1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/IR/CallSite.h" 49 #include "llvm/IR/CallingConv.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/ProfileData/InstrProfReader.h" 55 #include "llvm/Support/ConvertUTF.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MD5.h" 58 59 using namespace clang; 60 using namespace CodeGen; 61 62 static const char AnnotationSection[] = "llvm.metadata"; 63 64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 65 switch (CGM.getTarget().getCXXABI().getKind()) { 66 case TargetCXXABI::GenericAArch64: 67 case TargetCXXABI::GenericARM: 68 case TargetCXXABI::iOS: 69 case TargetCXXABI::iOS64: 70 case TargetCXXABI::WatchOS: 71 case TargetCXXABI::GenericMIPS: 72 case TargetCXXABI::GenericItanium: 73 case TargetCXXABI::WebAssembly: 74 return CreateItaniumCXXABI(CGM); 75 case TargetCXXABI::Microsoft: 76 return CreateMicrosoftCXXABI(CGM); 77 } 78 79 llvm_unreachable("invalid C++ ABI kind"); 80 } 81 82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 83 const PreprocessorOptions &PPO, 84 const CodeGenOptions &CGO, llvm::Module &M, 85 DiagnosticsEngine &diags, 86 CoverageSourceInfo *CoverageInfo) 87 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 88 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 89 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 90 VMContext(M.getContext()), Types(*this), VTables(*this), 91 SanitizerMD(new SanitizerMetadata(*this)) { 92 93 // Initialize the type cache. 94 llvm::LLVMContext &LLVMContext = M.getContext(); 95 VoidTy = llvm::Type::getVoidTy(LLVMContext); 96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 97 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 100 FloatTy = llvm::Type::getFloatTy(LLVMContext); 101 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 105 SizeSizeInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 107 IntAlignInBytes = 108 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 109 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 110 IntPtrTy = llvm::IntegerType::get(LLVMContext, 111 C.getTargetInfo().getMaxPointerWidth()); 112 Int8PtrTy = Int8Ty->getPointerTo(0); 113 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 114 AllocaInt8PtrTy = Int8Ty->getPointerTo( 115 M.getDataLayout().getAllocaAddrSpace()); 116 117 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 118 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 119 120 if (LangOpts.ObjC1) 121 createObjCRuntime(); 122 if (LangOpts.OpenCL) 123 createOpenCLRuntime(); 124 if (LangOpts.OpenMP) 125 createOpenMPRuntime(); 126 if (LangOpts.CUDA) 127 createCUDARuntime(); 128 129 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 130 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 131 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 132 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 133 getCXXABI().getMangleContext())); 134 135 // If debug info or coverage generation is enabled, create the CGDebugInfo 136 // object. 137 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 138 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 139 DebugInfo.reset(new CGDebugInfo(*this)); 140 141 Block.GlobalUniqueCount = 0; 142 143 if (C.getLangOpts().ObjC1) 144 ObjCData.reset(new ObjCEntrypoints()); 145 146 if (CodeGenOpts.hasProfileClangUse()) { 147 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 148 CodeGenOpts.ProfileInstrumentUsePath); 149 if (auto E = ReaderOrErr.takeError()) { 150 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 151 "Could not read profile %0: %1"); 152 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 153 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 154 << EI.message(); 155 }); 156 } else 157 PGOReader = std::move(ReaderOrErr.get()); 158 } 159 160 // If coverage mapping generation is enabled, create the 161 // CoverageMappingModuleGen object. 162 if (CodeGenOpts.CoverageMapping) 163 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 164 } 165 166 CodeGenModule::~CodeGenModule() {} 167 168 void CodeGenModule::createObjCRuntime() { 169 // This is just isGNUFamily(), but we want to force implementors of 170 // new ABIs to decide how best to do this. 171 switch (LangOpts.ObjCRuntime.getKind()) { 172 case ObjCRuntime::GNUstep: 173 case ObjCRuntime::GCC: 174 case ObjCRuntime::ObjFW: 175 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 176 return; 177 178 case ObjCRuntime::FragileMacOSX: 179 case ObjCRuntime::MacOSX: 180 case ObjCRuntime::iOS: 181 case ObjCRuntime::WatchOS: 182 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 183 return; 184 } 185 llvm_unreachable("bad runtime kind"); 186 } 187 188 void CodeGenModule::createOpenCLRuntime() { 189 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 190 } 191 192 void CodeGenModule::createOpenMPRuntime() { 193 // Select a specialized code generation class based on the target, if any. 194 // If it does not exist use the default implementation. 195 switch (getTriple().getArch()) { 196 case llvm::Triple::nvptx: 197 case llvm::Triple::nvptx64: 198 assert(getLangOpts().OpenMPIsDevice && 199 "OpenMP NVPTX is only prepared to deal with device code."); 200 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 201 break; 202 default: 203 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 204 break; 205 } 206 } 207 208 void CodeGenModule::createCUDARuntime() { 209 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 210 } 211 212 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 213 Replacements[Name] = C; 214 } 215 216 void CodeGenModule::applyReplacements() { 217 for (auto &I : Replacements) { 218 StringRef MangledName = I.first(); 219 llvm::Constant *Replacement = I.second; 220 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 221 if (!Entry) 222 continue; 223 auto *OldF = cast<llvm::Function>(Entry); 224 auto *NewF = dyn_cast<llvm::Function>(Replacement); 225 if (!NewF) { 226 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 227 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 228 } else { 229 auto *CE = cast<llvm::ConstantExpr>(Replacement); 230 assert(CE->getOpcode() == llvm::Instruction::BitCast || 231 CE->getOpcode() == llvm::Instruction::GetElementPtr); 232 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 233 } 234 } 235 236 // Replace old with new, but keep the old order. 237 OldF->replaceAllUsesWith(Replacement); 238 if (NewF) { 239 NewF->removeFromParent(); 240 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 241 NewF); 242 } 243 OldF->eraseFromParent(); 244 } 245 } 246 247 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 248 GlobalValReplacements.push_back(std::make_pair(GV, C)); 249 } 250 251 void CodeGenModule::applyGlobalValReplacements() { 252 for (auto &I : GlobalValReplacements) { 253 llvm::GlobalValue *GV = I.first; 254 llvm::Constant *C = I.second; 255 256 GV->replaceAllUsesWith(C); 257 GV->eraseFromParent(); 258 } 259 } 260 261 // This is only used in aliases that we created and we know they have a 262 // linear structure. 263 static const llvm::GlobalObject *getAliasedGlobal( 264 const llvm::GlobalIndirectSymbol &GIS) { 265 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 266 const llvm::Constant *C = &GIS; 267 for (;;) { 268 C = C->stripPointerCasts(); 269 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 270 return GO; 271 // stripPointerCasts will not walk over weak aliases. 272 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 273 if (!GIS2) 274 return nullptr; 275 if (!Visited.insert(GIS2).second) 276 return nullptr; 277 C = GIS2->getIndirectSymbol(); 278 } 279 } 280 281 void CodeGenModule::checkAliases() { 282 // Check if the constructed aliases are well formed. It is really unfortunate 283 // that we have to do this in CodeGen, but we only construct mangled names 284 // and aliases during codegen. 285 bool Error = false; 286 DiagnosticsEngine &Diags = getDiags(); 287 for (const GlobalDecl &GD : Aliases) { 288 const auto *D = cast<ValueDecl>(GD.getDecl()); 289 SourceLocation Location; 290 bool IsIFunc = D->hasAttr<IFuncAttr>(); 291 if (const Attr *A = D->getDefiningAttr()) 292 Location = A->getLocation(); 293 else 294 llvm_unreachable("Not an alias or ifunc?"); 295 StringRef MangledName = getMangledName(GD); 296 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 297 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 298 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 299 if (!GV) { 300 Error = true; 301 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 302 } else if (GV->isDeclaration()) { 303 Error = true; 304 Diags.Report(Location, diag::err_alias_to_undefined) 305 << IsIFunc << IsIFunc; 306 } else if (IsIFunc) { 307 // Check resolver function type. 308 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 309 GV->getType()->getPointerElementType()); 310 assert(FTy); 311 if (!FTy->getReturnType()->isPointerTy()) 312 Diags.Report(Location, diag::err_ifunc_resolver_return); 313 if (FTy->getNumParams()) 314 Diags.Report(Location, diag::err_ifunc_resolver_params); 315 } 316 317 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 318 llvm::GlobalValue *AliaseeGV; 319 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 320 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 321 else 322 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 323 324 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 325 StringRef AliasSection = SA->getName(); 326 if (AliasSection != AliaseeGV->getSection()) 327 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 328 << AliasSection << IsIFunc << IsIFunc; 329 } 330 331 // We have to handle alias to weak aliases in here. LLVM itself disallows 332 // this since the object semantics would not match the IL one. For 333 // compatibility with gcc we implement it by just pointing the alias 334 // to its aliasee's aliasee. We also warn, since the user is probably 335 // expecting the link to be weak. 336 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 337 if (GA->isInterposable()) { 338 Diags.Report(Location, diag::warn_alias_to_weak_alias) 339 << GV->getName() << GA->getName() << IsIFunc; 340 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 341 GA->getIndirectSymbol(), Alias->getType()); 342 Alias->setIndirectSymbol(Aliasee); 343 } 344 } 345 } 346 if (!Error) 347 return; 348 349 for (const GlobalDecl &GD : Aliases) { 350 StringRef MangledName = getMangledName(GD); 351 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 352 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 353 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 354 Alias->eraseFromParent(); 355 } 356 } 357 358 void CodeGenModule::clear() { 359 DeferredDeclsToEmit.clear(); 360 if (OpenMPRuntime) 361 OpenMPRuntime->clear(); 362 } 363 364 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 365 StringRef MainFile) { 366 if (!hasDiagnostics()) 367 return; 368 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 369 if (MainFile.empty()) 370 MainFile = "<stdin>"; 371 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 372 } else { 373 if (Mismatched > 0) 374 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 375 376 if (Missing > 0) 377 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 378 } 379 } 380 381 void CodeGenModule::Release() { 382 EmitDeferred(); 383 applyGlobalValReplacements(); 384 applyReplacements(); 385 checkAliases(); 386 EmitCXXGlobalInitFunc(); 387 EmitCXXGlobalDtorFunc(); 388 EmitCXXThreadLocalInitFunc(); 389 if (ObjCRuntime) 390 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 391 AddGlobalCtor(ObjCInitFunction); 392 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 393 CUDARuntime) { 394 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 395 AddGlobalCtor(CudaCtorFunction); 396 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 397 AddGlobalDtor(CudaDtorFunction); 398 } 399 if (OpenMPRuntime) 400 if (llvm::Function *OpenMPRegistrationFunction = 401 OpenMPRuntime->emitRegistrationFunction()) 402 AddGlobalCtor(OpenMPRegistrationFunction, 0); 403 if (PGOReader) { 404 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 405 if (PGOStats.hasDiagnostics()) 406 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 407 } 408 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 409 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 410 EmitGlobalAnnotations(); 411 EmitStaticExternCAliases(); 412 EmitDeferredUnusedCoverageMappings(); 413 if (CoverageMapping) 414 CoverageMapping->emit(); 415 if (CodeGenOpts.SanitizeCfiCrossDso) { 416 CodeGenFunction(*this).EmitCfiCheckFail(); 417 CodeGenFunction(*this).EmitCfiCheckStub(); 418 } 419 emitAtAvailableLinkGuard(); 420 emitLLVMUsed(); 421 if (SanStats) 422 SanStats->finish(); 423 424 if (CodeGenOpts.Autolink && 425 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 426 EmitModuleLinkOptions(); 427 } 428 429 // Record mregparm value now so it is visible through rest of codegen. 430 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 431 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 432 CodeGenOpts.NumRegisterParameters); 433 434 if (CodeGenOpts.DwarfVersion) { 435 // We actually want the latest version when there are conflicts. 436 // We can change from Warning to Latest if such mode is supported. 437 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 438 CodeGenOpts.DwarfVersion); 439 } 440 if (CodeGenOpts.EmitCodeView) { 441 // Indicate that we want CodeView in the metadata. 442 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 443 } 444 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 445 // We don't support LTO with 2 with different StrictVTablePointers 446 // FIXME: we could support it by stripping all the information introduced 447 // by StrictVTablePointers. 448 449 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 450 451 llvm::Metadata *Ops[2] = { 452 llvm::MDString::get(VMContext, "StrictVTablePointers"), 453 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 454 llvm::Type::getInt32Ty(VMContext), 1))}; 455 456 getModule().addModuleFlag(llvm::Module::Require, 457 "StrictVTablePointersRequirement", 458 llvm::MDNode::get(VMContext, Ops)); 459 } 460 if (DebugInfo) 461 // We support a single version in the linked module. The LLVM 462 // parser will drop debug info with a different version number 463 // (and warn about it, too). 464 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 465 llvm::DEBUG_METADATA_VERSION); 466 467 // We need to record the widths of enums and wchar_t, so that we can generate 468 // the correct build attributes in the ARM backend. 469 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 470 if ( Arch == llvm::Triple::arm 471 || Arch == llvm::Triple::armeb 472 || Arch == llvm::Triple::thumb 473 || Arch == llvm::Triple::thumbeb) { 474 // Width of wchar_t in bytes 475 uint64_t WCharWidth = 476 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 477 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 478 479 // The minimum width of an enum in bytes 480 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 481 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 482 } 483 484 if (CodeGenOpts.SanitizeCfiCrossDso) { 485 // Indicate that we want cross-DSO control flow integrity checks. 486 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 487 } 488 489 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 490 // Indicate whether __nvvm_reflect should be configured to flush denormal 491 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 492 // property.) 493 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 494 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 495 } 496 497 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 498 assert(PLevel < 3 && "Invalid PIC Level"); 499 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 500 if (Context.getLangOpts().PIE) 501 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 502 } 503 504 SimplifyPersonality(); 505 506 if (getCodeGenOpts().EmitDeclMetadata) 507 EmitDeclMetadata(); 508 509 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 510 EmitCoverageFile(); 511 512 if (DebugInfo) 513 DebugInfo->finalize(); 514 515 EmitVersionIdentMetadata(); 516 517 EmitTargetMetadata(); 518 } 519 520 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 521 // Make sure that this type is translated. 522 Types.UpdateCompletedType(TD); 523 } 524 525 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 526 // Make sure that this type is translated. 527 Types.RefreshTypeCacheForClass(RD); 528 } 529 530 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 531 if (!TBAA) 532 return nullptr; 533 return TBAA->getTBAAInfo(QTy); 534 } 535 536 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 537 if (!TBAA) 538 return nullptr; 539 return TBAA->getTBAAInfoForVTablePtr(); 540 } 541 542 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 543 if (!TBAA) 544 return nullptr; 545 return TBAA->getTBAAStructInfo(QTy); 546 } 547 548 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 549 llvm::MDNode *AccessN, 550 uint64_t O) { 551 if (!TBAA) 552 return nullptr; 553 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 554 } 555 556 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 557 /// and struct-path aware TBAA, the tag has the same format: 558 /// base type, access type and offset. 559 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 560 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 561 llvm::MDNode *TBAAInfo, 562 bool ConvertTypeToTag) { 563 if (ConvertTypeToTag && TBAA) 564 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 565 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 566 else 567 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 568 } 569 570 void CodeGenModule::DecorateInstructionWithInvariantGroup( 571 llvm::Instruction *I, const CXXRecordDecl *RD) { 572 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 573 llvm::MDNode::get(getLLVMContext(), {})); 574 } 575 576 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 577 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 578 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 579 } 580 581 /// ErrorUnsupported - Print out an error that codegen doesn't support the 582 /// specified stmt yet. 583 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 584 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 585 "cannot compile this %0 yet"); 586 std::string Msg = Type; 587 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 588 << Msg << S->getSourceRange(); 589 } 590 591 /// ErrorUnsupported - Print out an error that codegen doesn't support the 592 /// specified decl yet. 593 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 594 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 595 "cannot compile this %0 yet"); 596 std::string Msg = Type; 597 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 598 } 599 600 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 601 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 602 } 603 604 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 605 const NamedDecl *D) const { 606 // Internal definitions always have default visibility. 