1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/Mangler.h" 41 #include "llvm/Target/TargetData.h" 42 #include "llvm/Support/CallSite.h" 43 #include "llvm/Support/ErrorHandling.h" 44 using namespace clang; 45 using namespace CodeGen; 46 47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 48 switch (CGM.getContext().Target.getCXXABI()) { 49 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 50 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 51 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 52 } 53 54 llvm_unreachable("invalid C++ ABI kind"); 55 return *CreateItaniumCXXABI(CGM); 56 } 57 58 59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 60 llvm::Module &M, const llvm::TargetData &TD, 61 Diagnostic &diags) 62 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 66 TBAA(0), 67 VTables(*this), Runtime(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 VMContext(M.getContext()), 70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 73 BlockObjectAssign(0), BlockObjectDispose(0), 74 BlockDescriptorType(0), GenericBlockLiteralType(0) { 75 if (Features.ObjC1) 76 createObjCRuntime(); 77 78 // Enable TBAA unless it's suppressed. 79 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 80 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 81 ABI.getMangleContext()); 82 83 // If debug info generation is enabled, create the CGDebugInfo object. 84 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 85 86 Block.GlobalUniqueCount = 0; 87 88 // Initialize the type cache. 89 llvm::LLVMContext &LLVMContext = M.getContext(); 90 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 91 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 92 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 93 PointerWidthInBits = C.Target.getPointerWidth(0); 94 PointerAlignInBytes = 95 C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity(); 96 IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth()); 97 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 98 Int8PtrTy = Int8Ty->getPointerTo(0); 99 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 100 } 101 102 CodeGenModule::~CodeGenModule() { 103 delete Runtime; 104 delete &ABI; 105 delete TBAA; 106 delete DebugInfo; 107 } 108 109 void CodeGenModule::createObjCRuntime() { 110 if (!Features.NeXTRuntime) 111 Runtime = CreateGNUObjCRuntime(*this); 112 else 113 Runtime = CreateMacObjCRuntime(*this); 114 } 115 116 void CodeGenModule::Release() { 117 EmitDeferred(); 118 EmitCXXGlobalInitFunc(); 119 EmitCXXGlobalDtorFunc(); 120 if (Runtime) 121 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 122 AddGlobalCtor(ObjCInitFunction); 123 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 124 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 125 EmitAnnotations(); 126 EmitLLVMUsed(); 127 128 SimplifyPersonality(); 129 130 if (getCodeGenOpts().EmitDeclMetadata) 131 EmitDeclMetadata(); 132 } 133 134 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 135 if (!TBAA) 136 return 0; 137 return TBAA->getTBAAInfo(QTy); 138 } 139 140 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 141 llvm::MDNode *TBAAInfo) { 142 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 143 } 144 145 bool CodeGenModule::isTargetDarwin() const { 146 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 147 } 148 149 void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) { 150 unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error); 151 getDiags().Report(Context.getFullLoc(loc), diagID); 152 } 153 154 /// ErrorUnsupported - Print out an error that codegen doesn't support the 155 /// specified stmt yet. 156 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 157 bool OmitOnError) { 158 if (OmitOnError && getDiags().hasErrorOccurred()) 159 return; 160 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 161 "cannot compile this %0 yet"); 162 std::string Msg = Type; 163 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 164 << Msg << S->getSourceRange(); 165 } 166 167 /// ErrorUnsupported - Print out an error that codegen doesn't support the 168 /// specified decl yet. 169 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 170 bool OmitOnError) { 171 if (OmitOnError && getDiags().hasErrorOccurred()) 172 return; 173 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 174 "cannot compile this %0 yet"); 175 std::string Msg = Type; 176 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 177 } 178 179 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 180 const NamedDecl *D) const { 181 // Internal definitions always have default visibility. 182 if (GV->hasLocalLinkage()) { 183 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 184 return; 185 } 186 187 // Set visibility for definitions. 188 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 189 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 190 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 191 } 192 193 /// Set the symbol visibility of type information (vtable and RTTI) 194 /// associated with the given type. 195 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 196 const CXXRecordDecl *RD, 197 TypeVisibilityKind TVK) const { 198 setGlobalVisibility(GV, RD); 199 200 if (!CodeGenOpts.HiddenWeakVTables) 201 return; 202 203 // We never want to drop the visibility for RTTI names. 204 if (TVK == TVK_ForRTTIName) 205 return; 206 207 // We want to drop the visibility to hidden for weak type symbols. 208 // This isn't possible if there might be unresolved references 209 // elsewhere that rely on this symbol being visible. 210 211 // This should be kept roughly in sync with setThunkVisibility 212 // in CGVTables.cpp. 213 214 // Preconditions. 215 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 216 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 217 return; 218 219 // Don't override an explicit visibility attribute. 220 if (RD->hasAttr<VisibilityAttr>()) 221 return; 222 223 switch (RD->getTemplateSpecializationKind()) { 224 // We have to disable the optimization if this is an EI definition 225 // because there might be EI declarations in other shared objects. 226 case TSK_ExplicitInstantiationDefinition: 227 case TSK_ExplicitInstantiationDeclaration: 228 return; 229 230 // Every use of a non-template class's type information has to emit it. 231 case TSK_Undeclared: 232 break; 233 234 // In theory, implicit instantiations can ignore the possibility of 235 // an explicit instantiation declaration because there necessarily 236 // must be an EI definition somewhere with default visibility. In 237 // practice, it's possible to have an explicit instantiation for 238 // an arbitrary template class, and linkers aren't necessarily able 239 // to deal with mixed-visibility symbols. 240 case TSK_ExplicitSpecialization: 241 case TSK_ImplicitInstantiation: 242 if (!CodeGenOpts.HiddenWeakTemplateVTables) 243 return; 244 break; 245 } 246 247 // If there's a key function, there may be translation units 248 // that don't have the key function's definition. But ignore 249 // this if we're emitting RTTI under -fno-rtti. 250 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 251 if (Context.getKeyFunction(RD)) 252 return; 253 } 254 255 // Otherwise, drop the visibility to hidden. 256 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 257 GV->setUnnamedAddr(true); 258 } 259 260 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 261 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 262 263 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 264 if (!Str.empty()) 265 return Str; 266 267 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 268 IdentifierInfo *II = ND->getIdentifier(); 269 assert(II && "Attempt to mangle unnamed decl."); 270 271 Str = II->getName(); 272 return Str; 273 } 274 275 llvm::SmallString<256> Buffer; 276 llvm::raw_svector_ostream Out(Buffer); 277 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 278 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 279 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 280 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 281 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 282 getCXXABI().getMangleContext().mangleBlock(BD, Out); 283 else 284 getCXXABI().getMangleContext().mangleName(ND, Out); 285 286 // Allocate space for the mangled name. 287 Out.flush(); 288 size_t Length = Buffer.size(); 289 char *Name = MangledNamesAllocator.Allocate<char>(Length); 290 std::copy(Buffer.begin(), Buffer.end(), Name); 291 292 Str = llvm::StringRef(Name, Length); 293 294 return Str; 295 } 296 297 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 298 const BlockDecl *BD) { 299 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 300 const Decl *D = GD.getDecl(); 301 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 302 if (D == 0) 303 MangleCtx.mangleGlobalBlock(BD, Out); 304 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 305 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 306 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 307 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 308 else 309 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 310 } 311 312 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 313 return getModule().getNamedValue(Name); 314 } 315 316 /// AddGlobalCtor - Add a function to the list that will be called before 317 /// main() runs. 318 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 319 // FIXME: Type coercion of void()* types. 320 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 321 } 322 323 /// AddGlobalDtor - Add a function to the list that will be called 324 /// when the module is unloaded. 325 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 326 // FIXME: Type coercion of void()* types. 327 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 328 } 329 330 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 331 // Ctor function type is void()*. 