xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 1e4df92f4939a79a77be57ff145a252730749b11)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CoverageMappingGen.h"
25 #include "CodeGenTBAA.h"
26 #include "TargetInfo.h"
27 #include "clang/AST/ASTContext.h"
28 #include "clang/AST/CharUnits.h"
29 #include "clang/AST/DeclCXX.h"
30 #include "clang/AST/DeclObjC.h"
31 #include "clang/AST/DeclTemplate.h"
32 #include "clang/AST/Mangle.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/RecursiveASTVisitor.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/CharInfo.h"
37 #include "clang/Basic/Diagnostic.h"
38 #include "clang/Basic/Module.h"
39 #include "clang/Basic/SourceManager.h"
40 #include "clang/Basic/TargetInfo.h"
41 #include "clang/Basic/Version.h"
42 #include "clang/Frontend/CodeGenOptions.h"
43 #include "clang/Sema/SemaDiagnostic.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/Triple.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/CallingConv.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/ProfileData/InstrProfReader.h"
53 #include "llvm/Support/ConvertUTF.h"
54 #include "llvm/Support/ErrorHandling.h"
55 
56 using namespace clang;
57 using namespace CodeGen;
58 
59 static const char AnnotationSection[] = "llvm.metadata";
60 
61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
62   switch (CGM.getTarget().getCXXABI().getKind()) {
63   case TargetCXXABI::GenericAArch64:
64   case TargetCXXABI::GenericARM:
65   case TargetCXXABI::iOS:
66   case TargetCXXABI::iOS64:
67   case TargetCXXABI::GenericItanium:
68     return CreateItaniumCXXABI(CGM);
69   case TargetCXXABI::Microsoft:
70     return CreateMicrosoftCXXABI(CGM);
71   }
72 
73   llvm_unreachable("invalid C++ ABI kind");
74 }
75 
76 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
77                              llvm::Module &M, const llvm::DataLayout &TD,
78                              DiagnosticsEngine &diags,
79                              CoverageSourceInfo *CoverageInfo)
80     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
81       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
82       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr),
83       TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this),
84       ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr),
85       CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr),
86       NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
87       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
88       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
89       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
90       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
91       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
92       LifetimeEndFn(nullptr), SanitizerBL(llvm::SpecialCaseList::createOrDie(
93                                   CGO.SanitizerBlacklistFile)),
94       SanitizerMD(new SanitizerMetadata(*this)) {
95 
96   // Initialize the type cache.
97   llvm::LLVMContext &LLVMContext = M.getContext();
98   VoidTy = llvm::Type::getVoidTy(LLVMContext);
99   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
100   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
101   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
102   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
103   FloatTy = llvm::Type::getFloatTy(LLVMContext);
104   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
105   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
106   PointerAlignInBytes =
107   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
108   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
109   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
110   Int8PtrTy = Int8Ty->getPointerTo(0);
111   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
112 
113   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
114 
115   if (LangOpts.ObjC1)
116     createObjCRuntime();
117   if (LangOpts.OpenCL)
118     createOpenCLRuntime();
119   if (LangOpts.OpenMP)
120     createOpenMPRuntime();
121   if (LangOpts.CUDA)
122     createCUDARuntime();
123 
124   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
125   if (LangOpts.Sanitize.Thread ||
126       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
127     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
128                            getCXXABI().getMangleContext());
129 
130   // If debug info or coverage generation is enabled, create the CGDebugInfo
131   // object.
132   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
133       CodeGenOpts.EmitGcovArcs ||
134       CodeGenOpts.EmitGcovNotes)
135     DebugInfo = new CGDebugInfo(*this);
136 
137   Block.GlobalUniqueCount = 0;
138 
139   if (C.getLangOpts().ObjCAutoRefCount)
140     ARCData = new ARCEntrypoints();
141   RRData = new RREntrypoints();
142 
143   if (!CodeGenOpts.InstrProfileInput.empty()) {
144     if (std::error_code EC = llvm::IndexedInstrProfReader::create(
145             CodeGenOpts.InstrProfileInput, PGOReader)) {
146       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
147                                               "Could not read profile: %0");
148       getDiags().Report(DiagID) << EC.message();
149     }
150   }
151 
152   // If coverage mapping generation is enabled, create the
153   // CoverageMappingModuleGen object.
154   if (CodeGenOpts.CoverageMapping)
155     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
156 }
157 
158 CodeGenModule::~CodeGenModule() {
159   delete ObjCRuntime;
160   delete OpenCLRuntime;
161   delete OpenMPRuntime;
162   delete CUDARuntime;
163   delete TheTargetCodeGenInfo;
164   delete TBAA;
165   delete DebugInfo;
166   delete ARCData;
167   delete RRData;
168 }
169 
170 void CodeGenModule::createObjCRuntime() {
171   // This is just isGNUFamily(), but we want to force implementors of
172   // new ABIs to decide how best to do this.
173   switch (LangOpts.ObjCRuntime.getKind()) {
174   case ObjCRuntime::GNUstep:
175   case ObjCRuntime::GCC:
176   case ObjCRuntime::ObjFW:
177     ObjCRuntime = CreateGNUObjCRuntime(*this);
178     return;
179 
180   case ObjCRuntime::FragileMacOSX:
181   case ObjCRuntime::MacOSX:
182   case ObjCRuntime::iOS:
183     ObjCRuntime = CreateMacObjCRuntime(*this);
184     return;
185   }
186   llvm_unreachable("bad runtime kind");
187 }
188 
189 void CodeGenModule::createOpenCLRuntime() {
190   OpenCLRuntime = new CGOpenCLRuntime(*this);
191 }
192 
193 void CodeGenModule::createOpenMPRuntime() {
194   OpenMPRuntime = new CGOpenMPRuntime(*this);
195 }
196 
197 void CodeGenModule::createCUDARuntime() {
198   CUDARuntime = CreateNVCUDARuntime(*this);
199 }
200 
201 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
202   Replacements[Name] = C;
203 }
204 
205 void CodeGenModule::applyReplacements() {
206   for (ReplacementsTy::iterator I = Replacements.begin(),
207                                 E = Replacements.end();
208        I != E; ++I) {
209     StringRef MangledName = I->first();
210     llvm::Constant *Replacement = I->second;
211     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
212     if (!Entry)
213       continue;
214     auto *OldF = cast<llvm::Function>(Entry);
215     auto *NewF = dyn_cast<llvm::Function>(Replacement);
216     if (!NewF) {
217       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
218         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
219       } else {
220         auto *CE = cast<llvm::ConstantExpr>(Replacement);
221         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
222                CE->getOpcode() == llvm::Instruction::GetElementPtr);
223         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
224       }
225     }
226 
227     // Replace old with new, but keep the old order.
228     OldF->replaceAllUsesWith(Replacement);
229     if (NewF) {
230       NewF->removeFromParent();
231       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
232     }
233     OldF->eraseFromParent();
234   }
235 }
236 
237 // This is only used in aliases that we created and we know they have a
238 // linear structure.
239 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
240   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
241   const llvm::Constant *C = &GA;
242   for (;;) {
243     C = C->stripPointerCasts();
244     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
245       return GO;
246     // stripPointerCasts will not walk over weak aliases.
247     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
248     if (!GA2)
249       return nullptr;
250     if (!Visited.insert(GA2))
251       return nullptr;
252     C = GA2->getAliasee();
253   }
254 }
255 
256 void CodeGenModule::checkAliases() {
257   // Check if the constructed aliases are well formed. It is really unfortunate
258   // that we have to do this in CodeGen, but we only construct mangled names
259   // and aliases during codegen.
260   bool Error = false;
261   DiagnosticsEngine &Diags = getDiags();
262   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
263          E = Aliases.end(); I != E; ++I) {
264     const GlobalDecl &GD = *I;
265     const auto *D = cast<ValueDecl>(GD.getDecl());
266     const AliasAttr *AA = D->getAttr<AliasAttr>();
267     StringRef MangledName = getMangledName(GD);
268     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
269     auto *Alias = cast<llvm::GlobalAlias>(Entry);
270     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
271     if (!GV) {
272       Error = true;
273       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
274     } else if (GV->isDeclaration()) {
275       Error = true;
276       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
277     }
278 
279     llvm::Constant *Aliasee = Alias->getAliasee();
280     llvm::GlobalValue *AliaseeGV;
281     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
282       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
283     else
284       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
285 
286     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
287       StringRef AliasSection = SA->getName();
288       if (AliasSection != AliaseeGV->getSection())
289         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
290             << AliasSection;
291     }
292 
293     // We have to handle alias to weak aliases in here. LLVM itself disallows
294     // this since the object semantics would not match the IL one. For
295     // compatibility with gcc we implement it by just pointing the alias
296     // to its aliasee's aliasee. We also warn, since the user is probably
297     // expecting the link to be weak.
298     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
299       if (GA->mayBeOverridden()) {
300         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
301             << GV->getName() << GA->getName();
302         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
303             GA->getAliasee(), Alias->getType());
304         Alias->setAliasee(Aliasee);
305       }
306     }
307   }
308   if (!Error)
309     return;
310 
311   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
312          E = Aliases.end(); I != E; ++I) {
313     const GlobalDecl &GD = *I;
314     StringRef MangledName = getMangledName(GD);
315     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
316     auto *Alias = cast<llvm::GlobalAlias>(Entry);
317     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
318     Alias->eraseFromParent();
319   }
320 }
321 
322 void CodeGenModule::clear() {
323   DeferredDeclsToEmit.clear();
324 }
325 
326 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
327                                        StringRef MainFile) {
328   if (!hasDiagnostics())
329     return;
330   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
331     if (MainFile.empty())
332       MainFile = "<stdin>";
333     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
334   } else
335     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
336                                                       << Mismatched;
337 }
338 
339 void CodeGenModule::Release() {
340   EmitDeferred();
341   applyReplacements();
342   checkAliases();
343   EmitCXXGlobalInitFunc();
344   EmitCXXGlobalDtorFunc();
345   EmitCXXThreadLocalInitFunc();
346   if (ObjCRuntime)
347     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
348       AddGlobalCtor(ObjCInitFunction);
349   if (getCodeGenOpts().ProfileInstrGenerate)
350     if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this))
351       AddGlobalCtor(PGOInit, 0);
352   if (PGOReader && PGOStats.hasDiagnostics())
353     PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
354   EmitCtorList(GlobalCtors, "llvm.global_ctors");
355   EmitCtorList(GlobalDtors, "llvm.global_dtors");
356   EmitGlobalAnnotations();
357   EmitStaticExternCAliases();
358   EmitDeferredUnusedCoverageMappings();
359   if (CoverageMapping)
360     CoverageMapping->emit();
361   emitLLVMUsed();
362 
363   if (CodeGenOpts.Autolink &&
364       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
365     EmitModuleLinkOptions();
366   }
367   if (CodeGenOpts.DwarfVersion)
368     // We actually want the latest version when there are conflicts.
369     // We can change from Warning to Latest if such mode is supported.
370     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
371                               CodeGenOpts.DwarfVersion);
372   if (DebugInfo)
373     // We support a single version in the linked module. The LLVM
374     // parser will drop debug info with a different version number
375     // (and warn about it, too).
376     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
377                               llvm::DEBUG_METADATA_VERSION);
378 
379   // We need to record the widths of enums and wchar_t, so that we can generate
380   // the correct build attributes in the ARM backend.
381   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
382   if (   Arch == llvm::Triple::arm
383       || Arch == llvm::Triple::armeb
384       || Arch == llvm::Triple::thumb
385       || Arch == llvm::Triple::thumbeb) {
386     // Width of wchar_t in bytes
387     uint64_t WCharWidth =
388         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
389     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
390 
391     // The minimum width of an enum in bytes
392     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
393     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
394   }
395 
396   SimplifyPersonality();
397 
398   if (getCodeGenOpts().EmitDeclMetadata)
399     EmitDeclMetadata();
400 
401   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
402     EmitCoverageFile();
403 
404   if (DebugInfo)
405     DebugInfo->finalize();
406 
407   EmitVersionIdentMetadata();
408 
409   EmitTargetMetadata();
410 }
411 
412 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
413   // Make sure that this type is translated.
414   Types.UpdateCompletedType(TD);
415 }
416 
417 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
418   if (!TBAA)
419     return nullptr;
420   return TBAA->getTBAAInfo(QTy);
421 }
422 
423 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
424   if (!TBAA)
425     return nullptr;
426   return TBAA->getTBAAInfoForVTablePtr();
427 }
428 
429 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
430   if (!TBAA)
431     return nullptr;
432   return TBAA->getTBAAStructInfo(QTy);
433 }
434 
435 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
436   if (!TBAA)
437     return nullptr;
438   return TBAA->getTBAAStructTypeInfo(QTy);
439 }
440 
441 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
442                                                   llvm::MDNode *AccessN,
443                                                   uint64_t O) {
444   if (!TBAA)
445     return nullptr;
446   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
447 }
448 
449 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
450 /// and struct-path aware TBAA, the tag has the same format:
451 /// base type, access type and offset.
452 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
453 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
454                                         llvm::MDNode *TBAAInfo,
455                                         bool ConvertTypeToTag) {
456   if (ConvertTypeToTag && TBAA)
457     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
458                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
459   else
460     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
461 }
462 
463 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
464   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
465   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
466 }
467 
468 /// ErrorUnsupported - Print out an error that codegen doesn't support the
469 /// specified stmt yet.
470 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
471   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
472                                                "cannot compile this %0 yet");
473   std::string Msg = Type;
474   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
475     << Msg << S->getSourceRange();
476 }
477 
478 /// ErrorUnsupported - Print out an error that codegen doesn't support the
479 /// specified decl yet.
