xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 22c477f934c4d1fa3f7d782d32a3e151f581c686)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/ADT/Triple.h"
54 #include "llvm/Analysis/TargetLibraryInfo.h"
55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/Support/CRC.h"
64 #include "llvm/Support/CodeGen.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/ConvertUTF.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MD5.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/X86TargetParser.h"
71 #include "llvm/Support/xxhash.h"
72 
73 using namespace clang;
74 using namespace CodeGen;
75 
76 static llvm::cl::opt<bool> LimitedCoverage(
77     "limited-coverage-experimental", llvm::cl::Hidden,
78     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
79 
80 static const char AnnotationSection[] = "llvm.metadata";
81 
82 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
83   switch (CGM.getContext().getCXXABIKind()) {
84   case TargetCXXABI::AppleARM64:
85   case TargetCXXABI::Fuchsia:
86   case TargetCXXABI::GenericAArch64:
87   case TargetCXXABI::GenericARM:
88   case TargetCXXABI::iOS:
89   case TargetCXXABI::WatchOS:
90   case TargetCXXABI::GenericMIPS:
91   case TargetCXXABI::GenericItanium:
92   case TargetCXXABI::WebAssembly:
93   case TargetCXXABI::XL:
94     return CreateItaniumCXXABI(CGM);
95   case TargetCXXABI::Microsoft:
96     return CreateMicrosoftCXXABI(CGM);
97   }
98 
99   llvm_unreachable("invalid C++ ABI kind");
100 }
101 
102 CodeGenModule::CodeGenModule(ASTContext &C,
103                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
104                              const HeaderSearchOptions &HSO,
105                              const PreprocessorOptions &PPO,
106                              const CodeGenOptions &CGO, llvm::Module &M,
107                              DiagnosticsEngine &diags,
108                              CoverageSourceInfo *CoverageInfo)
109     : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)),
110       HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO),
111       TheModule(M), Diags(diags), Target(C.getTargetInfo()),
112       ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this),
113       VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) {
114 
115   // Initialize the type cache.
116   llvm::LLVMContext &LLVMContext = M.getContext();
117   VoidTy = llvm::Type::getVoidTy(LLVMContext);
118   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
119   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
120   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
121   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
122   HalfTy = llvm::Type::getHalfTy(LLVMContext);
123   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
124   FloatTy = llvm::Type::getFloatTy(LLVMContext);
125   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
126   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
127   PointerAlignInBytes =
128     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
129   SizeSizeInBytes =
130     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
131   IntAlignInBytes =
132     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
133   CharTy =
134     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
135   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
136   IntPtrTy = llvm::IntegerType::get(LLVMContext,
137     C.getTargetInfo().getMaxPointerWidth());
138   Int8PtrTy = Int8Ty->getPointerTo(0);
139   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
140   const llvm::DataLayout &DL = M.getDataLayout();
141   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
142   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
143   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
144 
145   // Build C++20 Module initializers.
146   // TODO: Add Microsoft here once we know the mangling required for the
147   // initializers.
148   CXX20ModuleInits =
149       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
150                                        ItaniumMangleContext::MK_Itanium;
151 
152   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
153 
154   if (LangOpts.ObjC)
155     createObjCRuntime();
156   if (LangOpts.OpenCL)
157     createOpenCLRuntime();
158   if (LangOpts.OpenMP)
159     createOpenMPRuntime();
160   if (LangOpts.CUDA)
161     createCUDARuntime();
162   if (LangOpts.HLSL)
163     createHLSLRuntime();
164 
165   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
166   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
167       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
168     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
169                                getCXXABI().getMangleContext()));
170 
171   // If debug info or coverage generation is enabled, create the CGDebugInfo
172   // object.
173   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
174       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
175     DebugInfo.reset(new CGDebugInfo(*this));
176 
177   Block.GlobalUniqueCount = 0;
178 
179   if (C.getLangOpts().ObjC)
180     ObjCData.reset(new ObjCEntrypoints());
181 
182   if (CodeGenOpts.hasProfileClangUse()) {
183     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
184         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
185     if (auto E = ReaderOrErr.takeError()) {
186       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
187                                               "Could not read profile %0: %1");
188       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
189         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
190                                   << EI.message();
191       });
192     } else
193       PGOReader = std::move(ReaderOrErr.get());
194   }
195 
196   // If coverage mapping generation is enabled, create the
197   // CoverageMappingModuleGen object.
198   if (CodeGenOpts.CoverageMapping)
199     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
200 
201   // Generate the module name hash here if needed.
202   if (CodeGenOpts.UniqueInternalLinkageNames &&
203       !getModule().getSourceFileName().empty()) {
204     std::string Path = getModule().getSourceFileName();
205     // Check if a path substitution is needed from the MacroPrefixMap.
206     for (const auto &Entry : LangOpts.MacroPrefixMap)
207       if (Path.rfind(Entry.first, 0) != std::string::npos) {
208         Path = Entry.second + Path.substr(Entry.first.size());
209         break;
210       }
211     llvm::MD5 Md5;
212     Md5.update(Path);
213     llvm::MD5::MD5Result R;
214     Md5.final(R);
215     SmallString<32> Str;
216     llvm::MD5::stringifyResult(R, Str);
217     // Convert MD5hash to Decimal. Demangler suffixes can either contain
218     // numbers or characters but not both.
219     llvm::APInt IntHash(128, Str.str(), 16);
220     // Prepend "__uniq" before the hash for tools like profilers to understand
221     // that this symbol is of internal linkage type.  The "__uniq" is the
222     // pre-determined prefix that is used to tell tools that this symbol was
223     // created with -funique-internal-linakge-symbols and the tools can strip or
224     // keep the prefix as needed.
225     ModuleNameHash = (Twine(".__uniq.") +
226         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
227   }
228 }
229 
230 CodeGenModule::~CodeGenModule() {}
231 
232 void CodeGenModule::createObjCRuntime() {
233   // This is just isGNUFamily(), but we want to force implementors of
234   // new ABIs to decide how best to do this.
235   switch (LangOpts.ObjCRuntime.getKind()) {
236   case ObjCRuntime::GNUstep:
237   case ObjCRuntime::GCC:
238   case ObjCRuntime::ObjFW:
239     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
240     return;
241 
242   case ObjCRuntime::FragileMacOSX:
243   case ObjCRuntime::MacOSX:
244   case ObjCRuntime::iOS:
245   case ObjCRuntime::WatchOS:
246     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
247     return;
248   }
249   llvm_unreachable("bad runtime kind");
250 }
251 
252 void CodeGenModule::createOpenCLRuntime() {
253   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
254 }
255 
256 void CodeGenModule::createOpenMPRuntime() {
257   // Select a specialized code generation class based on the target, if any.
258   // If it does not exist use the default implementation.
259   switch (getTriple().getArch()) {
260   case llvm::Triple::nvptx:
261   case llvm::Triple::nvptx64:
262   case llvm::Triple::amdgcn:
263     assert(getLangOpts().OpenMPIsDevice &&
264            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
265     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
266     break;
267   default:
268     if (LangOpts.OpenMPSimd)
269       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
270     else
271       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
272     break;
273   }
274 }
275 
276 void CodeGenModule::createCUDARuntime() {
277   CUDARuntime.reset(CreateNVCUDARuntime(*this));
278 }
279 
280 void CodeGenModule::createHLSLRuntime() {
281   HLSLRuntime.reset(new CGHLSLRuntime(*this));
282 }
283 
284 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
285   Replacements[Name] = C;
286 }
287 
288 void CodeGenModule::applyReplacements() {
289   for (auto &I : Replacements) {
290     StringRef MangledName = I.first();
291     llvm::Constant *Replacement = I.second;
292     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
293     if (!Entry)
294       continue;
295     auto *OldF = cast<llvm::Function>(Entry);
296     auto *NewF = dyn_cast<llvm::Function>(Replacement);
297     if (!NewF) {
298       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
299         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
300       } else {
301         auto *CE = cast<llvm::ConstantExpr>(Replacement);
302         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
303                CE->getOpcode() == llvm::Instruction::GetElementPtr);
304         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
305       }
306     }
307 
308     // Replace old with new, but keep the old order.
309     OldF->replaceAllUsesWith(Replacement);
310     if (NewF) {
311       NewF->removeFromParent();
312       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
313                                                        NewF);
314     }
315     OldF->eraseFromParent();
316   }
317 }
318 
319 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
320   GlobalValReplacements.push_back(std::make_pair(GV, C));
321 }
322 
323 void CodeGenModule::applyGlobalValReplacements() {
324   for (auto &I : GlobalValReplacements) {
325     llvm::GlobalValue *GV = I.first;
326     llvm::Constant *C = I.second;
327 
328     GV->replaceAllUsesWith(C);
329     GV->eraseFromParent();
330   }
331 }
332 
333 // This is only used in aliases that we created and we know they have a
334 // linear structure.
335 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
336   const llvm::Constant *C;
337   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
338     C = GA->getAliasee();
339   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
340     C = GI->getResolver();
341   else
342     return GV;
343 
344   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
345   if (!AliaseeGV)
346     return nullptr;
347 
348   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
349   if (FinalGV == GV)
350     return nullptr;
351 
352   return FinalGV;
353 }
354 
355 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
356                                SourceLocation Location, bool IsIFunc,
357                                const llvm::GlobalValue *Alias,
358                                const llvm::GlobalValue *&GV) {
359   GV = getAliasedGlobal(Alias);
360   if (!GV) {
361     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
362     return false;
363   }
364 
365   if (GV->isDeclaration()) {
366     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
367     return false;
368   }
369 
370   if (IsIFunc) {
371     // Check resolver function type.
372     const auto *F = dyn_cast<llvm::Function>(GV);
373     if (!F) {
374       Diags.Report(Location, diag::err_alias_to_undefined)
375           << IsIFunc << IsIFunc;
376       return false;
377     }
378 
379     llvm::FunctionType *FTy = F->getFunctionType();
380     if (!FTy->getReturnType()->isPointerTy()) {
381       Diags.Report(Location, diag::err_ifunc_resolver_return);
382       return false;
383     }
384   }
385 
386   return true;
387 }
388 
389 void CodeGenModule::checkAliases() {
390   // Check if the constructed aliases are well formed. It is really unfortunate
391   // that we have to do this in CodeGen, but we only construct mangled names
392   // and aliases during codegen.
393   bool Error = false;
394   DiagnosticsEngine &Diags = getDiags();
395   for (const GlobalDecl &GD : Aliases) {
396     const auto *D = cast<ValueDecl>(GD.getDecl());
397     SourceLocation Location;
398     bool IsIFunc = D->hasAttr<IFuncAttr>();
399     if (const Attr *A = D->getDefiningAttr())
400       Location = A->getLocation();
401     else
402       llvm_unreachable("Not an alias or ifunc?");
403 
404     StringRef MangledName = getMangledName(GD);
405     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
406     const llvm::GlobalValue *GV = nullptr;
407     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
408       Error = true;
409       continue;
410     }
411 
412     llvm::Constant *Aliasee =
413         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
414                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
415 
416     llvm::GlobalValue *AliaseeGV;
417     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
418       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
419     else
420       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
421 
422     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
423       StringRef AliasSection = SA->getName();
424       if (AliasSection != AliaseeGV->getSection())
425         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
426             << AliasSection << IsIFunc << IsIFunc;
427     }
428 
429     // We have to handle alias to weak aliases in here. LLVM itself disallows
430     // this since the object semantics would not match the IL one. For
431     // compatibility with gcc we implement it by just pointing the alias
432     // to its aliasee's aliasee. We also warn, since the user is probably
433     // expecting the link to be weak.
434     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
435       if (GA->isInterposable()) {
436         Diags.Report(Location, diag::warn_alias_to_weak_alias)
437             << GV->getName() << GA->getName() << IsIFunc;
438         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
439             GA->getAliasee(), Alias->getType());
440 
441         if (IsIFunc)
442           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
443         else
444           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
445       }
446     }
447   }
448   if (!Error)
449     return;
450 
451   for (const GlobalDecl &GD : Aliases) {
452     StringRef MangledName = getMangledName(GD);
453     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
454     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
455     Alias->eraseFromParent();
456   }
457 }
458 
459 void CodeGenModule::clear() {
460   DeferredDeclsToEmit.clear();
461   EmittedDeferredDecls.clear();
462   if (OpenMPRuntime)
463     OpenMPRuntime->clear();
464 }
465 
466 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
467                                        StringRef MainFile) {
468   if (!hasDiagnostics())
469     return;
470   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
471     if (MainFile.empty())
472       MainFile = "<stdin>";
473     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
474   } else {
475     if (Mismatched > 0)
476       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
477 
478     if (Missing > 0)
479       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
480   }
481 }
482 
483 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
484                                              llvm::Module &M) {
485   if (!LO.VisibilityFromDLLStorageClass)
486     return;
487 
488   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
489       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
490   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
491       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
492   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
493       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
494   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
495       CodeGenModule::GetLLVMVisibility(
496           LO.getExternDeclNoDLLStorageClassVisibility());
497 
498   for (llvm::GlobalValue &GV : M.global_values()) {
499     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
500       continue;
501 
502     // Reset DSO locality before setting the visibility. This removes
503     // any effects that visibility options and annotations may have
504     // had on the DSO locality. Setting the visibility will implicitly set
505     // appropriate globals to DSO Local; however, this will be pessimistic
506     // w.r.t. to the normal compiler IRGen.
507     GV.setDSOLocal(false);
508 
509     if (GV.isDeclarationForLinker()) {
510       GV.setVisibility(GV.getDLLStorageClass() ==
511                                llvm::GlobalValue::DLLImportStorageClass
512                            ? ExternDeclDLLImportVisibility
513                            : ExternDeclNoDLLStorageClassVisibility);
514     } else {
515       GV.setVisibility(GV.getDLLStorageClass() ==
516                                llvm::GlobalValue::DLLExportStorageClass
517                            ? DLLExportVisibility
518                            : NoDLLStorageClassVisibility);
519     }
520 
521     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
522   }
523 }
524 
525 void CodeGenModule::Release() {
526   Module *Primary = getContext().getModuleForCodeGen();
527   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
528     EmitModuleInitializers(Primary);
529   EmitDeferred();
530   DeferredDecls.insert(EmittedDeferredDecls.begin(),
531                        EmittedDeferredDecls.end());
532   EmittedDeferredDecls.clear();
533   EmitVTablesOpportunistically();
534   applyGlobalValReplacements();
535   applyReplacements();
536   emitMultiVersionFunctions();
537   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
538     EmitCXXModuleInitFunc(Primary);
539   else
540     EmitCXXGlobalInitFunc();
541   EmitCXXGlobalCleanUpFunc();
542   registerGlobalDtorsWithAtExit();
543   EmitCXXThreadLocalInitFunc();
544   if (ObjCRuntime)
545     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
546       AddGlobalCtor(ObjCInitFunction);
547   if (Context.getLangOpts().CUDA && CUDARuntime) {
548     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
549       AddGlobalCtor(CudaCtorFunction);
550   }
551   if (OpenMPRuntime) {
552     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
553             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
554       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
555     }
556     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
557     OpenMPRuntime->clear();
558   }
559   if (PGOReader) {
560     getModule().setProfileSummary(
561         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
562         llvm::ProfileSummary::PSK_Instr);
563     if (PGOStats.hasDiagnostics())
564       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
565   }
566   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
567     return L.LexOrder < R.LexOrder;
568   });
569   EmitCtorList(GlobalCtors, "llvm.global_ctors");
570   EmitCtorList(GlobalDtors, "llvm.global_dtors");
571   EmitGlobalAnnotations();
572   EmitStaticExternCAliases();
573   checkAliases();
574   EmitDeferredUnusedCoverageMappings();
575   CodeGenPGO(*this).setValueProfilingFlag(getModule());
576   if (CoverageMapping)
577     CoverageMapping->emit();
578   if (CodeGenOpts.SanitizeCfiCrossDso) {
579     CodeGenFunction(*this).EmitCfiCheckFail();
580     CodeGenFunction(*this).EmitCfiCheckStub();
581   }
582   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
583     finalizeKCFITypes();
584   emitAtAvailableLinkGuard();
585   if (Context.getTargetInfo().getTriple().isWasm())
586     EmitMainVoidAlias();
587 
588   if (getTriple().isAMDGPU()) {
589     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
590     // preserve ASAN functions in bitcode libraries.
591     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
592       auto *FT = llvm::FunctionType::get(VoidTy, {});
593       auto *F = llvm::Function::Create(
594           FT, llvm::GlobalValue::ExternalLinkage,
595           "__amdgpu_device_library_preserve_asan_functions", &getModule());
596       auto *Var = new llvm::GlobalVariable(
597           getModule(), FT->getPointerTo(),
598           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
599           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
600           llvm::GlobalVariable::NotThreadLocal);
601       addCompilerUsedGlobal(Var);
602     }
603     // Emit amdgpu_code_object_version module flag, which is code object version
604     // times 100.
605     // ToDo: Enable module flag for all code object version when ROCm device
606     // library is ready.
607     if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) {
608       getModule().addModuleFlag(llvm::Module::Error,
609                                 "amdgpu_code_object_version",
610                                 getTarget().getTargetOpts().CodeObjectVersion);
611     }
612   }
613 
614   // Emit a global array containing all external kernels or device variables
615   // used by host functions and mark it as used for CUDA/HIP. This is necessary
616   // to get kernels or device variables in archives linked in even if these
617   // kernels or device variables are only used in host functions.
618   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
619     SmallVector<llvm::Constant *, 8> UsedArray;
620     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
621       GlobalDecl GD;
622       if (auto *FD = dyn_cast<FunctionDecl>(D))
623         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
624       else
625         GD = GlobalDecl(D);
626       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
627           GetAddrOfGlobal(GD), Int8PtrTy));
628     }
629 
630     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
631 
632     auto *GV = new llvm::GlobalVariable(
633         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
634         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
635     addCompilerUsedGlobal(GV);
636   }
637 
638   emitLLVMUsed();
639   if (SanStats)
640     SanStats->finish();
641 
642   if (CodeGenOpts.Autolink &&
643       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
644     EmitModuleLinkOptions();
645   }
646 
647   // On ELF we pass the dependent library specifiers directly to the linker
648   // without manipulating them. This is in contrast to other platforms where
649   // they are mapped to a specific linker option by the compiler. This
650   // difference is a result of the greater variety of ELF linkers and the fact
651   // that ELF linkers tend to handle libraries in a more complicated fashion
652   // than on other platforms. This forces us to defer handling the dependent
653   // libs to the linker.
654   //
655   // CUDA/HIP device and host libraries are different. Currently there is no
656   // way to differentiate dependent libraries for host or device. Existing
657   // usage of #pragma comment(lib, *) is intended for host libraries on
658   // Windows. Therefore emit llvm.dependent-libraries only for host.
659   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
660     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
661     for (auto *MD : ELFDependentLibraries)
662       NMD->addOperand(MD);
663   }
664 
665   // Record mregparm value now so it is visible through rest of codegen.
666   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
667     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
668                               CodeGenOpts.NumRegisterParameters);
669 
670   if (CodeGenOpts.DwarfVersion) {
671     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
672                               CodeGenOpts.DwarfVersion);
673   }
674 
675   if (CodeGenOpts.Dwarf64)
676     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
677 
678   if (Context.getLangOpts().SemanticInterposition)
679     // Require various optimization to respect semantic interposition.
680     getModule().setSemanticInterposition(true);
681 
682   if (CodeGenOpts.EmitCodeView) {
683     // Indicate that we want CodeView in the metadata.
684     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
685   }
686   if (CodeGenOpts.CodeViewGHash) {
687     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
688   }
689   if (CodeGenOpts.ControlFlowGuard) {
690     // Function ID tables and checks for Control Flow Guard (cfguard=2).
691     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
692   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
693     // Function ID tables for Control Flow Guard (cfguard=1).
694     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
695   }
696   if (CodeGenOpts.EHContGuard) {
697     // Function ID tables for EH Continuation Guard.
698     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
699   }
700   if (Context.getLangOpts().Kernel) {
701     // Note if we are compiling with /kernel.
702     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
703   }
704   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
705     // We don't support LTO with 2 with different StrictVTablePointers
706     // FIXME: we could support it by stripping all the information introduced
707     // by StrictVTablePointers.
708 
709     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
710 
711     llvm::Metadata *Ops[2] = {
712               llvm::MDString::get(VMContext, "StrictVTablePointers"),
713               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
714                   llvm::Type::getInt32Ty(VMContext), 1))};
715 
716     getModule().addModuleFlag(llvm::Module::Require,
717                               "StrictVTablePointersRequirement",
718                               llvm::MDNode::get(VMContext, Ops));
719   }
720   if (getModuleDebugInfo())
721     // We support a single version in the linked module. The LLVM
722     // parser will drop debug info with a different version number
723     // (and warn about it, too).
724     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
725                               llvm::DEBUG_METADATA_VERSION);
726 
727   // We need to record the widths of enums and wchar_t, so that we can generate
728   // the correct build attributes in the ARM backend. wchar_size is also used by
729   // TargetLibraryInfo.
730   uint64_t WCharWidth =
731       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
732   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
733 
734   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
735   if (   Arch == llvm::Triple::arm
736       || Arch == llvm::Triple::armeb
737       || Arch == llvm::Triple::thumb
738       || Arch == llvm::Triple::thumbeb) {
739     // The minimum width of an enum in bytes
740     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
741     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
742   }
743 
744   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
745     StringRef ABIStr = Target.getABI();
746     llvm::LLVMContext &Ctx = TheModule.getContext();
747     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
748                               llvm::MDString::get(Ctx, ABIStr));
749   }
750 
751   if (CodeGenOpts.SanitizeCfiCrossDso) {
752     // Indicate that we want cross-DSO control flow integrity checks.
753     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
754   }
755 
756   if (CodeGenOpts.WholeProgramVTables) {
757     // Indicate whether VFE was enabled for this module, so that the
758     // vcall_visibility metadata added under whole program vtables is handled
759     // appropriately in the optimizer.
760     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
761                               CodeGenOpts.VirtualFunctionElimination);
762   }
763 
764   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
765     getModule().addModuleFlag(llvm::Module::Override,
766                               "CFI Canonical Jump Tables",
767                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
768   }
769 
770   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
771     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
772 
773   if (CodeGenOpts.CFProtectionReturn &&
774       Target.checkCFProtectionReturnSupported(getDiags())) {
775     // Indicate that we want to instrument return control flow protection.
776     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
777                               1);
778   }
779 
780   if (CodeGenOpts.CFProtectionBranch &&
781       Target.checkCFProtectionBranchSupported(getDiags())) {
782     // Indicate that we want to instrument branch control flow protection.
783     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
784                               1);
785   }
786 
787   if (CodeGenOpts.IBTSeal)
788     getModule().addModuleFlag(llvm::Module::Min, "ibt-seal", 1);
789 
790   if (CodeGenOpts.FunctionReturnThunks)
791     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
792 
793   if (CodeGenOpts.IndirectBranchCSPrefix)
794     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
795 
796   // Add module metadata for return address signing (ignoring
797   // non-leaf/all) and stack tagging. These are actually turned on by function
798   // attributes, but we use module metadata to emit build attributes. This is
799   // needed for LTO, where the function attributes are inside bitcode
800   // serialised into a global variable by the time build attributes are
801   // emitted, so we can't access them. LTO objects could be compiled with
802   // different flags therefore module flags are set to "Min" behavior to achieve
803   // the same end result of the normal build where e.g BTI is off if any object
804   // doesn't support it.
805   if (Context.getTargetInfo().hasFeature("ptrauth") &&
806       LangOpts.getSignReturnAddressScope() !=
807           LangOptions::SignReturnAddressScopeKind::None)
808     getModule().addModuleFlag(llvm::Module::Override,
809                               "sign-return-address-buildattr", 1);
810   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
811     getModule().addModuleFlag(llvm::Module::Override,
812                               "tag-stack-memory-buildattr", 1);
813 
814   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
815       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
816       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
817       Arch == llvm::Triple::aarch64_be) {
818     if (LangOpts.BranchTargetEnforcement)
819       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
820                                 1);
821     if (LangOpts.hasSignReturnAddress())
822       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
823     if (LangOpts.isSignReturnAddressScopeAll())
824       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
825                                 1);
826     if (!LangOpts.isSignReturnAddressWithAKey())
827       getModule().addModuleFlag(llvm::Module::Min,
828                                 "sign-return-address-with-bkey", 1);
829   }
830 
831   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
832     llvm::LLVMContext &Ctx = TheModule.getContext();
833     getModule().addModuleFlag(
834         llvm::Module::Error, "MemProfProfileFilename",
835         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
836   }
837 
838   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
839     // Indicate whether __nvvm_reflect should be configured to flush denormal
840     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
841     // property.)
842     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
843                               CodeGenOpts.FP32DenormalMode.Output !=
844                                   llvm::DenormalMode::IEEE);
845   }
846 
847   if (LangOpts.EHAsynch)
848     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
849 
850   // Indicate whether this Module was compiled with -fopenmp
851   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
852     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
853   if (getLangOpts().OpenMPIsDevice)
854     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
855                               LangOpts.OpenMP);
856 
857   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
858   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
859     EmitOpenCLMetadata();
860     // Emit SPIR version.
861     if (getTriple().isSPIR()) {
862       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
863       // opencl.spir.version named metadata.
864       // C++ for OpenCL has a distinct mapping for version compatibility with
865       // OpenCL.
866       auto Version = LangOpts.getOpenCLCompatibleVersion();
867       llvm::Metadata *SPIRVerElts[] = {
868           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
869               Int32Ty, Version / 100)),
870           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
871               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
872       llvm::NamedMDNode *SPIRVerMD =
873           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
874       llvm::LLVMContext &Ctx = TheModule.getContext();
875       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
876     }
877   }
878 
879   // HLSL related end of code gen work items.
880   if (LangOpts.HLSL)
881     getHLSLRuntime().finishCodeGen();
882 
883   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
884     assert(PLevel < 3 && "Invalid PIC Level");
885     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
886     if (Context.getLangOpts().PIE)
887       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
888   }
889 
890   if (getCodeGenOpts().CodeModel.size() > 0) {
891     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
892                   .Case("tiny", llvm::CodeModel::Tiny)
893                   .Case("small", llvm::CodeModel::Small)
894                   .Case("kernel", llvm::CodeModel::Kernel)
895                   .Case("medium", llvm::CodeModel::Medium)
896                   .Case("large", llvm::CodeModel::Large)
897                   .Default(~0u);
898     if (CM != ~0u) {
899       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
900       getModule().setCodeModel(codeModel);
901     }
902   }
903 
904   if (CodeGenOpts.NoPLT)
905     getModule().setRtLibUseGOT();
906   if (CodeGenOpts.UnwindTables)
907     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
908 
909   switch (CodeGenOpts.getFramePointer()) {
910   case CodeGenOptions::FramePointerKind::None:
911     // 0 ("none") is the default.