332 llvm::FunctionType* CtorFTy = 333 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 334 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 335 336 // Get the type of a ctor entry, { i32, void ()* }. 337 llvm::StructType* CtorStructTy = 338 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 339 llvm::PointerType::getUnqual(CtorFTy), NULL); 340 341 // Construct the constructor and destructor arrays. 342 std::vector<llvm::Constant*> Ctors; 343 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 344 std::vector<llvm::Constant*> S; 345 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 346 I->second, false)); 347 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 348 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 349 } 350 351 if (!Ctors.empty()) { 352 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 353 new llvm::GlobalVariable(TheModule, AT, false, 354 llvm::GlobalValue::AppendingLinkage, 355 llvm::ConstantArray::get(AT, Ctors), 356 GlobalName); 357 } 358 } 359 360 void CodeGenModule::EmitAnnotations() { 361 if (Annotations.empty()) 362 return; 363 364 // Create a new global variable for the ConstantStruct in the Module. 365 llvm::Constant *Array = 366 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 367 Annotations.size()), 368 Annotations); 369 llvm::GlobalValue *gv = 370 new llvm::GlobalVariable(TheModule, Array->getType(), false, 371 llvm::GlobalValue::AppendingLinkage, Array, 372 "llvm.global.annotations"); 373 gv->setSection("llvm.metadata"); 374 } 375 376 llvm::GlobalValue::LinkageTypes 377 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 378 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 379 380 if (Linkage == GVA_Internal) 381 return llvm::Function::InternalLinkage; 382 383 if (D->hasAttr<DLLExportAttr>()) 384 return llvm::Function::DLLExportLinkage; 385 386 if (D->hasAttr<WeakAttr>()) 387 return llvm::Function::WeakAnyLinkage; 388 389 // In C99 mode, 'inline' functions are guaranteed to have a strong 390 // definition somewhere else, so we can use available_externally linkage. 391 if (Linkage == GVA_C99Inline) 392 return llvm::Function::AvailableExternallyLinkage; 393 394 // In C++, the compiler has to emit a definition in every translation unit 395 // that references the function. We should use linkonce_odr because 396 // a) if all references in this translation unit are optimized away, we 397 // don't need to codegen it. b) if the function persists, it needs to be 398 // merged with other definitions. c) C++ has the ODR, so we know the 399 // definition is dependable. 400 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 401 return !Context.getLangOptions().AppleKext 402 ? llvm::Function::LinkOnceODRLinkage 403 : llvm::Function::InternalLinkage; 404 405 // An explicit instantiation of a template has weak linkage, since 406 // explicit instantiations can occur in multiple translation units 407 // and must all be equivalent. However, we are not allowed to 408 // throw away these explicit instantiations. 409 if (Linkage == GVA_ExplicitTemplateInstantiation) 410 return !Context.getLangOptions().AppleKext 411 ? llvm::Function::WeakODRLinkage 412 : llvm::Function::InternalLinkage; 413 414 // Otherwise, we have strong external linkage. 415 assert(Linkage == GVA_StrongExternal); 416 return llvm::Function::ExternalLinkage; 417 } 418 419 420 /// SetFunctionDefinitionAttributes - Set attributes for a global. 421 /// 422 /// FIXME: This is currently only done for aliases and functions, but not for 423 /// variables (these details are set in EmitGlobalVarDefinition for variables). 424 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 425 llvm::GlobalValue *GV) { 426 SetCommonAttributes(D, GV); 427 } 428 429 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 430 const CGFunctionInfo &Info, 431 llvm::Function *F) { 432 unsigned CallingConv; 433 AttributeListType AttributeList; 434 ConstructAttributeList(Info, D, AttributeList, CallingConv); 435 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 436 AttributeList.size())); 437 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 438 } 439 440 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 441 llvm::Function *F) { 442 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 443 F->addFnAttr(llvm::Attribute::NoUnwind); 444 445 if (D->hasAttr<AlwaysInlineAttr>()) 446 F->addFnAttr(llvm::Attribute::AlwaysInline); 447 448 if (D->hasAttr<NakedAttr>()) 449 F->addFnAttr(llvm::Attribute::Naked); 450 451 if (D->hasAttr<NoInlineAttr>()) 452 F->addFnAttr(llvm::Attribute::NoInline); 453 454 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 455 F->setUnnamedAddr(true); 456 457 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 458 F->addFnAttr(llvm::Attribute::StackProtect); 459 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 460 F->addFnAttr(llvm::Attribute::StackProtectReq); 461 462 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 463 if (alignment) 464 F->setAlignment(alignment); 465 466 // C++ ABI requires 2-byte alignment for member functions. 467 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 468 F->setAlignment(2); 469 } 470 471 void CodeGenModule::SetCommonAttributes(const Decl *D, 472 llvm::GlobalValue *GV) { 473 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 474 setGlobalVisibility(GV, ND); 475 else 476 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 477 478 if (D->hasAttr<UsedAttr>()) 479 AddUsedGlobal(GV); 480 481 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 482 GV->setSection(SA->getName()); 483 484 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 485 } 486 487 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 488 llvm::Function *F, 489 const CGFunctionInfo &FI) { 490 SetLLVMFunctionAttributes(D, FI, F); 491 SetLLVMFunctionAttributesForDefinition(D, F); 492 493 F->setLinkage(llvm::Function::InternalLinkage); 494 495 SetCommonAttributes(D, F); 496 } 497 498 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 499 llvm::Function *F, 500 bool IsIncompleteFunction) { 501 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 502 503 if (!IsIncompleteFunction) 504 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 505 506 // Only a few attributes are set on declarations; these may later be 507 // overridden by a definition. 508 509 if (FD->hasAttr<DLLImportAttr>()) { 510 F->setLinkage(llvm::Function::DLLImportLinkage); 511 } else if (FD->hasAttr<WeakAttr>() || 512 FD->isWeakImported()) { 513 // "extern_weak" is overloaded in LLVM; we probably should have 514 // separate linkage types for this. 515 F->setLinkage(llvm::Function::ExternalWeakLinkage); 516 } else { 517 F->setLinkage(llvm::Function::ExternalLinkage); 518 519 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 520 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 521 F->setVisibility(GetLLVMVisibility(LV.visibility())); 522 } 523 } 524 525 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 526 F->setSection(SA->getName()); 527 } 528 529 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 530 assert(!GV->isDeclaration() && 531 "Only globals with definition can force usage."); 532 LLVMUsed.push_back(GV); 533 } 534 535 void CodeGenModule::EmitLLVMUsed() { 536 // Don't create llvm.used if there is no need. 537 if (LLVMUsed.empty()) 538 return; 539 540 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 541 542 // Convert LLVMUsed to what ConstantArray needs. 543 std::vector<llvm::Constant*> UsedArray; 544 UsedArray.resize(LLVMUsed.size()); 545 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 546 UsedArray[i] = 547 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 548 i8PTy); 549 } 550 551 if (UsedArray.empty()) 552 return; 553 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 554 555 llvm::GlobalVariable *GV = 556 new llvm::GlobalVariable(getModule(), ATy, false, 557 llvm::GlobalValue::AppendingLinkage, 558 llvm::ConstantArray::get(ATy, UsedArray), 559 "llvm.used"); 560 561 GV->setSection("llvm.metadata"); 562 } 563 564 void CodeGenModule::EmitDeferred() { 565 // Emit code for any potentially referenced deferred decls. Since a 566 // previously unused static decl may become used during the generation of code 567 // for a static function, iterate until no changes are made. 568 569 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 570 if (!DeferredVTables.empty()) { 571 const CXXRecordDecl *RD = DeferredVTables.back(); 572 DeferredVTables.pop_back(); 573 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 574 continue; 575 } 576 577 GlobalDecl D = DeferredDeclsToEmit.back(); 578 DeferredDeclsToEmit.pop_back(); 579 580 // Check to see if we've already emitted this. This is necessary 581 // for a couple of reasons: first, decls can end up in the 582 // deferred-decls queue multiple times, and second, decls can end 583 // up with definitions in unusual ways (e.g. by an extern inline 584 // function acquiring a strong function redefinition). Just 585 // ignore these cases. 586 // 587 // TODO: That said, looking this up multiple times is very wasteful. 588 llvm::StringRef Name = getMangledName(D); 589 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 590 assert(CGRef && "Deferred decl wasn't referenced?"); 591 592 if (!CGRef->isDeclaration()) 593 continue; 594 595 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 596 // purposes an alias counts as a definition. 597 if (isa<llvm::GlobalAlias>(CGRef)) 598 continue; 599 600 // Otherwise, emit the definition and move on to the next one. 601 EmitGlobalDefinition(D); 602 } 603 } 604 605 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 606 /// annotation information for a given GlobalValue. The annotation struct is 607 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 608 /// GlobalValue being annotated. The second field is the constant string 609 /// created from the AnnotateAttr's annotation. The third field is a constant 610 /// string containing the name of the translation unit. The fourth field is 611 /// the line number in the file of the annotated value declaration. 