607 if (GV->hasLocalLinkage()) { 608 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 609 return; 610 } 611 612 // Set visibility for definitions. 613 LinkageInfo LV = D->getLinkageAndVisibility(); 614 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 615 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 616 } 617 618 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 619 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 620 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 621 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 622 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 623 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 624 } 625 626 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 627 CodeGenOptions::TLSModel M) { 628 switch (M) { 629 case CodeGenOptions::GeneralDynamicTLSModel: 630 return llvm::GlobalVariable::GeneralDynamicTLSModel; 631 case CodeGenOptions::LocalDynamicTLSModel: 632 return llvm::GlobalVariable::LocalDynamicTLSModel; 633 case CodeGenOptions::InitialExecTLSModel: 634 return llvm::GlobalVariable::InitialExecTLSModel; 635 case CodeGenOptions::LocalExecTLSModel: 636 return llvm::GlobalVariable::LocalExecTLSModel; 637 } 638 llvm_unreachable("Invalid TLS model!"); 639 } 640 641 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 642 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 643 644 llvm::GlobalValue::ThreadLocalMode TLM; 645 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 646 647 // Override the TLS model if it is explicitly specified. 648 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 649 TLM = GetLLVMTLSModel(Attr->getModel()); 650 } 651 652 GV->setThreadLocalMode(TLM); 653 } 654 655 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 656 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 657 658 // Some ABIs don't have constructor variants. Make sure that base and 659 // complete constructors get mangled the same. 660 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 661 if (!getTarget().getCXXABI().hasConstructorVariants()) { 662 CXXCtorType OrigCtorType = GD.getCtorType(); 663 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 664 if (OrigCtorType == Ctor_Base) 665 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 666 } 667 } 668 669 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 670 if (!FoundStr.empty()) 671 return FoundStr; 672 673 const auto *ND = cast<NamedDecl>(GD.getDecl()); 674 SmallString<256> Buffer; 675 StringRef Str; 676 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 677 llvm::raw_svector_ostream Out(Buffer); 678 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 679 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 680 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 681 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 682 else 683 getCXXABI().getMangleContext().mangleName(ND, Out); 684 Str = Out.str(); 685 } else { 686 IdentifierInfo *II = ND->getIdentifier(); 687 assert(II && "Attempt to mangle unnamed decl."); 688 const auto *FD = dyn_cast<FunctionDecl>(ND); 689 690 if (FD && 691 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 692 llvm::raw_svector_ostream Out(Buffer); 693 Out << "__regcall3__" << II->getName(); 694 Str = Out.str(); 695 } else { 696 Str = II->getName(); 697 } 698 } 699 700 // Keep the first result in the case of a mangling collision. 701 auto Result = Manglings.insert(std::make_pair(Str, GD)); 702 return FoundStr = Result.first->first(); 703 } 704 705 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 706 const BlockDecl *BD) { 707 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 708 const Decl *D = GD.getDecl(); 709 710 SmallString<256> Buffer; 711 llvm::raw_svector_ostream Out(Buffer); 712 if (!D) 713 MangleCtx.mangleGlobalBlock(BD, 714 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 715 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 716 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 717 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 718 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 719 else 720 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 721 722 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 723 return Result.first->first(); 724 } 725 726 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 727 return getModule().getNamedValue(Name); 728 } 729 730 /// AddGlobalCtor - Add a function to the list that will be called before 731 /// main() runs. 732 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 733 llvm::Constant *AssociatedData) { 734 // FIXME: Type coercion of void()* types. 735 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 736 } 737 738 /// AddGlobalDtor - Add a function to the list that will be called 739 /// when the module is unloaded. 740 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 741 // FIXME: Type coercion of void()* types. 742 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 743 } 744 745 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 746 if (Fns.empty()) return; 747 748 // Ctor function type is void()*. 749 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 750 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 751 752 // Get the type of a ctor entry, { i32, void ()*, i8* }. 753 llvm::StructType *CtorStructTy = llvm::StructType::get( 754 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 755 756 // Construct the constructor and destructor arrays. 757 ConstantInitBuilder builder(*this); 758 auto ctors = builder.beginArray(CtorStructTy); 759 for (const auto &I : Fns) { 760 auto ctor = ctors.beginStruct(CtorStructTy); 761 ctor.addInt(Int32Ty, I.Priority); 762 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 763 if (I.AssociatedData) 764 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 765 else 766 ctor.addNullPointer(VoidPtrTy); 767 ctor.finishAndAddTo(ctors); 768 } 769 770 auto list = 771 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 772 /*constant*/ false, 773 llvm::GlobalValue::AppendingLinkage); 774 775 // The LTO linker doesn't seem to like it when we set an alignment 776 // on appending variables. Take it off as a workaround. 777 list->setAlignment(0); 778 779 Fns.clear(); 780 } 781 782 llvm::GlobalValue::LinkageTypes 783 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 784 const auto *D = cast<FunctionDecl>(GD.getDecl()); 785 786 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 787 788 if (isa<CXXDestructorDecl>(D) && 789 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 790 GD.getDtorType())) { 791 // Destructor variants in the Microsoft C++ ABI are always internal or 792 // linkonce_odr thunks emitted on an as-needed basis. 793 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 794 : llvm::GlobalValue::LinkOnceODRLinkage; 795 } 796 797 if (isa<CXXConstructorDecl>(D) && 798 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 799 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 800 // Our approach to inheriting constructors is fundamentally different from 801 // that used by the MS ABI, so keep our inheriting constructor thunks 802 // internal rather than trying to pick an unambiguous mangling for them. 803 return llvm::GlobalValue::InternalLinkage; 804 } 805 806 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 807 } 808 809 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 810 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 811 812 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 813 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 814 // Don't dllexport/import destructor thunks. 815 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 816 return; 817 } 818 } 819 820 if (FD->hasAttr<DLLImportAttr>()) 821 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 822 else if (FD->hasAttr<DLLExportAttr>()) 823 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 824 else 825 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 826 } 827 828 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 829 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 830 if (!MDS) return nullptr; 831 832 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 833 } 834 835 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 836 llvm::Function *F) { 837 setNonAliasAttributes(D, F); 838 } 839 840 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 841 const CGFunctionInfo &Info, 842 llvm::Function *F) { 843 unsigned CallingConv; 844 llvm::AttributeList PAL; 845 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 846 F->setAttributes(PAL); 847 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 848 } 849 850 /// Determines whether the language options require us to model 851 /// unwind exceptions. We treat -fexceptions as mandating this 852 /// except under the fragile ObjC ABI with only ObjC exceptions 853 /// enabled. This means, for example, that C with -fexceptions 854 /// enables this. 855 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 856 // If exceptions are completely disabled, obviously this is false. 857 if (!LangOpts.Exceptions) return false; 858 859 // If C++ exceptions are enabled, this is true. 860 if (LangOpts.CXXExceptions) return true; 861 862 // If ObjC exceptions are enabled, this depends on the ABI. 863 if (LangOpts.ObjCExceptions) { 864 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 865 } 866 867 return true; 868 } 869 870 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 871 llvm::Function *F) { 872 llvm::AttrBuilder B; 873 874 if (CodeGenOpts.UnwindTables) 875 B.addAttribute(llvm::Attribute::UWTable); 876 877 if (!hasUnwindExceptions(LangOpts)) 878 B.addAttribute(llvm::Attribute::NoUnwind); 879 880 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 881 B.addAttribute(llvm::Attribute::StackProtect); 882 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 883 B.addAttribute(llvm::Attribute::StackProtectStrong); 884 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 885 B.addAttribute(llvm::Attribute::StackProtectReq); 886 887 if (!D) { 888 // If we don't have a declaration to control inlining, the function isn't 889 // explicitly marked as alwaysinline for semantic reasons, and inlining is 890 // disabled, mark the function as noinline. 891 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 892 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 893 B.addAttribute(llvm::Attribute::NoInline); 894 895 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 896 return; 897 } 898 899 if (D->hasAttr<OptimizeNoneAttr>()) { 900 B.addAttribute(llvm::Attribute::OptimizeNone); 901 902 // OptimizeNone implies noinline; we should not be inlining such functions. 903 B.addAttribute(llvm::Attribute::NoInline); 904 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 905 "OptimizeNone and AlwaysInline on same function!"); 906 907 // We still need to handle naked functions even though optnone subsumes 908 // much of their semantics. 909 if (D->hasAttr<NakedAttr>()) 910 B.addAttribute(llvm::Attribute::Naked); 911 912 // OptimizeNone wins over OptimizeForSize and MinSize. 913 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 914 F->removeFnAttr(llvm::Attribute::MinSize); 915 } else if (D->hasAttr<NakedAttr>()) { 916 // Naked implies noinline: we should not be inlining such functions. 917 B.addAttribute(llvm::Attribute::Naked); 918 B.addAttribute(llvm::Attribute::NoInline); 919 } else if (D->hasAttr<NoDuplicateAttr>()) { 920 B.addAttribute(llvm::Attribute::NoDuplicate); 921 } else if (D->hasAttr<NoInlineAttr>()) { 922 B.addAttribute(llvm::Attribute::NoInline); 923 } else if (D->hasAttr<AlwaysInlineAttr>() && 924 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 925 // (noinline wins over always_inline, and we can't specify both in IR) 926 B.addAttribute(llvm::Attribute::AlwaysInline); 927 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 928 // If we're not inlining, then force everything that isn't always_inline to 929 // carry an explicit noinline attribute. 930 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 931 B.addAttribute(llvm::Attribute::NoInline); 932 } else { 933 // Otherwise, propagate the inline hint attribute and potentially use its 934 // absence to mark things as noinline. 935 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 936 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 937 return Redecl->isInlineSpecified(); 938 })) { 939 B.addAttribute(llvm::Attribute::InlineHint); 940 } else if (CodeGenOpts.getInlining() == 941 CodeGenOptions::OnlyHintInlining && 942 !FD->isInlined() && 943 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 944 B.addAttribute(llvm::Attribute::NoInline); 945 } 946 } 947 } 948 949 // Add other optimization related attributes if we are optimizing this 950 // function. 951 if (!D->hasAttr<OptimizeNoneAttr>()) { 952 if (D->hasAttr<ColdAttr>()) { 953 B.addAttribute(llvm::Attribute::OptimizeForSize); 954 B.addAttribute(llvm::Attribute::Cold); 955 } 956 957 if (D->hasAttr<MinSizeAttr>()) 958 B.addAttribute(llvm::Attribute::MinSize); 959 } 960 961 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 962 963 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 964 if (alignment) 965 F->setAlignment(alignment); 966 967 // Some C++ ABIs require 2-byte alignment for member functions, in order to 968 // reserve a bit for differentiating between virtual and non-virtual member 969 // functions. If the current target's C++ ABI requires this and this is a 970 // member function, set its alignment accordingly. 971 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 972 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 973 F->setAlignment(2); 974 } 975 976 // In the cross-dso CFI mode, we want !type attributes on definitions only. 977 if (CodeGenOpts.SanitizeCfiCrossDso) 978 if (auto *FD = dyn_cast<FunctionDecl>(D)) 979 CreateFunctionTypeMetadata(FD, F); 980 } 981 982 void CodeGenModule::SetCommonAttributes(const Decl *D, 983 llvm::GlobalValue *GV) { 984 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 985 setGlobalVisibility(GV, ND); 986 else 987 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 988 989 if (D && D->hasAttr<UsedAttr>()) 990 addUsedGlobal(GV); 991 } 992 993 void CodeGenModule::setAliasAttributes(const Decl *D, 994 llvm::GlobalValue *GV) { 995 SetCommonAttributes(D, GV); 996 997 // Process the dllexport attribute based on whether the original definition 998 // (not necessarily the aliasee) was exported. 999 if (D->hasAttr<DLLExportAttr>()) 1000 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1001 } 1002 1003 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1004 llvm::GlobalObject *GO) { 1005 SetCommonAttributes(D, GO); 1006 1007 if (D) 1008 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1009 GO->setSection(SA->getName()); 1010 1011 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1012 } 1013 1014 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1015 llvm::Function *F, 1016 const CGFunctionInfo &FI) { 1017 SetLLVMFunctionAttributes(D, FI, F); 1018 SetLLVMFunctionAttributesForDefinition(D, F); 1019 1020 F->setLinkage(llvm::Function::InternalLinkage); 1021 1022 setNonAliasAttributes(D, F); 1023 } 1024 1025 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 1026 const NamedDecl *ND) { 1027 // Set linkage and visibility in case we never see a definition. 1028 LinkageInfo LV = ND->getLinkageAndVisibility(); 1029 if (LV.getLinkage() != ExternalLinkage) { 1030 // Don't set internal linkage on declarations. 1031 } else { 1032 if (ND->hasAttr<DLLImportAttr>()) { 1033 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1034 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1035 } else if (ND->hasAttr<DLLExportAttr>()) { 1036 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1037 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1038 // "extern_weak" is overloaded in LLVM; we probably should have 1039 // separate linkage types for this. 1040 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1041 } 1042 1043 // Set visibility on a declaration only if it's explicit. 1044 if (LV.isVisibilityExplicit()) 1045 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1046 } 1047 } 1048 1049 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1050 llvm::Function *F) { 1051 // Only if we are checking indirect calls. 1052 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1053 return; 1054 1055 // Non-static class methods are handled via vtable pointer checks elsewhere. 1056 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1057 return; 1058 1059 // Additionally, if building with cross-DSO support... 1060 if (CodeGenOpts.SanitizeCfiCrossDso) { 1061 // Skip available_externally functions. They won't be codegen'ed in the 1062 // current module anyway. 1063 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1064 return; 1065 } 1066 1067 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1068 F->addTypeMetadata(0, MD); 1069 1070 // Emit a hash-based bit set entry for cross-DSO calls. 1071 if (CodeGenOpts.SanitizeCfiCrossDso) 1072 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1073 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1074 } 1075 1076 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1077 bool IsIncompleteFunction, 1078 bool IsThunk) { 1079 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1080 // If this is an intrinsic function, set the function's attributes 1081 // to the intrinsic's attributes. 1082 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1083 return; 1084 } 1085 1086 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1087 1088 if (!IsIncompleteFunction) 1089 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1090 1091 // Add the Returned attribute for "this", except for iOS 5 and earlier 1092 // where substantial code, including the libstdc++ dylib, was compiled with 1093 // GCC and does not actually return "this". 1094 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1095 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1096 assert(!F->arg_empty() && 1097 F->arg_begin()->getType() 1098 ->canLosslesslyBitCastTo(F->getReturnType()) && 1099 "unexpected this return"); 1100 F->addAttribute(1, llvm::Attribute::Returned); 1101 } 1102 1103 // Only a few attributes are set on declarations; these may later be 1104 // overridden by a definition. 1105 1106 setLinkageAndVisibilityForGV(F, FD); 1107 1108 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1109 F->setSection(SA->getName()); 1110 1111 if (FD->isReplaceableGlobalAllocationFunction()) { 1112 // A replaceable global allocation function does not act like a builtin by 1113 // default, only if it is invoked by a new-expression or delete-expression. 1114 F->addAttribute(llvm::AttributeList::FunctionIndex, 1115 llvm::Attribute::NoBuiltin); 1116 1117 // A sane operator new returns a non-aliasing pointer. 