xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 20b2ebd78586ee45dafff0cfd21cc65d1deb0cd7)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/Mangler.h"
41 #include "llvm/Target/TargetData.h"
42 #include "llvm/Support/CallSite.h"
43 #include "llvm/Support/ErrorHandling.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
48   switch (CGM.getContext().Target.getCXXABI()) {
49   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
50   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
51   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
52   }
53 
54   llvm_unreachable("invalid C++ ABI kind");
55   return *CreateItaniumCXXABI(CGM);
56 }
57 
58 
59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
60                              llvm::Module &M, const llvm::TargetData &TD,
61                              Diagnostic &diags)
62   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0),
74     BlockDescriptorType(0), GenericBlockLiteralType(0) {
75   if (Features.ObjC1)
76      createObjCRuntime();
77 
78   // Enable TBAA unless it's suppressed.
79   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
80     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
81                            ABI.getMangleContext());
82 
83   // If debug info generation is enabled, create the CGDebugInfo object.
84   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
85 
86   Block.GlobalUniqueCount = 0;
87 
88   // Initialize the type cache.
89   llvm::LLVMContext &LLVMContext = M.getContext();
90   Int8Ty  = llvm::Type::getInt8Ty(LLVMContext);
91   Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
92   Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
93   PointerWidthInBits = C.Target.getPointerWidth(0);
94   PointerAlignInBytes =
95     C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity();
96   IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth());
97   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
98   Int8PtrTy = Int8Ty->getPointerTo(0);
99   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
100 }
101 
102 CodeGenModule::~CodeGenModule() {
103   delete Runtime;
104   delete &ABI;
105   delete TBAA;
106   delete DebugInfo;
107 }
108 
109 void CodeGenModule::createObjCRuntime() {
110   if (!Features.NeXTRuntime)
111     Runtime = CreateGNUObjCRuntime(*this);
112   else
113     Runtime = CreateMacObjCRuntime(*this);
114 }
115 
116 void CodeGenModule::Release() {
117   EmitDeferred();
118   EmitCXXGlobalInitFunc();
119   EmitCXXGlobalDtorFunc();
120   if (Runtime)
121     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
122       AddGlobalCtor(ObjCInitFunction);
123   EmitCtorList(GlobalCtors, "llvm.global_ctors");
124   EmitCtorList(GlobalDtors, "llvm.global_dtors");
125   EmitAnnotations();
126   EmitLLVMUsed();
127 
128   SimplifyPersonality();
129 
130   if (getCodeGenOpts().EmitDeclMetadata)
131     EmitDeclMetadata();
132 }
133 
134 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
135   if (!TBAA)
136     return 0;
137   return TBAA->getTBAAInfo(QTy);
138 }
139 
140 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
141                                         llvm::MDNode *TBAAInfo) {
142   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
143 }
144 
145 bool CodeGenModule::isTargetDarwin() const {
146   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
147 }
148 
149 void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) {
150   unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error);
151   getDiags().Report(Context.getFullLoc(loc), diagID);
152 }
153 
154 /// ErrorUnsupported - Print out an error that codegen doesn't support the
155 /// specified stmt yet.
156 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
157                                      bool OmitOnError) {
158   if (OmitOnError && getDiags().hasErrorOccurred())
159     return;
160   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
161                                                "cannot compile this %0 yet");
162   std::string Msg = Type;
163   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
164     << Msg << S->getSourceRange();
165 }
166 
167 /// ErrorUnsupported - Print out an error that codegen doesn't support the
168 /// specified decl yet.
169 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
170                                      bool OmitOnError) {
171   if (OmitOnError && getDiags().hasErrorOccurred())
172     return;
173   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
174                                                "cannot compile this %0 yet");
175   std::string Msg = Type;
176   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
177 }
178 
179 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
180                                         const NamedDecl *D) const {
181   // Internal definitions always have default visibility.
182   if (GV->hasLocalLinkage()) {
183     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
184     return;
185   }
186 
187   // Set visibility for definitions.
188   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
189   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
190     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
191 }
192 
193 /// Set the symbol visibility of type information (vtable and RTTI)
194 /// associated with the given type.
195 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
196                                       const CXXRecordDecl *RD,
197                                       TypeVisibilityKind TVK) const {
198   setGlobalVisibility(GV, RD);
199 
200   if (!CodeGenOpts.HiddenWeakVTables)
201     return;
202 
203   // We never want to drop the visibility for RTTI names.
204   if (TVK == TVK_ForRTTIName)
205     return;
206 
207   // We want to drop the visibility to hidden for weak type symbols.
208   // This isn't possible if there might be unresolved references
209   // elsewhere that rely on this symbol being visible.
210 
211   // This should be kept roughly in sync with setThunkVisibility
212   // in CGVTables.cpp.
213 
214   // Preconditions.
215   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
216       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
217     return;
218 
219   // Don't override an explicit visibility attribute.
220   if (RD->hasAttr<VisibilityAttr>())
221     return;
222 
223   switch (RD->getTemplateSpecializationKind()) {
224   // We have to disable the optimization if this is an EI definition
225   // because there might be EI declarations in other shared objects.
226   case TSK_ExplicitInstantiationDefinition:
227   case TSK_ExplicitInstantiationDeclaration:
228     return;
229 
230   // Every use of a non-template class's type information has to emit it.
231   case TSK_Undeclared:
232     break;
233 
234   // In theory, implicit instantiations can ignore the possibility of
235   // an explicit instantiation declaration because there necessarily
236   // must be an EI definition somewhere with default visibility.  In
237   // practice, it's possible to have an explicit instantiation for
238   // an arbitrary template class, and linkers aren't necessarily able
239   // to deal with mixed-visibility symbols.
240   case TSK_ExplicitSpecialization:
241   case TSK_ImplicitInstantiation:
242     if (!CodeGenOpts.HiddenWeakTemplateVTables)
243       return;
244     break;
245   }
246 
247   // If there's a key function, there may be translation units
248   // that don't have the key function's definition.  But ignore
249   // this if we're emitting RTTI under -fno-rtti.
250   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
251     if (Context.getKeyFunction(RD))
252       return;
253   }
254 
255   // Otherwise, drop the visibility to hidden.
256   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
257   GV->setUnnamedAddr(true);
258 }
259 
260 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
261   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
262 
263   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
264   if (!Str.empty())
265     return Str;
266 
267   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
268     IdentifierInfo *II = ND->getIdentifier();
269     assert(II && "Attempt to mangle unnamed decl.");
270 
271     Str = II->getName();
272     return Str;
273   }
274 
275   llvm::SmallString<256> Buffer;
276   llvm::raw_svector_ostream Out(Buffer);
277   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
278     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
279   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
280     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
281   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
282     getCXXABI().getMangleContext().mangleBlock(BD, Out);
283   else
284     getCXXABI().getMangleContext().mangleName(ND, Out);
285 
286   // Allocate space for the mangled name.
287   Out.flush();
288   size_t Length = Buffer.size();
289   char *Name = MangledNamesAllocator.Allocate<char>(Length);
290   std::copy(Buffer.begin(), Buffer.end(), Name);
291 
292   Str = llvm::StringRef(Name, Length);
293 
294   return Str;
295 }
296 
297 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
298                                         const BlockDecl *BD) {
299   MangleContext &MangleCtx = getCXXABI().getMangleContext();
300   const Decl *D = GD.getDecl();
301   llvm::raw_svector_ostream Out(Buffer.getBuffer());
302   if (D == 0)
303     MangleCtx.mangleGlobalBlock(BD, Out);
304   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
305     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
306   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
307     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
308   else
309     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
310 }
311 
312 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
313   return getModule().getNamedValue(Name);
314 }
315 
316 /// AddGlobalCtor - Add a function to the list that will be called before
317 /// main() runs.
318 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
319   // FIXME: Type coercion of void()* types.
320   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
321 }
322 
323 /// AddGlobalDtor - Add a function to the list that will be called
324 /// when the module is unloaded.
325 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
326   // FIXME: Type coercion of void()* types.
327   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
328 }
329 
330 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
331   // Ctor function type is void()*.
332   llvm::FunctionType* CtorFTy =
333     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
334   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
335 
336   // Get the type of a ctor entry, { i32, void ()* }.
337   llvm::StructType* CtorStructTy =
338     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
339                           llvm::PointerType::getUnqual(CtorFTy), NULL);
340 
341   // Construct the constructor and destructor arrays.
342   std::vector<llvm::Constant*> Ctors;
343   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
344     std::vector<llvm::Constant*> S;
345     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
346                 I->second, false));
347     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
348     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
349   }
350 
351   if (!Ctors.empty()) {
352     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
353     new llvm::GlobalVariable(TheModule, AT, false,
354                              llvm::GlobalValue::AppendingLinkage,
355                              llvm::ConstantArray::get(AT, Ctors),
356                              GlobalName);
357   }
358 }
359 
360 void CodeGenModule::EmitAnnotations() {
361   if (Annotations.empty())
362     return;
363 
364   // Create a new global variable for the ConstantStruct in the Module.