480 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
481   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
482                                                "cannot compile this %0 yet");
483   std::string Msg = Type;
484   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
485 }
486 
487 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
488   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
489 }
490 
491 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
492                                         const NamedDecl *D) const {
493   // Internal definitions always have default visibility.
494   if (GV->hasLocalLinkage()) {
495     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
496     return;
497   }
498 
499   // Set visibility for definitions.
500   LinkageInfo LV = D->getLinkageAndVisibility();
501   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
502     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
503 }
504 
505 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
506   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
507       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
508       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
509       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
510       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
511 }
512 
513 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
514     CodeGenOptions::TLSModel M) {
515   switch (M) {
516   case CodeGenOptions::GeneralDynamicTLSModel:
517     return llvm::GlobalVariable::GeneralDynamicTLSModel;
518   case CodeGenOptions::LocalDynamicTLSModel:
519     return llvm::GlobalVariable::LocalDynamicTLSModel;
520   case CodeGenOptions::InitialExecTLSModel:
521     return llvm::GlobalVariable::InitialExecTLSModel;
522   case CodeGenOptions::LocalExecTLSModel:
523     return llvm::GlobalVariable::LocalExecTLSModel;
524   }
525   llvm_unreachable("Invalid TLS model!");
526 }
527 
528 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
529                                const VarDecl &D) const {
530   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
531 
532   llvm::GlobalVariable::ThreadLocalMode TLM;
533   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
534 
535   // Override the TLS model if it is explicitly specified.
536   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
537     TLM = GetLLVMTLSModel(Attr->getModel());
538   }
539 
540   GV->setThreadLocalMode(TLM);
541 }
542 
543 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
544   StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()];
545   if (!FoundStr.empty())
546     return FoundStr;
547 
548   const auto *ND = cast<NamedDecl>(GD.getDecl());
549   SmallString<256> Buffer;
550   StringRef Str;
551   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
552     llvm::raw_svector_ostream Out(Buffer);
553     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
554       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
555     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
556       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
557     else
558       getCXXABI().getMangleContext().mangleName(ND, Out);
559     Str = Out.str();
560   } else {
561     IdentifierInfo *II = ND->getIdentifier();
562     assert(II && "Attempt to mangle unnamed decl.");
563     Str = II->getName();
564   }
565 
566   // Keep the first result in the case of a mangling collision.
567   auto Result = Manglings.insert(std::make_pair(Str, GD));
568   return FoundStr = Result.first->first();
569 }
570 
571 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
572                                              const BlockDecl *BD) {
573   MangleContext &MangleCtx = getCXXABI().getMangleContext();
574   const Decl *D = GD.getDecl();
575 
576   SmallString<256> Buffer;
577   llvm::raw_svector_ostream Out(Buffer);
578   if (!D)
579     MangleCtx.mangleGlobalBlock(BD,
580       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
581   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
582     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
583   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
584     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
585   else
586     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
587 
588   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
589   return Result.first->first();
590 }
591 
592 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
593   return getModule().getNamedValue(Name);
594 }
595 
596 /// AddGlobalCtor - Add a function to the list that will be called before
597 /// main() runs.
598 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
599                                   llvm::Constant *AssociatedData) {
600   // FIXME: Type coercion of void()* types.
601   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
602 }
603 
604 /// AddGlobalDtor - Add a function to the list that will be called
605 /// when the module is unloaded.
606 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
607   // FIXME: Type coercion of void()* types.
608   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
609 }
610 
611 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
612   // Ctor function type is void()*.
613   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
614   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
615 
616   // Get the type of a ctor entry, { i32, void ()*, i8* }.
617   llvm::StructType *CtorStructTy = llvm::StructType::get(
618       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, NULL);
619 
620   // Construct the constructor and destructor arrays.
621   SmallVector<llvm::Constant*, 8> Ctors;
622   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
623     llvm::Constant *S[] = {
624       llvm::ConstantInt::get(Int32Ty, I->Priority, false),
625       llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy),
626       (I->AssociatedData
627            ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy)
628            : llvm::Constant::getNullValue(VoidPtrTy))
629     };
630     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
631   }
632 
633   if (!Ctors.empty()) {
634     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
635     new llvm::GlobalVariable(TheModule, AT, false,
636                              llvm::GlobalValue::AppendingLinkage,
637                              llvm::ConstantArray::get(AT, Ctors),
638                              GlobalName);
639   }
640 }
641 
642 llvm::GlobalValue::LinkageTypes
643 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
644   const auto *D = cast<FunctionDecl>(GD.getDecl());
645 
646   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
647 
648   if (isa<CXXDestructorDecl>(D) &&
649       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
650                                          GD.getDtorType())) {
651     // Destructor variants in the Microsoft C++ ABI are always internal or
652     // linkonce_odr thunks emitted on an as-needed basis.
653     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
654                                    : llvm::GlobalValue::LinkOnceODRLinkage;
655   }
656 
657   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
658 }
659 
660 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
661                                                     llvm::Function *F) {
662   setNonAliasAttributes(D, F);
663 }
664 
665 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
666                                               const CGFunctionInfo &Info,
667                                               llvm::Function *F) {
668   unsigned CallingConv;
669   AttributeListType AttributeList;
670   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
671   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
672   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
673 }
674 
675 /// Determines whether the language options require us to model
676 /// unwind exceptions.  We treat -fexceptions as mandating this
677 /// except under the fragile ObjC ABI with only ObjC exceptions
678 /// enabled.  This means, for example, that C with -fexceptions
679 /// enables this.
680 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
681   // If exceptions are completely disabled, obviously this is false.
682   if (!LangOpts.Exceptions) return false;
683 
684   // If C++ exceptions are enabled, this is true.
685   if (LangOpts.CXXExceptions) return true;
686 
687   // If ObjC exceptions are enabled, this depends on the ABI.
688   if (LangOpts.ObjCExceptions) {
689     return LangOpts.ObjCRuntime.hasUnwindExceptions();
690   }
691 
692   return true;
693 }
694 
695 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
696                                                            llvm::Function *F) {
697   llvm::AttrBuilder B;
698 
699   if (CodeGenOpts.UnwindTables)
700     B.addAttribute(llvm::Attribute::UWTable);
701 
702   if (!hasUnwindExceptions(LangOpts))
703     B.addAttribute(llvm::Attribute::NoUnwind);
704 
705   if (D->hasAttr<NakedAttr>()) {
706     // Naked implies noinline: we should not be inlining such functions.
707     B.addAttribute(llvm::Attribute::Naked);
708     B.addAttribute(llvm::Attribute::NoInline);
709   } else if (D->hasAttr<OptimizeNoneAttr>()) {
710     // OptimizeNone implies noinline; we should not be inlining such functions.
711     B.addAttribute(llvm::Attribute::OptimizeNone);
712     B.addAttribute(llvm::Attribute::NoInline);
713   } else if (D->hasAttr<NoDuplicateAttr>()) {
714     B.addAttribute(llvm::Attribute::NoDuplicate);
715   } else if (D->hasAttr<NoInlineAttr>()) {
716     B.addAttribute(llvm::Attribute::NoInline);
717   } else if (D->hasAttr<AlwaysInlineAttr>() &&
718              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
719                                               llvm::Attribute::NoInline)) {
720     // (noinline wins over always_inline, and we can't specify both in IR)
721     B.addAttribute(llvm::Attribute::AlwaysInline);
722   }
723 
724   if (D->hasAttr<ColdAttr>()) {
725     B.addAttribute(llvm::Attribute::OptimizeForSize);
726     B.addAttribute(llvm::Attribute::Cold);
727   }
728 
729   if (D->hasAttr<MinSizeAttr>())
730     B.addAttribute(llvm::Attribute::MinSize);
731 
732   if (D->hasAttr<OptimizeNoneAttr>()) {
733     // OptimizeNone wins over OptimizeForSize and MinSize.
734     B.removeAttribute(llvm::Attribute::OptimizeForSize);
735     B.removeAttribute(llvm::Attribute::MinSize);
736   }
737 
738   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
739     B.addAttribute(llvm::Attribute::StackProtect);
740   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
741     B.addAttribute(llvm::Attribute::StackProtectStrong);
742   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
743     B.addAttribute(llvm::Attribute::StackProtectReq);
744 
745   // Add sanitizer attributes if function is not blacklisted.
746   if (!SanitizerBL.isIn(*F)) {
747     // When AddressSanitizer is enabled, set SanitizeAddress attribute
748     // unless __attribute__((no_sanitize_address)) is used.
749     if (LangOpts.Sanitize.Address && !D->hasAttr<NoSanitizeAddressAttr>())
750       B.addAttribute(llvm::Attribute::SanitizeAddress);
751     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
752     if (LangOpts.Sanitize.Thread && !D->hasAttr<NoSanitizeThreadAttr>())
753       B.addAttribute(llvm::Attribute::SanitizeThread);
754     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
755     if (LangOpts.Sanitize.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
756       B.addAttribute(llvm::Attribute::SanitizeMemory);
757   }
758 
759   F->addAttributes(llvm::AttributeSet::FunctionIndex,
760                    llvm::AttributeSet::get(
761                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
762 
763   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
764     F->setUnnamedAddr(true);
765   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
766     if (MD->isVirtual())
767       F->setUnnamedAddr(true);
768 
769   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
770   if (alignment)
771     F->setAlignment(alignment);
772 
773   // C++ ABI requires 2-byte alignment for member functions.
774   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
775     F->setAlignment(2);
776 }
777 
778 void CodeGenModule::SetCommonAttributes(const Decl *D,
779                                         llvm::GlobalValue *GV) {
780   if (const auto *ND = dyn_cast<NamedDecl>(D))
781     setGlobalVisibility(GV, ND);
782   else
783     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
784 
785   if (D->hasAttr<UsedAttr>())
786     addUsedGlobal(GV);
787 }
788 
789 void CodeGenModule::setNonAliasAttributes(const Decl *D,
790                                           llvm::GlobalObject *GO) {
791   SetCommonAttributes(D, GO);
792 
793   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
794     GO->setSection(SA->getName());
795 
796   getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
797 }
798 
799 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
800                                                   llvm::Function *F,
801                                                   const CGFunctionInfo &FI) {
802   SetLLVMFunctionAttributes(D, FI, F);
803   SetLLVMFunctionAttributesForDefinition(D, F);
804 
805   F->setLinkage(llvm::Function::InternalLinkage);
806 
807   setNonAliasAttributes(D, F);
808 }
809 
810 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
811                                          const NamedDecl *ND) {
812   // Set linkage and visibility in case we never see a definition.
813   LinkageInfo LV = ND->getLinkageAndVisibility();
814   if (LV.getLinkage() != ExternalLinkage) {
815     // Don't set internal linkage on declarations.
816   } else {
817     if (ND->hasAttr<DLLImportAttr>()) {
818       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
819       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
820     } else if (ND->hasAttr<DLLExportAttr>()) {
821       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
822       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
823     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
824       // "extern_weak" is overloaded in LLVM; we probably should have
825       // separate linkage types for this.
826       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
827     }
828 
829     // Set visibility on a declaration only if it's explicit.
830     if (LV.isVisibilityExplicit())
831       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
832   }
833 }
834 
835 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
836                                           llvm::Function *F,
837                                           bool IsIncompleteFunction) {
838   if (unsigned IID = F->getIntrinsicID()) {
839     // If this is an intrinsic function, set the function's attributes
840     // to the intrinsic's attributes.
841     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
842                                                     (llvm::Intrinsic::ID)IID));
843     return;
844   }
845 
846   const auto *FD = cast<FunctionDecl>(GD.getDecl());
847 
848   if (!IsIncompleteFunction)
849     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
850 
851   // Add the Returned attribute for "this", except for iOS 5 and earlier
852   // where substantial code, including the libstdc++ dylib, was compiled with
853   // GCC and does not actually return "this".
854   if (getCXXABI().HasThisReturn(GD) &&
855       !(getTarget().getTriple().isiOS() &&
856         getTarget().getTriple().isOSVersionLT(6))) {
857     assert(!F->arg_empty() &&
858            F->arg_begin()->getType()
859              ->canLosslesslyBitCastTo(F->getReturnType()) &&
860            "unexpected this return");
861     F->addAttribute(1, llvm::Attribute::Returned);
862   }
863 
864   // Only a few attributes are set on declarations; these may later be
865   // overridden by a definition.
866 
867   setLinkageAndVisibilityForGV(F, FD);
868 
869   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
870     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
871       // Don't dllexport/import destructor thunks.
872       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
873     }
874   }
875 
876   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
877     F->setSection(SA->getName());
878 
879   // A replaceable global allocation function does not act like a builtin by
880   // default, only if it is invoked by a new-expression or delete-expression.
881   if (FD->isReplaceableGlobalAllocationFunction())
882     F->addAttribute(llvm::AttributeSet::FunctionIndex,
883                     llvm::Attribute::NoBuiltin);
884 }
885 
886 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
887   assert(!GV->isDeclaration() &&
888          "Only globals with definition can force usage.");
889   LLVMUsed.push_back(GV);
890 }
891 
892 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
893   assert(!GV->isDeclaration() &&
894          "Only globals with definition can force usage.");
895   LLVMCompilerUsed.push_back(GV);
896 }
897 
898 static void emitUsed(CodeGenModule &CGM, StringRef Name,
899                      std::vector<llvm::WeakVH> &List) {
900   // Don't create llvm.used if there is no need.
901   if (List.empty())
902     return;
903 
904   // Convert List to what ConstantArray needs.
