (LangOpts.CUDAIsDevice) { 5539 if (Linkage != llvm::GlobalValue::InternalLinkage && 5540 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5541 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5542 D->getType()->isCUDADeviceBuiltinTextureType())) 5543 GV->setExternallyInitialized(true); 5544 } else { 5545 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5546 } 5547 getCUDARuntime().handleVarRegistration(D, *GV); 5548 } 5549 5550 GV->setInitializer(Init); 5551 if (emitter) 5552 emitter->finalize(GV); 5553 5554 // If it is safe to mark the global 'constant', do so now. 5555 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5556 D->getType().isConstantStorage(getContext(), true, true)); 5557 5558 // If it is in a read-only section, mark it 'constant'. 5559 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5560 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5561 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5562 GV->setConstant(true); 5563 } 5564 5565 CharUnits AlignVal = getContext().getDeclAlign(D); 5566 // Check for alignment specifed in an 'omp allocate' directive. 5567 if (std::optional<CharUnits> AlignValFromAllocate = 5568 getOMPAllocateAlignment(D)) 5569 AlignVal = *AlignValFromAllocate; 5570 GV->setAlignment(AlignVal.getAsAlign()); 5571 5572 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5573 // function is only defined alongside the variable, not also alongside 5574 // callers. Normally, all accesses to a thread_local go through the 5575 // thread-wrapper in order to ensure initialization has occurred, underlying 5576 // variable will never be used other than the thread-wrapper, so it can be 5577 // converted to internal linkage. 5578 // 5579 // However, if the variable has the 'constinit' attribute, it _can_ be 5580 // referenced directly, without calling the thread-wrapper, so the linkage 5581 // must not be changed. 5582 // 5583 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5584 // weak or linkonce, the de-duplication semantics are important to preserve, 5585 // so we don't change the linkage. 5586 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5587 Linkage == llvm::GlobalValue::ExternalLinkage && 5588 Context.getTargetInfo().getTriple().isOSDarwin() && 5589 !D->hasAttr<ConstInitAttr>()) 5590 Linkage = llvm::GlobalValue::InternalLinkage; 5591 5592 GV->setLinkage(Linkage); 5593 if (D->hasAttr<DLLImportAttr>()) 5594 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5595 else if (D->hasAttr<DLLExportAttr>()) 5596 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5597 else 5598 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5599 5600 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5601 // common vars aren't constant even if declared const. 5602 GV->setConstant(false); 5603 // Tentative definition of global variables may be initialized with 5604 // non-zero null pointers. In this case they should have weak linkage 5605 // since common linkage must have zero initializer and must not have 5606 // explicit section therefore cannot have non-zero initial value. 5607 if (!GV->getInitializer()->isNullValue()) 5608 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5609 } 5610 5611 setNonAliasAttributes(D, GV); 5612 5613 if (D->getTLSKind() && !GV->isThreadLocal()) { 5614 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5615 CXXThreadLocals.push_back(D); 5616 setTLSMode(GV, *D); 5617 } 5618 5619 maybeSetTrivialComdat(*D, *GV); 5620 5621 // Emit the initializer function if necessary. 5622 if (NeedsGlobalCtor || NeedsGlobalDtor) 5623 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5624 5625 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5626 5627 // Emit global variable debug information. 5628 if (CGDebugInfo *DI = getModuleDebugInfo()) 5629 if (getCodeGenOpts().hasReducedDebugInfo()) 5630 DI->EmitGlobalVariable(GV, D); 5631 } 5632 5633 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5634 if (CGDebugInfo *DI = getModuleDebugInfo()) 5635 if (getCodeGenOpts().hasReducedDebugInfo()) { 5636 QualType ASTTy = D->getType(); 5637 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5638 llvm::Constant *GV = 5639 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5640 DI->EmitExternalVariable( 5641 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5642 } 5643 } 5644 5645 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) { 5646 if (CGDebugInfo *DI = getModuleDebugInfo()) 5647 if (getCodeGenOpts().hasReducedDebugInfo()) { 5648 auto *Ty = getTypes().ConvertType(FD->getType()); 5649 StringRef MangledName = getMangledName(FD); 5650 auto *Fn = dyn_cast<llvm::Function>( 5651 GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false)); 5652 if (!Fn->getSubprogram()) 5653 DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn); 5654 } 5655 } 5656 5657 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5658 CodeGenModule &CGM, const VarDecl *D, 5659 bool NoCommon) { 5660 // Don't give variables common linkage if -fno-common was specified unless it 5661 // was overridden by a NoCommon attribute. 5662 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5663 return true; 5664 5665 // C11 6.9.2/2: 5666 // A declaration of an identifier for an object that has file scope without 5667 // an initializer, and without a storage-class specifier or with the 5668 // storage-class specifier static, constitutes a tentative definition. 5669 if (D->getInit() || D->hasExternalStorage()) 5670 return true; 5671 5672 // A variable cannot be both common and exist in a section. 5673 if (D->hasAttr<SectionAttr>()) 5674 return true; 5675 5676 // A variable cannot be both common and exist in a section. 5677 // We don't try to determine which is the right section in the front-end. 5678 // If no specialized section name is applicable, it will resort to default. 5679 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5680 D->hasAttr<PragmaClangDataSectionAttr>() || 5681 D->hasAttr<PragmaClangRelroSectionAttr>() || 5682 D->hasAttr<PragmaClangRodataSectionAttr>()) 5683 return true; 5684 5685 // Thread local vars aren't considered common linkage. 5686 if (D->getTLSKind()) 5687 return true; 5688 5689 // Tentative definitions marked with WeakImportAttr are true definitions. 5690 if (D->hasAttr<WeakImportAttr>()) 5691 return true; 5692 5693 // A variable cannot be both common and exist in a comdat. 5694 if (shouldBeInCOMDAT(CGM, *D)) 5695 return true; 5696 5697 // Declarations with a required alignment do not have common linkage in MSVC 5698 // mode. 5699 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5700 if (D->hasAttr<AlignedAttr>()) 5701 return true; 5702 QualType VarType = D->getType(); 5703 if (Context.isAlignmentRequired(VarType)) 5704 return true; 5705 5706 if (const auto *RT = VarType->getAs<RecordType>()) { 5707 const RecordDecl *RD = RT->getDecl(); 5708 for (const FieldDecl *FD : RD->fields()) { 5709 if (FD->isBitField()) 5710 continue; 5711 if (FD->hasAttr<AlignedAttr>()) 5712 return true; 5713 if (Context.isAlignmentRequired(FD->getType())) 5714 return true; 5715 } 5716 } 5717 } 5718 5719 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5720 // common symbols, so symbols with greater alignment requirements cannot be 5721 // common. 5722 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5723 // alignments for common symbols via the aligncomm directive, so this 5724 // restriction only applies to MSVC environments. 5725 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5726 Context.getTypeAlignIfKnown(D->getType()) > 5727 Context.toBits(CharUnits::fromQuantity(32))) 5728 return true; 5729 5730 return false; 5731 } 5732 5733 llvm::GlobalValue::LinkageTypes 5734 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5735 GVALinkage Linkage) { 5736 if (Linkage == GVA_Internal) 5737 return llvm::Function::InternalLinkage; 5738 5739 if (D->hasAttr<WeakAttr>()) 5740 return llvm::GlobalVariable::WeakAnyLinkage; 5741 5742 if (const auto *FD = D->getAsFunction()) 5743 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5744 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5745 5746 // We are guaranteed to have a strong definition somewhere else, 5747 // so we can use available_externally linkage. 5748 if (Linkage == GVA_AvailableExternally) 5749 return llvm::GlobalValue::AvailableExternallyLinkage; 5750 5751 // Note that Apple's kernel linker doesn't support symbol 5752 // coalescing, so we need to avoid linkonce and weak linkages there. 5753 // Normally, this means we just map to internal, but for explicit 5754 // instantiations we'll map to external. 5755 5756 // In C++, the compiler has to emit a definition in every translation unit 5757 // that references the function. We should use linkonce_odr because 5758 // a) if all references in this translation unit are optimized away, we 5759 // don't need to codegen it. b) if the function persists, it needs to be 5760 // merged with other definitions. c) C++ has the ODR, so we know the 5761 // definition is dependable. 5762 if (Linkage == GVA_DiscardableODR) 5763 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5764 : llvm::Function::InternalLinkage; 5765 5766 // An explicit instantiation of a template has weak linkage, since 5767 // explicit instantiations can occur in multiple translation units 5768 // and must all be equivalent. However, we are not allowed to 5769 // throw away these explicit instantiations. 5770 // 5771 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5772 // so say that CUDA templates are either external (for kernels) or internal. 5773 // This lets llvm perform aggressive inter-procedural optimizations. For 5774 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5775 // therefore we need to follow the normal linkage paradigm. 5776 if (Linkage == GVA_StrongODR) { 5777 if (getLangOpts().AppleKext) 5778 return llvm::Function::ExternalLinkage; 5779 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5780 !getLangOpts().GPURelocatableDeviceCode) 5781 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5782 : llvm::Function::InternalLinkage; 5783 return llvm::Function::WeakODRLinkage; 5784 } 5785 5786 // C++ doesn't have tentative definitions and thus cannot have common 5787 // linkage. 