912     break;
913   case CodeGenOptions::FramePointerKind::NonLeaf:
914     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
915     break;
916   case CodeGenOptions::FramePointerKind::All:
917     getModule().setFramePointer(llvm::FramePointerKind::All);
918     break;
919   }
920 
921   SimplifyPersonality();
922 
923   if (getCodeGenOpts().EmitDeclMetadata)
924     EmitDeclMetadata();
925 
926   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
927     EmitCoverageFile();
928 
929   if (CGDebugInfo *DI = getModuleDebugInfo())
930     DI->finalize();
931 
932   if (getCodeGenOpts().EmitVersionIdentMetadata)
933     EmitVersionIdentMetadata();
934 
935   if (!getCodeGenOpts().RecordCommandLine.empty())
936     EmitCommandLineMetadata();
937 
938   if (!getCodeGenOpts().StackProtectorGuard.empty())
939     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
940   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
941     getModule().setStackProtectorGuardReg(
942         getCodeGenOpts().StackProtectorGuardReg);
943   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
944     getModule().setStackProtectorGuardSymbol(
945         getCodeGenOpts().StackProtectorGuardSymbol);
946   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
947     getModule().setStackProtectorGuardOffset(
948         getCodeGenOpts().StackProtectorGuardOffset);
949   if (getCodeGenOpts().StackAlignment)
950     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
951   if (getCodeGenOpts().SkipRaxSetup)
952     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
953 
954   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
955 
956   EmitBackendOptionsMetadata(getCodeGenOpts());
957 
958   // If there is device offloading code embed it in the host now.
959   EmbedObject(&getModule(), CodeGenOpts, getDiags());
960 
961   // Set visibility from DLL storage class
962   // We do this at the end of LLVM IR generation; after any operation
963   // that might affect the DLL storage class or the visibility, and
964   // before anything that might act on these.
965   setVisibilityFromDLLStorageClass(LangOpts, getModule());
966 }
967 
968 void CodeGenModule::EmitOpenCLMetadata() {
969   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
970   // opencl.ocl.version named metadata node.
971   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
972   auto Version = LangOpts.getOpenCLCompatibleVersion();
973   llvm::Metadata *OCLVerElts[] = {
974       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
975           Int32Ty, Version / 100)),
976       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
977           Int32Ty, (Version % 100) / 10))};
978   llvm::NamedMDNode *OCLVerMD =
979       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
980   llvm::LLVMContext &Ctx = TheModule.getContext();
981   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
982 }
983 
984 void CodeGenModule::EmitBackendOptionsMetadata(
985     const CodeGenOptions CodeGenOpts) {
986   if (getTriple().isRISCV()) {
987     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
988                               CodeGenOpts.SmallDataLimit);
989   }
990 }
991 
992 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
993   // Make sure that this type is translated.
994   Types.UpdateCompletedType(TD);
995 }
996 
997 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
998   // Make sure that this type is translated.
999   Types.RefreshTypeCacheForClass(RD);
1000 }
1001 
1002 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1003   if (!TBAA)
1004     return nullptr;
1005   return TBAA->getTypeInfo(QTy);
1006 }
1007 
1008 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1009   if (!TBAA)
1010     return TBAAAccessInfo();
1011   if (getLangOpts().CUDAIsDevice) {
1012     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1013     // access info.
1014     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1015       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1016           nullptr)
1017         return TBAAAccessInfo();
1018     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1019       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1020           nullptr)
1021         return TBAAAccessInfo();
1022     }
1023   }
1024   return TBAA->getAccessInfo(AccessType);
1025 }
1026 
1027 TBAAAccessInfo
1028 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1029   if (!TBAA)
1030     return TBAAAccessInfo();
1031   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1032 }
1033 
1034 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1035   if (!TBAA)
1036     return nullptr;
1037   return TBAA->getTBAAStructInfo(QTy);
1038 }
1039 
1040 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1041   if (!TBAA)
1042     return nullptr;
1043   return TBAA->getBaseTypeInfo(QTy);
1044 }
1045 
1046 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1047   if (!TBAA)
1048     return nullptr;
1049   return TBAA->getAccessTagInfo(Info);
1050 }
1051 
1052 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1053                                                    TBAAAccessInfo TargetInfo) {
1054   if (!TBAA)
1055     return TBAAAccessInfo();
1056   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1057 }
1058 
1059 TBAAAccessInfo
1060 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1061                                                    TBAAAccessInfo InfoB) {
1062   if (!TBAA)
1063     return TBAAAccessInfo();
1064   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1065 }
1066 
1067 TBAAAccessInfo
1068 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1069                                               TBAAAccessInfo SrcInfo) {
1070   if (!TBAA)
1071     return TBAAAccessInfo();
1072   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1073 }
1074 
1075 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1076                                                 TBAAAccessInfo TBAAInfo) {
1077   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1078     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1079 }
1080 
1081 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1082     llvm::Instruction *I, const CXXRecordDecl *RD) {
1083   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1084                  llvm::MDNode::get(getLLVMContext(), {}));
1085 }
1086 
1087 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1088   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1089   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1090 }
1091 
1092 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1093 /// specified stmt yet.
1094 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1095   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1096                                                "cannot compile this %0 yet");
1097   std::string Msg = Type;
1098   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1099       << Msg << S->getSourceRange();
1100 }
1101 
1102 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1103 /// specified decl yet.
1104 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1105   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1106                                                "cannot compile this %0 yet");
1107   std::string Msg = Type;
1108   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1109 }
1110 
1111 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1112   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1113 }
1114 
1115 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1116                                         const NamedDecl *D) const {
1117   if (GV->hasDLLImportStorageClass())
1118     return;
1119   // Internal definitions always have default visibility.
1120   if (GV->hasLocalLinkage()) {
1121     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1122     return;
1123   }
1124   if (!D)
1125     return;
1126   // Set visibility for definitions, and for declarations if requested globally
1127   // or set explicitly.
1128   LinkageInfo LV = D->getLinkageAndVisibility();
1129   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1130       !GV->isDeclarationForLinker())
1131     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1132 }
1133 
1134 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1135                                  llvm::GlobalValue *GV) {
1136   if (GV->hasLocalLinkage())
1137     return true;
1138 
1139   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1140     return true;
1141 
1142   // DLLImport explicitly marks the GV as external.
1143   if (GV->hasDLLImportStorageClass())
1144     return false;
1145 
1146   const llvm::Triple &TT = CGM.getTriple();
1147   if (TT.isWindowsGNUEnvironment()) {
1148     // In MinGW, variables without DLLImport can still be automatically
1149     // imported from a DLL by the linker; don't mark variables that
1150     // potentially could come from another DLL as DSO local.
1151 
1152     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1153     // (and this actually happens in the public interface of libstdc++), so
1154     // such variables can't be marked as DSO local. (Native TLS variables
1155     // can't be dllimported at all, though.)
1156     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1157         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1158       return false;
1159   }
1160 
1161   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1162   // remain unresolved in the link, they can be resolved to zero, which is
1163   // outside the current DSO.
1164   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1165     return false;
1166 
1167   // Every other GV is local on COFF.
1168   // Make an exception for windows OS in the triple: Some firmware builds use
1169   // *-win32-macho triples. This (accidentally?) produced windows relocations
1170   // without GOT tables in older clang versions; Keep this behaviour.
1171   // FIXME: even thread local variables?
1172   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1173     return true;
1174 
1175   // Only handle COFF and ELF for now.
1176   if (!TT.isOSBinFormatELF())
1177     return false;
1178 
1179   // If this is not an executable, don't assume anything is local.
1180   const auto &CGOpts = CGM.getCodeGenOpts();
1181   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1182   const auto &LOpts = CGM.getLangOpts();
1183   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1184     // On ELF, if -fno-semantic-interposition is specified and the target
1185     // supports local aliases, there will be neither CC1
1186     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1187     // dso_local on the function if using a local alias is preferable (can avoid
1188     // PLT indirection).
1189     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1190       return false;
1191     return !(CGM.getLangOpts().SemanticInterposition ||
1192              CGM.getLangOpts().HalfNoSemanticInterposition);
1193   }
1194 
1195   // A definition cannot be preempted from an executable.
1196   if (!GV->isDeclarationForLinker())
1197     return true;
1198 
1199   // Most PIC code sequences that assume that a symbol is local cannot produce a
1200   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1201   // depended, it seems worth it to handle it here.
1202   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1203     return false;
1204 
1205   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1206   if (TT.isPPC64())
1207     return false;
1208 
1209   if (CGOpts.DirectAccessExternalData) {
1210     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1211     // for non-thread-local variables. If the symbol is not defined in the
1212     // executable, a copy relocation will be needed at link time. dso_local is
1213     // excluded for thread-local variables because they generally don't support
1214     // copy relocations.
1215     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1216       if (!Var->isThreadLocal())
1217         return true;
1218 
1219     // -fno-pic sets dso_local on a function declaration to allow direct
1220     // accesses when taking its address (similar to a data symbol). If the
1221     // function is not defined in the executable, a canonical PLT entry will be
1222     // needed at link time. -fno-direct-access-external-data can avoid the
1223     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1224     // it could just cause trouble without providing perceptible benefits.
1225     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1226       return true;
1227   }
1228 
1229   // If we can use copy relocations we can assume it is local.
1230 
1231   // Otherwise don't assume it is local.
1232   return false;
1233 }
1234 
1235 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1236   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1237 }
1238 
1239 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1240                                           GlobalDecl GD) const {
1241   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1242   // C++ destructors have a few C++ ABI specific special cases.
1243   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1244     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1245     return;
1246   }
1247   setDLLImportDLLExport(GV, D);
1248 }
1249 
1250 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1251                                           const NamedDecl *D) const {
1252   if (D && D->isExternallyVisible()) {
1253     if (D->hasAttr<DLLImportAttr>())
1254       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1255     else if ((D->hasAttr<DLLExportAttr>() ||
1256               shouldMapVisibilityToDLLExport(D)) &&
1257              !GV->isDeclarationForLinker())
1258       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1259   }
1260 }
1261 
1262 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1263                                     GlobalDecl GD) const {
1264   setDLLImportDLLExport(GV, GD);
1265   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1266 }
1267 
1268 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1269                                     const NamedDecl *D) const {
1270   setDLLImportDLLExport(GV, D);
1271   setGVPropertiesAux(GV, D);
1272 }
1273 
1274 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1275                                        const NamedDecl *D) const {
1276   setGlobalVisibility(GV, D);
1277   setDSOLocal(GV);
1278   GV->setPartition(CodeGenOpts.SymbolPartition);
1279 }
1280 
1281 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1282   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1283       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1284       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1285       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1286       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1287 }
1288 
1289 llvm::GlobalVariable::ThreadLocalMode
1290 CodeGenModule::GetDefaultLLVMTLSModel() const {
1291   switch (CodeGenOpts.getDefaultTLSModel()) {
1292   case CodeGenOptions::GeneralDynamicTLSModel:
1293     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1294   case CodeGenOptions::LocalDynamicTLSModel:
1295     return llvm::GlobalVariable::LocalDynamicTLSModel;
1296   case CodeGenOptions::InitialExecTLSModel:
1297     return llvm::GlobalVariable::InitialExecTLSModel;
1298   case CodeGenOptions::LocalExecTLSModel:
1299     return llvm::GlobalVariable::LocalExecTLSModel;
1300   }
1301   llvm_unreachable("Invalid TLS model!");
1302 }
1303 
1304 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1305   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1306 
1307   llvm::GlobalValue::ThreadLocalMode TLM;
1308   TLM = GetDefaultLLVMTLSModel();
1309 
1310   // Override the TLS model if it is explicitly specified.
1311   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1312     TLM = GetLLVMTLSModel(Attr->getModel());
1313   }
1314 
1315   GV->setThreadLocalMode(TLM);
1316 }
1317 
1318 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1319                                           StringRef Name) {
1320   const TargetInfo &Target = CGM.getTarget();
1321   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1322 }
1323 
1324 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1325                                                  const CPUSpecificAttr *Attr,
1326                                                  unsigned CPUIndex,
1327                                                  raw_ostream &Out) {
1328   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1329   // supported.
1330   if (Attr)
1331     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1332   else if (CGM.getTarget().supportsIFunc())
1333     Out << ".resolver";
1334 }
1335 
1336 static void AppendTargetMangling(const CodeGenModule &CGM,
1337                                  const TargetAttr *Attr, raw_ostream &Out) {
1338   if (Attr->isDefaultVersion())
1339     return;
1340 
1341   Out << '.';
1342   const TargetInfo &Target = CGM.getTarget();
1343   ParsedTargetAttr Info =
1344       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1345         // Multiversioning doesn't allow "no-${feature}", so we can
1346         // only have "+" prefixes here.
1347         assert(LHS.startswith("+") && RHS.startswith("+") &&
1348                "Features should always have a prefix.");
1349         return Target.multiVersionSortPriority(LHS.substr(1)) >
1350                Target.multiVersionSortPriority(RHS.substr(1));
1351       });
1352 
1353   bool IsFirst = true;
1354 
1355   if (!Info.Architecture.empty()) {
1356     IsFirst = false;
1357     Out << "arch_" << Info.Architecture;
1358   }
1359 
1360   for (StringRef Feat : Info.Features) {
1361     if (!IsFirst)
1362       Out << '_';
1363     IsFirst = false;
1364     Out << Feat.substr(1);
1365   }
1366 }
1367 
1368 // Returns true if GD is a function decl with internal linkage and
1369 // needs a unique suffix after the mangled name.
1370 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1371                                         CodeGenModule &CGM) {
1372   const Decl *D = GD.getDecl();
1373   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1374          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1375 }
1376 
1377 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1378                                        const TargetClonesAttr *Attr,
1379                                        unsigned VersionIndex,
1380                                        raw_ostream &Out) {
1381   Out << '.';
1382   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1383   if (FeatureStr.startswith("arch="))
1384     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1385   else
1386     Out << FeatureStr;
1387 
1388   Out << '.' << Attr->getMangledIndex(VersionIndex);
1389 }
1390 
1391 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1392                                       const NamedDecl *ND,
1393                                       bool OmitMultiVersionMangling = false) {
1394   SmallString<256> Buffer;
1395   llvm::raw_svector_ostream Out(Buffer);
1396   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1397   if (!CGM.getModuleNameHash().empty())
1398     MC.needsUniqueInternalLinkageNames();
1399   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1400   if (ShouldMangle)
1401     MC.mangleName(GD.getWithDecl(ND), Out);
1402   else {
1403     IdentifierInfo *II = ND->getIdentifier();
1404     assert(II && "Attempt to mangle unnamed decl.");
1405     const auto *FD = dyn_cast<FunctionDecl>(ND);
1406 
1407     if (FD &&
1408         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1409       Out << "__regcall3__" << II->getName();
1410     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1411                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1412       Out << "__device_stub__" << II->getName();
1413     } else {
1414       Out << II->getName();
1415     }
1416   }
1417 
1418   // Check if the module name hash should be appended for internal linkage
1419   // symbols.   This should come before multi-version target suffixes are
1420   // appended. This is to keep the name and module hash suffix of the
1421   // internal linkage function together.  The unique suffix should only be
1422   // added when name mangling is done to make sure that the final name can
1423   // be properly demangled.  For example, for C functions without prototypes,
1424   // name mangling is not done and the unique suffix should not be appeneded
1425   // then.
1426   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1427     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1428            "Hash computed when not explicitly requested");
1429     Out << CGM.getModuleNameHash();
1430   }
1431 
1432   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1433     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1434       switch (FD->getMultiVersionKind()) {
1435       case MultiVersionKind::CPUDispatch:
1436       case MultiVersionKind::CPUSpecific:
1437         AppendCPUSpecificCPUDispatchMangling(CGM,
1438                                              FD->getAttr<CPUSpecificAttr>(),
1439                                              GD.getMultiVersionIndex(), Out);
1440         break;
1441       case MultiVersionKind::Target:
1442         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1443         break;
1444       case MultiVersionKind::TargetClones:
1445         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1446                                    GD.getMultiVersionIndex(), Out);
1447         break;
1448       case MultiVersionKind::None:
1449         llvm_unreachable("None multiversion type isn't valid here");
1450       }
1451     }
1452 
1453   // Make unique name for device side static file-scope variable for HIP.
1454   if (CGM.getContext().shouldExternalize(ND) &&
1455       CGM.getLangOpts().GPURelocatableDeviceCode &&
1456       CGM.getLangOpts().CUDAIsDevice)
1457     CGM.printPostfixForExternalizedDecl(Out, ND);
1458 
1459   return std::string(Out.str());
1460 }
1461 
1462 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1463                                             const FunctionDecl *FD,
1464                                             StringRef &CurName) {
1465   if (!FD->isMultiVersion())
1466     return;
1467 
1468   // Get the name of what this would be without the 'target' attribute.  This
1469   // allows us to lookup the version that was emitted when this wasn't a
1470   // multiversion function.
1471   std::string NonTargetName =
1472       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1473   GlobalDecl OtherGD;
1474   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1475     assert(OtherGD.getCanonicalDecl()
1476                .getDecl()
1477                ->getAsFunction()
1478                ->isMultiVersion() &&
1479            "Other GD should now be a multiversioned function");
1480     // OtherFD is the version of this function that was mangled BEFORE
1481     // becoming a MultiVersion function.  It potentially needs to be updated.
1482     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1483                                       .getDecl()
1484                                       ->getAsFunction()
1485                                       ->getMostRecentDecl();
1486     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1487     // This is so that if the initial version was already the 'default'
1488     // version, we don't try to update it.
1489     if (OtherName != NonTargetName) {
1490       // Remove instead of erase, since others may have stored the StringRef
1491       // to this.
1492       const auto ExistingRecord = Manglings.find(NonTargetName);
1493       if (ExistingRecord != std::end(Manglings))
1494         Manglings.remove(&(*ExistingRecord));
1495       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1496       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1497           Result.first->first();
1498       // If this is the current decl is being created, make sure we update the name.
1499       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1500         CurName = OtherNameRef;
1501       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1502         Entry->setName(OtherName);
1503     }
1504   }
1505 }
1506 
1507 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1508   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1509 
1510   // Some ABIs don't have constructor variants.  Make sure that base and
1511   // complete constructors get mangled the same.
1512   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1513     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1514       CXXCtorType OrigCtorType = GD.getCtorType();
1515       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1516       if (OrigCtorType == Ctor_Base)
1517         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1518     }
1519   }
1520 
1521   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1522   // static device variable depends on whether the variable is referenced by
1523   // a host or device host function. Therefore the mangled name cannot be
1524   // cached.
1525   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1526     auto FoundName = MangledDeclNames.find(CanonicalGD);
1527     if (FoundName != MangledDeclNames.end())
1528       return FoundName->second;
1529   }
1530 
1531   // Keep the first result in the case of a mangling collision.
1532   const auto *ND = cast<NamedDecl>(GD.getDecl());
1533   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1534 
1535   // Ensure either we have different ABIs between host and device compilations,
1536   // says host compilation following MSVC ABI but device compilation follows
1537   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1538   // mangling should be the same after name stubbing. The later checking is
1539   // very important as the device kernel name being mangled in host-compilation
1540   // is used to resolve the device binaries to be executed. Inconsistent naming
1541   // result in undefined behavior. Even though we cannot check that naming
1542   // directly between host- and device-compilations, the host- and
1543   // device-mangling in host compilation could help catching certain ones.
1544   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1545          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1546          (getContext().getAuxTargetInfo() &&
1547           (getContext().getAuxTargetInfo()->getCXXABI() !=
1548            getContext().getTargetInfo().getCXXABI())) ||
1549          getCUDARuntime().getDeviceSideName(ND) ==
1550              getMangledNameImpl(
1551                  *this,
1552                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1553                  ND));
1554 
1555   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1556   return MangledDeclNames[CanonicalGD] = Result.first->first();
1557 }
1558 
1559 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1560                                              const BlockDecl *BD) {
1561   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1562   const Decl *D = GD.getDecl();
1563 
1564   SmallString<256> Buffer;
1565   llvm::raw_svector_ostream Out(Buffer);
1566   if (!D)
1567     MangleCtx.mangleGlobalBlock(BD,
1568       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1569   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1570     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1571   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1572     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1573   else
1574     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1575 
1576   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1577   return Result.first->first();
1578 }
1579 
1580 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1581   auto it = MangledDeclNames.begin();
1582   while (it != MangledDeclNames.end()) {
1583     if (it->second == Name)
1584       return it->first;
1585     it++;
1586   }
1587   return GlobalDecl();
1588 }
1589 
1590 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1591   return getModule().getNamedValue(Name);
1592 }
1593 
1594 /// AddGlobalCtor - Add a function to the list that will be called before
1595 /// main() runs.
1596 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1597                                   unsigned LexOrder,
1598                                   llvm::Constant *AssociatedData) {
1599   // FIXME: Type coercion of void()* types.
1600   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1601 }
1602 
1603 /// AddGlobalDtor - Add a function to the list that will be called
1604 /// when the module is unloaded.
1605 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1606                                   bool IsDtorAttrFunc) {
1607   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1608       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1609     DtorsUsingAtExit[Priority].push_back(Dtor);
1610     return;
1611   }
1612 
1613   // FIXME: Type coercion of void()* types.
1614   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1615 }
1616 
1617 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1618   if (Fns.empty()) return;
1619 
1620   // Ctor function type is void()*.
1621   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1622   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1623       TheModule.getDataLayout().getProgramAddressSpace());
1624 
1625   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1626   llvm::StructType *CtorStructTy = llvm::StructType::get(
1627       Int32Ty, CtorPFTy, VoidPtrTy);
1628 
1629   // Construct the constructor and destructor arrays.
1630   ConstantInitBuilder builder(*this);
1631   auto ctors = builder.beginArray(CtorStructTy);
1632   for (const auto &I : Fns) {
1633     auto ctor = ctors.beginStruct(CtorStructTy);
1634     ctor.addInt(Int32Ty, I.Priority);
1635     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1636     if (I.AssociatedData)
1637       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1638     else
1639       ctor.addNullPointer(VoidPtrTy);
1640     ctor.finishAndAddTo(ctors);
1641   }
1642 
1643   auto list =
1644     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1645                                 /*constant*/ false,
1646                                 llvm::GlobalValue::AppendingLinkage);
1647 
1648   // The LTO linker doesn't seem to like it when we set an alignment
1649   // on appending variables.  Take it off as a workaround.
1650   list->setAlignment(llvm::None);
1651 
1652   Fns.clear();
1653 }
1654 
1655 llvm::GlobalValue::LinkageTypes
1656 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1657   const auto *D = cast<FunctionDecl>(GD.getDecl());
1658 
1659   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1660 
1661   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1662     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1663 
1664   if (isa<CXXConstructorDecl>(D) &&
1665       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1666       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1667     // Our approach to inheriting constructors is fundamentally different from
1668     // that used by the MS ABI, so keep our inheriting constructor thunks
1669     // internal rather than trying to pick an unambiguous mangling for them.
1670     return llvm::GlobalValue::InternalLinkage;
1671   }
1672 
1673   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1674 }
1675 
1676 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1677   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1678   if (!MDS) return nullptr;
1679 
1680   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1681 }
1682 
1683 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1684   if (auto *FnType = T->getAs<FunctionProtoType>())
1685     T = getContext().getFunctionType(
1686         FnType->getReturnType(), FnType->getParamTypes(),
1687         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1688 
1689   std::string OutName;
1690   llvm::raw_string_ostream Out(OutName);
1691   getCXXABI().getMangleContext().mangleTypeName(T, Out);
1692 
1693   return llvm::ConstantInt::get(Int32Ty,
1694                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
1695 }
1696 
1697 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1698                                               const CGFunctionInfo &Info,
1699                                               llvm::Function *F, bool IsThunk) {
1700   unsigned CallingConv;
1701   llvm::AttributeList PAL;
1702   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1703                          /*AttrOnCallSite=*/false, IsThunk);
1704   F->setAttributes(PAL);
1705   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1706 }
1707 
1708 static void removeImageAccessQualifier(std::string& TyName) {
1709   std::string ReadOnlyQual("__read_only");
1710   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1711   if (ReadOnlyPos != std::string::npos)
1712     // "+ 1" for the space after access qualifier.
1713     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1714   else {
1715     std::string WriteOnlyQual("__write_only");
1716     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1717     if (WriteOnlyPos != std::string::npos)
1718       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1719     else {
1720       std::string ReadWriteQual("__read_write");
1721       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1722       if (ReadWritePos != std::string::npos)
1723         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1724     }
1725   }
1726 }
1727 
1728 // Returns the address space id that should be produced to the
1729 // kernel_arg_addr_space metadata. This is always fixed to the ids
1730 // as specified in the SPIR 2.0 specification in order to differentiate
1731 // for example in clGetKernelArgInfo() implementation between the address
1732 // spaces with targets without unique mapping to the OpenCL address spaces
1733 // (basically all single AS CPUs).
1734 static unsigned ArgInfoAddressSpace(LangAS AS) {
1735   switch (AS) {
1736   case LangAS::opencl_global:
1737     return 1;
1738   case LangAS::opencl_constant:
1739     return 2;
1740   case LangAS::opencl_local:
1741     return 3;
1742   case LangAS::opencl_generic:
1743     return 4; // Not in SPIR 2.0 specs.
1744   case LangAS::opencl_global_device:
1745     return 5;
1746   case LangAS::opencl_global_host:
1747     return 6;
1748   default:
1749     return 0; // Assume private.
1750   }
1751 }
1752 
1753 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1754                                          const FunctionDecl *FD,
1755                                          CodeGenFunction *CGF) {
1756   assert(((FD && CGF) || (!FD && !CGF)) &&
1757          "Incorrect use - FD and CGF should either be both null or not!");
1758   // Create MDNodes that represent the kernel arg metadata.
1759   // Each MDNode is a list in the form of "key", N number of values which is
1760   // the same number of values as their are kernel arguments.
1761 
1762   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1763 
1764   // MDNode for the kernel argument address space qualifiers.
1765   SmallVector<llvm::Metadata *, 8> addressQuals;
1766 
1767   // MDNode for the kernel argument access qualifiers (images only).
1768   SmallVector<llvm::Metadata *, 8> accessQuals;
1769 
1770   // MDNode for the kernel argument type names.
1771   SmallVector<llvm::Metadata *, 8> argTypeNames;
1772 
1773   // MDNode for the kernel argument base type names.
1774   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1775 
1776   // MDNode for the kernel argument type qualifiers.
1777   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1778 
1779   // MDNode for the kernel argument names.
1780   SmallVector<llvm::Metadata *, 8> argNames;
1781 
1782   if (FD && CGF)
1783     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1784       const ParmVarDecl *parm = FD->getParamDecl(i);
1785       // Get argument name.
1786       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1787 
1788       if (!getLangOpts().OpenCL)
1789         continue;
1790       QualType ty = parm->getType();
1791       std::string typeQuals;
1792 
1793       // Get image and pipe access qualifier:
1794       if (ty->isImageType() || ty->isPipeType()) {
1795         const Decl *PDecl = parm;
1796         if (const auto *TD = ty->getAs<TypedefType>())
1797           PDecl = TD->getDecl();
1798         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1799         if (A && A->isWriteOnly())
1800           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1801         else if (A && A->isReadWrite())
1802           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1803         else
1804           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1805       } else
1806         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1807 
1808       auto getTypeSpelling = [&](QualType Ty) {
1809         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1810 
1811         if (Ty.isCanonical()) {
1812           StringRef typeNameRef = typeName;
1813           // Turn "unsigned type" to "utype"
1814           if (typeNameRef.consume_front("unsigned "))
1815             return std::string("u") + typeNameRef.str();
1816           if (typeNameRef.consume_front("signed "))
1817             return typeNameRef.str();
1818         }
1819 
1820         return typeName;
1821       };
1822 
1823       if (ty->isPointerType()) {
1824         QualType pointeeTy = ty->getPointeeType();
1825 
1826         // Get address qualifier.
1827         addressQuals.push_back(
1828             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1829                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1830 
1831         // Get argument type name.