905   SmallVector<llvm::Constant*, 8> UsedArray;
906   UsedArray.resize(List.size());
907   for (unsigned i = 0, e = List.size(); i != e; ++i) {
908     UsedArray[i] =
909      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
910                                     CGM.Int8PtrTy);
911   }
912 
913   if (UsedArray.empty())
914     return;
915   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
916 
917   auto *GV = new llvm::GlobalVariable(
918       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
919       llvm::ConstantArray::get(ATy, UsedArray), Name);
920 
921   GV->setSection("llvm.metadata");
922 }
923 
924 void CodeGenModule::emitLLVMUsed() {
925   emitUsed(*this, "llvm.used", LLVMUsed);
926   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
927 }
928 
929 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
930   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
931   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
932 }
933 
934 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
935   llvm::SmallString<32> Opt;
936   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
937   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
938   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
939 }
940 
941 void CodeGenModule::AddDependentLib(StringRef Lib) {
942   llvm::SmallString<24> Opt;
943   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
944   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
945   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
946 }
947 
948 /// \brief Add link options implied by the given module, including modules
949 /// it depends on, using a postorder walk.
950 static void addLinkOptionsPostorder(CodeGenModule &CGM,
951                                     Module *Mod,
952                                     SmallVectorImpl<llvm::Value *> &Metadata,
953                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
954   // Import this module's parent.
955   if (Mod->Parent && Visited.insert(Mod->Parent)) {
956     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
957   }
958 
959   // Import this module's dependencies.
960   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
961     if (Visited.insert(Mod->Imports[I-1]))
962       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
963   }
964 
965   // Add linker options to link against the libraries/frameworks
966   // described by this module.
967   llvm::LLVMContext &Context = CGM.getLLVMContext();
968   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
969     // Link against a framework.  Frameworks are currently Darwin only, so we
970     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
971     if (Mod->LinkLibraries[I-1].IsFramework) {
972       llvm::Value *Args[2] = {
973         llvm::MDString::get(Context, "-framework"),
974         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
975       };
976 
977       Metadata.push_back(llvm::MDNode::get(Context, Args));
978       continue;
979     }
980 
981     // Link against a library.
982     llvm::SmallString<24> Opt;
983     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
984       Mod->LinkLibraries[I-1].Library, Opt);
985     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
986     Metadata.push_back(llvm::MDNode::get(Context, OptString));
987   }
988 }
989 
990 void CodeGenModule::EmitModuleLinkOptions() {
991   // Collect the set of all of the modules we want to visit to emit link
992   // options, which is essentially the imported modules and all of their
993   // non-explicit child modules.
994   llvm::SetVector<clang::Module *> LinkModules;
995   llvm::SmallPtrSet<clang::Module *, 16> Visited;
996   SmallVector<clang::Module *, 16> Stack;
997 
998   // Seed the stack with imported modules.
999   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
1000                                                MEnd = ImportedModules.end();
1001        M != MEnd; ++M) {
1002     if (Visited.insert(*M))
1003       Stack.push_back(*M);
1004   }
1005 
1006   // Find all of the modules to import, making a little effort to prune
1007   // non-leaf modules.
1008   while (!Stack.empty()) {
1009     clang::Module *Mod = Stack.pop_back_val();
1010 
1011     bool AnyChildren = false;
1012 
1013     // Visit the submodules of this module.
1014     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1015                                         SubEnd = Mod->submodule_end();
1016          Sub != SubEnd; ++Sub) {
1017       // Skip explicit children; they need to be explicitly imported to be
1018       // linked against.
1019       if ((*Sub)->IsExplicit)
1020         continue;
1021 
1022       if (Visited.insert(*Sub)) {
1023         Stack.push_back(*Sub);
1024         AnyChildren = true;
1025       }
1026     }
1027 
1028     // We didn't find any children, so add this module to the list of
1029     // modules to link against.
1030     if (!AnyChildren) {
1031       LinkModules.insert(Mod);
1032     }
1033   }
1034 
1035   // Add link options for all of the imported modules in reverse topological
1036   // order.  We don't do anything to try to order import link flags with respect
1037   // to linker options inserted by things like #pragma comment().
1038   SmallVector<llvm::Value *, 16> MetadataArgs;
1039   Visited.clear();
1040   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
1041                                                MEnd = LinkModules.end();
1042        M != MEnd; ++M) {
1043     if (Visited.insert(*M))
1044       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
1045   }
1046   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1047   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1048 
1049   // Add the linker options metadata flag.
1050   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1051                             llvm::MDNode::get(getLLVMContext(),
1052                                               LinkerOptionsMetadata));
1053 }
1054 
1055 void CodeGenModule::EmitDeferred() {
1056   // Emit code for any potentially referenced deferred decls.  Since a
1057   // previously unused static decl may become used during the generation of code
1058   // for a static function, iterate until no changes are made.
1059 
1060   while (true) {
1061     if (!DeferredVTables.empty()) {
1062       EmitDeferredVTables();
1063 
1064       // Emitting a v-table doesn't directly cause more v-tables to
1065       // become deferred, although it can cause functions to be
1066       // emitted that then need those v-tables.
1067       assert(DeferredVTables.empty());
1068     }
1069 
1070     // Stop if we're out of both deferred v-tables and deferred declarations.
1071     if (DeferredDeclsToEmit.empty()) break;
1072 
1073     DeferredGlobal &G = DeferredDeclsToEmit.back();
1074     GlobalDecl D = G.GD;
1075     llvm::GlobalValue *GV = G.GV;
1076     DeferredDeclsToEmit.pop_back();
1077 
1078     assert(GV == GetGlobalValue(getMangledName(D)));
1079     // Check to see if we've already emitted this.  This is necessary
1080     // for a couple of reasons: first, decls can end up in the
1081     // deferred-decls queue multiple times, and second, decls can end
1082     // up with definitions in unusual ways (e.g. by an extern inline
1083     // function acquiring a strong function redefinition).  Just
1084     // ignore these cases.
1085     if(!GV->isDeclaration())
1086       continue;
1087 
1088     // Otherwise, emit the definition and move on to the next one.
1089     EmitGlobalDefinition(D, GV);
1090   }
1091 }
1092 
1093 void CodeGenModule::EmitGlobalAnnotations() {
1094   if (Annotations.empty())
1095     return;
1096 
1097   // Create a new global variable for the ConstantStruct in the Module.
1098   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1099     Annotations[0]->getType(), Annotations.size()), Annotations);
1100   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1101                                       llvm::GlobalValue::AppendingLinkage,
1102                                       Array, "llvm.global.annotations");
1103   gv->setSection(AnnotationSection);
1104 }
1105 
1106 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1107   llvm::Constant *&AStr = AnnotationStrings[Str];
1108   if (AStr)
1109     return AStr;
1110 
1111   // Not found yet, create a new global.
1112   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1113   auto *gv =
1114       new llvm::GlobalVariable(getModule(), s->getType(), true,
1115                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1116   gv->setSection(AnnotationSection);
1117   gv->setUnnamedAddr(true);
1118   AStr = gv;
1119   return gv;
1120 }
1121 
1122 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1123   SourceManager &SM = getContext().getSourceManager();
1124   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1125   if (PLoc.isValid())
1126     return EmitAnnotationString(PLoc.getFilename());
1127   return EmitAnnotationString(SM.getBufferName(Loc));
1128 }
1129 
1130 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1131   SourceManager &SM = getContext().getSourceManager();
1132   PresumedLoc PLoc = SM.getPresumedLoc(L);
1133   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1134     SM.getExpansionLineNumber(L);
1135   return llvm::ConstantInt::get(Int32Ty, LineNo);
1136 }
1137 
1138 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1139                                                 const AnnotateAttr *AA,
1140                                                 SourceLocation L) {
1141   // Get the globals for file name, annotation, and the line number.
1142   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1143                  *UnitGV = EmitAnnotationUnit(L),
1144                  *LineNoCst = EmitAnnotationLineNo(L);
1145 
1146   // Create the ConstantStruct for the global annotation.
1147   llvm::Constant *Fields[4] = {
1148     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1149     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1150     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1151     LineNoCst
1152   };
1153   return llvm::ConstantStruct::getAnon(Fields);
1154 }
1155 
1156 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1157                                          llvm::GlobalValue *GV) {
1158   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1159   // Get the struct elements for these annotations.
1160   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1161     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1162 }
1163 
1164 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1165   // Never defer when EmitAllDecls is specified.
1166   if (LangOpts.EmitAllDecls)
1167     return false;
1168 
1169   return !getContext().DeclMustBeEmitted(Global);
1170 }
1171 
1172 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1173     const CXXUuidofExpr* E) {
1174   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1175   // well-formed.
1176   StringRef Uuid = E->getUuidAsStringRef(Context);
1177   std::string Name = "_GUID_" + Uuid.lower();
1178   std::replace(Name.begin(), Name.end(), '-', '_');
1179 
1180   // Look for an existing global.
1181   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1182     return GV;
1183 
1184   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1185   assert(Init && "failed to initialize as constant");
1186 
1187   auto *GV = new llvm::GlobalVariable(
1188       getModule(), Init->getType(),
1189       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1190   return GV;
1191 }
1192 
1193 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1194   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1195   assert(AA && "No alias?");
1196 
1197   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1198 
1199   // See if there is already something with the target's name in the module.
1200   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1201   if (Entry) {
1202     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1203     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1204   }
1205 
1206   llvm::Constant *Aliasee;
1207   if (isa<llvm::FunctionType>(DeclTy))
1208     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1209                                       GlobalDecl(cast<FunctionDecl>(VD)),
1210                                       /*ForVTable=*/false);
1211   else
1212     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1213                                     llvm::PointerType::getUnqual(DeclTy),
1214                                     nullptr);
1215 
1216   auto *F = cast<llvm::GlobalValue>(Aliasee);
1217   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1218   WeakRefReferences.insert(F);
1219 
1220   return Aliasee;
1221 }
1222 
1223 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1224   const auto *Global = cast<ValueDecl>(GD.getDecl());
1225 
1226   // Weak references don't produce any output by themselves.
1227   if (Global->hasAttr<WeakRefAttr>())
1228     return;
1229 
1230   // If this is an alias definition (which otherwise looks like a declaration)
1231   // emit it now.
1232   if (Global->hasAttr<AliasAttr>())
1233     return EmitAliasDefinition(GD);
1234 
1235   // If this is CUDA, be selective about which declarations we emit.
1236   if (LangOpts.CUDA) {
1237     if (CodeGenOpts.CUDAIsDevice) {
1238       if (!Global->hasAttr<CUDADeviceAttr>() &&
1239           !Global->hasAttr<CUDAGlobalAttr>() &&
1240           !Global->hasAttr<CUDAConstantAttr>() &&
1241           !Global->hasAttr<CUDASharedAttr>())
1242         return;
1243     } else {
1244       if (!Global->hasAttr<CUDAHostAttr>() && (
1245             Global->hasAttr<CUDADeviceAttr>() ||
1246             Global->hasAttr<CUDAConstantAttr>() ||
1247             Global->hasAttr<CUDASharedAttr>()))
1248         return;
1249     }
1250   }
1251 
1252   // Ignore declarations, they will be emitted on their first use.
1253   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1254     // Forward declarations are emitted lazily on first use.
1255     if (!FD->doesThisDeclarationHaveABody()) {
1256       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1257         return;
1258 
1259       StringRef MangledName = getMangledName(GD);
1260 
1261       // Compute the function info and LLVM type.
1262       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1263       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1264 
1265       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1266                               /*DontDefer=*/false);
1267       return;
1268     }
1269   } else {
1270     const auto *VD = cast<VarDecl>(Global);
1271     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1272 
1273     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1274         !Context.isMSStaticDataMemberInlineDefinition(VD))
1275       return;
1276   }
1277 
1278   // Defer code generation when possible if this is a static definition, inline
1279   // function etc.  These we only want to emit if they are used.
1280   if (!MayDeferGeneration(Global)) {
1281     // Emit the definition if it can't be deferred.
1282     EmitGlobalDefinition(GD);
1283     return;
1284   }
1285 
1286   // If we're deferring emission of a C++ variable with an
1287   // initializer, remember the order in which it appeared in the file.
1288   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1289       cast<VarDecl>(Global)->hasInit()) {
1290     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1291     CXXGlobalInits.push_back(nullptr);
1292   }
1293 
1294   // If the value has already been used, add it directly to the
1295   // DeferredDeclsToEmit list.
1296   StringRef MangledName = getMangledName(GD);
1297   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1298     addDeferredDeclToEmit(GV, GD);
1299   else {
1300     // Otherwise, remember that we saw a deferred decl with this name.  The
1301     // first use of the mangled name will cause it to move into
1302     // DeferredDeclsToEmit.
1303     DeferredDecls[MangledName] = GD;
1304   }
1305 }
1306 
1307 namespace {
1308   struct FunctionIsDirectlyRecursive :
1309     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1310     const StringRef Name;
1311     const Builtin::Context &BI;
1312     bool Result;
1313     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1314       Name(N), BI(C), Result(false) {
1315     }
1316     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1317 
1318     bool TraverseCallExpr(CallExpr *E) {
1319       const FunctionDecl *FD = E->getDirectCallee();
1320       if (!FD)
1321         return true;
1322       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1323       if (Attr && Name == Attr->getLabel()) {
1324         Result = true;
1325         return false;
1326       }
1327       unsigned BuiltinID = FD->getBuiltinID();
1328       if (!BuiltinID)
1329         return true;
1330       StringRef BuiltinName = BI.GetName(BuiltinID);
1331       if (BuiltinName.startswith("__builtin_") &&
1332           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1333         Result = true;
1334         return false;
1335       }
1336       return true;
1337     }
1338   };
1339 }
1340 
1341 // isTriviallyRecursive - Check if this function calls another
1342 // decl that, because of the asm attribute or the other decl being a builtin,
1343 // ends up pointing to itself.