5788 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5789 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5790 CodeGenOpts.NoCommon)) 5791 return llvm::GlobalVariable::CommonLinkage; 5792 5793 // selectany symbols are externally visible, so use weak instead of 5794 // linkonce. MSVC optimizes away references to const selectany globals, so 5795 // all definitions should be the same and ODR linkage should be used. 5796 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5797 if (D->hasAttr<SelectAnyAttr>()) 5798 return llvm::GlobalVariable::WeakODRLinkage; 5799 5800 // Otherwise, we have strong external linkage. 5801 assert(Linkage == GVA_StrongExternal); 5802 return llvm::GlobalVariable::ExternalLinkage; 5803 } 5804 5805 llvm::GlobalValue::LinkageTypes 5806 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5807 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5808 return getLLVMLinkageForDeclarator(VD, Linkage); 5809 } 5810 5811 /// Replace the uses of a function that was declared with a non-proto type. 5812 /// We want to silently drop extra arguments from call sites 5813 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5814 llvm::Function *newFn) { 5815 // Fast path. 5816 if (old->use_empty()) 5817 return; 5818 5819 llvm::Type *newRetTy = newFn->getReturnType(); 5820 SmallVector<llvm::Value *, 4> newArgs; 5821 5822 SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent; 5823 5824 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5825 ui != ue; ui++) { 5826 llvm::User *user = ui->getUser(); 5827 5828 // Recognize and replace uses of bitcasts. Most calls to 5829 // unprototyped functions will use bitcasts. 5830 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5831 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5832 replaceUsesOfNonProtoConstant(bitcast, newFn); 5833 continue; 5834 } 5835 5836 // Recognize calls to the function. 5837 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5838 if (!callSite) 5839 continue; 5840 if (!callSite->isCallee(&*ui)) 5841 continue; 5842 5843 // If the return types don't match exactly, then we can't 5844 // transform this call unless it's dead. 5845 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5846 continue; 5847 5848 // Get the call site's attribute list. 5849 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5850 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5851 5852 // If the function was passed too few arguments, don't transform. 5853 unsigned newNumArgs = newFn->arg_size(); 5854 if (callSite->arg_size() < newNumArgs) 5855 continue; 5856 5857 // If extra arguments were passed, we silently drop them. 5858 // If any of the types mismatch, we don't transform. 5859 unsigned argNo = 0; 5860 bool dontTransform = false; 5861 for (llvm::Argument &A : newFn->args()) { 5862 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5863 dontTransform = true; 5864 break; 5865 } 5866 5867 // Add any parameter attributes. 5868 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5869 argNo++; 5870 } 5871 if (dontTransform) 5872 continue; 5873 5874 // Okay, we can transform this. Create the new call instruction and copy 5875 // over the required information. 5876 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5877 5878 // Copy over any operand bundles. 5879 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5880 callSite->getOperandBundlesAsDefs(newBundles); 5881 5882 llvm::CallBase *newCall; 5883 if (isa<llvm::CallInst>(callSite)) { 5884 newCall = 5885 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5886 } else { 5887 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5888 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5889 oldInvoke->getUnwindDest(), newArgs, 5890 newBundles, "", callSite); 5891 } 5892 newArgs.clear(); // for the next iteration 5893 5894 if (!newCall->getType()->isVoidTy()) 5895 newCall->takeName(callSite); 5896 newCall->setAttributes( 5897 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5898 oldAttrs.getRetAttrs(), newArgAttrs)); 5899 newCall->setCallingConv(callSite->getCallingConv()); 5900 5901 // Finally, remove the old call, replacing any uses with the new one. 5902 if (!callSite->use_empty()) 5903 callSite->replaceAllUsesWith(newCall); 5904 5905 // Copy debug location attached to CI. 5906 if (callSite->getDebugLoc()) 5907 newCall->setDebugLoc(callSite->getDebugLoc()); 5908 5909 callSitesToBeRemovedFromParent.push_back(callSite); 5910 } 5911 5912 for (auto *callSite : callSitesToBeRemovedFromParent) { 5913 callSite->eraseFromParent(); 5914 } 5915 } 5916 5917 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5918 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5919 /// existing call uses of the old function in the module, this adjusts them to 5920 /// call the new function directly. 5921 /// 5922 /// This is not just a cleanup: the always_inline pass requires direct calls to 5923 /// functions to be able to inline them. If there is a bitcast in the way, it 5924 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5925 /// run at -O0. 5926 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5927 llvm::Function *NewFn) { 5928 // If we're redefining a global as a function, don't transform it. 5929 if (!isa<llvm::Function>(Old)) return; 5930 5931 replaceUsesOfNonProtoConstant(Old, NewFn); 5932 } 5933 5934 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5935 auto DK = VD->isThisDeclarationADefinition(); 5936 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5937 return; 5938 5939 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5940 // If we have a definition, this might be a deferred decl. If the 5941 // instantiation is explicit, make sure we emit it at the end. 5942 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5943 GetAddrOfGlobalVar(VD); 5944 5945 EmitTopLevelDecl(VD); 5946 } 5947 5948 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5949 llvm::GlobalValue *GV) { 5950 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5951 5952 // Compute the function info and LLVM type. 5953 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5954 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5955 5956 // Get or create the prototype for the function. 5957 if (!GV || (GV->getValueType() != Ty)) 5958 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5959 /*DontDefer=*/true, 5960 ForDefinition)); 5961 5962 // Already emitted. 5963 if (!GV->isDeclaration()) 5964 return; 5965 5966 // We need to set linkage and visibility on the function before 5967 // generating code for it because various parts of IR generation 5968 // want to propagate this information down (e.g. to local static 5969 // declarations). 5970 auto *Fn = cast<llvm::Function>(GV); 5971 setFunctionLinkage(GD, Fn); 5972 5973 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5974 setGVProperties(Fn, GD); 5975 5976 MaybeHandleStaticInExternC(D, Fn); 5977 5978 maybeSetTrivialComdat(*D, *Fn); 5979 5980 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5981 5982 setNonAliasAttributes(GD, Fn); 5983 SetLLVMFunctionAttributesForDefinition(D, Fn); 5984 5985 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5986 AddGlobalCtor(Fn, CA->getPriority()); 5987 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5988 AddGlobalDtor(Fn, DA->getPriority(), true); 5989 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 5990 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 5991 } 5992 5993 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5994 const auto *D = cast<ValueDecl>(GD.getDecl()); 5995 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5996 assert(AA && "Not an alias?"); 5997 5998 StringRef MangledName = getMangledName(GD); 5999 6000 if (AA->getAliasee() == MangledName) { 6001 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6002 return; 6003 } 6004 6005 // If there is a definition in the module, then it wins over the alias. 6006 // This is dubious, but allow it to be safe. Just ignore the alias. 6007 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6008 if (Entry && !Entry->isDeclaration()) 6009 return; 6010 6011 Aliases.push_back(GD); 6012 6013 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6014 6015 // Create a reference to the named value. This ensures that it is emitted 6016 // if a deferred decl. 6017 llvm::Constant *Aliasee; 6018 llvm::GlobalValue::LinkageTypes LT; 6019 if (isa<llvm::FunctionType>(DeclTy)) { 6020 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 6021 /*ForVTable=*/false); 6022 LT = getFunctionLinkage(GD); 6023 } else { 6024 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 6025 /*D=*/nullptr); 6026 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 6027 LT = getLLVMLinkageVarDefinition(VD); 6028 else 6029 LT = getFunctionLinkage(GD); 6030 } 6031 6032 // Create the new alias itself, but don't set a name yet. 6033 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 6034 auto *GA = 6035 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 6036 6037 if (Entry) { 6038 if (GA->getAliasee() == Entry) { 6039 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6040 return; 6041 } 6042 6043 assert(Entry->isDeclaration()); 6044 6045 // If there is a declaration in the module, then we had an extern followed 6046 // by the alias, as in: 6047 // extern int test6(); 6048 // ... 6049 // int test6() __attribute__((alias("test7"))); 6050 // 6051 // Remove it and replace uses of it with the alias. 6052 GA->takeName(Entry); 6053 6054 Entry->replaceAllUsesWith(GA); 6055 Entry->eraseFromParent(); 6056 } else { 6057 GA->setName(MangledName); 6058 } 6059 6060 // Set attributes which are particular to an alias; this is a 6061 // specialization of the attributes which may be set on a global 6062 // variable/function. 6063 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 6064 D->isWeakImported()) { 6065 GA->setLinkage(llvm::Function::WeakAnyLinkage); 6066 } 6067 6068 if (const auto *VD = dyn_cast<VarDecl>(D)) 6069 if (VD->getTLSKind()) 6070 setTLSMode(GA, *VD); 6071 6072 SetCommonAttributes(GD, GA); 6073 6074 // Emit global alias debug information. 