1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/Mangler.h" 41 #include "llvm/Target/TargetData.h" 42 #include "llvm/Support/CallSite.h" 43 #include "llvm/Support/ErrorHandling.h" 44 using namespace clang; 45 using namespace CodeGen; 46 47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 48 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 49 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 50 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 51 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 52 } 53 54 llvm_unreachable("invalid C++ ABI kind"); 55 return *CreateItaniumCXXABI(CGM); 56 } 57 58 59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 60 llvm::Module &M, const llvm::TargetData &TD, 61 Diagnostic &diags) 62 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO), 66 TBAA(0), 67 VTables(*this), ObjCRuntime(0), DebugInfo(0), ARCData(0), RRData(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 NSConstantStringType(0), 70 VMContext(M.getContext()), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssign(0), BlockObjectDispose(0), 73 BlockDescriptorType(0), GenericBlockLiteralType(0) { 74 if (Features.ObjC1) 75 createObjCRuntime(); 76 77 // Enable TBAA unless it's suppressed. 78 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 79 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 80 ABI.getMangleContext()); 81 82 // If debug info or coverage generation is enabled, create the CGDebugInfo 83 // object. 84 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs || 85 CodeGenOpts.EmitGcovNotes) 86 DebugInfo = new CGDebugInfo(*this); 87 88 Block.GlobalUniqueCount = 0; 89 90 if (C.getLangOptions().ObjCAutoRefCount) 91 ARCData = new ARCEntrypoints(); 92 RRData = new RREntrypoints(); 93 94 // Initialize the type cache. 95 llvm::LLVMContext &LLVMContext = M.getContext(); 96 VoidTy = llvm::Type::getVoidTy(LLVMContext); 97 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 100 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 101 PointerAlignInBytes = 102 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 103 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 104 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 105 Int8PtrTy = Int8Ty->getPointerTo(0); 106 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 107 } 108 109 CodeGenModule::~CodeGenModule() { 110 delete ObjCRuntime; 111 delete &ABI; 112 delete TBAA; 113 delete DebugInfo; 114 delete ARCData; 115 delete RRData; 116 } 117 118 void CodeGenModule::createObjCRuntime() { 119 if (!Features.NeXTRuntime) 120 ObjCRuntime = CreateGNUObjCRuntime(*this); 121 else 122 ObjCRuntime = CreateMacObjCRuntime(*this); 123 } 124 125 void CodeGenModule::Release() { 126 EmitDeferred(); 127 EmitCXXGlobalInitFunc(); 128 EmitCXXGlobalDtorFunc(); 129 if (ObjCRuntime) 130 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 131 AddGlobalCtor(ObjCInitFunction); 132 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 133 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 134 EmitAnnotations(); 135 EmitLLVMUsed(); 136 137 SimplifyPersonality(); 138 139 if (getCodeGenOpts().EmitDeclMetadata) 140 EmitDeclMetadata(); 141 142 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 143 EmitCoverageFile(); 144 145 if (DebugInfo) 146 DebugInfo->finalize(); 147 } 148 149 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 150 // Make sure that this type is translated. 151 Types.UpdateCompletedType(TD); 152 if (DebugInfo) 153 DebugInfo->UpdateCompletedType(TD); 154 } 155 156 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 157 if (!TBAA) 158 return 0; 159 return TBAA->getTBAAInfo(QTy); 160 } 161 162 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 163 llvm::MDNode *TBAAInfo) { 164 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 165 } 166 167 bool CodeGenModule::isTargetDarwin() const { 168 return getContext().getTargetInfo().getTriple().isOSDarwin(); 169 } 170 171 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 172 unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error); 173 getDiags().Report(Context.getFullLoc(loc), diagID); 174 } 175 176 /// ErrorUnsupported - Print out an error that codegen doesn't support the 177 /// specified stmt yet. 178 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 179 bool OmitOnError) { 180 if (OmitOnError && getDiags().hasErrorOccurred()) 181 return; 182 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 183 "cannot compile this %0 yet"); 184 std::string Msg = Type; 185 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 186 << Msg << S->getSourceRange(); 187 } 188 189 /// ErrorUnsupported - Print out an error that codegen doesn't support the 190 /// specified decl yet. 191 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 192 bool OmitOnError) { 193 if (OmitOnError && getDiags().hasErrorOccurred()) 194 return; 195 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 196 "cannot compile this %0 yet"); 197 std::string Msg = Type; 198 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 199 } 200 201 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 202 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 203 } 204 205 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 206 const NamedDecl *D) const { 207 // Internal definitions always have default visibility. 208 if (GV->hasLocalLinkage()) { 209 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 210 return; 211 } 212 213 // Set visibility for definitions. 214 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 215 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 216 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 217 } 218 219 /// Set the symbol visibility of type information (vtable and RTTI) 220 /// associated with the given type. 221 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 222 const CXXRecordDecl *RD, 223 TypeVisibilityKind TVK) const { 224 setGlobalVisibility(GV, RD); 225 226 if (!CodeGenOpts.HiddenWeakVTables) 227 return; 228 229 // We never want to drop the visibility for RTTI names. 230 if (TVK == TVK_ForRTTIName) 231 return; 232 233 // We want to drop the visibility to hidden for weak type symbols. 234 // This isn't possible if there might be unresolved references 235 // elsewhere that rely on this symbol being visible. 236 237 // This should be kept roughly in sync with setThunkVisibility 238 // in CGVTables.cpp. 239 240 // Preconditions. 241 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 242 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 243 return; 244 245 // Don't override an explicit visibility attribute. 246 if (RD->getExplicitVisibility()) 247 return; 248 249 switch (RD->getTemplateSpecializationKind()) { 250 // We have to disable the optimization if this is an EI definition 251 // because there might be EI declarations in other shared objects. 252 case TSK_ExplicitInstantiationDefinition: 253 case TSK_ExplicitInstantiationDeclaration: 254 return; 255 256 // Every use of a non-template class's type information has to emit it. 257 case TSK_Undeclared: 258 break; 259 260 // In theory, implicit instantiations can ignore the possibility of 261 // an explicit instantiation declaration because there necessarily 262 // must be an EI definition somewhere with default visibility. In 263 // practice, it's possible to have an explicit instantiation for 264 // an arbitrary template class, and linkers aren't necessarily able 265 // to deal with mixed-visibility symbols. 266 case TSK_ExplicitSpecialization: 267 case TSK_ImplicitInstantiation: 268 if (!CodeGenOpts.HiddenWeakTemplateVTables) 269 return; 270 break; 271 } 272 273 // If there's a key function, there may be translation units 274 // that don't have the key function's definition. But ignore 275 // this if we're emitting RTTI under -fno-rtti. 276 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 277 if (Context.getKeyFunction(RD)) 278 return; 279 } 280 281 // Otherwise, drop the visibility to hidden. 282 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 283 GV->setUnnamedAddr(true); 284 } 285 286 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 287 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 288 289 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 290 if (!Str.empty()) 291 return Str; 292 293 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 294 IdentifierInfo *II = ND->getIdentifier(); 295 assert(II && "Attempt to mangle unnamed decl."); 296 297 Str = II->getName(); 298 return Str; 299 } 300 301 llvm::SmallString<256> Buffer; 302 llvm::raw_svector_ostream Out(Buffer); 303 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 304 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 305 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 306 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 307 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 308 getCXXABI().getMangleContext().mangleBlock(BD, Out); 309 else 310 getCXXABI().getMangleContext().mangleName(ND, Out); 311 312 // Allocate space for the mangled name. 313 Out.flush(); 314 size_t Length = Buffer.size(); 315 char *Name = MangledNamesAllocator.Allocate<char>(Length); 316 std::copy(Buffer.begin(), Buffer.end(), Name); 317 318 Str = StringRef(Name, Length); 319 320 return Str; 321 } 322 323 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 324 const BlockDecl *BD) { 325 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 326 const Decl *D = GD.getDecl(); 327 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 328 if (D == 0) 329 MangleCtx.mangleGlobalBlock(BD, Out); 330 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 331 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 332 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 333 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 334 else 335 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 336 } 337 338 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 339 return getModule().getNamedValue(Name); 340 } 341 342 /// AddGlobalCtor - Add a function to the list that will be called before 343 /// main() runs. 344 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 345 // FIXME: Type coercion of void()* types. 346 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 347 } 348 349 /// AddGlobalDtor - Add a function to the list that will be called 350 /// when the module is unloaded. 351 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 352 // FIXME: Type coercion of void()* types. 353 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 354 } 355 356 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 357 // Ctor function type is void()*. 358 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 359 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 360 361 // Get the type of a ctor entry, { i32, void ()* }. 