1832         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1833         std::string baseTypeName =
1834             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1835         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1836         argBaseTypeNames.push_back(
1837             llvm::MDString::get(VMContext, baseTypeName));
1838 
1839         // Get argument type qualifiers:
1840         if (ty.isRestrictQualified())
1841           typeQuals = "restrict";
1842         if (pointeeTy.isConstQualified() ||
1843             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1844           typeQuals += typeQuals.empty() ? "const" : " const";
1845         if (pointeeTy.isVolatileQualified())
1846           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1847       } else {
1848         uint32_t AddrSpc = 0;
1849         bool isPipe = ty->isPipeType();
1850         if (ty->isImageType() || isPipe)
1851           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1852 
1853         addressQuals.push_back(
1854             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1855 
1856         // Get argument type name.
1857         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1858         std::string typeName = getTypeSpelling(ty);
1859         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1860 
1861         // Remove access qualifiers on images
1862         // (as they are inseparable from type in clang implementation,
1863         // but OpenCL spec provides a special query to get access qualifier
1864         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1865         if (ty->isImageType()) {
1866           removeImageAccessQualifier(typeName);
1867           removeImageAccessQualifier(baseTypeName);
1868         }
1869 
1870         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1871         argBaseTypeNames.push_back(
1872             llvm::MDString::get(VMContext, baseTypeName));
1873 
1874         if (isPipe)
1875           typeQuals = "pipe";
1876       }
1877       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1878     }
1879 
1880   if (getLangOpts().OpenCL) {
1881     Fn->setMetadata("kernel_arg_addr_space",
1882                     llvm::MDNode::get(VMContext, addressQuals));
1883     Fn->setMetadata("kernel_arg_access_qual",
1884                     llvm::MDNode::get(VMContext, accessQuals));
1885     Fn->setMetadata("kernel_arg_type",
1886                     llvm::MDNode::get(VMContext, argTypeNames));
1887     Fn->setMetadata("kernel_arg_base_type",
1888                     llvm::MDNode::get(VMContext, argBaseTypeNames));
1889     Fn->setMetadata("kernel_arg_type_qual",
1890                     llvm::MDNode::get(VMContext, argTypeQuals));
1891   }
1892   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1893       getCodeGenOpts().HIPSaveKernelArgName)
1894     Fn->setMetadata("kernel_arg_name",
1895                     llvm::MDNode::get(VMContext, argNames));
1896 }
1897 
1898 /// Determines whether the language options require us to model
1899 /// unwind exceptions.  We treat -fexceptions as mandating this
1900 /// except under the fragile ObjC ABI with only ObjC exceptions
1901 /// enabled.  This means, for example, that C with -fexceptions
1902 /// enables this.
1903 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1904   // If exceptions are completely disabled, obviously this is false.
1905   if (!LangOpts.Exceptions) return false;
1906 
1907   // If C++ exceptions are enabled, this is true.
1908   if (LangOpts.CXXExceptions) return true;
1909 
1910   // If ObjC exceptions are enabled, this depends on the ABI.
1911   if (LangOpts.ObjCExceptions) {
1912     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1913   }
1914 
1915   return true;
1916 }
1917 
1918 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1919                                                       const CXXMethodDecl *MD) {
1920   // Check that the type metadata can ever actually be used by a call.
1921   if (!CGM.getCodeGenOpts().LTOUnit ||
1922       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1923     return false;
1924 
1925   // Only functions whose address can be taken with a member function pointer
1926   // need this sort of type metadata.
1927   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1928          !isa<CXXDestructorDecl>(MD);
1929 }
1930 
1931 std::vector<const CXXRecordDecl *>
1932 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1933   llvm::SetVector<const CXXRecordDecl *> MostBases;
1934 
1935   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1936   CollectMostBases = [&](const CXXRecordDecl *RD) {
1937     if (RD->getNumBases() == 0)
1938       MostBases.insert(RD);
1939     for (const CXXBaseSpecifier &B : RD->bases())
1940       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1941   };
1942   CollectMostBases(RD);
1943   return MostBases.takeVector();
1944 }
1945 
1946 llvm::GlobalVariable *
1947 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
1948   auto It = RTTIProxyMap.find(Addr);
1949   if (It != RTTIProxyMap.end())
1950     return It->second;
1951 
1952   auto *FTRTTIProxy = new llvm::GlobalVariable(
1953       TheModule, Addr->getType(),
1954       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
1955       "__llvm_rtti_proxy");
1956   FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1957 
1958   RTTIProxyMap[Addr] = FTRTTIProxy;
1959   return FTRTTIProxy;
1960 }
1961 
1962 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1963                                                            llvm::Function *F) {
1964   llvm::AttrBuilder B(F->getContext());
1965 
1966   if (CodeGenOpts.UnwindTables)
1967     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1968 
1969   if (CodeGenOpts.StackClashProtector)
1970     B.addAttribute("probe-stack", "inline-asm");
1971 
1972   if (!hasUnwindExceptions(LangOpts))
1973     B.addAttribute(llvm::Attribute::NoUnwind);
1974 
1975   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1976     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1977       B.addAttribute(llvm::Attribute::StackProtect);
1978     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1979       B.addAttribute(llvm::Attribute::StackProtectStrong);
1980     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1981       B.addAttribute(llvm::Attribute::StackProtectReq);
1982   }
1983 
1984   if (!D) {
1985     // If we don't have a declaration to control inlining, the function isn't
1986     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1987     // disabled, mark the function as noinline.
1988     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1989         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1990       B.addAttribute(llvm::Attribute::NoInline);
1991 
1992     F->addFnAttrs(B);
1993     return;
1994   }
1995 
1996   // Track whether we need to add the optnone LLVM attribute,
1997   // starting with the default for this optimization level.
1998   bool ShouldAddOptNone =
1999       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2000   // We can't add optnone in the following cases, it won't pass the verifier.
2001   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2002   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2003 
2004   // Add optnone, but do so only if the function isn't always_inline.
2005   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2006       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2007     B.addAttribute(llvm::Attribute::OptimizeNone);
2008 
2009     // OptimizeNone implies noinline; we should not be inlining such functions.
2010     B.addAttribute(llvm::Attribute::NoInline);
2011 
2012     // We still need to handle naked functions even though optnone subsumes
2013     // much of their semantics.
2014     if (D->hasAttr<NakedAttr>())
2015       B.addAttribute(llvm::Attribute::Naked);
2016 
2017     // OptimizeNone wins over OptimizeForSize and MinSize.
2018     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2019     F->removeFnAttr(llvm::Attribute::MinSize);
2020   } else if (D->hasAttr<NakedAttr>()) {
2021     // Naked implies noinline: we should not be inlining such functions.
2022     B.addAttribute(llvm::Attribute::Naked);
2023     B.addAttribute(llvm::Attribute::NoInline);
2024   } else if (D->hasAttr<NoDuplicateAttr>()) {
2025     B.addAttribute(llvm::Attribute::NoDuplicate);
2026   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2027     // Add noinline if the function isn't always_inline.
2028     B.addAttribute(llvm::Attribute::NoInline);
2029   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2030              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2031     // (noinline wins over always_inline, and we can't specify both in IR)
2032     B.addAttribute(llvm::Attribute::AlwaysInline);
2033   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2034     // If we're not inlining, then force everything that isn't always_inline to
2035     // carry an explicit noinline attribute.
2036     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2037       B.addAttribute(llvm::Attribute::NoInline);
2038   } else {
2039     // Otherwise, propagate the inline hint attribute and potentially use its
2040     // absence to mark things as noinline.
2041     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2042       // Search function and template pattern redeclarations for inline.
2043       auto CheckForInline = [](const FunctionDecl *FD) {
2044         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2045           return Redecl->isInlineSpecified();
2046         };
2047         if (any_of(FD->redecls(), CheckRedeclForInline))
2048           return true;
2049         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2050         if (!Pattern)
2051           return false;
2052         return any_of(Pattern->redecls(), CheckRedeclForInline);
2053       };
2054       if (CheckForInline(FD)) {
2055         B.addAttribute(llvm::Attribute::InlineHint);
2056       } else if (CodeGenOpts.getInlining() ==
2057                      CodeGenOptions::OnlyHintInlining &&
2058                  !FD->isInlined() &&
2059                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2060         B.addAttribute(llvm::Attribute::NoInline);
2061       }
2062     }
2063   }
2064 
2065   // Add other optimization related attributes if we are optimizing this
2066   // function.
2067   if (!D->hasAttr<OptimizeNoneAttr>()) {
2068     if (D->hasAttr<ColdAttr>()) {
2069       if (!ShouldAddOptNone)
2070         B.addAttribute(llvm::Attribute::OptimizeForSize);
2071       B.addAttribute(llvm::Attribute::Cold);
2072     }
2073     if (D->hasAttr<HotAttr>())
2074       B.addAttribute(llvm::Attribute::Hot);
2075     if (D->hasAttr<MinSizeAttr>())
2076       B.addAttribute(llvm::Attribute::MinSize);
2077   }
2078 
2079   F->addFnAttrs(B);
2080 
2081   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2082   if (alignment)
2083     F->setAlignment(llvm::Align(alignment));
2084 
2085   if (!D->hasAttr<AlignedAttr>())
2086     if (LangOpts.FunctionAlignment)
2087       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2088 
2089   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2090   // reserve a bit for differentiating between virtual and non-virtual member
2091   // functions. If the current target's C++ ABI requires this and this is a
2092   // member function, set its alignment accordingly.
2093   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2094     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2095       F->setAlignment(llvm::Align(2));
2096   }
2097 
2098   // In the cross-dso CFI mode with canonical jump tables, we want !type
2099   // attributes on definitions only.
2100   if (CodeGenOpts.SanitizeCfiCrossDso &&
2101       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2102     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2103       // Skip available_externally functions. They won't be codegen'ed in the
2104       // current module anyway.
2105       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2106         CreateFunctionTypeMetadataForIcall(FD, F);
2107     }
2108   }
2109 
2110   // Emit type metadata on member functions for member function pointer checks.
2111   // These are only ever necessary on definitions; we're guaranteed that the
2112   // definition will be present in the LTO unit as a result of LTO visibility.
2113   auto *MD = dyn_cast<CXXMethodDecl>(D);
2114   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2115     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2116       llvm::Metadata *Id =
2117           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2118               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2119       F->addTypeMetadata(0, Id);
2120     }
2121   }
2122 }
2123 
2124 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2125                                                   llvm::Function *F) {
2126   if (D->hasAttr<StrictFPAttr>()) {
2127     llvm::AttrBuilder FuncAttrs(F->getContext());
2128     FuncAttrs.addAttribute("strictfp");
2129     F->addFnAttrs(FuncAttrs);
2130   }
2131 }
2132 
2133 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2134   const Decl *D = GD.getDecl();
2135   if (isa_and_nonnull<NamedDecl>(D))
2136     setGVProperties(GV, GD);
2137   else
2138     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2139 
2140   if (D && D->hasAttr<UsedAttr>())
2141     addUsedOrCompilerUsedGlobal(GV);
2142 
2143   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2144     const auto *VD = cast<VarDecl>(D);
2145     if (VD->getType().isConstQualified() &&
2146         VD->getStorageDuration() == SD_Static)
2147       addUsedOrCompilerUsedGlobal(GV);
2148   }
2149 }
2150 
2151 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2152                                                 llvm::AttrBuilder &Attrs) {
2153   // Add target-cpu and target-features attributes to functions. If
2154   // we have a decl for the function and it has a target attribute then
2155   // parse that and add it to the feature set.
2156   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2157   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2158   std::vector<std::string> Features;
2159   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2160   FD = FD ? FD->getMostRecentDecl() : FD;
2161   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2162   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2163   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2164   bool AddedAttr = false;
2165   if (TD || SD || TC) {
2166     llvm::StringMap<bool> FeatureMap;
2167     getContext().getFunctionFeatureMap(FeatureMap, GD);
2168 
2169     // Produce the canonical string for this set of features.
2170     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2171       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2172 
2173     // Now add the target-cpu and target-features to the function.
2174     // While we populated the feature map above, we still need to
2175     // get and parse the target attribute so we can get the cpu for
2176     // the function.
2177     if (TD) {
2178       ParsedTargetAttr ParsedAttr = TD->parse();
2179       if (!ParsedAttr.Architecture.empty() &&
2180           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2181         TargetCPU = ParsedAttr.Architecture;
2182         TuneCPU = ""; // Clear the tune CPU.
2183       }
2184       if (!ParsedAttr.Tune.empty() &&
2185           getTarget().isValidCPUName(ParsedAttr.Tune))
2186         TuneCPU = ParsedAttr.Tune;
2187     }
2188 
2189     if (SD) {
2190       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2191       // favor this processor.
2192       TuneCPU = getTarget().getCPUSpecificTuneName(
2193           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2194     }
2195   } else {
2196     // Otherwise just add the existing target cpu and target features to the
2197     // function.
2198     Features = getTarget().getTargetOpts().Features;
2199   }
2200 
2201   if (!TargetCPU.empty()) {
2202     Attrs.addAttribute("target-cpu", TargetCPU);
2203     AddedAttr = true;
2204   }
2205   if (!TuneCPU.empty()) {
2206     Attrs.addAttribute("tune-cpu", TuneCPU);
2207     AddedAttr = true;
2208   }
2209   if (!Features.empty()) {
2210     llvm::sort(Features);
2211     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2212     AddedAttr = true;
2213   }
2214 
2215   return AddedAttr;
2216 }
2217 
2218 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2219                                           llvm::GlobalObject *GO) {
2220   const Decl *D = GD.getDecl();
2221   SetCommonAttributes(GD, GO);
2222 
2223   if (D) {
2224     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2225       if (D->hasAttr<RetainAttr>())
2226         addUsedGlobal(GV);
2227       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2228         GV->addAttribute("bss-section", SA->getName());
2229       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2230         GV->addAttribute("data-section", SA->getName());
2231       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2232         GV->addAttribute("rodata-section", SA->getName());
2233       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2234         GV->addAttribute("relro-section", SA->getName());
2235     }
2236 
2237     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2238       if (D->hasAttr<RetainAttr>())
2239         addUsedGlobal(F);
2240       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2241         if (!D->getAttr<SectionAttr>())
2242           F->addFnAttr("implicit-section-name", SA->getName());
2243 
2244       llvm::AttrBuilder Attrs(F->getContext());
2245       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2246         // We know that GetCPUAndFeaturesAttributes will always have the
2247         // newest set, since it has the newest possible FunctionDecl, so the
2248         // new ones should replace the old.
2249         llvm::AttributeMask RemoveAttrs;
2250         RemoveAttrs.addAttribute("target-cpu");
2251         RemoveAttrs.addAttribute("target-features");
2252         RemoveAttrs.addAttribute("tune-cpu");
2253         F->removeFnAttrs(RemoveAttrs);
2254         F->addFnAttrs(Attrs);
2255       }
2256     }
2257 
2258     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2259       GO->setSection(CSA->getName());
2260     else if (const auto *SA = D->getAttr<SectionAttr>())
2261       GO->setSection(SA->getName());
2262   }
2263 
2264   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2265 }
2266 
2267 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2268                                                   llvm::Function *F,
2269                                                   const CGFunctionInfo &FI) {
2270   const Decl *D = GD.getDecl();
2271   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2272   SetLLVMFunctionAttributesForDefinition(D, F);
2273 
2274   F->setLinkage(llvm::Function::InternalLinkage);
2275 
2276   setNonAliasAttributes(GD, F);
2277 }
2278 
2279 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2280   // Set linkage and visibility in case we never see a definition.
2281   LinkageInfo LV = ND->getLinkageAndVisibility();
2282   // Don't set internal linkage on declarations.
2283   // "extern_weak" is overloaded in LLVM; we probably should have
2284   // separate linkage types for this.
2285   if (isExternallyVisible(LV.getLinkage()) &&
2286       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2287     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2288 }
2289 
2290 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2291                                                        llvm::Function *F) {
2292   // Only if we are checking indirect calls.
2293   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2294     return;
2295 
2296   // Non-static class methods are handled via vtable or member function pointer
2297   // checks elsewhere.
2298   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2299     return;
2300 
2301   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2302   F->addTypeMetadata(0, MD);
2303   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2304 
2305   // Emit a hash-based bit set entry for cross-DSO calls.
2306   if (CodeGenOpts.SanitizeCfiCrossDso)
2307     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2308       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2309 }
2310 
2311 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2312   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2313     return;
2314 
2315   llvm::LLVMContext &Ctx = F->getContext();
2316   llvm::MDBuilder MDB(Ctx);
2317   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2318                  llvm::MDNode::get(
2319                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2320 }
2321 
2322 static bool allowKCFIIdentifier(StringRef Name) {
2323   // KCFI type identifier constants are only necessary for external assembly
2324   // functions, which means it's safe to skip unusual names. Subset of
2325   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2326   return llvm::all_of(Name, [](const char &C) {
2327     return llvm::isAlnum(C) || C == '_' || C == '.';
2328   });
2329 }
2330 
2331 void CodeGenModule::finalizeKCFITypes() {
2332   llvm::Module &M = getModule();
2333   for (auto &F : M.functions()) {
2334     // Remove KCFI type metadata from non-address-taken local functions.
2335     bool AddressTaken = F.hasAddressTaken();
2336     if (!AddressTaken && F.hasLocalLinkage())
2337       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2338 
2339     // Generate a constant with the expected KCFI type identifier for all
2340     // address-taken function declarations to support annotating indirectly
2341     // called assembly functions.
2342     if (!AddressTaken || !F.isDeclaration())
2343       continue;
2344 
2345     const llvm::ConstantInt *Type;
2346     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2347       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2348     else
2349       continue;
2350 
2351     StringRef Name = F.getName();
2352     if (!allowKCFIIdentifier(Name))
2353       continue;
2354 
2355     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2356                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2357                           .str();
2358     M.appendModuleInlineAsm(Asm);
2359   }
2360 }
2361 
2362 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2363                                           bool IsIncompleteFunction,
2364                                           bool IsThunk) {
2365 
2366   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2367     // If this is an intrinsic function, set the function's attributes
2368     // to the intrinsic's attributes.
2369     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2370     return;
2371   }
2372 
2373   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2374 
2375   if (!IsIncompleteFunction)
2376     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2377                               IsThunk);
2378 
2379   // Add the Returned attribute for "this", except for iOS 5 and earlier
2380   // where substantial code, including the libstdc++ dylib, was compiled with
2381   // GCC and does not actually return "this".
2382   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2383       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2384     assert(!F->arg_empty() &&
2385            F->arg_begin()->getType()
2386              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2387            "unexpected this return");
2388     F->addParamAttr(0, llvm::Attribute::Returned);
2389   }
2390 
2391   // Only a few attributes are set on declarations; these may later be
2392   // overridden by a definition.
2393 
2394   setLinkageForGV(F, FD);
2395   setGVProperties(F, FD);
2396 
2397   // Setup target-specific attributes.
2398   if (!IsIncompleteFunction && F->isDeclaration())
2399     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2400 
2401   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2402     F->setSection(CSA->getName());
2403   else if (const auto *SA = FD->getAttr<SectionAttr>())
2404      F->setSection(SA->getName());
2405 
2406   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2407     if (EA->isError())
2408       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2409     else if (EA->isWarning())
2410       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2411   }
2412 
2413   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2414   if (FD->isInlineBuiltinDeclaration()) {
2415     const FunctionDecl *FDBody;
2416     bool HasBody = FD->hasBody(FDBody);
2417     (void)HasBody;
2418     assert(HasBody && "Inline builtin declarations should always have an "
2419                       "available body!");
2420     if (shouldEmitFunction(FDBody))
2421       F->addFnAttr(llvm::Attribute::NoBuiltin);
2422   }
2423 
2424   if (FD->isReplaceableGlobalAllocationFunction()) {
2425     // A replaceable global allocation function does not act like a builtin by
2426     // default, only if it is invoked by a new-expression or delete-expression.
2427     F->addFnAttr(llvm::Attribute::NoBuiltin);
2428   }
2429 
2430   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2431     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2432   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2433     if (MD->isVirtual())
2434       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2435 
2436   // Don't emit entries for function declarations in the cross-DSO mode. This
2437   // is handled with better precision by the receiving DSO. But if jump tables
2438   // are non-canonical then we need type metadata in order to produce the local
2439   // jump table.
2440   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2441       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2442     CreateFunctionTypeMetadataForIcall(FD, F);
2443 
2444   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2445     setKCFIType(FD, F);
2446 
2447   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2448     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2449 
2450   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2451     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2452 
2453   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2454     // Annotate the callback behavior as metadata:
2455     //  - The callback callee (as argument number).
2456     //  - The callback payloads (as argument numbers).
2457     llvm::LLVMContext &Ctx = F->getContext();
2458     llvm::MDBuilder MDB(Ctx);
2459 
2460     // The payload indices are all but the first one in the encoding. The first
2461     // identifies the callback callee.
2462     int CalleeIdx = *CB->encoding_begin();
2463     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2464     F->addMetadata(llvm::LLVMContext::MD_callback,
2465                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2466                                                CalleeIdx, PayloadIndices,
2467                                                /* VarArgsArePassed */ false)}));
2468   }
2469 }
2470 
2471 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2472   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2473          "Only globals with definition can force usage.");
2474   LLVMUsed.emplace_back(GV);
2475 }
2476 
2477 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2478   assert(!GV->isDeclaration() &&
2479          "Only globals with definition can force usage.");
2480   LLVMCompilerUsed.emplace_back(GV);
2481 }
2482 
2483 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2484   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2485          "Only globals with definition can force usage.");
2486   if (getTriple().isOSBinFormatELF())
2487     LLVMCompilerUsed.emplace_back(GV);
2488   else
2489     LLVMUsed.emplace_back(GV);
2490 }
2491 
2492 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2493                      std::vector<llvm::WeakTrackingVH> &List) {
2494   // Don't create llvm.used if there is no need.
2495   if (List.empty())
2496     return;
2497 
2498   // Convert List to what ConstantArray needs.
2499   SmallVector<llvm::Constant*, 8> UsedArray;
2500   UsedArray.resize(List.size());
2501   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2502     UsedArray[i] =
2503         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2504             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2505   }
2506 
2507   if (UsedArray.empty())
2508     return;
2509   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2510 
2511   auto *GV = new llvm::GlobalVariable(
2512       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2513       llvm::ConstantArray::get(ATy, UsedArray), Name);
2514 
2515   GV->setSection("llvm.metadata");
2516 }
2517 
2518 void CodeGenModule::emitLLVMUsed() {
2519   emitUsed(*this, "llvm.used", LLVMUsed);
2520   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2521 }
2522 
2523 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2524   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2525   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2526 }
2527 
2528 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2529   llvm::SmallString<32> Opt;
2530   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2531   if (Opt.empty())
2532     return;
2533   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2534   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2535 }
2536 
2537 void CodeGenModule::AddDependentLib(StringRef Lib) {
2538   auto &C = getLLVMContext();
2539   if (getTarget().getTriple().isOSBinFormatELF()) {
2540       ELFDependentLibraries.push_back(
2541         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2542     return;
2543   }
2544 
2545   llvm::SmallString<24> Opt;
2546   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2547   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2548   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2549 }
2550 
2551 /// Add link options implied by the given module, including modules
2552 /// it depends on, using a postorder walk.
2553 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2554                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2555                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2556   // Import this module's parent.
2557   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2558     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2559   }
2560 
2561   // Import this module's dependencies.
2562   for (Module *Import : llvm::reverse(Mod->Imports)) {
2563     if (Visited.insert(Import).second)
2564       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2565   }
2566 
2567   // Add linker options to link against the libraries/frameworks
2568   // described by this module.
2569   llvm::LLVMContext &Context = CGM.getLLVMContext();
2570   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2571 
2572   // For modules that use export_as for linking, use that module
2573   // name instead.
2574   if (Mod->UseExportAsModuleLinkName)
2575     return;
2576 
2577   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2578     // Link against a framework.  Frameworks are currently Darwin only, so we
2579     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2580     if (LL.IsFramework) {
2581       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2582                                  llvm::MDString::get(Context, LL.Library)};
2583 
2584       Metadata.push_back(llvm::MDNode::get(Context, Args));
2585       continue;
2586     }
2587 
2588     // Link against a library.
2589     if (IsELF) {
2590       llvm::Metadata *Args[2] = {
2591           llvm::MDString::get(Context, "lib"),
2592           llvm::MDString::get(Context, LL.Library),
2593       };
2594       Metadata.push_back(llvm::MDNode::get(Context, Args));
2595     } else {
2596       llvm::SmallString<24> Opt;
2597       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2598       auto *OptString = llvm::MDString::get(Context, Opt);
2599       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2600     }
2601   }
2602 }
2603 
2604 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2605   // Emit the initializers in the order that sub-modules appear in the
2606   // source, first Global Module Fragments, if present.
2607   if (auto GMF = Primary->getGlobalModuleFragment()) {
2608     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2609       if (isa<ImportDecl>(D))
2610         continue;
2611       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2612       EmitTopLevelDecl(D);
2613     }
2614   }
2615   // Second any associated with the module, itself.
2616   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2617     // Skip import decls, the inits for those are called explicitly.
2618     if (isa<ImportDecl>(D))
2619       continue;
2620     EmitTopLevelDecl(D);
2621   }
2622   // Third any associated with the Privat eMOdule Fragment, if present.
2623   if (auto PMF = Primary->getPrivateModuleFragment()) {
2624     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2625       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2626       EmitTopLevelDecl(D);
2627     }
2628   }
2629 }
2630 
2631 void CodeGenModule::EmitModuleLinkOptions() {
2632   // Collect the set of all of the modules we want to visit to emit link
2633   // options, which is essentially the imported modules and all of their
2634   // non-explicit child modules.
2635   llvm::SetVector<clang::Module *> LinkModules;
2636   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2637   SmallVector<clang::Module *, 16> Stack;
2638 
2639   // Seed the stack with imported modules.
2640   for (Module *M : ImportedModules) {
2641     // Do not add any link flags when an implementation TU of a module imports
2642     // a header of that same module.
2643     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2644         !getLangOpts().isCompilingModule())
2645       continue;
2646     if (Visited.insert(M).second)
2647       Stack.push_back(M);
2648   }
2649 
2650   // Find all of the modules to import, making a little effort to prune
2651   // non-leaf modules.
2652   while (!Stack.empty()) {
2653     clang::Module *Mod = Stack.pop_back_val();
2654 
2655     bool AnyChildren = false;
2656 
2657     // Visit the submodules of this module.
2658     for (const auto &SM : Mod->submodules()) {
2659       // Skip explicit children; they need to be explicitly imported to be
2660       // linked against.
2661       if (SM->IsExplicit)
2662         continue;
2663 
2664       if (Visited.insert(SM).second) {
2665         Stack.push_back(SM);
2666         AnyChildren = true;
2667       }
2668     }
2669 
2670     // We didn't find any children, so add this module to the list of
2671     // modules to link against.
2672     if (!AnyChildren) {
2673       LinkModules.insert(Mod);
2674     }
2675   }
2676 
2677   // Add link options for all of the imported modules in reverse topological
2678   // order.  We don't do anything to try to order import link flags with respect
2679   // to linker options inserted by things like #pragma comment().
2680   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2681   Visited.clear();
2682   for (Module *M : LinkModules)
2683     if (Visited.insert(M).second)
2684       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2685   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2686   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2687 
2688   // Add the linker options metadata flag.