365   llvm::Constant *Array =
366   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
367                                                 Annotations.size()),
368                            Annotations);
369   llvm::GlobalValue *gv =
370   new llvm::GlobalVariable(TheModule, Array->getType(), false,
371                            llvm::GlobalValue::AppendingLinkage, Array,
372                            "llvm.global.annotations");
373   gv->setSection("llvm.metadata");
374 }
375 
376 llvm::GlobalValue::LinkageTypes
377 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
378   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
379 
380   if (Linkage == GVA_Internal)
381     return llvm::Function::InternalLinkage;
382 
383   if (D->hasAttr<DLLExportAttr>())
384     return llvm::Function::DLLExportLinkage;
385 
386   if (D->hasAttr<WeakAttr>())
387     return llvm::Function::WeakAnyLinkage;
388 
389   // In C99 mode, 'inline' functions are guaranteed to have a strong
390   // definition somewhere else, so we can use available_externally linkage.
391   if (Linkage == GVA_C99Inline)
392     return llvm::Function::AvailableExternallyLinkage;
393 
394   // In C++, the compiler has to emit a definition in every translation unit
395   // that references the function.  We should use linkonce_odr because
396   // a) if all references in this translation unit are optimized away, we
397   // don't need to codegen it.  b) if the function persists, it needs to be
398   // merged with other definitions. c) C++ has the ODR, so we know the
399   // definition is dependable.
400   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
401     return !Context.getLangOptions().AppleKext
402              ? llvm::Function::LinkOnceODRLinkage
403              : llvm::Function::InternalLinkage;
404 
405   // An explicit instantiation of a template has weak linkage, since
406   // explicit instantiations can occur in multiple translation units
407   // and must all be equivalent. However, we are not allowed to
408   // throw away these explicit instantiations.
409   if (Linkage == GVA_ExplicitTemplateInstantiation)
410     return !Context.getLangOptions().AppleKext
411              ? llvm::Function::WeakODRLinkage
412              : llvm::Function::InternalLinkage;
413 
414   // Otherwise, we have strong external linkage.
415   assert(Linkage == GVA_StrongExternal);
416   return llvm::Function::ExternalLinkage;
417 }
418 
419 
420 /// SetFunctionDefinitionAttributes - Set attributes for a global.
421 ///
422 /// FIXME: This is currently only done for aliases and functions, but not for
423 /// variables (these details are set in EmitGlobalVarDefinition for variables).
424 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
425                                                     llvm::GlobalValue *GV) {
426   SetCommonAttributes(D, GV);
427 }
428 
429 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
430                                               const CGFunctionInfo &Info,
431                                               llvm::Function *F) {
432   unsigned CallingConv;
433   AttributeListType AttributeList;
434   ConstructAttributeList(Info, D, AttributeList, CallingConv);
435   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
436                                           AttributeList.size()));
437   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
438 }
439 
440 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
441                                                            llvm::Function *F) {
442   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
443     F->addFnAttr(llvm::Attribute::NoUnwind);
444 
445   if (D->hasAttr<AlwaysInlineAttr>())
446     F->addFnAttr(llvm::Attribute::AlwaysInline);
447 
448   if (D->hasAttr<NakedAttr>())
449     F->addFnAttr(llvm::Attribute::Naked);
450 
451   if (D->hasAttr<NoInlineAttr>())
452     F->addFnAttr(llvm::Attribute::NoInline);
453 
454   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
455     F->setUnnamedAddr(true);
456 
457   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
458     F->addFnAttr(llvm::Attribute::StackProtect);
459   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
460     F->addFnAttr(llvm::Attribute::StackProtectReq);
461 
462   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
463   if (alignment)
464     F->setAlignment(alignment);
465 
466   // C++ ABI requires 2-byte alignment for member functions.
467   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
468     F->setAlignment(2);
469 }
470 
471 void CodeGenModule::SetCommonAttributes(const Decl *D,
472                                         llvm::GlobalValue *GV) {
473   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
474     setGlobalVisibility(GV, ND);
475   else
476     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
477 
478   if (D->hasAttr<UsedAttr>())
479     AddUsedGlobal(GV);
480 
481   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
482     GV->setSection(SA->getName());
483 
484   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
485 }
486 
487 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
488                                                   llvm::Function *F,
489                                                   const CGFunctionInfo &FI) {
490   SetLLVMFunctionAttributes(D, FI, F);
491   SetLLVMFunctionAttributesForDefinition(D, F);
492 
493   F->setLinkage(llvm::Function::InternalLinkage);
494 
495   SetCommonAttributes(D, F);
496 }
497 
498 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
499                                           llvm::Function *F,
500                                           bool IsIncompleteFunction) {
501   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
502 
503   if (!IsIncompleteFunction)
504     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
505 
506   // Only a few attributes are set on declarations; these may later be
507   // overridden by a definition.
508 
509   if (FD->hasAttr<DLLImportAttr>()) {
510     F->setLinkage(llvm::Function::DLLImportLinkage);
511   } else if (FD->hasAttr<WeakAttr>() ||
512              FD->isWeakImported()) {
513     // "extern_weak" is overloaded in LLVM; we probably should have
514     // separate linkage types for this.
515     F->setLinkage(llvm::Function::ExternalWeakLinkage);
516   } else {
517     F->setLinkage(llvm::Function::ExternalLinkage);
518 
519     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
520     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
521       F->setVisibility(GetLLVMVisibility(LV.visibility()));
522     }
523   }
524 
525   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
526     F->setSection(SA->getName());
527 }
528 
529 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
530   assert(!GV->isDeclaration() &&
531          "Only globals with definition can force usage.");
532   LLVMUsed.push_back(GV);
533 }
534 
535 void CodeGenModule::EmitLLVMUsed() {
536   // Don't create llvm.used if there is no need.
537   if (LLVMUsed.empty())
538     return;
539 
540   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
541 
542   // Convert LLVMUsed to what ConstantArray needs.
543   std::vector<llvm::Constant*> UsedArray;
544   UsedArray.resize(LLVMUsed.size());
545   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
546     UsedArray[i] =
547      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
548                                       i8PTy);
549   }
550 
551   if (UsedArray.empty())
552     return;
553   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
554 
555   llvm::GlobalVariable *GV =
556     new llvm::GlobalVariable(getModule(), ATy, false,
557                              llvm::GlobalValue::AppendingLinkage,
558                              llvm::ConstantArray::get(ATy, UsedArray),
559                              "llvm.used");
560 
561   GV->setSection("llvm.metadata");
562 }
563 
564 void CodeGenModule::EmitDeferred() {
565   // Emit code for any potentially referenced deferred decls.  Since a
566   // previously unused static decl may become used during the generation of code
567   // for a static function, iterate until no  changes are made.
568 
569   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
570     if (!DeferredVTables.empty()) {
571       const CXXRecordDecl *RD = DeferredVTables.back();
572       DeferredVTables.pop_back();
573       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
574       continue;
575     }
576 
577     GlobalDecl D = DeferredDeclsToEmit.back();
578     DeferredDeclsToEmit.pop_back();
579 
580     // Check to see if we've already emitted this.  This is necessary
581     // for a couple of reasons: first, decls can end up in the
582     // deferred-decls queue multiple times, and second, decls can end
583     // up with definitions in unusual ways (e.g. by an extern inline
584     // function acquiring a strong function redefinition).  Just
585     // ignore these cases.
586     //
587     // TODO: That said, looking this up multiple times is very wasteful.
588     llvm::StringRef Name = getMangledName(D);
589     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
590     assert(CGRef && "Deferred decl wasn't referenced?");
591 
592     if (!CGRef->isDeclaration())
593       continue;
594 
595     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
596     // purposes an alias counts as a definition.
597     if (isa<llvm::GlobalAlias>(CGRef))
598       continue;
599 
600     // Otherwise, emit the definition and move on to the next one.
601     EmitGlobalDefinition(D);
602   }
603 }
604 
605 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
606 /// annotation information for a given GlobalValue.  The annotation struct is
607 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
608 /// GlobalValue being annotated.  The second field is the constant string
609 /// created from the AnnotateAttr's annotation.  The third field is a constant
610 /// string containing the name of the translation unit.  The fourth field is
611 /// the line number in the file of the annotated value declaration.
612 ///
613 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
614 ///        appears to.
615 ///
616 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
617                                                 const AnnotateAttr *AA,
618                                                 unsigned LineNo) {
619   llvm::Module *M = &getModule();
620 
621   // get [N x i8] constants for the annotation string, and the filename string
622   // which are the 2nd and 3rd elements of the global annotation structure.
623   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
624   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
625                                                   AA->getAnnotation(), true);
626   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
627                                                   M->getModuleIdentifier(),
628                                                   true);
629 
630   // Get the two global values corresponding to the ConstantArrays we just
631   // created to hold the bytes of the strings.