362 llvm::StructType *CtorStructTy = 363 llvm::StructType::get(llvm::Type::getInt32Ty(VMContext), 364 llvm::PointerType::getUnqual(CtorFTy), NULL); 365 366 // Construct the constructor and destructor arrays. 367 std::vector<llvm::Constant*> Ctors; 368 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 369 std::vector<llvm::Constant*> S; 370 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 371 I->second, false)); 372 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 373 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 374 } 375 376 if (!Ctors.empty()) { 377 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 378 new llvm::GlobalVariable(TheModule, AT, false, 379 llvm::GlobalValue::AppendingLinkage, 380 llvm::ConstantArray::get(AT, Ctors), 381 GlobalName); 382 } 383 } 384 385 void CodeGenModule::EmitAnnotations() { 386 if (Annotations.empty()) 387 return; 388 389 // Create a new global variable for the ConstantStruct in the Module. 390 llvm::Constant *Array = 391 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 392 Annotations.size()), 393 Annotations); 394 llvm::GlobalValue *gv = 395 new llvm::GlobalVariable(TheModule, Array->getType(), false, 396 llvm::GlobalValue::AppendingLinkage, Array, 397 "llvm.global.annotations"); 398 gv->setSection("llvm.metadata"); 399 } 400 401 llvm::GlobalValue::LinkageTypes 402 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 403 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 404 405 if (Linkage == GVA_Internal) 406 return llvm::Function::InternalLinkage; 407 408 if (D->hasAttr<DLLExportAttr>()) 409 return llvm::Function::DLLExportLinkage; 410 411 if (D->hasAttr<WeakAttr>()) 412 return llvm::Function::WeakAnyLinkage; 413 414 // In C99 mode, 'inline' functions are guaranteed to have a strong 415 // definition somewhere else, so we can use available_externally linkage. 416 if (Linkage == GVA_C99Inline) 417 return llvm::Function::AvailableExternallyLinkage; 418 419 // In C++, the compiler has to emit a definition in every translation unit 420 // that references the function. We should use linkonce_odr because 421 // a) if all references in this translation unit are optimized away, we 422 // don't need to codegen it. b) if the function persists, it needs to be 423 // merged with other definitions. c) C++ has the ODR, so we know the 424 // definition is dependable. 425 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 426 return !Context.getLangOptions().AppleKext 427 ? llvm::Function::LinkOnceODRLinkage 428 : llvm::Function::InternalLinkage; 429 430 // An explicit instantiation of a template has weak linkage, since 431 // explicit instantiations can occur in multiple translation units 432 // and must all be equivalent. However, we are not allowed to 433 // throw away these explicit instantiations. 434 if (Linkage == GVA_ExplicitTemplateInstantiation) 435 return !Context.getLangOptions().AppleKext 436 ? llvm::Function::WeakODRLinkage 437 : llvm::Function::InternalLinkage; 438 439 // Otherwise, we have strong external linkage. 440 assert(Linkage == GVA_StrongExternal); 441 return llvm::Function::ExternalLinkage; 442 } 443 444 445 /// SetFunctionDefinitionAttributes - Set attributes for a global. 446 /// 447 /// FIXME: This is currently only done for aliases and functions, but not for 448 /// variables (these details are set in EmitGlobalVarDefinition for variables). 449 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 450 llvm::GlobalValue *GV) { 451 SetCommonAttributes(D, GV); 452 } 453 454 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 455 const CGFunctionInfo &Info, 456 llvm::Function *F) { 457 unsigned CallingConv; 458 AttributeListType AttributeList; 459 ConstructAttributeList(Info, D, AttributeList, CallingConv); 460 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 461 AttributeList.size())); 462 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 463 } 464 465 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 466 llvm::Function *F) { 467 if (CodeGenOpts.UnwindTables) 468 F->setHasUWTable(); 469 470 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 471 F->addFnAttr(llvm::Attribute::NoUnwind); 472 473 if (D->hasAttr<NakedAttr>()) { 474 // Naked implies noinline: we should not be inlining such functions. 475 F->addFnAttr(llvm::Attribute::Naked); 476 F->addFnAttr(llvm::Attribute::NoInline); 477 } 478 479 if (D->hasAttr<NoInlineAttr>()) 480 F->addFnAttr(llvm::Attribute::NoInline); 481 482 // (noinline wins over always_inline, and we can't specify both in IR) 483 if (D->hasAttr<AlwaysInlineAttr>() && 484 !F->hasFnAttr(llvm::Attribute::NoInline)) 485 F->addFnAttr(llvm::Attribute::AlwaysInline); 486 487 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 488 F->setUnnamedAddr(true); 489 490 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 491 F->addFnAttr(llvm::Attribute::StackProtect); 492 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 493 F->addFnAttr(llvm::Attribute::StackProtectReq); 494 495 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 496 if (alignment) 497 F->setAlignment(alignment); 498 499 // C++ ABI requires 2-byte alignment for member functions. 500 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 501 F->setAlignment(2); 502 } 503 504 void CodeGenModule::SetCommonAttributes(const Decl *D, 505 llvm::GlobalValue *GV) { 506 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 507 setGlobalVisibility(GV, ND); 508 else 509 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 510 511 if (D->hasAttr<UsedAttr>()) 512 AddUsedGlobal(GV); 513 514 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 515 GV->setSection(SA->getName()); 516 517 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 518 } 519 520 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 521 llvm::Function *F, 522 const CGFunctionInfo &FI) { 523 SetLLVMFunctionAttributes(D, FI, F); 524 SetLLVMFunctionAttributesForDefinition(D, F); 525 526 F->setLinkage(llvm::Function::InternalLinkage); 527 528 SetCommonAttributes(D, F); 529 } 530 531 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 532 llvm::Function *F, 533 bool IsIncompleteFunction) { 534 if (unsigned IID = F->getIntrinsicID()) { 535 // If this is an intrinsic function, set the function's attributes 536 // to the intrinsic's attributes. 537 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 538 return; 539 } 540 541 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 542 543 if (!IsIncompleteFunction) 544 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 545 546 // Only a few attributes are set on declarations; these may later be 547 // overridden by a definition. 548 549 if (FD->hasAttr<DLLImportAttr>()) { 550 F->setLinkage(llvm::Function::DLLImportLinkage); 551 } else if (FD->hasAttr<WeakAttr>() || 552 FD->isWeakImported()) { 553 // "extern_weak" is overloaded in LLVM; we probably should have 554 // separate linkage types for this. 555 F->setLinkage(llvm::Function::ExternalWeakLinkage); 556 } else { 557 F->setLinkage(llvm::Function::ExternalLinkage); 558 559 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 560 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 561 F->setVisibility(GetLLVMVisibility(LV.visibility())); 562 } 563 } 564 565 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 566 F->setSection(SA->getName()); 567 } 568 569 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 570 assert(!GV->isDeclaration() && 571 "Only globals with definition can force usage."); 572 LLVMUsed.push_back(GV); 573 } 574 575 void CodeGenModule::EmitLLVMUsed() { 576 // Don't create llvm.used if there is no need. 577 if (LLVMUsed.empty()) 578 return; 579 580 llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 581 582 // Convert LLVMUsed to what ConstantArray needs. 583 std::vector<llvm::Constant*> UsedArray; 584 UsedArray.resize(LLVMUsed.size()); 585 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 586 UsedArray[i] = 587 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 588 i8PTy); 589 } 590 591 if (UsedArray.empty()) 592 return; 593 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 594 595 llvm::GlobalVariable *GV = 596 new llvm::GlobalVariable(getModule(), ATy, false, 597 llvm::GlobalValue::AppendingLinkage, 598 llvm::ConstantArray::get(ATy, UsedArray), 599 "llvm.used"); 600 601 GV->setSection("llvm.metadata"); 602 } 603 604 void CodeGenModule::EmitDeferred() { 605 // Emit code for any potentially referenced deferred decls. Since a 606 // previously unused static decl may become used during the generation of code 607 // for a static function, iterate until no changes are made. 608 609 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 610 if (!DeferredVTables.empty()) { 611 const CXXRecordDecl *RD = DeferredVTables.back(); 612 DeferredVTables.pop_back(); 613 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 614 continue; 615 } 616 617 GlobalDecl D = DeferredDeclsToEmit.back(); 618 DeferredDeclsToEmit.pop_back(); 619 620 // Check to see if we've already emitted this. This is necessary 621 // for a couple of reasons: first, decls can end up in the 622 // deferred-decls queue multiple times, and second, decls can end 623 // up with definitions in unusual ways (e.g. by an extern inline 624 // function acquiring a strong function redefinition). Just 625 // ignore these cases. 626 // 627 // TODO: That said, looking this up multiple times is very wasteful. 628 StringRef Name = getMangledName(D); 629 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 630 assert(CGRef && "Deferred decl wasn't referenced?"); 631 632 if (!CGRef->isDeclaration()) 633 continue; 634 635 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 636 // purposes an alias counts as a definition. 637 if (isa<llvm::GlobalAlias>(CGRef)) 638 continue; 639 640 // Otherwise, emit the definition and move on to the next one. 641 EmitGlobalDefinition(D); 642 } 643 } 644 645 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 646 /// annotation information for a given GlobalValue. The annotation struct is 647 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 648 /// GlobalValue being annotated. The second field is the constant string 649 /// created from the AnnotateAttr's annotation. The third field is a constant 650 /// string containing the name of the translation unit. The fourth field is 651 /// the line number in the file of the annotated value declaration. 652 /// 653 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 654 /// appears to. 655 /// 656 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 657 const AnnotateAttr *AA, 658 unsigned LineNo) { 659 llvm::Module *M = &getModule(); 660 661 // get [N x i8] constants for the annotation string, and the filename string 662 // which are the 2nd and 3rd elements of the global annotation structure. 