2689   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2690   for (auto *MD : LinkerOptionsMetadata)
2691     NMD->addOperand(MD);
2692 }
2693 
2694 void CodeGenModule::EmitDeferred() {
2695   // Emit deferred declare target declarations.
2696   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2697     getOpenMPRuntime().emitDeferredTargetDecls();
2698 
2699   // Emit code for any potentially referenced deferred decls.  Since a
2700   // previously unused static decl may become used during the generation of code
2701   // for a static function, iterate until no changes are made.
2702 
2703   if (!DeferredVTables.empty()) {
2704     EmitDeferredVTables();
2705 
2706     // Emitting a vtable doesn't directly cause more vtables to
2707     // become deferred, although it can cause functions to be
2708     // emitted that then need those vtables.
2709     assert(DeferredVTables.empty());
2710   }
2711 
2712   // Emit CUDA/HIP static device variables referenced by host code only.
2713   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2714   // needed for further handling.
2715   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2716     llvm::append_range(DeferredDeclsToEmit,
2717                        getContext().CUDADeviceVarODRUsedByHost);
2718 
2719   // Stop if we're out of both deferred vtables and deferred declarations.
2720   if (DeferredDeclsToEmit.empty())
2721     return;
2722 
2723   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2724   // work, it will not interfere with this.
2725   std::vector<GlobalDecl> CurDeclsToEmit;
2726   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2727 
2728   for (GlobalDecl &D : CurDeclsToEmit) {
2729     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2730     // to get GlobalValue with exactly the type we need, not something that
2731     // might had been created for another decl with the same mangled name but
2732     // different type.
2733     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2734         GetAddrOfGlobal(D, ForDefinition));
2735 
2736     // In case of different address spaces, we may still get a cast, even with
2737     // IsForDefinition equal to true. Query mangled names table to get
2738     // GlobalValue.
2739     if (!GV)
2740       GV = GetGlobalValue(getMangledName(D));
2741 
2742     // Make sure GetGlobalValue returned non-null.
2743     assert(GV);
2744 
2745     // Check to see if we've already emitted this.  This is necessary
2746     // for a couple of reasons: first, decls can end up in the
2747     // deferred-decls queue multiple times, and second, decls can end
2748     // up with definitions in unusual ways (e.g. by an extern inline
2749     // function acquiring a strong function redefinition).  Just
2750     // ignore these cases.
2751     if (!GV->isDeclaration())
2752       continue;
2753 
2754     // If this is OpenMP, check if it is legal to emit this global normally.
2755     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2756       continue;
2757 
2758     // Otherwise, emit the definition and move on to the next one.
2759     EmitGlobalDefinition(D, GV);
2760 
2761     // If we found out that we need to emit more decls, do that recursively.
2762     // This has the advantage that the decls are emitted in a DFS and related
2763     // ones are close together, which is convenient for testing.
2764     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2765       EmitDeferred();
2766       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2767     }
2768   }
2769 }
2770 
2771 void CodeGenModule::EmitVTablesOpportunistically() {
2772   // Try to emit external vtables as available_externally if they have emitted
2773   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2774   // is not allowed to create new references to things that need to be emitted
2775   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2776 
2777   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2778          && "Only emit opportunistic vtables with optimizations");
2779 
2780   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2781     assert(getVTables().isVTableExternal(RD) &&
2782            "This queue should only contain external vtables");
2783     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2784       VTables.GenerateClassData(RD);
2785   }
2786   OpportunisticVTables.clear();
2787 }
2788 
2789 void CodeGenModule::EmitGlobalAnnotations() {
2790   if (Annotations.empty())
2791     return;
2792 
2793   // Create a new global variable for the ConstantStruct in the Module.
2794   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2795     Annotations[0]->getType(), Annotations.size()), Annotations);
2796   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2797                                       llvm::GlobalValue::AppendingLinkage,
2798                                       Array, "llvm.global.annotations");
2799   gv->setSection(AnnotationSection);
2800 }
2801 
2802 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2803   llvm::Constant *&AStr = AnnotationStrings[Str];
2804   if (AStr)
2805     return AStr;
2806 
2807   // Not found yet, create a new global.
2808   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2809   auto *gv =
2810       new llvm::GlobalVariable(getModule(), s->getType(), true,
2811                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2812   gv->setSection(AnnotationSection);
2813   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2814   AStr = gv;
2815   return gv;
2816 }
2817 
2818 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2819   SourceManager &SM = getContext().getSourceManager();
2820   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2821   if (PLoc.isValid())
2822     return EmitAnnotationString(PLoc.getFilename());
2823   return EmitAnnotationString(SM.getBufferName(Loc));
2824 }
2825 
2826 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2827   SourceManager &SM = getContext().getSourceManager();
2828   PresumedLoc PLoc = SM.getPresumedLoc(L);
2829   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2830     SM.getExpansionLineNumber(L);
2831   return llvm::ConstantInt::get(Int32Ty, LineNo);
2832 }
2833 
2834 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2835   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2836   if (Exprs.empty())
2837     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2838 
2839   llvm::FoldingSetNodeID ID;
2840   for (Expr *E : Exprs) {
2841     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2842   }
2843   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2844   if (Lookup)
2845     return Lookup;
2846 
2847   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2848   LLVMArgs.reserve(Exprs.size());
2849   ConstantEmitter ConstEmiter(*this);
2850   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2851     const auto *CE = cast<clang::ConstantExpr>(E);
2852     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2853                                     CE->getType());
2854   });
2855   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2856   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2857                                       llvm::GlobalValue::PrivateLinkage, Struct,
2858                                       ".args");
2859   GV->setSection(AnnotationSection);
2860   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2861   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2862 
2863   Lookup = Bitcasted;
2864   return Bitcasted;
2865 }
2866 
2867 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2868                                                 const AnnotateAttr *AA,
2869                                                 SourceLocation L) {
2870   // Get the globals for file name, annotation, and the line number.
2871   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2872                  *UnitGV = EmitAnnotationUnit(L),
2873                  *LineNoCst = EmitAnnotationLineNo(L),
2874                  *Args = EmitAnnotationArgs(AA);
2875 
2876   llvm::Constant *GVInGlobalsAS = GV;
2877   if (GV->getAddressSpace() !=
2878       getDataLayout().getDefaultGlobalsAddressSpace()) {
2879     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2880         GV, GV->getValueType()->getPointerTo(
2881                 getDataLayout().getDefaultGlobalsAddressSpace()));
2882   }
2883 
2884   // Create the ConstantStruct for the global annotation.
2885   llvm::Constant *Fields[] = {
2886       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2887       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2888       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2889       LineNoCst,
2890       Args,
2891   };
2892   return llvm::ConstantStruct::getAnon(Fields);
2893 }
2894 
2895 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2896                                          llvm::GlobalValue *GV) {
2897   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2898   // Get the struct elements for these annotations.
2899   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2900     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2901 }
2902 
2903 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2904                                        SourceLocation Loc) const {
2905   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2906   // NoSanitize by function name.
2907   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2908     return true;
2909   // NoSanitize by location. Check "mainfile" prefix.
2910   auto &SM = Context.getSourceManager();
2911   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
2912   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
2913     return true;
2914 
2915   // Check "src" prefix.
2916   if (Loc.isValid())
2917     return NoSanitizeL.containsLocation(Kind, Loc);
2918   // If location is unknown, this may be a compiler-generated function. Assume
2919   // it's located in the main file.
2920   return NoSanitizeL.containsFile(Kind, MainFile.getName());
2921 }
2922 
2923 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2924                                        llvm::GlobalVariable *GV,
2925                                        SourceLocation Loc, QualType Ty,
2926                                        StringRef Category) const {
2927   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2928   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2929     return true;
2930   auto &SM = Context.getSourceManager();
2931   if (NoSanitizeL.containsMainFile(
2932           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
2933     return true;
2934   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2935     return true;
2936 
2937   // Check global type.
2938   if (!Ty.isNull()) {
2939     // Drill down the array types: if global variable of a fixed type is
2940     // not sanitized, we also don't instrument arrays of them.
2941     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2942       Ty = AT->getElementType();
2943     Ty = Ty.getCanonicalType().getUnqualifiedType();
2944     // Only record types (classes, structs etc.) are ignored.
2945     if (Ty->isRecordType()) {
2946       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2947       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
2948         return true;
2949     }
2950   }
2951   return false;
2952 }
2953 
2954 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2955                                    StringRef Category) const {
2956   const auto &XRayFilter = getContext().getXRayFilter();
2957   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2958   auto Attr = ImbueAttr::NONE;
2959   if (Loc.isValid())
2960     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2961   if (Attr == ImbueAttr::NONE)
2962     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2963   switch (Attr) {
2964   case ImbueAttr::NONE:
2965     return false;
2966   case ImbueAttr::ALWAYS:
2967     Fn->addFnAttr("function-instrument", "xray-always");
2968     break;
2969   case ImbueAttr::ALWAYS_ARG1:
2970     Fn->addFnAttr("function-instrument", "xray-always");
2971     Fn->addFnAttr("xray-log-args", "1");
2972     break;
2973   case ImbueAttr::NEVER:
2974     Fn->addFnAttr("function-instrument", "xray-never");
2975     break;
2976   }
2977   return true;
2978 }
2979 
2980 ProfileList::ExclusionType
2981 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
2982                                               SourceLocation Loc) const {
2983   const auto &ProfileList = getContext().getProfileList();
2984   // If the profile list is empty, then instrument everything.
2985   if (ProfileList.isEmpty())
2986     return ProfileList::Allow;
2987   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2988   // First, check the function name.
2989   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
2990     return *V;
2991   // Next, check the source location.
2992   if (Loc.isValid())
2993     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
2994       return *V;
2995   // If location is unknown, this may be a compiler-generated function. Assume
2996   // it's located in the main file.
2997   auto &SM = Context.getSourceManager();
2998   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
2999     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3000       return *V;
3001   return ProfileList.getDefault(Kind);
3002 }
3003 
3004 ProfileList::ExclusionType
3005 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3006                                                  SourceLocation Loc) const {
3007   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3008   if (V != ProfileList::Allow)
3009     return V;
3010 
3011   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3012   if (NumGroups > 1) {
3013     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3014     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3015       return ProfileList::Skip;
3016   }
3017   return ProfileList::Allow;
3018 }
3019 
3020 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3021   // Never defer when EmitAllDecls is specified.
3022   if (LangOpts.EmitAllDecls)
3023     return true;
3024 
3025   if (CodeGenOpts.KeepStaticConsts) {
3026     const auto *VD = dyn_cast<VarDecl>(Global);
3027     if (VD && VD->getType().isConstQualified() &&
3028         VD->getStorageDuration() == SD_Static)
3029       return true;
3030   }
3031 
3032   return getContext().DeclMustBeEmitted(Global);
3033 }
3034 
3035 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3036   // In OpenMP 5.0 variables and function may be marked as
3037   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3038   // that they must be emitted on the host/device. To be sure we need to have
3039   // seen a declare target with an explicit mentioning of the function, we know
3040   // we have if the level of the declare target attribute is -1. Note that we
3041   // check somewhere else if we should emit this at all.
3042   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3043     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3044         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3045     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3046       return false;
3047   }
3048 
3049   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3050     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3051       // Implicit template instantiations may change linkage if they are later
3052       // explicitly instantiated, so they should not be emitted eagerly.
3053       return false;
3054   }
3055   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3056     if (Context.getInlineVariableDefinitionKind(VD) ==
3057         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3058       // A definition of an inline constexpr static data member may change
3059       // linkage later if it's redeclared outside the class.
3060       return false;
3061     if (CXX20ModuleInits && VD->getOwningModule() &&
3062         !VD->getOwningModule()->isModuleMapModule()) {
3063       // For CXX20, module-owned initializers need to be deferred, since it is
3064       // not known at this point if they will be run for the current module or
3065       // as part of the initializer for an imported one.
3066       return false;
3067     }
3068   }
3069   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3070   // codegen for global variables, because they may be marked as threadprivate.
3071   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3072       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3073       !isTypeConstant(Global->getType(), false) &&
3074       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3075     return false;
3076 
3077   return true;
3078 }
3079 
3080 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3081   StringRef Name = getMangledName(GD);
3082 
3083   // The UUID descriptor should be pointer aligned.
3084   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3085 
3086   // Look for an existing global.
3087   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3088     return ConstantAddress(GV, GV->getValueType(), Alignment);
3089 
3090   ConstantEmitter Emitter(*this);
3091   llvm::Constant *Init;
3092 
3093   APValue &V = GD->getAsAPValue();
3094   if (!V.isAbsent()) {
3095     // If possible, emit the APValue version of the initializer. In particular,
3096     // this gets the type of the constant right.
3097     Init = Emitter.emitForInitializer(
3098         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3099   } else {
3100     // As a fallback, directly construct the constant.
3101     // FIXME: This may get padding wrong under esoteric struct layout rules.
3102     // MSVC appears to create a complete type 'struct __s_GUID' that it
3103     // presumably uses to represent these constants.
3104     MSGuidDecl::Parts Parts = GD->getParts();
3105     llvm::Constant *Fields[4] = {
3106         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3107         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3108         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3109         llvm::ConstantDataArray::getRaw(
3110             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3111             Int8Ty)};
3112     Init = llvm::ConstantStruct::getAnon(Fields);
3113   }
3114 
3115   auto *GV = new llvm::GlobalVariable(
3116       getModule(), Init->getType(),
3117       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3118   if (supportsCOMDAT())
3119     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3120   setDSOLocal(GV);
3121 
3122   if (!V.isAbsent()) {
3123     Emitter.finalize(GV);
3124     return ConstantAddress(GV, GV->getValueType(), Alignment);
3125   }
3126 
3127   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3128   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3129       GV, Ty->getPointerTo(GV->getAddressSpace()));
3130   return ConstantAddress(Addr, Ty, Alignment);
3131 }
3132 
3133 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3134     const UnnamedGlobalConstantDecl *GCD) {
3135   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3136 
3137   llvm::GlobalVariable **Entry = nullptr;
3138   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3139   if (*Entry)
3140     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3141 
3142   ConstantEmitter Emitter(*this);
3143   llvm::Constant *Init;
3144 
3145   const APValue &V = GCD->getValue();
3146 
3147   assert(!V.isAbsent());
3148   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3149                                     GCD->getType());
3150 
3151   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3152                                       /*isConstant=*/true,
3153                                       llvm::GlobalValue::PrivateLinkage, Init,
3154                                       ".constant");
3155   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3156   GV->setAlignment(Alignment.getAsAlign());
3157 
3158   Emitter.finalize(GV);
3159 
3160   *Entry = GV;
3161   return ConstantAddress(GV, GV->getValueType(), Alignment);
3162 }
3163 
3164 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3165     const TemplateParamObjectDecl *TPO) {
3166   StringRef Name = getMangledName(TPO);
3167   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3168 
3169   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3170     return ConstantAddress(GV, GV->getValueType(), Alignment);
3171 
3172   ConstantEmitter Emitter(*this);
3173   llvm::Constant *Init = Emitter.emitForInitializer(
3174         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3175 
3176   if (!Init) {
3177     ErrorUnsupported(TPO, "template parameter object");
3178     return ConstantAddress::invalid();
3179   }
3180 
3181   auto *GV = new llvm::GlobalVariable(
3182       getModule(), Init->getType(),
3183       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3184   if (supportsCOMDAT())
3185     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3186   Emitter.finalize(GV);
3187 
3188   return ConstantAddress(GV, GV->getValueType(), Alignment);
3189 }
3190 
3191 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3192   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3193   assert(AA && "No alias?");
3194 
3195   CharUnits Alignment = getContext().getDeclAlign(VD);
3196   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3197 
3198   // See if there is already something with the target's name in the module.
3199   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3200   if (Entry) {
3201     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
3202     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3203     return ConstantAddress(Ptr, DeclTy, Alignment);
3204   }
3205 
3206   llvm::Constant *Aliasee;
3207   if (isa<llvm::FunctionType>(DeclTy))
3208     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3209                                       GlobalDecl(cast<FunctionDecl>(VD)),
3210                                       /*ForVTable=*/false);
3211   else
3212     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3213                                     nullptr);
3214 
3215   auto *F = cast<llvm::GlobalValue>(Aliasee);
3216   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3217   WeakRefReferences.insert(F);
3218 
3219   return ConstantAddress(Aliasee, DeclTy, Alignment);
3220 }
3221 
3222 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3223   const auto *Global = cast<ValueDecl>(GD.getDecl());
3224 
3225   // Weak references don't produce any output by themselves.
3226   if (Global->hasAttr<WeakRefAttr>())
3227     return;
3228 
3229   // If this is an alias definition (which otherwise looks like a declaration)
3230   // emit it now.
3231   if (Global->hasAttr<AliasAttr>())
3232     return EmitAliasDefinition(GD);
3233 
3234   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3235   if (Global->hasAttr<IFuncAttr>())
3236     return emitIFuncDefinition(GD);
3237 
3238   // If this is a cpu_dispatch multiversion function, emit the resolver.
3239   if (Global->hasAttr<CPUDispatchAttr>())
3240     return emitCPUDispatchDefinition(GD);
3241 
3242   // If this is CUDA, be selective about which declarations we emit.
3243   if (LangOpts.CUDA) {
3244     if (LangOpts.CUDAIsDevice) {
3245       if (!Global->hasAttr<CUDADeviceAttr>() &&
3246           !Global->hasAttr<CUDAGlobalAttr>() &&
3247           !Global->hasAttr<CUDAConstantAttr>() &&
3248           !Global->hasAttr<CUDASharedAttr>() &&
3249           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3250           !Global->getType()->isCUDADeviceBuiltinTextureType())
3251         return;
3252     } else {
3253       // We need to emit host-side 'shadows' for all global
3254       // device-side variables because the CUDA runtime needs their
3255       // size and host-side address in order to provide access to
3256       // their device-side incarnations.
3257 
3258       // So device-only functions are the only things we skip.
3259       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3260           Global->hasAttr<CUDADeviceAttr>())
3261         return;
3262 
3263       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3264              "Expected Variable or Function");
3265     }
3266   }
3267 
3268   if (LangOpts.OpenMP) {
3269     // If this is OpenMP, check if it is legal to emit this global normally.
3270     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3271       return;
3272     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3273       if (MustBeEmitted(Global))
3274         EmitOMPDeclareReduction(DRD);
3275       return;
3276     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3277       if (MustBeEmitted(Global))
3278         EmitOMPDeclareMapper(DMD);
3279       return;
3280     }
3281   }
3282 
3283   // Ignore declarations, they will be emitted on their first use.
3284   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3285     // Forward declarations are emitted lazily on first use.
3286     if (!FD->doesThisDeclarationHaveABody()) {
3287       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3288         return;
3289 
3290       StringRef MangledName = getMangledName(GD);
3291 
3292       // Compute the function info and LLVM type.
3293       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3294       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3295 
3296       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3297                               /*DontDefer=*/false);
3298       return;
3299     }
3300   } else {
3301     const auto *VD = cast<VarDecl>(Global);
3302     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3303     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3304         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3305       if (LangOpts.OpenMP) {
3306         // Emit declaration of the must-be-emitted declare target variable.
3307         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3308                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3309           bool UnifiedMemoryEnabled =
3310               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3311           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3312               !UnifiedMemoryEnabled) {
3313             (void)GetAddrOfGlobalVar(VD);
3314           } else {
3315             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3316                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3317                      UnifiedMemoryEnabled)) &&
3318                    "Link clause or to clause with unified memory expected.");
3319             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3320           }
3321 
3322           return;
3323         }
3324       }
3325       // If this declaration may have caused an inline variable definition to
3326       // change linkage, make sure that it's emitted.
3327       if (Context.getInlineVariableDefinitionKind(VD) ==
3328           ASTContext::InlineVariableDefinitionKind::Strong)
3329         GetAddrOfGlobalVar(VD);
3330       return;
3331     }
3332   }
3333 
3334   // Defer code generation to first use when possible, e.g. if this is an inline
3335   // function. If the global must always be emitted, do it eagerly if possible
3336   // to benefit from cache locality.
3337   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3338     // Emit the definition if it can't be deferred.
3339     EmitGlobalDefinition(GD);
3340     return;
3341   }
3342 
3343   // If we're deferring emission of a C++ variable with an
3344   // initializer, remember the order in which it appeared in the file.
3345   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3346       cast<VarDecl>(Global)->hasInit()) {
3347     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3348     CXXGlobalInits.push_back(nullptr);
3349   }
3350 
3351   StringRef MangledName = getMangledName(GD);
3352   if (GetGlobalValue(MangledName) != nullptr) {
3353     // The value has already been used and should therefore be emitted.
3354     addDeferredDeclToEmit(GD);
3355   } else if (MustBeEmitted(Global)) {
3356     // The value must be emitted, but cannot be emitted eagerly.
3357     assert(!MayBeEmittedEagerly(Global));
3358     addDeferredDeclToEmit(GD);
3359   } else {
3360     // Otherwise, remember that we saw a deferred decl with this name.  The
3361     // first use of the mangled name will cause it to move into
3362     // DeferredDeclsToEmit.
3363     DeferredDecls[MangledName] = GD;
3364   }
3365 }
3366 
3367 // Check if T is a class type with a destructor that's not dllimport.
3368 static bool HasNonDllImportDtor(QualType T) {
3369   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3370     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3371       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3372         return true;
3373 
3374   return false;
3375 }
3376 
3377 namespace {
3378   struct FunctionIsDirectlyRecursive
3379       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3380     const StringRef Name;
3381     const Builtin::Context &BI;
3382     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3383         : Name(N), BI(C) {}
3384 
3385     bool VisitCallExpr(const CallExpr *E) {
3386       const FunctionDecl *FD = E->getDirectCallee();
3387       if (!FD)
3388         return false;
3389       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3390       if (Attr && Name == Attr->getLabel())
3391         return true;
3392       unsigned BuiltinID = FD->getBuiltinID();
3393       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3394         return false;
3395       StringRef BuiltinName = BI.getName(BuiltinID);
3396       if (BuiltinName.startswith("__builtin_") &&
3397           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3398         return true;
3399       }
3400       return false;
3401     }
3402 
3403     bool VisitStmt(const Stmt *S) {
3404       for (const Stmt *Child : S->children())
3405         if (Child && this->Visit(Child))
3406           return true;
3407       return false;
3408     }
3409   };
3410 
3411   // Make sure we're not referencing non-imported vars or functions.
3412   struct DLLImportFunctionVisitor
3413       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3414     bool SafeToInline = true;
3415 
3416     bool shouldVisitImplicitCode() const { return true; }
3417 
3418     bool VisitVarDecl(VarDecl *VD) {
3419       if (VD->getTLSKind()) {
3420         // A thread-local variable cannot be imported.
3421         SafeToInline = false;
3422         return SafeToInline;
3423       }
3424 
3425       // A variable definition might imply a destructor call.
3426       if (VD->isThisDeclarationADefinition())
3427         SafeToInline = !HasNonDllImportDtor(VD->getType());
3428 
3429       return SafeToInline;
3430     }
3431 
3432     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3433       if (const auto *D = E->getTemporary()->getDestructor())
3434         SafeToInline = D->hasAttr<DLLImportAttr>();
3435       return SafeToInline;
3436     }
3437 
3438     bool VisitDeclRefExpr(DeclRefExpr *E) {
3439       ValueDecl *VD = E->getDecl();
3440       if (isa<FunctionDecl>(VD))
3441         SafeToInline = VD->hasAttr<DLLImportAttr>();
3442       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3443         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3444       return SafeToInline;
3445     }
3446 
3447     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3448       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3449       return SafeToInline;
3450     }
3451 
3452     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3453       CXXMethodDecl *M = E->getMethodDecl();
3454       if (!M) {
3455         // Call through a pointer to member function. This is safe to inline.
3456         SafeToInline = true;
3457       } else {
3458         SafeToInline = M->hasAttr<DLLImportAttr>();
3459       }
3460       return SafeToInline;
3461     }
3462 
3463     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3464       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3465       return SafeToInline;
3466     }
3467 
3468     bool VisitCXXNewExpr(CXXNewExpr *E) {
3469       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3470       return SafeToInline;
3471     }
3472   };
3473 }
3474 
3475 // isTriviallyRecursive - Check if this function calls another
3476 // decl that, because of the asm attribute or the other decl being a builtin,
3477 // ends up pointing to itself.
3478 bool
3479 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3480   StringRef Name;
3481   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3482     // asm labels are a special kind of mangling we have to support.
3483     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3484     if (!Attr)
3485       return false;
3486     Name = Attr->getLabel();
3487   } else {
3488     Name = FD->getName();
3489   }
3490 
3491   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3492   const Stmt *Body = FD->getBody();
3493   return Body ? Walker.Visit(Body) : false;
3494 }
3495 
3496 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3497   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3498     return true;
3499   const auto *F = cast<FunctionDecl>(GD.getDecl());
3500   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3501     return false;
3502 
3503   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3504     // Check whether it would be safe to inline this dllimport function.
3505     DLLImportFunctionVisitor Visitor;
3506     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3507     if (!Visitor.SafeToInline)
3508       return false;
3509 
3510     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3511       // Implicit destructor invocations aren't captured in the AST, so the
3512       // check above can't see them. Check for them manually here.
3513       for (const Decl *Member : Dtor->getParent()->decls())
3514         if (isa<FieldDecl>(Member))
3515           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3516             return false;
3517       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3518         if (HasNonDllImportDtor(B.getType()))
3519           return false;
3520     }
3521   }
3522 
3523   // Inline builtins declaration must be emitted. They often are fortified
3524   // functions.
3525   if (F->isInlineBuiltinDeclaration())
3526     return true;
3527 
3528   // PR9614. Avoid cases where the source code is lying to us. An available
3529   // externally function should have an equivalent function somewhere else,
3530   // but a function that calls itself through asm label/`__builtin_` trickery is
3531   // clearly not equivalent to the real implementation.
3532   // This happens in glibc's btowc and in some configure checks.
3533   return !isTriviallyRecursive(F);
3534 }
3535 
3536 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3537   return CodeGenOpts.OptimizationLevel > 0;
3538 }
3539 
3540 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3541                                                        llvm::GlobalValue *GV) {
3542   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3543 
3544   if (FD->isCPUSpecificMultiVersion()) {
3545     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3546     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3547       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3548   } else if (FD->isTargetClonesMultiVersion()) {
3549     auto *Clone = FD->getAttr<TargetClonesAttr>();
3550     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3551       if (Clone->isFirstOfVersion(I))
3552         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3553     // Ensure that the resolver function is also emitted.
3554     GetOrCreateMultiVersionResolver(GD);
3555   } else
3556     EmitGlobalFunctionDefinition(GD, GV);
3557 }
3558 
3559 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3560   const auto *D = cast<ValueDecl>(GD.getDecl());
3561 
3562   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3563                                  Context.getSourceManager(),
3564                                  "Generating code for declaration");
3565 
3566   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3567     // At -O0, don't generate IR for functions with available_externally
3568     // linkage.
3569     if (!shouldEmitFunction(GD))
3570       return;
3571 
3572     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3573       std::string Name;
3574       llvm::raw_string_ostream OS(Name);
3575       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3576                                /*Qualified=*/true);
3577       return Name;
3578     });
3579 
3580     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3581       // Make sure to emit the definition(s) before we emit the thunks.
3582       // This is necessary for the generation of certain thunks.