1118 // FIXME: Also add NonNull attribute to the return value 1119 // for the non-nothrow forms? 1120 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1121 if (getCodeGenOpts().AssumeSaneOperatorNew && 1122 (Kind == OO_New || Kind == OO_Array_New)) 1123 F->addAttribute(llvm::AttributeList::ReturnIndex, 1124 llvm::Attribute::NoAlias); 1125 } 1126 1127 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1128 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1129 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1130 if (MD->isVirtual()) 1131 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1132 1133 // Don't emit entries for function declarations in the cross-DSO mode. This 1134 // is handled with better precision by the receiving DSO. 1135 if (!CodeGenOpts.SanitizeCfiCrossDso) 1136 CreateFunctionTypeMetadata(FD, F); 1137 } 1138 1139 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1140 assert(!GV->isDeclaration() && 1141 "Only globals with definition can force usage."); 1142 LLVMUsed.emplace_back(GV); 1143 } 1144 1145 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1146 assert(!GV->isDeclaration() && 1147 "Only globals with definition can force usage."); 1148 LLVMCompilerUsed.emplace_back(GV); 1149 } 1150 1151 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1152 std::vector<llvm::WeakTrackingVH> &List) { 1153 // Don't create llvm.used if there is no need. 1154 if (List.empty()) 1155 return; 1156 1157 // Convert List to what ConstantArray needs. 1158 SmallVector<llvm::Constant*, 8> UsedArray; 1159 UsedArray.resize(List.size()); 1160 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1161 UsedArray[i] = 1162 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1163 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1164 } 1165 1166 if (UsedArray.empty()) 1167 return; 1168 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1169 1170 auto *GV = new llvm::GlobalVariable( 1171 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1172 llvm::ConstantArray::get(ATy, UsedArray), Name); 1173 1174 GV->setSection("llvm.metadata"); 1175 } 1176 1177 void CodeGenModule::emitLLVMUsed() { 1178 emitUsed(*this, "llvm.used", LLVMUsed); 1179 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1180 } 1181 1182 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1183 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1184 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1185 } 1186 1187 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1188 llvm::SmallString<32> Opt; 1189 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1190 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1191 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1192 } 1193 1194 void CodeGenModule::AddDependentLib(StringRef Lib) { 1195 llvm::SmallString<24> Opt; 1196 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1197 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1198 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1199 } 1200 1201 /// \brief Add link options implied by the given module, including modules 1202 /// it depends on, using a postorder walk. 1203 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1204 SmallVectorImpl<llvm::Metadata *> &Metadata, 1205 llvm::SmallPtrSet<Module *, 16> &Visited) { 1206 // Import this module's parent. 1207 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1208 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1209 } 1210 1211 // Import this module's dependencies. 1212 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1213 if (Visited.insert(Mod->Imports[I - 1]).second) 1214 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1215 } 1216 1217 // Add linker options to link against the libraries/frameworks 1218 // described by this module. 1219 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1220 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1221 // Link against a framework. Frameworks are currently Darwin only, so we 1222 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1223 if (Mod->LinkLibraries[I-1].IsFramework) { 1224 llvm::Metadata *Args[2] = { 1225 llvm::MDString::get(Context, "-framework"), 1226 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1227 1228 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1229 continue; 1230 } 1231 1232 // Link against a library. 1233 llvm::SmallString<24> Opt; 1234 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1235 Mod->LinkLibraries[I-1].Library, Opt); 1236 auto *OptString = llvm::MDString::get(Context, Opt); 1237 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1238 } 1239 } 1240 1241 void CodeGenModule::EmitModuleLinkOptions() { 1242 // Collect the set of all of the modules we want to visit to emit link 1243 // options, which is essentially the imported modules and all of their 1244 // non-explicit child modules. 1245 llvm::SetVector<clang::Module *> LinkModules; 1246 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1247 SmallVector<clang::Module *, 16> Stack; 1248 1249 // Seed the stack with imported modules. 1250 for (Module *M : ImportedModules) { 1251 // Do not add any link flags when an implementation TU of a module imports 1252 // a header of that same module. 1253 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1254 !getLangOpts().isCompilingModule()) 1255 continue; 1256 if (Visited.insert(M).second) 1257 Stack.push_back(M); 1258 } 1259 1260 // Find all of the modules to import, making a little effort to prune 1261 // non-leaf modules. 1262 while (!Stack.empty()) { 1263 clang::Module *Mod = Stack.pop_back_val(); 1264 1265 bool AnyChildren = false; 1266 1267 // Visit the submodules of this module. 1268 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1269 SubEnd = Mod->submodule_end(); 1270 Sub != SubEnd; ++Sub) { 1271 // Skip explicit children; they need to be explicitly imported to be 1272 // linked against. 1273 if ((*Sub)->IsExplicit) 1274 continue; 1275 1276 if (Visited.insert(*Sub).second) { 1277 Stack.push_back(*Sub); 1278 AnyChildren = true; 1279 } 1280 } 1281 1282 // We didn't find any children, so add this module to the list of 1283 // modules to link against. 1284 if (!AnyChildren) { 1285 LinkModules.insert(Mod); 1286 } 1287 } 1288 1289 // Add link options for all of the imported modules in reverse topological 1290 // order. We don't do anything to try to order import link flags with respect 1291 // to linker options inserted by things like #pragma comment(). 1292 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1293 Visited.clear(); 1294 for (Module *M : LinkModules) 1295 if (Visited.insert(M).second) 1296 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1297 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1298 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1299 1300 // Add the linker options metadata flag. 1301 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1302 llvm::MDNode::get(getLLVMContext(), 1303 LinkerOptionsMetadata)); 1304 } 1305 1306 void CodeGenModule::EmitDeferred() { 1307 // Emit code for any potentially referenced deferred decls. Since a 1308 // previously unused static decl may become used during the generation of code 1309 // for a static function, iterate until no changes are made. 1310 1311 if (!DeferredVTables.empty()) { 1312 EmitDeferredVTables(); 1313 1314 // Emitting a vtable doesn't directly cause more vtables to 1315 // become deferred, although it can cause functions to be 1316 // emitted that then need those vtables. 1317 assert(DeferredVTables.empty()); 1318 } 1319 1320 // Stop if we're out of both deferred vtables and deferred declarations. 1321 if (DeferredDeclsToEmit.empty()) 1322 return; 1323 1324 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1325 // work, it will not interfere with this. 1326 std::vector<GlobalDecl> CurDeclsToEmit; 1327 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1328 1329 for (GlobalDecl &D : CurDeclsToEmit) { 1330 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1331 // to get GlobalValue with exactly the type we need, not something that 1332 // might had been created for another decl with the same mangled name but 1333 // different type. 1334 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1335 GetAddrOfGlobal(D, ForDefinition)); 1336 1337 // In case of different address spaces, we may still get a cast, even with 1338 // IsForDefinition equal to true. Query mangled names table to get 1339 // GlobalValue. 1340 if (!GV) 1341 GV = GetGlobalValue(getMangledName(D)); 1342 1343 // Make sure GetGlobalValue returned non-null. 1344 assert(GV); 1345 1346 // Check to see if we've already emitted this. This is necessary 1347 // for a couple of reasons: first, decls can end up in the 1348 // deferred-decls queue multiple times, and second, decls can end 1349 // up with definitions in unusual ways (e.g. by an extern inline 1350 // function acquiring a strong function redefinition). Just 1351 // ignore these cases. 1352 if (!GV->isDeclaration()) 1353 continue; 1354 1355 // Otherwise, emit the definition and move on to the next one. 1356 EmitGlobalDefinition(D, GV); 1357 1358 // If we found out that we need to emit more decls, do that recursively. 1359 // This has the advantage that the decls are emitted in a DFS and related 1360 // ones are close together, which is convenient for testing. 1361 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1362 EmitDeferred(); 1363 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1364 } 1365 } 1366 } 1367 1368 void CodeGenModule::EmitGlobalAnnotations() { 1369 if (Annotations.empty()) 1370 return; 1371 1372 // Create a new global variable for the ConstantStruct in the Module. 1373 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1374 Annotations[0]->getType(), Annotations.size()), Annotations); 1375 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1376 llvm::GlobalValue::AppendingLinkage, 1377 Array, "llvm.global.annotations"); 1378 gv->setSection(AnnotationSection); 1379 } 1380 1381 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1382 llvm::Constant *&AStr = AnnotationStrings[Str]; 1383 if (AStr) 1384 return AStr; 1385 1386 // Not found yet, create a new global. 1387 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1388 auto *gv = 1389 new llvm::GlobalVariable(getModule(), s->getType(), true, 1390 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1391 gv->setSection(AnnotationSection); 1392 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1393 AStr = gv; 1394 return gv; 1395 } 1396 1397 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1398 SourceManager &SM = getContext().getSourceManager(); 1399 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1400 if (PLoc.isValid()) 1401 return EmitAnnotationString(PLoc.getFilename()); 1402 return EmitAnnotationString(SM.getBufferName(Loc)); 1403 } 1404 1405 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1406 SourceManager &SM = getContext().getSourceManager(); 1407 PresumedLoc PLoc = SM.getPresumedLoc(L); 1408 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1409 SM.getExpansionLineNumber(L); 1410 return llvm::ConstantInt::get(Int32Ty, LineNo); 1411 } 1412 1413 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1414 const AnnotateAttr *AA, 1415 SourceLocation L) { 1416 // Get the globals for file name, annotation, and the line number. 1417 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1418 *UnitGV = EmitAnnotationUnit(L), 1419 *LineNoCst = EmitAnnotationLineNo(L); 1420 1421 // Create the ConstantStruct for the global annotation. 1422 llvm::Constant *Fields[4] = { 1423 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1424 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1425 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1426 LineNoCst 1427 }; 1428 return llvm::ConstantStruct::getAnon(Fields); 1429 } 1430 1431 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1432 llvm::GlobalValue *GV) { 1433 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1434 // Get the struct elements for these annotations. 1435 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1436 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1437 } 1438 1439 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1440 SourceLocation Loc) const { 1441 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1442 // Blacklist by function name. 1443 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1444 return true; 1445 // Blacklist by location. 1446 if (Loc.isValid()) 1447 return SanitizerBL.isBlacklistedLocation(Loc); 1448 // If location is unknown, this may be a compiler-generated function. Assume 1449 // it's located in the main file. 1450 auto &SM = Context.getSourceManager(); 1451 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1452 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1453 } 1454 return false; 1455 } 1456 1457 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1458 SourceLocation Loc, QualType Ty, 1459 StringRef Category) const { 1460 // For now globals can be blacklisted only in ASan and KASan. 1461 if (!LangOpts.Sanitize.hasOneOf( 1462 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1463 return false; 1464 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1465 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1466 return true; 1467 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1468 return true; 1469 // Check global type. 1470 if (!Ty.isNull()) { 1471 // Drill down the array types: if global variable of a fixed type is 1472 // blacklisted, we also don't instrument arrays of them. 1473 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1474 Ty = AT->getElementType(); 1475 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1476 // We allow to blacklist only record types (classes, structs etc.) 1477 if (Ty->isRecordType()) { 1478 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1479 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1480 return true; 1481 } 1482 } 1483 return false; 1484 } 1485 1486 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1487 StringRef Category) const { 1488 if (!LangOpts.XRayInstrument) 1489 return false; 1490 const auto &XRayFilter = getContext().getXRayFilter(); 1491 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1492 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1493 if (Loc.isValid()) 1494 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1495 if (Attr == ImbueAttr::NONE) 1496 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1497 switch (Attr) { 1498 case ImbueAttr::NONE: 1499 return false; 1500 case ImbueAttr::ALWAYS: 1501 Fn->addFnAttr("function-instrument", "xray-always"); 1502 break; 1503 case ImbueAttr::NEVER: 1504 Fn->addFnAttr("function-instrument", "xray-never"); 1505 break; 1506 } 1507 return true; 1508 } 1509 1510 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1511 // Never defer when EmitAllDecls is specified. 1512 if (LangOpts.EmitAllDecls) 1513 return true; 1514 1515 return getContext().DeclMustBeEmitted(Global); 1516 } 1517 1518 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1519 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1520 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1521 // Implicit template instantiations may change linkage if they are later 1522 // explicitly instantiated, so they should not be emitted eagerly. 1523 return false; 1524 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1525 if (Context.getInlineVariableDefinitionKind(VD) == 1526 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1527 // A definition of an inline constexpr static data member may change 1528 // linkage later if it's redeclared outside the class. 1529 return false; 1530 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1531 // codegen for global variables, because they may be marked as threadprivate. 1532 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1533 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1534 return false; 1535 1536 return true; 1537 } 1538 1539 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1540 const CXXUuidofExpr* E) { 1541 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1542 // well-formed. 1543 StringRef Uuid = E->getUuidStr(); 1544 std::string Name = "_GUID_" + Uuid.lower(); 1545 std::replace(Name.begin(), Name.end(), '-', '_'); 1546 1547 // The UUID descriptor should be pointer aligned. 1548 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1549 1550 // Look for an existing global. 1551 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1552 return ConstantAddress(GV, Alignment); 1553 1554 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1555 assert(Init && "failed to initialize as constant"); 1556 1557 auto *GV = new llvm::GlobalVariable( 1558 getModule(), Init->getType(), 1559 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1560 if (supportsCOMDAT()) 1561 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1562 return ConstantAddress(GV, Alignment); 1563 } 1564 1565 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1566 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1567 assert(AA && "No alias?"); 1568 1569 CharUnits Alignment = getContext().getDeclAlign(VD); 1570 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1571 1572 // See if there is already something with the target's name in the module. 1573 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1574 if (Entry) { 1575 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1576 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1577 return ConstantAddress(Ptr, Alignment); 1578 } 1579 1580 llvm::Constant *Aliasee; 1581 if (isa<llvm::FunctionType>(DeclTy)) 1582 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1583 GlobalDecl(cast<FunctionDecl>(VD)), 1584 /*ForVTable=*/false); 1585 else 1586 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1587 llvm::PointerType::getUnqual(DeclTy), 1588 nullptr); 1589 1590 auto *F = cast<llvm::GlobalValue>(Aliasee); 1591 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1592 WeakRefReferences.insert(F); 1593 1594 return ConstantAddress(Aliasee, Alignment); 1595 } 1596 1597 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1598 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1599 1600 // Weak references don't produce any output by themselves. 1601 if (Global->hasAttr<WeakRefAttr>()) 1602 return; 1603 1604 // If this is an alias definition (which otherwise looks like a declaration) 1605 // emit it now. 1606 if (Global->hasAttr<AliasAttr>()) 1607 return EmitAliasDefinition(GD); 1608 1609 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1610 if (Global->hasAttr<IFuncAttr>()) 1611 return emitIFuncDefinition(GD); 1612 1613 // If this is CUDA, be selective about which declarations we emit. 1614 if (LangOpts.CUDA) { 1615 if (LangOpts.CUDAIsDevice) { 1616 if (!Global->hasAttr<CUDADeviceAttr>() && 1617 !Global->hasAttr<CUDAGlobalAttr>() && 1618 !Global->hasAttr<CUDAConstantAttr>() && 1619 !Global->hasAttr<CUDASharedAttr>()) 1620 return; 1621 } else { 1622 // We need to emit host-side 'shadows' for all global 1623 // device-side variables because the CUDA runtime needs their 1624 // size and host-side address in order to provide access to 1625 // their device-side incarnations. 