632   llvm::GlobalValue *annoGV =
633     new llvm::GlobalVariable(*M, anno->getType(), false,
634                              llvm::GlobalValue::PrivateLinkage, anno,
635                              GV->getName());
636   // translation unit name string, emitted into the llvm.metadata section.
637   llvm::GlobalValue *unitGV =
638     new llvm::GlobalVariable(*M, unit->getType(), false,
639                              llvm::GlobalValue::PrivateLinkage, unit,
640                              ".str");
641   unitGV->setUnnamedAddr(true);
642 
643   // Create the ConstantStruct for the global annotation.
644   llvm::Constant *Fields[4] = {
645     llvm::ConstantExpr::getBitCast(GV, SBP),
646     llvm::ConstantExpr::getBitCast(annoGV, SBP),
647     llvm::ConstantExpr::getBitCast(unitGV, SBP),
648     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
649   };
650   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
651 }
652 
653 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
654   // Never defer when EmitAllDecls is specified.
655   if (Features.EmitAllDecls)
656     return false;
657 
658   return !getContext().DeclMustBeEmitted(Global);
659 }
660 
661 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
662   const AliasAttr *AA = VD->getAttr<AliasAttr>();
663   assert(AA && "No alias?");
664 
665   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
666 
667   // See if there is already something with the target's name in the module.
668   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
669 
670   llvm::Constant *Aliasee;
671   if (isa<llvm::FunctionType>(DeclTy))
672     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
673                                       /*ForVTable=*/false);
674   else
675     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
676                                     llvm::PointerType::getUnqual(DeclTy), 0);
677   if (!Entry) {
678     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
679     F->setLinkage(llvm::Function::ExternalWeakLinkage);
680     WeakRefReferences.insert(F);
681   }
682 
683   return Aliasee;
684 }
685 
686 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
687   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
688 
689   // Weak references don't produce any output by themselves.
690   if (Global->hasAttr<WeakRefAttr>())
691     return;
692 
693   // If this is an alias definition (which otherwise looks like a declaration)
694   // emit it now.
695   if (Global->hasAttr<AliasAttr>())
696     return EmitAliasDefinition(GD);
697 
698   // Ignore declarations, they will be emitted on their first use.
699   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
700     if (FD->getIdentifier()) {
701       llvm::StringRef Name = FD->getName();
702       if (Name == "_Block_object_assign") {
703         BlockObjectAssignDecl = FD;
704       } else if (Name == "_Block_object_dispose") {
705         BlockObjectDisposeDecl = FD;
706       }
707     }
708 
709     // Forward declarations are emitted lazily on first use.
710     if (!FD->isThisDeclarationADefinition())
711       return;
712   } else {
713     const VarDecl *VD = cast<VarDecl>(Global);
714     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
715 
716     if (VD->getIdentifier()) {
717       llvm::StringRef Name = VD->getName();
718       if (Name == "_NSConcreteGlobalBlock") {
719         NSConcreteGlobalBlockDecl = VD;
720       } else if (Name == "_NSConcreteStackBlock") {
721         NSConcreteStackBlockDecl = VD;
722       }
723     }
724 
725 
726     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
727       return;
728   }
729 
730   // Defer code generation when possible if this is a static definition, inline
731   // function etc.  These we only want to emit if they are used.
732   if (!MayDeferGeneration(Global)) {
733     // Emit the definition if it can't be deferred.
734     EmitGlobalDefinition(GD);
735     return;
736   }
737 
738   // If we're deferring emission of a C++ variable with an
739   // initializer, remember the order in which it appeared in the file.
740   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
741       cast<VarDecl>(Global)->hasInit()) {
742     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
743     CXXGlobalInits.push_back(0);
744   }
745 
746   // If the value has already been used, add it directly to the
747   // DeferredDeclsToEmit list.
748   llvm::StringRef MangledName = getMangledName(GD);
749   if (GetGlobalValue(MangledName))
750     DeferredDeclsToEmit.push_back(GD);
751   else {
752     // Otherwise, remember that we saw a deferred decl with this name.  The
753     // first use of the mangled name will cause it to move into
754     // DeferredDeclsToEmit.
755     DeferredDecls[MangledName] = GD;
756   }
757 }
758 
759 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
760   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
761 
762   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
763                                  Context.getSourceManager(),
764                                  "Generating code for declaration");
765 
766   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
767     // At -O0, don't generate IR for functions with available_externally
768     // linkage.
769     if (CodeGenOpts.OptimizationLevel == 0 &&
770         !Function->hasAttr<AlwaysInlineAttr>() &&
771         getFunctionLinkage(Function)
772                                   == llvm::Function::AvailableExternallyLinkage)
773       return;
774 
775     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
776       if (Method->isVirtual())
777         getVTables().EmitThunks(GD);
778 
779       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
780         return EmitCXXConstructor(CD, GD.getCtorType());
781 
782       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
783         return EmitCXXDestructor(DD, GD.getDtorType());
784     }
785 
786     return EmitGlobalFunctionDefinition(GD);
787   }
788 
789   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
790     return EmitGlobalVarDefinition(VD);
791 
792   assert(0 && "Invalid argument to EmitGlobalDefinition()");
793 }
794 
795 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
796 /// module, create and return an llvm Function with the specified type. If there
797 /// is something in the module with the specified name, return it potentially
798 /// bitcasted to the right type.
799 ///
800 /// If D is non-null, it specifies a decl that correspond to this.  This is used
801 /// to set the attributes on the function when it is first created.
802 llvm::Constant *
803 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
804                                        const llvm::Type *Ty,
805                                        GlobalDecl D, bool ForVTable) {
806   // Lookup the entry, lazily creating it if necessary.
807   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
808   if (Entry) {
809     if (WeakRefReferences.count(Entry)) {
810       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
811       if (FD && !FD->hasAttr<WeakAttr>())
812         Entry->setLinkage(llvm::Function::ExternalLinkage);
813 
814       WeakRefReferences.erase(Entry);
815     }
816 
817     if (Entry->getType()->getElementType() == Ty)
818       return Entry;
819 
820     // Make sure the result is of the correct type.
821     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
822     return llvm::ConstantExpr::getBitCast(Entry, PTy);
823   }
824 
825   // This function doesn't have a complete type (for example, the return
826   // type is an incomplete struct). Use a fake type instead, and make
827   // sure not to try to set attributes.
828   bool IsIncompleteFunction = false;
829 
830   const llvm::FunctionType *FTy;
831   if (isa<llvm::FunctionType>(Ty)) {
832     FTy = cast<llvm::FunctionType>(Ty);
833   } else {
834     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
835     IsIncompleteFunction = true;
836   }
837 
838   llvm::Function *F = llvm::Function::Create(FTy,
839                                              llvm::Function::ExternalLinkage,
840                                              MangledName, &getModule());
841   assert(F->getName() == MangledName && "name was uniqued!");
842   if (D.getDecl())
843     SetFunctionAttributes(D, F, IsIncompleteFunction);
844 
845   // This is the first use or definition of a mangled name.  If there is a
846   // deferred decl with this name, remember that we need to emit it at the end
847   // of the file.
848   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
849   if (DDI != DeferredDecls.end()) {
850     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
851     // list, and remove it from DeferredDecls (since we don't need it anymore).
852     DeferredDeclsToEmit.push_back(DDI->second);
853     DeferredDecls.erase(DDI);
854 
855   // Otherwise, there are cases we have to worry about where we're
856   // using a declaration for which we must emit a definition but where
857   // we might not find a top-level definition:
858   //   - member functions defined inline in their classes
859   //   - friend functions defined inline in some class
860   //   - special member functions with implicit definitions
861   // If we ever change our AST traversal to walk into class methods,
862   // this will be unnecessary.
863   //
864   // We also don't emit a definition for a function if it's going to be an entry
865   // in a vtable, unless it's already marked as used.
866   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
867     // Look for a declaration that's lexically in a record.
868     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
869     do {
870       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
871         if (FD->isImplicit() && !ForVTable) {
872           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
873           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
874           break;
875         } else if (FD->isThisDeclarationADefinition()) {
876           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
877           break;
878         }
879       }
880       FD = FD->getPreviousDeclaration();
881     } while (FD);
882   }
883 
884   // Make sure the result is of the requested type.
885   if (!IsIncompleteFunction) {
886     assert(F->getType()->getElementType() == Ty);
887     return F;
888   }
889 
890   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
891   return llvm::ConstantExpr::getBitCast(F, PTy);
892 }
893 
894 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
895 /// non-null, then this function will use the specified type if it has to
896 /// create it (this occurs when we see a definition of the function).
897 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
898                                                  const llvm::Type *Ty,
899                                                  bool ForVTable) {
900   // If there was no specific requested type, just convert it now.