663 llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 664 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 665 AA->getAnnotation(), true); 666 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 667 M->getModuleIdentifier(), 668 true); 669 670 // Get the two global values corresponding to the ConstantArrays we just 671 // created to hold the bytes of the strings. 672 llvm::GlobalValue *annoGV = 673 new llvm::GlobalVariable(*M, anno->getType(), false, 674 llvm::GlobalValue::PrivateLinkage, anno, 675 GV->getName()); 676 // translation unit name string, emitted into the llvm.metadata section. 677 llvm::GlobalValue *unitGV = 678 new llvm::GlobalVariable(*M, unit->getType(), false, 679 llvm::GlobalValue::PrivateLinkage, unit, 680 ".str"); 681 unitGV->setUnnamedAddr(true); 682 683 // Create the ConstantStruct for the global annotation. 684 llvm::Constant *Fields[4] = { 685 llvm::ConstantExpr::getBitCast(GV, SBP), 686 llvm::ConstantExpr::getBitCast(annoGV, SBP), 687 llvm::ConstantExpr::getBitCast(unitGV, SBP), 688 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 689 }; 690 return llvm::ConstantStruct::getAnon(Fields); 691 } 692 693 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 694 // Never defer when EmitAllDecls is specified. 695 if (Features.EmitAllDecls) 696 return false; 697 698 return !getContext().DeclMustBeEmitted(Global); 699 } 700 701 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 702 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 703 assert(AA && "No alias?"); 704 705 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 706 707 // See if there is already something with the target's name in the module. 708 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 709 710 llvm::Constant *Aliasee; 711 if (isa<llvm::FunctionType>(DeclTy)) 712 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 713 /*ForVTable=*/false); 714 else 715 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 716 llvm::PointerType::getUnqual(DeclTy), 0); 717 if (!Entry) { 718 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 719 F->setLinkage(llvm::Function::ExternalWeakLinkage); 720 WeakRefReferences.insert(F); 721 } 722 723 return Aliasee; 724 } 725 726 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 727 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 728 729 // Weak references don't produce any output by themselves. 730 if (Global->hasAttr<WeakRefAttr>()) 731 return; 732 733 // If this is an alias definition (which otherwise looks like a declaration) 734 // emit it now. 735 if (Global->hasAttr<AliasAttr>()) 736 return EmitAliasDefinition(GD); 737 738 // Ignore declarations, they will be emitted on their first use. 739 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 740 // Forward declarations are emitted lazily on first use. 741 if (!FD->doesThisDeclarationHaveABody()) { 742 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 743 return; 744 745 const FunctionDecl *InlineDefinition = 0; 746 FD->getBody(InlineDefinition); 747 748 StringRef MangledName = getMangledName(GD); 749 llvm::StringMap<GlobalDecl>::iterator DDI = 750 DeferredDecls.find(MangledName); 751 if (DDI != DeferredDecls.end()) 752 DeferredDecls.erase(DDI); 753 EmitGlobalDefinition(InlineDefinition); 754 return; 755 } 756 } else { 757 const VarDecl *VD = cast<VarDecl>(Global); 758 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 759 760 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 761 return; 762 } 763 764 // Defer code generation when possible if this is a static definition, inline 765 // function etc. These we only want to emit if they are used. 766 if (!MayDeferGeneration(Global)) { 767 // Emit the definition if it can't be deferred. 768 EmitGlobalDefinition(GD); 769 return; 770 } 771 772 // If we're deferring emission of a C++ variable with an 773 // initializer, remember the order in which it appeared in the file. 774 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 775 cast<VarDecl>(Global)->hasInit()) { 776 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 777 CXXGlobalInits.push_back(0); 778 } 779 780 // If the value has already been used, add it directly to the 781 // DeferredDeclsToEmit list. 782 StringRef MangledName = getMangledName(GD); 783 if (GetGlobalValue(MangledName)) 784 DeferredDeclsToEmit.push_back(GD); 785 else { 786 // Otherwise, remember that we saw a deferred decl with this name. The 787 // first use of the mangled name will cause it to move into 788 // DeferredDeclsToEmit. 789 DeferredDecls[MangledName] = GD; 790 } 791 } 792 793 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 794 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 795 796 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 797 Context.getSourceManager(), 798 "Generating code for declaration"); 799 800 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 801 // At -O0, don't generate IR for functions with available_externally 802 // linkage. 803 if (CodeGenOpts.OptimizationLevel == 0 && 804 !Function->hasAttr<AlwaysInlineAttr>() && 805 getFunctionLinkage(Function) 806 == llvm::Function::AvailableExternallyLinkage) 807 return; 808 809 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 810 // Make sure to emit the definition(s) before we emit the thunks. 811 // This is necessary for the generation of certain thunks. 812 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 813 EmitCXXConstructor(CD, GD.getCtorType()); 814 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 815 EmitCXXDestructor(DD, GD.getDtorType()); 816 else 817 EmitGlobalFunctionDefinition(GD); 818 819 if (Method->isVirtual()) 820 getVTables().EmitThunks(GD); 821 822 return; 823 } 824 825 return EmitGlobalFunctionDefinition(GD); 826 } 827 828 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 829 return EmitGlobalVarDefinition(VD); 830 831 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 832 } 833 834 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 835 /// module, create and return an llvm Function with the specified type. If there 836 /// is something in the module with the specified name, return it potentially 837 /// bitcasted to the right type. 838 /// 839 /// If D is non-null, it specifies a decl that correspond to this. This is used 840 /// to set the attributes on the function when it is first created. 841 llvm::Constant * 842 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 843 llvm::Type *Ty, 844 GlobalDecl D, bool ForVTable, 845 llvm::Attributes ExtraAttrs) { 846 // Lookup the entry, lazily creating it if necessary. 847 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 848 if (Entry) { 849 if (WeakRefReferences.count(Entry)) { 850 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 851 if (FD && !FD->hasAttr<WeakAttr>()) 852 Entry->setLinkage(llvm::Function::ExternalLinkage); 853 854 WeakRefReferences.erase(Entry); 855 } 856 857 if (Entry->getType()->getElementType() == Ty) 858 return Entry; 859 860 // Make sure the result is of the correct type. 861 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 862 } 863 864 // This function doesn't have a complete type (for example, the return 865 // type is an incomplete struct). Use a fake type instead, and make 866 // sure not to try to set attributes. 867 bool IsIncompleteFunction = false; 868 869 llvm::FunctionType *FTy; 870 if (isa<llvm::FunctionType>(Ty)) { 871 FTy = cast<llvm::FunctionType>(Ty); 872 } else { 873 FTy = llvm::FunctionType::get(VoidTy, false); 874 IsIncompleteFunction = true; 875 } 876 877 llvm::Function *F = llvm::Function::Create(FTy, 878 llvm::Function::ExternalLinkage, 879 MangledName, &getModule()); 880 assert(F->getName() == MangledName && "name was uniqued!"); 881 if (D.getDecl()) 882 SetFunctionAttributes(D, F, IsIncompleteFunction); 883 if (ExtraAttrs != llvm::Attribute::None) 884 F->addFnAttr(ExtraAttrs); 885 886 // This is the first use or definition of a mangled name. If there is a 887 // deferred decl with this name, remember that we need to emit it at the end 888 // of the file. 889 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 890 if (DDI != DeferredDecls.end()) { 891 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 892 // list, and remove it from DeferredDecls (since we don't need it anymore). 893 DeferredDeclsToEmit.push_back(DDI->second); 894 DeferredDecls.erase(DDI); 895 896 // Otherwise, there are cases we have to worry about where we're 897 // using a declaration for which we must emit a definition but where 898 // we might not find a top-level definition: 899 // - member functions defined inline in their classes 900 // - friend functions defined inline in some class 901 // - special member functions with implicit definitions 902 // If we ever change our AST traversal to walk into class methods, 903 // this will be unnecessary. 904 // 905 // We also don't emit a definition for a function if it's going to be an entry 906 // in a vtable, unless it's already marked as used. 907 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 908 // Look for a declaration that's lexically in a record. 909 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 910 do { 911 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 912 if (FD->isImplicit() && !ForVTable) { 913 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 914 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 915 break; 916 } else if (FD->doesThisDeclarationHaveABody()) { 917 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 918 break; 919 } 920 } 921 FD = FD->getPreviousDeclaration(); 922 } while (FD); 923 } 924 925 // Make sure the result is of the requested type. 926 if (!IsIncompleteFunction) { 927 assert(F->getType()->getElementType() == Ty); 928 return F; 929 } 930 931 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 932 return llvm::ConstantExpr::getBitCast(F, PTy); 933 } 934 935 /// GetAddrOfFunction - Return the address of the given function. If Ty is 936 /// non-null, then this function will use the specified type if it has to 937 /// create it (this occurs when we see a definition of the function). 938 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 939 llvm::Type *Ty, 940 bool ForVTable) { 941 // If there was no specific requested type, just convert it now. 942 if (!Ty) 943 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 944 945 StringRef MangledName = getMangledName(GD); 946 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 947 } 948 949 /// CreateRuntimeFunction - Create a new runtime function with the specified 950 /// type and name. 951 llvm::Constant * 952 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 953 StringRef Name, 954 llvm::Attributes ExtraAttrs) { 955 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 956 ExtraAttrs); 957 } 958 959 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D, 960 bool ConstantInit) { 961 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 962 return false; 963 964 if (Context.getLangOptions().CPlusPlus) { 965 if (const RecordType *Record 966 = Context.getBaseElementType(D->getType())->getAs<RecordType>()) 967 return ConstantInit && 968 cast<CXXRecordDecl>(Record->getDecl())->isPOD() && 969 !