1626 1627 // So device-only functions are the only things we skip. 1628 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1629 Global->hasAttr<CUDADeviceAttr>()) 1630 return; 1631 1632 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1633 "Expected Variable or Function"); 1634 } 1635 } 1636 1637 if (LangOpts.OpenMP) { 1638 // If this is OpenMP device, check if it is legal to emit this global 1639 // normally. 1640 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1641 return; 1642 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1643 if (MustBeEmitted(Global)) 1644 EmitOMPDeclareReduction(DRD); 1645 return; 1646 } 1647 } 1648 1649 // Ignore declarations, they will be emitted on their first use. 1650 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1651 // Forward declarations are emitted lazily on first use. 1652 if (!FD->doesThisDeclarationHaveABody()) { 1653 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1654 return; 1655 1656 StringRef MangledName = getMangledName(GD); 1657 1658 // Compute the function info and LLVM type. 1659 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1660 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1661 1662 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1663 /*DontDefer=*/false); 1664 return; 1665 } 1666 } else { 1667 const auto *VD = cast<VarDecl>(Global); 1668 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1669 // We need to emit device-side global CUDA variables even if a 1670 // variable does not have a definition -- we still need to define 1671 // host-side shadow for it. 1672 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1673 !VD->hasDefinition() && 1674 (VD->hasAttr<CUDAConstantAttr>() || 1675 VD->hasAttr<CUDADeviceAttr>()); 1676 if (!MustEmitForCuda && 1677 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1678 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1679 // If this declaration may have caused an inline variable definition to 1680 // change linkage, make sure that it's emitted. 1681 if (Context.getInlineVariableDefinitionKind(VD) == 1682 ASTContext::InlineVariableDefinitionKind::Strong) 1683 GetAddrOfGlobalVar(VD); 1684 return; 1685 } 1686 } 1687 1688 // Defer code generation to first use when possible, e.g. if this is an inline 1689 // function. If the global must always be emitted, do it eagerly if possible 1690 // to benefit from cache locality. 1691 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1692 // Emit the definition if it can't be deferred. 1693 EmitGlobalDefinition(GD); 1694 return; 1695 } 1696 1697 // If we're deferring emission of a C++ variable with an 1698 // initializer, remember the order in which it appeared in the file. 1699 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1700 cast<VarDecl>(Global)->hasInit()) { 1701 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1702 CXXGlobalInits.push_back(nullptr); 1703 } 1704 1705 StringRef MangledName = getMangledName(GD); 1706 if (GetGlobalValue(MangledName) != nullptr) { 1707 // The value has already been used and should therefore be emitted. 1708 addDeferredDeclToEmit(GD); 1709 } else if (MustBeEmitted(Global)) { 1710 // The value must be emitted, but cannot be emitted eagerly. 1711 assert(!MayBeEmittedEagerly(Global)); 1712 addDeferredDeclToEmit(GD); 1713 } else { 1714 // Otherwise, remember that we saw a deferred decl with this name. The 1715 // first use of the mangled name will cause it to move into 1716 // DeferredDeclsToEmit. 1717 DeferredDecls[MangledName] = GD; 1718 } 1719 } 1720 1721 // Check if T is a class type with a destructor that's not dllimport. 1722 static bool HasNonDllImportDtor(QualType T) { 1723 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1724 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1725 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1726 return true; 1727 1728 return false; 1729 } 1730 1731 namespace { 1732 struct FunctionIsDirectlyRecursive : 1733 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1734 const StringRef Name; 1735 const Builtin::Context &BI; 1736 bool Result; 1737 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1738 Name(N), BI(C), Result(false) { 1739 } 1740 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1741 1742 bool TraverseCallExpr(CallExpr *E) { 1743 const FunctionDecl *FD = E->getDirectCallee(); 1744 if (!FD) 1745 return true; 1746 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1747 if (Attr && Name == Attr->getLabel()) { 1748 Result = true; 1749 return false; 1750 } 1751 unsigned BuiltinID = FD->getBuiltinID(); 1752 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1753 return true; 1754 StringRef BuiltinName = BI.getName(BuiltinID); 1755 if (BuiltinName.startswith("__builtin_") && 1756 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1757 Result = true; 1758 return false; 1759 } 1760 return true; 1761 } 1762 }; 1763 1764 // Make sure we're not referencing non-imported vars or functions. 1765 struct DLLImportFunctionVisitor 1766 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1767 bool SafeToInline = true; 1768 1769 bool shouldVisitImplicitCode() const { return true; } 1770 1771 bool VisitVarDecl(VarDecl *VD) { 1772 if (VD->getTLSKind()) { 1773 // A thread-local variable cannot be imported. 1774 SafeToInline = false; 1775 return SafeToInline; 1776 } 1777 1778 // A variable definition might imply a destructor call. 1779 if (VD->isThisDeclarationADefinition()) 1780 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1781 1782 return SafeToInline; 1783 } 1784 1785 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1786 if (const auto *D = E->getTemporary()->getDestructor()) 1787 SafeToInline = D->hasAttr<DLLImportAttr>(); 1788 return SafeToInline; 1789 } 1790 1791 bool VisitDeclRefExpr(DeclRefExpr *E) { 1792 ValueDecl *VD = E->getDecl(); 1793 if (isa<FunctionDecl>(VD)) 1794 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1795 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1796 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1797 return SafeToInline; 1798 } 1799 1800 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1801 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1802 return SafeToInline; 1803 } 1804 1805 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1806 CXXMethodDecl *M = E->getMethodDecl(); 1807 if (!M) { 1808 // Call through a pointer to member function. This is safe to inline. 1809 SafeToInline = true; 1810 } else { 1811 SafeToInline = M->hasAttr<DLLImportAttr>(); 1812 } 1813 return SafeToInline; 1814 } 1815 1816 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1817 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1818 return SafeToInline; 1819 } 1820 1821 bool VisitCXXNewExpr(CXXNewExpr *E) { 1822 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1823 return SafeToInline; 1824 } 1825 }; 1826 } 1827 1828 // isTriviallyRecursive - Check if this function calls another 1829 // decl that, because of the asm attribute or the other decl being a builtin, 1830 // ends up pointing to itself. 1831 bool 1832 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1833 StringRef Name; 1834 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1835 // asm labels are a special kind of mangling we have to support. 1836 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1837 if (!Attr) 1838 return false; 1839 Name = Attr->getLabel(); 1840 } else { 1841 Name = FD->getName(); 1842 } 1843 1844 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1845 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1846 return Walker.Result; 1847 } 1848 1849 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1850 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1851 return true; 1852 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1853 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1854 return false; 1855 1856 if (F->hasAttr<DLLImportAttr>()) { 1857 // Check whether it would be safe to inline this dllimport function. 1858 DLLImportFunctionVisitor Visitor; 1859 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1860 if (!Visitor.SafeToInline) 1861 return false; 1862 1863 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1864 // Implicit destructor invocations aren't captured in the AST, so the 1865 // check above can't see them. Check for them manually here. 1866 for (const Decl *Member : Dtor->getParent()->decls()) 1867 if (isa<FieldDecl>(Member)) 1868 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1869 return false; 1870 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1871 if (HasNonDllImportDtor(B.getType())) 1872 return false; 1873 } 1874 } 1875 1876 // PR9614. Avoid cases where the source code is lying to us. An available 1877 // externally function should have an equivalent function somewhere else, 1878 // but a function that calls itself is clearly not equivalent to the real 1879 // implementation. 1880 // This happens in glibc's btowc and in some configure checks. 1881 return !isTriviallyRecursive(F); 1882 } 1883 1884 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1885 const auto *D = cast<ValueDecl>(GD.getDecl()); 1886 1887 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1888 Context.getSourceManager(), 1889 "Generating code for declaration"); 1890 1891 if (isa<FunctionDecl>(D)) { 1892 // At -O0, don't generate IR for functions with available_externally 1893 // linkage. 1894 if (!shouldEmitFunction(GD)) 1895 return; 1896 1897 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1898 // Make sure to emit the definition(s) before we emit the thunks. 1899 // This is necessary for the generation of certain thunks. 1900 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1901 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1902 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1903 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1904 else 1905 EmitGlobalFunctionDefinition(GD, GV); 1906 1907 if (Method->isVirtual()) 1908 getVTables().EmitThunks(GD); 1909 1910 return; 1911 } 1912 1913 return EmitGlobalFunctionDefinition(GD, GV); 1914 } 1915 1916 if (const auto *VD = dyn_cast<VarDecl>(D)) 1917 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1918 1919 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1920 } 1921 1922 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1923 llvm::Function *NewFn); 1924 1925 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1926 /// module, create and return an llvm Function with the specified type. If there 1927 /// is something in the module with the specified name, return it potentially 1928 /// bitcasted to the right type. 1929 /// 1930 /// If D is non-null, it specifies a decl that correspond to this. This is used 1931 /// to set the attributes on the function when it is first created. 1932 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 1933 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 1934 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 1935 ForDefinition_t IsForDefinition) { 1936 const Decl *D = GD.getDecl(); 1937 1938 // Lookup the entry, lazily creating it if necessary. 1939 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1940 if (Entry) { 1941 if (WeakRefReferences.erase(Entry)) { 1942 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1943 if (FD && !FD->hasAttr<WeakAttr>()) 1944 Entry->setLinkage(llvm::Function::ExternalLinkage); 1945 } 1946 1947 // Handle dropped DLL attributes. 1948 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1949 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1950 1951 // If there are two attempts to define the same mangled name, issue an 1952 // error. 1953 if (IsForDefinition && !Entry->isDeclaration()) { 1954 GlobalDecl OtherGD; 1955 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1956 // to make sure that we issue an error only once. 1957 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1958 (GD.getCanonicalDecl().getDecl() != 1959 OtherGD.getCanonicalDecl().getDecl()) && 1960 DiagnosedConflictingDefinitions.insert(GD).second) { 1961 getDiags().Report(D->getLocation(), 1962 diag::err_duplicate_mangled_name); 1963 getDiags().Report(OtherGD.getDecl()->getLocation(), 1964 diag::note_previous_definition); 1965 } 1966 } 1967 1968 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1969 (Entry->getType()->getElementType() == Ty)) { 1970 return Entry; 1971 } 1972 1973 // Make sure the result is of the correct type. 1974 // (If function is requested for a definition, we always need to create a new 1975 // function, not just return a bitcast.) 1976 if (!IsForDefinition) 1977 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1978 } 1979 1980 // This function doesn't have a complete type (for example, the return 1981 // type is an incomplete struct). Use a fake type instead, and make 1982 // sure not to try to set attributes. 1983 bool IsIncompleteFunction = false; 1984 1985 llvm::FunctionType *FTy; 1986 if (isa<llvm::FunctionType>(Ty)) { 1987 FTy = cast<llvm::FunctionType>(Ty); 1988 } else { 1989 FTy = llvm::FunctionType::get(VoidTy, false); 1990 IsIncompleteFunction = true; 1991 } 1992 1993 llvm::Function *F = 1994 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1995 Entry ? StringRef() : MangledName, &getModule()); 1996 1997 // If we already created a function with the same mangled name (but different 1998 // type) before, take its name and add it to the list of functions to be 1999 // replaced with F at the end of CodeGen. 2000 // 2001 // This happens if there is a prototype for a function (e.g. "int f()") and 2002 // then a definition of a different type (e.g. "int f(int x)"). 2003 if (Entry) { 2004 F->takeName(Entry); 2005 2006 // This might be an implementation of a function without a prototype, in 2007 // which case, try to do special replacement of calls which match the new 2008 // prototype. The really key thing here is that we also potentially drop 2009 // arguments from the call site so as to make a direct call, which makes the 2010 // inliner happier and suppresses a number of optimizer warnings (!) about 2011 // dropping arguments. 2012 if (!Entry->use_empty()) { 2013 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2014 Entry->removeDeadConstantUsers(); 2015 } 2016 2017 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2018 F, Entry->getType()->getElementType()->getPointerTo()); 2019 addGlobalValReplacement(Entry, BC); 2020 } 2021 2022 assert(F->getName() == MangledName && "name was uniqued!"); 2023 if (D) 2024 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2025 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2026 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2027 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2028 } 2029 2030 if (!DontDefer) { 2031 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2032 // each other bottoming out with the base dtor. Therefore we emit non-base 2033 // dtors on usage, even if there is no dtor definition in the TU. 2034 if (D && isa<CXXDestructorDecl>(D) && 2035 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2036 GD.getDtorType())) 2037 addDeferredDeclToEmit(GD); 2038 2039 // This is the first use or definition of a mangled name. If there is a 2040 // deferred decl with this name, remember that we need to emit it at the end 2041 // of the file. 2042 auto DDI = DeferredDecls.find(MangledName); 2043 if (DDI != DeferredDecls.end()) { 2044 // Move the potentially referenced deferred decl to the 2045 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2046 // don't need it anymore). 2047 addDeferredDeclToEmit(DDI->second); 2048 DeferredDecls.erase(DDI); 2049 2050 // Otherwise, there are cases we have to worry about where we're 2051 // using a declaration for which we must emit a definition but where 2052 // we might not find a top-level definition: 2053 // - member functions defined inline in their classes 2054 // - friend functions defined inline in some class 2055 // - special member functions with implicit definitions 2056 // If we ever change our AST traversal to walk into class methods, 2057 // this will be unnecessary. 2058 // 2059 // We also don't emit a definition for a function if it's going to be an 2060 // entry in a vtable, unless it's already marked as used. 2061 } else if (getLangOpts().CPlusPlus && D) { 2062 // Look for a declaration that's lexically in a record. 2063 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2064 FD = FD->getPreviousDecl()) { 2065 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2066 if (FD->doesThisDeclarationHaveABody()) { 2067 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2068 break; 2069 } 2070 } 2071 } 2072 } 2073 } 2074 2075 // Make sure the result is of the requested type. 2076 if (!IsIncompleteFunction) { 2077 assert(F->getType()->getElementType() == Ty); 2078 return F; 2079 } 2080 2081 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2082 return llvm::ConstantExpr::getBitCast(F, PTy); 2083 } 2084 2085 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2086 /// non-null, then this function will use the specified type if it has to 2087 /// create it (this occurs when we see a definition of the function). 