6075 if (isa<VarDecl>(D)) 6076 if (CGDebugInfo *DI = getModuleDebugInfo()) 6077 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 6078 } 6079 6080 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 6081 const auto *D = cast<ValueDecl>(GD.getDecl()); 6082 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 6083 assert(IFA && "Not an ifunc?"); 6084 6085 StringRef MangledName = getMangledName(GD); 6086 6087 if (IFA->getResolver() == MangledName) { 6088 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6089 return; 6090 } 6091 6092 // Report an error if some definition overrides ifunc. 6093 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6094 if (Entry && !Entry->isDeclaration()) { 6095 GlobalDecl OtherGD; 6096 if (lookupRepresentativeDecl(MangledName, OtherGD) && 6097 DiagnosedConflictingDefinitions.insert(GD).second) { 6098 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 6099 << MangledName; 6100 Diags.Report(OtherGD.getDecl()->getLocation(), 6101 diag::note_previous_definition); 6102 } 6103 return; 6104 } 6105 6106 Aliases.push_back(GD); 6107 6108 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6109 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 6110 llvm::Constant *Resolver = 6111 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 6112 /*ForVTable=*/false); 6113 llvm::GlobalIFunc *GIF = 6114 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 6115 "", Resolver, &getModule()); 6116 if (Entry) { 6117 if (GIF->getResolver() == Entry) { 6118 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6119 return; 6120 } 6121 assert(Entry->isDeclaration()); 6122 6123 // If there is a declaration in the module, then we had an extern followed 6124 // by the ifunc, as in: 6125 // extern int test(); 6126 // ... 6127 // int test() __attribute__((ifunc("resolver"))); 6128 // 6129 // Remove it and replace uses of it with the ifunc. 6130 GIF->takeName(Entry); 6131 6132 Entry->replaceAllUsesWith(GIF); 6133 Entry->eraseFromParent(); 6134 } else 6135 GIF->setName(MangledName); 6136 if (auto *F = dyn_cast<llvm::Function>(Resolver)) { 6137 F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 6138 } 6139 SetCommonAttributes(GD, GIF); 6140 } 6141 6142 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 6143 ArrayRef<llvm::Type*> Tys) { 6144 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 6145 Tys); 6146 } 6147 6148 static llvm::StringMapEntry<llvm::GlobalVariable *> & 6149 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 6150 const StringLiteral *Literal, bool TargetIsLSB, 6151 bool &IsUTF16, unsigned &StringLength) { 6152 StringRef String = Literal->getString(); 6153 unsigned NumBytes = String.size(); 6154 6155 // Check for simple case. 6156 if (!Literal->containsNonAsciiOrNull()) { 6157 StringLength = NumBytes; 6158 return *Map.insert(std::make_pair(String, nullptr)).first; 6159 } 6160 6161 // Otherwise, convert the UTF8 literals into a string of shorts. 6162 IsUTF16 = true; 6163 6164 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 6165 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6166 llvm::UTF16 *ToPtr = &ToBuf[0]; 6167 6168 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6169 ToPtr + NumBytes, llvm::strictConversion); 6170 6171 // ConvertUTF8toUTF16 returns the length in ToPtr. 6172 StringLength = ToPtr - &ToBuf[0]; 6173 6174 // Add an explicit null. 6175 *ToPtr = 0; 6176 return *Map.insert(std::make_pair( 6177 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 6178 (StringLength + 1) * 2), 6179 nullptr)).first; 6180 } 6181 6182 ConstantAddress 6183 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6184 unsigned StringLength = 0; 6185 bool isUTF16 = false; 6186 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6187 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6188 getDataLayout().isLittleEndian(), isUTF16, 6189 StringLength); 6190 6191 if (auto *C = Entry.second) 6192 return ConstantAddress( 6193 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6194 6195 const ASTContext &Context = getContext(); 6196 const llvm::Triple &Triple = getTriple(); 6197 6198 const auto CFRuntime = getLangOpts().CFRuntime; 6199 const bool IsSwiftABI = 6200 static_cast<unsigned>(CFRuntime) >= 6201 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6202 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6203 6204 // If we don't already have it, get __CFConstantStringClassReference. 6205 if (!CFConstantStringClassRef) { 6206 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6207 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6208 Ty = llvm::ArrayType::get(Ty, 0); 6209 6210 switch (CFRuntime) { 6211 default: break; 6212 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6213 case LangOptions::CoreFoundationABI::Swift5_0: 6214 CFConstantStringClassName = 6215 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6216 : "$s10Foundation19_NSCFConstantStringCN"; 6217 Ty = IntPtrTy; 6218 break; 6219 case LangOptions::CoreFoundationABI::Swift4_2: 6220 CFConstantStringClassName = 6221 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6222 : "$S10Foundation19_NSCFConstantStringCN"; 6223 Ty = IntPtrTy; 6224 break; 6225 case LangOptions::CoreFoundationABI::Swift4_1: 6226 CFConstantStringClassName = 6227 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6228 : "__T010Foundation19_NSCFConstantStringCN"; 6229 Ty = IntPtrTy; 6230 break; 6231 } 6232 6233 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6234 6235 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6236 llvm::GlobalValue *GV = nullptr; 6237 6238 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6239 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6240 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6241 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6242 6243 const VarDecl *VD = nullptr; 6244 for (const auto *Result : DC->lookup(&II)) 6245 if ((VD = dyn_cast<VarDecl>(Result))) 6246 break; 6247 6248 if (Triple.isOSBinFormatELF()) { 6249 if (!VD) 6250 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6251 } else { 6252 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6253 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6254 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6255 else 6256 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6257 } 6258 6259 setDSOLocal(GV); 6260 } 6261 } 6262 6263 // Decay array -> ptr 6264 CFConstantStringClassRef = 6265 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C; 6266 } 6267 6268 QualType CFTy = Context.getCFConstantStringType(); 6269 6270 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6271 6272 ConstantInitBuilder Builder(*this); 6273 auto Fields = Builder.beginStruct(STy); 6274 6275 // Class pointer. 6276 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6277 6278 // Flags. 6279 if (IsSwiftABI) { 6280 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6281 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6282 } else { 6283 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6284 } 6285 6286 // String pointer. 6287 llvm::Constant *C = nullptr; 6288 if (isUTF16) { 6289 auto Arr = llvm::ArrayRef( 6290 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6291 Entry.first().size() / 2); 6292 C = llvm::ConstantDataArray::get(VMContext, Arr); 6293 } else { 6294 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6295 } 6296 6297 // Note: -fwritable-strings doesn't make the backing store strings of 6298 // CFStrings writable. 6299 auto *GV = 6300 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6301 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6302 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6303 // Don't enforce the target's minimum global alignment, since the only use 6304 // of the string is via this class initializer. 6305 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6306 : Context.getTypeAlignInChars(Context.CharTy); 6307 GV->setAlignment(Align.getAsAlign()); 6308 6309 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6310 // Without it LLVM can merge the string with a non unnamed_addr one during 6311 // LTO. Doing that changes the section it ends in, which surprises ld64. 6312 if (Triple.isOSBinFormatMachO()) 6313 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6314 : "__TEXT,__cstring,cstring_literals"); 6315 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6316 // the static linker to adjust permissions to read-only later on. 6317 else if (Triple.isOSBinFormatELF()) 6318 GV->setSection(".rodata"); 6319 6320 // String. 6321 Fields.add(GV); 6322 6323 // String length. 6324 llvm::IntegerType *LengthTy = 6325 llvm::IntegerType::get(getModule().getContext(), 6326 Context.getTargetInfo().getLongWidth()); 6327 if (IsSwiftABI) { 6328 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6329 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6330 LengthTy = Int32Ty; 6331 else 6332 LengthTy = IntPtrTy; 6333 } 6334 Fields.addInt(LengthTy, StringLength); 6335 6336 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6337 // properly aligned on 32-bit platforms. 6338 CharUnits Alignment = 6339 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6340 6341 // The struct. 6342 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6343 /*isConstant=*/false, 6344 llvm::GlobalVariable::PrivateLinkage); 6345 GV->addAttribute("objc_arc_inert"); 6346 switch (Triple.getObjectFormat()) { 6347 case llvm::Triple::UnknownObjectFormat: 6348 llvm_unreachable("unknown file format"); 6349 case llvm::Triple::DXContainer: 6350 case llvm::Triple::GOFF: 6351 case llvm::Triple::SPIRV: 6352 case llvm::Triple::XCOFF: 6353 llvm_unreachable("unimplemented"); 6354 case llvm::Triple::COFF: 6355 case llvm::Triple::ELF: 6356 case llvm::Triple::Wasm: 6357 GV->setSection("cfstring"); 6358 break; 6359 case llvm::Triple::MachO: 6360 GV->setSection("__DATA,__cfstring"); 6361 break; 6362 } 6363 Entry.second = GV; 6364 6365 return ConstantAddress(GV, GV->getValueType(), Alignment); 6366 } 6367 6368 bool CodeGenModule::getExpressionLocationsEnabled() const { 6369 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6370 } 6371 6372 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6373 if (ObjCFastEnumerationStateType.isNull()) { 6374 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6375 D->startDefinition(); 6376 6377 QualType FieldTypes[] = { 6378 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6379 Context.getPointerType(Context.UnsignedLongTy), 6380 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6381 nullptr, ArraySizeModifier::Normal, 0)}; 6382 6383 for (size_t i = 0; i < 4; ++i) { 6384 FieldDecl *Field = FieldDecl::Create(Context, 6385 D, 6386 SourceLocation(), 6387 SourceLocation(), nullptr, 6388 FieldTypes[i], /*TInfo=*/nullptr, 6389 /*BitWidth=*/nullptr, 6390 /*Mutable=*/false, 6391 ICIS_NoInit); 6392 Field->setAccess(AS_public); 6393 D->addDecl(Field); 6394 } 6395 6396 D->completeDefinition(); 6397 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6398 } 6399 6400 return ObjCFastEnumerationStateType; 6401 } 6402 6403 llvm::Constant * 6404 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6405 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6406 6407 // Don't emit it as the address of the string, emit the string data itself 6408 // as an inline array. 