3583       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3584         ABI->emitCXXStructor(GD);
3585       else if (FD->isMultiVersion())
3586         EmitMultiVersionFunctionDefinition(GD, GV);
3587       else
3588         EmitGlobalFunctionDefinition(GD, GV);
3589 
3590       if (Method->isVirtual())
3591         getVTables().EmitThunks(GD);
3592 
3593       return;
3594     }
3595 
3596     if (FD->isMultiVersion())
3597       return EmitMultiVersionFunctionDefinition(GD, GV);
3598     return EmitGlobalFunctionDefinition(GD, GV);
3599   }
3600 
3601   if (const auto *VD = dyn_cast<VarDecl>(D))
3602     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3603 
3604   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3605 }
3606 
3607 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3608                                                       llvm::Function *NewFn);
3609 
3610 static unsigned
3611 TargetMVPriority(const TargetInfo &TI,
3612                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3613   unsigned Priority = 0;
3614   for (StringRef Feat : RO.Conditions.Features)
3615     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3616 
3617   if (!RO.Conditions.Architecture.empty())
3618     Priority = std::max(
3619         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3620   return Priority;
3621 }
3622 
3623 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3624 // TU can forward declare the function without causing problems.  Particularly
3625 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3626 // work with internal linkage functions, so that the same function name can be
3627 // used with internal linkage in multiple TUs.
3628 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3629                                                        GlobalDecl GD) {
3630   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3631   if (FD->getFormalLinkage() == InternalLinkage)
3632     return llvm::GlobalValue::InternalLinkage;
3633   return llvm::GlobalValue::WeakODRLinkage;
3634 }
3635 
3636 void CodeGenModule::emitMultiVersionFunctions() {
3637   std::vector<GlobalDecl> MVFuncsToEmit;
3638   MultiVersionFuncs.swap(MVFuncsToEmit);
3639   for (GlobalDecl GD : MVFuncsToEmit) {
3640     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3641     assert(FD && "Expected a FunctionDecl");
3642 
3643     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3644     if (FD->isTargetMultiVersion()) {
3645       getContext().forEachMultiversionedFunctionVersion(
3646           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3647             GlobalDecl CurGD{
3648                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3649             StringRef MangledName = getMangledName(CurGD);
3650             llvm::Constant *Func = GetGlobalValue(MangledName);
3651             if (!Func) {
3652               if (CurFD->isDefined()) {
3653                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3654                 Func = GetGlobalValue(MangledName);
3655               } else {
3656                 const CGFunctionInfo &FI =
3657                     getTypes().arrangeGlobalDeclaration(GD);
3658                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3659                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3660                                          /*DontDefer=*/false, ForDefinition);
3661               }
3662               assert(Func && "This should have just been created");
3663             }
3664 
3665             const auto *TA = CurFD->getAttr<TargetAttr>();
3666             llvm::SmallVector<StringRef, 8> Feats;
3667             TA->getAddedFeatures(Feats);
3668 
3669             Options.emplace_back(cast<llvm::Function>(Func),
3670                                  TA->getArchitecture(), Feats);
3671           });
3672     } else if (FD->isTargetClonesMultiVersion()) {
3673       const auto *TC = FD->getAttr<TargetClonesAttr>();
3674       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3675            ++VersionIndex) {
3676         if (!TC->isFirstOfVersion(VersionIndex))
3677           continue;
3678         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3679                          VersionIndex};
3680         StringRef Version = TC->getFeatureStr(VersionIndex);
3681         StringRef MangledName = getMangledName(CurGD);
3682         llvm::Constant *Func = GetGlobalValue(MangledName);
3683         if (!Func) {
3684           if (FD->isDefined()) {
3685             EmitGlobalFunctionDefinition(CurGD, nullptr);
3686             Func = GetGlobalValue(MangledName);
3687           } else {
3688             const CGFunctionInfo &FI =
3689                 getTypes().arrangeGlobalDeclaration(CurGD);
3690             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3691             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3692                                      /*DontDefer=*/false, ForDefinition);
3693           }
3694           assert(Func && "This should have just been created");
3695         }
3696 
3697         StringRef Architecture;
3698         llvm::SmallVector<StringRef, 1> Feature;
3699 
3700         if (Version.startswith("arch="))
3701           Architecture = Version.drop_front(sizeof("arch=") - 1);
3702         else if (Version != "default")
3703           Feature.push_back(Version);
3704 
3705         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3706       }
3707     } else {
3708       assert(0 && "Expected a target or target_clones multiversion function");
3709       continue;
3710     }
3711 
3712     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3713     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3714       ResolverConstant = IFunc->getResolver();
3715     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3716 
3717     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3718 
3719     if (supportsCOMDAT())
3720       ResolverFunc->setComdat(
3721           getModule().getOrInsertComdat(ResolverFunc->getName()));
3722 
3723     const TargetInfo &TI = getTarget();
3724     llvm::stable_sort(
3725         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3726                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3727           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3728         });
3729     CodeGenFunction CGF(*this);
3730     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3731   }
3732 
3733   // Ensure that any additions to the deferred decls list caused by emitting a
3734   // variant are emitted.  This can happen when the variant itself is inline and
3735   // calls a function without linkage.
3736   if (!MVFuncsToEmit.empty())
3737     EmitDeferred();
3738 
3739   // Ensure that any additions to the multiversion funcs list from either the
3740   // deferred decls or the multiversion functions themselves are emitted.
3741   if (!MultiVersionFuncs.empty())
3742     emitMultiVersionFunctions();
3743 }
3744 
3745 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3746   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3747   assert(FD && "Not a FunctionDecl?");
3748   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3749   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3750   assert(DD && "Not a cpu_dispatch Function?");
3751 
3752   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3753   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3754 
3755   StringRef ResolverName = getMangledName(GD);
3756   UpdateMultiVersionNames(GD, FD, ResolverName);
3757 
3758   llvm::Type *ResolverType;
3759   GlobalDecl ResolverGD;
3760   if (getTarget().supportsIFunc()) {
3761     ResolverType = llvm::FunctionType::get(
3762         llvm::PointerType::get(DeclTy,
3763                                Context.getTargetAddressSpace(FD->getType())),
3764         false);
3765   }
3766   else {
3767     ResolverType = DeclTy;
3768     ResolverGD = GD;
3769   }
3770 
3771   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3772       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3773   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3774   if (supportsCOMDAT())
3775     ResolverFunc->setComdat(
3776         getModule().getOrInsertComdat(ResolverFunc->getName()));
3777 
3778   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3779   const TargetInfo &Target = getTarget();
3780   unsigned Index = 0;
3781   for (const IdentifierInfo *II : DD->cpus()) {
3782     // Get the name of the target function so we can look it up/create it.
3783     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3784                               getCPUSpecificMangling(*this, II->getName());
3785 
3786     llvm::Constant *Func = GetGlobalValue(MangledName);
3787 
3788     if (!Func) {
3789       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3790       if (ExistingDecl.getDecl() &&
3791           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3792         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3793         Func = GetGlobalValue(MangledName);
3794       } else {
3795         if (!ExistingDecl.getDecl())
3796           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3797 
3798       Func = GetOrCreateLLVMFunction(
3799           MangledName, DeclTy, ExistingDecl,
3800           /*ForVTable=*/false, /*DontDefer=*/true,
3801           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3802       }
3803     }
3804 
3805     llvm::SmallVector<StringRef, 32> Features;
3806     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3807     llvm::transform(Features, Features.begin(),
3808                     [](StringRef Str) { return Str.substr(1); });
3809     llvm::erase_if(Features, [&Target](StringRef Feat) {
3810       return !Target.validateCpuSupports(Feat);
3811     });
3812     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3813     ++Index;
3814   }
3815 
3816   llvm::stable_sort(
3817       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3818                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3819         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3820                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3821       });
3822 
3823   // If the list contains multiple 'default' versions, such as when it contains
3824   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3825   // always run on at least a 'pentium'). We do this by deleting the 'least
3826   // advanced' (read, lowest mangling letter).
3827   while (Options.size() > 1 &&
3828          llvm::X86::getCpuSupportsMask(
3829              (Options.end() - 2)->Conditions.Features) == 0) {
3830     StringRef LHSName = (Options.end() - 2)->Function->getName();
3831     StringRef RHSName = (Options.end() - 1)->Function->getName();
3832     if (LHSName.compare(RHSName) < 0)
3833       Options.erase(Options.end() - 2);
3834     else
3835       Options.erase(Options.end() - 1);
3836   }
3837 
3838   CodeGenFunction CGF(*this);
3839   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3840 
3841   if (getTarget().supportsIFunc()) {
3842     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3843     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3844 
3845     // Fix up function declarations that were created for cpu_specific before
3846     // cpu_dispatch was known
3847     if (!isa<llvm::GlobalIFunc>(IFunc)) {
3848       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3849       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3850                                            &getModule());
3851       GI->takeName(IFunc);
3852       IFunc->replaceAllUsesWith(GI);
3853       IFunc->eraseFromParent();
3854       IFunc = GI;
3855     }
3856 
3857     std::string AliasName = getMangledNameImpl(
3858         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3859     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3860     if (!AliasFunc) {
3861       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3862                                            &getModule());
3863       SetCommonAttributes(GD, GA);
3864     }
3865   }
3866 }
3867 
3868 /// If a dispatcher for the specified mangled name is not in the module, create
3869 /// and return an llvm Function with the specified type.
3870 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3871   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3872   assert(FD && "Not a FunctionDecl?");
3873 
3874   std::string MangledName =
3875       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3876 
3877   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3878   // a separate resolver).
3879   std::string ResolverName = MangledName;
3880   if (getTarget().supportsIFunc())
3881     ResolverName += ".ifunc";
3882   else if (FD->isTargetMultiVersion())
3883     ResolverName += ".resolver";
3884 
3885   // If the resolver has already been created, just return it.
3886   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3887     return ResolverGV;
3888 
3889   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3890   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3891 
3892   // The resolver needs to be created. For target and target_clones, defer
3893   // creation until the end of the TU.
3894   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3895     MultiVersionFuncs.push_back(GD);
3896 
3897   // For cpu_specific, don't create an ifunc yet because we don't know if the
3898   // cpu_dispatch will be emitted in this translation unit.
3899   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3900     llvm::Type *ResolverType = llvm::FunctionType::get(
3901         llvm::PointerType::get(
3902             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3903         false);
3904     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3905         MangledName + ".resolver", ResolverType, GlobalDecl{},
3906         /*ForVTable=*/false);
3907     llvm::GlobalIFunc *GIF =
3908         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3909                                   "", Resolver, &getModule());
3910     GIF->setName(ResolverName);
3911     SetCommonAttributes(FD, GIF);
3912 
3913     return GIF;
3914   }
3915 
3916   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3917       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3918   assert(isa<llvm::GlobalValue>(Resolver) &&
3919          "Resolver should be created for the first time");
3920   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3921   return Resolver;
3922 }
3923 
3924 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3925 /// module, create and return an llvm Function with the specified type. If there
3926 /// is something in the module with the specified name, return it potentially
3927 /// bitcasted to the right type.
3928 ///
3929 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3930 /// to set the attributes on the function when it is first created.
3931 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3932     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3933     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3934     ForDefinition_t IsForDefinition) {
3935   const Decl *D = GD.getDecl();
3936 
3937   // Any attempts to use a MultiVersion function should result in retrieving
3938   // the iFunc instead. Name Mangling will handle the rest of the changes.
3939   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3940     // For the device mark the function as one that should be emitted.
3941     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3942         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3943         !DontDefer && !IsForDefinition) {
3944       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3945         GlobalDecl GDDef;
3946         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3947           GDDef = GlobalDecl(CD, GD.getCtorType());
3948         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3949           GDDef = GlobalDecl(DD, GD.getDtorType());
3950         else
3951           GDDef = GlobalDecl(FDDef);
3952         EmitGlobal(GDDef);
3953       }
3954     }
3955 
3956     if (FD->isMultiVersion()) {
3957       UpdateMultiVersionNames(GD, FD, MangledName);
3958       if (!IsForDefinition)
3959         return GetOrCreateMultiVersionResolver(GD);
3960     }
3961   }
3962 
3963   // Lookup the entry, lazily creating it if necessary.
3964   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3965   if (Entry) {
3966     if (WeakRefReferences.erase(Entry)) {
3967       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3968       if (FD && !FD->hasAttr<WeakAttr>())
3969         Entry->setLinkage(llvm::Function::ExternalLinkage);
3970     }
3971 
3972     // Handle dropped DLL attributes.
3973     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
3974         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
3975       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3976       setDSOLocal(Entry);
3977     }
3978 
3979     // If there are two attempts to define the same mangled name, issue an
3980     // error.
3981     if (IsForDefinition && !Entry->isDeclaration()) {
3982       GlobalDecl OtherGD;
3983       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3984       // to make sure that we issue an error only once.
3985       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3986           (GD.getCanonicalDecl().getDecl() !=
3987            OtherGD.getCanonicalDecl().getDecl()) &&
3988           DiagnosedConflictingDefinitions.insert(GD).second) {
3989         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3990             << MangledName;
3991         getDiags().Report(OtherGD.getDecl()->getLocation(),
3992                           diag::note_previous_definition);
3993       }
3994     }
3995 
3996     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3997         (Entry->getValueType() == Ty)) {
3998       return Entry;
3999     }
4000 
4001     // Make sure the result is of the correct type.
4002     // (If function is requested for a definition, we always need to create a new
4003     // function, not just return a bitcast.)
4004     if (!IsForDefinition)
4005       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
4006   }
4007 
4008   // This function doesn't have a complete type (for example, the return
4009   // type is an incomplete struct). Use a fake type instead, and make
4010   // sure not to try to set attributes.
4011   bool IsIncompleteFunction = false;
4012 
4013   llvm::FunctionType *FTy;
4014   if (isa<llvm::FunctionType>(Ty)) {
4015     FTy = cast<llvm::FunctionType>(Ty);
4016   } else {
4017     FTy = llvm::FunctionType::get(VoidTy, false);
4018     IsIncompleteFunction = true;
4019   }
4020 
4021   llvm::Function *F =
4022       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4023                              Entry ? StringRef() : MangledName, &getModule());
4024 
4025   // If we already created a function with the same mangled name (but different
4026   // type) before, take its name and add it to the list of functions to be
4027   // replaced with F at the end of CodeGen.
4028   //
4029   // This happens if there is a prototype for a function (e.g. "int f()") and
4030   // then a definition of a different type (e.g. "int f(int x)").
4031   if (Entry) {
4032     F->takeName(Entry);
4033 
4034     // This might be an implementation of a function without a prototype, in
4035     // which case, try to do special replacement of calls which match the new
4036     // prototype.  The really key thing here is that we also potentially drop
4037     // arguments from the call site so as to make a direct call, which makes the
4038     // inliner happier and suppresses a number of optimizer warnings (!) about
4039     // dropping arguments.
4040     if (!Entry->use_empty()) {
4041       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4042       Entry->removeDeadConstantUsers();
4043     }
4044 
4045     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4046         F, Entry->getValueType()->getPointerTo());
4047     addGlobalValReplacement(Entry, BC);
4048   }
4049 
4050   assert(F->getName() == MangledName && "name was uniqued!");
4051   if (D)
4052     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4053   if (ExtraAttrs.hasFnAttrs()) {
4054     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4055     F->addFnAttrs(B);
4056   }
4057 
4058   if (!DontDefer) {
4059     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4060     // each other bottoming out with the base dtor.  Therefore we emit non-base
4061     // dtors on usage, even if there is no dtor definition in the TU.
4062     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4063         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4064                                            GD.getDtorType()))
4065       addDeferredDeclToEmit(GD);
4066 
4067     // This is the first use or definition of a mangled name.  If there is a
4068     // deferred decl with this name, remember that we need to emit it at the end
4069     // of the file.
4070     auto DDI = DeferredDecls.find(MangledName);
4071     if (DDI != DeferredDecls.end()) {
4072       // Move the potentially referenced deferred decl to the
4073       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4074       // don't need it anymore).
4075       addDeferredDeclToEmit(DDI->second);
4076       DeferredDecls.erase(DDI);
4077 
4078       // Otherwise, there are cases we have to worry about where we're
4079       // using a declaration for which we must emit a definition but where
4080       // we might not find a top-level definition:
4081       //   - member functions defined inline in their classes
4082       //   - friend functions defined inline in some class
4083       //   - special member functions with implicit definitions
4084       // If we ever change our AST traversal to walk into class methods,
4085       // this will be unnecessary.
4086       //
4087       // We also don't emit a definition for a function if it's going to be an
4088       // entry in a vtable, unless it's already marked as used.
4089     } else if (getLangOpts().CPlusPlus && D) {
4090       // Look for a declaration that's lexically in a record.
4091       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4092            FD = FD->getPreviousDecl()) {
4093         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4094           if (FD->doesThisDeclarationHaveABody()) {
4095             addDeferredDeclToEmit(GD.getWithDecl(FD));
4096             break;
4097           }
4098         }
4099       }
4100     }
4101   }
4102 
4103   // Make sure the result is of the requested type.
4104   if (!IsIncompleteFunction) {
4105     assert(F->getFunctionType() == Ty);
4106     return F;
4107   }
4108 
4109   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
4110   return llvm::ConstantExpr::getBitCast(F, PTy);
4111 }
4112 
4113 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4114 /// non-null, then this function will use the specified type if it has to
4115 /// create it (this occurs when we see a definition of the function).
4116 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4117                                                  llvm::Type *Ty,
4118                                                  bool ForVTable,
4119                                                  bool DontDefer,
4120                                               ForDefinition_t IsForDefinition) {
4121   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
4122          "consteval function should never be emitted");
4123   // If there was no specific requested type, just convert it now.
4124   if (!Ty) {
4125     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4126     Ty = getTypes().ConvertType(FD->getType());
4127   }
4128 
4129   // Devirtualized destructor calls may come through here instead of via
4130   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4131   // of the complete destructor when necessary.
4132   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4133     if (getTarget().getCXXABI().isMicrosoft() &&
4134         GD.getDtorType() == Dtor_Complete &&
4135         DD->getParent()->getNumVBases() == 0)
4136       GD = GlobalDecl(DD, Dtor_Base);
4137   }
4138 
4139   StringRef MangledName = getMangledName(GD);
4140   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4141                                     /*IsThunk=*/false, llvm::AttributeList(),
4142                                     IsForDefinition);
4143   // Returns kernel handle for HIP kernel stub function.
4144   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4145       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4146     auto *Handle = getCUDARuntime().getKernelHandle(
4147         cast<llvm::Function>(F->stripPointerCasts()), GD);
4148     if (IsForDefinition)
4149       return F;
4150     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4151   }
4152   return F;
4153 }
4154 
4155 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4156   llvm::GlobalValue *F =
4157       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4158 
4159   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
4160                                         llvm::Type::getInt8PtrTy(VMContext));
4161 }
4162 
4163 static const FunctionDecl *
4164 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4165   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4166   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4167 
4168   IdentifierInfo &CII = C.Idents.get(Name);
4169   for (const auto *Result : DC->lookup(&CII))
4170     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4171       return FD;
4172 
4173   if (!C.getLangOpts().CPlusPlus)
4174     return nullptr;
4175 
4176   // Demangle the premangled name from getTerminateFn()
4177   IdentifierInfo &CXXII =
4178       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4179           ? C.Idents.get("terminate")
4180           : C.Idents.get(Name);
4181 
4182   for (const auto &N : {"__cxxabiv1", "std"}) {
4183     IdentifierInfo &NS = C.Idents.get(N);
4184     for (const auto *Result : DC->lookup(&NS)) {
4185       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4186       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4187         for (const auto *Result : LSD->lookup(&NS))
4188           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4189             break;
4190 
4191       if (ND)
4192         for (const auto *Result : ND->lookup(&CXXII))
4193           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4194             return FD;
4195     }
4196   }
4197 
4198   return nullptr;
4199 }
4200 
4201 /// CreateRuntimeFunction - Create a new runtime function with the specified
4202 /// type and name.
4203 llvm::FunctionCallee
4204 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4205                                      llvm::AttributeList ExtraAttrs, bool Local,
4206                                      bool AssumeConvergent) {
4207   if (AssumeConvergent) {
4208     ExtraAttrs =
4209         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4210   }
4211 
4212   llvm::Constant *C =
4213       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4214                               /*DontDefer=*/false, /*IsThunk=*/false,
4215                               ExtraAttrs);
4216 
4217   if (auto *F = dyn_cast<llvm::Function>(C)) {
4218     if (F->empty()) {
4219       F->setCallingConv(getRuntimeCC());
4220 
4221       // In Windows Itanium environments, try to mark runtime functions
4222       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4223       // will link their standard library statically or dynamically. Marking
4224       // functions imported when they are not imported can cause linker errors
4225       // and warnings.
4226       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4227           !getCodeGenOpts().LTOVisibilityPublicStd) {
4228         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4229         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4230           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4231           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4232         }
4233       }
4234       setDSOLocal(F);
4235     }
4236   }
4237 
4238   return {FTy, C};
4239 }
4240 
4241 /// isTypeConstant - Determine whether an object of this type can be emitted
4242 /// as a constant.
4243 ///
4244 /// If ExcludeCtor is true, the duration when the object's constructor runs
4245 /// will not be considered. The caller will need to verify that the object is
4246 /// not written to during its construction.
4247 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4248   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4249     return false;
4250 
4251   if (Context.getLangOpts().CPlusPlus) {
4252     if (const CXXRecordDecl *Record
4253           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4254       return ExcludeCtor && !Record->hasMutableFields() &&
4255              Record->hasTrivialDestructor();
4256   }
4257 
4258   return true;
4259 }
4260 
4261 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4262 /// create and return an llvm GlobalVariable with the specified type and address
4263 /// space. If there is something in the module with the specified name, return
4264 /// it potentially bitcasted to the right type.
4265 ///
4266 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4267 /// to set the attributes on the global when it is first created.
4268 ///
4269 /// If IsForDefinition is true, it is guaranteed that an actual global with
4270 /// type Ty will be returned, not conversion of a variable with the same
4271 /// mangled name but some other type.
4272 llvm::Constant *
4273 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4274                                      LangAS AddrSpace, const VarDecl *D,
4275                                      ForDefinition_t IsForDefinition) {
4276   // Lookup the entry, lazily creating it if necessary.
4277   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4278   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4279   if (Entry) {
4280     if (WeakRefReferences.erase(Entry)) {
4281       if (D && !D->hasAttr<WeakAttr>())
4282         Entry->setLinkage(llvm::Function::ExternalLinkage);
4283     }
4284 
4285     // Handle dropped DLL attributes.
4286     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4287         !shouldMapVisibilityToDLLExport(D))
4288       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4289 
4290     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4291       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4292 
4293     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4294       return Entry;
4295 
4296     // If there are two attempts to define the same mangled name, issue an
4297     // error.
4298     if (IsForDefinition && !Entry->isDeclaration()) {
4299       GlobalDecl OtherGD;
4300       const VarDecl *OtherD;
4301 
4302       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4303       // to make sure that we issue an error only once.
4304       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4305           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4306           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4307           OtherD->hasInit() &&
4308           DiagnosedConflictingDefinitions.insert(D).second) {
4309         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4310             << MangledName;
4311         getDiags().Report(OtherGD.getDecl()->getLocation(),
4312                           diag::note_previous_definition);
4313       }
4314     }
4315 
4316     // Make sure the result is of the correct type.
4317     if (Entry->getType()->getAddressSpace() != TargetAS) {
4318       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4319                                                   Ty->getPointerTo(TargetAS));
4320     }
4321 
4322     // (If global is requested for a definition, we always need to create a new
4323     // global, not just return a bitcast.)
4324     if (!IsForDefinition)
4325       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4326   }
4327 
4328   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4329 
4330   auto *GV = new llvm::GlobalVariable(
4331       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4332       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4333       getContext().getTargetAddressSpace(DAddrSpace));
4334 
4335   // If we already created a global with the same mangled name (but different
4336   // type) before, take its name and remove it from its parent.
4337   if (Entry) {
4338     GV->takeName(Entry);
4339 
4340     if (!Entry->use_empty()) {
4341       llvm::Constant *NewPtrForOldDecl =
4342           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4343       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4344     }
4345 
4346     Entry->eraseFromParent();
4347   }
4348 
4349   // This is the first use or definition of a mangled name.  If there is a
4350   // deferred decl with this name, remember that we need to emit it at the end
4351   // of the file.
4352   auto DDI = DeferredDecls.find(MangledName);
4353   if (DDI != DeferredDecls.end()) {
4354     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4355     // list, and remove it from DeferredDecls (since we don't need it anymore).
4356     addDeferredDeclToEmit(DDI->second);
4357     DeferredDecls.erase(DDI);
4358   }
4359 
4360   // Handle things which are present even on external declarations.
4361   if (D) {
4362     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4363       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4364 
4365     // FIXME: This code is overly simple and should be merged with other global
4366     // handling.
4367     GV->setConstant(isTypeConstant(D->getType(), false));
4368 
4369     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4370 
4371     setLinkageForGV(GV, D);
4372 
4373     if (D->getTLSKind()) {
4374       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4375         CXXThreadLocals.push_back(D);
4376       setTLSMode(GV, *D);
4377     }
4378 
4379     setGVProperties(GV, D);
4380 
4381     // If required by the ABI, treat declarations of static data members with
4382     // inline initializers as definitions.
4383     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4384       EmitGlobalVarDefinition(D);
4385     }
4386 
4387     // Emit section information for extern variables.
4388     if (D->hasExternalStorage()) {
4389       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4390         GV->setSection(SA->getName());
4391     }
4392 
4393     // Handle XCore specific ABI requirements.
4394     if (getTriple().getArch() == llvm::Triple::xcore &&
4395         D->getLanguageLinkage() == CLanguageLinkage &&
4396         D->getType().isConstant(Context) &&
4397         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4398       GV->setSection(".cp.rodata");
4399 
4400     // Check if we a have a const declaration with an initializer, we may be
4401     // able to emit it as available_externally to expose it's value to the
4402     // optimizer.
4403     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4404         D->getType().isConstQualified() && !GV->hasInitializer() &&
4405         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4406       const auto *Record =
4407           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4408       bool HasMutableFields = Record && Record->hasMutableFields();
4409       if (!HasMutableFields) {
4410         const VarDecl *InitDecl;
4411         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4412         if (InitExpr) {
4413           ConstantEmitter emitter(*this);
4414           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4415           if (Init) {
4416             auto *InitType = Init->getType();
4417             if (GV->getValueType() != InitType) {
4418               // The type of the initializer does not match the definition.
4419               // This happens when an initializer has a different type from
4420               // the type of the global (because of padding at the end of a
4421               // structure for instance).
4422               GV->setName(StringRef());
4423               // Make a new global with the correct type, this is now guaranteed
4424               // to work.
4425               auto *NewGV = cast<llvm::GlobalVariable>(
4426                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4427                       ->stripPointerCasts());
4428 
4429               // Erase the old global, since it is no longer used.
4430               GV->eraseFromParent();
4431               GV = NewGV;
4432             } else {
4433               GV->setInitializer(Init);
4434               GV->setConstant(true);
4435               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4436             }
4437             emitter.finalize(GV);
4438           }
4439         }
4440       }
4441     }
4442   }
4443 
4444   if (GV->isDeclaration()) {
4445     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4446     // External HIP managed variables needed to be recorded for transformation
4447     // in both device and host compilations.