2088 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2089 llvm::Type *Ty, 2090 bool ForVTable, 2091 bool DontDefer, 2092 ForDefinition_t IsForDefinition) { 2093 // If there was no specific requested type, just convert it now. 2094 if (!Ty) { 2095 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2096 auto CanonTy = Context.getCanonicalType(FD->getType()); 2097 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2098 } 2099 2100 StringRef MangledName = getMangledName(GD); 2101 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2102 /*IsThunk=*/false, llvm::AttributeList(), 2103 IsForDefinition); 2104 } 2105 2106 static const FunctionDecl * 2107 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2108 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2109 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2110 2111 IdentifierInfo &CII = C.Idents.get(Name); 2112 for (const auto &Result : DC->lookup(&CII)) 2113 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2114 return FD; 2115 2116 if (!C.getLangOpts().CPlusPlus) 2117 return nullptr; 2118 2119 // Demangle the premangled name from getTerminateFn() 2120 IdentifierInfo &CXXII = 2121 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2122 ? C.Idents.get("terminate") 2123 : C.Idents.get(Name); 2124 2125 for (const auto &N : {"__cxxabiv1", "std"}) { 2126 IdentifierInfo &NS = C.Idents.get(N); 2127 for (const auto &Result : DC->lookup(&NS)) { 2128 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2129 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2130 for (const auto &Result : LSD->lookup(&NS)) 2131 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2132 break; 2133 2134 if (ND) 2135 for (const auto &Result : ND->lookup(&CXXII)) 2136 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2137 return FD; 2138 } 2139 } 2140 2141 return nullptr; 2142 } 2143 2144 /// CreateRuntimeFunction - Create a new runtime function with the specified 2145 /// type and name. 2146 llvm::Constant * 2147 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2148 llvm::AttributeList ExtraAttrs, 2149 bool Local) { 2150 llvm::Constant *C = 2151 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2152 /*DontDefer=*/false, /*IsThunk=*/false, 2153 ExtraAttrs); 2154 2155 if (auto *F = dyn_cast<llvm::Function>(C)) { 2156 if (F->empty()) { 2157 F->setCallingConv(getRuntimeCC()); 2158 2159 if (!Local && getTriple().isOSBinFormatCOFF() && 2160 !getCodeGenOpts().LTOVisibilityPublicStd) { 2161 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2162 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2163 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2164 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2165 } 2166 } 2167 } 2168 } 2169 2170 return C; 2171 } 2172 2173 /// CreateBuiltinFunction - Create a new builtin function with the specified 2174 /// type and name. 2175 llvm::Constant * 2176 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2177 llvm::AttributeList ExtraAttrs) { 2178 llvm::Constant *C = 2179 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2180 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2181 if (auto *F = dyn_cast<llvm::Function>(C)) 2182 if (F->empty()) 2183 F->setCallingConv(getBuiltinCC()); 2184 return C; 2185 } 2186 2187 /// isTypeConstant - Determine whether an object of this type can be emitted 2188 /// as a constant. 2189 /// 2190 /// If ExcludeCtor is true, the duration when the object's constructor runs 2191 /// will not be considered. The caller will need to verify that the object is 2192 /// not written to during its construction. 2193 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2194 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2195 return false; 2196 2197 if (Context.getLangOpts().CPlusPlus) { 2198 if (const CXXRecordDecl *Record 2199 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2200 return ExcludeCtor && !Record->hasMutableFields() && 2201 Record->hasTrivialDestructor(); 2202 } 2203 2204 return true; 2205 } 2206 2207 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2208 /// create and return an llvm GlobalVariable with the specified type. If there 2209 /// is something in the module with the specified name, return it potentially 2210 /// bitcasted to the right type. 2211 /// 2212 /// If D is non-null, it specifies a decl that correspond to this. This is used 2213 /// to set the attributes on the global when it is first created. 2214 /// 2215 /// If IsForDefinition is true, it is guranteed that an actual global with 2216 /// type Ty will be returned, not conversion of a variable with the same 2217 /// mangled name but some other type. 2218 llvm::Constant * 2219 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2220 llvm::PointerType *Ty, 2221 const VarDecl *D, 2222 ForDefinition_t IsForDefinition) { 2223 // Lookup the entry, lazily creating it if necessary. 2224 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2225 if (Entry) { 2226 if (WeakRefReferences.erase(Entry)) { 2227 if (D && !D->hasAttr<WeakAttr>()) 2228 Entry->setLinkage(llvm::Function::ExternalLinkage); 2229 } 2230 2231 // Handle dropped DLL attributes. 2232 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2233 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2234 2235 if (Entry->getType() == Ty) 2236 return Entry; 2237 2238 // If there are two attempts to define the same mangled name, issue an 2239 // error. 2240 if (IsForDefinition && !Entry->isDeclaration()) { 2241 GlobalDecl OtherGD; 2242 const VarDecl *OtherD; 2243 2244 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2245 // to make sure that we issue an error only once. 2246 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2247 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2248 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2249 OtherD->hasInit() && 2250 DiagnosedConflictingDefinitions.insert(D).second) { 2251 getDiags().Report(D->getLocation(), 2252 diag::err_duplicate_mangled_name); 2253 getDiags().Report(OtherGD.getDecl()->getLocation(), 2254 diag::note_previous_definition); 2255 } 2256 } 2257 2258 // Make sure the result is of the correct type. 2259 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2260 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2261 2262 // (If global is requested for a definition, we always need to create a new 2263 // global, not just return a bitcast.) 2264 if (!IsForDefinition) 2265 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2266 } 2267 2268 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2269 auto *GV = new llvm::GlobalVariable( 2270 getModule(), Ty->getElementType(), false, 2271 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2272 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2273 2274 // If we already created a global with the same mangled name (but different 2275 // type) before, take its name and remove it from its parent. 2276 if (Entry) { 2277 GV->takeName(Entry); 2278 2279 if (!Entry->use_empty()) { 2280 llvm::Constant *NewPtrForOldDecl = 2281 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2282 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2283 } 2284 2285 Entry->eraseFromParent(); 2286 } 2287 2288 // This is the first use or definition of a mangled name. If there is a 2289 // deferred decl with this name, remember that we need to emit it at the end 2290 // of the file. 2291 auto DDI = DeferredDecls.find(MangledName); 2292 if (DDI != DeferredDecls.end()) { 2293 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2294 // list, and remove it from DeferredDecls (since we don't need it anymore). 2295 addDeferredDeclToEmit(DDI->second); 2296 DeferredDecls.erase(DDI); 2297 } 2298 2299 // Handle things which are present even on external declarations. 2300 if (D) { 2301 // FIXME: This code is overly simple and should be merged with other global 2302 // handling. 2303 GV->setConstant(isTypeConstant(D->getType(), false)); 2304 2305 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2306 2307 setLinkageAndVisibilityForGV(GV, D); 2308 2309 if (D->getTLSKind()) { 2310 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2311 CXXThreadLocals.push_back(D); 2312 setTLSMode(GV, *D); 2313 } 2314 2315 // If required by the ABI, treat declarations of static data members with 2316 // inline initializers as definitions. 2317 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2318 EmitGlobalVarDefinition(D); 2319 } 2320 2321 // Handle XCore specific ABI requirements. 2322 if (getTriple().getArch() == llvm::Triple::xcore && 2323 D->getLanguageLinkage() == CLanguageLinkage && 2324 D->getType().isConstant(Context) && 2325 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2326 GV->setSection(".cp.rodata"); 2327 } 2328 2329 if (AddrSpace != Ty->getAddressSpace()) 2330 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2331 2332 return GV; 2333 } 2334 2335 llvm::Constant * 2336 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2337 ForDefinition_t IsForDefinition) { 2338 const Decl *D = GD.getDecl(); 2339 if (isa<CXXConstructorDecl>(D)) 2340 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2341 getFromCtorType(GD.getCtorType()), 2342 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2343 /*DontDefer=*/false, IsForDefinition); 2344 else if (isa<CXXDestructorDecl>(D)) 2345 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2346 getFromDtorType(GD.getDtorType()), 2347 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2348 /*DontDefer=*/false, IsForDefinition); 2349 else if (isa<CXXMethodDecl>(D)) { 2350 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2351 cast<CXXMethodDecl>(D)); 2352 auto Ty = getTypes().GetFunctionType(*FInfo); 2353 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2354 IsForDefinition); 2355 } else if (isa<FunctionDecl>(D)) { 2356 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2357 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2358 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2359 IsForDefinition); 2360 } else 2361 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2362 IsForDefinition); 2363 } 2364 2365 llvm::GlobalVariable * 2366 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2367 llvm::Type *Ty, 2368 llvm::GlobalValue::LinkageTypes Linkage) { 2369 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2370 llvm::GlobalVariable *OldGV = nullptr; 2371 2372 if (GV) { 2373 // Check if the variable has the right type. 2374 if (GV->getType()->getElementType() == Ty) 2375 return GV; 2376 2377 // Because C++ name mangling, the only way we can end up with an already 2378 // existing global with the same name is if it has been declared extern "C". 2379 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2380 OldGV = GV; 2381 } 2382 2383 // Create a new variable. 2384 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2385 Linkage, nullptr, Name); 2386 2387 if (OldGV) { 2388 // Replace occurrences of the old variable if needed. 2389 GV->takeName(OldGV); 2390 2391 if (!OldGV->use_empty()) { 2392 llvm::Constant *NewPtrForOldDecl = 2393 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2394 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2395 } 2396 2397 OldGV->eraseFromParent(); 2398 } 2399 2400 if (supportsCOMDAT() && GV->isWeakForLinker() && 2401 !GV->hasAvailableExternallyLinkage()) 2402 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2403 2404 return GV; 2405 } 2406 2407 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2408 /// given global variable. If Ty is non-null and if the global doesn't exist, 2409 /// then it will be created with the specified type instead of whatever the 2410 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2411 /// that an actual global with type Ty will be returned, not conversion of a 2412 /// variable with the same mangled name but some other type. 2413 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2414 llvm::Type *Ty, 2415 ForDefinition_t IsForDefinition) { 2416 assert(D->hasGlobalStorage() && "Not a global variable"); 2417 QualType ASTTy = D->getType(); 2418 if (!Ty) 2419 Ty = getTypes().ConvertTypeForMem(ASTTy); 2420 2421 llvm::PointerType *PTy = 2422 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2423 2424 StringRef MangledName = getMangledName(D); 2425 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2426 } 2427 2428 /// CreateRuntimeVariable - Create a new runtime global variable with the 2429 /// specified type and name. 2430 llvm::Constant * 2431 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2432 StringRef Name) { 2433 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2434 } 2435 2436 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2437 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2438 2439 StringRef MangledName = getMangledName(D); 2440 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2441 2442 // We already have a definition, not declaration, with the same mangled name. 2443 // Emitting of declaration is not required (and actually overwrites emitted 2444 // definition). 2445 if (GV && !GV->isDeclaration()) 2446 return; 2447 2448 // If we have not seen a reference to this variable yet, place it into the 2449 // deferred declarations table to be emitted if needed later. 2450 if (!MustBeEmitted(D) && !GV) { 2451 DeferredDecls[MangledName] = D; 2452 return; 2453 } 2454 2455 // The tentative definition is the only definition. 2456 EmitGlobalVarDefinition(D); 2457 } 2458 2459 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2460 return Context.toCharUnitsFromBits( 2461 getDataLayout().getTypeStoreSizeInBits(Ty)); 2462 } 2463 2464 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2465 unsigned AddrSpace) { 2466 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2467 if (D->hasAttr<CUDAConstantAttr>()) 2468 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2469 else if (D->hasAttr<CUDASharedAttr>()) 2470 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2471 else 2472 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2473 } 2474 2475 return AddrSpace; 2476 } 2477 2478 template<typename SomeDecl> 2479 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2480 llvm::GlobalValue *GV) { 2481 if (!getLangOpts().CPlusPlus) 2482 return; 2483 2484 // Must have 'used' attribute, or else inline assembly can't rely on 2485 // the name existing. 2486 if (!D->template hasAttr<UsedAttr>()) 2487 return; 2488 2489 // Must have internal linkage and an ordinary name. 2490 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2491 return; 2492 2493 // Must be in an extern "C" context. Entities declared directly within 2494 // a record are not extern "C" even if the record is in such a context. 2495 const SomeDecl *First = D->getFirstDecl(); 2496 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2497 return; 2498 2499 // OK, this is an internal linkage entity inside an extern "C" linkage 2500 // specification. Make a note of that so we can give it the "expected" 2501 // mangled name if nothing else is using that name. 2502 std::pair<StaticExternCMap::iterator, bool> R = 2503 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2504 2505 // If we have multiple internal linkage entities with the same name 2506 // in extern "C" regions, none of them gets that name. 2507 if (!R.second) 2508 R.first->second = nullptr; 2509 } 2510 2511 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2512 if (!CGM.supportsCOMDAT()) 2513 return false; 2514 2515 if (D.hasAttr<SelectAnyAttr>()) 2516 return true; 2517 2518 GVALinkage Linkage; 2519 if (auto *VD = dyn_cast<VarDecl>(&D)) 2520 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2521 else 2522 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2523 2524 switch (Linkage) { 2525 case GVA_Internal: 2526 case GVA_AvailableExternally: 2527 case GVA_StrongExternal: 2528 return false; 2529 case GVA_DiscardableODR: 2530 case GVA_StrongODR: 2531 return true; 2532 } 2533 llvm_unreachable("No such linkage"); 2534 } 2535 2536 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2537 llvm::GlobalObject &GO) { 2538 if (!shouldBeInCOMDAT(*this, D)) 2539 return; 2540 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2541 } 2542 2543 /// Pass IsTentative as true if you want to create a tentative definition. 2544 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2545 bool IsTentative) { 2546 // OpenCL global variables of sampler type are translated to function calls, 2547 // therefore no need to be translated. 2548 QualType ASTTy = D->getType(); 2549 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2550 return; 2551 2552 llvm::Constant *Init = nullptr; 2553 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2554 bool NeedsGlobalCtor = false; 2555 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2556 2557 const VarDecl *InitDecl; 2558 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2559 2560 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2561 // as part of their declaration." Sema has already checked for 2562 // error cases, so we just need to set Init to UndefValue. 2563 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2564 D->hasAttr<CUDASharedAttr>()) 2565 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2566 else if (!InitExpr) { 2567 // This is a tentative definition; tentative definitions are 2568 // implicitly initialized with { 0 }. 2569 // 2570 // Note that tentative definitions are only emitted at the end of 2571 // a translation unit, so they should never have incomplete 2572 // type. In addition, EmitTentativeDefinition makes sure that we 2573 // never attempt to emit a tentative definition if a real one 2574 // exists. A use may still exists, however, so we still may need 2575 // to do a RAUW. 2576 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2577 Init = EmitNullConstant(D->getType()); 2578 } else { 2579 initializedGlobalDecl = GlobalDecl(D); 2580 Init = EmitConstantInit(*InitDecl); 2581 2582 if (!Init) { 2583 QualType T = InitExpr->getType(); 2584 if (D->getType()->isReferenceType()) 2585 T = D->getType(); 2586 2587 if (getLangOpts().CPlusPlus) { 2588 Init = EmitNullConstant(T); 2589 NeedsGlobalCtor = true; 2590 } else { 2591 ErrorUnsupported(D, "static initializer"); 2592 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2593 } 2594 } else { 2595 // We don't need an initializer, so remove the entry for the delayed 2596 // initializer position (just in case this entry was delayed) if we 2597 // also don't need to register a destructor. 2598 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2599 DelayedCXXInitPosition.erase(D); 2600 } 2601 } 2602 2603 llvm::Type* InitType = Init->getType(); 2604 llvm::Constant *Entry = 2605 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2606 2607 // Strip off a bitcast if we got one back. 2608 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2609 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2610 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2611 // All zero index gep. 2612 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2613 Entry = CE->getOperand(0); 2614 } 2615 2616 // Entry is now either a Function or GlobalVariable. 2617 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2618 2619 // We have a definition after a declaration with the wrong type. 2620 // We must make a new GlobalVariable* and update everything that used OldGV 2621 // (a declaration or tentative definition) with the new GlobalVariable* 2622 // (which will be a definition). 2623 // 2624 // This happens if there is a prototype for a global (e.g. 2625 // "extern int x[];") and then a definition of a different type (e.g. 2626 // "int x[10];"). This also happens when an initializer has a different type 2627 // from the type of the global (this happens with unions). 2628 if (!GV || 2629 GV->getType()->getElementType() != InitType || 2630 GV->getType()->getAddressSpace() != 2631 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2632 2633 // Move the old entry aside so that we'll create a new one. 2634 Entry->setName(StringRef()); 2635 2636 // Make a new global with the correct type, this is now guaranteed to work. 2637 GV = cast<llvm::GlobalVariable>( 2638 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2639 2640 // Replace all uses of the old global with the new global 2641 llvm::Constant *NewPtrForOldDecl = 2642 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2643 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2644 2645 // Erase the old global, since it is no longer used. 2646 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2647 } 2648 2649 MaybeHandleStaticInExternC(D, GV); 2650 2651 if (D->hasAttr<AnnotateAttr>()) 2652 AddGlobalAnnotations(D, GV); 2653 2654 // Set the llvm linkage type as appropriate. 