901   if (!Ty)
902     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
903 
904   llvm::StringRef MangledName = getMangledName(GD);
905   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
906 }
907 
908 /// CreateRuntimeFunction - Create a new runtime function with the specified
909 /// type and name.
910 llvm::Constant *
911 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
912                                      llvm::StringRef Name) {
913   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false);
914 }
915 
916 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
917   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
918     return false;
919   if (Context.getLangOptions().CPlusPlus &&
920       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
921     // FIXME: We should do something fancier here!
922     return false;
923   }
924   return true;
925 }
926 
927 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
928 /// create and return an llvm GlobalVariable with the specified type.  If there
929 /// is something in the module with the specified name, return it potentially
930 /// bitcasted to the right type.
931 ///
932 /// If D is non-null, it specifies a decl that correspond to this.  This is used
933 /// to set the attributes on the global when it is first created.
934 llvm::Constant *
935 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
936                                      const llvm::PointerType *Ty,
937                                      const VarDecl *D,
938                                      bool UnnamedAddr) {
939   // Lookup the entry, lazily creating it if necessary.
940   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
941   if (Entry) {
942     if (WeakRefReferences.count(Entry)) {
943       if (D && !D->hasAttr<WeakAttr>())
944         Entry->setLinkage(llvm::Function::ExternalLinkage);
945 
946       WeakRefReferences.erase(Entry);
947     }
948 
949     if (UnnamedAddr)
950       Entry->setUnnamedAddr(true);
951 
952     if (Entry->getType() == Ty)
953       return Entry;
954 
955     // Make sure the result is of the correct type.
956     return llvm::ConstantExpr::getBitCast(Entry, Ty);
957   }
958 
959   // This is the first use or definition of a mangled name.  If there is a
960   // deferred decl with this name, remember that we need to emit it at the end
961   // of the file.
962   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
963   if (DDI != DeferredDecls.end()) {
964     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
965     // list, and remove it from DeferredDecls (since we don't need it anymore).
966     DeferredDeclsToEmit.push_back(DDI->second);
967     DeferredDecls.erase(DDI);
968   }
969 
970   llvm::GlobalVariable *GV =
971     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
972                              llvm::GlobalValue::ExternalLinkage,
973                              0, MangledName, 0,
974                              false, Ty->getAddressSpace());
975 
976   // Handle things which are present even on external declarations.
977   if (D) {
978     // FIXME: This code is overly simple and should be merged with other global
979     // handling.
980     GV->setConstant(DeclIsConstantGlobal(Context, D));
981 
982     // Set linkage and visibility in case we never see a definition.
983     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
984     if (LV.linkage() != ExternalLinkage) {
985       // Don't set internal linkage on declarations.
986     } else {
987       if (D->hasAttr<DLLImportAttr>())
988         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
989       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
990         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
991 
992       // Set visibility on a declaration only if it's explicit.
993       if (LV.visibilityExplicit())
994         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
995     }
996 
997     GV->setThreadLocal(D->isThreadSpecified());
998   }
999 
1000   return GV;
1001 }
1002 
1003 
1004 llvm::GlobalVariable *
1005 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
1006                                       const llvm::Type *Ty,
1007                                       llvm::GlobalValue::LinkageTypes Linkage) {
1008   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1009   llvm::GlobalVariable *OldGV = 0;
1010 
1011 
1012   if (GV) {
1013     // Check if the variable has the right type.
1014     if (GV->getType()->getElementType() == Ty)
1015       return GV;
1016 
1017     // Because C++ name mangling, the only way we can end up with an already
1018     // existing global with the same name is if it has been declared extern "C".
1019       assert(GV->isDeclaration() && "Declaration has wrong type!");
1020     OldGV = GV;
1021   }
1022 
1023   // Create a new variable.
1024   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1025                                 Linkage, 0, Name);
1026 
1027   if (OldGV) {
1028     // Replace occurrences of the old variable if needed.
1029     GV->takeName(OldGV);
1030 
1031     if (!OldGV->use_empty()) {
1032       llvm::Constant *NewPtrForOldDecl =
1033       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1034       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1035     }
1036 
1037     OldGV->eraseFromParent();
1038   }
1039 
1040   return GV;
1041 }
1042 
1043 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1044 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1045 /// then it will be greated with the specified type instead of whatever the
1046 /// normal requested type would be.
1047 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1048                                                   const llvm::Type *Ty) {
1049   assert(D->hasGlobalStorage() && "Not a global variable");
1050   QualType ASTTy = D->getType();
1051   if (Ty == 0)
1052     Ty = getTypes().ConvertTypeForMem(ASTTy);
1053 
1054   const llvm::PointerType *PTy =
1055     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1056 
1057   llvm::StringRef MangledName = getMangledName(D);
1058   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1059 }
1060 
1061 /// CreateRuntimeVariable - Create a new runtime global variable with the
1062 /// specified type and name.
1063 llvm::Constant *
1064 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1065                                      llvm::StringRef Name) {
1066   return GetOrCreateLLVMGlobal(Name,  llvm::PointerType::getUnqual(Ty), 0,
1067                                true);
1068 }
1069 
1070 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1071   assert(!D->getInit() && "Cannot emit definite definitions here!");
1072 
1073   if (MayDeferGeneration(D)) {
1074     // If we have not seen a reference to this variable yet, place it
1075     // into the deferred declarations table to be emitted if needed
1076     // later.
1077     llvm::StringRef MangledName = getMangledName(D);
1078     if (!GetGlobalValue(MangledName)) {
1079       DeferredDecls[MangledName] = D;
1080       return;
1081     }
1082   }
1083 
1084   // The tentative definition is the only definition.
1085   EmitGlobalVarDefinition(D);
1086 }
1087 
1088 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1089   if (DefinitionRequired)
1090     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1091 }
1092 
1093 llvm::GlobalVariable::LinkageTypes
1094 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1095   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1096     return llvm::GlobalVariable::InternalLinkage;
1097 
1098   if (const CXXMethodDecl *KeyFunction
1099                                     = RD->getASTContext().getKeyFunction(RD)) {
1100     // If this class has a key function, use that to determine the linkage of
1101     // the vtable.
1102     const FunctionDecl *Def = 0;
1103     if (KeyFunction->hasBody(Def))
1104       KeyFunction = cast<CXXMethodDecl>(Def);
1105 
1106     switch (KeyFunction->getTemplateSpecializationKind()) {
1107       case TSK_Undeclared:
1108       case TSK_ExplicitSpecialization:
1109         // When compiling with optimizations turned on, we emit all vtables,
1110         // even if the key function is not defined in the current translation
1111         // unit. If this is the case, use available_externally linkage.
1112         if (!Def && CodeGenOpts.OptimizationLevel)
1113           return llvm::GlobalVariable::AvailableExternallyLinkage;
1114 
1115         if (KeyFunction->isInlined())
1116           return !Context.getLangOptions().AppleKext ?
1117                    llvm::GlobalVariable::LinkOnceODRLinkage :
1118                    llvm::Function::InternalLinkage;
1119 
1120         return llvm::GlobalVariable::ExternalLinkage;
1121 
1122       case TSK_ImplicitInstantiation:
1123         return !Context.getLangOptions().AppleKext ?
1124                  llvm::GlobalVariable::LinkOnceODRLinkage :
1125                  llvm::Function::InternalLinkage;
1126 
1127       case TSK_ExplicitInstantiationDefinition:
1128         return !Context.getLangOptions().AppleKext ?
1129                  llvm::GlobalVariable::WeakODRLinkage :
1130                  llvm::Function::InternalLinkage;
1131 
1132       case TSK_ExplicitInstantiationDeclaration:
1133         // FIXME: Use available_externally linkage. However, this currently
1134         // breaks LLVM's build due to undefined symbols.
1135         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1136         return !Context.getLangOptions().AppleKext ?
1137                  llvm::GlobalVariable::LinkOnceODRLinkage :
1138                  llvm::Function::InternalLinkage;
1139     }
1140   }
1141 
1142   if (Context.getLangOptions().AppleKext)
1143     return llvm::Function::InternalLinkage;
1144 
1145   switch (RD->getTemplateSpecializationKind()) {
1146   case TSK_Undeclared:
1147   case TSK_ExplicitSpecialization:
1148   case TSK_ImplicitInstantiation:
1149     // FIXME: Use available_externally linkage. However, this currently
1150     // breaks LLVM's build due to undefined symbols.
1151     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1152   case TSK_ExplicitInstantiationDeclaration:
1153     return llvm::GlobalVariable::LinkOnceODRLinkage;
1154 
1155   case TSK_ExplicitInstantiationDefinition:
1156       return llvm::GlobalVariable::WeakODRLinkage;
1157   }
1158 
1159   // Silence GCC warning.