1344 bool
1345 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1346   StringRef Name;
1347   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1348     // asm labels are a special kind of mangling we have to support.
1349     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1350     if (!Attr)
1351       return false;
1352     Name = Attr->getLabel();
1353   } else {
1354     Name = FD->getName();
1355   }
1356 
1357   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1358   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1359   return Walker.Result;
1360 }
1361 
1362 bool
1363 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1364   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1365     return true;
1366   const auto *F = cast<FunctionDecl>(GD.getDecl());
1367   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1368     return false;
1369   // PR9614. Avoid cases where the source code is lying to us. An available
1370   // externally function should have an equivalent function somewhere else,
1371   // but a function that calls itself is clearly not equivalent to the real
1372   // implementation.
1373   // This happens in glibc's btowc and in some configure checks.
1374   return !isTriviallyRecursive(F);
1375 }
1376 
1377 /// If the type for the method's class was generated by
1378 /// CGDebugInfo::createContextChain(), the cache contains only a
1379 /// limited DIType without any declarations. Since EmitFunctionStart()
1380 /// needs to find the canonical declaration for each method, we need
1381 /// to construct the complete type prior to emitting the method.
1382 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1383   if (!D->isInstance())
1384     return;
1385 
1386   if (CGDebugInfo *DI = getModuleDebugInfo())
1387     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1388       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1389       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1390     }
1391 }
1392 
1393 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1394   const auto *D = cast<ValueDecl>(GD.getDecl());
1395 
1396   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1397                                  Context.getSourceManager(),
1398                                  "Generating code for declaration");
1399 
1400   if (isa<FunctionDecl>(D)) {
1401     // At -O0, don't generate IR for functions with available_externally
1402     // linkage.
1403     if (!shouldEmitFunction(GD))
1404       return;
1405 
1406     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1407       CompleteDIClassType(Method);
1408       // Make sure to emit the definition(s) before we emit the thunks.
1409       // This is necessary for the generation of certain thunks.
1410       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1411         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1412       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1413         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1414       else
1415         EmitGlobalFunctionDefinition(GD, GV);
1416 
1417       if (Method->isVirtual())
1418         getVTables().EmitThunks(GD);
1419 
1420       return;
1421     }
1422 
1423     return EmitGlobalFunctionDefinition(GD, GV);
1424   }
1425 
1426   if (const auto *VD = dyn_cast<VarDecl>(D))
1427     return EmitGlobalVarDefinition(VD);
1428 
1429   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1430 }
1431 
1432 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1433 /// module, create and return an llvm Function with the specified type. If there
1434 /// is something in the module with the specified name, return it potentially
1435 /// bitcasted to the right type.
1436 ///
1437 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1438 /// to set the attributes on the function when it is first created.
1439 llvm::Constant *
1440 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1441                                        llvm::Type *Ty,
1442                                        GlobalDecl GD, bool ForVTable,
1443                                        bool DontDefer,
1444                                        llvm::AttributeSet ExtraAttrs) {
1445   const Decl *D = GD.getDecl();
1446 
1447   // Lookup the entry, lazily creating it if necessary.
1448   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1449   if (Entry) {
1450     if (WeakRefReferences.erase(Entry)) {
1451       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1452       if (FD && !FD->hasAttr<WeakAttr>())
1453         Entry->setLinkage(llvm::Function::ExternalLinkage);
1454     }
1455 
1456     // Handle dropped DLL attributes.
1457     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1458       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1459 
1460     if (Entry->getType()->getElementType() == Ty)
1461       return Entry;
1462 
1463     // Make sure the result is of the correct type.
1464     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1465   }
1466 
1467   // This function doesn't have a complete type (for example, the return
1468   // type is an incomplete struct). Use a fake type instead, and make
1469   // sure not to try to set attributes.
1470   bool IsIncompleteFunction = false;
1471 
1472   llvm::FunctionType *FTy;
1473   if (isa<llvm::FunctionType>(Ty)) {
1474     FTy = cast<llvm::FunctionType>(Ty);
1475   } else {
1476     FTy = llvm::FunctionType::get(VoidTy, false);
1477     IsIncompleteFunction = true;
1478   }
1479 
1480   llvm::Function *F = llvm::Function::Create(FTy,
1481                                              llvm::Function::ExternalLinkage,
1482                                              MangledName, &getModule());
1483   assert(F->getName() == MangledName && "name was uniqued!");
1484   if (D)
1485     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1486   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1487     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1488     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1489                      llvm::AttributeSet::get(VMContext,
1490                                              llvm::AttributeSet::FunctionIndex,
1491                                              B));
1492   }
1493 
1494   if (!DontDefer) {
1495     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1496     // each other bottoming out with the base dtor.  Therefore we emit non-base
1497     // dtors on usage, even if there is no dtor definition in the TU.
1498     if (D && isa<CXXDestructorDecl>(D) &&
1499         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1500                                            GD.getDtorType()))
1501       addDeferredDeclToEmit(F, GD);
1502 
1503     // This is the first use or definition of a mangled name.  If there is a
1504     // deferred decl with this name, remember that we need to emit it at the end
1505     // of the file.
1506     auto DDI = DeferredDecls.find(MangledName);
1507     if (DDI != DeferredDecls.end()) {
1508       // Move the potentially referenced deferred decl to the
1509       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1510       // don't need it anymore).
1511       addDeferredDeclToEmit(F, DDI->second);
1512       DeferredDecls.erase(DDI);
1513 
1514       // Otherwise, if this is a sized deallocation function, emit a weak
1515       // definition
1516       // for it at the end of the translation unit.
1517     } else if (D && cast<FunctionDecl>(D)
1518                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1519       addDeferredDeclToEmit(F, GD);
1520 
1521       // Otherwise, there are cases we have to worry about where we're
1522       // using a declaration for which we must emit a definition but where
1523       // we might not find a top-level definition:
1524       //   - member functions defined inline in their classes
1525       //   - friend functions defined inline in some class
1526       //   - special member functions with implicit definitions
1527       // If we ever change our AST traversal to walk into class methods,
1528       // this will be unnecessary.
1529       //
1530       // We also don't emit a definition for a function if it's going to be an
1531       // entry in a vtable, unless it's already marked as used.
1532     } else if (getLangOpts().CPlusPlus && D) {
1533       // Look for a declaration that's lexically in a record.
1534       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1535            FD = FD->getPreviousDecl()) {
1536         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1537           if (FD->doesThisDeclarationHaveABody()) {
1538             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1539             break;
1540           }
1541         }
1542       }
1543     }
1544   }
1545 
1546   // Make sure the result is of the requested type.
1547   if (!IsIncompleteFunction) {
1548     assert(F->getType()->getElementType() == Ty);
1549     return F;
1550   }
1551 
1552   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1553   return llvm::ConstantExpr::getBitCast(F, PTy);
1554 }
1555 
1556 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1557 /// non-null, then this function will use the specified type if it has to
1558 /// create it (this occurs when we see a definition of the function).
1559 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1560                                                  llvm::Type *Ty,
1561                                                  bool ForVTable,
1562                                                  bool DontDefer) {
1563   // If there was no specific requested type, just convert it now.
1564   if (!Ty)
1565     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1566 
1567   StringRef MangledName = getMangledName(GD);
1568   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1569 }
1570 
1571 /// CreateRuntimeFunction - Create a new runtime function with the specified
1572 /// type and name.
1573 llvm::Constant *
1574 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1575                                      StringRef Name,
1576                                      llvm::AttributeSet ExtraAttrs) {
1577   llvm::Constant *C =
1578       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1579                               /*DontDefer=*/false, ExtraAttrs);
1580   if (auto *F = dyn_cast<llvm::Function>(C))
1581     if (F->empty())
1582       F->setCallingConv(getRuntimeCC());
1583   return C;
1584 }
1585 
1586 /// isTypeConstant - Determine whether an object of this type can be emitted
1587 /// as a constant.
1588 ///
1589 /// If ExcludeCtor is true, the duration when the object's constructor runs
1590 /// will not be considered. The caller will need to verify that the object is
1591 /// not written to during its construction.
1592 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1593   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1594     return false;
1595 
1596   if (Context.getLangOpts().CPlusPlus) {
1597     if (const CXXRecordDecl *Record
1598           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1599       return ExcludeCtor && !Record->hasMutableFields() &&
1600              Record->hasTrivialDestructor();
1601   }
1602 
1603   return true;
1604 }
1605 
1606 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1607 /// create and return an llvm GlobalVariable with the specified type.  If there
1608 /// is something in the module with the specified name, return it potentially
1609 /// bitcasted to the right type.
1610 ///
1611 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1612 /// to set the attributes on the global when it is first created.
1613 llvm::Constant *
1614 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1615                                      llvm::PointerType *Ty,
1616                                      const VarDecl *D) {
1617   // Lookup the entry, lazily creating it if necessary.
1618   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1619   if (Entry) {
1620     if (WeakRefReferences.erase(Entry)) {
1621       if (D && !D->hasAttr<WeakAttr>())
1622         Entry->setLinkage(llvm::Function::ExternalLinkage);
1623     }
1624 
1625     // Handle dropped DLL attributes.
1626     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1627       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1628 
1629     if (Entry->getType() == Ty)
1630       return Entry;
1631 
1632     // Make sure the result is of the correct type.
1633     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1634       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1635 
1636     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1637   }
1638 
1639   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1640   auto *GV = new llvm::GlobalVariable(
1641       getModule(), Ty->getElementType(), false,
1642       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1643       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1644 
1645   // This is the first use or definition of a mangled name.  If there is a
1646   // deferred decl with this name, remember that we need to emit it at the end
1647   // of the file.
1648   auto DDI = DeferredDecls.find(MangledName);
1649   if (DDI != DeferredDecls.end()) {
1650     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1651     // list, and remove it from DeferredDecls (since we don't need it anymore).
1652     addDeferredDeclToEmit(GV, DDI->second);
1653     DeferredDecls.erase(DDI);
1654   }
1655 
1656   // Handle things which are present even on external declarations.
1657   if (D) {
1658     // FIXME: This code is overly simple and should be merged with other global
1659     // handling.
1660     GV->setConstant(isTypeConstant(D->getType(), false));
1661 
1662     setLinkageAndVisibilityForGV(GV, D);
1663 
1664     if (D->getTLSKind()) {
1665       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1666         CXXThreadLocals.push_back(std::make_pair(D, GV));
1667       setTLSMode(GV, *D);
1668     }
1669 
1670     // If required by the ABI, treat declarations of static data members with
1671     // inline initializers as definitions.
1672     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
1673       EmitGlobalVarDefinition(D);
1674     }
1675 
1676     // Handle XCore specific ABI requirements.
1677     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1678         D->getLanguageLinkage() == CLanguageLinkage &&
1679         D->getType().isConstant(Context) &&
1680         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1681       GV->setSection(".cp.rodata");
1682   }
1683 
1684   if (AddrSpace != Ty->getAddressSpace())
1685     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1686 
1687   return GV;
1688 }
1689 
1690 
1691 llvm::GlobalVariable *
1692 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1693                                       llvm::Type *Ty,
1694                                       llvm::GlobalValue::LinkageTypes Linkage) {
1695   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1696   llvm::GlobalVariable *OldGV = nullptr;
1697 
1698   if (GV) {
1699     // Check if the variable has the right type.
1700     if (GV->getType()->getElementType() == Ty)
1701       return GV;
1702 
1703     // Because C++ name mangling, the only way we can end up with an already
1704     // existing global with the same name is if it has been declared extern "C".
1705     assert(GV->isDeclaration() && "Declaration has wrong type!");
1706     OldGV = GV;
1707   }
1708 
1709   // Create a new variable.
1710   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1711                                 Linkage, nullptr, Name);
1712 
1713   if (OldGV) {
1714     // Replace occurrences of the old variable if needed.
1715     GV->takeName(OldGV);
1716 
1717     if (!OldGV->use_empty()) {
1718       llvm::Constant *NewPtrForOldDecl =
1719       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1720       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1721     }
1722 
1723     OldGV->eraseFromParent();
1724   }
1725 
1726   return GV;
1727 }
1728 
1729 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1730 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1731 /// then it will be created with the specified type instead of whatever the
1732 /// normal requested type would be.
1733 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1734                                                   llvm::Type *Ty) {
1735   assert(D->hasGlobalStorage() && "Not a global variable");
1736   QualType ASTTy = D->getType();
1737   if (!Ty)
1738     Ty = getTypes().ConvertTypeForMem(ASTTy);
1739 
1740   llvm::PointerType *PTy =
1741     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1742 
1743   StringRef MangledName = getMangledName(D);
1744   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1745 }
1746 
1747 /// CreateRuntimeVariable - Create a new runtime global variable with the
1748 /// specified type and name.
1749 llvm::Constant *
1750 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1751                                      StringRef Name) {
1752   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
1753 }
1754 
1755 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1756   assert(!D->getInit() && "Cannot emit definite definitions here!");
1757 
1758   if (MayDeferGeneration(D)) {
1759     // If we have not seen a reference to this variable yet, place it
1760     // into the deferred declarations table to be emitted if needed
1761     // later.
1762     StringRef MangledName = getMangledName(D);
1763     if (!GetGlobalValue(MangledName)) {
1764       DeferredDecls[MangledName] = D;
1765       return;
1766     }
1767   }
1768 
1769   // The tentative definition is the only definition.