2655 llvm::GlobalValue::LinkageTypes Linkage = 2656 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2657 2658 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2659 // the device. [...]" 2660 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2661 // __device__, declares a variable that: [...] 2662 // Is accessible from all the threads within the grid and from the host 2663 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2664 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2665 if (GV && LangOpts.CUDA) { 2666 if (LangOpts.CUDAIsDevice) { 2667 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2668 GV->setExternallyInitialized(true); 2669 } else { 2670 // Host-side shadows of external declarations of device-side 2671 // global variables become internal definitions. These have to 2672 // be internal in order to prevent name conflicts with global 2673 // host variables with the same name in a different TUs. 2674 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2675 Linkage = llvm::GlobalValue::InternalLinkage; 2676 2677 // Shadow variables and their properties must be registered 2678 // with CUDA runtime. 2679 unsigned Flags = 0; 2680 if (!D->hasDefinition()) 2681 Flags |= CGCUDARuntime::ExternDeviceVar; 2682 if (D->hasAttr<CUDAConstantAttr>()) 2683 Flags |= CGCUDARuntime::ConstantDeviceVar; 2684 getCUDARuntime().registerDeviceVar(*GV, Flags); 2685 } else if (D->hasAttr<CUDASharedAttr>()) 2686 // __shared__ variables are odd. Shadows do get created, but 2687 // they are not registered with the CUDA runtime, so they 2688 // can't really be used to access their device-side 2689 // counterparts. It's not clear yet whether it's nvcc's bug or 2690 // a feature, but we've got to do the same for compatibility. 2691 Linkage = llvm::GlobalValue::InternalLinkage; 2692 } 2693 } 2694 GV->setInitializer(Init); 2695 2696 // If it is safe to mark the global 'constant', do so now. 2697 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2698 isTypeConstant(D->getType(), true)); 2699 2700 // If it is in a read-only section, mark it 'constant'. 2701 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2702 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2703 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2704 GV->setConstant(true); 2705 } 2706 2707 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2708 2709 2710 // On Darwin, if the normal linkage of a C++ thread_local variable is 2711 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2712 // copies within a linkage unit; otherwise, the backing variable has 2713 // internal linkage and all accesses should just be calls to the 2714 // Itanium-specified entry point, which has the normal linkage of the 2715 // variable. This is to preserve the ability to change the implementation 2716 // behind the scenes. 2717 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2718 Context.getTargetInfo().getTriple().isOSDarwin() && 2719 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2720 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2721 Linkage = llvm::GlobalValue::InternalLinkage; 2722 2723 GV->setLinkage(Linkage); 2724 if (D->hasAttr<DLLImportAttr>()) 2725 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2726 else if (D->hasAttr<DLLExportAttr>()) 2727 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2728 else 2729 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2730 2731 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2732 // common vars aren't constant even if declared const. 2733 GV->setConstant(false); 2734 // Tentative definition of global variables may be initialized with 2735 // non-zero null pointers. In this case they should have weak linkage 2736 // since common linkage must have zero initializer and must not have 2737 // explicit section therefore cannot have non-zero initial value. 2738 if (!GV->getInitializer()->isNullValue()) 2739 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2740 } 2741 2742 setNonAliasAttributes(D, GV); 2743 2744 if (D->getTLSKind() && !GV->isThreadLocal()) { 2745 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2746 CXXThreadLocals.push_back(D); 2747 setTLSMode(GV, *D); 2748 } 2749 2750 maybeSetTrivialComdat(*D, *GV); 2751 2752 // Emit the initializer function if necessary. 2753 if (NeedsGlobalCtor || NeedsGlobalDtor) 2754 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2755 2756 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2757 2758 // Emit global variable debug information. 2759 if (CGDebugInfo *DI = getModuleDebugInfo()) 2760 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2761 DI->EmitGlobalVariable(GV, D); 2762 } 2763 2764 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2765 CodeGenModule &CGM, const VarDecl *D, 2766 bool NoCommon) { 2767 // Don't give variables common linkage if -fno-common was specified unless it 2768 // was overridden by a NoCommon attribute. 2769 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2770 return true; 2771 2772 // C11 6.9.2/2: 2773 // A declaration of an identifier for an object that has file scope without 2774 // an initializer, and without a storage-class specifier or with the 2775 // storage-class specifier static, constitutes a tentative definition. 2776 if (D->getInit() || D->hasExternalStorage()) 2777 return true; 2778 2779 // A variable cannot be both common and exist in a section. 2780 if (D->hasAttr<SectionAttr>()) 2781 return true; 2782 2783 // Thread local vars aren't considered common linkage. 2784 if (D->getTLSKind()) 2785 return true; 2786 2787 // Tentative definitions marked with WeakImportAttr are true definitions. 2788 if (D->hasAttr<WeakImportAttr>()) 2789 return true; 2790 2791 // A variable cannot be both common and exist in a comdat. 2792 if (shouldBeInCOMDAT(CGM, *D)) 2793 return true; 2794 2795 // Declarations with a required alignment do not have common linkage in MSVC 2796 // mode. 2797 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2798 if (D->hasAttr<AlignedAttr>()) 2799 return true; 2800 QualType VarType = D->getType(); 2801 if (Context.isAlignmentRequired(VarType)) 2802 return true; 2803 2804 if (const auto *RT = VarType->getAs<RecordType>()) { 2805 const RecordDecl *RD = RT->getDecl(); 2806 for (const FieldDecl *FD : RD->fields()) { 2807 if (FD->isBitField()) 2808 continue; 2809 if (FD->hasAttr<AlignedAttr>()) 2810 return true; 2811 if (Context.isAlignmentRequired(FD->getType())) 2812 return true; 2813 } 2814 } 2815 } 2816 2817 return false; 2818 } 2819 2820 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2821 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2822 if (Linkage == GVA_Internal) 2823 return llvm::Function::InternalLinkage; 2824 2825 if (D->hasAttr<WeakAttr>()) { 2826 if (IsConstantVariable) 2827 return llvm::GlobalVariable::WeakODRLinkage; 2828 else 2829 return llvm::GlobalVariable::WeakAnyLinkage; 2830 } 2831 2832 // We are guaranteed to have a strong definition somewhere else, 2833 // so we can use available_externally linkage. 2834 if (Linkage == GVA_AvailableExternally) 2835 return llvm::GlobalValue::AvailableExternallyLinkage; 2836 2837 // Note that Apple's kernel linker doesn't support symbol 2838 // coalescing, so we need to avoid linkonce and weak linkages there. 2839 // Normally, this means we just map to internal, but for explicit 2840 // instantiations we'll map to external. 2841 2842 // In C++, the compiler has to emit a definition in every translation unit 2843 // that references the function. We should use linkonce_odr because 2844 // a) if all references in this translation unit are optimized away, we 2845 // don't need to codegen it. b) if the function persists, it needs to be 2846 // merged with other definitions. c) C++ has the ODR, so we know the 2847 // definition is dependable. 2848 if (Linkage == GVA_DiscardableODR) 2849 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2850 : llvm::Function::InternalLinkage; 2851 2852 // An explicit instantiation of a template has weak linkage, since 2853 // explicit instantiations can occur in multiple translation units 2854 // and must all be equivalent. However, we are not allowed to 2855 // throw away these explicit instantiations. 2856 // 2857 // We don't currently support CUDA device code spread out across multiple TUs, 2858 // so say that CUDA templates are either external (for kernels) or internal. 2859 // This lets llvm perform aggressive inter-procedural optimizations. 2860 if (Linkage == GVA_StrongODR) { 2861 if (Context.getLangOpts().AppleKext) 2862 return llvm::Function::ExternalLinkage; 2863 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 2864 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 2865 : llvm::Function::InternalLinkage; 2866 return llvm::Function::WeakODRLinkage; 2867 } 2868 2869 // C++ doesn't have tentative definitions and thus cannot have common 2870 // linkage. 2871 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2872 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2873 CodeGenOpts.NoCommon)) 2874 return llvm::GlobalVariable::CommonLinkage; 2875 2876 // selectany symbols are externally visible, so use weak instead of 2877 // linkonce. MSVC optimizes away references to const selectany globals, so 2878 // all definitions should be the same and ODR linkage should be used. 2879 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2880 if (D->hasAttr<SelectAnyAttr>()) 2881 return llvm::GlobalVariable::WeakODRLinkage; 2882 2883 // Otherwise, we have strong external linkage. 2884 assert(Linkage == GVA_StrongExternal); 2885 return llvm::GlobalVariable::ExternalLinkage; 2886 } 2887 2888 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2889 const VarDecl *VD, bool IsConstant) { 2890 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2891 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2892 } 2893 2894 /// Replace the uses of a function that was declared with a non-proto type. 2895 /// We want to silently drop extra arguments from call sites 2896 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2897 llvm::Function *newFn) { 2898 // Fast path. 2899 if (old->use_empty()) return; 2900 2901 llvm::Type *newRetTy = newFn->getReturnType(); 2902 SmallVector<llvm::Value*, 4> newArgs; 2903 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2904 2905 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2906 ui != ue; ) { 2907 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2908 llvm::User *user = use->getUser(); 2909 2910 // Recognize and replace uses of bitcasts. Most calls to 2911 // unprototyped functions will use bitcasts. 2912 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2913 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2914 replaceUsesOfNonProtoConstant(bitcast, newFn); 2915 continue; 2916 } 2917 2918 // Recognize calls to the function. 2919 llvm::CallSite callSite(user); 2920 if (!callSite) continue; 2921 if (!callSite.isCallee(&*use)) continue; 2922 2923 // If the return types don't match exactly, then we can't 2924 // transform this call unless it's dead. 2925 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2926 continue; 2927 2928 // Get the call site's attribute list. 2929 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 2930 llvm::AttributeList oldAttrs = callSite.getAttributes(); 2931 2932 // If the function was passed too few arguments, don't transform. 2933 unsigned newNumArgs = newFn->arg_size(); 2934 if (callSite.arg_size() < newNumArgs) continue; 2935 2936 // If extra arguments were passed, we silently drop them. 2937 // If any of the types mismatch, we don't transform. 2938 unsigned argNo = 0; 2939 bool dontTransform = false; 2940 for (llvm::Argument &A : newFn->args()) { 2941 if (callSite.getArgument(argNo)->getType() != A.getType()) { 2942 dontTransform = true; 2943 break; 2944 } 2945 2946 // Add any parameter attributes. 2947 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 2948 argNo++; 2949 } 2950 if (dontTransform) 2951 continue; 2952 2953 // Okay, we can transform this. Create the new call instruction and copy 2954 // over the required information. 2955 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2956 2957 // Copy over any operand bundles. 2958 callSite.getOperandBundlesAsDefs(newBundles); 2959 2960 llvm::CallSite newCall; 2961 if (callSite.isCall()) { 2962 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2963 callSite.getInstruction()); 2964 } else { 2965 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2966 newCall = llvm::InvokeInst::Create(newFn, 2967 oldInvoke->getNormalDest(), 2968 oldInvoke->getUnwindDest(), 2969 newArgs, newBundles, "", 2970 callSite.getInstruction()); 2971 } 2972 newArgs.clear(); // for the next iteration 2973 2974 if (!newCall->getType()->isVoidTy()) 2975 newCall->takeName(callSite.getInstruction()); 2976 newCall.setAttributes(llvm::AttributeList::get( 2977 newFn->getContext(), oldAttrs.getFnAttributes(), 2978 oldAttrs.getRetAttributes(), newArgAttrs)); 2979 newCall.setCallingConv(callSite.getCallingConv()); 2980 2981 // Finally, remove the old call, replacing any uses with the new one. 2982 if (!callSite->use_empty()) 2983 callSite->replaceAllUsesWith(newCall.getInstruction()); 2984 2985 // Copy debug location attached to CI. 2986 if (callSite->getDebugLoc()) 2987 newCall->setDebugLoc(callSite->getDebugLoc()); 2988 2989 callSite->eraseFromParent(); 2990 } 2991 } 2992 2993 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2994 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2995 /// existing call uses of the old function in the module, this adjusts them to 2996 /// call the new function directly. 2997 /// 2998 /// This is not just a cleanup: the always_inline pass requires direct calls to 2999 /// functions to be able to inline them. If there is a bitcast in the way, it 3000 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3001 /// run at -O0. 3002 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3003 llvm::Function *NewFn) { 3004 // If we're redefining a global as a function, don't transform it. 3005 if (!isa<llvm::Function>(Old)) return; 3006 3007 replaceUsesOfNonProtoConstant(Old, NewFn); 3008 } 3009 3010 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3011 auto DK = VD->isThisDeclarationADefinition(); 3012 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3013 return; 3014 3015 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3016 // If we have a definition, this might be a deferred decl. If the 3017 // instantiation is explicit, make sure we emit it at the end. 3018 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3019 GetAddrOfGlobalVar(VD); 3020 3021 EmitTopLevelDecl(VD); 3022 } 3023 3024 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3025 llvm::GlobalValue *GV) { 3026 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3027 3028 // Compute the function info and LLVM type. 3029 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3030 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3031 3032 // Get or create the prototype for the function. 3033 if (!GV || (GV->getType()->getElementType() != Ty)) 3034 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3035 /*DontDefer=*/true, 3036 ForDefinition)); 3037 3038 // Already emitted. 3039 if (!GV->isDeclaration()) 3040 return; 3041 3042 // We need to set linkage and visibility on the function before 3043 // generating code for it because various parts of IR generation 3044 // want to propagate this information down (e.g. to local static 3045 // declarations). 3046 auto *Fn = cast<llvm::Function>(GV); 3047 setFunctionLinkage(GD, Fn); 3048 setFunctionDLLStorageClass(GD, Fn); 3049 3050 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3051 setGlobalVisibility(Fn, D); 3052 3053 MaybeHandleStaticInExternC(D, Fn); 3054 3055 maybeSetTrivialComdat(*D, *Fn); 3056 3057 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3058 3059 setFunctionDefinitionAttributes(D, Fn); 3060 SetLLVMFunctionAttributesForDefinition(D, Fn); 3061 3062 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3063 AddGlobalCtor(Fn, CA->getPriority()); 3064 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3065 AddGlobalDtor(Fn, DA->getPriority()); 3066 if (D->hasAttr<AnnotateAttr>()) 3067 AddGlobalAnnotations(D, Fn); 3068 } 3069 3070 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3071 const auto *D = cast<ValueDecl>(GD.getDecl()); 3072 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3073 assert(AA && "Not an alias?"); 3074 3075 StringRef MangledName = getMangledName(GD); 3076 3077 if (AA->getAliasee() == MangledName) { 3078 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3079 return; 3080 } 3081 3082 // If there is a definition in the module, then it wins over the alias. 3083 // This is dubious, but allow it to be safe. Just ignore the alias. 3084 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3085 if (Entry && !Entry->isDeclaration()) 3086 return; 3087 3088 Aliases.push_back(GD); 3089 3090 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3091 3092 // Create a reference to the named value. This ensures that it is emitted 3093 // if a deferred decl. 3094 llvm::Constant *Aliasee; 3095 if (isa<llvm::FunctionType>(DeclTy)) 3096 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3097 /*ForVTable=*/false); 3098 else 3099 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3100 llvm::PointerType::getUnqual(DeclTy), 3101 /*D=*/nullptr); 3102 3103 // Create the new alias itself, but don't set a name yet. 3104 auto *GA = llvm::GlobalAlias::create( 3105 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3106 3107 if (Entry) { 3108 if (GA->getAliasee() == Entry) { 3109 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3110 return; 3111 } 3112 3113 assert(Entry->isDeclaration()); 3114 3115 // If there is a declaration in the module, then we had an extern followed 3116 // by the alias, as in: 3117 // extern int test6(); 3118 // ... 3119 // int test6() __attribute__((alias("test7"))); 3120 // 3121 // Remove it and replace uses of it with the alias. 3122 GA->takeName(Entry); 3123 3124 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3125 Entry->getType())); 3126 Entry->eraseFromParent(); 3127 } else { 3128 GA->setName(MangledName); 3129 } 3130 3131 // Set attributes which are particular to an alias; this is a 3132 // specialization of the attributes which may be set on a global 3133 // variable/function. 