612 /// 613 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 614 /// appears to. 615 /// 616 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 617 const AnnotateAttr *AA, 618 unsigned LineNo) { 619 llvm::Module *M = &getModule(); 620 621 // get [N x i8] constants for the annotation string, and the filename string 622 // which are the 2nd and 3rd elements of the global annotation structure. 623 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 624 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 625 AA->getAnnotation(), true); 626 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 627 M->getModuleIdentifier(), 628 true); 629 630 // Get the two global values corresponding to the ConstantArrays we just 631 // created to hold the bytes of the strings. 632 llvm::GlobalValue *annoGV = 633 new llvm::GlobalVariable(*M, anno->getType(), false, 634 llvm::GlobalValue::PrivateLinkage, anno, 635 GV->getName()); 636 // translation unit name string, emitted into the llvm.metadata section. 637 llvm::GlobalValue *unitGV = 638 new llvm::GlobalVariable(*M, unit->getType(), false, 639 llvm::GlobalValue::PrivateLinkage, unit, 640 ".str"); 641 unitGV->setUnnamedAddr(true); 642 643 // Create the ConstantStruct for the global annotation. 644 llvm::Constant *Fields[4] = { 645 llvm::ConstantExpr::getBitCast(GV, SBP), 646 llvm::ConstantExpr::getBitCast(annoGV, SBP), 647 llvm::ConstantExpr::getBitCast(unitGV, SBP), 648 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 649 }; 650 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 651 } 652 653 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 654 // Never defer when EmitAllDecls is specified. 655 if (Features.EmitAllDecls) 656 return false; 657 658 return !getContext().DeclMustBeEmitted(Global); 659 } 660 661 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 662 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 663 assert(AA && "No alias?"); 664 665 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 666 667 // See if there is already something with the target's name in the module. 668 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 669 670 llvm::Constant *Aliasee; 671 if (isa<llvm::FunctionType>(DeclTy)) 672 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 673 /*ForVTable=*/false); 674 else 675 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 676 llvm::PointerType::getUnqual(DeclTy), 0); 677 if (!Entry) { 678 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 679 F->setLinkage(llvm::Function::ExternalWeakLinkage); 680 WeakRefReferences.insert(F); 681 } 682 683 return Aliasee; 684 } 685 686 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 687 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 688 689 // Weak references don't produce any output by themselves. 690 if (Global->hasAttr<WeakRefAttr>()) 691 return; 692 693 // If this is an alias definition (which otherwise looks like a declaration) 694 // emit it now. 695 if (Global->hasAttr<AliasAttr>()) 696 return EmitAliasDefinition(GD); 697 698 // Ignore declarations, they will be emitted on their first use. 699 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 700 if (FD->getIdentifier()) { 701 llvm::StringRef Name = FD->getName(); 702 if (Name == "_Block_object_assign") { 703 BlockObjectAssignDecl = FD; 704 } else if (Name == "_Block_object_dispose") { 705 BlockObjectDisposeDecl = FD; 706 } 707 } 708 709 // Forward declarations are emitted lazily on first use. 710 if (!FD->isThisDeclarationADefinition()) 711 return; 712 } else { 713 const VarDecl *VD = cast<VarDecl>(Global); 714 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 715 716 if (VD->getIdentifier()) { 717 llvm::StringRef Name = VD->getName(); 718 if (Name == "_NSConcreteGlobalBlock") { 719 NSConcreteGlobalBlockDecl = VD; 720 } else if (Name == "_NSConcreteStackBlock") { 721 NSConcreteStackBlockDecl = VD; 722 } 723 } 724 725 726 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 727 return; 728 } 729 730 // Defer code generation when possible if this is a static definition, inline 731 // function etc. These we only want to emit if they are used. 732 if (!MayDeferGeneration(Global)) { 733 // Emit the definition if it can't be deferred. 734 EmitGlobalDefinition(GD); 735 return; 736 } 737 738 // If we're deferring emission of a C++ variable with an 739 // initializer, remember the order in which it appeared in the file. 740 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 741 cast<VarDecl>(Global)->hasInit()) { 742 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 743 CXXGlobalInits.push_back(0); 744 } 745 746 // If the value has already been used, add it directly to the 747 // DeferredDeclsToEmit list. 748 llvm::StringRef MangledName = getMangledName(GD); 749 if (GetGlobalValue(MangledName)) 750 DeferredDeclsToEmit.push_back(GD); 751 else { 752 // Otherwise, remember that we saw a deferred decl with this name. The 753 // first use of the mangled name will cause it to move into 754 // DeferredDeclsToEmit. 755 DeferredDecls[MangledName] = GD; 756 } 757 } 758 759 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 760 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 761 762 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 763 Context.getSourceManager(), 764 "Generating code for declaration"); 765 766 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 767 // At -O0, don't generate IR for functions with available_externally 768 // linkage. 769 if (CodeGenOpts.OptimizationLevel == 0 && 770 !Function->hasAttr<AlwaysInlineAttr>() && 771 getFunctionLinkage(Function) 772 == llvm::Function::AvailableExternallyLinkage) 773 return; 774 775 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 776 if (Method->isVirtual()) 777 getVTables().EmitThunks(GD); 778 779 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 780 return EmitCXXConstructor(CD, GD.getCtorType()); 781 782 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 783 return EmitCXXDestructor(DD, GD.getDtorType()); 784 } 785 786 return EmitGlobalFunctionDefinition(GD); 787 } 788 789 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 790 return EmitGlobalVarDefinition(VD); 791 792 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 793 } 794 795 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 796 /// module, create and return an llvm Function with the specified type. If there 797 /// is something in the module with the specified name, return it potentially 798 /// bitcasted to the right type. 799 /// 800 /// If D is non-null, it specifies a decl that correspond to this. This is used 801 /// to set the attributes on the function when it is first created. 802 llvm::Constant * 803 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 804 const llvm::Type *Ty, 805 GlobalDecl D, bool ForVTable) { 806 // Lookup the entry, lazily creating it if necessary. 807 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 808 if (Entry) { 809 if (WeakRefReferences.count(Entry)) { 810 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 811 if (FD && !FD->hasAttr<WeakAttr>()) 812 Entry->setLinkage(llvm::Function::ExternalLinkage); 813 814 WeakRefReferences.erase(Entry); 815 } 816 817 if (Entry->getType()->getElementType() == Ty) 818 return Entry; 819 820 // Make sure the result is of the correct type. 821 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 822 return llvm::ConstantExpr::getBitCast(Entry, PTy); 823 } 824 825 // This function doesn't have a complete type (for example, the return 826 // type is an incomplete struct). Use a fake type instead, and make 827 // sure not to try to set attributes. 828 bool IsIncompleteFunction = false; 829 830 const llvm::FunctionType *FTy; 831 if (isa<llvm::FunctionType>(Ty)) { 832 FTy = cast<llvm::FunctionType>(Ty); 833 } else { 834 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 835 IsIncompleteFunction = true; 836 } 837 838 llvm::Function *F = llvm::Function::Create(FTy, 839 llvm::Function::ExternalLinkage, 840 MangledName, &getModule()); 841 assert(F->getName() == MangledName && "name was uniqued!"); 842 if (D.getDecl()) 843 SetFunctionAttributes(D, F, IsIncompleteFunction); 844 845 // This is the first use or definition of a mangled name. If there is a 846 // deferred decl with this name, remember that we need to emit it at the end 847 // of the file. 848 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 849 if (DDI != DeferredDecls.end()) { 850 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 851 // list, and remove it from DeferredDecls (since we don't need it anymore). 852 DeferredDeclsToEmit.push_back(DDI->second); 853 DeferredDecls.erase(DDI); 854 855 // Otherwise, there are cases we have to worry about where we're 856 // using a declaration for which we must emit a definition but where 857 // we might not find a top-level definition: 858 // - member functions defined inline in their classes 859 // - friend functions defined inline in some class 860 // - special member functions with implicit definitions 861 // If we ever change our AST traversal to walk into class methods, 862 // this will be unnecessary. 863 // 864 // We also don't emit a definition for a function if it's going to be an entry 865 // in a vtable, unless it's already marked as used. 866 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 867 // Look for a declaration that's lexically in a record. 