6409 if (E->getCharByteWidth() == 1) { 6410 SmallString<64> Str(E->getString()); 6411 6412 // Resize the string to the right size, which is indicated by its type. 6413 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6414 assert(CAT && "String literal not of constant array type!"); 6415 Str.resize(CAT->getZExtSize()); 6416 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6417 } 6418 6419 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6420 llvm::Type *ElemTy = AType->getElementType(); 6421 unsigned NumElements = AType->getNumElements(); 6422 6423 // Wide strings have either 2-byte or 4-byte elements. 6424 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6425 SmallVector<uint16_t, 32> Elements; 6426 Elements.reserve(NumElements); 6427 6428 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6429 Elements.push_back(E->getCodeUnit(i)); 6430 Elements.resize(NumElements); 6431 return llvm::ConstantDataArray::get(VMContext, Elements); 6432 } 6433 6434 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6435 SmallVector<uint32_t, 32> Elements; 6436 Elements.reserve(NumElements); 6437 6438 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6439 Elements.push_back(E->getCodeUnit(i)); 6440 Elements.resize(NumElements); 6441 return llvm::ConstantDataArray::get(VMContext, Elements); 6442 } 6443 6444 static llvm::GlobalVariable * 6445 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6446 CodeGenModule &CGM, StringRef GlobalName, 6447 CharUnits Alignment) { 6448 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6449 CGM.GetGlobalConstantAddressSpace()); 6450 6451 llvm::Module &M = CGM.getModule(); 6452 // Create a global variable for this string 6453 auto *GV = new llvm::GlobalVariable( 6454 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6455 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6456 GV->setAlignment(Alignment.getAsAlign()); 6457 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6458 if (GV->isWeakForLinker()) { 6459 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6460 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6461 } 6462 CGM.setDSOLocal(GV); 6463 6464 return GV; 6465 } 6466 6467 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6468 /// constant array for the given string literal. 6469 ConstantAddress 6470 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6471 StringRef Name) { 6472 CharUnits Alignment = 6473 getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr); 6474 6475 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6476 llvm::GlobalVariable **Entry = nullptr; 6477 if (!LangOpts.WritableStrings) { 6478 Entry = &ConstantStringMap[C]; 6479 if (auto GV = *Entry) { 6480 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6481 GV->setAlignment(Alignment.getAsAlign()); 6482 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6483 GV->getValueType(), Alignment); 6484 } 6485 } 6486 6487 SmallString<256> MangledNameBuffer; 6488 StringRef GlobalVariableName; 6489 llvm::GlobalValue::LinkageTypes LT; 6490 6491 // Mangle the string literal if that's how the ABI merges duplicate strings. 6492 // Don't do it if they are writable, since we don't want writes in one TU to 6493 // affect strings in another. 6494 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6495 !LangOpts.WritableStrings) { 6496 llvm::raw_svector_ostream Out(MangledNameBuffer); 6497 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6498 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6499 GlobalVariableName = MangledNameBuffer; 6500 } else { 6501 LT = llvm::GlobalValue::PrivateLinkage; 6502 GlobalVariableName = Name; 6503 } 6504 6505 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6506 6507 CGDebugInfo *DI = getModuleDebugInfo(); 6508 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6509 DI->AddStringLiteralDebugInfo(GV, S); 6510 6511 if (Entry) 6512 *Entry = GV; 6513 6514 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6515 6516 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6517 GV->getValueType(), Alignment); 6518 } 6519 6520 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6521 /// array for the given ObjCEncodeExpr node. 6522 ConstantAddress 6523 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6524 std::string Str; 6525 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6526 6527 return GetAddrOfConstantCString(Str); 6528 } 6529 6530 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6531 /// the literal and a terminating '\0' character. 6532 /// The result has pointer to array type. 6533 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6534 const std::string &Str, const char *GlobalName) { 6535 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6536 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars( 6537 getContext().CharTy, /*VD=*/nullptr); 6538 6539 llvm::Constant *C = 6540 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6541 6542 // Don't share any string literals if strings aren't constant. 6543 llvm::GlobalVariable **Entry = nullptr; 6544 if (!LangOpts.WritableStrings) { 6545 Entry = &ConstantStringMap[C]; 6546 if (auto GV = *Entry) { 6547 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6548 GV->setAlignment(Alignment.getAsAlign()); 6549 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6550 GV->getValueType(), Alignment); 6551 } 6552 } 6553 6554 // Get the default prefix if a name wasn't specified. 6555 if (!GlobalName) 6556 GlobalName = ".str"; 6557 // Create a global variable for this. 6558 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6559 GlobalName, Alignment); 6560 if (Entry) 6561 *Entry = GV; 6562 6563 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6564 GV->getValueType(), Alignment); 6565 } 6566 6567 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6568 const MaterializeTemporaryExpr *E, const Expr *Init) { 6569 assert((E->getStorageDuration() == SD_Static || 6570 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6571 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6572 6573 // If we're not materializing a subobject of the temporary, keep the 6574 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6575 QualType MaterializedType = Init->getType(); 6576 if (Init == E->getSubExpr()) 6577 MaterializedType = E->getType(); 6578 6579 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6580 6581 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6582 if (!InsertResult.second) { 6583 // We've seen this before: either we already created it or we're in the 6584 // process of doing so. 6585 if (!InsertResult.first->second) { 6586 // We recursively re-entered this function, probably during emission of 6587 // the initializer. Create a placeholder. We'll clean this up in the 6588 // outer call, at the end of this function. 6589 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6590 InsertResult.first->second = new llvm::GlobalVariable( 6591 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6592 nullptr); 6593 } 6594 return ConstantAddress(InsertResult.first->second, 6595 llvm::cast<llvm::GlobalVariable>( 6596 InsertResult.first->second->stripPointerCasts()) 6597 ->getValueType(), 6598 Align); 6599 } 6600 6601 // FIXME: If an externally-visible declaration extends multiple temporaries, 6602 // we need to give each temporary the same name in every translation unit (and 6603 // we also need to make the temporaries externally-visible). 6604 SmallString<256> Name; 6605 llvm::raw_svector_ostream Out(Name); 6606 getCXXABI().getMangleContext().mangleReferenceTemporary( 6607 VD, E->getManglingNumber(), Out); 6608 6609 APValue *Value = nullptr; 6610 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6611 // If the initializer of the extending declaration is a constant 6612 // initializer, we should have a cached constant initializer for this 6613 // temporary. Note that this might have a different value from the value 6614 // computed by evaluating the initializer if the surrounding constant 6615 // expression modifies the temporary. 6616 Value = E->getOrCreateValue(false); 6617 } 6618 6619 // Try evaluating it now, it might have a constant initializer. 6620 Expr::EvalResult EvalResult; 6621 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6622 !EvalResult.hasSideEffects()) 6623 Value = &EvalResult.Val; 6624 6625 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6626 6627 std::optional<ConstantEmitter> emitter; 6628 llvm::Constant *InitialValue = nullptr; 6629 bool Constant = false; 6630 llvm::Type *Type; 6631 if (Value) { 6632 // The temporary has a constant initializer, use it. 6633 emitter.emplace(*this); 6634 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6635 MaterializedType); 6636 Constant = 6637 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6638 /*ExcludeDtor*/ false); 6639 Type = InitialValue->getType(); 6640 } else { 6641 // No initializer, the initialization will be provided when we 6642 // initialize the declaration which performed lifetime extension. 6643 Type = getTypes().ConvertTypeForMem(MaterializedType); 6644 } 6645 6646 // Create a global variable for this lifetime-extended temporary. 