1160   return llvm::GlobalVariable::LinkOnceODRLinkage;
1161 }
1162 
1163 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1164     return Context.toCharUnitsFromBits(
1165       TheTargetData.getTypeStoreSizeInBits(Ty));
1166 }
1167 
1168 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1169   llvm::Constant *Init = 0;
1170   QualType ASTTy = D->getType();
1171   bool NonConstInit = false;
1172 
1173   const Expr *InitExpr = D->getAnyInitializer();
1174 
1175   if (!InitExpr) {
1176     // This is a tentative definition; tentative definitions are
1177     // implicitly initialized with { 0 }.
1178     //
1179     // Note that tentative definitions are only emitted at the end of
1180     // a translation unit, so they should never have incomplete
1181     // type. In addition, EmitTentativeDefinition makes sure that we
1182     // never attempt to emit a tentative definition if a real one
1183     // exists. A use may still exists, however, so we still may need
1184     // to do a RAUW.
1185     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1186     Init = EmitNullConstant(D->getType());
1187   } else {
1188     Init = EmitConstantExpr(InitExpr, D->getType());
1189     if (!Init) {
1190       QualType T = InitExpr->getType();
1191       if (D->getType()->isReferenceType())
1192         T = D->getType();
1193 
1194       if (getLangOptions().CPlusPlus) {
1195         Init = EmitNullConstant(T);
1196         NonConstInit = true;
1197       } else {
1198         ErrorUnsupported(D, "static initializer");
1199         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1200       }
1201     } else {
1202       // We don't need an initializer, so remove the entry for the delayed
1203       // initializer position (just in case this entry was delayed).
1204       if (getLangOptions().CPlusPlus)
1205         DelayedCXXInitPosition.erase(D);
1206     }
1207   }
1208 
1209   const llvm::Type* InitType = Init->getType();
1210   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1211 
1212   // Strip off a bitcast if we got one back.
1213   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1214     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1215            // all zero index gep.
1216            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1217     Entry = CE->getOperand(0);
1218   }
1219 
1220   // Entry is now either a Function or GlobalVariable.
1221   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1222 
1223   // We have a definition after a declaration with the wrong type.
1224   // We must make a new GlobalVariable* and update everything that used OldGV
1225   // (a declaration or tentative definition) with the new GlobalVariable*
1226   // (which will be a definition).
1227   //
1228   // This happens if there is a prototype for a global (e.g.
1229   // "extern int x[];") and then a definition of a different type (e.g.
1230   // "int x[10];"). This also happens when an initializer has a different type
1231   // from the type of the global (this happens with unions).
1232   if (GV == 0 ||
1233       GV->getType()->getElementType() != InitType ||
1234       GV->getType()->getAddressSpace() !=
1235         getContext().getTargetAddressSpace(ASTTy)) {
1236 
1237     // Move the old entry aside so that we'll create a new one.
1238     Entry->setName(llvm::StringRef());
1239 
1240     // Make a new global with the correct type, this is now guaranteed to work.
1241     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1242 
1243     // Replace all uses of the old global with the new global
1244     llvm::Constant *NewPtrForOldDecl =
1245         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1246     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1247 
1248     // Erase the old global, since it is no longer used.
1249     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1250   }
1251 
1252   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1253     SourceManager &SM = Context.getSourceManager();
1254     AddAnnotation(EmitAnnotateAttr(GV, AA,
1255                               SM.getInstantiationLineNumber(D->getLocation())));
1256   }
1257 
1258   GV->setInitializer(Init);
1259 
1260   // If it is safe to mark the global 'constant', do so now.
1261   GV->setConstant(false);
1262   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1263     GV->setConstant(true);
1264 
1265   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1266 
1267   // Set the llvm linkage type as appropriate.
1268   llvm::GlobalValue::LinkageTypes Linkage =
1269     GetLLVMLinkageVarDefinition(D, GV);
1270   GV->setLinkage(Linkage);
1271   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1272     // common vars aren't constant even if declared const.
1273     GV->setConstant(false);
1274 
1275   SetCommonAttributes(D, GV);
1276 
1277   // Emit the initializer function if necessary.
1278   if (NonConstInit)
1279     EmitCXXGlobalVarDeclInitFunc(D, GV);
1280 
1281   // Emit global variable debug information.
1282   if (CGDebugInfo *DI = getModuleDebugInfo()) {
1283     DI->setLocation(D->getLocation());
1284     DI->EmitGlobalVariable(GV, D);
1285   }
1286 }
1287 
1288 llvm::GlobalValue::LinkageTypes
1289 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1290                                            llvm::GlobalVariable *GV) {
1291   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1292   if (Linkage == GVA_Internal)
1293     return llvm::Function::InternalLinkage;
1294   else if (D->hasAttr<DLLImportAttr>())
1295     return llvm::Function::DLLImportLinkage;
1296   else if (D->hasAttr<DLLExportAttr>())
1297     return llvm::Function::DLLExportLinkage;
1298   else if (D->hasAttr<WeakAttr>()) {
1299     if (GV->isConstant())
1300       return llvm::GlobalVariable::WeakODRLinkage;
1301     else
1302       return llvm::GlobalVariable::WeakAnyLinkage;
1303   } else if (Linkage == GVA_TemplateInstantiation ||
1304              Linkage == GVA_ExplicitTemplateInstantiation)
1305     // FIXME: It seems like we can provide more specific linkage here
1306     // (LinkOnceODR, WeakODR).
1307     return llvm::GlobalVariable::WeakAnyLinkage;
1308   else if (!getLangOptions().CPlusPlus &&
1309            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1310              D->getAttr<CommonAttr>()) &&
1311            !D->hasExternalStorage() && !D->getInit() &&
1312            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1313     // Thread local vars aren't considered common linkage.
1314     return llvm::GlobalVariable::CommonLinkage;
1315   }
1316   return llvm::GlobalVariable::ExternalLinkage;
1317 }
1318 
1319 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1320 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1321 /// existing call uses of the old function in the module, this adjusts them to
1322 /// call the new function directly.
1323 ///
1324 /// This is not just a cleanup: the always_inline pass requires direct calls to
1325 /// functions to be able to inline them.  If there is a bitcast in the way, it
1326 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1327 /// run at -O0.
1328 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1329                                                       llvm::Function *NewFn) {
1330   // If we're redefining a global as a function, don't transform it.
1331   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1332   if (OldFn == 0) return;
1333 
1334   const llvm::Type *NewRetTy = NewFn->getReturnType();
1335   llvm::SmallVector<llvm::Value*, 4> ArgList;
1336 
1337   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1338        UI != E; ) {
1339     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1340     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1341     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1342     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1343     llvm::CallSite CS(CI);
1344     if (!CI || !CS.isCallee(I)) continue;
1345 
1346     // If the return types don't match exactly, and if the call isn't dead, then
1347     // we can't transform this call.
1348     if (CI->getType() != NewRetTy && !CI->use_empty())
1349       continue;
1350 
1351     // If the function was passed too few arguments, don't transform.  If extra
1352     // arguments were passed, we silently drop them.  If any of the types
1353     // mismatch, we don't transform.
1354     unsigned ArgNo = 0;
1355     bool DontTransform = false;
1356     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1357          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1358       if (CS.arg_size() == ArgNo ||
1359           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1360         DontTransform = true;
1361         break;
1362       }
1363     }
1364     if (DontTransform)
1365       continue;
1366 
1367     // Okay, we can transform this.  Create the new call instruction and copy
1368     // over the required information.
1369     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1370     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1371                                                      ArgList.end(), "", CI);
1372     ArgList.clear();
1373     if (!NewCall->getType()->isVoidTy())
1374       NewCall->takeName(CI);
1375     NewCall->setAttributes(CI->getAttributes());
1376     NewCall->setCallingConv(CI->getCallingConv());
1377 
1378     // Finally, remove the old call, replacing any uses with the new one.
1379     if (!CI->use_empty())
1380       CI->replaceAllUsesWith(NewCall);
1381 
1382     // Copy debug location attached to CI.
1383     if (!CI->getDebugLoc().isUnknown())
1384       NewCall->setDebugLoc(CI->getDebugLoc());
1385     CI->eraseFromParent();
1386   }
1387 }
1388 
1389 
1390 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1391   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1392 
1393   // Compute the function info and LLVM type.
1394   const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1395   bool variadic = false;
1396   if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1397     variadic = fpt->isVariadic();
1398   const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false);
1399 
1400   // Get or create the prototype for the function.
1401   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1402 
1403   // Strip off a bitcast if we got one back.
1404   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1405     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1406     Entry = CE->getOperand(0);
1407   }
1408 
1409 
1410   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1411     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1412 
1413     // If the types mismatch then we have to rewrite the definition.
1414     assert(OldFn->isDeclaration() &&
1415            "Shouldn't replace non-declaration");
1416 
1417     // F is the Function* for the one with the wrong type, we must make a new
1418     // Function* and update everything that used F (a declaration) with the new
1419     // Function* (which will be a definition).