868 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 869 do { 870 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 871 if (FD->isImplicit() && !ForVTable) { 872 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 873 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 874 break; 875 } else if (FD->isThisDeclarationADefinition()) { 876 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 877 break; 878 } 879 } 880 FD = FD->getPreviousDeclaration(); 881 } while (FD); 882 } 883 884 // Make sure the result is of the requested type. 885 if (!IsIncompleteFunction) { 886 assert(F->getType()->getElementType() == Ty); 887 return F; 888 } 889 890 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 891 return llvm::ConstantExpr::getBitCast(F, PTy); 892 } 893 894 /// GetAddrOfFunction - Return the address of the given function. If Ty is 895 /// non-null, then this function will use the specified type if it has to 896 /// create it (this occurs when we see a definition of the function). 897 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 898 const llvm::Type *Ty, 899 bool ForVTable) { 900 // If there was no specific requested type, just convert it now. 901 if (!Ty) 902 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 903 904 llvm::StringRef MangledName = getMangledName(GD); 905 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 906 } 907 908 /// CreateRuntimeFunction - Create a new runtime function with the specified 909 /// type and name. 910 llvm::Constant * 911 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 912 llvm::StringRef Name) { 913 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false); 914 } 915 916 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 917 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 918 return false; 919 if (Context.getLangOptions().CPlusPlus && 920 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 921 // FIXME: We should do something fancier here! 922 return false; 923 } 924 return true; 925 } 926 927 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 928 /// create and return an llvm GlobalVariable with the specified type. If there 929 /// is something in the module with the specified name, return it potentially 930 /// bitcasted to the right type. 931 /// 932 /// If D is non-null, it specifies a decl that correspond to this. This is used 933 /// to set the attributes on the global when it is first created. 934 llvm::Constant * 935 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 936 const llvm::PointerType *Ty, 937 const VarDecl *D, 938 bool UnnamedAddr) { 939 // Lookup the entry, lazily creating it if necessary. 940 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 941 if (Entry) { 942 if (WeakRefReferences.count(Entry)) { 943 if (D && !D->hasAttr<WeakAttr>()) 944 Entry->setLinkage(llvm::Function::ExternalLinkage); 945 946 WeakRefReferences.erase(Entry); 947 } 948 949 if (UnnamedAddr) 950 Entry->setUnnamedAddr(true); 951 952 if (Entry->getType() == Ty) 953 return Entry; 954 955 // Make sure the result is of the correct type. 956 return llvm::ConstantExpr::getBitCast(Entry, Ty); 957 } 958 959 // This is the first use or definition of a mangled name. If there is a 960 // deferred decl with this name, remember that we need to emit it at the end 961 // of the file. 962 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 963 if (DDI != DeferredDecls.end()) { 964 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 965 // list, and remove it from DeferredDecls (since we don't need it anymore). 966 DeferredDeclsToEmit.push_back(DDI->second); 967 DeferredDecls.erase(DDI); 968 } 969 970 llvm::GlobalVariable *GV = 971 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 972 llvm::GlobalValue::ExternalLinkage, 973 0, MangledName, 0, 974 false, Ty->getAddressSpace()); 975 976 // Handle things which are present even on external declarations. 977 if (D) { 978 // FIXME: This code is overly simple and should be merged with other global 979 // handling. 980 GV->setConstant(DeclIsConstantGlobal(Context, D)); 981 982 // Set linkage and visibility in case we never see a definition. 983 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 984 if (LV.linkage() != ExternalLinkage) { 985 // Don't set internal linkage on declarations. 986 } else { 987 if (D->hasAttr<DLLImportAttr>()) 988 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 989 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 990 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 991 992 // Set visibility on a declaration only if it's explicit. 993 if (LV.visibilityExplicit()) 994 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 995 } 996 997 GV->setThreadLocal(D->isThreadSpecified()); 998 } 999 1000 return GV; 1001 } 1002 1003 1004 llvm::GlobalVariable * 1005 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name, 1006 const llvm::Type *Ty, 1007 llvm::GlobalValue::LinkageTypes Linkage) { 1008 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1009 llvm::GlobalVariable *OldGV = 0; 1010 1011 1012 if (GV) { 1013 // Check if the variable has the right type. 1014 if (GV->getType()->getElementType() == Ty) 1015 return GV; 1016 1017 // Because C++ name mangling, the only way we can end up with an already 1018 // existing global with the same name is if it has been declared extern "C". 1019 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1020 OldGV = GV; 1021 } 1022 1023 // Create a new variable. 1024 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1025 Linkage, 0, Name); 1026 1027 if (OldGV) { 1028 // Replace occurrences of the old variable if needed. 1029 GV->takeName(OldGV); 1030 1031 if (!OldGV->use_empty()) { 1032 llvm::Constant *NewPtrForOldDecl = 1033 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1034 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1035 } 1036 1037 OldGV->eraseFromParent(); 1038 } 1039 1040 return GV; 1041 } 1042 1043 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1044 /// given global variable. If Ty is non-null and if the global doesn't exist, 1045 /// then it will be greated with the specified type instead of whatever the 1046 /// normal requested type would be. 1047 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1048 const llvm::Type *Ty) { 1049 assert(D->hasGlobalStorage() && "Not a global variable"); 1050 QualType ASTTy = D->getType(); 1051 if (Ty == 0) 1052 Ty = getTypes().ConvertTypeForMem(ASTTy); 1053 1054 const llvm::PointerType *PTy = 1055 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1056 1057 llvm::StringRef MangledName = getMangledName(D); 1058 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1059 } 1060 1061 /// CreateRuntimeVariable - Create a new runtime global variable with the 1062 /// specified type and name. 1063 llvm::Constant * 1064 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1065 llvm::StringRef Name) { 1066 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1067 true); 1068 } 1069 1070 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1071 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1072 1073 if (MayDeferGeneration(D)) { 1074 // If we have not seen a reference to this variable yet, place it 1075 // into the deferred declarations table to be emitted if needed 1076 // later. 1077 llvm::StringRef MangledName = getMangledName(D); 1078 if (!GetGlobalValue(MangledName)) { 1079 DeferredDecls[MangledName] = D; 1080 return; 1081 } 1082 } 1083 1084 // The tentative definition is the only definition. 1085 EmitGlobalVarDefinition(D); 1086 } 1087 1088 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1089 if (DefinitionRequired) 1090 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1091 } 1092 1093 llvm::GlobalVariable::LinkageTypes 1094 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1095 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1096 return llvm::GlobalVariable::InternalLinkage; 1097 1098 if (const CXXMethodDecl *KeyFunction 1099 = RD->getASTContext().getKeyFunction(RD)) { 1100 // If this class has a key function, use that to determine the linkage of 1101 // the vtable. 1102 const FunctionDecl *Def = 0; 1103 if (KeyFunction->hasBody(Def)) 1104 KeyFunction = cast<CXXMethodDecl>(Def); 1105 1106 switch (KeyFunction->getTemplateSpecializationKind()) { 1107 case TSK_Undeclared: 1108 case TSK_ExplicitSpecialization: 1109 // When compiling with optimizations turned on, we emit all vtables, 1110 // even if the key function is not defined in the current translation 1111 // unit. If this is the case, use available_externally linkage. 1112 if (!Def && CodeGenOpts.OptimizationLevel) 1113 return llvm::GlobalVariable::AvailableExternallyLinkage; 1114 1115 if (KeyFunction->isInlined()) 1116 return !Context.getLangOptions().AppleKext ? 1117 llvm::GlobalVariable::LinkOnceODRLinkage : 1118 llvm::Function::InternalLinkage; 1119 1120 return llvm::GlobalVariable::ExternalLinkage; 1121 1122 case TSK_ImplicitInstantiation: 1123 return !Context.getLangOptions().AppleKext ? 1124 llvm::GlobalVariable::LinkOnceODRLinkage : 1125 llvm::Function::InternalLinkage; 1126 1127 case TSK_ExplicitInstantiationDefinition: 1128 return !Context.getLangOptions().AppleKext ? 1129 llvm::GlobalVariable::WeakODRLinkage : 1130 llvm::Function::InternalLinkage; 1131 1132 case TSK_ExplicitInstantiationDeclaration: 1133 // FIXME: Use available_externally linkage. However, this currently 1134 // breaks LLVM's build due to undefined symbols. 1135 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1136 return !Context.getLangOptions().AppleKext ? 1137 llvm::GlobalVariable::LinkOnceODRLinkage : 1138 llvm::Function::InternalLinkage; 1139 } 1140 } 1141 1142 if (Context.getLangOptions().AppleKext) 1143 return llvm::Function::InternalLinkage; 1144 1145 switch (RD->getTemplateSpecializationKind()) { 1146 case TSK_Undeclared: 1147 case TSK_ExplicitSpecialization: 1148 case TSK_ImplicitInstantiation: 1149 // FIXME: Use available_externally linkage. However, this currently 1150 // breaks LLVM's build due to undefined symbols. 1151 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1152 case TSK_ExplicitInstantiationDeclaration: 1153 return llvm::GlobalVariable::LinkOnceODRLinkage; 1154 1155 case TSK_ExplicitInstantiationDefinition: 1156 return llvm::GlobalVariable::WeakODRLinkage; 1157 } 1158 1159 // Silence GCC warning. 