3134 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3135 D->isWeakImported()) { 3136 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3137 } 3138 3139 if (const auto *VD = dyn_cast<VarDecl>(D)) 3140 if (VD->getTLSKind()) 3141 setTLSMode(GA, *VD); 3142 3143 setAliasAttributes(D, GA); 3144 } 3145 3146 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3147 const auto *D = cast<ValueDecl>(GD.getDecl()); 3148 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3149 assert(IFA && "Not an ifunc?"); 3150 3151 StringRef MangledName = getMangledName(GD); 3152 3153 if (IFA->getResolver() == MangledName) { 3154 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3155 return; 3156 } 3157 3158 // Report an error if some definition overrides ifunc. 3159 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3160 if (Entry && !Entry->isDeclaration()) { 3161 GlobalDecl OtherGD; 3162 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3163 DiagnosedConflictingDefinitions.insert(GD).second) { 3164 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3165 Diags.Report(OtherGD.getDecl()->getLocation(), 3166 diag::note_previous_definition); 3167 } 3168 return; 3169 } 3170 3171 Aliases.push_back(GD); 3172 3173 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3174 llvm::Constant *Resolver = 3175 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3176 /*ForVTable=*/false); 3177 llvm::GlobalIFunc *GIF = 3178 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3179 "", Resolver, &getModule()); 3180 if (Entry) { 3181 if (GIF->getResolver() == Entry) { 3182 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3183 return; 3184 } 3185 assert(Entry->isDeclaration()); 3186 3187 // If there is a declaration in the module, then we had an extern followed 3188 // by the ifunc, as in: 3189 // extern int test(); 3190 // ... 3191 // int test() __attribute__((ifunc("resolver"))); 3192 // 3193 // Remove it and replace uses of it with the ifunc. 3194 GIF->takeName(Entry); 3195 3196 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3197 Entry->getType())); 3198 Entry->eraseFromParent(); 3199 } else 3200 GIF->setName(MangledName); 3201 3202 SetCommonAttributes(D, GIF); 3203 } 3204 3205 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3206 ArrayRef<llvm::Type*> Tys) { 3207 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3208 Tys); 3209 } 3210 3211 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3212 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3213 const StringLiteral *Literal, bool TargetIsLSB, 3214 bool &IsUTF16, unsigned &StringLength) { 3215 StringRef String = Literal->getString(); 3216 unsigned NumBytes = String.size(); 3217 3218 // Check for simple case. 3219 if (!Literal->containsNonAsciiOrNull()) { 3220 StringLength = NumBytes; 3221 return *Map.insert(std::make_pair(String, nullptr)).first; 3222 } 3223 3224 // Otherwise, convert the UTF8 literals into a string of shorts. 3225 IsUTF16 = true; 3226 3227 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3228 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3229 llvm::UTF16 *ToPtr = &ToBuf[0]; 3230 3231 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3232 ToPtr + NumBytes, llvm::strictConversion); 3233 3234 // ConvertUTF8toUTF16 returns the length in ToPtr. 3235 StringLength = ToPtr - &ToBuf[0]; 3236 3237 // Add an explicit null. 3238 *ToPtr = 0; 3239 return *Map.insert(std::make_pair( 3240 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3241 (StringLength + 1) * 2), 3242 nullptr)).first; 3243 } 3244 3245 ConstantAddress 3246 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3247 unsigned StringLength = 0; 3248 bool isUTF16 = false; 3249 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3250 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3251 getDataLayout().isLittleEndian(), isUTF16, 3252 StringLength); 3253 3254 if (auto *C = Entry.second) 3255 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3256 3257 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3258 llvm::Constant *Zeros[] = { Zero, Zero }; 3259 3260 // If we don't already have it, get __CFConstantStringClassReference. 3261 if (!CFConstantStringClassRef) { 3262 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3263 Ty = llvm::ArrayType::get(Ty, 0); 3264 llvm::Constant *GV = 3265 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3266 3267 if (getTriple().isOSBinFormatCOFF()) { 3268 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3269 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3270 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3271 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3272 3273 const VarDecl *VD = nullptr; 3274 for (const auto &Result : DC->lookup(&II)) 3275 if ((VD = dyn_cast<VarDecl>(Result))) 3276 break; 3277 3278 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3279 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3280 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3281 } else { 3282 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3283 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3284 } 3285 } 3286 3287 // Decay array -> ptr 3288 CFConstantStringClassRef = 3289 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3290 } 3291 3292 QualType CFTy = getContext().getCFConstantStringType(); 3293 3294 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3295 3296 ConstantInitBuilder Builder(*this); 3297 auto Fields = Builder.beginStruct(STy); 3298 3299 // Class pointer. 3300 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3301 3302 // Flags. 3303 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3304 3305 // String pointer. 3306 llvm::Constant *C = nullptr; 3307 if (isUTF16) { 3308 auto Arr = llvm::makeArrayRef( 3309 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3310 Entry.first().size() / 2); 3311 C = llvm::ConstantDataArray::get(VMContext, Arr); 3312 } else { 3313 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3314 } 3315 3316 // Note: -fwritable-strings doesn't make the backing store strings of 3317 // CFStrings writable. (See <rdar://problem/10657500>) 3318 auto *GV = 3319 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3320 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3321 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3322 // Don't enforce the target's minimum global alignment, since the only use 3323 // of the string is via this class initializer. 3324 CharUnits Align = isUTF16 3325 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3326 : getContext().getTypeAlignInChars(getContext().CharTy); 3327 GV->setAlignment(Align.getQuantity()); 3328 3329 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3330 // Without it LLVM can merge the string with a non unnamed_addr one during 3331 // LTO. Doing that changes the section it ends in, which surprises ld64. 3332 if (getTriple().isOSBinFormatMachO()) 3333 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3334 : "__TEXT,__cstring,cstring_literals"); 3335 3336 // String. 3337 llvm::Constant *Str = 3338 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3339 3340 if (isUTF16) 3341 // Cast the UTF16 string to the correct type. 3342 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3343 Fields.add(Str); 3344 3345 // String length. 3346 auto Ty = getTypes().ConvertType(getContext().LongTy); 3347 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3348 3349 CharUnits Alignment = getPointerAlign(); 3350 3351 // The struct. 3352 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3353 /*isConstant=*/false, 3354 llvm::GlobalVariable::PrivateLinkage); 3355 switch (getTriple().getObjectFormat()) { 3356 case llvm::Triple::UnknownObjectFormat: 3357 llvm_unreachable("unknown file format"); 3358 case llvm::Triple::COFF: 3359 case llvm::Triple::ELF: 3360 case llvm::Triple::Wasm: 3361 GV->setSection("cfstring"); 3362 break; 3363 case llvm::Triple::MachO: 3364 GV->setSection("__DATA,__cfstring"); 3365 break; 3366 } 3367 Entry.second = GV; 3368 3369 return ConstantAddress(GV, Alignment); 3370 } 3371 3372 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3373 if (ObjCFastEnumerationStateType.isNull()) { 3374 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3375 D->startDefinition(); 3376 3377 QualType FieldTypes[] = { 3378 Context.UnsignedLongTy, 3379 Context.getPointerType(Context.getObjCIdType()), 3380 Context.getPointerType(Context.UnsignedLongTy), 3381 Context.getConstantArrayType(Context.UnsignedLongTy, 3382 llvm::APInt(32, 5), ArrayType::Normal, 0) 3383 }; 3384 3385 for (size_t i = 0; i < 4; ++i) { 3386 FieldDecl *Field = FieldDecl::Create(Context, 3387 D, 3388 SourceLocation(), 3389 SourceLocation(), nullptr, 3390 FieldTypes[i], /*TInfo=*/nullptr, 3391 /*BitWidth=*/nullptr, 3392 /*Mutable=*/false, 3393 ICIS_NoInit); 3394 Field->setAccess(AS_public); 3395 D->addDecl(Field); 3396 } 3397 3398 D->completeDefinition(); 3399 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3400 } 3401 3402 return ObjCFastEnumerationStateType; 3403 } 3404 3405 llvm::Constant * 3406 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3407 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3408 3409 // Don't emit it as the address of the string, emit the string data itself 3410 // as an inline array. 3411 if (E->getCharByteWidth() == 1) { 3412 SmallString<64> Str(E->getString()); 3413 3414 // Resize the string to the right size, which is indicated by its type. 3415 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3416 Str.resize(CAT->getSize().getZExtValue()); 3417 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3418 } 3419 3420 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3421 llvm::Type *ElemTy = AType->getElementType(); 3422 unsigned NumElements = AType->getNumElements(); 3423 3424 // Wide strings have either 2-byte or 4-byte elements. 3425 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3426 SmallVector<uint16_t, 32> Elements; 3427 Elements.reserve(NumElements); 3428 3429 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3430 Elements.push_back(E->getCodeUnit(i)); 3431 Elements.resize(NumElements); 3432 return llvm::ConstantDataArray::get(VMContext, Elements); 3433 } 3434 3435 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3436 SmallVector<uint32_t, 32> Elements; 3437 Elements.reserve(NumElements); 3438 3439 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3440 Elements.push_back(E->getCodeUnit(i)); 3441 Elements.resize(NumElements); 3442 return llvm::ConstantDataArray::get(VMContext, Elements); 3443 } 3444 3445 static llvm::GlobalVariable * 3446 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3447 CodeGenModule &CGM, StringRef GlobalName, 3448 CharUnits Alignment) { 3449 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3450 unsigned AddrSpace = 0; 3451 if (CGM.getLangOpts().OpenCL) 3452 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3453 3454 llvm::Module &M = CGM.getModule(); 3455 // Create a global variable for this string 3456 auto *GV = new llvm::GlobalVariable( 3457 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3458 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3459 GV->setAlignment(Alignment.getQuantity()); 3460 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3461 if (GV->isWeakForLinker()) { 3462 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3463 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3464 } 3465 3466 return GV; 3467 } 3468 3469 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3470 /// constant array for the given string literal. 3471 ConstantAddress 3472 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3473 StringRef Name) { 3474 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3475 3476 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3477 llvm::GlobalVariable **Entry = nullptr; 3478 if (!LangOpts.WritableStrings) { 3479 Entry = &ConstantStringMap[C]; 3480 if (auto GV = *Entry) { 3481 if (Alignment.getQuantity() > GV->getAlignment()) 3482 GV->setAlignment(Alignment.getQuantity()); 3483 return ConstantAddress(GV, Alignment); 3484 } 3485 } 3486 3487 SmallString<256> MangledNameBuffer; 3488 StringRef GlobalVariableName; 3489 llvm::GlobalValue::LinkageTypes LT; 3490 3491 // Mangle the string literal if the ABI allows for it. However, we cannot 3492 // do this if we are compiling with ASan or -fwritable-strings because they 3493 // rely on strings having normal linkage. 3494 if (!LangOpts.WritableStrings && 3495 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3496 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3497 llvm::raw_svector_ostream Out(MangledNameBuffer); 3498 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3499 3500 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3501 GlobalVariableName = MangledNameBuffer; 3502 } else { 3503 LT = llvm::GlobalValue::PrivateLinkage; 3504 GlobalVariableName = Name; 3505 } 3506 3507 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3508 if (Entry) 3509 *Entry = GV; 3510 3511 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3512 QualType()); 3513 return ConstantAddress(GV, Alignment); 3514 } 3515 3516 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3517 /// array for the given ObjCEncodeExpr node. 3518 ConstantAddress 3519 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3520 std::string Str; 3521 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3522 3523 return GetAddrOfConstantCString(Str); 3524 } 3525 3526 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3527 /// the literal and a terminating '\0' character. 3528 /// The result has pointer to array type. 3529 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3530 const std::string &Str, const char *GlobalName) { 3531 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3532 CharUnits Alignment = 3533 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3534 3535 llvm::Constant *C = 3536 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3537 3538 // Don't share any string literals if strings aren't constant. 3539 llvm::GlobalVariable **Entry = nullptr; 3540 if (!LangOpts.WritableStrings) { 3541 Entry = &ConstantStringMap[C]; 3542 if (auto GV = *Entry) { 3543 if (Alignment.getQuantity() > GV->getAlignment()) 3544 GV->setAlignment(Alignment.getQuantity()); 3545 return ConstantAddress(GV, Alignment); 3546 } 3547 } 3548 3549 // Get the default prefix if a name wasn't specified. 3550 if (!GlobalName) 3551 GlobalName = ".str"; 3552 // Create a global variable for this. 3553 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3554 GlobalName, Alignment); 3555 if (Entry) 3556 *Entry = GV; 3557 return ConstantAddress(GV, Alignment); 3558 } 3559 3560 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3561 const MaterializeTemporaryExpr *E, const Expr *Init) { 3562 assert((E->getStorageDuration() == SD_Static || 3563 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3564 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3565 3566 // If we're not materializing a subobject of the temporary, keep the 3567 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3568 QualType MaterializedType = Init->getType(); 3569 if (Init == E->GetTemporaryExpr()) 3570 MaterializedType = E->getType(); 3571 3572 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3573 3574 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3575 return ConstantAddress(Slot, Align); 3576 3577 // FIXME: If an externally-visible declaration extends multiple temporaries, 3578 // we need to give each temporary the same name in every translation unit (and 3579 // we also need to make the temporaries externally-visible). 3580 SmallString<256> Name; 3581 llvm::raw_svector_ostream Out(Name); 3582 getCXXABI().getMangleContext().mangleReferenceTemporary( 3583 VD, E->getManglingNumber(), Out); 3584 3585 APValue *Value = nullptr; 3586 if (E->getStorageDuration() == SD_Static) { 3587 // We might have a cached constant initializer for this temporary. Note 3588 // that this might have a different value from the value computed by 3589 // evaluating the initializer if the surrounding constant expression 3590 // modifies the temporary. 3591 Value = getContext().getMaterializedTemporaryValue(E, false); 3592 if (Value && Value->isUninit()) 3593 Value = nullptr; 3594 } 3595 3596 // Try evaluating it now, it might have a constant initializer. 3597 Expr::EvalResult EvalResult; 3598 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3599 !EvalResult.hasSideEffects()) 3600 Value = &EvalResult.Val; 3601 3602 llvm::Constant *InitialValue = nullptr; 3603 bool Constant = false; 3604 llvm::Type *Type; 3605 if (Value) { 3606 // The temporary has a constant initializer, use it. 3607 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3608 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3609 Type = InitialValue->getType(); 3610 } else { 3611 // No initializer, the initialization will be provided when we 3612 // initialize the declaration which performed lifetime extension. 3613 Type = getTypes().ConvertTypeForMem(MaterializedType); 3614 } 3615 3616 // Create a global variable for this lifetime-extended temporary. 3617 llvm::GlobalValue::LinkageTypes Linkage = 3618 getLLVMLinkageVarDefinition(VD, Constant); 3619 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3620 const VarDecl *InitVD; 3621 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3622 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3623 // Temporaries defined inside a class get linkonce_odr linkage because the 3624 // class can be defined in multipe translation units. 3625 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3626 } else { 3627 // There is no need for this temporary to have external linkage if the 3628 // VarDecl has external linkage. 3629 Linkage = llvm::GlobalVariable::InternalLinkage; 3630 } 3631 } 3632 unsigned AddrSpace = GetGlobalVarAddressSpace( 3633 VD, getContext().getTargetAddressSpace(MaterializedType)); 3634 auto *GV = new llvm::GlobalVariable( 3635 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3636 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3637 AddrSpace); 3638 setGlobalVisibility(GV, VD); 3639 GV->setAlignment(Align.getQuantity()); 3640 if (supportsCOMDAT() && GV->isWeakForLinker()) 3641 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3642 if (VD->getTLSKind()) 3643 setTLSMode(GV, *VD); 3644 MaterializedGlobalTemporaryMap[E] = GV; 3645 return ConstantAddress(GV, Align); 3646 } 3647 3648 /// EmitObjCPropertyImplementations - Emit information for synthesized 3649 /// properties for an implementation. 3650 void CodeGenModule::EmitObjCPropertyImplementations(const 3651 ObjCImplementationDecl *D) { 3652 for (const auto *PID : D->property_impls()) { 3653 // Dynamic is just for type-checking. 3654 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3655 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3656 3657 // Determine which methods need to be implemented, some may have 3658 // been overridden. Note that ::isPropertyAccessor is not the method 3659 // we want, that just indicates if the decl came from a 3660 // property. What we want to know is if the method is defined in 3661 // this implementation. 