1420     //
1421     // This happens if there is a prototype for a function
1422     // (e.g. "int f()") and then a definition of a different type
1423     // (e.g. "int f(int x)").  Move the old function aside so that it
1424     // doesn't interfere with GetAddrOfFunction.
1425     OldFn->setName(llvm::StringRef());
1426     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1427 
1428     // If this is an implementation of a function without a prototype, try to
1429     // replace any existing uses of the function (which may be calls) with uses
1430     // of the new function
1431     if (D->getType()->isFunctionNoProtoType()) {
1432       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1433       OldFn->removeDeadConstantUsers();
1434     }
1435 
1436     // Replace uses of F with the Function we will endow with a body.
1437     if (!Entry->use_empty()) {
1438       llvm::Constant *NewPtrForOldDecl =
1439         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1440       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1441     }
1442 
1443     // Ok, delete the old function now, which is dead.
1444     OldFn->eraseFromParent();
1445 
1446     Entry = NewFn;
1447   }
1448 
1449   // We need to set linkage and visibility on the function before
1450   // generating code for it because various parts of IR generation
1451   // want to propagate this information down (e.g. to local static
1452   // declarations).
1453   llvm::Function *Fn = cast<llvm::Function>(Entry);
1454   setFunctionLinkage(D, Fn);
1455 
1456   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1457   setGlobalVisibility(Fn, D);
1458 
1459   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1460 
1461   SetFunctionDefinitionAttributes(D, Fn);
1462   SetLLVMFunctionAttributesForDefinition(D, Fn);
1463 
1464   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1465     AddGlobalCtor(Fn, CA->getPriority());
1466   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1467     AddGlobalDtor(Fn, DA->getPriority());
1468 }
1469 
1470 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1471   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1472   const AliasAttr *AA = D->getAttr<AliasAttr>();
1473   assert(AA && "Not an alias?");
1474 
1475   llvm::StringRef MangledName = getMangledName(GD);
1476 
1477   // If there is a definition in the module, then it wins over the alias.
1478   // This is dubious, but allow it to be safe.  Just ignore the alias.
1479   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1480   if (Entry && !Entry->isDeclaration())
1481     return;
1482 
1483   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1484 
1485   // Create a reference to the named value.  This ensures that it is emitted
1486   // if a deferred decl.
1487   llvm::Constant *Aliasee;
1488   if (isa<llvm::FunctionType>(DeclTy))
1489     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1490                                       /*ForVTable=*/false);
1491   else
1492     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1493                                     llvm::PointerType::getUnqual(DeclTy), 0);
1494 
1495   // Create the new alias itself, but don't set a name yet.
1496   llvm::GlobalValue *GA =
1497     new llvm::GlobalAlias(Aliasee->getType(),
1498                           llvm::Function::ExternalLinkage,
1499                           "", Aliasee, &getModule());
1500 
1501   if (Entry) {
1502     assert(Entry->isDeclaration());
1503 
1504     // If there is a declaration in the module, then we had an extern followed
1505     // by the alias, as in:
1506     //   extern int test6();
1507     //   ...
1508     //   int test6() __attribute__((alias("test7")));
1509     //
1510     // Remove it and replace uses of it with the alias.
1511     GA->takeName(Entry);
1512 
1513     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1514                                                           Entry->getType()));
1515     Entry->eraseFromParent();
1516   } else {
1517     GA->setName(MangledName);
1518   }
1519 
1520   // Set attributes which are particular to an alias; this is a
1521   // specialization of the attributes which may be set on a global
1522   // variable/function.
1523   if (D->hasAttr<DLLExportAttr>()) {
1524     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1525       // The dllexport attribute is ignored for undefined symbols.
1526       if (FD->hasBody())
1527         GA->setLinkage(llvm::Function::DLLExportLinkage);
1528     } else {
1529       GA->setLinkage(llvm::Function::DLLExportLinkage);
1530     }
1531   } else if (D->hasAttr<WeakAttr>() ||
1532              D->hasAttr<WeakRefAttr>() ||
1533              D->isWeakImported()) {
1534     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1535   }
1536 
1537   SetCommonAttributes(D, GA);
1538 }
1539 
1540 /// getBuiltinLibFunction - Given a builtin id for a function like
1541 /// "__builtin_fabsf", return a Function* for "fabsf".
1542 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1543                                                   unsigned BuiltinID) {
1544   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1545           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1546          "isn't a lib fn");
1547 
1548   // Get the name, skip over the __builtin_ prefix (if necessary).
1549   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1550   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1551     Name += 10;
1552 
1553   const llvm::FunctionType *Ty =
1554     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1555 
1556   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false);
1557 }
1558 
1559 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1560                                             unsigned NumTys) {
1561   return llvm::Intrinsic::getDeclaration(&getModule(),
1562                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1563 }
1564 
1565 static llvm::StringMapEntry<llvm::Constant*> &
1566 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1567                          const StringLiteral *Literal,
1568                          bool TargetIsLSB,
1569                          bool &IsUTF16,
1570                          unsigned &StringLength) {
1571   llvm::StringRef String = Literal->getString();
1572   unsigned NumBytes = String.size();
1573 
1574   // Check for simple case.
1575   if (!Literal->containsNonAsciiOrNull()) {
1576     StringLength = NumBytes;
1577     return Map.GetOrCreateValue(String);
1578   }
1579 
1580   // Otherwise, convert the UTF8 literals into a byte string.
1581   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1582   const UTF8 *FromPtr = (UTF8 *)String.data();
1583   UTF16 *ToPtr = &ToBuf[0];
1584 
1585   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1586                            &ToPtr, ToPtr + NumBytes,
1587                            strictConversion);
1588 
1589   // ConvertUTF8toUTF16 returns the length in ToPtr.
1590   StringLength = ToPtr - &ToBuf[0];
1591 
1592   // Render the UTF-16 string into a byte array and convert to the target byte
1593   // order.
1594   //
1595   // FIXME: This isn't something we should need to do here.
1596   llvm::SmallString<128> AsBytes;
1597   AsBytes.reserve(StringLength * 2);
1598   for (unsigned i = 0; i != StringLength; ++i) {
1599     unsigned short Val = ToBuf[i];
1600     if (TargetIsLSB) {
1601       AsBytes.push_back(Val & 0xFF);
1602       AsBytes.push_back(Val >> 8);
1603     } else {
1604       AsBytes.push_back(Val >> 8);
1605       AsBytes.push_back(Val & 0xFF);
1606     }
1607   }
1608   // Append one extra null character, the second is automatically added by our
1609   // caller.
1610   AsBytes.push_back(0);
1611 
1612   IsUTF16 = true;
1613   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1614 }
1615 
1616 llvm::Constant *
1617 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1618   unsigned StringLength = 0;
1619   bool isUTF16 = false;
1620   llvm::StringMapEntry<llvm::Constant*> &Entry =
1621     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1622                              getTargetData().isLittleEndian(),
1623                              isUTF16, StringLength);
1624 
1625   if (llvm::Constant *C = Entry.getValue())
1626     return C;
1627 
1628   llvm::Constant *Zero =
1629       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1630   llvm::Constant *Zeros[] = { Zero, Zero };
1631 
1632   // If we don't already have it, get __CFConstantStringClassReference.
1633   if (!CFConstantStringClassRef) {
1634     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1635     Ty = llvm::ArrayType::get(Ty, 0);
1636     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1637                                            "__CFConstantStringClassReference");
1638     // Decay array -> ptr
1639     CFConstantStringClassRef =
1640       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1641   }
1642 
1643   QualType CFTy = getContext().getCFConstantStringType();
1644 
1645   const llvm::StructType *STy =
1646     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1647 
1648   std::vector<llvm::Constant*> Fields(4);
1649 
1650   // Class pointer.
1651   Fields[0] = CFConstantStringClassRef;
1652 
1653   // Flags.
1654   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1655   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1656     llvm::ConstantInt::get(Ty, 0x07C8);
1657 
1658   // String pointer.
1659   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1660 
1661   llvm::GlobalValue::LinkageTypes Linkage;
1662   bool isConstant;
1663   if (isUTF16) {
1664     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1665     Linkage = llvm::GlobalValue::InternalLinkage;
1666     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1667     // does make plain ascii ones writable.
1668     isConstant = true;
1669   } else {
1670     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1671     // when using private linkage. It is not clear if this is a bug in ld
1672     // or a reasonable new restriction.
1673     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1674     isConstant = !Features.WritableStrings;
1675   }
1676 
1677   llvm::GlobalVariable *GV =
1678     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1679                              ".str");
1680   GV->setUnnamedAddr(true);
1681   if (isUTF16) {
1682     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1683     GV->setAlignment(Align.getQuantity());
1684   }
1685   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1686 
1687   // String length.
1688   Ty = getTypes().ConvertType(getContext().LongTy);
1689   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1690 
1691   // The struct.