1770   EmitGlobalVarDefinition(D);
1771 }
1772 
1773 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1774     return Context.toCharUnitsFromBits(
1775       TheDataLayout.getTypeStoreSizeInBits(Ty));
1776 }
1777 
1778 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1779                                                  unsigned AddrSpace) {
1780   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1781     if (D->hasAttr<CUDAConstantAttr>())
1782       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1783     else if (D->hasAttr<CUDASharedAttr>())
1784       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1785     else
1786       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1787   }
1788 
1789   return AddrSpace;
1790 }
1791 
1792 template<typename SomeDecl>
1793 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1794                                                llvm::GlobalValue *GV) {
1795   if (!getLangOpts().CPlusPlus)
1796     return;
1797 
1798   // Must have 'used' attribute, or else inline assembly can't rely on
1799   // the name existing.
1800   if (!D->template hasAttr<UsedAttr>())
1801     return;
1802 
1803   // Must have internal linkage and an ordinary name.
1804   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1805     return;
1806 
1807   // Must be in an extern "C" context. Entities declared directly within
1808   // a record are not extern "C" even if the record is in such a context.
1809   const SomeDecl *First = D->getFirstDecl();
1810   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1811     return;
1812 
1813   // OK, this is an internal linkage entity inside an extern "C" linkage
1814   // specification. Make a note of that so we can give it the "expected"
1815   // mangled name if nothing else is using that name.
1816   std::pair<StaticExternCMap::iterator, bool> R =
1817       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1818 
1819   // If we have multiple internal linkage entities with the same name
1820   // in extern "C" regions, none of them gets that name.
1821   if (!R.second)
1822     R.first->second = nullptr;
1823 }
1824 
1825 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1826   llvm::Constant *Init = nullptr;
1827   QualType ASTTy = D->getType();
1828   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1829   bool NeedsGlobalCtor = false;
1830   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1831 
1832   const VarDecl *InitDecl;
1833   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1834 
1835   if (!InitExpr) {
1836     // This is a tentative definition; tentative definitions are
1837     // implicitly initialized with { 0 }.
1838     //
1839     // Note that tentative definitions are only emitted at the end of
1840     // a translation unit, so they should never have incomplete
1841     // type. In addition, EmitTentativeDefinition makes sure that we
1842     // never attempt to emit a tentative definition if a real one
1843     // exists. A use may still exists, however, so we still may need
1844     // to do a RAUW.
1845     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1846     Init = EmitNullConstant(D->getType());
1847   } else {
1848     initializedGlobalDecl = GlobalDecl(D);
1849     Init = EmitConstantInit(*InitDecl);
1850 
1851     if (!Init) {
1852       QualType T = InitExpr->getType();
1853       if (D->getType()->isReferenceType())
1854         T = D->getType();
1855 
1856       if (getLangOpts().CPlusPlus) {
1857         Init = EmitNullConstant(T);
1858         NeedsGlobalCtor = true;
1859       } else {
1860         ErrorUnsupported(D, "static initializer");
1861         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1862       }
1863     } else {
1864       // We don't need an initializer, so remove the entry for the delayed
1865       // initializer position (just in case this entry was delayed) if we
1866       // also don't need to register a destructor.
1867       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1868         DelayedCXXInitPosition.erase(D);
1869     }
1870   }
1871 
1872   llvm::Type* InitType = Init->getType();
1873   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1874 
1875   // Strip off a bitcast if we got one back.
1876   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1877     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1878            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1879            // All zero index gep.
1880            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1881     Entry = CE->getOperand(0);
1882   }
1883 
1884   // Entry is now either a Function or GlobalVariable.
1885   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1886 
1887   // We have a definition after a declaration with the wrong type.
1888   // We must make a new GlobalVariable* and update everything that used OldGV
1889   // (a declaration or tentative definition) with the new GlobalVariable*
1890   // (which will be a definition).
1891   //
1892   // This happens if there is a prototype for a global (e.g.
1893   // "extern int x[];") and then a definition of a different type (e.g.
1894   // "int x[10];"). This also happens when an initializer has a different type
1895   // from the type of the global (this happens with unions).
1896   if (!GV ||
1897       GV->getType()->getElementType() != InitType ||
1898       GV->getType()->getAddressSpace() !=
1899        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1900 
1901     // Move the old entry aside so that we'll create a new one.
1902     Entry->setName(StringRef());
1903 
1904     // Make a new global with the correct type, this is now guaranteed to work.
1905     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1906 
1907     // Replace all uses of the old global with the new global
1908     llvm::Constant *NewPtrForOldDecl =
1909         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1910     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1911 
1912     // Erase the old global, since it is no longer used.
1913     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1914   }
1915 
1916   MaybeHandleStaticInExternC(D, GV);
1917 
1918   if (D->hasAttr<AnnotateAttr>())
1919     AddGlobalAnnotations(D, GV);
1920 
1921   GV->setInitializer(Init);
1922 
1923   // If it is safe to mark the global 'constant', do so now.
1924   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1925                   isTypeConstant(D->getType(), true));
1926 
1927   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1928 
1929   // Set the llvm linkage type as appropriate.
1930   llvm::GlobalValue::LinkageTypes Linkage =
1931       getLLVMLinkageVarDefinition(D, GV->isConstant());
1932 
1933   // On Darwin, the backing variable for a C++11 thread_local variable always
1934   // has internal linkage; all accesses should just be calls to the
1935   // Itanium-specified entry point, which has the normal linkage of the
1936   // variable.
1937   if (const auto *VD = dyn_cast<VarDecl>(D))
1938     if (!VD->isStaticLocal() && VD->getTLSKind() == VarDecl::TLS_Dynamic &&
1939         Context.getTargetInfo().getTriple().isMacOSX())
1940       Linkage = llvm::GlobalValue::InternalLinkage;
1941 
1942   GV->setLinkage(Linkage);
1943   if (D->hasAttr<DLLImportAttr>())
1944     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1945   else if (D->hasAttr<DLLExportAttr>())
1946     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1947 
1948   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1949     // common vars aren't constant even if declared const.
1950     GV->setConstant(false);
1951 
1952   setNonAliasAttributes(D, GV);
1953 
1954   // Emit the initializer function if necessary.
1955   if (NeedsGlobalCtor || NeedsGlobalDtor)
1956     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1957 
1958   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
1959 
1960   // Emit global variable debug information.
1961   if (CGDebugInfo *DI = getModuleDebugInfo())
1962     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1963       DI->EmitGlobalVariable(GV, D);
1964 }
1965 
1966 static bool isVarDeclStrongDefinition(const ASTContext &Context,
1967                                       const VarDecl *D, bool NoCommon) {
1968   // Don't give variables common linkage if -fno-common was specified unless it
1969   // was overridden by a NoCommon attribute.
1970   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
1971     return true;
1972 
1973   // C11 6.9.2/2:
1974   //   A declaration of an identifier for an object that has file scope without
1975   //   an initializer, and without a storage-class specifier or with the
1976   //   storage-class specifier static, constitutes a tentative definition.
1977   if (D->getInit() || D->hasExternalStorage())
1978     return true;
1979 
1980   // A variable cannot be both common and exist in a section.
1981   if (D->hasAttr<SectionAttr>())
1982     return true;
1983 
1984   // Thread local vars aren't considered common linkage.
1985   if (D->getTLSKind())
1986     return true;
1987 
1988   // Tentative definitions marked with WeakImportAttr are true definitions.
1989   if (D->hasAttr<WeakImportAttr>())
1990     return true;
1991 
1992   // Declarations with a required alignment do not have common linakge in MSVC
1993   // mode.
1994   if (Context.getLangOpts().MSVCCompat &&
1995       (Context.isAlignmentRequired(D->getType()) || D->hasAttr<AlignedAttr>()))
1996     return true;
1997 
1998   return false;
1999 }
2000 
2001 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2002     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2003   if (Linkage == GVA_Internal)
2004     return llvm::Function::InternalLinkage;
2005 
2006   if (D->hasAttr<WeakAttr>()) {
2007     if (IsConstantVariable)
2008       return llvm::GlobalVariable::WeakODRLinkage;
2009     else
2010       return llvm::GlobalVariable::WeakAnyLinkage;
2011   }
2012 
2013   // We are guaranteed to have a strong definition somewhere else,
2014   // so we can use available_externally linkage.
2015   if (Linkage == GVA_AvailableExternally)
2016     return llvm::Function::AvailableExternallyLinkage;
2017 
2018   // Note that Apple's kernel linker doesn't support symbol
2019   // coalescing, so we need to avoid linkonce and weak linkages there.
2020   // Normally, this means we just map to internal, but for explicit
2021   // instantiations we'll map to external.
2022 
2023   // In C++, the compiler has to emit a definition in every translation unit
2024   // that references the function.  We should use linkonce_odr because
2025   // a) if all references in this translation unit are optimized away, we
2026   // don't need to codegen it.  b) if the function persists, it needs to be
2027   // merged with other definitions. c) C++ has the ODR, so we know the
2028   // definition is dependable.
2029   if (Linkage == GVA_DiscardableODR)
2030     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2031                                             : llvm::Function::InternalLinkage;
2032 
2033   // An explicit instantiation of a template has weak linkage, since
2034   // explicit instantiations can occur in multiple translation units
2035   // and must all be equivalent. However, we are not allowed to
2036   // throw away these explicit instantiations.
2037   if (Linkage == GVA_StrongODR)
2038     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2039                                             : llvm::Function::ExternalLinkage;
2040 
2041   // C++ doesn't have tentative definitions and thus cannot have common
2042   // linkage.
2043   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2044       !isVarDeclStrongDefinition(Context, cast<VarDecl>(D),
2045                                  CodeGenOpts.NoCommon))
2046     return llvm::GlobalVariable::CommonLinkage;
2047 
2048   // selectany symbols are externally visible, so use weak instead of
2049   // linkonce.  MSVC optimizes away references to const selectany globals, so
2050   // all definitions should be the same and ODR linkage should be used.
2051   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2052   if (D->hasAttr<SelectAnyAttr>())
2053     return llvm::GlobalVariable::WeakODRLinkage;
2054 
2055   // Otherwise, we have strong external linkage.
2056   assert(Linkage == GVA_StrongExternal);
2057   return llvm::GlobalVariable::ExternalLinkage;
2058 }
2059 
2060 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2061     const VarDecl *VD, bool IsConstant) {
2062   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2063   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2064 }
2065 
2066 /// Replace the uses of a function that was declared with a non-proto type.
2067 /// We want to silently drop extra arguments from call sites
2068 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2069                                           llvm::Function *newFn) {
2070   // Fast path.
2071   if (old->use_empty()) return;
2072 
2073   llvm::Type *newRetTy = newFn->getReturnType();
2074   SmallVector<llvm::Value*, 4> newArgs;
2075 
2076   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2077          ui != ue; ) {
2078     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2079     llvm::User *user = use->getUser();
2080 
2081     // Recognize and replace uses of bitcasts.  Most calls to
2082     // unprototyped functions will use bitcasts.
2083     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2084       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2085         replaceUsesOfNonProtoConstant(bitcast, newFn);
2086       continue;
2087     }
2088 
2089     // Recognize calls to the function.
2090     llvm::CallSite callSite(user);
2091     if (!callSite) continue;
2092     if (!callSite.isCallee(&*use)) continue;
2093 
2094     // If the return types don't match exactly, then we can't
2095     // transform this call unless it's dead.
2096     if (callSite->getType() != newRetTy && !callSite->use_empty())
2097       continue;
2098 
2099     // Get the call site's attribute list.
2100     SmallVector<llvm::AttributeSet, 8> newAttrs;
2101     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2102 
2103     // Collect any return attributes from the call.
2104     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2105       newAttrs.push_back(
2106         llvm::AttributeSet::get(newFn->getContext(),
2107                                 oldAttrs.getRetAttributes()));
2108 
2109     // If the function was passed too few arguments, don't transform.
2110     unsigned newNumArgs = newFn->arg_size();
2111     if (callSite.arg_size() < newNumArgs) continue;
2112 
2113     // If extra arguments were passed, we silently drop them.
2114     // If any of the types mismatch, we don't transform.
2115     unsigned argNo = 0;
2116     bool dontTransform = false;
2117     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2118            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2119       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2120         dontTransform = true;
2121         break;
2122       }
2123 
2124       // Add any parameter attributes.
2125       if (oldAttrs.hasAttributes(argNo + 1))
2126         newAttrs.
2127           push_back(llvm::
2128                     AttributeSet::get(newFn->getContext(),
2129                                       oldAttrs.getParamAttributes(argNo + 1)));
2130     }
2131     if (dontTransform)
2132       continue;
2133 
2134     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2135       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2136                                                  oldAttrs.getFnAttributes()));
2137 
2138     // Okay, we can transform this.  Create the new call instruction and copy
2139     // over the required information.
2140     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2141 
2142     llvm::CallSite newCall;
2143     if (callSite.isCall()) {
2144       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2145                                        callSite.getInstruction());
2146     } else {
2147       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2148       newCall = llvm::InvokeInst::Create(newFn,
2149                                          oldInvoke->getNormalDest(),
2150                                          oldInvoke->getUnwindDest(),
2151                                          newArgs, "",
2152                                          callSite.getInstruction());
2153     }
2154     newArgs.clear(); // for the next iteration
2155 
2156     if (!newCall->getType()->isVoidTy())
2157       newCall->takeName(callSite.getInstruction());
2158     newCall.setAttributes(
2159                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2160     newCall.setCallingConv(callSite.getCallingConv());
2161 
2162     // Finally, remove the old call, replacing any uses with the new one.
2163     if (!callSite->use_empty())
2164       callSite->replaceAllUsesWith(newCall.getInstruction());
2165 
2166     // Copy debug location attached to CI.