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields(); 970 } 971 972 return true; 973 } 974 975 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 976 /// create and return an llvm GlobalVariable with the specified type. If there 977 /// is something in the module with the specified name, return it potentially 978 /// bitcasted to the right type. 979 /// 980 /// If D is non-null, it specifies a decl that correspond to this. This is used 981 /// to set the attributes on the global when it is first created. 982 llvm::Constant * 983 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 984 llvm::PointerType *Ty, 985 const VarDecl *D, 986 bool UnnamedAddr) { 987 // Lookup the entry, lazily creating it if necessary. 988 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 989 if (Entry) { 990 if (WeakRefReferences.count(Entry)) { 991 if (D && !D->hasAttr<WeakAttr>()) 992 Entry->setLinkage(llvm::Function::ExternalLinkage); 993 994 WeakRefReferences.erase(Entry); 995 } 996 997 if (UnnamedAddr) 998 Entry->setUnnamedAddr(true); 999 1000 if (Entry->getType() == Ty) 1001 return Entry; 1002 1003 // Make sure the result is of the correct type. 1004 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1005 } 1006 1007 // This is the first use or definition of a mangled name. If there is a 1008 // deferred decl with this name, remember that we need to emit it at the end 1009 // of the file. 1010 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1011 if (DDI != DeferredDecls.end()) { 1012 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1013 // list, and remove it from DeferredDecls (since we don't need it anymore). 1014 DeferredDeclsToEmit.push_back(DDI->second); 1015 DeferredDecls.erase(DDI); 1016 } 1017 1018 llvm::GlobalVariable *GV = 1019 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1020 llvm::GlobalValue::ExternalLinkage, 1021 0, MangledName, 0, 1022 false, Ty->getAddressSpace()); 1023 1024 // Handle things which are present even on external declarations. 1025 if (D) { 1026 // FIXME: This code is overly simple and should be merged with other global 1027 // handling. 1028 GV->setConstant(DeclIsConstantGlobal(Context, D, false)); 1029 1030 // Set linkage and visibility in case we never see a definition. 1031 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1032 if (LV.linkage() != ExternalLinkage) { 1033 // Don't set internal linkage on declarations. 1034 } else { 1035 if (D->hasAttr<DLLImportAttr>()) 1036 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1037 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1038 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1039 1040 // Set visibility on a declaration only if it's explicit. 1041 if (LV.visibilityExplicit()) 1042 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1043 } 1044 1045 GV->setThreadLocal(D->isThreadSpecified()); 1046 } 1047 1048 return GV; 1049 } 1050 1051 1052 llvm::GlobalVariable * 1053 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1054 llvm::Type *Ty, 1055 llvm::GlobalValue::LinkageTypes Linkage) { 1056 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1057 llvm::GlobalVariable *OldGV = 0; 1058 1059 1060 if (GV) { 1061 // Check if the variable has the right type. 1062 if (GV->getType()->getElementType() == Ty) 1063 return GV; 1064 1065 // Because C++ name mangling, the only way we can end up with an already 1066 // existing global with the same name is if it has been declared extern "C". 1067 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1068 OldGV = GV; 1069 } 1070 1071 // Create a new variable. 1072 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1073 Linkage, 0, Name); 1074 1075 if (OldGV) { 1076 // Replace occurrences of the old variable if needed. 1077 GV->takeName(OldGV); 1078 1079 if (!OldGV->use_empty()) { 1080 llvm::Constant *NewPtrForOldDecl = 1081 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1082 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1083 } 1084 1085 OldGV->eraseFromParent(); 1086 } 1087 1088 return GV; 1089 } 1090 1091 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1092 /// given global variable. If Ty is non-null and if the global doesn't exist, 1093 /// then it will be greated with the specified type instead of whatever the 1094 /// normal requested type would be. 1095 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1096 llvm::Type *Ty) { 1097 assert(D->hasGlobalStorage() && "Not a global variable"); 1098 QualType ASTTy = D->getType(); 1099 if (Ty == 0) 1100 Ty = getTypes().ConvertTypeForMem(ASTTy); 1101 1102 llvm::PointerType *PTy = 1103 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1104 1105 StringRef MangledName = getMangledName(D); 1106 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1107 } 1108 1109 /// CreateRuntimeVariable - Create a new runtime global variable with the 1110 /// specified type and name. 1111 llvm::Constant * 1112 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1113 StringRef Name) { 1114 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1115 true); 1116 } 1117 1118 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1119 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1120 1121 if (MayDeferGeneration(D)) { 1122 // If we have not seen a reference to this variable yet, place it 1123 // into the deferred declarations table to be emitted if needed 1124 // later. 1125 StringRef MangledName = getMangledName(D); 1126 if (!GetGlobalValue(MangledName)) { 1127 DeferredDecls[MangledName] = D; 1128 return; 1129 } 1130 } 1131 1132 // The tentative definition is the only definition. 1133 EmitGlobalVarDefinition(D); 1134 } 1135 1136 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1137 if (DefinitionRequired) 1138 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1139 } 1140 1141 llvm::GlobalVariable::LinkageTypes 1142 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1143 if (RD->getLinkage() != ExternalLinkage) 1144 return llvm::GlobalVariable::InternalLinkage; 1145 1146 if (const CXXMethodDecl *KeyFunction 1147 = RD->getASTContext().getKeyFunction(RD)) { 1148 // If this class has a key function, use that to determine the linkage of 1149 // the vtable. 1150 const FunctionDecl *Def = 0; 1151 if (KeyFunction->hasBody(Def)) 1152 KeyFunction = cast<CXXMethodDecl>(Def); 1153 1154 switch (KeyFunction->getTemplateSpecializationKind()) { 1155 case TSK_Undeclared: 1156 case TSK_ExplicitSpecialization: 1157 // When compiling with optimizations turned on, we emit all vtables, 1158 // even if the key function is not defined in the current translation 1159 // unit. If this is the case, use available_externally linkage. 1160 if (!Def && CodeGenOpts.OptimizationLevel) 1161 return llvm::GlobalVariable::AvailableExternallyLinkage; 1162 1163 if (KeyFunction->isInlined()) 1164 return !Context.getLangOptions().AppleKext ? 1165 llvm::GlobalVariable::LinkOnceODRLinkage : 1166 llvm::Function::InternalLinkage; 1167 1168 return llvm::GlobalVariable::ExternalLinkage; 1169 1170 case TSK_ImplicitInstantiation: 1171 return !Context.getLangOptions().AppleKext ? 1172 llvm::GlobalVariable::LinkOnceODRLinkage : 1173 llvm::Function::InternalLinkage; 1174 1175 case TSK_ExplicitInstantiationDefinition: 1176 return !Context.getLangOptions().AppleKext ? 1177 llvm::GlobalVariable::WeakODRLinkage : 1178 llvm::Function::InternalLinkage; 1179 1180 case TSK_ExplicitInstantiationDeclaration: 1181 // FIXME: Use available_externally linkage. However, this currently 1182 // breaks LLVM's build due to undefined symbols. 1183 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1184 return !Context.getLangOptions().AppleKext ? 1185 llvm::GlobalVariable::LinkOnceODRLinkage : 1186 llvm::Function::InternalLinkage; 1187 } 1188 } 1189 1190 if (Context.getLangOptions().AppleKext) 1191 return llvm::Function::InternalLinkage; 1192 1193 switch (RD->getTemplateSpecializationKind()) { 1194 case TSK_Undeclared: 1195 case TSK_ExplicitSpecialization: 1196 case TSK_ImplicitInstantiation: 1197 // FIXME: Use available_externally linkage. However, this currently 1198 // breaks LLVM's build due to undefined symbols. 1199 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1200 case TSK_ExplicitInstantiationDeclaration: 1201 return llvm::GlobalVariable::LinkOnceODRLinkage; 1202 1203 case TSK_ExplicitInstantiationDefinition: 1204 return llvm::GlobalVariable::WeakODRLinkage; 1205 } 1206 1207 // Silence GCC warning. 1208 return llvm::GlobalVariable::LinkOnceODRLinkage; 1209 } 1210 1211 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1212 return Context.toCharUnitsFromBits( 1213 TheTargetData.getTypeStoreSizeInBits(Ty)); 1214 } 1215 1216 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1217 llvm::Constant *Init = 0; 1218 QualType ASTTy = D->getType(); 1219 bool NonConstInit = false; 1220 1221 const Expr *InitExpr = D->getAnyInitializer(); 1222 1223 if (!InitExpr) { 1224 // This is a tentative definition; tentative definitions are 1225 // implicitly initialized with { 0 }. 1226 // 1227 // Note that tentative definitions are only emitted at the end of 1228 // a translation unit, so they should never have incomplete 1229 // type. In addition, EmitTentativeDefinition makes sure that we 1230 // never attempt to emit a tentative definition if a real one 1231 // exists. A use may still exists, however, so we still may need 1232 // to do a RAUW. 1233 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1234 Init = EmitNullConstant(D->getType()); 1235 } else { 1236 Init = EmitConstantExpr(InitExpr, D->getType()); 1237 if (!Init) { 1238 QualType T = InitExpr->getType(); 1239 if (D->getType()->isReferenceType()) 1240 T = D->getType(); 1241 1242 if (getLangOptions().CPlusPlus) { 1243 Init = EmitNullConstant(T); 1244 NonConstInit = true; 1245 } else { 1246 ErrorUnsupported(D, "static initializer"); 1247 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1248 } 1249 } else { 1250 // We don't need an initializer, so remove the entry for the delayed 1251 // initializer position (just in case this entry was delayed). 1252 if (getLangOptions().CPlusPlus) 1253 DelayedCXXInitPosition.erase(D); 1254 } 1255 } 1256 1257 llvm::Type* InitType = Init->getType(); 1258 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1259 1260 // Strip off a bitcast if we got one back. 1261 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1262 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1263 // all zero index gep. 1264 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1265 Entry = CE->getOperand(0); 1266 } 1267 1268 // Entry is now either a Function or GlobalVariable. 