1692   C = llvm::ConstantStruct::get(STy, Fields);
1693   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1694                                 llvm::GlobalVariable::PrivateLinkage, C,
1695                                 "_unnamed_cfstring_");
1696   if (const char *Sect = getContext().Target.getCFStringSection())
1697     GV->setSection(Sect);
1698   Entry.setValue(GV);
1699 
1700   return GV;
1701 }
1702 
1703 llvm::Constant *
1704 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1705   unsigned StringLength = 0;
1706   bool isUTF16 = false;
1707   llvm::StringMapEntry<llvm::Constant*> &Entry =
1708     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1709                              getTargetData().isLittleEndian(),
1710                              isUTF16, StringLength);
1711 
1712   if (llvm::Constant *C = Entry.getValue())
1713     return C;
1714 
1715   llvm::Constant *Zero =
1716   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1717   llvm::Constant *Zeros[] = { Zero, Zero };
1718 
1719   // If we don't already have it, get _NSConstantStringClassReference.
1720   if (!ConstantStringClassRef) {
1721     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1722     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1723     Ty = llvm::ArrayType::get(Ty, 0);
1724     llvm::Constant *GV;
1725     if (StringClass.empty())
1726       GV = CreateRuntimeVariable(Ty,
1727                                  Features.ObjCNonFragileABI ?
1728                                  "OBJC_CLASS_$_NSConstantString" :
1729                                  "_NSConstantStringClassReference");
1730     else {
1731       std::string str;
1732       if (Features.ObjCNonFragileABI)
1733         str = "OBJC_CLASS_$_" + StringClass;
1734       else
1735         str = "_" + StringClass + "ClassReference";
1736       GV = CreateRuntimeVariable(Ty, str);
1737     }
1738     // Decay array -> ptr
1739     ConstantStringClassRef =
1740     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1741   }
1742 
1743   QualType NSTy = getContext().getNSConstantStringType();
1744 
1745   const llvm::StructType *STy =
1746   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1747 
1748   std::vector<llvm::Constant*> Fields(3);
1749 
1750   // Class pointer.
1751   Fields[0] = ConstantStringClassRef;
1752 
1753   // String pointer.
1754   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1755 
1756   llvm::GlobalValue::LinkageTypes Linkage;
1757   bool isConstant;
1758   if (isUTF16) {
1759     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1760     Linkage = llvm::GlobalValue::InternalLinkage;
1761     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1762     // does make plain ascii ones writable.
1763     isConstant = true;
1764   } else {
1765     Linkage = llvm::GlobalValue::PrivateLinkage;
1766     isConstant = !Features.WritableStrings;
1767   }
1768 
1769   llvm::GlobalVariable *GV =
1770   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1771                            ".str");
1772   GV->setUnnamedAddr(true);
1773   if (isUTF16) {
1774     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1775     GV->setAlignment(Align.getQuantity());
1776   }
1777   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1778 
1779   // String length.
1780   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1781   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1782 
1783   // The struct.
1784   C = llvm::ConstantStruct::get(STy, Fields);
1785   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1786                                 llvm::GlobalVariable::PrivateLinkage, C,
1787                                 "_unnamed_nsstring_");
1788   // FIXME. Fix section.
1789   if (const char *Sect =
1790         Features.ObjCNonFragileABI
1791           ? getContext().Target.getNSStringNonFragileABISection()
1792           : getContext().Target.getNSStringSection())
1793     GV->setSection(Sect);
1794   Entry.setValue(GV);
1795 
1796   return GV;
1797 }
1798 
1799 /// GetStringForStringLiteral - Return the appropriate bytes for a
1800 /// string literal, properly padded to match the literal type.
1801 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1802   const ASTContext &Context = getContext();
1803   const ConstantArrayType *CAT =
1804     Context.getAsConstantArrayType(E->getType());
1805   assert(CAT && "String isn't pointer or array!");
1806 
1807   // Resize the string to the right size.
1808   uint64_t RealLen = CAT->getSize().getZExtValue();
1809 
1810   if (E->isWide())
1811     RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1812 
1813   std::string Str = E->getString().str();
1814   Str.resize(RealLen, '\0');
1815 
1816   return Str;
1817 }
1818 
1819 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1820 /// constant array for the given string literal.
1821 llvm::Constant *
1822 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1823   // FIXME: This can be more efficient.
1824   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1825   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1826   if (S->isWide()) {
1827     llvm::Type *DestTy =
1828         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1829     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1830   }
1831   return C;
1832 }
1833 
1834 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1835 /// array for the given ObjCEncodeExpr node.
1836 llvm::Constant *
1837 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1838   std::string Str;
1839   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1840 
1841   return GetAddrOfConstantCString(Str);
1842 }
1843 
1844 
1845 /// GenerateWritableString -- Creates storage for a string literal.
1846 static llvm::Constant *GenerateStringLiteral(llvm::StringRef str,
1847                                              bool constant,
1848                                              CodeGenModule &CGM,
1849                                              const char *GlobalName) {
1850   // Create Constant for this string literal. Don't add a '\0'.
1851   llvm::Constant *C =
1852       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1853 
1854   // Create a global variable for this string
1855   llvm::GlobalVariable *GV =
1856     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1857                              llvm::GlobalValue::PrivateLinkage,
1858                              C, GlobalName);
1859   GV->setUnnamedAddr(true);
1860   return GV;
1861 }
1862 
1863 /// GetAddrOfConstantString - Returns a pointer to a character array
1864 /// containing the literal. This contents are exactly that of the
1865 /// given string, i.e. it will not be null terminated automatically;
1866 /// see GetAddrOfConstantCString. Note that whether the result is
1867 /// actually a pointer to an LLVM constant depends on
1868 /// Feature.WriteableStrings.
1869 ///
1870 /// The result has pointer to array type.
1871 llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str,
1872                                                        const char *GlobalName) {
1873   bool IsConstant = !Features.WritableStrings;
1874 
1875   // Get the default prefix if a name wasn't specified.
1876   if (!GlobalName)
1877     GlobalName = ".str";
1878 
1879   // Don't share any string literals if strings aren't constant.
1880   if (!IsConstant)
1881     return GenerateStringLiteral(Str, false, *this, GlobalName);
1882 
1883   llvm::StringMapEntry<llvm::Constant *> &Entry =
1884     ConstantStringMap.GetOrCreateValue(Str);
1885 
1886   if (Entry.getValue())
1887     return Entry.getValue();
1888 
1889   // Create a global variable for this.
1890   llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName);
1891   Entry.setValue(C);
1892   return C;
1893 }
1894 
1895 /// GetAddrOfConstantCString - Returns a pointer to a character
1896 /// array containing the literal and a terminating '\0'
1897 /// character. The result has pointer to array type.
1898 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
1899                                                         const char *GlobalName){
1900   llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1);
1901   return GetAddrOfConstantString(StrWithNull, GlobalName);
1902 }
1903 
1904 /// EmitObjCPropertyImplementations - Emit information for synthesized
1905 /// properties for an implementation.
1906 void CodeGenModule::EmitObjCPropertyImplementations(const
1907                                                     ObjCImplementationDecl *D) {
1908   for (ObjCImplementationDecl::propimpl_iterator
1909          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1910     ObjCPropertyImplDecl *PID = *i;
1911 
1912     // Dynamic is just for type-checking.
1913     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1914       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1915 
1916       // Determine which methods need to be implemented, some may have
1917       // been overridden. Note that ::isSynthesized is not the method
1918       // we want, that just indicates if the decl came from a
1919       // property. What we want to know is if the method is defined in
1920       // this implementation.
1921       if (!D->getInstanceMethod(PD->getGetterName()))
1922         CodeGenFunction(*this).GenerateObjCGetter(
1923                                  const_cast<ObjCImplementationDecl *>(D), PID);
1924       if (!PD->isReadOnly() &&
1925           !D->getInstanceMethod(PD->getSetterName()))
1926         CodeGenFunction(*this).GenerateObjCSetter(
1927                                  const_cast<ObjCImplementationDecl *>(D), PID);
1928     }
1929   }
1930 }
1931 
1932 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
1933   ObjCInterfaceDecl *iface
1934     = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface());
1935   for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1936        ivar; ivar = ivar->getNextIvar())
1937     if (ivar->getType().isDestructedType())
1938       return true;
1939 
1940   return false;
1941 }
1942 
1943 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1944 /// for an implementation.
1945 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1946   // We might need a .cxx_destruct even if we don't have any ivar initializers.
1947   if (needsDestructMethod(D)) {
1948     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1949     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1950     ObjCMethodDecl *DTORMethod =
1951       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
1952                              cxxSelector, getContext().VoidTy, 0, D, true,
1953                              false, true, false, ObjCMethodDecl::Required);
1954     D->addInstanceMethod(DTORMethod);
1955     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1956   }
1957 
1958   // If the implementation doesn't have any ivar initializers, we don't need
1959   // a .cxx_construct.