4448     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4449         D->hasExternalStorage())
4450       getCUDARuntime().handleVarRegistration(D, *GV);
4451   }
4452 
4453   if (D)
4454     SanitizerMD->reportGlobal(GV, *D);
4455 
4456   LangAS ExpectedAS =
4457       D ? D->getType().getAddressSpace()
4458         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4459   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4460   if (DAddrSpace != ExpectedAS) {
4461     return getTargetCodeGenInfo().performAddrSpaceCast(
4462         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4463   }
4464 
4465   return GV;
4466 }
4467 
4468 llvm::Constant *
4469 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4470   const Decl *D = GD.getDecl();
4471 
4472   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4473     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4474                                 /*DontDefer=*/false, IsForDefinition);
4475 
4476   if (isa<CXXMethodDecl>(D)) {
4477     auto FInfo =
4478         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4479     auto Ty = getTypes().GetFunctionType(*FInfo);
4480     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4481                              IsForDefinition);
4482   }
4483 
4484   if (isa<FunctionDecl>(D)) {
4485     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4486     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4487     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4488                              IsForDefinition);
4489   }
4490 
4491   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4492 }
4493 
4494 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4495     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4496     unsigned Alignment) {
4497   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4498   llvm::GlobalVariable *OldGV = nullptr;
4499 
4500   if (GV) {
4501     // Check if the variable has the right type.
4502     if (GV->getValueType() == Ty)
4503       return GV;
4504 
4505     // Because C++ name mangling, the only way we can end up with an already
4506     // existing global with the same name is if it has been declared extern "C".
4507     assert(GV->isDeclaration() && "Declaration has wrong type!");
4508     OldGV = GV;
4509   }
4510 
4511   // Create a new variable.
4512   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4513                                 Linkage, nullptr, Name);
4514 
4515   if (OldGV) {
4516     // Replace occurrences of the old variable if needed.
4517     GV->takeName(OldGV);
4518 
4519     if (!OldGV->use_empty()) {
4520       llvm::Constant *NewPtrForOldDecl =
4521       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4522       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4523     }
4524 
4525     OldGV->eraseFromParent();
4526   }
4527 
4528   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4529       !GV->hasAvailableExternallyLinkage())
4530     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4531 
4532   GV->setAlignment(llvm::MaybeAlign(Alignment));
4533 
4534   return GV;
4535 }
4536 
4537 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4538 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4539 /// then it will be created with the specified type instead of whatever the
4540 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4541 /// that an actual global with type Ty will be returned, not conversion of a
4542 /// variable with the same mangled name but some other type.
4543 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4544                                                   llvm::Type *Ty,
4545                                            ForDefinition_t IsForDefinition) {
4546   assert(D->hasGlobalStorage() && "Not a global variable");
4547   QualType ASTTy = D->getType();
4548   if (!Ty)
4549     Ty = getTypes().ConvertTypeForMem(ASTTy);
4550 
4551   StringRef MangledName = getMangledName(D);
4552   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4553                                IsForDefinition);
4554 }
4555 
4556 /// CreateRuntimeVariable - Create a new runtime global variable with the
4557 /// specified type and name.
4558 llvm::Constant *
4559 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4560                                      StringRef Name) {
4561   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4562                                                        : LangAS::Default;
4563   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4564   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4565   return Ret;
4566 }
4567 
4568 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4569   assert(!D->getInit() && "Cannot emit definite definitions here!");
4570 
4571   StringRef MangledName = getMangledName(D);
4572   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4573 
4574   // We already have a definition, not declaration, with the same mangled name.
4575   // Emitting of declaration is not required (and actually overwrites emitted
4576   // definition).
4577   if (GV && !GV->isDeclaration())
4578     return;
4579 
4580   // If we have not seen a reference to this variable yet, place it into the
4581   // deferred declarations table to be emitted if needed later.
4582   if (!MustBeEmitted(D) && !GV) {
4583       DeferredDecls[MangledName] = D;
4584       return;
4585   }
4586 
4587   // The tentative definition is the only definition.
4588   EmitGlobalVarDefinition(D);
4589 }
4590 
4591 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4592   EmitExternalVarDeclaration(D);
4593 }
4594 
4595 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4596   return Context.toCharUnitsFromBits(
4597       getDataLayout().getTypeStoreSizeInBits(Ty));
4598 }
4599 
4600 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4601   if (LangOpts.OpenCL) {
4602     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4603     assert(AS == LangAS::opencl_global ||
4604            AS == LangAS::opencl_global_device ||
4605            AS == LangAS::opencl_global_host ||
4606            AS == LangAS::opencl_constant ||
4607            AS == LangAS::opencl_local ||
4608            AS >= LangAS::FirstTargetAddressSpace);
4609     return AS;
4610   }
4611 
4612   if (LangOpts.SYCLIsDevice &&
4613       (!D || D->getType().getAddressSpace() == LangAS::Default))
4614     return LangAS::sycl_global;
4615 
4616   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4617     if (D && D->hasAttr<CUDAConstantAttr>())
4618       return LangAS::cuda_constant;
4619     else if (D && D->hasAttr<CUDASharedAttr>())
4620       return LangAS::cuda_shared;
4621     else if (D && D->hasAttr<CUDADeviceAttr>())
4622       return LangAS::cuda_device;
4623     else if (D && D->getType().isConstQualified())
4624       return LangAS::cuda_constant;
4625     else
4626       return LangAS::cuda_device;
4627   }
4628 
4629   if (LangOpts.OpenMP) {
4630     LangAS AS;
4631     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4632       return AS;
4633   }
4634   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4635 }
4636 
4637 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4638   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4639   if (LangOpts.OpenCL)
4640     return LangAS::opencl_constant;
4641   if (LangOpts.SYCLIsDevice)
4642     return LangAS::sycl_global;
4643   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4644     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4645     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4646     // with OpVariable instructions with Generic storage class which is not
4647     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4648     // UniformConstant storage class is not viable as pointers to it may not be
4649     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4650     return LangAS::cuda_device;
4651   if (auto AS = getTarget().getConstantAddressSpace())
4652     return *AS;
4653   return LangAS::Default;
4654 }
4655 
4656 // In address space agnostic languages, string literals are in default address
4657 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4658 // emitted in constant address space in LLVM IR. To be consistent with other
4659 // parts of AST, string literal global variables in constant address space
4660 // need to be casted to default address space before being put into address
4661 // map and referenced by other part of CodeGen.
4662 // In OpenCL, string literals are in constant address space in AST, therefore
4663 // they should not be casted to default address space.
4664 static llvm::Constant *
4665 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4666                                        llvm::GlobalVariable *GV) {
4667   llvm::Constant *Cast = GV;
4668   if (!CGM.getLangOpts().OpenCL) {
4669     auto AS = CGM.GetGlobalConstantAddressSpace();
4670     if (AS != LangAS::Default)
4671       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4672           CGM, GV, AS, LangAS::Default,
4673           GV->getValueType()->getPointerTo(
4674               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4675   }
4676   return Cast;
4677 }
4678 
4679 template<typename SomeDecl>
4680 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4681                                                llvm::GlobalValue *GV) {
4682   if (!getLangOpts().CPlusPlus)
4683     return;
4684 
4685   // Must have 'used' attribute, or else inline assembly can't rely on
4686   // the name existing.
4687   if (!D->template hasAttr<UsedAttr>())
4688     return;
4689 
4690   // Must have internal linkage and an ordinary name.
4691   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4692     return;
4693 
4694   // Must be in an extern "C" context. Entities declared directly within
4695   // a record are not extern "C" even if the record is in such a context.
4696   const SomeDecl *First = D->getFirstDecl();
4697   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4698     return;
4699 
4700   // OK, this is an internal linkage entity inside an extern "C" linkage
4701   // specification. Make a note of that so we can give it the "expected"
4702   // mangled name if nothing else is using that name.
4703   std::pair<StaticExternCMap::iterator, bool> R =
4704       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4705 
4706   // If we have multiple internal linkage entities with the same name
4707   // in extern "C" regions, none of them gets that name.
4708   if (!R.second)
4709     R.first->second = nullptr;
4710 }
4711 
4712 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4713   if (!CGM.supportsCOMDAT())
4714     return false;
4715 
4716   if (D.hasAttr<SelectAnyAttr>())
4717     return true;
4718 
4719   GVALinkage Linkage;
4720   if (auto *VD = dyn_cast<VarDecl>(&D))
4721     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4722   else
4723     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4724 
4725   switch (Linkage) {
4726   case GVA_Internal:
4727   case GVA_AvailableExternally:
4728   case GVA_StrongExternal:
4729     return false;
4730   case GVA_DiscardableODR:
4731   case GVA_StrongODR:
4732     return true;
4733   }
4734   llvm_unreachable("No such linkage");
4735 }
4736 
4737 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4738                                           llvm::GlobalObject &GO) {
4739   if (!shouldBeInCOMDAT(*this, D))
4740     return;
4741   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4742 }
4743 
4744 /// Pass IsTentative as true if you want to create a tentative definition.
4745 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4746                                             bool IsTentative) {
4747   // OpenCL global variables of sampler type are translated to function calls,
4748   // therefore no need to be translated.
4749   QualType ASTTy = D->getType();
4750   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4751     return;
4752 
4753   // If this is OpenMP device, check if it is legal to emit this global
4754   // normally.
4755   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4756       OpenMPRuntime->emitTargetGlobalVariable(D))
4757     return;
4758 
4759   llvm::TrackingVH<llvm::Constant> Init;
4760   bool NeedsGlobalCtor = false;
4761   bool NeedsGlobalDtor =
4762       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4763 
4764   const VarDecl *InitDecl;
4765   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4766 
4767   Optional<ConstantEmitter> emitter;
4768 
4769   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4770   // as part of their declaration."  Sema has already checked for
4771   // error cases, so we just need to set Init to UndefValue.
4772   bool IsCUDASharedVar =
4773       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4774   // Shadows of initialized device-side global variables are also left
4775   // undefined.
4776   // Managed Variables should be initialized on both host side and device side.
4777   bool IsCUDAShadowVar =
4778       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4779       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4780        D->hasAttr<CUDASharedAttr>());
4781   bool IsCUDADeviceShadowVar =
4782       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4783       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4784        D->getType()->isCUDADeviceBuiltinTextureType());
4785   if (getLangOpts().CUDA &&
4786       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4787     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4788   else if (D->hasAttr<LoaderUninitializedAttr>())
4789     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4790   else if (!InitExpr) {
4791     // This is a tentative definition; tentative definitions are
4792     // implicitly initialized with { 0 }.
4793     //
4794     // Note that tentative definitions are only emitted at the end of
4795     // a translation unit, so they should never have incomplete
4796     // type. In addition, EmitTentativeDefinition makes sure that we
4797     // never attempt to emit a tentative definition if a real one
4798     // exists. A use may still exists, however, so we still may need
4799     // to do a RAUW.
4800     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4801     Init = EmitNullConstant(D->getType());
4802   } else {
4803     initializedGlobalDecl = GlobalDecl(D);
4804     emitter.emplace(*this);
4805     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4806     if (!Initializer) {
4807       QualType T = InitExpr->getType();
4808       if (D->getType()->isReferenceType())
4809         T = D->getType();
4810 
4811       if (getLangOpts().CPlusPlus) {
4812         if (InitDecl->hasFlexibleArrayInit(getContext()))
4813           ErrorUnsupported(D, "flexible array initializer");
4814         Init = EmitNullConstant(T);
4815         NeedsGlobalCtor = true;
4816       } else {
4817         ErrorUnsupported(D, "static initializer");
4818         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4819       }
4820     } else {
4821       Init = Initializer;
4822       // We don't need an initializer, so remove the entry for the delayed
4823       // initializer position (just in case this entry was delayed) if we
4824       // also don't need to register a destructor.
4825       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4826         DelayedCXXInitPosition.erase(D);
4827 
4828 #ifndef NDEBUG
4829       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4830                           InitDecl->getFlexibleArrayInitChars(getContext());
4831       CharUnits CstSize = CharUnits::fromQuantity(
4832           getDataLayout().getTypeAllocSize(Init->getType()));
4833       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4834 #endif
4835     }
4836   }
4837 
4838   llvm::Type* InitType = Init->getType();
4839   llvm::Constant *Entry =
4840       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4841 
4842   // Strip off pointer casts if we got them.
4843   Entry = Entry->stripPointerCasts();
4844 
4845   // Entry is now either a Function or GlobalVariable.
4846   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4847 
4848   // We have a definition after a declaration with the wrong type.
4849   // We must make a new GlobalVariable* and update everything that used OldGV
4850   // (a declaration or tentative definition) with the new GlobalVariable*
4851   // (which will be a definition).
4852   //
4853   // This happens if there is a prototype for a global (e.g.
4854   // "extern int x[];") and then a definition of a different type (e.g.
4855   // "int x[10];"). This also happens when an initializer has a different type
4856   // from the type of the global (this happens with unions).
4857   if (!GV || GV->getValueType() != InitType ||
4858       GV->getType()->getAddressSpace() !=
4859           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4860 
4861     // Move the old entry aside so that we'll create a new one.
4862     Entry->setName(StringRef());
4863 
4864     // Make a new global with the correct type, this is now guaranteed to work.
4865     GV = cast<llvm::GlobalVariable>(
4866         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4867             ->stripPointerCasts());
4868 
4869     // Replace all uses of the old global with the new global
4870     llvm::Constant *NewPtrForOldDecl =
4871         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4872                                                              Entry->getType());
4873     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4874 
4875     // Erase the old global, since it is no longer used.
4876     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4877   }
4878 
4879   MaybeHandleStaticInExternC(D, GV);
4880 
4881   if (D->hasAttr<AnnotateAttr>())
4882     AddGlobalAnnotations(D, GV);
4883 
4884   // Set the llvm linkage type as appropriate.
4885   llvm::GlobalValue::LinkageTypes Linkage =
4886       getLLVMLinkageVarDefinition(D, GV->isConstant());
4887 
4888   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4889   // the device. [...]"
4890   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4891   // __device__, declares a variable that: [...]
4892   // Is accessible from all the threads within the grid and from the host
4893   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4894   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4895   if (GV && LangOpts.CUDA) {
4896     if (LangOpts.CUDAIsDevice) {
4897       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4898           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4899            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4900            D->getType()->isCUDADeviceBuiltinTextureType()))
4901         GV->setExternallyInitialized(true);
4902     } else {
4903       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4904     }
4905     getCUDARuntime().handleVarRegistration(D, *GV);
4906   }
4907 
4908   GV->setInitializer(Init);
4909   if (emitter)
4910     emitter->finalize(GV);
4911 
4912   // If it is safe to mark the global 'constant', do so now.
4913   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4914                   isTypeConstant(D->getType(), true));
4915 
4916   // If it is in a read-only section, mark it 'constant'.
4917   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4918     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4919     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4920       GV->setConstant(true);
4921   }
4922 
4923   CharUnits AlignVal = getContext().getDeclAlign(D);
4924   // Check for alignment specifed in an 'omp allocate' directive.
4925   if (llvm::Optional<CharUnits> AlignValFromAllocate =
4926           getOMPAllocateAlignment(D))
4927     AlignVal = *AlignValFromAllocate;
4928   GV->setAlignment(AlignVal.getAsAlign());
4929 
4930   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4931   // function is only defined alongside the variable, not also alongside
4932   // callers. Normally, all accesses to a thread_local go through the
4933   // thread-wrapper in order to ensure initialization has occurred, underlying
4934   // variable will never be used other than the thread-wrapper, so it can be
4935   // converted to internal linkage.
4936   //
4937   // However, if the variable has the 'constinit' attribute, it _can_ be
4938   // referenced directly, without calling the thread-wrapper, so the linkage
4939   // must not be changed.
4940   //
4941   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4942   // weak or linkonce, the de-duplication semantics are important to preserve,
4943   // so we don't change the linkage.
4944   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4945       Linkage == llvm::GlobalValue::ExternalLinkage &&
4946       Context.getTargetInfo().getTriple().isOSDarwin() &&
4947       !D->hasAttr<ConstInitAttr>())
4948     Linkage = llvm::GlobalValue::InternalLinkage;
4949 
4950   GV->setLinkage(Linkage);
4951   if (D->hasAttr<DLLImportAttr>())
4952     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4953   else if (D->hasAttr<DLLExportAttr>())
4954     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4955   else
4956     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4957 
4958   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4959     // common vars aren't constant even if declared const.
4960     GV->setConstant(false);
4961     // Tentative definition of global variables may be initialized with
4962     // non-zero null pointers. In this case they should have weak linkage
4963     // since common linkage must have zero initializer and must not have
4964     // explicit section therefore cannot have non-zero initial value.
4965     if (!GV->getInitializer()->isNullValue())
4966       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4967   }
4968 
4969   setNonAliasAttributes(D, GV);
4970 
4971   if (D->getTLSKind() && !GV->isThreadLocal()) {
4972     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4973       CXXThreadLocals.push_back(D);
4974     setTLSMode(GV, *D);
4975   }
4976 
4977   maybeSetTrivialComdat(*D, *GV);
4978 
4979   // Emit the initializer function if necessary.
4980   if (NeedsGlobalCtor || NeedsGlobalDtor)
4981     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4982 
4983   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
4984 
4985   // Emit global variable debug information.
4986   if (CGDebugInfo *DI = getModuleDebugInfo())
4987     if (getCodeGenOpts().hasReducedDebugInfo())
4988       DI->EmitGlobalVariable(GV, D);
4989 }
4990 
4991 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4992   if (CGDebugInfo *DI = getModuleDebugInfo())
4993     if (getCodeGenOpts().hasReducedDebugInfo()) {
4994       QualType ASTTy = D->getType();
4995       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4996       llvm::Constant *GV =
4997           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4998       DI->EmitExternalVariable(
4999           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5000     }
5001 }
5002 
5003 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5004                                       CodeGenModule &CGM, const VarDecl *D,
5005                                       bool NoCommon) {
5006   // Don't give variables common linkage if -fno-common was specified unless it
5007   // was overridden by a NoCommon attribute.
5008   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5009     return true;
5010 
5011   // C11 6.9.2/2:
5012   //   A declaration of an identifier for an object that has file scope without
5013   //   an initializer, and without a storage-class specifier or with the
5014   //   storage-class specifier static, constitutes a tentative definition.
5015   if (D->getInit() || D->hasExternalStorage())
5016     return true;
5017 
5018   // A variable cannot be both common and exist in a section.
5019   if (D->hasAttr<SectionAttr>())
5020     return true;
5021 
5022   // A variable cannot be both common and exist in a section.
5023   // We don't try to determine which is the right section in the front-end.
5024   // If no specialized section name is applicable, it will resort to default.
5025   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5026       D->hasAttr<PragmaClangDataSectionAttr>() ||
5027       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5028       D->hasAttr<PragmaClangRodataSectionAttr>())
5029     return true;
5030 
5031   // Thread local vars aren't considered common linkage.
5032   if (D->getTLSKind())
5033     return true;
5034 
5035   // Tentative definitions marked with WeakImportAttr are true definitions.
5036   if (D->hasAttr<WeakImportAttr>())
5037     return true;
5038 
5039   // A variable cannot be both common and exist in a comdat.
5040   if (shouldBeInCOMDAT(CGM, *D))
5041     return true;
5042 
5043   // Declarations with a required alignment do not have common linkage in MSVC
5044   // mode.
5045   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5046     if (D->hasAttr<AlignedAttr>())
5047       return true;
5048     QualType VarType = D->getType();
5049     if (Context.isAlignmentRequired(VarType))
5050       return true;
5051 
5052     if (const auto *RT = VarType->getAs<RecordType>()) {
5053       const RecordDecl *RD = RT->getDecl();
5054       for (const FieldDecl *FD : RD->fields()) {
5055         if (FD->isBitField())
5056           continue;
5057         if (FD->hasAttr<AlignedAttr>())
5058           return true;
5059         if (Context.isAlignmentRequired(FD->getType()))
5060           return true;
5061       }
5062     }
5063   }
5064 
5065   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5066   // common symbols, so symbols with greater alignment requirements cannot be
5067   // common.
5068   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5069   // alignments for common symbols via the aligncomm directive, so this
5070   // restriction only applies to MSVC environments.
5071   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5072       Context.getTypeAlignIfKnown(D->getType()) >
5073           Context.toBits(CharUnits::fromQuantity(32)))
5074     return true;
5075 
5076   return false;
5077 }
5078 
5079 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
5080     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
5081   if (Linkage == GVA_Internal)
5082     return llvm::Function::InternalLinkage;
5083 
5084   if (D->hasAttr<WeakAttr>())
5085     return llvm::GlobalVariable::WeakAnyLinkage;
5086 
5087   if (const auto *FD = D->getAsFunction())
5088     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5089       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5090 
5091   // We are guaranteed to have a strong definition somewhere else,
5092   // so we can use available_externally linkage.
5093   if (Linkage == GVA_AvailableExternally)
5094     return llvm::GlobalValue::AvailableExternallyLinkage;
5095 
5096   // Note that Apple's kernel linker doesn't support symbol
5097   // coalescing, so we need to avoid linkonce and weak linkages there.
5098   // Normally, this means we just map to internal, but for explicit
5099   // instantiations we'll map to external.
5100 
5101   // In C++, the compiler has to emit a definition in every translation unit
5102   // that references the function.  We should use linkonce_odr because
5103   // a) if all references in this translation unit are optimized away, we
5104   // don't need to codegen it.  b) if the function persists, it needs to be
5105   // merged with other definitions. c) C++ has the ODR, so we know the
5106   // definition is dependable.
5107   if (Linkage == GVA_DiscardableODR)
5108     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5109                                             : llvm::Function::InternalLinkage;
5110 
5111   // An explicit instantiation of a template has weak linkage, since
5112   // explicit instantiations can occur in multiple translation units
5113   // and must all be equivalent. However, we are not allowed to
5114   // throw away these explicit instantiations.
5115   //
5116   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5117   // so say that CUDA templates are either external (for kernels) or internal.
5118   // This lets llvm perform aggressive inter-procedural optimizations. For
5119   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5120   // therefore we need to follow the normal linkage paradigm.
5121   if (Linkage == GVA_StrongODR) {
5122     if (getLangOpts().AppleKext)
5123       return llvm::Function::ExternalLinkage;
5124     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5125         !getLangOpts().GPURelocatableDeviceCode)
5126       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5127                                           : llvm::Function::InternalLinkage;
5128     return llvm::Function::WeakODRLinkage;
5129   }
5130 
5131   // C++ doesn't have tentative definitions and thus cannot have common
5132   // linkage.
5133   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5134       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5135                                  CodeGenOpts.NoCommon))
5136     return llvm::GlobalVariable::CommonLinkage;
5137 
5138   // selectany symbols are externally visible, so use weak instead of
5139   // linkonce.  MSVC optimizes away references to const selectany globals, so
5140   // all definitions should be the same and ODR linkage should be used.
5141   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5142   if (D->hasAttr<SelectAnyAttr>())
5143     return llvm::GlobalVariable::WeakODRLinkage;
5144 
5145   // Otherwise, we have strong external linkage.
5146   assert(Linkage == GVA_StrongExternal);
5147   return llvm::GlobalVariable::ExternalLinkage;
5148 }
5149 
5150 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5151     const VarDecl *VD, bool IsConstant) {
5152   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5153   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5154 }
5155 
5156 /// Replace the uses of a function that was declared with a non-proto type.
5157 /// We want to silently drop extra arguments from call sites
5158 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5159                                           llvm::Function *newFn) {
5160   // Fast path.
5161   if (old->use_empty()) return;
5162 
5163   llvm::Type *newRetTy = newFn->getReturnType();
5164   SmallVector<llvm::Value*, 4> newArgs;
5165 
5166   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5167          ui != ue; ) {
5168     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5169     llvm::User *user = use->getUser();
5170 
5171     // Recognize and replace uses of bitcasts.  Most calls to
5172     // unprototyped functions will use bitcasts.
5173     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5174       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5175         replaceUsesOfNonProtoConstant(bitcast, newFn);
5176       continue;
5177     }
5178 
5179     // Recognize calls to the function.
5180     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5181     if (!callSite) continue;
5182     if (!callSite->isCallee(&*use))
5183       continue;
5184 
5185     // If the return types don't match exactly, then we can't
5186     // transform this call unless it's dead.
5187     if (callSite->getType() != newRetTy && !callSite->use_empty())
5188       continue;
5189 
5190     // Get the call site's attribute list.
5191     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5192     llvm::AttributeList oldAttrs = callSite->getAttributes();
5193 
5194     // If the function was passed too few arguments, don't transform.
5195     unsigned newNumArgs = newFn->arg_size();
5196     if (callSite->arg_size() < newNumArgs)
5197       continue;
5198 
5199     // If extra arguments were passed, we silently drop them.
5200     // If any of the types mismatch, we don't transform.
5201     unsigned argNo = 0;
5202     bool dontTransform = false;
5203     for (llvm::Argument &A : newFn->args()) {
5204       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5205         dontTransform = true;
5206         break;
5207       }
5208 
5209       // Add any parameter attributes.
5210       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5211       argNo++;
5212     }
5213     if (dontTransform)
5214       continue;
5215 
5216     // Okay, we can transform this.  Create the new call instruction and copy
5217     // over the required information.
5218     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5219 
5220     // Copy over any operand bundles.
5221     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5222     callSite->getOperandBundlesAsDefs(newBundles);
5223 
5224     llvm::CallBase *newCall;
5225     if (isa<llvm::CallInst>(callSite)) {
5226       newCall =
5227           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5228     } else {
5229       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5230       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5231                                          oldInvoke->getUnwindDest(), newArgs,
5232                                          newBundles, "", callSite);
5233     }
5234     newArgs.clear(); // for the next iteration
5235 
5236     if (!newCall->getType()->isVoidTy())
5237       newCall->takeName(callSite);
5238     newCall->setAttributes(
5239         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5240                                  oldAttrs.getRetAttrs(), newArgAttrs));
5241     newCall->setCallingConv(callSite->getCallingConv());
5242 
5243     // Finally, remove the old call, replacing any uses with the new one.
5244     if (!callSite->use_empty())
5245       callSite->replaceAllUsesWith(newCall);
5246 
5247     // Copy debug location attached to CI.
5248     if (callSite->getDebugLoc())
5249       newCall->setDebugLoc(callSite->getDebugLoc());
5250 
5251     callSite->eraseFromParent();
5252   }
5253 }
5254 
5255 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5256 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5257 /// existing call uses of the old function in the module, this adjusts them to
5258 /// call the new function directly.
5259 ///
5260 /// This is not just a cleanup: the always_inline pass requires direct calls to
5261 /// functions to be able to inline them.  If there is a bitcast in the way, it
5262 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5263 /// run at -O0.
5264 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5265                                                       llvm::Function *NewFn) {
5266   // If we're redefining a global as a function, don't transform it.
5267   if (!isa<llvm::Function>(Old)) return;
5268 
5269   replaceUsesOfNonProtoConstant(Old, NewFn);
5270 }
5271 
5272 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5273   auto DK = VD->isThisDeclarationADefinition();
5274   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5275     return;
5276 
5277   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5278   // If we have a definition, this might be a deferred decl. If the
5279   // instantiation is explicit, make sure we emit it at the end.
5280   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5281     GetAddrOfGlobalVar(VD);
5282 
5283   EmitTopLevelDecl(VD);
5284 }
5285 
5286 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5287                                                  llvm::GlobalValue *GV) {
5288   const auto *D = cast<FunctionDecl>(GD.getDecl());
5289 
5290   // Compute the function info and LLVM type.
5291   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5292   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5293 
5294   // Get or create the prototype for the function.