6647 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6648 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6649 const VarDecl *InitVD; 6650 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6651 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6652 // Temporaries defined inside a class get linkonce_odr linkage because the 6653 // class can be defined in multiple translation units. 6654 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6655 } else { 6656 // There is no need for this temporary to have external linkage if the 6657 // VarDecl has external linkage. 6658 Linkage = llvm::GlobalVariable::InternalLinkage; 6659 } 6660 } 6661 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6662 auto *GV = new llvm::GlobalVariable( 6663 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6664 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6665 if (emitter) emitter->finalize(GV); 6666 // Don't assign dllimport or dllexport to local linkage globals. 6667 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6668 setGVProperties(GV, VD); 6669 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6670 // The reference temporary should never be dllexport. 6671 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6672 } 6673 GV->setAlignment(Align.getAsAlign()); 6674 if (supportsCOMDAT() && GV->isWeakForLinker()) 6675 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6676 if (VD->getTLSKind()) 6677 setTLSMode(GV, *VD); 6678 llvm::Constant *CV = GV; 6679 if (AddrSpace != LangAS::Default) 6680 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6681 *this, GV, AddrSpace, LangAS::Default, 6682 llvm::PointerType::get( 6683 getLLVMContext(), 6684 getContext().getTargetAddressSpace(LangAS::Default))); 6685 6686 // Update the map with the new temporary. If we created a placeholder above, 6687 // replace it with the new global now. 6688 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6689 if (Entry) { 6690 Entry->replaceAllUsesWith(CV); 6691 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6692 } 6693 Entry = CV; 6694 6695 return ConstantAddress(CV, Type, Align); 6696 } 6697 6698 /// EmitObjCPropertyImplementations - Emit information for synthesized 6699 /// properties for an implementation. 6700 void CodeGenModule::EmitObjCPropertyImplementations(const 6701 ObjCImplementationDecl *D) { 6702 for (const auto *PID : D->property_impls()) { 6703 // Dynamic is just for type-checking. 6704 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6705 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6706 6707 // Determine which methods need to be implemented, some may have 6708 // been overridden. Note that ::isPropertyAccessor is not the method 6709 // we want, that just indicates if the decl came from a 6710 // property. What we want to know is if the method is defined in 6711 // this implementation. 6712 auto *Getter = PID->getGetterMethodDecl(); 6713 if (!Getter || Getter->isSynthesizedAccessorStub()) 6714 CodeGenFunction(*this).GenerateObjCGetter( 6715 const_cast<ObjCImplementationDecl *>(D), PID); 6716 auto *Setter = PID->getSetterMethodDecl(); 6717 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6718 CodeGenFunction(*this).GenerateObjCSetter( 6719 const_cast<ObjCImplementationDecl *>(D), PID); 6720 } 6721 } 6722 } 6723 6724 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6725 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6726 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6727 ivar; ivar = ivar->getNextIvar()) 6728 if (ivar->getType().isDestructedType()) 6729 return true; 6730 6731 return false; 6732 } 6733 6734 static bool AllTrivialInitializers(CodeGenModule &CGM, 6735 ObjCImplementationDecl *D) { 6736 CodeGenFunction CGF(CGM); 6737 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6738 E = D->init_end(); B != E; ++B) { 6739 CXXCtorInitializer *CtorInitExp = *B; 6740 Expr *Init = CtorInitExp->getInit(); 6741 if (!CGF.isTrivialInitializer(Init)) 6742 return false; 6743 } 6744 return true; 6745 } 6746 6747 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6748 /// for an implementation. 6749 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6750 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6751 if (needsDestructMethod(D)) { 6752 const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6753 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6754 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6755 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6756 getContext().VoidTy, nullptr, D, 6757 /*isInstance=*/true, /*isVariadic=*/false, 6758 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6759 /*isImplicitlyDeclared=*/true, 6760 /*isDefined=*/false, ObjCImplementationControl::Required); 6761 D->addInstanceMethod(DTORMethod); 6762 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6763 D->setHasDestructors(true); 6764 } 6765 6766 // If the implementation doesn't have any ivar initializers, we don't need 6767 // a .cxx_construct. 6768 if (D->getNumIvarInitializers() == 0 || 6769 AllTrivialInitializers(*this, D)) 6770 return; 6771 6772 const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6773 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6774 // The constructor returns 'self'. 6775 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6776 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6777 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6778 /*isVariadic=*/false, 6779 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6780 /*isImplicitlyDeclared=*/true, 6781 /*isDefined=*/false, ObjCImplementationControl::Required); 6782 D->addInstanceMethod(CTORMethod); 6783 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6784 D->setHasNonZeroConstructors(true); 6785 } 6786 6787 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6788 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6789 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6790 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6791 ErrorUnsupported(LSD, "linkage spec"); 6792 return; 6793 } 6794 6795 EmitDeclContext(LSD); 6796 } 6797 6798 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6799 // Device code should not be at top level. 6800 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6801 return; 6802 6803 std::unique_ptr<CodeGenFunction> &CurCGF = 6804 GlobalTopLevelStmtBlockInFlight.first; 6805 6806 // We emitted a top-level stmt but after it there is initialization. 6807 // Stop squashing the top-level stmts into a single function. 6808 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6809 CurCGF->FinishFunction(D->getEndLoc()); 6810 CurCGF = nullptr; 6811 } 6812 6813 if (!CurCGF) { 6814 // void __stmts__N(void) 6815 // FIXME: Ask the ABI name mangler to pick a name. 6816 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6817 FunctionArgList Args; 6818 QualType RetTy = getContext().VoidTy; 6819 const CGFunctionInfo &FnInfo = 6820 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6821 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6822 llvm::Function *Fn = llvm::Function::Create( 6823 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6824 6825 CurCGF.reset(new CodeGenFunction(*this)); 6826 GlobalTopLevelStmtBlockInFlight.second = D; 6827 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6828 D->getBeginLoc(), D->getBeginLoc()); 6829 CXXGlobalInits.push_back(Fn); 6830 } 6831 6832 CurCGF->EmitStmt(D->getStmt()); 6833 } 6834 6835 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6836 for (auto *I : DC->decls()) { 6837 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6838 // are themselves considered "top-level", so EmitTopLevelDecl on an 6839 // ObjCImplDecl does not recursively visit them. We need to do that in 6840 // case they're nested inside another construct (LinkageSpecDecl / 6841 // ExportDecl) that does stop them from being considered "top-level". 6842 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6843 for (auto *M : OID->methods()) 6844 EmitTopLevelDecl(M); 6845 } 6846 6847 EmitTopLevelDecl(I); 6848 } 6849 } 6850 6851 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6852 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6853 // Ignore dependent declarations. 6854 if (D->isTemplated()) 6855 return; 6856 6857 // Consteval function shouldn't be emitted. 6858 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6859 return; 6860 6861 switch (D->getKind()) { 6862 case Decl::CXXConversion: 6863 case Decl::CXXMethod: 6864 case Decl::Function: 6865 EmitGlobal(cast<FunctionDecl>(D)); 6866 // Always provide some coverage mapping 6867 // even for the functions that aren't emitted. 6868 AddDeferredUnusedCoverageMapping(D); 6869 break; 6870 6871 case Decl::CXXDeductionGuide: 6872 // Function-like, but does not result in code emission. 6873 break; 6874 6875 case Decl::Var: 6876 case Decl::Decomposition: 6877 case Decl::VarTemplateSpecialization: 6878 EmitGlobal(cast<VarDecl>(D)); 6879 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6880 for (auto *B : DD->bindings()) 6881 if (auto *HD = B->getHoldingVar()) 6882 EmitGlobal(HD); 6883 break; 6884 6885 // Indirect fields from global anonymous structs and unions can be 6886 // ignored; only the actual variable requires IR gen support. 6887 case Decl::IndirectField: 6888 break; 6889 6890 // C++ Decls 6891 case Decl::Namespace: 6892 EmitDeclContext(cast<NamespaceDecl>(D)); 6893 break; 6894 case Decl::ClassTemplateSpecialization: { 6895 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6896 if (CGDebugInfo *DI = getModuleDebugInfo()) 6897 if (Spec->getSpecializationKind() == 6898 TSK_ExplicitInstantiationDefinition && 6899 Spec->hasDefinition()) 6900 DI->completeTemplateDefinition(*Spec); 6901 } [[fallthrough]]; 6902 case Decl::CXXRecord: { 6903 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6904 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6905 if (CRD->hasDefinition()) 6906 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6907 if (auto *ES = D->getASTContext().getExternalSource()) 6908 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6909 DI->completeUnusedClass(*CRD); 6910 } 6911 // Emit any static data members, they may be definitions. 6912 for (auto *I : CRD->decls()) 6913 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6914 EmitTopLevelDecl(I); 6915 break; 6916 } 6917 // No code generation needed. 