2167     if (!callSite->getDebugLoc().isUnknown())
2168       newCall->setDebugLoc(callSite->getDebugLoc());
2169     callSite->eraseFromParent();
2170   }
2171 }
2172 
2173 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2174 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2175 /// existing call uses of the old function in the module, this adjusts them to
2176 /// call the new function directly.
2177 ///
2178 /// This is not just a cleanup: the always_inline pass requires direct calls to
2179 /// functions to be able to inline them.  If there is a bitcast in the way, it
2180 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2181 /// run at -O0.
2182 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2183                                                       llvm::Function *NewFn) {
2184   // If we're redefining a global as a function, don't transform it.
2185   if (!isa<llvm::Function>(Old)) return;
2186 
2187   replaceUsesOfNonProtoConstant(Old, NewFn);
2188 }
2189 
2190 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2191   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2192   // If we have a definition, this might be a deferred decl. If the
2193   // instantiation is explicit, make sure we emit it at the end.
2194   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2195     GetAddrOfGlobalVar(VD);
2196 
2197   EmitTopLevelDecl(VD);
2198 }
2199 
2200 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2201                                                  llvm::GlobalValue *GV) {
2202   const auto *D = cast<FunctionDecl>(GD.getDecl());
2203 
2204   // Compute the function info and LLVM type.
2205   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2206   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2207 
2208   // Get or create the prototype for the function.
2209   if (!GV) {
2210     llvm::Constant *C =
2211         GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2212 
2213     // Strip off a bitcast if we got one back.
2214     if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2215       assert(CE->getOpcode() == llvm::Instruction::BitCast);
2216       GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2217     } else {
2218       GV = cast<llvm::GlobalValue>(C);
2219     }
2220   }
2221 
2222   if (!GV->isDeclaration()) {
2223     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2224     GlobalDecl OldGD = Manglings.lookup(GV->getName());
2225     if (auto *Prev = OldGD.getDecl())
2226       getDiags().Report(Prev->getLocation(), diag::note_previous_definition);
2227     return;
2228   }
2229 
2230   if (GV->getType()->getElementType() != Ty) {
2231     // If the types mismatch then we have to rewrite the definition.
2232     assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2233 
2234     // F is the Function* for the one with the wrong type, we must make a new
2235     // Function* and update everything that used F (a declaration) with the new
2236     // Function* (which will be a definition).
2237     //
2238     // This happens if there is a prototype for a function
2239     // (e.g. "int f()") and then a definition of a different type
2240     // (e.g. "int f(int x)").  Move the old function aside so that it
2241     // doesn't interfere with GetAddrOfFunction.
2242     GV->setName(StringRef());
2243     auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2244 
2245     // This might be an implementation of a function without a
2246     // prototype, in which case, try to do special replacement of
2247     // calls which match the new prototype.  The really key thing here
2248     // is that we also potentially drop arguments from the call site
2249     // so as to make a direct call, which makes the inliner happier
2250     // and suppresses a number of optimizer warnings (!) about
2251     // dropping arguments.
2252     if (!GV->use_empty()) {
2253       ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2254       GV->removeDeadConstantUsers();
2255     }
2256 
2257     // Replace uses of F with the Function we will endow with a body.
2258     if (!GV->use_empty()) {
2259       llvm::Constant *NewPtrForOldDecl =
2260           llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2261       GV->replaceAllUsesWith(NewPtrForOldDecl);
2262     }
2263 
2264     // Ok, delete the old function now, which is dead.
2265     GV->eraseFromParent();
2266 
2267     GV = NewFn;
2268   }
2269 
2270   // We need to set linkage and visibility on the function before
2271   // generating code for it because various parts of IR generation
2272   // want to propagate this information down (e.g. to local static
2273   // declarations).
2274   auto *Fn = cast<llvm::Function>(GV);
2275   setFunctionLinkage(GD, Fn);
2276 
2277   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2278   setGlobalVisibility(Fn, D);
2279 
2280   MaybeHandleStaticInExternC(D, Fn);
2281 
2282   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2283 
2284   setFunctionDefinitionAttributes(D, Fn);
2285   SetLLVMFunctionAttributesForDefinition(D, Fn);
2286 
2287   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2288     AddGlobalCtor(Fn, CA->getPriority());
2289   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2290     AddGlobalDtor(Fn, DA->getPriority());
2291   if (D->hasAttr<AnnotateAttr>())
2292     AddGlobalAnnotations(D, Fn);
2293 }
2294 
2295 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2296   const auto *D = cast<ValueDecl>(GD.getDecl());
2297   const AliasAttr *AA = D->getAttr<AliasAttr>();
2298   assert(AA && "Not an alias?");
2299 
2300   StringRef MangledName = getMangledName(GD);
2301 
2302   // If there is a definition in the module, then it wins over the alias.
2303   // This is dubious, but allow it to be safe.  Just ignore the alias.
2304   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2305   if (Entry && !Entry->isDeclaration())
2306     return;
2307 
2308   Aliases.push_back(GD);
2309 
2310   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2311 
2312   // Create a reference to the named value.  This ensures that it is emitted
2313   // if a deferred decl.
2314   llvm::Constant *Aliasee;
2315   if (isa<llvm::FunctionType>(DeclTy))
2316     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2317                                       /*ForVTable=*/false);
2318   else
2319     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2320                                     llvm::PointerType::getUnqual(DeclTy),
2321                                     nullptr);
2322 
2323   // Create the new alias itself, but don't set a name yet.
2324   auto *GA = llvm::GlobalAlias::create(
2325       cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0,
2326       llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2327 
2328   if (Entry) {
2329     if (GA->getAliasee() == Entry) {
2330       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2331       return;
2332     }
2333 
2334     assert(Entry->isDeclaration());
2335 
2336     // If there is a declaration in the module, then we had an extern followed
2337     // by the alias, as in:
2338     //   extern int test6();
2339     //   ...
2340     //   int test6() __attribute__((alias("test7")));
2341     //
2342     // Remove it and replace uses of it with the alias.
2343     GA->takeName(Entry);
2344 
2345     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2346                                                           Entry->getType()));
2347     Entry->eraseFromParent();
2348   } else {
2349     GA->setName(MangledName);
2350   }
2351 
2352   // Set attributes which are particular to an alias; this is a
2353   // specialization of the attributes which may be set on a global
2354   // variable/function.
2355   if (D->hasAttr<DLLExportAttr>()) {
2356     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2357       // The dllexport attribute is ignored for undefined symbols.
2358       if (FD->hasBody())
2359         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2360     } else {
2361       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2362     }
2363   } else if (D->hasAttr<WeakAttr>() ||
2364              D->hasAttr<WeakRefAttr>() ||
2365              D->isWeakImported()) {
2366     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2367   }
2368 
2369   SetCommonAttributes(D, GA);
2370 }
2371 
2372 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2373                                             ArrayRef<llvm::Type*> Tys) {
2374   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2375                                          Tys);
2376 }
2377 
2378 static llvm::StringMapEntry<llvm::Constant*> &
2379 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2380                          const StringLiteral *Literal,
2381                          bool TargetIsLSB,
2382                          bool &IsUTF16,
2383                          unsigned &StringLength) {
2384   StringRef String = Literal->getString();
2385   unsigned NumBytes = String.size();
2386 
2387   // Check for simple case.
2388   if (!Literal->containsNonAsciiOrNull()) {
2389     StringLength = NumBytes;
2390     return Map.GetOrCreateValue(String);
2391   }
2392 
2393   // Otherwise, convert the UTF8 literals into a string of shorts.
2394   IsUTF16 = true;
2395 
2396   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2397   const UTF8 *FromPtr = (const UTF8 *)String.data();
2398   UTF16 *ToPtr = &ToBuf[0];
2399 
2400   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2401                            &ToPtr, ToPtr + NumBytes,
2402                            strictConversion);
2403 
2404   // ConvertUTF8toUTF16 returns the length in ToPtr.
2405   StringLength = ToPtr - &ToBuf[0];
2406 
2407   // Add an explicit null.
2408   *ToPtr = 0;
2409   return Map.
2410     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2411                                (StringLength + 1) * 2));
2412 }
2413 
2414 static llvm::StringMapEntry<llvm::Constant*> &
2415 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2416                        const StringLiteral *Literal,
2417                        unsigned &StringLength) {
2418   StringRef String = Literal->getString();
2419   StringLength = String.size();
2420   return Map.GetOrCreateValue(String);
2421 }
2422 
2423 llvm::Constant *
2424 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2425   unsigned StringLength = 0;
2426   bool isUTF16 = false;
2427   llvm::StringMapEntry<llvm::Constant*> &Entry =
2428     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2429                              getDataLayout().isLittleEndian(),
2430                              isUTF16, StringLength);
2431 
2432   if (llvm::Constant *C = Entry.getValue())
2433     return C;
2434 
2435   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2436   llvm::Constant *Zeros[] = { Zero, Zero };
2437   llvm::Value *V;
2438 
2439   // If we don't already have it, get __CFConstantStringClassReference.
2440   if (!CFConstantStringClassRef) {
2441     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2442     Ty = llvm::ArrayType::get(Ty, 0);
2443     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2444                                            "__CFConstantStringClassReference");
2445     // Decay array -> ptr
2446     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2447     CFConstantStringClassRef = V;
2448   }
2449   else
2450     V = CFConstantStringClassRef;
2451 
2452   QualType CFTy = getContext().getCFConstantStringType();
2453 
2454   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2455 
2456   llvm::Constant *Fields[4];
2457 
2458   // Class pointer.
2459   Fields[0] = cast<llvm::ConstantExpr>(V);
2460 
2461   // Flags.
2462   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2463   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2464     llvm::ConstantInt::get(Ty, 0x07C8);
2465 
2466   // String pointer.
2467   llvm::Constant *C = nullptr;
2468   if (isUTF16) {
2469     ArrayRef<uint16_t> Arr =
2470       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2471                                      const_cast<char *>(Entry.getKey().data())),
2472                                    Entry.getKey().size() / 2);
2473     C = llvm::ConstantDataArray::get(VMContext, Arr);
2474   } else {
2475     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2476   }
2477 
2478   // Note: -fwritable-strings doesn't make the backing store strings of
2479   // CFStrings writable. (See <rdar://problem/10657500>)
2480   auto *GV =
2481       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2482                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2483   GV->setUnnamedAddr(true);
2484   // Don't enforce the target's minimum global alignment, since the only use
2485   // of the string is via this class initializer.
2486   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2487   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2488   // that changes the section it ends in, which surprises ld64.
2489   if (isUTF16) {
2490     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2491     GV->setAlignment(Align.getQuantity());
2492     GV->setSection("__TEXT,__ustring");
2493   } else {
2494     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2495     GV->setAlignment(Align.getQuantity());
2496     GV->setSection("__TEXT,__cstring,cstring_literals");
2497   }
2498 
2499   // String.
2500   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2501 
2502   if (isUTF16)
2503     // Cast the UTF16 string to the correct type.
2504     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2505 
2506   // String length.
2507   Ty = getTypes().ConvertType(getContext().LongTy);
2508   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2509 
2510   // The struct.
2511   C = llvm::ConstantStruct::get(STy, Fields);
2512   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2513                                 llvm::GlobalVariable::PrivateLinkage, C,
2514                                 "_unnamed_cfstring_");
2515   GV->setSection("__DATA,__cfstring");
2516   Entry.setValue(GV);
2517 
2518   return GV;
2519 }
2520 
2521 llvm::Constant *
2522 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2523   unsigned StringLength = 0;
2524   llvm::StringMapEntry<llvm::Constant*> &Entry =
2525     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2526 
2527   if (llvm::Constant *C = Entry.getValue())
2528     return C;
2529 
2530   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2531   llvm::Constant *Zeros[] = { Zero, Zero };
2532   llvm::Value *V;
2533   // If we don't already have it, get _NSConstantStringClassReference.
2534   if (!ConstantStringClassRef) {
2535     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2536     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2537     llvm::Constant *GV;
2538     if (LangOpts.ObjCRuntime.isNonFragile()) {
2539       std::string str =
2540         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2541                             : "OBJC_CLASS_$_" + StringClass;
2542       GV = getObjCRuntime().GetClassGlobal(str);
2543       // Make sure the result is of the correct type.
2544       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2545       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2546       ConstantStringClassRef = V;
2547     } else {
2548       std::string str =
2549         StringClass.empty() ? "_NSConstantStringClassReference"
2550                             : "_" + StringClass + "ClassReference";
2551       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2552       GV = CreateRuntimeVariable(PTy, str);
2553       // Decay array -> ptr
2554       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2555       ConstantStringClassRef = V;
2556     }
2557   }
2558   else
2559     V = ConstantStringClassRef;
2560 
2561   if (!NSConstantStringType) {
2562     // Construct the type for a constant NSString.
2563     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2564     D->startDefinition();
2565 
2566     QualType FieldTypes[3];
2567 
2568     // const int *isa;
2569     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2570     // const char *str;
2571     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2572     // unsigned int length;
2573     FieldTypes[2] = Context.UnsignedIntTy;
2574 
2575     // Create fields
2576     for (unsigned i = 0; i < 3; ++i) {
2577       FieldDecl *Field = FieldDecl::Create(Context, D,
2578                                            SourceLocation(),
2579                                            SourceLocation(), nullptr,
2580                                            FieldTypes[i], /*TInfo=*/nullptr,
2581                                            /*BitWidth=*/nullptr,
2582                                            /*Mutable=*/false,
2583                                            ICIS_NoInit);
2584       Field->setAccess(AS_public);
2585       D->addDecl(Field);
2586     }
2587 
2588     D->completeDefinition();
2589     QualType NSTy = Context.getTagDeclType(D);
2590     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2591   }
2592 
2593   llvm::Constant *Fields[3];
2594 
2595   // Class pointer.