1960   if (D->getNumIvarInitializers() == 0)
1961     return;
1962 
1963   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
1964   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1965   // The constructor returns 'self'.
1966   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1967                                                 D->getLocation(),
1968                                                 D->getLocation(), cxxSelector,
1969                                                 getContext().getObjCIdType(), 0,
1970                                                 D, true, false, true, false,
1971                                                 ObjCMethodDecl::Required);
1972   D->addInstanceMethod(CTORMethod);
1973   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1974 }
1975 
1976 /// EmitNamespace - Emit all declarations in a namespace.
1977 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1978   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1979        I != E; ++I)
1980     EmitTopLevelDecl(*I);
1981 }
1982 
1983 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1984 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1985   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1986       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1987     ErrorUnsupported(LSD, "linkage spec");
1988     return;
1989   }
1990 
1991   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1992        I != E; ++I)
1993     EmitTopLevelDecl(*I);
1994 }
1995 
1996 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1997 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1998   // If an error has occurred, stop code generation, but continue
1999   // parsing and semantic analysis (to ensure all warnings and errors
2000   // are emitted).
2001   if (Diags.hasErrorOccurred())
2002     return;
2003 
2004   // Ignore dependent declarations.
2005   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2006     return;
2007 
2008   switch (D->getKind()) {
2009   case Decl::CXXConversion:
2010   case Decl::CXXMethod:
2011   case Decl::Function:
2012     // Skip function templates
2013     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
2014       return;
2015 
2016     EmitGlobal(cast<FunctionDecl>(D));
2017     break;
2018 
2019   case Decl::Var:
2020     EmitGlobal(cast<VarDecl>(D));
2021     break;
2022 
2023   // C++ Decls
2024   case Decl::Namespace:
2025     EmitNamespace(cast<NamespaceDecl>(D));
2026     break;
2027     // No code generation needed.
2028   case Decl::UsingShadow:
2029   case Decl::Using:
2030   case Decl::UsingDirective:
2031   case Decl::ClassTemplate:
2032   case Decl::FunctionTemplate:
2033   case Decl::NamespaceAlias:
2034     break;
2035   case Decl::CXXConstructor:
2036     // Skip function templates
2037     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
2038       return;
2039 
2040     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2041     break;
2042   case Decl::CXXDestructor:
2043     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2044     break;
2045 
2046   case Decl::StaticAssert:
2047     // Nothing to do.
2048     break;
2049 
2050   // Objective-C Decls
2051 
2052   // Forward declarations, no (immediate) code generation.
2053   case Decl::ObjCClass:
2054   case Decl::ObjCForwardProtocol:
2055   case Decl::ObjCInterface:
2056     break;
2057 
2058     case Decl::ObjCCategory: {
2059       ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2060       if (CD->IsClassExtension() && CD->hasSynthBitfield())
2061         Context.ResetObjCLayout(CD->getClassInterface());
2062       break;
2063     }
2064 
2065 
2066   case Decl::ObjCProtocol:
2067     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2068     break;
2069 
2070   case Decl::ObjCCategoryImpl:
2071     // Categories have properties but don't support synthesize so we
2072     // can ignore them here.
2073     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2074     break;
2075 
2076   case Decl::ObjCImplementation: {
2077     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2078     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2079       Context.ResetObjCLayout(OMD->getClassInterface());
2080     EmitObjCPropertyImplementations(OMD);
2081     EmitObjCIvarInitializations(OMD);
2082     Runtime->GenerateClass(OMD);
2083     break;
2084   }
2085   case Decl::ObjCMethod: {
2086     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2087     // If this is not a prototype, emit the body.
2088     if (OMD->getBody())
2089       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2090     break;
2091   }
2092   case Decl::ObjCCompatibleAlias:
2093     // compatibility-alias is a directive and has no code gen.
2094     break;
2095 
2096   case Decl::LinkageSpec:
2097     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2098     break;
2099 
2100   case Decl::FileScopeAsm: {
2101     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2102     llvm::StringRef AsmString = AD->getAsmString()->getString();
2103 
2104     const std::string &S = getModule().getModuleInlineAsm();
2105     if (S.empty())
2106       getModule().setModuleInlineAsm(AsmString);
2107     else
2108       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2109     break;
2110   }
2111 
2112   default:
2113     // Make sure we handled everything we should, every other kind is a
2114     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2115     // function. Need to recode Decl::Kind to do that easily.
2116     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2117   }
2118 }
2119 
2120 /// Turns the given pointer into a constant.
2121 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2122                                           const void *Ptr) {
2123   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2124   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2125   return llvm::ConstantInt::get(i64, PtrInt);
2126 }
2127 
2128 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2129                                    llvm::NamedMDNode *&GlobalMetadata,
2130                                    GlobalDecl D,
2131                                    llvm::GlobalValue *Addr) {
2132   if (!GlobalMetadata)
2133     GlobalMetadata =
2134       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2135 
2136   // TODO: should we report variant information for ctors/dtors?
2137   llvm::Value *Ops[] = {
2138     Addr,
2139     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2140   };
2141   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2142 }
2143 
2144 /// Emits metadata nodes associating all the global values in the
2145 /// current module with the Decls they came from.  This is useful for
2146 /// projects using IR gen as a subroutine.
2147 ///
2148 /// Since there's currently no way to associate an MDNode directly
2149 /// with an llvm::GlobalValue, we create a global named metadata
2150 /// with the name 'clang.global.decl.ptrs'.
2151 void CodeGenModule::EmitDeclMetadata() {
2152   llvm::NamedMDNode *GlobalMetadata = 0;
2153 
2154   // StaticLocalDeclMap
2155   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2156          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2157        I != E; ++I) {
2158     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2159     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2160   }
2161 }
2162 
2163 /// Emits metadata nodes for all the local variables in the current
2164 /// function.
2165 void CodeGenFunction::EmitDeclMetadata() {
2166   if (LocalDeclMap.empty()) return;
2167 
2168   llvm::LLVMContext &Context = getLLVMContext();
2169 
2170   // Find the unique metadata ID for this name.
2171   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2172 
2173   llvm::NamedMDNode *GlobalMetadata = 0;
2174 
2175   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2176          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2177     const Decl *D = I->first;
2178     llvm::Value *Addr = I->second;
2179 
2180     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2181       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2182       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2183     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2184       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2185       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2186     }
2187   }
2188 }
2189 
2190 ///@name Custom Runtime Function Interfaces
2191 ///@{
2192 //
2193 // FIXME: These can be eliminated once we can have clients just get the required
2194 // AST nodes from the builtin tables.
2195 
2196 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2197   if (BlockObjectDispose)
2198     return BlockObjectDispose;
2199 
2200   // If we saw an explicit decl, use that.
2201   if (BlockObjectDisposeDecl) {
2202     return BlockObjectDispose = GetAddrOfFunction(
2203       BlockObjectDisposeDecl,
2204       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2205   }
2206 
2207   // Otherwise construct the function by hand.
2208   const llvm::FunctionType *FTy;
2209   std::vector<const llvm::Type*> ArgTys;
2210   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2211   ArgTys.push_back(Int8PtrTy);
2212   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2213   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2214   return BlockObjectDispose =
2215     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2216 }
2217 
2218 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2219   if (BlockObjectAssign)
2220     return BlockObjectAssign;
2221 
2222   // If we saw an explicit decl, use that.
2223   if (BlockObjectAssignDecl) {
2224     return BlockObjectAssign = GetAddrOfFunction(
2225       BlockObjectAssignDecl,
2226       getTypes().GetFunctionType(BlockObjectAssignDecl));
2227   }
2228 
2229   // Otherwise construct the function by hand.
2230   const llvm::FunctionType *FTy;
2231   std::vector<const llvm::Type*> ArgTys;
2232   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2233   ArgTys.push_back(Int8PtrTy);
2234   ArgTys.push_back(Int8PtrTy);
2235   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2236   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2237   return BlockObjectAssign =
2238     CreateRuntimeFunction(FTy, "_Block_object_assign");
2239 }
2240 
2241 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2242   if (NSConcreteGlobalBlock)
2243     return NSConcreteGlobalBlock;
2244 
2245   // If we saw an explicit decl, use that.
2246   if (NSConcreteGlobalBlockDecl) {
2247     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2248       NSConcreteGlobalBlockDecl,
2249       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2250   }
2251 
2252   // Otherwise construct the variable by hand.
2253   return NSConcreteGlobalBlock =
2254     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2255 }
2256 
2257 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2258   if (NSConcreteStackBlock)
2259     return NSConcreteStackBlock;
2260 
2261   // If we saw an explicit decl, use that.
2262   if (NSConcreteStackBlockDecl) {
2263     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2264       NSConcreteStackBlockDecl,
2265       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2266   }
2267 
2268   // Otherwise construct the variable by hand.
2269   return NSConcreteStackBlock =
2270     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2271 }
2272 
2273 ///@}
2274