1269 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1270 1271 // We have a definition after a declaration with the wrong type. 1272 // We must make a new GlobalVariable* and update everything that used OldGV 1273 // (a declaration or tentative definition) with the new GlobalVariable* 1274 // (which will be a definition). 1275 // 1276 // This happens if there is a prototype for a global (e.g. 1277 // "extern int x[];") and then a definition of a different type (e.g. 1278 // "int x[10];"). This also happens when an initializer has a different type 1279 // from the type of the global (this happens with unions). 1280 if (GV == 0 || 1281 GV->getType()->getElementType() != InitType || 1282 GV->getType()->getAddressSpace() != 1283 getContext().getTargetAddressSpace(ASTTy)) { 1284 1285 // Move the old entry aside so that we'll create a new one. 1286 Entry->setName(StringRef()); 1287 1288 // Make a new global with the correct type, this is now guaranteed to work. 1289 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1290 1291 // Replace all uses of the old global with the new global 1292 llvm::Constant *NewPtrForOldDecl = 1293 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1294 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1295 1296 // Erase the old global, since it is no longer used. 1297 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1298 } 1299 1300 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1301 SourceManager &SM = Context.getSourceManager(); 1302 AddAnnotation(EmitAnnotateAttr( 1303 GV, AA, SM.getExpansionLineNumber(D->getLocation()))); 1304 } 1305 1306 GV->setInitializer(Init); 1307 1308 // If it is safe to mark the global 'constant', do so now. 1309 GV->setConstant(false); 1310 if (!NonConstInit && DeclIsConstantGlobal(Context, D, true)) 1311 GV->setConstant(true); 1312 1313 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1314 1315 // Set the llvm linkage type as appropriate. 1316 llvm::GlobalValue::LinkageTypes Linkage = 1317 GetLLVMLinkageVarDefinition(D, GV); 1318 GV->setLinkage(Linkage); 1319 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1320 // common vars aren't constant even if declared const. 1321 GV->setConstant(false); 1322 1323 SetCommonAttributes(D, GV); 1324 1325 // Emit the initializer function if necessary. 1326 if (NonConstInit) 1327 EmitCXXGlobalVarDeclInitFunc(D, GV); 1328 1329 // Emit global variable debug information. 1330 if (CGDebugInfo *DI = getModuleDebugInfo()) { 1331 DI->setLocation(D->getLocation()); 1332 DI->EmitGlobalVariable(GV, D); 1333 } 1334 } 1335 1336 llvm::GlobalValue::LinkageTypes 1337 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1338 llvm::GlobalVariable *GV) { 1339 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1340 if (Linkage == GVA_Internal) 1341 return llvm::Function::InternalLinkage; 1342 else if (D->hasAttr<DLLImportAttr>()) 1343 return llvm::Function::DLLImportLinkage; 1344 else if (D->hasAttr<DLLExportAttr>()) 1345 return llvm::Function::DLLExportLinkage; 1346 else if (D->hasAttr<WeakAttr>()) { 1347 if (GV->isConstant()) 1348 return llvm::GlobalVariable::WeakODRLinkage; 1349 else 1350 return llvm::GlobalVariable::WeakAnyLinkage; 1351 } else if (Linkage == GVA_TemplateInstantiation || 1352 Linkage == GVA_ExplicitTemplateInstantiation) 1353 return llvm::GlobalVariable::WeakODRLinkage; 1354 else if (!getLangOptions().CPlusPlus && 1355 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1356 D->getAttr<CommonAttr>()) && 1357 !D->hasExternalStorage() && !D->getInit() && 1358 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1359 !D->getAttr<WeakImportAttr>()) { 1360 // Thread local vars aren't considered common linkage. 1361 return llvm::GlobalVariable::CommonLinkage; 1362 } 1363 return llvm::GlobalVariable::ExternalLinkage; 1364 } 1365 1366 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1367 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1368 /// existing call uses of the old function in the module, this adjusts them to 1369 /// call the new function directly. 1370 /// 1371 /// This is not just a cleanup: the always_inline pass requires direct calls to 1372 /// functions to be able to inline them. If there is a bitcast in the way, it 1373 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1374 /// run at -O0. 1375 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1376 llvm::Function *NewFn) { 1377 // If we're redefining a global as a function, don't transform it. 1378 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1379 if (OldFn == 0) return; 1380 1381 llvm::Type *NewRetTy = NewFn->getReturnType(); 1382 SmallVector<llvm::Value*, 4> ArgList; 1383 1384 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1385 UI != E; ) { 1386 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1387 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1388 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1389 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1390 llvm::CallSite CS(CI); 1391 if (!CI || !CS.isCallee(I)) continue; 1392 1393 // If the return types don't match exactly, and if the call isn't dead, then 1394 // we can't transform this call. 1395 if (CI->getType() != NewRetTy && !CI->use_empty()) 1396 continue; 1397 1398 // Get the attribute list. 1399 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1400 llvm::AttrListPtr AttrList = CI->getAttributes(); 1401 1402 // Get any return attributes. 1403 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1404 1405 // Add the return attributes. 1406 if (RAttrs) 1407 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1408 1409 // If the function was passed too few arguments, don't transform. If extra 1410 // arguments were passed, we silently drop them. If any of the types 1411 // mismatch, we don't transform. 1412 unsigned ArgNo = 0; 1413 bool DontTransform = false; 1414 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1415 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1416 if (CS.arg_size() == ArgNo || 1417 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1418 DontTransform = true; 1419 break; 1420 } 1421 1422 // Add any parameter attributes. 1423 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1424 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1425 } 1426 if (DontTransform) 1427 continue; 1428 1429 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1430 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1431 1432 // Okay, we can transform this. Create the new call instruction and copy 1433 // over the required information. 1434 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1435 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1436 ArgList.clear(); 1437 if (!NewCall->getType()->isVoidTy()) 1438 NewCall->takeName(CI); 1439 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(), 1440 AttrVec.end())); 1441 NewCall->setCallingConv(CI->getCallingConv()); 1442 1443 // Finally, remove the old call, replacing any uses with the new one. 1444 if (!CI->use_empty()) 1445 CI->replaceAllUsesWith(NewCall); 1446 1447 // Copy debug location attached to CI. 1448 if (!CI->getDebugLoc().isUnknown()) 1449 NewCall->setDebugLoc(CI->getDebugLoc()); 1450 CI->eraseFromParent(); 1451 } 1452 } 1453 1454 1455 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1456 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1457 1458 // Compute the function info and LLVM type. 1459 const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD); 1460 bool variadic = false; 1461 if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>()) 1462 variadic = fpt->isVariadic(); 1463 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic); 1464 1465 // Get or create the prototype for the function. 1466 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1467 1468 // Strip off a bitcast if we got one back. 1469 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1470 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1471 Entry = CE->getOperand(0); 1472 } 1473 1474 1475 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1476 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1477 1478 // If the types mismatch then we have to rewrite the definition. 1479 assert(OldFn->isDeclaration() && 1480 "Shouldn't replace non-declaration"); 1481 1482 // F is the Function* for the one with the wrong type, we must make a new 1483 // Function* and update everything that used F (a declaration) with the new 1484 // Function* (which will be a definition). 1485 // 1486 // This happens if there is a prototype for a function 1487 // (e.g. "int f()") and then a definition of a different type 1488 // (e.g. "int f(int x)"). Move the old function aside so that it 1489 // doesn't interfere with GetAddrOfFunction. 1490 OldFn->setName(StringRef()); 1491 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1492 1493 // If this is an implementation of a function without a prototype, try to 1494 // replace any existing uses of the function (which may be calls) with uses 1495 // of the new function 1496 if (D->getType()->isFunctionNoProtoType()) { 1497 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1498 OldFn->removeDeadConstantUsers(); 1499 } 1500 1501 // Replace uses of F with the Function we will endow with a body. 1502 if (!Entry->use_empty()) { 1503 llvm::Constant *NewPtrForOldDecl = 1504 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1505 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1506 } 1507 1508 // Ok, delete the old function now, which is dead. 1509 OldFn->eraseFromParent(); 1510 1511 Entry = NewFn; 1512 } 1513 1514 // We need to set linkage and visibility on the function before 1515 // generating code for it because various parts of IR generation 1516 // want to propagate this information down (e.g. to local static 1517 // declarations). 1518 llvm::Function *Fn = cast<llvm::Function>(Entry); 1519 setFunctionLinkage(D, Fn); 1520 1521 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1522 setGlobalVisibility(Fn, D); 1523 1524 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1525 1526 SetFunctionDefinitionAttributes(D, Fn); 1527 SetLLVMFunctionAttributesForDefinition(D, Fn); 1528 1529 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1530 AddGlobalCtor(Fn, CA->getPriority()); 1531 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1532 AddGlobalDtor(Fn, DA->getPriority()); 1533 } 1534 1535 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1536 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1537 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1538 assert(AA && "Not an alias?"); 1539 1540 StringRef MangledName = getMangledName(GD); 1541 1542 // If there is a definition in the module, then it wins over the alias. 1543 // This is dubious, but allow it to be safe. Just ignore the alias. 