5295   if (!GV || (GV->getValueType() != Ty))
5296     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5297                                                    /*DontDefer=*/true,
5298                                                    ForDefinition));
5299 
5300   // Already emitted.
5301   if (!GV->isDeclaration())
5302     return;
5303 
5304   // We need to set linkage and visibility on the function before
5305   // generating code for it because various parts of IR generation
5306   // want to propagate this information down (e.g. to local static
5307   // declarations).
5308   auto *Fn = cast<llvm::Function>(GV);
5309   setFunctionLinkage(GD, Fn);
5310 
5311   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5312   setGVProperties(Fn, GD);
5313 
5314   MaybeHandleStaticInExternC(D, Fn);
5315 
5316   maybeSetTrivialComdat(*D, *Fn);
5317 
5318   // Set CodeGen attributes that represent floating point environment.
5319   setLLVMFunctionFEnvAttributes(D, Fn);
5320 
5321   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5322 
5323   setNonAliasAttributes(GD, Fn);
5324   SetLLVMFunctionAttributesForDefinition(D, Fn);
5325 
5326   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5327     AddGlobalCtor(Fn, CA->getPriority());
5328   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5329     AddGlobalDtor(Fn, DA->getPriority(), true);
5330   if (D->hasAttr<AnnotateAttr>())
5331     AddGlobalAnnotations(D, Fn);
5332 }
5333 
5334 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5335   const auto *D = cast<ValueDecl>(GD.getDecl());
5336   const AliasAttr *AA = D->getAttr<AliasAttr>();
5337   assert(AA && "Not an alias?");
5338 
5339   StringRef MangledName = getMangledName(GD);
5340 
5341   if (AA->getAliasee() == MangledName) {
5342     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5343     return;
5344   }
5345 
5346   // If there is a definition in the module, then it wins over the alias.
5347   // This is dubious, but allow it to be safe.  Just ignore the alias.
5348   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5349   if (Entry && !Entry->isDeclaration())
5350     return;
5351 
5352   Aliases.push_back(GD);
5353 
5354   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5355 
5356   // Create a reference to the named value.  This ensures that it is emitted
5357   // if a deferred decl.
5358   llvm::Constant *Aliasee;
5359   llvm::GlobalValue::LinkageTypes LT;
5360   if (isa<llvm::FunctionType>(DeclTy)) {
5361     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5362                                       /*ForVTable=*/false);
5363     LT = getFunctionLinkage(GD);
5364   } else {
5365     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5366                                     /*D=*/nullptr);
5367     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5368       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5369     else
5370       LT = getFunctionLinkage(GD);
5371   }
5372 
5373   // Create the new alias itself, but don't set a name yet.
5374   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5375   auto *GA =
5376       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5377 
5378   if (Entry) {
5379     if (GA->getAliasee() == Entry) {
5380       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5381       return;
5382     }
5383 
5384     assert(Entry->isDeclaration());
5385 
5386     // If there is a declaration in the module, then we had an extern followed
5387     // by the alias, as in:
5388     //   extern int test6();
5389     //   ...
5390     //   int test6() __attribute__((alias("test7")));
5391     //
5392     // Remove it and replace uses of it with the alias.
5393     GA->takeName(Entry);
5394 
5395     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5396                                                           Entry->getType()));
5397     Entry->eraseFromParent();
5398   } else {
5399     GA->setName(MangledName);
5400   }
5401 
5402   // Set attributes which are particular to an alias; this is a
5403   // specialization of the attributes which may be set on a global
5404   // variable/function.
5405   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5406       D->isWeakImported()) {
5407     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5408   }
5409 
5410   if (const auto *VD = dyn_cast<VarDecl>(D))
5411     if (VD->getTLSKind())
5412       setTLSMode(GA, *VD);
5413 
5414   SetCommonAttributes(GD, GA);
5415 
5416   // Emit global alias debug information.
5417   if (isa<VarDecl>(D))
5418     if (CGDebugInfo *DI = getModuleDebugInfo())
5419       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5420 }
5421 
5422 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5423   const auto *D = cast<ValueDecl>(GD.getDecl());
5424   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5425   assert(IFA && "Not an ifunc?");
5426 
5427   StringRef MangledName = getMangledName(GD);
5428 
5429   if (IFA->getResolver() == MangledName) {
5430     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5431     return;
5432   }
5433 
5434   // Report an error if some definition overrides ifunc.
5435   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5436   if (Entry && !Entry->isDeclaration()) {
5437     GlobalDecl OtherGD;
5438     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5439         DiagnosedConflictingDefinitions.insert(GD).second) {
5440       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5441           << MangledName;
5442       Diags.Report(OtherGD.getDecl()->getLocation(),
5443                    diag::note_previous_definition);
5444     }
5445     return;
5446   }
5447 
5448   Aliases.push_back(GD);
5449 
5450   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5451   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5452   llvm::Constant *Resolver =
5453       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5454                               /*ForVTable=*/false);
5455   llvm::GlobalIFunc *GIF =
5456       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5457                                 "", Resolver, &getModule());
5458   if (Entry) {
5459     if (GIF->getResolver() == Entry) {
5460       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5461       return;
5462     }
5463     assert(Entry->isDeclaration());
5464 
5465     // If there is a declaration in the module, then we had an extern followed
5466     // by the ifunc, as in:
5467     //   extern int test();
5468     //   ...
5469     //   int test() __attribute__((ifunc("resolver")));
5470     //
5471     // Remove it and replace uses of it with the ifunc.
5472     GIF->takeName(Entry);
5473 
5474     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5475                                                           Entry->getType()));
5476     Entry->eraseFromParent();
5477   } else
5478     GIF->setName(MangledName);
5479 
5480   SetCommonAttributes(GD, GIF);
5481 }
5482 
5483 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5484                                             ArrayRef<llvm::Type*> Tys) {
5485   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5486                                          Tys);
5487 }
5488 
5489 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5490 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5491                          const StringLiteral *Literal, bool TargetIsLSB,
5492                          bool &IsUTF16, unsigned &StringLength) {
5493   StringRef String = Literal->getString();
5494   unsigned NumBytes = String.size();
5495 
5496   // Check for simple case.
5497   if (!Literal->containsNonAsciiOrNull()) {
5498     StringLength = NumBytes;
5499     return *Map.insert(std::make_pair(String, nullptr)).first;
5500   }
5501 
5502   // Otherwise, convert the UTF8 literals into a string of shorts.
5503   IsUTF16 = true;
5504 
5505   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5506   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5507   llvm::UTF16 *ToPtr = &ToBuf[0];
5508 
5509   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5510                                  ToPtr + NumBytes, llvm::strictConversion);
5511 
5512   // ConvertUTF8toUTF16 returns the length in ToPtr.
5513   StringLength = ToPtr - &ToBuf[0];
5514 
5515   // Add an explicit null.
5516   *ToPtr = 0;
5517   return *Map.insert(std::make_pair(
5518                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5519                                    (StringLength + 1) * 2),
5520                          nullptr)).first;
5521 }
5522 
5523 ConstantAddress
5524 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5525   unsigned StringLength = 0;
5526   bool isUTF16 = false;
5527   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5528       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5529                                getDataLayout().isLittleEndian(), isUTF16,
5530                                StringLength);
5531 
5532   if (auto *C = Entry.second)
5533     return ConstantAddress(
5534         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5535 
5536   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5537   llvm::Constant *Zeros[] = { Zero, Zero };
5538 
5539   const ASTContext &Context = getContext();
5540   const llvm::Triple &Triple = getTriple();
5541 
5542   const auto CFRuntime = getLangOpts().CFRuntime;
5543   const bool IsSwiftABI =
5544       static_cast<unsigned>(CFRuntime) >=
5545       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5546   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5547 
5548   // If we don't already have it, get __CFConstantStringClassReference.
5549   if (!CFConstantStringClassRef) {
5550     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5551     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5552     Ty = llvm::ArrayType::get(Ty, 0);
5553 
5554     switch (CFRuntime) {
5555     default: break;
5556     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5557     case LangOptions::CoreFoundationABI::Swift5_0:
5558       CFConstantStringClassName =
5559           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5560                               : "$s10Foundation19_NSCFConstantStringCN";
5561       Ty = IntPtrTy;
5562       break;
5563     case LangOptions::CoreFoundationABI::Swift4_2:
5564       CFConstantStringClassName =
5565           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5566                               : "$S10Foundation19_NSCFConstantStringCN";
5567       Ty = IntPtrTy;
5568       break;
5569     case LangOptions::CoreFoundationABI::Swift4_1:
5570       CFConstantStringClassName =
5571           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5572                               : "__T010Foundation19_NSCFConstantStringCN";
5573       Ty = IntPtrTy;
5574       break;
5575     }
5576 
5577     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5578 
5579     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5580       llvm::GlobalValue *GV = nullptr;
5581 
5582       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5583         IdentifierInfo &II = Context.Idents.get(GV->getName());
5584         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5585         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5586 
5587         const VarDecl *VD = nullptr;
5588         for (const auto *Result : DC->lookup(&II))
5589           if ((VD = dyn_cast<VarDecl>(Result)))
5590             break;
5591 
5592         if (Triple.isOSBinFormatELF()) {
5593           if (!VD)
5594             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5595         } else {
5596           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5597           if (!VD || !VD->hasAttr<DLLExportAttr>())
5598             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5599           else
5600             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5601         }
5602 
5603         setDSOLocal(GV);
5604       }
5605     }
5606 
5607     // Decay array -> ptr
5608     CFConstantStringClassRef =
5609         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5610                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5611   }
5612 
5613   QualType CFTy = Context.getCFConstantStringType();
5614 
5615   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5616 
5617   ConstantInitBuilder Builder(*this);
5618   auto Fields = Builder.beginStruct(STy);
5619 
5620   // Class pointer.
5621   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5622 
5623   // Flags.
5624   if (IsSwiftABI) {
5625     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5626     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5627   } else {
5628     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5629   }
5630 
5631   // String pointer.
5632   llvm::Constant *C = nullptr;
5633   if (isUTF16) {
5634     auto Arr = llvm::makeArrayRef(
5635         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5636         Entry.first().size() / 2);
5637     C = llvm::ConstantDataArray::get(VMContext, Arr);
5638   } else {
5639     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5640   }
5641 
5642   // Note: -fwritable-strings doesn't make the backing store strings of
5643   // CFStrings writable. (See <rdar://problem/10657500>)
5644   auto *GV =
5645       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5646                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5647   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5648   // Don't enforce the target's minimum global alignment, since the only use
5649   // of the string is via this class initializer.
5650   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5651                             : Context.getTypeAlignInChars(Context.CharTy);
5652   GV->setAlignment(Align.getAsAlign());
5653 
5654   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5655   // Without it LLVM can merge the string with a non unnamed_addr one during
5656   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5657   if (Triple.isOSBinFormatMachO())
5658     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5659                            : "__TEXT,__cstring,cstring_literals");
5660   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5661   // the static linker to adjust permissions to read-only later on.
5662   else if (Triple.isOSBinFormatELF())
5663     GV->setSection(".rodata");
5664 
5665   // String.
5666   llvm::Constant *Str =
5667       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5668 
5669   if (isUTF16)
5670     // Cast the UTF16 string to the correct type.
5671     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5672   Fields.add(Str);
5673 
5674   // String length.
5675   llvm::IntegerType *LengthTy =
5676       llvm::IntegerType::get(getModule().getContext(),
5677                              Context.getTargetInfo().getLongWidth());
5678   if (IsSwiftABI) {
5679     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5680         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5681       LengthTy = Int32Ty;
5682     else
5683       LengthTy = IntPtrTy;
5684   }
5685   Fields.addInt(LengthTy, StringLength);
5686 
5687   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5688   // properly aligned on 32-bit platforms.
5689   CharUnits Alignment =
5690       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5691 
5692   // The struct.
5693   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5694                                     /*isConstant=*/false,
5695                                     llvm::GlobalVariable::PrivateLinkage);
5696   GV->addAttribute("objc_arc_inert");
5697   switch (Triple.getObjectFormat()) {
5698   case llvm::Triple::UnknownObjectFormat:
5699     llvm_unreachable("unknown file format");
5700   case llvm::Triple::DXContainer:
5701   case llvm::Triple::GOFF:
5702   case llvm::Triple::SPIRV:
5703   case llvm::Triple::XCOFF:
5704     llvm_unreachable("unimplemented");
5705   case llvm::Triple::COFF:
5706   case llvm::Triple::ELF:
5707   case llvm::Triple::Wasm:
5708     GV->setSection("cfstring");
5709     break;
5710   case llvm::Triple::MachO:
5711     GV->setSection("__DATA,__cfstring");
5712     break;
5713   }
5714   Entry.second = GV;
5715 
5716   return ConstantAddress(GV, GV->getValueType(), Alignment);
5717 }
5718 
5719 bool CodeGenModule::getExpressionLocationsEnabled() const {
5720   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5721 }
5722 
5723 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5724   if (ObjCFastEnumerationStateType.isNull()) {
5725     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5726     D->startDefinition();
5727 
5728     QualType FieldTypes[] = {
5729       Context.UnsignedLongTy,
5730       Context.getPointerType(Context.getObjCIdType()),
5731       Context.getPointerType(Context.UnsignedLongTy),
5732       Context.getConstantArrayType(Context.UnsignedLongTy,
5733                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5734     };
5735 
5736     for (size_t i = 0; i < 4; ++i) {
5737       FieldDecl *Field = FieldDecl::Create(Context,
5738                                            D,
5739                                            SourceLocation(),
5740                                            SourceLocation(), nullptr,
5741                                            FieldTypes[i], /*TInfo=*/nullptr,
5742                                            /*BitWidth=*/nullptr,
5743                                            /*Mutable=*/false,
5744                                            ICIS_NoInit);
5745       Field->setAccess(AS_public);
5746       D->addDecl(Field);
5747     }
5748 
5749     D->completeDefinition();
5750     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5751   }
5752 
5753   return ObjCFastEnumerationStateType;
5754 }
5755 
5756 llvm::Constant *
5757 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5758   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5759 
5760   // Don't emit it as the address of the string, emit the string data itself
5761   // as an inline array.
5762   if (E->getCharByteWidth() == 1) {
5763     SmallString<64> Str(E->getString());
5764 
5765     // Resize the string to the right size, which is indicated by its type.
5766     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5767     Str.resize(CAT->getSize().getZExtValue());
5768     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5769   }
5770 
5771   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5772   llvm::Type *ElemTy = AType->getElementType();
5773   unsigned NumElements = AType->getNumElements();
5774 
5775   // Wide strings have either 2-byte or 4-byte elements.
5776   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5777     SmallVector<uint16_t, 32> Elements;
5778     Elements.reserve(NumElements);
5779 
5780     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5781       Elements.push_back(E->getCodeUnit(i));
5782     Elements.resize(NumElements);
5783     return llvm::ConstantDataArray::get(VMContext, Elements);
5784   }
5785 
5786   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5787   SmallVector<uint32_t, 32> Elements;
5788   Elements.reserve(NumElements);
5789 
5790   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5791     Elements.push_back(E->getCodeUnit(i));
5792   Elements.resize(NumElements);
5793   return llvm::ConstantDataArray::get(VMContext, Elements);
5794 }
5795 
5796 static llvm::GlobalVariable *
5797 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5798                       CodeGenModule &CGM, StringRef GlobalName,
5799                       CharUnits Alignment) {
5800   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5801       CGM.GetGlobalConstantAddressSpace());
5802 
5803   llvm::Module &M = CGM.getModule();
5804   // Create a global variable for this string
5805   auto *GV = new llvm::GlobalVariable(
5806       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5807       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5808   GV->setAlignment(Alignment.getAsAlign());
5809   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5810   if (GV->isWeakForLinker()) {
5811     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5812     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5813   }
5814   CGM.setDSOLocal(GV);
5815 
5816   return GV;
5817 }
5818 
5819 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5820 /// constant array for the given string literal.
5821 ConstantAddress
5822 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5823                                                   StringRef Name) {
5824   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5825 
5826   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5827   llvm::GlobalVariable **Entry = nullptr;
5828   if (!LangOpts.WritableStrings) {
5829     Entry = &ConstantStringMap[C];
5830     if (auto GV = *Entry) {
5831       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5832         GV->setAlignment(Alignment.getAsAlign());
5833       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5834                              GV->getValueType(), Alignment);
5835     }
5836   }
5837 
5838   SmallString<256> MangledNameBuffer;
5839   StringRef GlobalVariableName;
5840   llvm::GlobalValue::LinkageTypes LT;
5841 
5842   // Mangle the string literal if that's how the ABI merges duplicate strings.
5843   // Don't do it if they are writable, since we don't want writes in one TU to
5844   // affect strings in another.
5845   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5846       !LangOpts.WritableStrings) {
5847     llvm::raw_svector_ostream Out(MangledNameBuffer);
5848     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5849     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5850     GlobalVariableName = MangledNameBuffer;
5851   } else {
5852     LT = llvm::GlobalValue::PrivateLinkage;
5853     GlobalVariableName = Name;
5854   }
5855 
5856   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5857 
5858   CGDebugInfo *DI = getModuleDebugInfo();
5859   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5860     DI->AddStringLiteralDebugInfo(GV, S);
5861 
5862   if (Entry)
5863     *Entry = GV;
5864 
5865   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5866 
5867   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5868                          GV->getValueType(), Alignment);
5869 }
5870 
5871 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5872 /// array for the given ObjCEncodeExpr node.
5873 ConstantAddress
5874 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5875   std::string Str;
5876   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5877 
5878   return GetAddrOfConstantCString(Str);
5879 }
5880 
5881 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5882 /// the literal and a terminating '\0' character.
5883 /// The result has pointer to array type.
5884 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5885     const std::string &Str, const char *GlobalName) {
5886   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5887   CharUnits Alignment =
5888     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5889 
5890   llvm::Constant *C =
5891       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5892 
5893   // Don't share any string literals if strings aren't constant.
5894   llvm::GlobalVariable **Entry = nullptr;
5895   if (!LangOpts.WritableStrings) {
5896     Entry = &ConstantStringMap[C];
5897     if (auto GV = *Entry) {
5898       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5899         GV->setAlignment(Alignment.getAsAlign());
5900       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5901                              GV->getValueType(), Alignment);
5902     }
5903   }
5904 
5905   // Get the default prefix if a name wasn't specified.
5906   if (!GlobalName)
5907     GlobalName = ".str";
5908   // Create a global variable for this.
5909   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5910                                   GlobalName, Alignment);
5911   if (Entry)
5912     *Entry = GV;
5913 
5914   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5915                          GV->getValueType(), Alignment);
5916 }
5917 
5918 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5919     const MaterializeTemporaryExpr *E, const Expr *Init) {
5920   assert((E->getStorageDuration() == SD_Static ||
5921           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5922   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5923 
5924   // If we're not materializing a subobject of the temporary, keep the
5925   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5926   QualType MaterializedType = Init->getType();
5927   if (Init == E->getSubExpr())
5928     MaterializedType = E->getType();
5929 
5930   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5931 
5932   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5933   if (!InsertResult.second) {
5934     // We've seen this before: either we already created it or we're in the
5935     // process of doing so.
5936     if (!InsertResult.first->second) {
5937       // We recursively re-entered this function, probably during emission of
5938       // the initializer. Create a placeholder. We'll clean this up in the
5939       // outer call, at the end of this function.
5940       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5941       InsertResult.first->second = new llvm::GlobalVariable(
5942           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5943           nullptr);
5944     }
5945     return ConstantAddress(InsertResult.first->second,
5946                            llvm::cast<llvm::GlobalVariable>(
5947                                InsertResult.first->second->stripPointerCasts())
5948                                ->getValueType(),
5949                            Align);
5950   }
5951 
5952   // FIXME: If an externally-visible declaration extends multiple temporaries,
5953   // we need to give each temporary the same name in every translation unit (and
5954   // we also need to make the temporaries externally-visible).
5955   SmallString<256> Name;
5956   llvm::raw_svector_ostream Out(Name);
5957   getCXXABI().getMangleContext().mangleReferenceTemporary(
5958       VD, E->getManglingNumber(), Out);
5959 
5960   APValue *Value = nullptr;
5961   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5962     // If the initializer of the extending declaration is a constant
5963     // initializer, we should have a cached constant initializer for this
5964     // temporary. Note that this might have a different value from the value
5965     // computed by evaluating the initializer if the surrounding constant
5966     // expression modifies the temporary.
5967     Value = E->getOrCreateValue(false);
5968   }
5969 
5970   // Try evaluating it now, it might have a constant initializer.
5971   Expr::EvalResult EvalResult;
5972   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5973       !EvalResult.hasSideEffects())
5974     Value = &EvalResult.Val;
5975 
5976   LangAS AddrSpace =
5977       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5978 
5979   Optional<ConstantEmitter> emitter;
5980   llvm::Constant *InitialValue = nullptr;
5981   bool Constant = false;
5982   llvm::Type *Type;
5983   if (Value) {
5984     // The temporary has a constant initializer, use it.
5985     emitter.emplace(*this);
5986     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5987                                                MaterializedType);
5988     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5989     Type = InitialValue->getType();
5990   } else {
5991     // No initializer, the initialization will be provided when we
5992     // initialize the declaration which performed lifetime extension.
5993     Type = getTypes().ConvertTypeForMem(MaterializedType);
5994   }
5995 
5996   // Create a global variable for this lifetime-extended temporary.
5997   llvm::GlobalValue::LinkageTypes Linkage =
5998       getLLVMLinkageVarDefinition(VD, Constant);
5999   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6000     const VarDecl *InitVD;
6001     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6002         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6003       // Temporaries defined inside a class get linkonce_odr linkage because the
6004       // class can be defined in multiple translation units.
6005       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6006     } else {
6007       // There is no need for this temporary to have external linkage if the
6008       // VarDecl has external linkage.
6009       Linkage = llvm::GlobalVariable::InternalLinkage;
6010     }
6011   }
6012   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6013   auto *GV = new llvm::GlobalVariable(
6014       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6015       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6016   if (emitter) emitter->finalize(GV);
6017   setGVProperties(GV, VD);
6018   if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6019     // The reference temporary should never be dllexport.
6020     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6021   GV->setAlignment(Align.getAsAlign());
6022   if (supportsCOMDAT() && GV->isWeakForLinker())
6023     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6024   if (VD->getTLSKind())
6025     setTLSMode(GV, *VD);
6026   llvm::Constant *CV = GV;
6027   if (AddrSpace != LangAS::Default)
6028     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6029         *this, GV, AddrSpace, LangAS::Default,
6030         Type->getPointerTo(
6031             getContext().getTargetAddressSpace(LangAS::Default)));
6032 
6033   // Update the map with the new temporary. If we created a placeholder above,
6034   // replace it with the new global now.
6035   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6036   if (Entry) {
6037     Entry->replaceAllUsesWith(
6038         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
6039     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6040   }
6041   Entry = CV;
6042 
6043   return ConstantAddress(CV, Type, Align);
6044 }
6045 
6046 /// EmitObjCPropertyImplementations - Emit information for synthesized
6047 /// properties for an implementation.
6048 void CodeGenModule::EmitObjCPropertyImplementations(const
6049                                                     ObjCImplementationDecl *D) {
6050   for (const auto *PID : D->property_impls()) {
6051     // Dynamic is just for type-checking.
6052     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6053       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6054 
6055       // Determine which methods need to be implemented, some may have
6056       // been overridden. Note that ::isPropertyAccessor is not the method
6057       // we want, that just indicates if the decl came from a
6058       // property. What we want to know is if the method is defined in
6059       // this implementation.
6060       auto *Getter = PID->getGetterMethodDecl();
6061       if (!Getter || Getter->isSynthesizedAccessorStub())
6062         CodeGenFunction(*this).GenerateObjCGetter(
6063             const_cast<ObjCImplementationDecl *>(D), PID);
6064       auto *Setter = PID->getSetterMethodDecl();
6065       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6066         CodeGenFunction(*this).GenerateObjCSetter(
6067                                  const_cast<ObjCImplementationDecl *>(D), PID);
6068     }
6069   }
6070 }
6071 
6072 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6073   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6074   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6075        ivar; ivar = ivar->getNextIvar())
6076     if (ivar->getType().isDestructedType())
6077       return true;
6078 
6079   return false;
6080 }
6081 
6082 static bool AllTrivialInitializers(CodeGenModule &CGM,
6083                                    ObjCImplementationDecl *D) {
6084   CodeGenFunction CGF(CGM);
6085   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6086        E = D->init_end(); B != E; ++B) {
6087     CXXCtorInitializer *CtorInitExp = *B;
6088     Expr *Init = CtorInitExp->getInit();
6089     if (!CGF.isTrivialInitializer(Init))
6090       return false;
6091   }
6092   return true;
6093 }
6094 
6095 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6096 /// for an implementation.
6097 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6098   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6099   if (needsDestructMethod(D)) {
6100     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6101     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6102     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6103         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6104         getContext().VoidTy, nullptr, D,
6105         /*isInstance=*/true, /*isVariadic=*/false,
6106         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6107         /*isImplicitlyDeclared=*/true,
6108         /*isDefined=*/false, ObjCMethodDecl::Required);
6109     D->addInstanceMethod(DTORMethod);
6110     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6111     D->setHasDestructors(true);
6112   }
6113 
6114   // If the implementation doesn't have any ivar initializers, we don't need
6115   // a .cxx_construct.
6116   if (D->getNumIvarInitializers() == 0 ||
6117       AllTrivialInitializers(*this, D))
6118     return;
6119 
6120   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6121   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6122   // The constructor returns 'self'.
6123   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6124       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6125       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6126       /*isVariadic=*/false,
6127       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6128       /*isImplicitlyDeclared=*/true,
6129       /*isDefined=*/false, ObjCMethodDecl::Required);
6130   D->addInstanceMethod(CTORMethod);
6131   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6132   D->setHasNonZeroConstructors(true);
6133 }
6134 
6135 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6136 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6137   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6138       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6139     ErrorUnsupported(LSD, "linkage spec");
6140     return;
6141   }
6142 
6143   EmitDeclContext(LSD);
6144 }
6145 
6146 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6147   for (auto *I : DC->decls()) {
6148     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6149     // are themselves considered "top-level", so EmitTopLevelDecl on an
6150     // ObjCImplDecl does not recursively visit them. We need to do that in
6151     // case they're nested inside another construct (LinkageSpecDecl /
6152     // ExportDecl) that does stop them from being considered "top-level".
6153     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6154       for (auto *M : OID->methods())
6155         EmitTopLevelDecl(M);
6156     }
6157 
6158     EmitTopLevelDecl(I);
6159   }
6160 }
6161 
6162 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6163 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6164   // Ignore dependent declarations.
6165   if (D->isTemplated())
6166     return;
6167 
6168   // Consteval function shouldn't be emitted.
6169   if (auto *FD = dyn_cast<FunctionDecl>(D))
6170     if (FD->isConsteval())
6171       return;
6172 
6173   switch (D->getKind()) {
6174   case Decl::CXXConversion:
6175   case Decl::CXXMethod:
6176   case Decl::Function:
6177     EmitGlobal(cast<FunctionDecl>(D));
6178     // Always provide some coverage mapping
6179     // even for the functions that aren't emitted.
6180     AddDeferredUnusedCoverageMapping(D);
6181     break;
6182 
6183   case Decl::CXXDeductionGuide:
6184     // Function-like, but does not result in code emission.