1160 return llvm::GlobalVariable::LinkOnceODRLinkage; 1161 } 1162 1163 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1164 return Context.toCharUnitsFromBits( 1165 TheTargetData.getTypeStoreSizeInBits(Ty)); 1166 } 1167 1168 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1169 llvm::Constant *Init = 0; 1170 QualType ASTTy = D->getType(); 1171 bool NonConstInit = false; 1172 1173 const Expr *InitExpr = D->getAnyInitializer(); 1174 1175 if (!InitExpr) { 1176 // This is a tentative definition; tentative definitions are 1177 // implicitly initialized with { 0 }. 1178 // 1179 // Note that tentative definitions are only emitted at the end of 1180 // a translation unit, so they should never have incomplete 1181 // type. In addition, EmitTentativeDefinition makes sure that we 1182 // never attempt to emit a tentative definition if a real one 1183 // exists. A use may still exists, however, so we still may need 1184 // to do a RAUW. 1185 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1186 Init = EmitNullConstant(D->getType()); 1187 } else { 1188 Init = EmitConstantExpr(InitExpr, D->getType()); 1189 if (!Init) { 1190 QualType T = InitExpr->getType(); 1191 if (D->getType()->isReferenceType()) 1192 T = D->getType(); 1193 1194 if (getLangOptions().CPlusPlus) { 1195 Init = EmitNullConstant(T); 1196 NonConstInit = true; 1197 } else { 1198 ErrorUnsupported(D, "static initializer"); 1199 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1200 } 1201 } else { 1202 // We don't need an initializer, so remove the entry for the delayed 1203 // initializer position (just in case this entry was delayed). 1204 if (getLangOptions().CPlusPlus) 1205 DelayedCXXInitPosition.erase(D); 1206 } 1207 } 1208 1209 const llvm::Type* InitType = Init->getType(); 1210 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1211 1212 // Strip off a bitcast if we got one back. 1213 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1214 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1215 // all zero index gep. 1216 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1217 Entry = CE->getOperand(0); 1218 } 1219 1220 // Entry is now either a Function or GlobalVariable. 1221 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1222 1223 // We have a definition after a declaration with the wrong type. 1224 // We must make a new GlobalVariable* and update everything that used OldGV 1225 // (a declaration or tentative definition) with the new GlobalVariable* 1226 // (which will be a definition). 1227 // 1228 // This happens if there is a prototype for a global (e.g. 1229 // "extern int x[];") and then a definition of a different type (e.g. 1230 // "int x[10];"). This also happens when an initializer has a different type 1231 // from the type of the global (this happens with unions). 1232 if (GV == 0 || 1233 GV->getType()->getElementType() != InitType || 1234 GV->getType()->getAddressSpace() != 1235 getContext().getTargetAddressSpace(ASTTy)) { 1236 1237 // Move the old entry aside so that we'll create a new one. 1238 Entry->setName(llvm::StringRef()); 1239 1240 // Make a new global with the correct type, this is now guaranteed to work. 1241 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1242 1243 // Replace all uses of the old global with the new global 1244 llvm::Constant *NewPtrForOldDecl = 1245 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1246 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1247 1248 // Erase the old global, since it is no longer used. 1249 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1250 } 1251 1252 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1253 SourceManager &SM = Context.getSourceManager(); 1254 AddAnnotation(EmitAnnotateAttr(GV, AA, 1255 SM.getInstantiationLineNumber(D->getLocation()))); 1256 } 1257 1258 GV->setInitializer(Init); 1259 1260 // If it is safe to mark the global 'constant', do so now. 1261 GV->setConstant(false); 1262 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1263 GV->setConstant(true); 1264 1265 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1266 1267 // Set the llvm linkage type as appropriate. 1268 llvm::GlobalValue::LinkageTypes Linkage = 1269 GetLLVMLinkageVarDefinition(D, GV); 1270 GV->setLinkage(Linkage); 1271 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1272 // common vars aren't constant even if declared const. 1273 GV->setConstant(false); 1274 1275 SetCommonAttributes(D, GV); 1276 1277 // Emit the initializer function if necessary. 1278 if (NonConstInit) 1279 EmitCXXGlobalVarDeclInitFunc(D, GV); 1280 1281 // Emit global variable debug information. 1282 if (CGDebugInfo *DI = getModuleDebugInfo()) { 1283 DI->setLocation(D->getLocation()); 1284 DI->EmitGlobalVariable(GV, D); 1285 } 1286 } 1287 1288 llvm::GlobalValue::LinkageTypes 1289 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1290 llvm::GlobalVariable *GV) { 1291 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1292 if (Linkage == GVA_Internal) 1293 return llvm::Function::InternalLinkage; 1294 else if (D->hasAttr<DLLImportAttr>()) 1295 return llvm::Function::DLLImportLinkage; 1296 else if (D->hasAttr<DLLExportAttr>()) 1297 return llvm::Function::DLLExportLinkage; 1298 else if (D->hasAttr<WeakAttr>()) { 1299 if (GV->isConstant()) 1300 return llvm::GlobalVariable::WeakODRLinkage; 1301 else 1302 return llvm::GlobalVariable::WeakAnyLinkage; 1303 } else if (Linkage == GVA_TemplateInstantiation || 1304 Linkage == GVA_ExplicitTemplateInstantiation) 1305 // FIXME: It seems like we can provide more specific linkage here 1306 // (LinkOnceODR, WeakODR). 1307 return llvm::GlobalVariable::WeakAnyLinkage; 1308 else if (!getLangOptions().CPlusPlus && 1309 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1310 D->getAttr<CommonAttr>()) && 1311 !D->hasExternalStorage() && !D->getInit() && 1312 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1313 // Thread local vars aren't considered common linkage. 1314 return llvm::GlobalVariable::CommonLinkage; 1315 } 1316 return llvm::GlobalVariable::ExternalLinkage; 1317 } 1318 1319 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1320 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1321 /// existing call uses of the old function in the module, this adjusts them to 1322 /// call the new function directly. 1323 /// 1324 /// This is not just a cleanup: the always_inline pass requires direct calls to 1325 /// functions to be able to inline them. If there is a bitcast in the way, it 1326 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1327 /// run at -O0. 1328 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1329 llvm::Function *NewFn) { 1330 // If we're redefining a global as a function, don't transform it. 1331 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1332 if (OldFn == 0) return; 1333 1334 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1335 llvm::SmallVector<llvm::Value*, 4> ArgList; 1336 1337 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1338 UI != E; ) { 1339 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1340 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1341 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1342 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1343 llvm::CallSite CS(CI); 1344 if (!CI || !CS.isCallee(I)) continue; 1345 1346 // If the return types don't match exactly, and if the call isn't dead, then 1347 // we can't transform this call. 1348 if (CI->getType() != NewRetTy && !CI->use_empty()) 1349 continue; 1350 1351 // If the function was passed too few arguments, don't transform. If extra 1352 // arguments were passed, we silently drop them. If any of the types 1353 // mismatch, we don't transform. 1354 unsigned ArgNo = 0; 1355 bool DontTransform = false; 1356 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1357 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1358 if (CS.arg_size() == ArgNo || 1359 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1360 DontTransform = true; 1361 break; 1362 } 1363 } 1364 if (DontTransform) 1365 continue; 1366 1367 // Okay, we can transform this. Create the new call instruction and copy 1368 // over the required information. 1369 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1370 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1371 ArgList.end(), "", CI); 1372 ArgList.clear(); 1373 if (!NewCall->getType()->isVoidTy()) 1374 NewCall->takeName(CI); 1375 NewCall->setAttributes(CI->getAttributes()); 1376 NewCall->setCallingConv(CI->getCallingConv()); 1377 1378 // Finally, remove the old call, replacing any uses with the new one. 1379 if (!CI->use_empty()) 1380 CI->replaceAllUsesWith(NewCall); 1381 1382 // Copy debug location attached to CI. 1383 if (!CI->getDebugLoc().isUnknown()) 1384 NewCall->setDebugLoc(CI->getDebugLoc()); 1385 CI->eraseFromParent(); 1386 } 1387 } 1388 1389 1390 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1391 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1392 1393 // Compute the function info and LLVM type. 1394 const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD); 1395 bool variadic = false; 1396 if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>()) 1397 variadic = fpt->isVariadic(); 1398 const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false); 1399 1400 // Get or create the prototype for the function. 1401 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1402 1403 // Strip off a bitcast if we got one back. 1404 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1405 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1406 Entry = CE->getOperand(0); 1407 } 1408 1409 1410 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1411 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1412 1413 // If the types mismatch then we have to rewrite the definition. 