2596   Fields[0] = cast<llvm::ConstantExpr>(V);
2597 
2598   // String pointer.
2599   llvm::Constant *C =
2600     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2601 
2602   llvm::GlobalValue::LinkageTypes Linkage;
2603   bool isConstant;
2604   Linkage = llvm::GlobalValue::PrivateLinkage;
2605   isConstant = !LangOpts.WritableStrings;
2606 
2607   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2608                                       Linkage, C, ".str");
2609   GV->setUnnamedAddr(true);
2610   // Don't enforce the target's minimum global alignment, since the only use
2611   // of the string is via this class initializer.
2612   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2613   GV->setAlignment(Align.getQuantity());
2614   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2615 
2616   // String length.
2617   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2618   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2619 
2620   // The struct.
2621   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2622   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2623                                 llvm::GlobalVariable::PrivateLinkage, C,
2624                                 "_unnamed_nsstring_");
2625   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2626   const char *NSStringNonFragileABISection =
2627       "__DATA,__objc_stringobj,regular,no_dead_strip";
2628   // FIXME. Fix section.
2629   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2630                      ? NSStringNonFragileABISection
2631                      : NSStringSection);
2632   Entry.setValue(GV);
2633 
2634   return GV;
2635 }
2636 
2637 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2638   if (ObjCFastEnumerationStateType.isNull()) {
2639     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2640     D->startDefinition();
2641 
2642     QualType FieldTypes[] = {
2643       Context.UnsignedLongTy,
2644       Context.getPointerType(Context.getObjCIdType()),
2645       Context.getPointerType(Context.UnsignedLongTy),
2646       Context.getConstantArrayType(Context.UnsignedLongTy,
2647                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2648     };
2649 
2650     for (size_t i = 0; i < 4; ++i) {
2651       FieldDecl *Field = FieldDecl::Create(Context,
2652                                            D,
2653                                            SourceLocation(),
2654                                            SourceLocation(), nullptr,
2655                                            FieldTypes[i], /*TInfo=*/nullptr,
2656                                            /*BitWidth=*/nullptr,
2657                                            /*Mutable=*/false,
2658                                            ICIS_NoInit);
2659       Field->setAccess(AS_public);
2660       D->addDecl(Field);
2661     }
2662 
2663     D->completeDefinition();
2664     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2665   }
2666 
2667   return ObjCFastEnumerationStateType;
2668 }
2669 
2670 llvm::Constant *
2671 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2672   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2673 
2674   // Don't emit it as the address of the string, emit the string data itself
2675   // as an inline array.
2676   if (E->getCharByteWidth() == 1) {
2677     SmallString<64> Str(E->getString());
2678 
2679     // Resize the string to the right size, which is indicated by its type.
2680     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2681     Str.resize(CAT->getSize().getZExtValue());
2682     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2683   }
2684 
2685   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2686   llvm::Type *ElemTy = AType->getElementType();
2687   unsigned NumElements = AType->getNumElements();
2688 
2689   // Wide strings have either 2-byte or 4-byte elements.
2690   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2691     SmallVector<uint16_t, 32> Elements;
2692     Elements.reserve(NumElements);
2693 
2694     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2695       Elements.push_back(E->getCodeUnit(i));
2696     Elements.resize(NumElements);
2697     return llvm::ConstantDataArray::get(VMContext, Elements);
2698   }
2699 
2700   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2701   SmallVector<uint32_t, 32> Elements;
2702   Elements.reserve(NumElements);
2703 
2704   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2705     Elements.push_back(E->getCodeUnit(i));
2706   Elements.resize(NumElements);
2707   return llvm::ConstantDataArray::get(VMContext, Elements);
2708 }
2709 
2710 static llvm::GlobalVariable *
2711 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
2712                       CodeGenModule &CGM, StringRef GlobalName,
2713                       unsigned Alignment) {
2714   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2715   unsigned AddrSpace = 0;
2716   if (CGM.getLangOpts().OpenCL)
2717     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2718 
2719   // Create a global variable for this string
2720   auto *GV = new llvm::GlobalVariable(
2721       CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C,
2722       GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2723   GV->setAlignment(Alignment);
2724   GV->setUnnamedAddr(true);
2725   return GV;
2726 }
2727 
2728 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2729 /// constant array for the given string literal.
2730 llvm::GlobalVariable *
2731 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2732   auto Alignment =
2733       getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity();
2734 
2735   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2736   llvm::GlobalVariable **Entry = nullptr;
2737   if (!LangOpts.WritableStrings) {
2738     Entry = &ConstantStringMap[C];
2739     if (auto GV = *Entry) {
2740       if (Alignment > GV->getAlignment())
2741         GV->setAlignment(Alignment);
2742       return GV;
2743     }
2744   }
2745 
2746   SmallString<256> MangledNameBuffer;
2747   StringRef GlobalVariableName;
2748   llvm::GlobalValue::LinkageTypes LT;
2749 
2750   // Mangle the string literal if the ABI allows for it.  However, we cannot
2751   // do this if  we are compiling with ASan or -fwritable-strings because they
2752   // rely on strings having normal linkage.
2753   if (!LangOpts.WritableStrings && !LangOpts.Sanitize.Address &&
2754       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2755     llvm::raw_svector_ostream Out(MangledNameBuffer);
2756     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2757     Out.flush();
2758 
2759     LT = llvm::GlobalValue::LinkOnceODRLinkage;
2760     GlobalVariableName = MangledNameBuffer;
2761   } else {
2762     LT = llvm::GlobalValue::PrivateLinkage;
2763     GlobalVariableName = ".str";
2764   }
2765 
2766   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
2767   if (Entry)
2768     *Entry = GV;
2769 
2770   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>");
2771   return GV;
2772 }
2773 
2774 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2775 /// array for the given ObjCEncodeExpr node.
2776 llvm::GlobalVariable *
2777 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2778   std::string Str;
2779   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2780 
2781   return GetAddrOfConstantCString(Str);
2782 }
2783 
2784 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
2785 /// the literal and a terminating '\0' character.
2786 /// The result has pointer to array type.
2787 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString(
2788     const std::string &Str, const char *GlobalName, unsigned Alignment) {
2789   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2790   if (Alignment == 0) {
2791     Alignment = getContext()
2792                     .getAlignOfGlobalVarInChars(getContext().CharTy)
2793                     .getQuantity();
2794   }
2795 
2796   llvm::Constant *C =
2797       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
2798 
2799   // Don't share any string literals if strings aren't constant.
2800   llvm::GlobalVariable **Entry = nullptr;
2801   if (!LangOpts.WritableStrings) {
2802     Entry = &ConstantStringMap[C];
2803     if (auto GV = *Entry) {
2804       if (Alignment > GV->getAlignment())
2805         GV->setAlignment(Alignment);
2806       return GV;
2807     }
2808   }
2809 
2810   // Get the default prefix if a name wasn't specified.
2811   if (!GlobalName)
2812     GlobalName = ".str";
2813   // Create a global variable for this.
2814   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
2815                                   GlobalName, Alignment);
2816   if (Entry)
2817     *Entry = GV;
2818   return GV;
2819 }
2820 
2821 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2822     const MaterializeTemporaryExpr *E, const Expr *Init) {
2823   assert((E->getStorageDuration() == SD_Static ||
2824           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2825   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
2826 
2827   // If we're not materializing a subobject of the temporary, keep the
2828   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2829   QualType MaterializedType = Init->getType();
2830   if (Init == E->GetTemporaryExpr())
2831     MaterializedType = E->getType();
2832 
2833   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2834   if (Slot)
2835     return Slot;
2836 
2837   // FIXME: If an externally-visible declaration extends multiple temporaries,
2838   // we need to give each temporary the same name in every translation unit (and
2839   // we also need to make the temporaries externally-visible).
2840   SmallString<256> Name;
2841   llvm::raw_svector_ostream Out(Name);
2842   getCXXABI().getMangleContext().mangleReferenceTemporary(
2843       VD, E->getManglingNumber(), Out);
2844   Out.flush();
2845 
2846   APValue *Value = nullptr;
2847   if (E->getStorageDuration() == SD_Static) {
2848     // We might have a cached constant initializer for this temporary. Note
2849     // that this might have a different value from the value computed by
2850     // evaluating the initializer if the surrounding constant expression
2851     // modifies the temporary.
2852     Value = getContext().getMaterializedTemporaryValue(E, false);
2853     if (Value && Value->isUninit())
2854       Value = nullptr;
2855   }
2856 
2857   // Try evaluating it now, it might have a constant initializer.
2858   Expr::EvalResult EvalResult;
2859   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2860       !EvalResult.hasSideEffects())
2861     Value = &EvalResult.Val;
2862 
2863   llvm::Constant *InitialValue = nullptr;
2864   bool Constant = false;
2865   llvm::Type *Type;
2866   if (Value) {
2867     // The temporary has a constant initializer, use it.
2868     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
2869     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2870     Type = InitialValue->getType();
2871   } else {
2872     // No initializer, the initialization will be provided when we
2873     // initialize the declaration which performed lifetime extension.
2874     Type = getTypes().ConvertTypeForMem(MaterializedType);
2875   }
2876 
2877   // Create a global variable for this lifetime-extended temporary.
2878   llvm::GlobalValue::LinkageTypes Linkage =
2879       getLLVMLinkageVarDefinition(VD, Constant);
2880   // There is no need for this temporary to have global linkage if the global
2881   // variable has external linkage.
2882   if (Linkage == llvm::GlobalVariable::ExternalLinkage)
2883     Linkage = llvm::GlobalVariable::PrivateLinkage;
2884   unsigned AddrSpace = GetGlobalVarAddressSpace(
2885       VD, getContext().getTargetAddressSpace(MaterializedType));
2886   auto *GV = new llvm::GlobalVariable(
2887       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
2888       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2889       AddrSpace);
2890   setGlobalVisibility(GV, VD);
2891   GV->setAlignment(
2892       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2893   if (VD->getTLSKind())
2894     setTLSMode(GV, *VD);
2895   Slot = GV;
2896   return GV;
2897 }
2898 
2899 /// EmitObjCPropertyImplementations - Emit information for synthesized
2900 /// properties for an implementation.
2901 void CodeGenModule::EmitObjCPropertyImplementations(const
2902                                                     ObjCImplementationDecl *D) {
2903   for (const auto *PID : D->property_impls()) {
2904     // Dynamic is just for type-checking.
2905     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2906       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2907 
2908       // Determine which methods need to be implemented, some may have
2909       // been overridden. Note that ::isPropertyAccessor is not the method
2910       // we want, that just indicates if the decl came from a
2911       // property. What we want to know is if the method is defined in
2912       // this implementation.
2913       if (!D->getInstanceMethod(PD->getGetterName()))
2914         CodeGenFunction(*this).GenerateObjCGetter(
2915                                  const_cast<ObjCImplementationDecl *>(D), PID);
2916       if (!PD->isReadOnly() &&
2917           !D->getInstanceMethod(PD->getSetterName()))
2918         CodeGenFunction(*this).GenerateObjCSetter(
2919                                  const_cast<ObjCImplementationDecl *>(D), PID);
2920     }
2921   }
2922 }
2923 
2924 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2925   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2926   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2927        ivar; ivar = ivar->getNextIvar())
2928     if (ivar->getType().isDestructedType())
2929       return true;
2930 
2931   return false;
2932 }
2933 
2934 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2935 /// for an implementation.
2936 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2937   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2938   if (needsDestructMethod(D)) {
2939     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2940     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2941     ObjCMethodDecl *DTORMethod =
2942       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2943                              cxxSelector, getContext().VoidTy, nullptr, D,
2944                              /*isInstance=*/true, /*isVariadic=*/false,
2945                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2946                              /*isDefined=*/false, ObjCMethodDecl::Required);
2947     D->addInstanceMethod(DTORMethod);
2948     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2949     D->setHasDestructors(true);
2950   }
2951 
2952   // If the implementation doesn't have any ivar initializers, we don't need
2953   // a .cxx_construct.
2954   if (D->getNumIvarInitializers() == 0)
2955     return;
2956 
2957   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2958   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2959   // The constructor returns 'self'.
2960   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2961                                                 D->getLocation(),
2962                                                 D->getLocation(),
2963                                                 cxxSelector,
2964                                                 getContext().getObjCIdType(),
2965                                                 nullptr, D, /*isInstance=*/true,
2966                                                 /*isVariadic=*/false,
2967                                                 /*isPropertyAccessor=*/true,
2968                                                 /*isImplicitlyDeclared=*/true,
2969                                                 /*isDefined=*/false,
2970                                                 ObjCMethodDecl::Required);
2971   D->addInstanceMethod(CTORMethod);
2972   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2973   D->setHasNonZeroConstructors(true);
2974 }
2975 
2976 /// EmitNamespace - Emit all declarations in a namespace.
2977 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2978   for (auto *I : ND->decls()) {
2979     if (const auto *VD = dyn_cast<VarDecl>(I))
2980       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2981           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2982         continue;
2983     EmitTopLevelDecl(I);
2984   }
2985 }
2986 
2987 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2988 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2989   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2990       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2991     ErrorUnsupported(LSD, "linkage spec");
2992     return;
2993   }
2994 
2995   for (auto *I : LSD->decls()) {
2996     // Meta-data for ObjC class includes references to implemented methods.
2997     // Generate class's method definitions first.