6185     break;
6186 
6187   case Decl::Var:
6188   case Decl::Decomposition:
6189   case Decl::VarTemplateSpecialization:
6190     EmitGlobal(cast<VarDecl>(D));
6191     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6192       for (auto *B : DD->bindings())
6193         if (auto *HD = B->getHoldingVar())
6194           EmitGlobal(HD);
6195     break;
6196 
6197   // Indirect fields from global anonymous structs and unions can be
6198   // ignored; only the actual variable requires IR gen support.
6199   case Decl::IndirectField:
6200     break;
6201 
6202   // C++ Decls
6203   case Decl::Namespace:
6204     EmitDeclContext(cast<NamespaceDecl>(D));
6205     break;
6206   case Decl::ClassTemplateSpecialization: {
6207     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6208     if (CGDebugInfo *DI = getModuleDebugInfo())
6209       if (Spec->getSpecializationKind() ==
6210               TSK_ExplicitInstantiationDefinition &&
6211           Spec->hasDefinition())
6212         DI->completeTemplateDefinition(*Spec);
6213   } [[fallthrough]];
6214   case Decl::CXXRecord: {
6215     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6216     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6217       if (CRD->hasDefinition())
6218         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6219       if (auto *ES = D->getASTContext().getExternalSource())
6220         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6221           DI->completeUnusedClass(*CRD);
6222     }
6223     // Emit any static data members, they may be definitions.
6224     for (auto *I : CRD->decls())
6225       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6226         EmitTopLevelDecl(I);
6227     break;
6228   }
6229     // No code generation needed.
6230   case Decl::UsingShadow:
6231   case Decl::ClassTemplate:
6232   case Decl::VarTemplate:
6233   case Decl::Concept:
6234   case Decl::VarTemplatePartialSpecialization:
6235   case Decl::FunctionTemplate:
6236   case Decl::TypeAliasTemplate:
6237   case Decl::Block:
6238   case Decl::Empty:
6239   case Decl::Binding:
6240     break;
6241   case Decl::Using:          // using X; [C++]
6242     if (CGDebugInfo *DI = getModuleDebugInfo())
6243         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6244     break;
6245   case Decl::UsingEnum: // using enum X; [C++]
6246     if (CGDebugInfo *DI = getModuleDebugInfo())
6247       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6248     break;
6249   case Decl::NamespaceAlias:
6250     if (CGDebugInfo *DI = getModuleDebugInfo())
6251         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6252     break;
6253   case Decl::UsingDirective: // using namespace X; [C++]
6254     if (CGDebugInfo *DI = getModuleDebugInfo())
6255       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6256     break;
6257   case Decl::CXXConstructor:
6258     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6259     break;
6260   case Decl::CXXDestructor:
6261     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6262     break;
6263 
6264   case Decl::StaticAssert:
6265     // Nothing to do.
6266     break;
6267 
6268   // Objective-C Decls
6269 
6270   // Forward declarations, no (immediate) code generation.
6271   case Decl::ObjCInterface:
6272   case Decl::ObjCCategory:
6273     break;
6274 
6275   case Decl::ObjCProtocol: {
6276     auto *Proto = cast<ObjCProtocolDecl>(D);
6277     if (Proto->isThisDeclarationADefinition())
6278       ObjCRuntime->GenerateProtocol(Proto);
6279     break;
6280   }
6281 
6282   case Decl::ObjCCategoryImpl:
6283     // Categories have properties but don't support synthesize so we
6284     // can ignore them here.
6285     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6286     break;
6287 
6288   case Decl::ObjCImplementation: {
6289     auto *OMD = cast<ObjCImplementationDecl>(D);
6290     EmitObjCPropertyImplementations(OMD);
6291     EmitObjCIvarInitializations(OMD);
6292     ObjCRuntime->GenerateClass(OMD);
6293     // Emit global variable debug information.
6294     if (CGDebugInfo *DI = getModuleDebugInfo())
6295       if (getCodeGenOpts().hasReducedDebugInfo())
6296         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6297             OMD->getClassInterface()), OMD->getLocation());
6298     break;
6299   }
6300   case Decl::ObjCMethod: {
6301     auto *OMD = cast<ObjCMethodDecl>(D);
6302     // If this is not a prototype, emit the body.
6303     if (OMD->getBody())
6304       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6305     break;
6306   }
6307   case Decl::ObjCCompatibleAlias:
6308     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6309     break;
6310 
6311   case Decl::PragmaComment: {
6312     const auto *PCD = cast<PragmaCommentDecl>(D);
6313     switch (PCD->getCommentKind()) {
6314     case PCK_Unknown:
6315       llvm_unreachable("unexpected pragma comment kind");
6316     case PCK_Linker:
6317       AppendLinkerOptions(PCD->getArg());
6318       break;
6319     case PCK_Lib:
6320         AddDependentLib(PCD->getArg());
6321       break;
6322     case PCK_Compiler:
6323     case PCK_ExeStr:
6324     case PCK_User:
6325       break; // We ignore all of these.
6326     }
6327     break;
6328   }
6329 
6330   case Decl::PragmaDetectMismatch: {
6331     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6332     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6333     break;
6334   }
6335 
6336   case Decl::LinkageSpec:
6337     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6338     break;
6339 
6340   case Decl::FileScopeAsm: {
6341     // File-scope asm is ignored during device-side CUDA compilation.
6342     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6343       break;
6344     // File-scope asm is ignored during device-side OpenMP compilation.
6345     if (LangOpts.OpenMPIsDevice)
6346       break;
6347     // File-scope asm is ignored during device-side SYCL compilation.
6348     if (LangOpts.SYCLIsDevice)
6349       break;
6350     auto *AD = cast<FileScopeAsmDecl>(D);
6351     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6352     break;
6353   }
6354 
6355   case Decl::Import: {
6356     auto *Import = cast<ImportDecl>(D);
6357 
6358     // If we've already imported this module, we're done.
6359     if (!ImportedModules.insert(Import->getImportedModule()))
6360       break;
6361 
6362     // Emit debug information for direct imports.
6363     if (!Import->getImportedOwningModule()) {
6364       if (CGDebugInfo *DI = getModuleDebugInfo())
6365         DI->EmitImportDecl(*Import);
6366     }
6367 
6368     // For C++ standard modules we are done - we will call the module
6369     // initializer for imported modules, and that will likewise call those for
6370     // any imports it has.
6371     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6372         !Import->getImportedOwningModule()->isModuleMapModule())
6373       break;
6374 
6375     // For clang C++ module map modules the initializers for sub-modules are
6376     // emitted here.
6377 
6378     // Find all of the submodules and emit the module initializers.
6379     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6380     SmallVector<clang::Module *, 16> Stack;
6381     Visited.insert(Import->getImportedModule());
6382     Stack.push_back(Import->getImportedModule());
6383 
6384     while (!Stack.empty()) {
6385       clang::Module *Mod = Stack.pop_back_val();
6386       if (!EmittedModuleInitializers.insert(Mod).second)
6387         continue;
6388 
6389       for (auto *D : Context.getModuleInitializers(Mod))
6390         EmitTopLevelDecl(D);
6391 
6392       // Visit the submodules of this module.
6393       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6394                                              SubEnd = Mod->submodule_end();
6395            Sub != SubEnd; ++Sub) {
6396         // Skip explicit children; they need to be explicitly imported to emit
6397         // the initializers.
6398         if ((*Sub)->IsExplicit)
6399           continue;
6400 
6401         if (Visited.insert(*Sub).second)
6402           Stack.push_back(*Sub);
6403       }
6404     }
6405     break;
6406   }
6407 
6408   case Decl::Export:
6409     EmitDeclContext(cast<ExportDecl>(D));
6410     break;
6411 
6412   case Decl::OMPThreadPrivate:
6413     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6414     break;
6415 
6416   case Decl::OMPAllocate:
6417     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6418     break;
6419 
6420   case Decl::OMPDeclareReduction:
6421     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6422     break;
6423 
6424   case Decl::OMPDeclareMapper:
6425     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6426     break;
6427 
6428   case Decl::OMPRequires:
6429     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6430     break;
6431 
6432   case Decl::Typedef:
6433   case Decl::TypeAlias: // using foo = bar; [C++11]
6434     if (CGDebugInfo *DI = getModuleDebugInfo())
6435       DI->EmitAndRetainType(
6436           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6437     break;
6438 
6439   case Decl::Record:
6440     if (CGDebugInfo *DI = getModuleDebugInfo())
6441       if (cast<RecordDecl>(D)->getDefinition())
6442         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6443     break;
6444 
6445   case Decl::Enum:
6446     if (CGDebugInfo *DI = getModuleDebugInfo())
6447       if (cast<EnumDecl>(D)->getDefinition())
6448         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6449     break;
6450 
6451   default:
6452     // Make sure we handled everything we should, every other kind is a
6453     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6454     // function. Need to recode Decl::Kind to do that easily.
6455     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6456     break;
6457   }
6458 }
6459 
6460 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6461   // Do we need to generate coverage mapping?
6462   if (!CodeGenOpts.CoverageMapping)
6463     return;
6464   switch (D->getKind()) {
6465   case Decl::CXXConversion:
6466   case Decl::CXXMethod:
6467   case Decl::Function:
6468   case Decl::ObjCMethod:
6469   case Decl::CXXConstructor:
6470   case Decl::CXXDestructor: {
6471     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6472       break;
6473     SourceManager &SM = getContext().getSourceManager();
6474     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6475       break;
6476     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6477     if (I == DeferredEmptyCoverageMappingDecls.end())
6478       DeferredEmptyCoverageMappingDecls[D] = true;
6479     break;
6480   }
6481   default:
6482     break;
6483   };
6484 }
6485 
6486 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6487   // Do we need to generate coverage mapping?
6488   if (!CodeGenOpts.CoverageMapping)
6489     return;
6490   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6491     if (Fn->isTemplateInstantiation())
6492       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6493   }
6494   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6495   if (I == DeferredEmptyCoverageMappingDecls.end())
6496     DeferredEmptyCoverageMappingDecls[D] = false;
6497   else
6498     I->second = false;
6499 }
6500 
6501 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6502   // We call takeVector() here to avoid use-after-free.
6503   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6504   // we deserialize function bodies to emit coverage info for them, and that
6505   // deserializes more declarations. How should we handle that case?
6506   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6507     if (!Entry.second)
6508       continue;
6509     const Decl *D = Entry.first;
6510     switch (D->getKind()) {
6511     case Decl::CXXConversion:
6512     case Decl::CXXMethod:
6513     case Decl::Function:
6514     case Decl::ObjCMethod: {
6515       CodeGenPGO PGO(*this);
6516       GlobalDecl GD(cast<FunctionDecl>(D));
6517       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6518                                   getFunctionLinkage(GD));
6519       break;
6520     }
6521     case Decl::CXXConstructor: {
6522       CodeGenPGO PGO(*this);
6523       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6524       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6525                                   getFunctionLinkage(GD));
6526       break;
6527     }
6528     case Decl::CXXDestructor: {
6529       CodeGenPGO PGO(*this);
6530       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6531       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6532                                   getFunctionLinkage(GD));
6533       break;
6534     }
6535     default:
6536       break;
6537     };
6538   }
6539 }
6540 
6541 void CodeGenModule::EmitMainVoidAlias() {
6542   // In order to transition away from "__original_main" gracefully, emit an
6543   // alias for "main" in the no-argument case so that libc can detect when
6544   // new-style no-argument main is in used.
6545   if (llvm::Function *F = getModule().getFunction("main")) {
6546     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6547         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6548       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6549       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6550     }
6551   }
6552 }
6553 
6554 /// Turns the given pointer into a constant.
6555 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6556                                           const void *Ptr) {
6557   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6558   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6559   return llvm::ConstantInt::get(i64, PtrInt);
6560 }
6561 
6562 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6563                                    llvm::NamedMDNode *&GlobalMetadata,
6564                                    GlobalDecl D,
6565                                    llvm::GlobalValue *Addr) {
6566   if (!GlobalMetadata)
6567     GlobalMetadata =
6568       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6569 
6570   // TODO: should we report variant information for ctors/dtors?
6571   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6572                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6573                                CGM.getLLVMContext(), D.getDecl()))};
6574   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6575 }
6576 
6577 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6578                                                  llvm::GlobalValue *CppFunc) {
6579   // Store the list of ifuncs we need to replace uses in.
6580   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6581   // List of ConstantExprs that we should be able to delete when we're done
6582   // here.
6583   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6584 
6585   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6586   if (Elem == CppFunc)
6587     return false;
6588 
6589   // First make sure that all users of this are ifuncs (or ifuncs via a
6590   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6591   // later.
6592   for (llvm::User *User : Elem->users()) {
6593     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6594     // ifunc directly. In any other case, just give up, as we don't know what we
6595     // could break by changing those.
6596     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6597       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6598         return false;
6599 
6600       for (llvm::User *CEUser : ConstExpr->users()) {
6601         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6602           IFuncs.push_back(IFunc);
6603         } else {
6604           return false;
6605         }
6606       }
6607       CEs.push_back(ConstExpr);
6608     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6609       IFuncs.push_back(IFunc);
6610     } else {
6611       // This user is one we don't know how to handle, so fail redirection. This
6612       // will result in an ifunc retaining a resolver name that will ultimately
6613       // fail to be resolved to a defined function.
6614       return false;
6615     }
6616   }
6617 
6618   // Now we know this is a valid case where we can do this alias replacement, we
6619   // need to remove all of the references to Elem (and the bitcasts!) so we can
6620   // delete it.
6621   for (llvm::GlobalIFunc *IFunc : IFuncs)
6622     IFunc->setResolver(nullptr);
6623   for (llvm::ConstantExpr *ConstExpr : CEs)
6624     ConstExpr->destroyConstant();
6625 
6626   // We should now be out of uses for the 'old' version of this function, so we
6627   // can erase it as well.
6628   Elem->eraseFromParent();
6629 
6630   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6631     // The type of the resolver is always just a function-type that returns the
6632     // type of the IFunc, so create that here. If the type of the actual
6633     // resolver doesn't match, it just gets bitcast to the right thing.
6634     auto *ResolverTy =
6635         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6636     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6637         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6638     IFunc->setResolver(Resolver);
6639   }
6640   return true;
6641 }
6642 
6643 /// For each function which is declared within an extern "C" region and marked
6644 /// as 'used', but has internal linkage, create an alias from the unmangled
6645 /// name to the mangled name if possible. People expect to be able to refer
6646 /// to such functions with an unmangled name from inline assembly within the
6647 /// same translation unit.
6648 void CodeGenModule::EmitStaticExternCAliases() {
6649   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6650     return;
6651   for (auto &I : StaticExternCValues) {
6652     IdentifierInfo *Name = I.first;
6653     llvm::GlobalValue *Val = I.second;
6654 
6655     // If Val is null, that implies there were multiple declarations that each
6656     // had a claim to the unmangled name. In this case, generation of the alias
6657     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6658     if (!Val)
6659       break;
6660 
6661     llvm::GlobalValue *ExistingElem =
6662         getModule().getNamedValue(Name->getName());
6663 
6664     // If there is either not something already by this name, or we were able to
6665     // replace all uses from IFuncs, create the alias.
6666     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6667       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6668   }
6669 }
6670 
6671 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6672                                              GlobalDecl &Result) const {
6673   auto Res = Manglings.find(MangledName);
6674   if (Res == Manglings.end())
6675     return false;
6676   Result = Res->getValue();
6677   return true;
6678 }
6679 
6680 /// Emits metadata nodes associating all the global values in the
6681 /// current module with the Decls they came from.  This is useful for
6682 /// projects using IR gen as a subroutine.
6683 ///
6684 /// Since there's currently no way to associate an MDNode directly
6685 /// with an llvm::GlobalValue, we create a global named metadata
6686 /// with the name 'clang.global.decl.ptrs'.
6687 void CodeGenModule::EmitDeclMetadata() {
6688   llvm::NamedMDNode *GlobalMetadata = nullptr;
6689 
6690   for (auto &I : MangledDeclNames) {
6691     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6692     // Some mangled names don't necessarily have an associated GlobalValue
6693     // in this module, e.g. if we mangled it for DebugInfo.
6694     if (Addr)
6695       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6696   }
6697 }
6698 
6699 /// Emits metadata nodes for all the local variables in the current
6700 /// function.
6701 void CodeGenFunction::EmitDeclMetadata() {
6702   if (LocalDeclMap.empty()) return;
6703 
6704   llvm::LLVMContext &Context = getLLVMContext();
6705 
6706   // Find the unique metadata ID for this name.
6707   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6708 
6709   llvm::NamedMDNode *GlobalMetadata = nullptr;
6710 
6711   for (auto &I : LocalDeclMap) {
6712     const Decl *D = I.first;
6713     llvm::Value *Addr = I.second.getPointer();
6714     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6715       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6716       Alloca->setMetadata(
6717           DeclPtrKind, llvm::MDNode::get(
6718                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6719     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6720       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6721       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6722     }
6723   }
6724 }
6725 
6726 void CodeGenModule::EmitVersionIdentMetadata() {
6727   llvm::NamedMDNode *IdentMetadata =
6728     TheModule.getOrInsertNamedMetadata("llvm.ident");
6729   std::string Version = getClangFullVersion();
6730   llvm::LLVMContext &Ctx = TheModule.getContext();
6731 
6732   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6733   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6734 }
6735 
6736 void CodeGenModule::EmitCommandLineMetadata() {
6737   llvm::NamedMDNode *CommandLineMetadata =
6738     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6739   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6740   llvm::LLVMContext &Ctx = TheModule.getContext();
6741 
6742   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6743   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6744 }
6745 
6746 void CodeGenModule::EmitCoverageFile() {
6747   if (getCodeGenOpts().CoverageDataFile.empty() &&
6748       getCodeGenOpts().CoverageNotesFile.empty())
6749     return;
6750 
6751   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6752   if (!CUNode)
6753     return;
6754 
6755   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6756   llvm::LLVMContext &Ctx = TheModule.getContext();
6757   auto *CoverageDataFile =
6758       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6759   auto *CoverageNotesFile =
6760       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6761   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6762     llvm::MDNode *CU = CUNode->getOperand(i);
6763     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6764     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6765   }
6766 }
6767 
6768 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6769                                                        bool ForEH) {
6770   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6771   // FIXME: should we even be calling this method if RTTI is disabled
6772   // and it's not for EH?
6773   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6774       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6775        getTriple().isNVPTX()))
6776     return llvm::Constant::getNullValue(Int8PtrTy);
6777 
6778   if (ForEH && Ty->isObjCObjectPointerType() &&
6779       LangOpts.ObjCRuntime.isGNUFamily())
6780     return ObjCRuntime->GetEHType(Ty);
6781 
6782   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6783 }
6784 
6785 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6786   // Do not emit threadprivates in simd-only mode.
6787   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6788     return;
6789   for (auto RefExpr : D->varlists()) {
6790     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6791     bool PerformInit =
6792         VD->getAnyInitializer() &&
6793         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6794                                                         /*ForRef=*/false);
6795 
6796     Address Addr(GetAddrOfGlobalVar(VD),
6797                  getTypes().ConvertTypeForMem(VD->getType()),
6798                  getContext().getDeclAlign(VD));
6799     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6800             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6801       CXXGlobalInits.push_back(InitFunction);
6802   }
6803 }
6804 
6805 llvm::Metadata *
6806 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6807                                             StringRef Suffix) {
6808   if (auto *FnType = T->getAs<FunctionProtoType>())
6809     T = getContext().getFunctionType(
6810         FnType->getReturnType(), FnType->getParamTypes(),
6811         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6812 
6813   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6814   if (InternalId)
6815     return InternalId;
6816 
6817   if (isExternallyVisible(T->getLinkage())) {
6818     std::string OutName;
6819     llvm::raw_string_ostream Out(OutName);
6820     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6821     Out << Suffix;
6822 
6823     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6824   } else {
6825     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6826                                            llvm::ArrayRef<llvm::Metadata *>());
6827   }
6828 
6829   return InternalId;
6830 }
6831 
6832 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6833   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6834 }
6835 
6836 llvm::Metadata *
6837 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6838   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6839 }
6840 
6841 // Generalize pointer types to a void pointer with the qualifiers of the
6842 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6843 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6844 // 'void *'.
6845 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6846   if (!Ty->isPointerType())
6847     return Ty;
6848 
6849   return Ctx.getPointerType(
6850       QualType(Ctx.VoidTy).withCVRQualifiers(
6851           Ty->getPointeeType().getCVRQualifiers()));
6852 }
6853 
6854 // Apply type generalization to a FunctionType's return and argument types
6855 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6856   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6857     SmallVector<QualType, 8> GeneralizedParams;
6858     for (auto &Param : FnType->param_types())
6859       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6860 
6861     return Ctx.getFunctionType(
6862         GeneralizeType(Ctx, FnType->getReturnType()),
6863         GeneralizedParams, FnType->getExtProtoInfo());
6864   }
6865 
6866   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6867     return Ctx.getFunctionNoProtoType(
6868         GeneralizeType(Ctx, FnType->getReturnType()));
6869 
6870   llvm_unreachable("Encountered unknown FunctionType");
6871 }
6872 
6873 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6874   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6875                                       GeneralizedMetadataIdMap, ".generalized");
6876 }
6877 
6878 /// Returns whether this module needs the "all-vtables" type identifier.
6879 bool CodeGenModule::NeedAllVtablesTypeId() const {
6880   // Returns true if at least one of vtable-based CFI checkers is enabled and
6881   // is not in the trapping mode.
6882   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6883            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6884           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6885            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6886           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6887            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6888           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6889            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6890 }
6891 
6892 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6893                                           CharUnits Offset,
6894                                           const CXXRecordDecl *RD) {
6895   llvm::Metadata *MD =
6896       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6897   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6898 
6899   if (CodeGenOpts.SanitizeCfiCrossDso)
6900     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6901       VTable->addTypeMetadata(Offset.getQuantity(),
6902                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6903 
6904   if (NeedAllVtablesTypeId()) {
6905     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6906     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6907   }
6908 }
6909 
6910 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6911   if (!SanStats)
6912     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6913 
6914   return *SanStats;
6915 }
6916 
6917 llvm::Value *
6918 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6919                                                   CodeGenFunction &CGF) {
6920   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6921   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6922   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6923   auto *Call = CGF.EmitRuntimeCall(
6924       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6925   return Call;
6926 }
6927 
6928 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6929     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6930   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6931                                  /* forPointeeType= */ true);
6932 }
6933 
6934 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6935                                                  LValueBaseInfo *BaseInfo,
6936                                                  TBAAAccessInfo *TBAAInfo,
6937                                                  bool forPointeeType) {
6938   if (TBAAInfo)
6939     *TBAAInfo = getTBAAAccessInfo(T);
6940 
6941   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6942   // that doesn't return the information we need to compute BaseInfo.
6943 
6944   // Honor alignment typedef attributes even on incomplete types.
6945   // We also honor them straight for C++ class types, even as pointees;
6946   // there's an expressivity gap here.
6947   if (auto TT = T->getAs<TypedefType>()) {
6948     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6949       if (BaseInfo)
6950         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6951       return getContext().toCharUnitsFromBits(Align);
6952     }
6953   }
6954 
6955   bool AlignForArray = T->isArrayType();
6956 
6957   // Analyze the base element type, so we don't get confused by incomplete
6958   // array types.
6959   T = getContext().getBaseElementType(T);
6960 
6961   if (T->isIncompleteType()) {
6962     // We could try to replicate the logic from
6963     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6964     // type is incomplete, so it's impossible to test. We could try to reuse
6965     // getTypeAlignIfKnown, but that doesn't return the information we need
6966     // to set BaseInfo.  So just ignore the possibility that the alignment is
6967     // greater than one.
6968     if (BaseInfo)
6969       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6970     return CharUnits::One();
6971   }
6972 
6973   if (BaseInfo)
6974     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6975 
6976   CharUnits Alignment;
6977   const CXXRecordDecl *RD;
6978   if (T.getQualifiers().hasUnaligned()) {
6979     Alignment = CharUnits::One();
6980   } else if (forPointeeType && !AlignForArray &&
6981              (RD = T->getAsCXXRecordDecl())) {
6982     // For C++ class pointees, we don't know whether we're pointing at a
6983     // base or a complete object, so we generally need to use the
6984     // non-virtual alignment.
6985     Alignment = getClassPointerAlignment(RD);
6986   } else {
6987     Alignment = getContext().getTypeAlignInChars(T);
6988   }
6989 
6990   // Cap to the global maximum type alignment unless the alignment
6991   // was somehow explicit on the type.
6992   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6993     if (Alignment.getQuantity() > MaxAlign &&
6994         !getContext().isAlignmentRequired(T))
6995       Alignment = CharUnits::fromQuantity(MaxAlign);
6996   }
6997   return Alignment;
6998 }
6999 
7000 bool CodeGenModule::stopAutoInit() {
7001   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7002   if (StopAfter) {
7003     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7004     // used
7005     if (NumAutoVarInit >= StopAfter) {
7006       return true;
7007     }
7008     if (!NumAutoVarInit) {
7009       unsigned DiagID = getDiags().getCustomDiagID(
7010           DiagnosticsEngine::Warning,
7011           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7012           "number of times ftrivial-auto-var-init=%1 gets applied.");
7013       getDiags().Report(DiagID)
7014           << StopAfter
7015           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7016                       LangOptions::TrivialAutoVarInitKind::Zero
7017                   ? "zero"
7018                   : "pattern");
7019     }
7020     ++NumAutoVarInit;
7021   }
7022   return false;
7023 }
7024 
7025 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7026                                                     const Decl *D) const {
7027   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7028   // postfix beginning with '.' since the symbol name can be demangled.
7029   if (LangOpts.HIP)
7030     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7031   else
7032     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7033 
7034   // If the CUID is not specified we try to generate a unique postfix.
7035   if (getLangOpts().CUID.empty()) {
7036     SourceManager &SM = getContext().getSourceManager();
7037     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7038     assert(PLoc.isValid() && "Source location is expected to be valid.");
7039 
7040     // Get the hash of the user defined macros.
7041     llvm::MD5 Hash;
7042     llvm::MD5::MD5Result Result;
7043     for (const auto &Arg : PreprocessorOpts.Macros)
7044       Hash.update(Arg.first);
7045     Hash.final(Result);
7046 
7047     // Get the UniqueID for the file containing the decl.
7048     llvm::sys::fs::UniqueID ID;
7049     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7050       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7051       assert(PLoc.isValid() && "Source location is expected to be valid.");
7052       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7053         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7054             << PLoc.getFilename() << EC.message();
7055     }
7056     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7057        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7058   } else {
7059     OS << getContext().getCUIDHash();
7060   }
7061 }
7062 
7063 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7064   assert(DeferredDeclsToEmit.empty() &&
7065          "Should have emitted all decls deferred to emit.");
7066   assert(NewBuilder->DeferredDecls.empty() &&
7067          "Newly created module should not have deferred decls");
7068   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7069 
7070   assert(NewBuilder->DeferredVTables.empty() &&
7071          "Newly created module should not have deferred vtables");
7072   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7073 
7074   assert(NewBuilder->MangledDeclNames.empty() &&
7075          "Newly created module should not have mangled decl names");
7076   assert(NewBuilder->Manglings.empty() &&
7077          "Newly created module should not have manglings");
7078   NewBuilder->Manglings = std::move(Manglings);
7079 
7080   assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied");
7081   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7082 
7083   NewBuilder->TBAA = std::move(TBAA);
7084 
7085   assert(NewBuilder->EmittedDeferredDecls.empty() &&
7086          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7087 
7088   NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7089 
7090   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7091 }
7092