1544 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1545 if (Entry && !Entry->isDeclaration()) 1546 return; 1547 1548 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1549 1550 // Create a reference to the named value. This ensures that it is emitted 1551 // if a deferred decl. 1552 llvm::Constant *Aliasee; 1553 if (isa<llvm::FunctionType>(DeclTy)) 1554 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1555 /*ForVTable=*/false); 1556 else 1557 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1558 llvm::PointerType::getUnqual(DeclTy), 0); 1559 1560 // Create the new alias itself, but don't set a name yet. 1561 llvm::GlobalValue *GA = 1562 new llvm::GlobalAlias(Aliasee->getType(), 1563 llvm::Function::ExternalLinkage, 1564 "", Aliasee, &getModule()); 1565 1566 if (Entry) { 1567 assert(Entry->isDeclaration()); 1568 1569 // If there is a declaration in the module, then we had an extern followed 1570 // by the alias, as in: 1571 // extern int test6(); 1572 // ... 1573 // int test6() __attribute__((alias("test7"))); 1574 // 1575 // Remove it and replace uses of it with the alias. 1576 GA->takeName(Entry); 1577 1578 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1579 Entry->getType())); 1580 Entry->eraseFromParent(); 1581 } else { 1582 GA->setName(MangledName); 1583 } 1584 1585 // Set attributes which are particular to an alias; this is a 1586 // specialization of the attributes which may be set on a global 1587 // variable/function. 1588 if (D->hasAttr<DLLExportAttr>()) { 1589 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1590 // The dllexport attribute is ignored for undefined symbols. 1591 if (FD->hasBody()) 1592 GA->setLinkage(llvm::Function::DLLExportLinkage); 1593 } else { 1594 GA->setLinkage(llvm::Function::DLLExportLinkage); 1595 } 1596 } else if (D->hasAttr<WeakAttr>() || 1597 D->hasAttr<WeakRefAttr>() || 1598 D->isWeakImported()) { 1599 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1600 } 1601 1602 SetCommonAttributes(D, GA); 1603 } 1604 1605 /// getBuiltinLibFunction - Given a builtin id for a function like 1606 /// "__builtin_fabsf", return a Function* for "fabsf". 1607 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1608 unsigned BuiltinID) { 1609 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1610 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1611 "isn't a lib fn"); 1612 1613 // Get the name, skip over the __builtin_ prefix (if necessary). 1614 StringRef Name; 1615 GlobalDecl D(FD); 1616 1617 // If the builtin has been declared explicitly with an assembler label, 1618 // use the mangled name. This differs from the plain label on platforms 1619 // that prefix labels. 1620 if (FD->hasAttr<AsmLabelAttr>()) 1621 Name = getMangledName(D); 1622 else if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1623 Name = Context.BuiltinInfo.GetName(BuiltinID) + 10; 1624 else 1625 Name = Context.BuiltinInfo.GetName(BuiltinID); 1626 1627 1628 llvm::FunctionType *Ty = 1629 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1630 1631 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); 1632 } 1633 1634 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1635 ArrayRef<llvm::Type*> Tys) { 1636 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1637 Tys); 1638 } 1639 1640 static llvm::StringMapEntry<llvm::Constant*> & 1641 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1642 const StringLiteral *Literal, 1643 bool TargetIsLSB, 1644 bool &IsUTF16, 1645 unsigned &StringLength) { 1646 StringRef String = Literal->getString(); 1647 unsigned NumBytes = String.size(); 1648 1649 // Check for simple case. 1650 if (!Literal->containsNonAsciiOrNull()) { 1651 StringLength = NumBytes; 1652 return Map.GetOrCreateValue(String); 1653 } 1654 1655 // Otherwise, convert the UTF8 literals into a byte string. 1656 SmallVector<UTF16, 128> ToBuf(NumBytes); 1657 const UTF8 *FromPtr = (UTF8 *)String.data(); 1658 UTF16 *ToPtr = &ToBuf[0]; 1659 1660 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1661 &ToPtr, ToPtr + NumBytes, 1662 strictConversion); 1663 1664 // ConvertUTF8toUTF16 returns the length in ToPtr. 1665 StringLength = ToPtr - &ToBuf[0]; 1666 1667 // Render the UTF-16 string into a byte array and convert to the target byte 1668 // order. 1669 // 1670 // FIXME: This isn't something we should need to do here. 1671 llvm::SmallString<128> AsBytes; 1672 AsBytes.reserve(StringLength * 2); 1673 for (unsigned i = 0; i != StringLength; ++i) { 1674 unsigned short Val = ToBuf[i]; 1675 if (TargetIsLSB) { 1676 AsBytes.push_back(Val & 0xFF); 1677 AsBytes.push_back(Val >> 8); 1678 } else { 1679 AsBytes.push_back(Val >> 8); 1680 AsBytes.push_back(Val & 0xFF); 1681 } 1682 } 1683 // Append one extra null character, the second is automatically added by our 1684 // caller. 1685 AsBytes.push_back(0); 1686 1687 IsUTF16 = true; 1688 return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size())); 1689 } 1690 1691 static llvm::StringMapEntry<llvm::Constant*> & 1692 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1693 const StringLiteral *Literal, 1694 unsigned &StringLength) 1695 { 1696 StringRef String = Literal->getString(); 1697 StringLength = String.size(); 1698 return Map.GetOrCreateValue(String); 1699 } 1700 1701 llvm::Constant * 1702 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1703 unsigned StringLength = 0; 1704 bool isUTF16 = false; 1705 llvm::StringMapEntry<llvm::Constant*> &Entry = 1706 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1707 getTargetData().isLittleEndian(), 1708 isUTF16, StringLength); 1709 1710 if (llvm::Constant *C = Entry.getValue()) 1711 return C; 1712 1713 llvm::Constant *Zero = 1714 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1715 llvm::Constant *Zeros[] = { Zero, Zero }; 1716 1717 // If we don't already have it, get __CFConstantStringClassReference. 1718 if (!CFConstantStringClassRef) { 1719 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1720 Ty = llvm::ArrayType::get(Ty, 0); 1721 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1722 "__CFConstantStringClassReference"); 1723 // Decay array -> ptr 1724 CFConstantStringClassRef = 1725 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1726 } 1727 1728 QualType CFTy = getContext().getCFConstantStringType(); 1729 1730 llvm::StructType *STy = 1731 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1732 1733 std::vector<llvm::Constant*> Fields(4); 1734 1735 // Class pointer. 1736 Fields[0] = CFConstantStringClassRef; 1737 1738 // Flags. 1739 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1740 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1741 llvm::ConstantInt::get(Ty, 0x07C8); 1742 1743 // String pointer. 1744 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1745 1746 llvm::GlobalValue::LinkageTypes Linkage; 1747 bool isConstant; 1748 if (isUTF16) { 1749 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1750 Linkage = llvm::GlobalValue::InternalLinkage; 1751 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1752 // does make plain ascii ones writable. 1753 isConstant = true; 1754 } else { 1755 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1756 // when using private linkage. It is not clear if this is a bug in ld 1757 // or a reasonable new restriction. 1758 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1759 isConstant = !Features.WritableStrings; 1760 } 1761 1762 llvm::GlobalVariable *GV = 1763 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1764 ".str"); 1765 GV->setUnnamedAddr(true); 1766 if (isUTF16) { 1767 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1768 GV->setAlignment(Align.getQuantity()); 1769 } else { 1770 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1771 GV->setAlignment(Align.getQuantity()); 1772 } 1773 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1774 1775 // String length. 1776 Ty = getTypes().ConvertType(getContext().LongTy); 1777 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1778 1779 // The struct. 1780 C = llvm::ConstantStruct::get(STy, Fields); 1781 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1782 llvm::GlobalVariable::PrivateLinkage, C, 1783 "_unnamed_cfstring_"); 1784 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 1785 GV->setSection(Sect); 1786 Entry.setValue(GV); 1787 1788 return GV; 1789 } 1790 1791 static RecordDecl * 1792 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 1793 DeclContext *DC, IdentifierInfo *Id) { 1794 SourceLocation Loc; 1795 if (Ctx.getLangOptions().CPlusPlus) 1796 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1797 else 1798 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1799 } 1800 1801 llvm::Constant * 1802 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1803 unsigned StringLength = 0; 1804 llvm::StringMapEntry<llvm::Constant*> &Entry = 1805 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 1806 1807 if (llvm::Constant *C = Entry.getValue()) 1808 return C; 1809 1810 llvm::Constant *Zero = 1811 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1812 llvm::Constant *Zeros[] = { Zero, Zero }; 1813 1814 // If we don't already have it, get _NSConstantStringClassReference. 1815 if (!ConstantStringClassRef) { 1816 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1817 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1818 llvm::Constant *GV; 1819 if (Features.ObjCNonFragileABI) { 1820 std::string str = 1821 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1822 : "OBJC_CLASS_$_" + StringClass; 1823 GV = getObjCRuntime().GetClassGlobal(str); 1824 // Make sure the result is of the correct type. 1825 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1826 ConstantStringClassRef = 1827 llvm::ConstantExpr::getBitCast(GV, PTy); 1828 } else { 1829 std::string str = 1830 StringClass.empty() ? "_NSConstantStringClassReference" 1831 : "_" + StringClass + "ClassReference"; 1832 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 1833 GV = CreateRuntimeVariable(PTy, str); 1834 // Decay array -> ptr 1835 ConstantStringClassRef = 1836 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1837 } 1838 } 1839 1840 if (!NSConstantStringType) { 1841 // Construct the type for a constant NSString. 1842 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 1843 Context.getTranslationUnitDecl(), 1844 &Context.Idents.get("__builtin_NSString")); 1845 D->startDefinition(); 1846 1847 QualType FieldTypes[3]; 1848 1849 // const int *isa; 1850 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 1851 // const char *str; 1852 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 1853 // unsigned int length; 1854 FieldTypes[2] = Context.UnsignedIntTy; 1855 1856 // Create fields 1857 for (unsigned i = 0; i < 3; ++i) { 1858 FieldDecl *Field = FieldDecl::Create(Context, D, 1859 SourceLocation(), 1860 SourceLocation(), 0, 1861 FieldTypes[i], /*TInfo=*/0, 1862 /*BitWidth=*/0, 1863 /*Mutable=*/false, 1864 /*HasInit=*/false); 1865 Field->setAccess(AS_public); 1866 D->addDecl(Field); 1867 } 1868 1869 D->completeDefinition(); 1870 QualType NSTy = Context.getTagDeclType(D); 1871 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1872 } 1873 1874 std::vector<llvm::Constant*> Fields(3); 1875 1876 // Class pointer. 