6918 case Decl::UsingShadow: 6919 case Decl::ClassTemplate: 6920 case Decl::VarTemplate: 6921 case Decl::Concept: 6922 case Decl::VarTemplatePartialSpecialization: 6923 case Decl::FunctionTemplate: 6924 case Decl::TypeAliasTemplate: 6925 case Decl::Block: 6926 case Decl::Empty: 6927 case Decl::Binding: 6928 break; 6929 case Decl::Using: // using X; [C++] 6930 if (CGDebugInfo *DI = getModuleDebugInfo()) 6931 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6932 break; 6933 case Decl::UsingEnum: // using enum X; [C++] 6934 if (CGDebugInfo *DI = getModuleDebugInfo()) 6935 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6936 break; 6937 case Decl::NamespaceAlias: 6938 if (CGDebugInfo *DI = getModuleDebugInfo()) 6939 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6940 break; 6941 case Decl::UsingDirective: // using namespace X; [C++] 6942 if (CGDebugInfo *DI = getModuleDebugInfo()) 6943 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6944 break; 6945 case Decl::CXXConstructor: 6946 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6947 break; 6948 case Decl::CXXDestructor: 6949 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6950 break; 6951 6952 case Decl::StaticAssert: 6953 // Nothing to do. 6954 break; 6955 6956 // Objective-C Decls 6957 6958 // Forward declarations, no (immediate) code generation. 6959 case Decl::ObjCInterface: 6960 case Decl::ObjCCategory: 6961 break; 6962 6963 case Decl::ObjCProtocol: { 6964 auto *Proto = cast<ObjCProtocolDecl>(D); 6965 if (Proto->isThisDeclarationADefinition()) 6966 ObjCRuntime->GenerateProtocol(Proto); 6967 break; 6968 } 6969 6970 case Decl::ObjCCategoryImpl: 6971 // Categories have properties but don't support synthesize so we 6972 // can ignore them here. 6973 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6974 break; 6975 6976 case Decl::ObjCImplementation: { 6977 auto *OMD = cast<ObjCImplementationDecl>(D); 6978 EmitObjCPropertyImplementations(OMD); 6979 EmitObjCIvarInitializations(OMD); 6980 ObjCRuntime->GenerateClass(OMD); 6981 // Emit global variable debug information. 6982 if (CGDebugInfo *DI = getModuleDebugInfo()) 6983 if (getCodeGenOpts().hasReducedDebugInfo()) 6984 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6985 OMD->getClassInterface()), OMD->getLocation()); 6986 break; 6987 } 6988 case Decl::ObjCMethod: { 6989 auto *OMD = cast<ObjCMethodDecl>(D); 6990 // If this is not a prototype, emit the body. 6991 if (OMD->getBody()) 6992 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6993 break; 6994 } 6995 case Decl::ObjCCompatibleAlias: 6996 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6997 break; 6998 6999 case Decl::PragmaComment: { 7000 const auto *PCD = cast<PragmaCommentDecl>(D); 7001 switch (PCD->getCommentKind()) { 7002 case PCK_Unknown: 7003 llvm_unreachable("unexpected pragma comment kind"); 7004 case PCK_Linker: 7005 AppendLinkerOptions(PCD->getArg()); 7006 break; 7007 case PCK_Lib: 7008 AddDependentLib(PCD->getArg()); 7009 break; 7010 case PCK_Compiler: 7011 case PCK_ExeStr: 7012 case PCK_User: 7013 break; // We ignore all of these. 7014 } 7015 break; 7016 } 7017 7018 case Decl::PragmaDetectMismatch: { 7019 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 7020 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 7021 break; 7022 } 7023 7024 case Decl::LinkageSpec: 7025 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 7026 break; 7027 7028 case Decl::FileScopeAsm: { 7029 // File-scope asm is ignored during device-side CUDA compilation. 7030 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 7031 break; 7032 // File-scope asm is ignored during device-side OpenMP compilation. 7033 if (LangOpts.OpenMPIsTargetDevice) 7034 break; 7035 // File-scope asm is ignored during device-side SYCL compilation. 7036 if (LangOpts.SYCLIsDevice) 7037 break; 7038 auto *AD = cast<FileScopeAsmDecl>(D); 7039 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 7040 break; 7041 } 7042 7043 case Decl::TopLevelStmt: 7044 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 7045 break; 7046 7047 case Decl::Import: { 7048 auto *Import = cast<ImportDecl>(D); 7049 7050 // If we've already imported this module, we're done. 7051 if (!ImportedModules.insert(Import->getImportedModule())) 7052 break; 7053 7054 // Emit debug information for direct imports. 7055 if (!Import->getImportedOwningModule()) { 7056 if (CGDebugInfo *DI = getModuleDebugInfo()) 7057 DI->EmitImportDecl(*Import); 7058 } 7059 7060 // For C++ standard modules we are done - we will call the module 7061 // initializer for imported modules, and that will likewise call those for 7062 // any imports it has. 7063 if (CXX20ModuleInits && Import->getImportedOwningModule() && 7064 !Import->getImportedOwningModule()->isModuleMapModule()) 7065 break; 7066 7067 // For clang C++ module map modules the initializers for sub-modules are 7068 // emitted here. 7069 7070 // Find all of the submodules and emit the module initializers. 7071 llvm::SmallPtrSet<clang::Module *, 16> Visited; 7072 SmallVector<clang::Module *, 16> Stack; 7073 Visited.insert(Import->getImportedModule()); 7074 Stack.push_back(Import->getImportedModule()); 7075 7076 while (!Stack.empty()) { 7077 clang::Module *Mod = Stack.pop_back_val(); 7078 if (!EmittedModuleInitializers.insert(Mod).second) 7079 continue; 7080 7081 for (auto *D : Context.getModuleInitializers(Mod)) 7082 EmitTopLevelDecl(D); 7083 7084 // Visit the submodules of this module. 7085 for (auto *Submodule : Mod->submodules()) { 7086 // Skip explicit children; they need to be explicitly imported to emit 7087 // the initializers. 7088 if (Submodule->IsExplicit) 7089 continue; 7090 7091 if (Visited.insert(Submodule).second) 7092 Stack.push_back(Submodule); 7093 } 7094 } 7095 break; 7096 } 7097 7098 case Decl::Export: 7099 EmitDeclContext(cast<ExportDecl>(D)); 7100 break; 7101 7102 case Decl::OMPThreadPrivate: 7103 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 7104 break; 7105 7106 case Decl::OMPAllocate: 7107 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 7108 break; 7109 7110 case Decl::OMPDeclareReduction: 7111 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 7112 break; 7113 7114 case Decl::OMPDeclareMapper: 7115 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 7116 break; 7117 7118 case Decl::OMPRequires: 7119 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 7120 break; 7121 7122 case Decl::Typedef: 7123 case Decl::TypeAlias: // using foo = bar; [C++11] 7124 if (CGDebugInfo *DI = getModuleDebugInfo()) 7125 DI->EmitAndRetainType( 7126 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 7127 break; 7128 7129 case Decl::Record: 7130 if (CGDebugInfo *DI = getModuleDebugInfo()) 7131 if (cast<RecordDecl>(D)->getDefinition()) 7132 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 7133 break; 7134 7135 case Decl::Enum: 7136 if (CGDebugInfo *DI = getModuleDebugInfo()) 7137 if (cast<EnumDecl>(D)->getDefinition()) 7138 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 7139 break; 7140 7141 case Decl::HLSLBuffer: 7142 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 7143 break; 7144 7145 default: 7146 // Make sure we handled everything we should, every other kind is a 7147 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 7148 // function. Need to recode Decl::Kind to do that easily. 7149 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 7150 break; 7151 } 7152 } 7153 7154 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 7155 // Do we need to generate coverage mapping? 7156 if (!CodeGenOpts.CoverageMapping) 7157 return; 7158 switch (D->getKind()) { 7159 case Decl::CXXConversion: 7160 case Decl::CXXMethod: 7161 case Decl::Function: 7162 case Decl::ObjCMethod: 7163 case Decl::CXXConstructor: 7164 case Decl::CXXDestructor: { 7165 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 7166 break; 7167 SourceManager &SM = getContext().getSourceManager(); 7168 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 7169 break; 7170 if (!llvm::coverage::SystemHeadersCoverage && 7171 SM.isInSystemHeader(D->getBeginLoc())) 7172 break; 7173 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 7174 break; 7175 } 7176 default: 7177 break; 7178 }; 7179 } 7180 7181 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7182 // Do we need to generate coverage mapping? 7183 if (!CodeGenOpts.CoverageMapping) 7184 return; 7185 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7186 if (Fn->isTemplateInstantiation()) 7187 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7188 } 7189 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7190 } 7191 7192 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7193 // We call takeVector() here to avoid use-after-free. 7194 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7195 // we deserialize function bodies to emit coverage info for them, and that 7196 // deserializes more declarations. How should we handle that case? 7197 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7198 if (!Entry.second) 7199 continue; 7200 const Decl *D = Entry.first; 7201 switch (D->getKind()) { 7202 case Decl::CXXConversion: 7203 case Decl::CXXMethod: 7204 case Decl::Function: 7205 case Decl::ObjCMethod: { 7206 CodeGenPGO PGO(*this); 7207 GlobalDecl GD(cast<FunctionDecl>(D)); 7208 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7209 getFunctionLinkage(GD)); 7210 break; 7211 } 7212 case Decl::CXXConstructor: { 7213 CodeGenPGO PGO(*this); 7214 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7215 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7216 getFunctionLinkage(GD)); 7217 break; 7218 } 7219 case Decl::CXXDestructor: { 7220 CodeGenPGO PGO(*this); 7221 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7222 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7223 getFunctionLinkage(GD)); 7224 break; 7225 } 7226 default: 7227 break; 7228 }; 7229 } 7230 } 7231 7232 void CodeGenModule::EmitMainVoidAlias() { 7233 // In order to transition away from "__original_main" gracefully, emit an 7234 // alias for "main" in the no-argument case so that libc can detect when 7235 // new-style no-argument main is in used. 7236 if (llvm::Function *F = getModule().getFunction("main")) { 7237 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7238 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7239 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7240 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7241 } 7242 } 7243 } 7244 7245 /// Turns the given pointer into a constant. 