2998     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
2999       for (auto *M : OID->methods())
3000         EmitTopLevelDecl(M);
3001     }
3002     EmitTopLevelDecl(I);
3003   }
3004 }
3005 
3006 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3007 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3008   // Ignore dependent declarations.
3009   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3010     return;
3011 
3012   switch (D->getKind()) {
3013   case Decl::CXXConversion:
3014   case Decl::CXXMethod:
3015   case Decl::Function:
3016     // Skip function templates
3017     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3018         cast<FunctionDecl>(D)->isLateTemplateParsed())
3019       return;
3020 
3021     EmitGlobal(cast<FunctionDecl>(D));
3022     // Always provide some coverage mapping
3023     // even for the functions that aren't emitted.
3024     AddDeferredUnusedCoverageMapping(D);
3025     break;
3026 
3027   case Decl::Var:
3028     // Skip variable templates
3029     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3030       return;
3031   case Decl::VarTemplateSpecialization:
3032     EmitGlobal(cast<VarDecl>(D));
3033     break;
3034 
3035   // Indirect fields from global anonymous structs and unions can be
3036   // ignored; only the actual variable requires IR gen support.
3037   case Decl::IndirectField:
3038     break;
3039 
3040   // C++ Decls
3041   case Decl::Namespace:
3042     EmitNamespace(cast<NamespaceDecl>(D));
3043     break;
3044     // No code generation needed.
3045   case Decl::UsingShadow:
3046   case Decl::ClassTemplate:
3047   case Decl::VarTemplate:
3048   case Decl::VarTemplatePartialSpecialization:
3049   case Decl::FunctionTemplate:
3050   case Decl::TypeAliasTemplate:
3051   case Decl::Block:
3052   case Decl::Empty:
3053     break;
3054   case Decl::Using:          // using X; [C++]
3055     if (CGDebugInfo *DI = getModuleDebugInfo())
3056         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3057     return;
3058   case Decl::NamespaceAlias:
3059     if (CGDebugInfo *DI = getModuleDebugInfo())
3060         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3061     return;
3062   case Decl::UsingDirective: // using namespace X; [C++]
3063     if (CGDebugInfo *DI = getModuleDebugInfo())
3064       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3065     return;
3066   case Decl::CXXConstructor:
3067     // Skip function templates
3068     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3069         cast<FunctionDecl>(D)->isLateTemplateParsed())
3070       return;
3071 
3072     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3073     break;
3074   case Decl::CXXDestructor:
3075     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3076       return;
3077     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3078     break;
3079 
3080   case Decl::StaticAssert:
3081     // Nothing to do.
3082     break;
3083 
3084   // Objective-C Decls
3085 
3086   // Forward declarations, no (immediate) code generation.
3087   case Decl::ObjCInterface:
3088   case Decl::ObjCCategory:
3089     break;
3090 
3091   case Decl::ObjCProtocol: {
3092     auto *Proto = cast<ObjCProtocolDecl>(D);
3093     if (Proto->isThisDeclarationADefinition())
3094       ObjCRuntime->GenerateProtocol(Proto);
3095     break;
3096   }
3097 
3098   case Decl::ObjCCategoryImpl:
3099     // Categories have properties but don't support synthesize so we
3100     // can ignore them here.
3101     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3102     break;
3103 
3104   case Decl::ObjCImplementation: {
3105     auto *OMD = cast<ObjCImplementationDecl>(D);
3106     EmitObjCPropertyImplementations(OMD);
3107     EmitObjCIvarInitializations(OMD);
3108     ObjCRuntime->GenerateClass(OMD);
3109     // Emit global variable debug information.
3110     if (CGDebugInfo *DI = getModuleDebugInfo())
3111       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3112         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3113             OMD->getClassInterface()), OMD->getLocation());
3114     break;
3115   }
3116   case Decl::ObjCMethod: {
3117     auto *OMD = cast<ObjCMethodDecl>(D);
3118     // If this is not a prototype, emit the body.
3119     if (OMD->getBody())
3120       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3121     break;
3122   }
3123   case Decl::ObjCCompatibleAlias:
3124     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3125     break;
3126 
3127   case Decl::LinkageSpec:
3128     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3129     break;
3130 
3131   case Decl::FileScopeAsm: {
3132     auto *AD = cast<FileScopeAsmDecl>(D);
3133     StringRef AsmString = AD->getAsmString()->getString();
3134 
3135     const std::string &S = getModule().getModuleInlineAsm();
3136     if (S.empty())
3137       getModule().setModuleInlineAsm(AsmString);
3138     else if (S.end()[-1] == '\n')
3139       getModule().setModuleInlineAsm(S + AsmString.str());
3140     else
3141       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3142     break;
3143   }
3144 
3145   case Decl::Import: {
3146     auto *Import = cast<ImportDecl>(D);
3147 
3148     // Ignore import declarations that come from imported modules.
3149     if (clang::Module *Owner = Import->getOwningModule()) {
3150       if (getLangOpts().CurrentModule.empty() ||
3151           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3152         break;
3153     }
3154 
3155     ImportedModules.insert(Import->getImportedModule());
3156     break;
3157   }
3158 
3159   case Decl::ClassTemplateSpecialization: {
3160     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3161     if (DebugInfo &&
3162         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition)
3163       DebugInfo->completeTemplateDefinition(*Spec);
3164   }
3165 
3166   default:
3167     // Make sure we handled everything we should, every other kind is a
3168     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3169     // function. Need to recode Decl::Kind to do that easily.
3170     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3171   }
3172 }
3173 
3174 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3175   // Do we need to generate coverage mapping?
3176   if (!CodeGenOpts.CoverageMapping)
3177     return;
3178   switch (D->getKind()) {
3179   case Decl::CXXConversion:
3180   case Decl::CXXMethod:
3181   case Decl::Function:
3182   case Decl::ObjCMethod:
3183   case Decl::CXXConstructor:
3184   case Decl::CXXDestructor: {
3185     if (!cast<FunctionDecl>(D)->hasBody())
3186       return;
3187     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3188     if (I == DeferredEmptyCoverageMappingDecls.end())
3189       DeferredEmptyCoverageMappingDecls[D] = true;
3190     break;
3191   }
3192   default:
3193     break;
3194   };
3195 }
3196 
3197 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3198   // Do we need to generate coverage mapping?
3199   if (!CodeGenOpts.CoverageMapping)
3200     return;
3201   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3202     if (Fn->isTemplateInstantiation())
3203       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3204   }
3205   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3206   if (I == DeferredEmptyCoverageMappingDecls.end())
3207     DeferredEmptyCoverageMappingDecls[D] = false;
3208   else
3209     I->second = false;
3210 }
3211 
3212 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3213   std::vector<const Decl *> DeferredDecls;
3214   for (const auto I : DeferredEmptyCoverageMappingDecls) {
3215     if (!I.second)
3216       continue;
3217     DeferredDecls.push_back(I.first);
3218   }
3219   // Sort the declarations by their location to make sure that the tests get a
3220   // predictable order for the coverage mapping for the unused declarations.
3221   if (CodeGenOpts.DumpCoverageMapping)
3222     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3223               [] (const Decl *LHS, const Decl *RHS) {
3224       return LHS->getLocStart() < RHS->getLocStart();
3225     });
3226   for (const auto *D : DeferredDecls) {
3227     switch (D->getKind()) {
3228     case Decl::CXXConversion:
3229     case Decl::CXXMethod:
3230     case Decl::Function:
3231     case Decl::ObjCMethod: {
3232       CodeGenPGO PGO(*this);
3233       GlobalDecl GD(cast<FunctionDecl>(D));
3234       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3235                                   getFunctionLinkage(GD));
3236       break;
3237     }
3238     case Decl::CXXConstructor: {
3239       CodeGenPGO PGO(*this);
3240       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3241       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3242                                   getFunctionLinkage(GD));
3243       break;
3244     }
3245     case Decl::CXXDestructor: {
3246       CodeGenPGO PGO(*this);
3247       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3248       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3249                                   getFunctionLinkage(GD));
3250       break;
3251     }
3252     default:
3253       break;
3254     };
3255   }
3256 }
3257 
3258 /// Turns the given pointer into a constant.
3259 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3260                                           const void *Ptr) {
3261   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3262   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3263   return llvm::ConstantInt::get(i64, PtrInt);
3264 }
3265 
3266 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3267                                    llvm::NamedMDNode *&GlobalMetadata,
3268                                    GlobalDecl D,
3269                                    llvm::GlobalValue *Addr) {
3270   if (!GlobalMetadata)
3271     GlobalMetadata =
3272       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3273 
3274   // TODO: should we report variant information for ctors/dtors?
3275   llvm::Value *Ops[] = {
3276     Addr,
3277     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3278   };
3279   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3280 }
3281 
3282 /// For each function which is declared within an extern "C" region and marked
3283 /// as 'used', but has internal linkage, create an alias from the unmangled
3284 /// name to the mangled name if possible. People expect to be able to refer
3285 /// to such functions with an unmangled name from inline assembly within the
3286 /// same translation unit.
3287 void CodeGenModule::EmitStaticExternCAliases() {
3288   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3289                                   E = StaticExternCValues.end();
3290        I != E; ++I) {
3291     IdentifierInfo *Name = I->first;
3292     llvm::GlobalValue *Val = I->second;
3293     if (Val && !getModule().getNamedValue(Name->getName()))
3294       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3295   }
3296 }
3297 
3298 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3299                                              GlobalDecl &Result) const {
3300   auto Res = Manglings.find(MangledName);
3301   if (Res == Manglings.end())
3302     return false;
3303   Result = Res->getValue();
3304   return true;
3305 }
3306 
3307 /// Emits metadata nodes associating all the global values in the
3308 /// current module with the Decls they came from.  This is useful for
3309 /// projects using IR gen as a subroutine.
3310 ///
3311 /// Since there's currently no way to associate an MDNode directly
3312 /// with an llvm::GlobalValue, we create a global named metadata
3313 /// with the name 'clang.global.decl.ptrs'.
3314 void CodeGenModule::EmitDeclMetadata() {
3315   llvm::NamedMDNode *GlobalMetadata = nullptr;
3316 
3317   // StaticLocalDeclMap
3318   for (auto &I : MangledDeclNames) {
3319     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3320     EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3321   }
3322 }
3323 
3324 /// Emits metadata nodes for all the local variables in the current
3325 /// function.
3326 void CodeGenFunction::EmitDeclMetadata() {
3327   if (LocalDeclMap.empty()) return;
3328 
3329   llvm::LLVMContext &Context = getLLVMContext();
3330 
3331   // Find the unique metadata ID for this name.
3332   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3333 
3334   llvm::NamedMDNode *GlobalMetadata = nullptr;
3335 
3336   for (auto &I : LocalDeclMap) {
3337     const Decl *D = I.first;
3338     llvm::Value *Addr = I.second;
3339     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3340       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3341       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3342     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3343       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3344       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3345     }
3346   }
3347 }
3348 
3349 void CodeGenModule::EmitVersionIdentMetadata() {
3350   llvm::NamedMDNode *IdentMetadata =
3351     TheModule.getOrInsertNamedMetadata("llvm.ident");
3352   std::string Version = getClangFullVersion();
3353   llvm::LLVMContext &Ctx = TheModule.getContext();
3354 
3355   llvm::Value *IdentNode[] = {
3356     llvm::MDString::get(Ctx, Version)
3357   };
3358   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3359 }
3360 
3361 void CodeGenModule::EmitTargetMetadata() {
3362   // Warning, new MangledDeclNames may be appended within this loop.
3363   // We rely on MapVector insertions adding new elements to the end
3364   // of the container.
3365   // FIXME: Move this loop into the one target that needs it, and only
3366   // loop over those declarations for which we couldn't emit the target
3367   // metadata when we emitted the declaration.
3368   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
3369     auto Val = *(MangledDeclNames.begin() + I);
3370     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
3371     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
3372     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
3373   }
3374 }
3375 
3376 void CodeGenModule::EmitCoverageFile() {
3377   if (!getCodeGenOpts().CoverageFile.empty()) {
3378     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3379       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3380       llvm::LLVMContext &Ctx = TheModule.getContext();
3381       llvm::MDString *CoverageFile =
3382           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3383       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3384         llvm::MDNode *CU = CUNode->getOperand(i);
3385         llvm::Value *node[] = { CoverageFile, CU };
3386         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3387         GCov->addOperand(N);
3388       }
3389     }
3390   }
3391 }
3392 
3393 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
3394   // Sema has checked that all uuid strings are of the form
3395   // "12345678-1234-1234-1234-1234567890ab".
3396   assert(Uuid.size() == 36);
3397   for (unsigned i = 0; i < 36; ++i) {
3398     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3399     else                                         assert(isHexDigit(Uuid[i]));
3400   }
3401 
3402   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
3403   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3404 
3405   llvm::Constant *Field3[8];
3406   for (unsigned Idx = 0; Idx < 8; ++Idx)
3407     Field3[Idx] = llvm::ConstantInt::get(
3408         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3409 
3410   llvm::Constant *Fields[4] = {
3411     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3412     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3413     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3414     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3415   };
3416 
3417   return llvm::ConstantStruct::getAnon(Fields);
3418 }
3419 
3420 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
3421                                                        bool ForEH) {
3422   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
3423   // FIXME: should we even be calling this method if RTTI is disabled
3424   // and it's not for EH?
3425   if (!ForEH && !getLangOpts().RTTI)
3426     return llvm::Constant::getNullValue(Int8PtrTy);
3427 
3428   if (ForEH && Ty->isObjCObjectPointerType() &&
3429       LangOpts.ObjCRuntime.isGNUFamily())
3430     return ObjCRuntime->GetEHType(Ty);
3431 
3432   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
3433 }
3434 
3435