1414 assert(OldFn->isDeclaration() && 1415 "Shouldn't replace non-declaration"); 1416 1417 // F is the Function* for the one with the wrong type, we must make a new 1418 // Function* and update everything that used F (a declaration) with the new 1419 // Function* (which will be a definition). 1420 // 1421 // This happens if there is a prototype for a function 1422 // (e.g. "int f()") and then a definition of a different type 1423 // (e.g. "int f(int x)"). Move the old function aside so that it 1424 // doesn't interfere with GetAddrOfFunction. 1425 OldFn->setName(llvm::StringRef()); 1426 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1427 1428 // If this is an implementation of a function without a prototype, try to 1429 // replace any existing uses of the function (which may be calls) with uses 1430 // of the new function 1431 if (D->getType()->isFunctionNoProtoType()) { 1432 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1433 OldFn->removeDeadConstantUsers(); 1434 } 1435 1436 // Replace uses of F with the Function we will endow with a body. 1437 if (!Entry->use_empty()) { 1438 llvm::Constant *NewPtrForOldDecl = 1439 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1440 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1441 } 1442 1443 // Ok, delete the old function now, which is dead. 1444 OldFn->eraseFromParent(); 1445 1446 Entry = NewFn; 1447 } 1448 1449 // We need to set linkage and visibility on the function before 1450 // generating code for it because various parts of IR generation 1451 // want to propagate this information down (e.g. to local static 1452 // declarations). 1453 llvm::Function *Fn = cast<llvm::Function>(Entry); 1454 setFunctionLinkage(D, Fn); 1455 1456 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1457 setGlobalVisibility(Fn, D); 1458 1459 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1460 1461 SetFunctionDefinitionAttributes(D, Fn); 1462 SetLLVMFunctionAttributesForDefinition(D, Fn); 1463 1464 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1465 AddGlobalCtor(Fn, CA->getPriority()); 1466 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1467 AddGlobalDtor(Fn, DA->getPriority()); 1468 } 1469 1470 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1471 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1472 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1473 assert(AA && "Not an alias?"); 1474 1475 llvm::StringRef MangledName = getMangledName(GD); 1476 1477 // If there is a definition in the module, then it wins over the alias. 1478 // This is dubious, but allow it to be safe. Just ignore the alias. 1479 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1480 if (Entry && !Entry->isDeclaration()) 1481 return; 1482 1483 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1484 1485 // Create a reference to the named value. This ensures that it is emitted 1486 // if a deferred decl. 1487 llvm::Constant *Aliasee; 1488 if (isa<llvm::FunctionType>(DeclTy)) 1489 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1490 /*ForVTable=*/false); 1491 else 1492 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1493 llvm::PointerType::getUnqual(DeclTy), 0); 1494 1495 // Create the new alias itself, but don't set a name yet. 1496 llvm::GlobalValue *GA = 1497 new llvm::GlobalAlias(Aliasee->getType(), 1498 llvm::Function::ExternalLinkage, 1499 "", Aliasee, &getModule()); 1500 1501 if (Entry) { 1502 assert(Entry->isDeclaration()); 1503 1504 // If there is a declaration in the module, then we had an extern followed 1505 // by the alias, as in: 1506 // extern int test6(); 1507 // ... 1508 // int test6() __attribute__((alias("test7"))); 1509 // 1510 // Remove it and replace uses of it with the alias. 1511 GA->takeName(Entry); 1512 1513 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1514 Entry->getType())); 1515 Entry->eraseFromParent(); 1516 } else { 1517 GA->setName(MangledName); 1518 } 1519 1520 // Set attributes which are particular to an alias; this is a 1521 // specialization of the attributes which may be set on a global 1522 // variable/function. 1523 if (D->hasAttr<DLLExportAttr>()) { 1524 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1525 // The dllexport attribute is ignored for undefined symbols. 1526 if (FD->hasBody()) 1527 GA->setLinkage(llvm::Function::DLLExportLinkage); 1528 } else { 1529 GA->setLinkage(llvm::Function::DLLExportLinkage); 1530 } 1531 } else if (D->hasAttr<WeakAttr>() || 1532 D->hasAttr<WeakRefAttr>() || 1533 D->isWeakImported()) { 1534 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1535 } 1536 1537 SetCommonAttributes(D, GA); 1538 } 1539 1540 /// getBuiltinLibFunction - Given a builtin id for a function like 1541 /// "__builtin_fabsf", return a Function* for "fabsf". 1542 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1543 unsigned BuiltinID) { 1544 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1545 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1546 "isn't a lib fn"); 1547 1548 // Get the name, skip over the __builtin_ prefix (if necessary). 1549 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1550 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1551 Name += 10; 1552 1553 const llvm::FunctionType *Ty = 1554 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1555 1556 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false); 1557 } 1558 1559 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1560 unsigned NumTys) { 1561 return llvm::Intrinsic::getDeclaration(&getModule(), 1562 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1563 } 1564 1565 static llvm::StringMapEntry<llvm::Constant*> & 1566 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1567 const StringLiteral *Literal, 1568 bool TargetIsLSB, 1569 bool &IsUTF16, 1570 unsigned &StringLength) { 1571 llvm::StringRef String = Literal->getString(); 1572 unsigned NumBytes = String.size(); 1573 1574 // Check for simple case. 1575 if (!Literal->containsNonAsciiOrNull()) { 1576 StringLength = NumBytes; 1577 return Map.GetOrCreateValue(String); 1578 } 1579 1580 // Otherwise, convert the UTF8 literals into a byte string. 1581 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1582 const UTF8 *FromPtr = (UTF8 *)String.data(); 1583 UTF16 *ToPtr = &ToBuf[0]; 1584 1585 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1586 &ToPtr, ToPtr + NumBytes, 1587 strictConversion); 1588 1589 // ConvertUTF8toUTF16 returns the length in ToPtr. 1590 StringLength = ToPtr - &ToBuf[0]; 1591 1592 // Render the UTF-16 string into a byte array and convert to the target byte 1593 // order. 1594 // 1595 // FIXME: This isn't something we should need to do here. 1596 llvm::SmallString<128> AsBytes; 1597 AsBytes.reserve(StringLength * 2); 1598 for (unsigned i = 0; i != StringLength; ++i) { 1599 unsigned short Val = ToBuf[i]; 1600 if (TargetIsLSB) { 1601 AsBytes.push_back(Val & 0xFF); 1602 AsBytes.push_back(Val >> 8); 1603 } else { 1604 AsBytes.push_back(Val >> 8); 1605 AsBytes.push_back(Val & 0xFF); 1606 } 1607 } 1608 // Append one extra null character, the second is automatically added by our 1609 // caller. 1610 AsBytes.push_back(0); 1611 1612 IsUTF16 = true; 1613 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1614 } 1615 1616 llvm::Constant * 1617 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1618 unsigned StringLength = 0; 1619 bool isUTF16 = false; 1620 llvm::StringMapEntry<llvm::Constant*> &Entry = 1621 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1622 getTargetData().isLittleEndian(), 1623 isUTF16, StringLength); 1624 1625 if (llvm::Constant *C = Entry.getValue()) 1626 return C; 1627 1628 llvm::Constant *Zero = 1629 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1630 llvm::Constant *Zeros[] = { Zero, Zero }; 1631 1632 // If we don't already have it, get __CFConstantStringClassReference. 1633 if (!CFConstantStringClassRef) { 1634 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1635 Ty = llvm::ArrayType::get(Ty, 0); 1636 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1637 "__CFConstantStringClassReference"); 1638 // Decay array -> ptr 1639 CFConstantStringClassRef = 1640 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1641 } 1642 1643 QualType CFTy = getContext().getCFConstantStringType(); 1644 1645 const llvm::StructType *STy = 1646 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1647 1648 std::vector<llvm::Constant*> Fields(4); 1649 1650 // Class pointer. 1651 Fields[0] = CFConstantStringClassRef; 1652 1653 // Flags. 1654 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1655 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1656 llvm::ConstantInt::get(Ty, 0x07C8); 1657 1658 // String pointer. 1659 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1660 1661 llvm::GlobalValue::LinkageTypes Linkage; 1662 bool isConstant; 1663 if (isUTF16) { 1664 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1665 Linkage = llvm::GlobalValue::InternalLinkage; 1666 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1667 // does make plain ascii ones writable. 1668 isConstant = true; 1669 } else { 1670 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1671 // when using private linkage. It is not clear if this is a bug in ld 1672 // or a reasonable new restriction. 1673 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1674 isConstant = !Features.WritableStrings; 1675 } 1676 1677 llvm::GlobalVariable *GV = 1678 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1679 ".str"); 1680 GV->setUnnamedAddr(true); 1681 if (isUTF16) { 1682 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1683 GV->setAlignment(Align.getQuantity()); 1684 } 1685 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1686 1687 // String length. 1688 Ty = getTypes().ConvertType(getContext().LongTy); 1689 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1690 1691 // The struct. 