7246 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7247 const void *Ptr) { 7248 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7249 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7250 return llvm::ConstantInt::get(i64, PtrInt); 7251 } 7252 7253 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7254 llvm::NamedMDNode *&GlobalMetadata, 7255 GlobalDecl D, 7256 llvm::GlobalValue *Addr) { 7257 if (!GlobalMetadata) 7258 GlobalMetadata = 7259 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7260 7261 // TODO: should we report variant information for ctors/dtors? 7262 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7263 llvm::ConstantAsMetadata::get(GetPointerConstant( 7264 CGM.getLLVMContext(), D.getDecl()))}; 7265 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7266 } 7267 7268 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7269 llvm::GlobalValue *CppFunc) { 7270 // Store the list of ifuncs we need to replace uses in. 7271 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7272 // List of ConstantExprs that we should be able to delete when we're done 7273 // here. 7274 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7275 7276 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7277 if (Elem == CppFunc) 7278 return false; 7279 7280 // First make sure that all users of this are ifuncs (or ifuncs via a 7281 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7282 // later. 7283 for (llvm::User *User : Elem->users()) { 7284 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7285 // ifunc directly. In any other case, just give up, as we don't know what we 7286 // could break by changing those. 7287 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7288 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7289 return false; 7290 7291 for (llvm::User *CEUser : ConstExpr->users()) { 7292 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7293 IFuncs.push_back(IFunc); 7294 } else { 7295 return false; 7296 } 7297 } 7298 CEs.push_back(ConstExpr); 7299 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7300 IFuncs.push_back(IFunc); 7301 } else { 7302 // This user is one we don't know how to handle, so fail redirection. This 7303 // will result in an ifunc retaining a resolver name that will ultimately 7304 // fail to be resolved to a defined function. 7305 return false; 7306 } 7307 } 7308 7309 // Now we know this is a valid case where we can do this alias replacement, we 7310 // need to remove all of the references to Elem (and the bitcasts!) so we can 7311 // delete it. 7312 for (llvm::GlobalIFunc *IFunc : IFuncs) 7313 IFunc->setResolver(nullptr); 7314 for (llvm::ConstantExpr *ConstExpr : CEs) 7315 ConstExpr->destroyConstant(); 7316 7317 // We should now be out of uses for the 'old' version of this function, so we 7318 // can erase it as well. 7319 Elem->eraseFromParent(); 7320 7321 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7322 // The type of the resolver is always just a function-type that returns the 7323 // type of the IFunc, so create that here. If the type of the actual 7324 // resolver doesn't match, it just gets bitcast to the right thing. 7325 auto *ResolverTy = 7326 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7327 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7328 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7329 IFunc->setResolver(Resolver); 7330 } 7331 return true; 7332 } 7333 7334 /// For each function which is declared within an extern "C" region and marked 7335 /// as 'used', but has internal linkage, create an alias from the unmangled 7336 /// name to the mangled name if possible. People expect to be able to refer 7337 /// to such functions with an unmangled name from inline assembly within the 7338 /// same translation unit. 7339 void CodeGenModule::EmitStaticExternCAliases() { 7340 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7341 return; 7342 for (auto &I : StaticExternCValues) { 7343 const IdentifierInfo *Name = I.first; 7344 llvm::GlobalValue *Val = I.second; 7345 7346 // If Val is null, that implies there were multiple declarations that each 7347 // had a claim to the unmangled name. In this case, generation of the alias 7348 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7349 if (!Val) 7350 break; 7351 7352 llvm::GlobalValue *ExistingElem = 7353 getModule().getNamedValue(Name->getName()); 7354 7355 // If there is either not something already by this name, or we were able to 7356 // replace all uses from IFuncs, create the alias. 7357 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7358 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7359 } 7360 } 7361 7362 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7363 GlobalDecl &Result) const { 7364 auto Res = Manglings.find(MangledName); 7365 if (Res == Manglings.end()) 7366 return false; 7367 Result = Res->getValue(); 7368 return true; 7369 } 7370 7371 /// Emits metadata nodes associating all the global values in the 7372 /// current module with the Decls they came from. This is useful for 7373 /// projects using IR gen as a subroutine. 7374 /// 7375 /// Since there's currently no way to associate an MDNode directly 7376 /// with an llvm::GlobalValue, we create a global named metadata 7377 /// with the name 'clang.global.decl.ptrs'. 7378 void CodeGenModule::EmitDeclMetadata() { 7379 llvm::NamedMDNode *GlobalMetadata = nullptr; 7380 7381 for (auto &I : MangledDeclNames) { 7382 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7383 // Some mangled names don't necessarily have an associated GlobalValue 7384 // in this module, e.g. if we mangled it for DebugInfo. 7385 if (Addr) 7386 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7387 } 7388 } 7389 7390 /// Emits metadata nodes for all the local variables in the current 7391 /// function. 7392 void CodeGenFunction::EmitDeclMetadata() { 7393 if (LocalDeclMap.empty()) return; 7394 7395 llvm::LLVMContext &Context = getLLVMContext(); 7396 7397 // Find the unique metadata ID for this name. 7398 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7399 7400 llvm::NamedMDNode *GlobalMetadata = nullptr; 7401 7402 for (auto &I : LocalDeclMap) { 7403 const Decl *D = I.first; 7404 llvm::Value *Addr = I.second.emitRawPointer(*this); 7405 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7406 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7407 Alloca->setMetadata( 7408 DeclPtrKind, llvm::MDNode::get( 7409 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7410 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7411 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7412 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7413 } 7414 } 7415 } 7416 7417 void CodeGenModule::EmitVersionIdentMetadata() { 7418 llvm::NamedMDNode *IdentMetadata = 7419 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7420 std::string Version = getClangFullVersion(); 7421 llvm::LLVMContext &Ctx = TheModule.getContext(); 7422 7423 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7424 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7425 } 7426 7427 void CodeGenModule::EmitCommandLineMetadata() { 7428 llvm::NamedMDNode *CommandLineMetadata = 7429 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7430 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7431 llvm::LLVMContext &Ctx = TheModule.getContext(); 7432 7433 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7434 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7435 } 7436 7437 void CodeGenModule::EmitCoverageFile() { 7438 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7439 if (!CUNode) 7440 return; 7441 7442 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7443 llvm::LLVMContext &Ctx = TheModule.getContext(); 7444 auto *CoverageDataFile = 7445 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7446 auto *CoverageNotesFile = 7447 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7448 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7449 llvm::MDNode *CU = CUNode->getOperand(i); 7450 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7451 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7452 } 7453 } 7454 7455 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7456 bool ForEH) { 7457 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7458 // FIXME: should we even be calling this method if RTTI is disabled 7459 // and it's not for EH? 7460 if (!shouldEmitRTTI(ForEH)) 7461 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7462 7463 if (ForEH && Ty->isObjCObjectPointerType() && 7464 LangOpts.ObjCRuntime.isGNUFamily()) 7465 return ObjCRuntime->GetEHType(Ty); 7466 7467 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7468 } 7469 7470 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7471 // Do not emit threadprivates in simd-only mode. 7472 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7473 return; 7474 for (auto RefExpr : D->varlists()) { 7475 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7476 bool PerformInit = 7477 VD->getAnyInitializer() && 7478 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7479 /*ForRef=*/false); 7480 7481 Address Addr(GetAddrOfGlobalVar(VD), 7482 getTypes().ConvertTypeForMem(VD->getType()), 7483 getContext().getDeclAlign(VD)); 7484 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7485 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7486 CXXGlobalInits.push_back(InitFunction); 7487 } 7488 } 7489 7490 llvm::Metadata * 7491 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7492 StringRef Suffix) { 7493 if (auto *FnType = T->getAs<FunctionProtoType>()) 7494 T = getContext().getFunctionType( 7495 FnType->getReturnType(), FnType->getParamTypes(), 7496 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7497 7498 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7499 if (InternalId) 7500 return InternalId; 7501 7502 if (isExternallyVisible(T->getLinkage())) { 7503 std::string OutName; 7504 llvm::raw_string_ostream Out(OutName); 7505 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7506 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7507 7508 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7509 Out << ".normalized"; 7510 7511 Out << Suffix; 7512 7513 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7514 } else { 7515 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7516 llvm::ArrayRef<llvm::Metadata *>()); 7517 } 7518 7519 return InternalId; 7520 } 7521 7522 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7523 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7524 } 7525 7526 llvm::Metadata * 7527 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7528 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7529 } 7530 7531 // Generalize pointer types to a void pointer with the qualifiers of the 7532 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7533 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7534 // 'void *'. 