1877 Fields[0] = ConstantStringClassRef; 1878 1879 // String pointer. 1880 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1881 1882 llvm::GlobalValue::LinkageTypes Linkage; 1883 bool isConstant; 1884 Linkage = llvm::GlobalValue::PrivateLinkage; 1885 isConstant = !Features.WritableStrings; 1886 1887 llvm::GlobalVariable *GV = 1888 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1889 ".str"); 1890 GV->setUnnamedAddr(true); 1891 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1892 GV->setAlignment(Align.getQuantity()); 1893 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1894 1895 // String length. 1896 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1897 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1898 1899 // The struct. 1900 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 1901 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1902 llvm::GlobalVariable::PrivateLinkage, C, 1903 "_unnamed_nsstring_"); 1904 // FIXME. Fix section. 1905 if (const char *Sect = 1906 Features.ObjCNonFragileABI 1907 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 1908 : getContext().getTargetInfo().getNSStringSection()) 1909 GV->setSection(Sect); 1910 Entry.setValue(GV); 1911 1912 return GV; 1913 } 1914 1915 QualType CodeGenModule::getObjCFastEnumerationStateType() { 1916 if (ObjCFastEnumerationStateType.isNull()) { 1917 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 1918 Context.getTranslationUnitDecl(), 1919 &Context.Idents.get("__objcFastEnumerationState")); 1920 D->startDefinition(); 1921 1922 QualType FieldTypes[] = { 1923 Context.UnsignedLongTy, 1924 Context.getPointerType(Context.getObjCIdType()), 1925 Context.getPointerType(Context.UnsignedLongTy), 1926 Context.getConstantArrayType(Context.UnsignedLongTy, 1927 llvm::APInt(32, 5), ArrayType::Normal, 0) 1928 }; 1929 1930 for (size_t i = 0; i < 4; ++i) { 1931 FieldDecl *Field = FieldDecl::Create(Context, 1932 D, 1933 SourceLocation(), 1934 SourceLocation(), 0, 1935 FieldTypes[i], /*TInfo=*/0, 1936 /*BitWidth=*/0, 1937 /*Mutable=*/false, 1938 /*HasInit=*/false); 1939 Field->setAccess(AS_public); 1940 D->addDecl(Field); 1941 } 1942 1943 D->completeDefinition(); 1944 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 1945 } 1946 1947 return ObjCFastEnumerationStateType; 1948 } 1949 1950 /// GetStringForStringLiteral - Return the appropriate bytes for a 1951 /// string literal, properly padded to match the literal type. 1952 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1953 const ASTContext &Context = getContext(); 1954 const ConstantArrayType *CAT = 1955 Context.getAsConstantArrayType(E->getType()); 1956 assert(CAT && "String isn't pointer or array!"); 1957 1958 // Resize the string to the right size. 1959 uint64_t RealLen = CAT->getSize().getZExtValue(); 1960 1961 switch (E->getKind()) { 1962 case StringLiteral::Ascii: 1963 case StringLiteral::UTF8: 1964 break; 1965 case StringLiteral::Wide: 1966 RealLen *= Context.getTargetInfo().getWCharWidth() / Context.getCharWidth(); 1967 break; 1968 case StringLiteral::UTF16: 1969 RealLen *= Context.getTargetInfo().getChar16Width() / Context.getCharWidth(); 1970 break; 1971 case StringLiteral::UTF32: 1972 RealLen *= Context.getTargetInfo().getChar32Width() / Context.getCharWidth(); 1973 break; 1974 } 1975 1976 std::string Str = E->getString().str(); 1977 Str.resize(RealLen, '\0'); 1978 1979 return Str; 1980 } 1981 1982 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1983 /// constant array for the given string literal. 1984 llvm::Constant * 1985 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1986 // FIXME: This can be more efficient. 1987 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1988 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 1989 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S), 1990 /* GlobalName */ 0, 1991 Align.getQuantity()); 1992 if (S->isWide() || S->isUTF16() || S->isUTF32()) { 1993 llvm::Type *DestTy = 1994 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1995 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1996 } 1997 return C; 1998 } 1999 2000 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2001 /// array for the given ObjCEncodeExpr node. 2002 llvm::Constant * 2003 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2004 std::string Str; 2005 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2006 2007 return GetAddrOfConstantCString(Str); 2008 } 2009 2010 2011 /// GenerateWritableString -- Creates storage for a string literal. 2012 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2013 bool constant, 2014 CodeGenModule &CGM, 2015 const char *GlobalName, 2016 unsigned Alignment) { 2017 // Create Constant for this string literal. Don't add a '\0'. 2018 llvm::Constant *C = 2019 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 2020 2021 // Create a global variable for this string 2022 llvm::GlobalVariable *GV = 2023 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2024 llvm::GlobalValue::PrivateLinkage, 2025 C, GlobalName); 2026 GV->setAlignment(Alignment); 2027 GV->setUnnamedAddr(true); 2028 return GV; 2029 } 2030 2031 /// GetAddrOfConstantString - Returns a pointer to a character array 2032 /// containing the literal. This contents are exactly that of the 2033 /// given string, i.e. it will not be null terminated automatically; 2034 /// see GetAddrOfConstantCString. Note that whether the result is 2035 /// actually a pointer to an LLVM constant depends on 2036 /// Feature.WriteableStrings. 2037 /// 2038 /// The result has pointer to array type. 2039 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2040 const char *GlobalName, 2041 unsigned Alignment) { 2042 bool IsConstant = !Features.WritableStrings; 2043 2044 // Get the default prefix if a name wasn't specified. 2045 if (!GlobalName) 2046 GlobalName = ".str"; 2047 2048 // Don't share any string literals if strings aren't constant. 2049 if (!IsConstant) 2050 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2051 2052 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2053 ConstantStringMap.GetOrCreateValue(Str); 2054 2055 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2056 if (Alignment > GV->getAlignment()) { 2057 GV->setAlignment(Alignment); 2058 } 2059 return GV; 2060 } 2061 2062 // Create a global variable for this. 2063 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, Alignment); 2064 Entry.setValue(GV); 2065 return GV; 2066 } 2067 2068 /// GetAddrOfConstantCString - Returns a pointer to a character 2069 /// array containing the literal and a terminating '\0' 2070 /// character. The result has pointer to array type. 2071 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2072 const char *GlobalName, 2073 unsigned Alignment) { 2074 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2075 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2076 } 2077 2078 /// EmitObjCPropertyImplementations - Emit information for synthesized 2079 /// properties for an implementation. 2080 void CodeGenModule::EmitObjCPropertyImplementations(const 2081 ObjCImplementationDecl *D) { 2082 for (ObjCImplementationDecl::propimpl_iterator 2083 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2084 ObjCPropertyImplDecl *PID = *i; 2085 2086 // Dynamic is just for type-checking. 2087 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2088 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2089 2090 // Determine which methods need to be implemented, some may have 2091 // been overridden. Note that ::isSynthesized is not the method 2092 // we want, that just indicates if the decl came from a 2093 // property. What we want to know is if the method is defined in 2094 // this implementation. 2095 if (!D->getInstanceMethod(PD->getGetterName())) 2096 CodeGenFunction(*this).GenerateObjCGetter( 2097 const_cast<ObjCImplementationDecl *>(D), PID); 2098 if (!PD->isReadOnly() && 2099 !D->getInstanceMethod(PD->getSetterName())) 2100 CodeGenFunction(*this).GenerateObjCSetter( 2101 const_cast<ObjCImplementationDecl *>(D), PID); 2102 } 2103 } 2104 } 2105 2106 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2107 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2108 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2109 ivar; ivar = ivar->getNextIvar()) 2110 if (ivar->getType().isDestructedType()) 2111 return true; 2112 2113 return false; 2114 } 2115 2116 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2117 /// for an implementation. 2118 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2119 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2120 if (needsDestructMethod(D)) { 2121 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2122 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2123 ObjCMethodDecl *DTORMethod = 2124 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2125 cxxSelector, getContext().VoidTy, 0, D, 2126 /*isInstance=*/true, /*isVariadic=*/false, 2127 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2128 /*isDefined=*/false, ObjCMethodDecl::Required); 2129 D->addInstanceMethod(DTORMethod); 2130 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2131 D->setHasCXXStructors(true); 2132 } 2133 2134 // If the implementation doesn't have any ivar initializers, we don't need 2135 // a .cxx_construct. 2136 if (D->getNumIvarInitializers() == 0) 2137 return; 2138 2139 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2140 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2141 // The constructor returns 'self'. 2142 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2143 D->getLocation(), 2144 D->getLocation(), cxxSelector, 2145 getContext().getObjCIdType(), 0, 2146 D, /*isInstance=*/true, 2147 /*isVariadic=*/false, 2148 /*isSynthesized=*/true, 2149 /*isImplicitlyDeclared=*/true, 2150 /*isDefined=*/false, 2151 ObjCMethodDecl::Required); 2152 D->addInstanceMethod(CTORMethod); 2153 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2154 D->setHasCXXStructors(true); 2155 } 2156 2157 /// EmitNamespace - Emit all declarations in a namespace. 2158 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2159 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2160 I != E; ++I) 2161 EmitTopLevelDecl(*I); 2162 } 2163 2164 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2165 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2166 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2167 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2168 ErrorUnsupported(LSD, "linkage spec"); 2169 return; 2170 } 2171 2172 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2173 I != E; ++I) 2174 EmitTopLevelDecl(*I); 2175 } 2176 2177 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2178 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2179 // If an error has occurred, stop code generation, but continue 2180 // parsing and semantic analysis (to ensure all warnings and errors 2181 // are emitted). 