1692 C = llvm::ConstantStruct::get(STy, Fields); 1693 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1694 llvm::GlobalVariable::PrivateLinkage, C, 1695 "_unnamed_cfstring_"); 1696 if (const char *Sect = getContext().Target.getCFStringSection()) 1697 GV->setSection(Sect); 1698 Entry.setValue(GV); 1699 1700 return GV; 1701 } 1702 1703 llvm::Constant * 1704 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1705 unsigned StringLength = 0; 1706 bool isUTF16 = false; 1707 llvm::StringMapEntry<llvm::Constant*> &Entry = 1708 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1709 getTargetData().isLittleEndian(), 1710 isUTF16, StringLength); 1711 1712 if (llvm::Constant *C = Entry.getValue()) 1713 return C; 1714 1715 llvm::Constant *Zero = 1716 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1717 llvm::Constant *Zeros[] = { Zero, Zero }; 1718 1719 // If we don't already have it, get _NSConstantStringClassReference. 1720 if (!ConstantStringClassRef) { 1721 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1722 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1723 Ty = llvm::ArrayType::get(Ty, 0); 1724 llvm::Constant *GV; 1725 if (StringClass.empty()) 1726 GV = CreateRuntimeVariable(Ty, 1727 Features.ObjCNonFragileABI ? 1728 "OBJC_CLASS_$_NSConstantString" : 1729 "_NSConstantStringClassReference"); 1730 else { 1731 std::string str; 1732 if (Features.ObjCNonFragileABI) 1733 str = "OBJC_CLASS_$_" + StringClass; 1734 else 1735 str = "_" + StringClass + "ClassReference"; 1736 GV = CreateRuntimeVariable(Ty, str); 1737 } 1738 // Decay array -> ptr 1739 ConstantStringClassRef = 1740 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1741 } 1742 1743 QualType NSTy = getContext().getNSConstantStringType(); 1744 1745 const llvm::StructType *STy = 1746 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1747 1748 std::vector<llvm::Constant*> Fields(3); 1749 1750 // Class pointer. 1751 Fields[0] = ConstantStringClassRef; 1752 1753 // String pointer. 1754 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1755 1756 llvm::GlobalValue::LinkageTypes Linkage; 1757 bool isConstant; 1758 if (isUTF16) { 1759 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1760 Linkage = llvm::GlobalValue::InternalLinkage; 1761 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1762 // does make plain ascii ones writable. 1763 isConstant = true; 1764 } else { 1765 Linkage = llvm::GlobalValue::PrivateLinkage; 1766 isConstant = !Features.WritableStrings; 1767 } 1768 1769 llvm::GlobalVariable *GV = 1770 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1771 ".str"); 1772 GV->setUnnamedAddr(true); 1773 if (isUTF16) { 1774 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1775 GV->setAlignment(Align.getQuantity()); 1776 } 1777 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1778 1779 // String length. 1780 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1781 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1782 1783 // The struct. 1784 C = llvm::ConstantStruct::get(STy, Fields); 1785 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1786 llvm::GlobalVariable::PrivateLinkage, C, 1787 "_unnamed_nsstring_"); 1788 // FIXME. Fix section. 1789 if (const char *Sect = 1790 Features.ObjCNonFragileABI 1791 ? getContext().Target.getNSStringNonFragileABISection() 1792 : getContext().Target.getNSStringSection()) 1793 GV->setSection(Sect); 1794 Entry.setValue(GV); 1795 1796 return GV; 1797 } 1798 1799 /// GetStringForStringLiteral - Return the appropriate bytes for a 1800 /// string literal, properly padded to match the literal type. 1801 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1802 const ASTContext &Context = getContext(); 1803 const ConstantArrayType *CAT = 1804 Context.getAsConstantArrayType(E->getType()); 1805 assert(CAT && "String isn't pointer or array!"); 1806 1807 // Resize the string to the right size. 1808 uint64_t RealLen = CAT->getSize().getZExtValue(); 1809 1810 if (E->isWide()) 1811 RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth(); 1812 1813 std::string Str = E->getString().str(); 1814 Str.resize(RealLen, '\0'); 1815 1816 return Str; 1817 } 1818 1819 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1820 /// constant array for the given string literal. 1821 llvm::Constant * 1822 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1823 // FIXME: This can be more efficient. 1824 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1825 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1826 if (S->isWide()) { 1827 llvm::Type *DestTy = 1828 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1829 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1830 } 1831 return C; 1832 } 1833 1834 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1835 /// array for the given ObjCEncodeExpr node. 1836 llvm::Constant * 1837 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1838 std::string Str; 1839 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1840 1841 return GetAddrOfConstantCString(Str); 1842 } 1843 1844 1845 /// GenerateWritableString -- Creates storage for a string literal. 1846 static llvm::Constant *GenerateStringLiteral(llvm::StringRef str, 1847 bool constant, 1848 CodeGenModule &CGM, 1849 const char *GlobalName) { 1850 // Create Constant for this string literal. Don't add a '\0'. 1851 llvm::Constant *C = 1852 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1853 1854 // Create a global variable for this string 1855 llvm::GlobalVariable *GV = 1856 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1857 llvm::GlobalValue::PrivateLinkage, 1858 C, GlobalName); 1859 GV->setUnnamedAddr(true); 1860 return GV; 1861 } 1862 1863 /// GetAddrOfConstantString - Returns a pointer to a character array 1864 /// containing the literal. This contents are exactly that of the 1865 /// given string, i.e. it will not be null terminated automatically; 1866 /// see GetAddrOfConstantCString. Note that whether the result is 1867 /// actually a pointer to an LLVM constant depends on 1868 /// Feature.WriteableStrings. 1869 /// 1870 /// The result has pointer to array type. 1871 llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str, 1872 const char *GlobalName) { 1873 bool IsConstant = !Features.WritableStrings; 1874 1875 // Get the default prefix if a name wasn't specified. 1876 if (!GlobalName) 1877 GlobalName = ".str"; 1878 1879 // Don't share any string literals if strings aren't constant. 1880 if (!IsConstant) 1881 return GenerateStringLiteral(Str, false, *this, GlobalName); 1882 1883 llvm::StringMapEntry<llvm::Constant *> &Entry = 1884 ConstantStringMap.GetOrCreateValue(Str); 1885 1886 if (Entry.getValue()) 1887 return Entry.getValue(); 1888 1889 // Create a global variable for this. 1890 llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName); 1891 Entry.setValue(C); 1892 return C; 1893 } 1894 1895 /// GetAddrOfConstantCString - Returns a pointer to a character 1896 /// array containing the literal and a terminating '\0' 1897 /// character. The result has pointer to array type. 1898 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 1899 const char *GlobalName){ 1900 llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1); 1901 return GetAddrOfConstantString(StrWithNull, GlobalName); 1902 } 1903 1904 /// EmitObjCPropertyImplementations - Emit information for synthesized 1905 /// properties for an implementation. 1906 void CodeGenModule::EmitObjCPropertyImplementations(const 1907 ObjCImplementationDecl *D) { 1908 for (ObjCImplementationDecl::propimpl_iterator 1909 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1910 ObjCPropertyImplDecl *PID = *i; 1911 1912 // Dynamic is just for type-checking. 1913 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1914 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1915 1916 // Determine which methods need to be implemented, some may have 1917 // been overridden. Note that ::isSynthesized is not the method 1918 // we want, that just indicates if the decl came from a 1919 // property. What we want to know is if the method is defined in 1920 // this implementation. 1921 if (!D->getInstanceMethod(PD->getGetterName())) 1922 CodeGenFunction(*this).GenerateObjCGetter( 1923 const_cast<ObjCImplementationDecl *>(D), PID); 1924 if (!PD->isReadOnly() && 1925 !D->getInstanceMethod(PD->getSetterName())) 1926 CodeGenFunction(*this).GenerateObjCSetter( 1927 const_cast<ObjCImplementationDecl *>(D), PID); 1928 } 1929 } 1930 } 1931 1932 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 1933 ObjCInterfaceDecl *iface 1934 = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface()); 1935 for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1936 ivar; ivar = ivar->getNextIvar()) 1937 if (ivar->getType().isDestructedType()) 1938 return true; 1939 1940 return false; 1941 } 1942 1943 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1944 /// for an implementation. 1945 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1946 // We might need a .cxx_destruct even if we don't have any ivar initializers. 1947 if (needsDestructMethod(D)) { 1948 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1949 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1950 ObjCMethodDecl *DTORMethod = 1951 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 1952 cxxSelector, getContext().VoidTy, 0, D, true, 1953 false, true, false, ObjCMethodDecl::Required); 1954 D->addInstanceMethod(DTORMethod); 1955 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1956 } 1957 1958 // If the implementation doesn't have any ivar initializers, we don't need 1959 // a .cxx_construct. 1960 if (D->getNumIvarInitializers() == 0) 1961 return; 1962 1963 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 1964 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1965 // The constructor returns 'self'. 1966 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1967 D->getLocation(), 1968 D->getLocation(), cxxSelector, 1969 getContext().getObjCIdType(), 0, 1970 D, true, false, true, false, 1971 ObjCMethodDecl::Required); 1972 D->addInstanceMethod(CTORMethod); 1973 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1974 } 1975 1976 /// EmitNamespace - Emit all declarations in a namespace. 