7535 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7536 if (!Ty->isPointerType()) 7537 return Ty; 7538 7539 return Ctx.getPointerType( 7540 QualType(Ctx.VoidTy).withCVRQualifiers( 7541 Ty->getPointeeType().getCVRQualifiers())); 7542 } 7543 7544 // Apply type generalization to a FunctionType's return and argument types 7545 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7546 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7547 SmallVector<QualType, 8> GeneralizedParams; 7548 for (auto &Param : FnType->param_types()) 7549 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7550 7551 return Ctx.getFunctionType( 7552 GeneralizeType(Ctx, FnType->getReturnType()), 7553 GeneralizedParams, FnType->getExtProtoInfo()); 7554 } 7555 7556 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7557 return Ctx.getFunctionNoProtoType( 7558 GeneralizeType(Ctx, FnType->getReturnType())); 7559 7560 llvm_unreachable("Encountered unknown FunctionType"); 7561 } 7562 7563 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7564 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7565 GeneralizedMetadataIdMap, ".generalized"); 7566 } 7567 7568 /// Returns whether this module needs the "all-vtables" type identifier. 7569 bool CodeGenModule::NeedAllVtablesTypeId() const { 7570 // Returns true if at least one of vtable-based CFI checkers is enabled and 7571 // is not in the trapping mode. 7572 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7573 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7574 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7575 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7576 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7577 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7578 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7579 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7580 } 7581 7582 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7583 CharUnits Offset, 7584 const CXXRecordDecl *RD) { 7585 llvm::Metadata *MD = 7586 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7587 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7588 7589 if (CodeGenOpts.SanitizeCfiCrossDso) 7590 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7591 VTable->addTypeMetadata(Offset.getQuantity(), 7592 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7593 7594 if (NeedAllVtablesTypeId()) { 7595 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7596 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7597 } 7598 } 7599 7600 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7601 if (!SanStats) 7602 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7603 7604 return *SanStats; 7605 } 7606 7607 llvm::Value * 7608 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7609 CodeGenFunction &CGF) { 7610 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7611 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7612 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7613 auto *Call = CGF.EmitRuntimeCall( 7614 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7615 return Call; 7616 } 7617 7618 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7619 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7620 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7621 /* forPointeeType= */ true); 7622 } 7623 7624 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7625 LValueBaseInfo *BaseInfo, 7626 TBAAAccessInfo *TBAAInfo, 7627 bool forPointeeType) { 7628 if (TBAAInfo) 7629 *TBAAInfo = getTBAAAccessInfo(T); 7630 7631 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7632 // that doesn't return the information we need to compute BaseInfo. 7633 7634 // Honor alignment typedef attributes even on incomplete types. 7635 // We also honor them straight for C++ class types, even as pointees; 7636 // there's an expressivity gap here. 7637 if (auto TT = T->getAs<TypedefType>()) { 7638 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7639 if (BaseInfo) 7640 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7641 return getContext().toCharUnitsFromBits(Align); 7642 } 7643 } 7644 7645 bool AlignForArray = T->isArrayType(); 7646 7647 // Analyze the base element type, so we don't get confused by incomplete 7648 // array types. 7649 T = getContext().getBaseElementType(T); 7650 7651 if (T->isIncompleteType()) { 7652 // We could try to replicate the logic from 7653 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7654 // type is incomplete, so it's impossible to test. We could try to reuse 7655 // getTypeAlignIfKnown, but that doesn't return the information we need 7656 // to set BaseInfo. So just ignore the possibility that the alignment is 7657 // greater than one. 7658 if (BaseInfo) 7659 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7660 return CharUnits::One(); 7661 } 7662 7663 if (BaseInfo) 7664 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7665 7666 CharUnits Alignment; 7667 const CXXRecordDecl *RD; 7668 if (T.getQualifiers().hasUnaligned()) { 7669 Alignment = CharUnits::One(); 7670 } else if (forPointeeType && !AlignForArray && 7671 (RD = T->getAsCXXRecordDecl())) { 7672 // For C++ class pointees, we don't know whether we're pointing at a 7673 // base or a complete object, so we generally need to use the 7674 // non-virtual alignment. 7675 Alignment = getClassPointerAlignment(RD); 7676 } else { 7677 Alignment = getContext().getTypeAlignInChars(T); 7678 } 7679 7680 // Cap to the global maximum type alignment unless the alignment 7681 // was somehow explicit on the type. 7682 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7683 if (Alignment.getQuantity() > MaxAlign && 7684 !getContext().isAlignmentRequired(T)) 7685 Alignment = CharUnits::fromQuantity(MaxAlign); 7686 } 7687 return Alignment; 7688 } 7689 7690 bool CodeGenModule::stopAutoInit() { 7691 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7692 if (StopAfter) { 7693 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7694 // used 7695 if (NumAutoVarInit >= StopAfter) { 7696 return true; 7697 } 7698 if (!NumAutoVarInit) { 7699 unsigned DiagID = getDiags().getCustomDiagID( 7700 DiagnosticsEngine::Warning, 7701 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7702 "number of times ftrivial-auto-var-init=%1 gets applied."); 7703 getDiags().Report(DiagID) 7704 << StopAfter 7705 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7706 LangOptions::TrivialAutoVarInitKind::Zero 7707 ? "zero" 7708 : "pattern"); 7709 } 7710 ++NumAutoVarInit; 7711 } 7712 return false; 7713 } 7714 7715 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7716 const Decl *D) const { 7717 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7718 // postfix beginning with '.' since the symbol name can be demangled. 7719 if (LangOpts.HIP) 7720 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7721 else 7722 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7723 7724 // If the CUID is not specified we try to generate a unique postfix. 7725 if (getLangOpts().CUID.empty()) { 7726 SourceManager &SM = getContext().getSourceManager(); 7727 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7728 assert(PLoc.isValid() && "Source location is expected to be valid."); 7729 7730 // Get the hash of the user defined macros. 7731 llvm::MD5 Hash; 7732 llvm::MD5::MD5Result Result; 7733 for (const auto &Arg : PreprocessorOpts.Macros) 7734 Hash.update(Arg.first); 7735 Hash.final(Result); 7736 7737 // Get the UniqueID for the file containing the decl. 7738 llvm::sys::fs::UniqueID ID; 7739 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7740 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7741 assert(PLoc.isValid() && "Source location is expected to be valid."); 7742 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7743 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7744 << PLoc.getFilename() << EC.message(); 7745 } 7746 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7747 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7748 } else { 7749 OS << getContext().getCUIDHash(); 7750 } 7751 } 7752 7753 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7754 assert(DeferredDeclsToEmit.empty() && 7755 "Should have emitted all decls deferred to emit."); 7756 assert(NewBuilder->DeferredDecls.empty() && 7757 "Newly created module should not have deferred decls"); 7758 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7759 assert(EmittedDeferredDecls.empty() && 7760 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7761 7762 assert(NewBuilder->DeferredVTables.empty() && 7763 "Newly created module should not have deferred vtables"); 7764 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7765 7766 assert(NewBuilder->MangledDeclNames.empty() && 7767 "Newly created module should not have mangled decl names"); 7768 assert(NewBuilder->Manglings.empty() && 7769 "Newly created module should not have manglings"); 7770 NewBuilder->Manglings = std::move(Manglings); 7771 7772 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7773 7774 NewBuilder->TBAA = std::move(TBAA); 7775 7776 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7777 } 7778