2182 if (Diags.hasErrorOccurred()) 2183 return; 2184 2185 // Ignore dependent declarations. 2186 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2187 return; 2188 2189 switch (D->getKind()) { 2190 case Decl::CXXConversion: 2191 case Decl::CXXMethod: 2192 case Decl::Function: 2193 // Skip function templates 2194 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2195 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2196 return; 2197 2198 EmitGlobal(cast<FunctionDecl>(D)); 2199 break; 2200 2201 case Decl::Var: 2202 EmitGlobal(cast<VarDecl>(D)); 2203 break; 2204 2205 // Indirect fields from global anonymous structs and unions can be 2206 // ignored; only the actual variable requires IR gen support. 2207 case Decl::IndirectField: 2208 break; 2209 2210 // C++ Decls 2211 case Decl::Namespace: 2212 EmitNamespace(cast<NamespaceDecl>(D)); 2213 break; 2214 // No code generation needed. 2215 case Decl::UsingShadow: 2216 case Decl::Using: 2217 case Decl::UsingDirective: 2218 case Decl::ClassTemplate: 2219 case Decl::FunctionTemplate: 2220 case Decl::TypeAliasTemplate: 2221 case Decl::NamespaceAlias: 2222 case Decl::Block: 2223 break; 2224 case Decl::CXXConstructor: 2225 // Skip function templates 2226 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2227 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2228 return; 2229 2230 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2231 break; 2232 case Decl::CXXDestructor: 2233 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2234 return; 2235 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2236 break; 2237 2238 case Decl::StaticAssert: 2239 // Nothing to do. 2240 break; 2241 2242 // Objective-C Decls 2243 2244 // Forward declarations, no (immediate) code generation. 2245 case Decl::ObjCClass: 2246 case Decl::ObjCForwardProtocol: 2247 case Decl::ObjCInterface: 2248 break; 2249 2250 case Decl::ObjCCategory: { 2251 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2252 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2253 Context.ResetObjCLayout(CD->getClassInterface()); 2254 break; 2255 } 2256 2257 case Decl::ObjCProtocol: 2258 ObjCRuntime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2259 break; 2260 2261 case Decl::ObjCCategoryImpl: 2262 // Categories have properties but don't support synthesize so we 2263 // can ignore them here. 2264 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2265 break; 2266 2267 case Decl::ObjCImplementation: { 2268 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2269 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2270 Context.ResetObjCLayout(OMD->getClassInterface()); 2271 EmitObjCPropertyImplementations(OMD); 2272 EmitObjCIvarInitializations(OMD); 2273 ObjCRuntime->GenerateClass(OMD); 2274 break; 2275 } 2276 case Decl::ObjCMethod: { 2277 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2278 // If this is not a prototype, emit the body. 2279 if (OMD->getBody()) 2280 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2281 break; 2282 } 2283 case Decl::ObjCCompatibleAlias: 2284 // compatibility-alias is a directive and has no code gen. 2285 break; 2286 2287 case Decl::LinkageSpec: 2288 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2289 break; 2290 2291 case Decl::FileScopeAsm: { 2292 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2293 StringRef AsmString = AD->getAsmString()->getString(); 2294 2295 const std::string &S = getModule().getModuleInlineAsm(); 2296 if (S.empty()) 2297 getModule().setModuleInlineAsm(AsmString); 2298 else if (*--S.end() == '\n') 2299 getModule().setModuleInlineAsm(S + AsmString.str()); 2300 else 2301 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2302 break; 2303 } 2304 2305 default: 2306 // Make sure we handled everything we should, every other kind is a 2307 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2308 // function. Need to recode Decl::Kind to do that easily. 2309 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2310 } 2311 } 2312 2313 /// Turns the given pointer into a constant. 2314 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2315 const void *Ptr) { 2316 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2317 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2318 return llvm::ConstantInt::get(i64, PtrInt); 2319 } 2320 2321 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2322 llvm::NamedMDNode *&GlobalMetadata, 2323 GlobalDecl D, 2324 llvm::GlobalValue *Addr) { 2325 if (!GlobalMetadata) 2326 GlobalMetadata = 2327 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2328 2329 // TODO: should we report variant information for ctors/dtors? 2330 llvm::Value *Ops[] = { 2331 Addr, 2332 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2333 }; 2334 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2335 } 2336 2337 /// Emits metadata nodes associating all the global values in the 2338 /// current module with the Decls they came from. This is useful for 2339 /// projects using IR gen as a subroutine. 2340 /// 2341 /// Since there's currently no way to associate an MDNode directly 2342 /// with an llvm::GlobalValue, we create a global named metadata 2343 /// with the name 'clang.global.decl.ptrs'. 2344 void CodeGenModule::EmitDeclMetadata() { 2345 llvm::NamedMDNode *GlobalMetadata = 0; 2346 2347 // StaticLocalDeclMap 2348 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2349 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2350 I != E; ++I) { 2351 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2352 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2353 } 2354 } 2355 2356 /// Emits metadata nodes for all the local variables in the current 2357 /// function. 2358 void CodeGenFunction::EmitDeclMetadata() { 2359 if (LocalDeclMap.empty()) return; 2360 2361 llvm::LLVMContext &Context = getLLVMContext(); 2362 2363 // Find the unique metadata ID for this name. 2364 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2365 2366 llvm::NamedMDNode *GlobalMetadata = 0; 2367 2368 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2369 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2370 const Decl *D = I->first; 2371 llvm::Value *Addr = I->second; 2372 2373 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2374 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2375 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2376 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2377 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2378 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2379 } 2380 } 2381 } 2382 2383 void CodeGenModule::EmitCoverageFile() { 2384 if (!getCodeGenOpts().CoverageFile.empty()) { 2385 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2386 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2387 llvm::LLVMContext &Ctx = TheModule.getContext(); 2388 llvm::MDString *CoverageFile = 2389 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2390 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2391 llvm::MDNode *CU = CUNode->getOperand(i); 2392 llvm::Value *node[] = { CoverageFile, CU }; 2393 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2394 GCov->addOperand(N); 2395 } 2396 } 2397 } 2398 } 2399 2400 ///@name Custom Runtime Function Interfaces 2401 ///@{ 2402 // 2403 // FIXME: These can be eliminated once we can have clients just get the required 2404 // AST nodes from the builtin tables. 2405 2406 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2407 if (BlockObjectDispose) 2408 return BlockObjectDispose; 2409 2410 DeclarationName DName(&Context.Idents.get("_Block_object_dispose")); 2411 DeclContext::lookup_result 2412 Lookup = Context.getTranslationUnitDecl()->lookup(DName); 2413 2414 // If there is an explicit decl, use that. 2415 if (Lookup.first != Lookup.second) 2416 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*Lookup.first)) 2417 return BlockObjectDispose = 2418 GetAddrOfFunction(FD, getTypes().GetFunctionType(FD)); 2419 2420 // Otherwise construct the function by hand. 2421 llvm::Type *args[] = { Int8PtrTy, Int32Ty }; 2422 llvm::FunctionType *fty 2423 = llvm::FunctionType::get(VoidTy, args, false); 2424 return BlockObjectDispose = 2425 CreateRuntimeFunction(fty, "_Block_object_dispose"); 2426 } 2427 2428 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2429 if (BlockObjectAssign) 2430 return BlockObjectAssign; 2431 2432 DeclarationName DName(&Context.Idents.get("_Block_object_assign")); 2433 DeclContext::lookup_result 2434 Lookup = Context.getTranslationUnitDecl()->lookup(DName); 2435 2436 // If there is an explicit decl, use that. 2437 if (Lookup.first != Lookup.second) 2438 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*Lookup.first)) 2439 return BlockObjectAssign = 2440 GetAddrOfFunction(FD, getTypes().GetFunctionType(FD)); 2441 2442 // Otherwise construct the function by hand. 2443 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty }; 2444 llvm::FunctionType *fty 2445 = llvm::FunctionType::get(VoidTy, args, false); 2446 return BlockObjectAssign = 2447 CreateRuntimeFunction(fty, "_Block_object_assign"); 2448 } 2449 2450 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2451 if (NSConcreteGlobalBlock) 2452 return NSConcreteGlobalBlock; 2453 2454 DeclarationName DName(&Context.Idents.get("_NSConcreteGlobalBlock")); 2455 DeclContext::lookup_result 2456 Lookup = Context.getTranslationUnitDecl()->lookup(DName); 2457 2458 // If there is an explicit decl, use that. 2459 if (Lookup.first != Lookup.second) 2460 if (const VarDecl *VD = dyn_cast<VarDecl>(*Lookup.first)) 2461 return NSConcreteGlobalBlock = 2462 GetAddrOfGlobalVar(VD, getTypes().ConvertType(VD->getType())); 2463 2464 // Otherwise construct the variable by hand. 2465 return NSConcreteGlobalBlock = 2466 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock"); 2467 } 2468 2469 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2470 if (NSConcreteStackBlock) 2471 return NSConcreteStackBlock; 2472 2473 DeclarationName DName(&Context.Idents.get("_NSConcreteStackBlock")); 2474 DeclContext::lookup_result 2475 Lookup = Context.getTranslationUnitDecl()->lookup(DName); 2476 2477 // If there is an explicit decl, use that. 2478 if (Lookup.first != Lookup.second) 2479 if (const VarDecl *VD = dyn_cast<VarDecl>(*Lookup.first)) 2480 return NSConcreteStackBlock = 2481 GetAddrOfGlobalVar(VD, getTypes().ConvertType(VD->getType())); 2482 2483 // Otherwise construct the variable by hand. 2484 return NSConcreteStackBlock = 2485 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock"); 2486 } 2487 2488 ///@} 2489