1977 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1978 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1979 I != E; ++I) 1980 EmitTopLevelDecl(*I); 1981 } 1982 1983 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1984 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1985 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1986 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1987 ErrorUnsupported(LSD, "linkage spec"); 1988 return; 1989 } 1990 1991 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1992 I != E; ++I) 1993 EmitTopLevelDecl(*I); 1994 } 1995 1996 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1997 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1998 // If an error has occurred, stop code generation, but continue 1999 // parsing and semantic analysis (to ensure all warnings and errors 2000 // are emitted). 2001 if (Diags.hasErrorOccurred()) 2002 return; 2003 2004 // Ignore dependent declarations. 2005 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2006 return; 2007 2008 switch (D->getKind()) { 2009 case Decl::CXXConversion: 2010 case Decl::CXXMethod: 2011 case Decl::Function: 2012 // Skip function templates 2013 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 2014 return; 2015 2016 EmitGlobal(cast<FunctionDecl>(D)); 2017 break; 2018 2019 case Decl::Var: 2020 EmitGlobal(cast<VarDecl>(D)); 2021 break; 2022 2023 // C++ Decls 2024 case Decl::Namespace: 2025 EmitNamespace(cast<NamespaceDecl>(D)); 2026 break; 2027 // No code generation needed. 2028 case Decl::UsingShadow: 2029 case Decl::Using: 2030 case Decl::UsingDirective: 2031 case Decl::ClassTemplate: 2032 case Decl::FunctionTemplate: 2033 case Decl::NamespaceAlias: 2034 break; 2035 case Decl::CXXConstructor: 2036 // Skip function templates 2037 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 2038 return; 2039 2040 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2041 break; 2042 case Decl::CXXDestructor: 2043 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2044 break; 2045 2046 case Decl::StaticAssert: 2047 // Nothing to do. 2048 break; 2049 2050 // Objective-C Decls 2051 2052 // Forward declarations, no (immediate) code generation. 2053 case Decl::ObjCClass: 2054 case Decl::ObjCForwardProtocol: 2055 case Decl::ObjCInterface: 2056 break; 2057 2058 case Decl::ObjCCategory: { 2059 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2060 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2061 Context.ResetObjCLayout(CD->getClassInterface()); 2062 break; 2063 } 2064 2065 2066 case Decl::ObjCProtocol: 2067 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2068 break; 2069 2070 case Decl::ObjCCategoryImpl: 2071 // Categories have properties but don't support synthesize so we 2072 // can ignore them here. 2073 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2074 break; 2075 2076 case Decl::ObjCImplementation: { 2077 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2078 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2079 Context.ResetObjCLayout(OMD->getClassInterface()); 2080 EmitObjCPropertyImplementations(OMD); 2081 EmitObjCIvarInitializations(OMD); 2082 Runtime->GenerateClass(OMD); 2083 break; 2084 } 2085 case Decl::ObjCMethod: { 2086 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2087 // If this is not a prototype, emit the body. 2088 if (OMD->getBody()) 2089 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2090 break; 2091 } 2092 case Decl::ObjCCompatibleAlias: 2093 // compatibility-alias is a directive and has no code gen. 2094 break; 2095 2096 case Decl::LinkageSpec: 2097 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2098 break; 2099 2100 case Decl::FileScopeAsm: { 2101 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2102 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2103 2104 const std::string &S = getModule().getModuleInlineAsm(); 2105 if (S.empty()) 2106 getModule().setModuleInlineAsm(AsmString); 2107 else 2108 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2109 break; 2110 } 2111 2112 default: 2113 // Make sure we handled everything we should, every other kind is a 2114 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2115 // function. Need to recode Decl::Kind to do that easily. 2116 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2117 } 2118 } 2119 2120 /// Turns the given pointer into a constant. 2121 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2122 const void *Ptr) { 2123 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2124 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2125 return llvm::ConstantInt::get(i64, PtrInt); 2126 } 2127 2128 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2129 llvm::NamedMDNode *&GlobalMetadata, 2130 GlobalDecl D, 2131 llvm::GlobalValue *Addr) { 2132 if (!GlobalMetadata) 2133 GlobalMetadata = 2134 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2135 2136 // TODO: should we report variant information for ctors/dtors? 2137 llvm::Value *Ops[] = { 2138 Addr, 2139 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2140 }; 2141 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2142 } 2143 2144 /// Emits metadata nodes associating all the global values in the 2145 /// current module with the Decls they came from. This is useful for 2146 /// projects using IR gen as a subroutine. 2147 /// 2148 /// Since there's currently no way to associate an MDNode directly 2149 /// with an llvm::GlobalValue, we create a global named metadata 2150 /// with the name 'clang.global.decl.ptrs'. 2151 void CodeGenModule::EmitDeclMetadata() { 2152 llvm::NamedMDNode *GlobalMetadata = 0; 2153 2154 // StaticLocalDeclMap 2155 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2156 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2157 I != E; ++I) { 2158 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2159 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2160 } 2161 } 2162 2163 /// Emits metadata nodes for all the local variables in the current 2164 /// function. 2165 void CodeGenFunction::EmitDeclMetadata() { 2166 if (LocalDeclMap.empty()) return; 2167 2168 llvm::LLVMContext &Context = getLLVMContext(); 2169 2170 // Find the unique metadata ID for this name. 2171 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2172 2173 llvm::NamedMDNode *GlobalMetadata = 0; 2174 2175 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2176 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2177 const Decl *D = I->first; 2178 llvm::Value *Addr = I->second; 2179 2180 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2181 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2182 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2183 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2184 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2185 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2186 } 2187 } 2188 } 2189 2190 ///@name Custom Runtime Function Interfaces 2191 ///@{ 2192 // 2193 // FIXME: These can be eliminated once we can have clients just get the required 2194 // AST nodes from the builtin tables. 2195 2196 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2197 if (BlockObjectDispose) 2198 return BlockObjectDispose; 2199 2200 // If we saw an explicit decl, use that. 2201 if (BlockObjectDisposeDecl) { 2202 return BlockObjectDispose = GetAddrOfFunction( 2203 BlockObjectDisposeDecl, 2204 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2205 } 2206 2207 // Otherwise construct the function by hand. 2208 const llvm::FunctionType *FTy; 2209 std::vector<const llvm::Type*> ArgTys; 2210 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2211 ArgTys.push_back(Int8PtrTy); 2212 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2213 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2214 return BlockObjectDispose = 2215 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2216 } 2217 2218 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2219 if (BlockObjectAssign) 2220 return BlockObjectAssign; 2221 2222 // If we saw an explicit decl, use that. 2223 if (BlockObjectAssignDecl) { 2224 return BlockObjectAssign = GetAddrOfFunction( 2225 BlockObjectAssignDecl, 2226 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2227 } 2228 2229 // Otherwise construct the function by hand. 2230 const llvm::FunctionType *FTy; 2231 std::vector<const llvm::Type*> ArgTys; 2232 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2233 ArgTys.push_back(Int8PtrTy); 2234 ArgTys.push_back(Int8PtrTy); 2235 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2236 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2237 return BlockObjectAssign = 2238 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2239 } 2240 2241 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2242 if (NSConcreteGlobalBlock) 2243 return NSConcreteGlobalBlock; 2244 2245 // If we saw an explicit decl, use that. 2246 if (NSConcreteGlobalBlockDecl) { 2247 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2248 NSConcreteGlobalBlockDecl, 2249 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2250 } 2251 2252 // Otherwise construct the variable by hand. 2253 return NSConcreteGlobalBlock = 2254 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock"); 2255 } 2256 2257 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2258 if (NSConcreteStackBlock) 2259 return NSConcreteStackBlock; 2260 2261 // If we saw an explicit decl, use that. 2262 if (NSConcreteStackBlockDecl) { 2263 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2264 NSConcreteStackBlockDecl, 2265 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2266 } 2267 2268 // Otherwise construct the variable by hand. 2269 return NSConcreteStackBlock = 2270 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock"); 2271 } 2272 2273 ///@} 2274