3662 if (!D->getInstanceMethod(PD->getGetterName())) 3663 CodeGenFunction(*this).GenerateObjCGetter( 3664 const_cast<ObjCImplementationDecl *>(D), PID); 3665 if (!PD->isReadOnly() && 3666 !D->getInstanceMethod(PD->getSetterName())) 3667 CodeGenFunction(*this).GenerateObjCSetter( 3668 const_cast<ObjCImplementationDecl *>(D), PID); 3669 } 3670 } 3671 } 3672 3673 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3674 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3675 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3676 ivar; ivar = ivar->getNextIvar()) 3677 if (ivar->getType().isDestructedType()) 3678 return true; 3679 3680 return false; 3681 } 3682 3683 static bool AllTrivialInitializers(CodeGenModule &CGM, 3684 ObjCImplementationDecl *D) { 3685 CodeGenFunction CGF(CGM); 3686 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3687 E = D->init_end(); B != E; ++B) { 3688 CXXCtorInitializer *CtorInitExp = *B; 3689 Expr *Init = CtorInitExp->getInit(); 3690 if (!CGF.isTrivialInitializer(Init)) 3691 return false; 3692 } 3693 return true; 3694 } 3695 3696 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3697 /// for an implementation. 3698 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3699 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3700 if (needsDestructMethod(D)) { 3701 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3702 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3703 ObjCMethodDecl *DTORMethod = 3704 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3705 cxxSelector, getContext().VoidTy, nullptr, D, 3706 /*isInstance=*/true, /*isVariadic=*/false, 3707 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3708 /*isDefined=*/false, ObjCMethodDecl::Required); 3709 D->addInstanceMethod(DTORMethod); 3710 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3711 D->setHasDestructors(true); 3712 } 3713 3714 // If the implementation doesn't have any ivar initializers, we don't need 3715 // a .cxx_construct. 3716 if (D->getNumIvarInitializers() == 0 || 3717 AllTrivialInitializers(*this, D)) 3718 return; 3719 3720 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3721 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3722 // The constructor returns 'self'. 3723 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3724 D->getLocation(), 3725 D->getLocation(), 3726 cxxSelector, 3727 getContext().getObjCIdType(), 3728 nullptr, D, /*isInstance=*/true, 3729 /*isVariadic=*/false, 3730 /*isPropertyAccessor=*/true, 3731 /*isImplicitlyDeclared=*/true, 3732 /*isDefined=*/false, 3733 ObjCMethodDecl::Required); 3734 D->addInstanceMethod(CTORMethod); 3735 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3736 D->setHasNonZeroConstructors(true); 3737 } 3738 3739 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3740 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3741 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3742 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3743 ErrorUnsupported(LSD, "linkage spec"); 3744 return; 3745 } 3746 3747 EmitDeclContext(LSD); 3748 } 3749 3750 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3751 for (auto *I : DC->decls()) { 3752 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3753 // are themselves considered "top-level", so EmitTopLevelDecl on an 3754 // ObjCImplDecl does not recursively visit them. We need to do that in 3755 // case they're nested inside another construct (LinkageSpecDecl / 3756 // ExportDecl) that does stop them from being considered "top-level". 3757 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3758 for (auto *M : OID->methods()) 3759 EmitTopLevelDecl(M); 3760 } 3761 3762 EmitTopLevelDecl(I); 3763 } 3764 } 3765 3766 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3767 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3768 // Ignore dependent declarations. 3769 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3770 return; 3771 3772 switch (D->getKind()) { 3773 case Decl::CXXConversion: 3774 case Decl::CXXMethod: 3775 case Decl::Function: 3776 // Skip function templates 3777 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3778 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3779 return; 3780 3781 EmitGlobal(cast<FunctionDecl>(D)); 3782 // Always provide some coverage mapping 3783 // even for the functions that aren't emitted. 3784 AddDeferredUnusedCoverageMapping(D); 3785 break; 3786 3787 case Decl::CXXDeductionGuide: 3788 // Function-like, but does not result in code emission. 3789 break; 3790 3791 case Decl::Var: 3792 case Decl::Decomposition: 3793 // Skip variable templates 3794 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3795 return; 3796 case Decl::VarTemplateSpecialization: 3797 EmitGlobal(cast<VarDecl>(D)); 3798 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3799 for (auto *B : DD->bindings()) 3800 if (auto *HD = B->getHoldingVar()) 3801 EmitGlobal(HD); 3802 break; 3803 3804 // Indirect fields from global anonymous structs and unions can be 3805 // ignored; only the actual variable requires IR gen support. 3806 case Decl::IndirectField: 3807 break; 3808 3809 // C++ Decls 3810 case Decl::Namespace: 3811 EmitDeclContext(cast<NamespaceDecl>(D)); 3812 break; 3813 case Decl::CXXRecord: 3814 if (DebugInfo) { 3815 if (auto *ES = D->getASTContext().getExternalSource()) 3816 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 3817 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 3818 } 3819 // Emit any static data members, they may be definitions. 3820 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3821 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3822 EmitTopLevelDecl(I); 3823 break; 3824 // No code generation needed. 3825 case Decl::UsingShadow: 3826 case Decl::ClassTemplate: 3827 case Decl::VarTemplate: 3828 case Decl::VarTemplatePartialSpecialization: 3829 case Decl::FunctionTemplate: 3830 case Decl::TypeAliasTemplate: 3831 case Decl::Block: 3832 case Decl::Empty: 3833 break; 3834 case Decl::Using: // using X; [C++] 3835 if (CGDebugInfo *DI = getModuleDebugInfo()) 3836 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3837 return; 3838 case Decl::NamespaceAlias: 3839 if (CGDebugInfo *DI = getModuleDebugInfo()) 3840 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3841 return; 3842 case Decl::UsingDirective: // using namespace X; [C++] 3843 if (CGDebugInfo *DI = getModuleDebugInfo()) 3844 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3845 return; 3846 case Decl::CXXConstructor: 3847 // Skip function templates 3848 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3849 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3850 return; 3851 3852 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3853 break; 3854 case Decl::CXXDestructor: 3855 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3856 return; 3857 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3858 break; 3859 3860 case Decl::StaticAssert: 3861 // Nothing to do. 3862 break; 3863 3864 // Objective-C Decls 3865 3866 // Forward declarations, no (immediate) code generation. 3867 case Decl::ObjCInterface: 3868 case Decl::ObjCCategory: 3869 break; 3870 3871 case Decl::ObjCProtocol: { 3872 auto *Proto = cast<ObjCProtocolDecl>(D); 3873 if (Proto->isThisDeclarationADefinition()) 3874 ObjCRuntime->GenerateProtocol(Proto); 3875 break; 3876 } 3877 3878 case Decl::ObjCCategoryImpl: 3879 // Categories have properties but don't support synthesize so we 3880 // can ignore them here. 3881 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3882 break; 3883 3884 case Decl::ObjCImplementation: { 3885 auto *OMD = cast<ObjCImplementationDecl>(D); 3886 EmitObjCPropertyImplementations(OMD); 3887 EmitObjCIvarInitializations(OMD); 3888 ObjCRuntime->GenerateClass(OMD); 3889 // Emit global variable debug information. 3890 if (CGDebugInfo *DI = getModuleDebugInfo()) 3891 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3892 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3893 OMD->getClassInterface()), OMD->getLocation()); 3894 break; 3895 } 3896 case Decl::ObjCMethod: { 3897 auto *OMD = cast<ObjCMethodDecl>(D); 3898 // If this is not a prototype, emit the body. 3899 if (OMD->getBody()) 3900 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3901 break; 3902 } 3903 case Decl::ObjCCompatibleAlias: 3904 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3905 break; 3906 3907 case Decl::PragmaComment: { 3908 const auto *PCD = cast<PragmaCommentDecl>(D); 3909 switch (PCD->getCommentKind()) { 3910 case PCK_Unknown: 3911 llvm_unreachable("unexpected pragma comment kind"); 3912 case PCK_Linker: 3913 AppendLinkerOptions(PCD->getArg()); 3914 break; 3915 case PCK_Lib: 3916 AddDependentLib(PCD->getArg()); 3917 break; 3918 case PCK_Compiler: 3919 case PCK_ExeStr: 3920 case PCK_User: 3921 break; // We ignore all of these. 3922 } 3923 break; 3924 } 3925 3926 case Decl::PragmaDetectMismatch: { 3927 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3928 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3929 break; 3930 } 3931 3932 case Decl::LinkageSpec: 3933 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3934 break; 3935 3936 case Decl::FileScopeAsm: { 3937 // File-scope asm is ignored during device-side CUDA compilation. 3938 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3939 break; 3940 // File-scope asm is ignored during device-side OpenMP compilation. 3941 if (LangOpts.OpenMPIsDevice) 3942 break; 3943 auto *AD = cast<FileScopeAsmDecl>(D); 3944 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3945 break; 3946 } 3947 3948 case Decl::Import: { 3949 auto *Import = cast<ImportDecl>(D); 3950 3951 // If we've already imported this module, we're done. 3952 if (!ImportedModules.insert(Import->getImportedModule())) 3953 break; 3954 3955 // Emit debug information for direct imports. 3956 if (!Import->getImportedOwningModule()) { 3957 if (CGDebugInfo *DI = getModuleDebugInfo()) 3958 DI->EmitImportDecl(*Import); 3959 } 3960 3961 // Find all of the submodules and emit the module initializers. 3962 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3963 SmallVector<clang::Module *, 16> Stack; 3964 Visited.insert(Import->getImportedModule()); 3965 Stack.push_back(Import->getImportedModule()); 3966 3967 while (!Stack.empty()) { 3968 clang::Module *Mod = Stack.pop_back_val(); 3969 if (!EmittedModuleInitializers.insert(Mod).second) 3970 continue; 3971 3972 for (auto *D : Context.getModuleInitializers(Mod)) 3973 EmitTopLevelDecl(D); 3974 3975 // Visit the submodules of this module. 3976 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 3977 SubEnd = Mod->submodule_end(); 3978 Sub != SubEnd; ++Sub) { 3979 // Skip explicit children; they need to be explicitly imported to emit 3980 // the initializers. 3981 if ((*Sub)->IsExplicit) 3982 continue; 3983 3984 if (Visited.insert(*Sub).second) 3985 Stack.push_back(*Sub); 3986 } 3987 } 3988 break; 3989 } 3990 3991 case Decl::Export: 3992 EmitDeclContext(cast<ExportDecl>(D)); 3993 break; 3994 3995 case Decl::OMPThreadPrivate: 3996 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3997 break; 3998 3999 case Decl::ClassTemplateSpecialization: { 4000 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4001 if (DebugInfo && 4002 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4003 Spec->hasDefinition()) 4004 DebugInfo->completeTemplateDefinition(*Spec); 4005 break; 4006 } 4007 4008 case Decl::OMPDeclareReduction: 4009 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4010 break; 4011 4012 default: 4013 // Make sure we handled everything we should, every other kind is a 4014 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4015 // function. Need to recode Decl::Kind to do that easily. 4016 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4017 break; 4018 } 4019 } 4020 4021 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4022 // Do we need to generate coverage mapping? 4023 if (!CodeGenOpts.CoverageMapping) 4024 return; 4025 switch (D->getKind()) { 4026 case Decl::CXXConversion: 4027 case Decl::CXXMethod: 4028 case Decl::Function: 4029 case Decl::ObjCMethod: 4030 case Decl::CXXConstructor: 4031 case Decl::CXXDestructor: { 4032 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4033 return; 4034 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4035 if (I == DeferredEmptyCoverageMappingDecls.end()) 4036 DeferredEmptyCoverageMappingDecls[D] = true; 4037 break; 4038 } 4039 default: 4040 break; 4041 }; 4042 } 4043 4044 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4045 // Do we need to generate coverage mapping? 4046 if (!CodeGenOpts.CoverageMapping) 4047 return; 4048 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4049 if (Fn->isTemplateInstantiation()) 4050 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4051 } 4052 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4053 if (I == DeferredEmptyCoverageMappingDecls.end()) 4054 DeferredEmptyCoverageMappingDecls[D] = false; 4055 else 4056 I->second = false; 4057 } 4058 4059 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4060 std::vector<const Decl *> DeferredDecls; 4061 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4062 if (!I.second) 4063 continue; 4064 DeferredDecls.push_back(I.first); 4065 } 4066 // Sort the declarations by their location to make sure that the tests get a 4067 // predictable order for the coverage mapping for the unused declarations. 4068 if (CodeGenOpts.DumpCoverageMapping) 4069 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4070 [] (const Decl *LHS, const Decl *RHS) { 4071 return LHS->getLocStart() < RHS->getLocStart(); 4072 }); 4073 for (const auto *D : DeferredDecls) { 4074 switch (D->getKind()) { 4075 case Decl::CXXConversion: 4076 case Decl::CXXMethod: 4077 case Decl::Function: 4078 case Decl::ObjCMethod: { 4079 CodeGenPGO PGO(*this); 4080 GlobalDecl GD(cast<FunctionDecl>(D)); 4081 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4082 getFunctionLinkage(GD)); 4083 break; 4084 } 4085 case Decl::CXXConstructor: { 4086 CodeGenPGO PGO(*this); 4087 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4088 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4089 getFunctionLinkage(GD)); 4090 break; 4091 } 4092 case Decl::CXXDestructor: { 4093 CodeGenPGO PGO(*this); 4094 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4095 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4096 getFunctionLinkage(GD)); 4097 break; 4098 } 4099 default: 4100 break; 4101 }; 4102 } 4103 } 4104 4105 /// Turns the given pointer into a constant. 4106 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4107 const void *Ptr) { 4108 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4109 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4110 return llvm::ConstantInt::get(i64, PtrInt); 4111 } 4112 4113 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4114 llvm::NamedMDNode *&GlobalMetadata, 4115 GlobalDecl D, 4116 llvm::GlobalValue *Addr) { 4117 if (!GlobalMetadata) 4118 GlobalMetadata = 4119 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4120 4121 // TODO: should we report variant information for ctors/dtors? 4122 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4123 llvm::ConstantAsMetadata::get(GetPointerConstant( 4124 CGM.getLLVMContext(), D.getDecl()))}; 4125 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4126 } 4127 4128 /// For each function which is declared within an extern "C" region and marked 4129 /// as 'used', but has internal linkage, create an alias from the unmangled 4130 /// name to the mangled name if possible. People expect to be able to refer 4131 /// to such functions with an unmangled name from inline assembly within the 4132 /// same translation unit. 4133 void CodeGenModule::EmitStaticExternCAliases() { 4134 // Don't do anything if we're generating CUDA device code -- the NVPTX 4135 // assembly target doesn't support aliases. 4136 if (Context.getTargetInfo().getTriple().isNVPTX()) 4137 return; 4138 for (auto &I : StaticExternCValues) { 4139 IdentifierInfo *Name = I.first; 4140 llvm::GlobalValue *Val = I.second; 4141 if (Val && !getModule().getNamedValue(Name->getName())) 4142 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4143 } 4144 } 4145 4146 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4147 GlobalDecl &Result) const { 4148 auto Res = Manglings.find(MangledName); 4149 if (Res == Manglings.end()) 4150 return false; 4151 Result = Res->getValue(); 4152 return true; 4153 } 4154 4155 /// Emits metadata nodes associating all the global values in the 4156 /// current module with the Decls they came from. This is useful for 4157 /// projects using IR gen as a subroutine. 4158 /// 4159 /// Since there's currently no way to associate an MDNode directly 4160 /// with an llvm::GlobalValue, we create a global named metadata 4161 /// with the name 'clang.global.decl.ptrs'. 4162 void CodeGenModule::EmitDeclMetadata() { 4163 llvm::NamedMDNode *GlobalMetadata = nullptr; 4164 4165 for (auto &I : MangledDeclNames) { 4166 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4167 // Some mangled names don't necessarily have an associated GlobalValue 4168 // in this module, e.g. if we mangled it for DebugInfo. 4169 if (Addr) 4170 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4171 } 4172 } 4173 4174 /// Emits metadata nodes for all the local variables in the current 4175 /// function. 4176 void CodeGenFunction::EmitDeclMetadata() { 4177 if (LocalDeclMap.empty()) return; 4178 4179 llvm::LLVMContext &Context = getLLVMContext(); 4180 4181 // Find the unique metadata ID for this name. 4182 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4183 4184 llvm::NamedMDNode *GlobalMetadata = nullptr; 4185 4186 for (auto &I : LocalDeclMap) { 4187 const Decl *D = I.first; 4188 llvm::Value *Addr = I.second.getPointer(); 4189 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4190 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4191 Alloca->setMetadata( 4192 DeclPtrKind, llvm::MDNode::get( 4193 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4194 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4195 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4196 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4197 } 4198 } 4199 } 4200 4201 void CodeGenModule::EmitVersionIdentMetadata() { 4202 llvm::NamedMDNode *IdentMetadata = 4203 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4204 std::string Version = getClangFullVersion(); 4205 llvm::LLVMContext &Ctx = TheModule.getContext(); 4206 4207 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4208 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4209 } 4210 4211 void CodeGenModule::EmitTargetMetadata() { 4212 // Warning, new MangledDeclNames may be appended within this loop. 4213 // We rely on MapVector insertions adding new elements to the end 4214 // of the container. 4215 // FIXME: Move this loop into the one target that needs it, and only 4216 // loop over those declarations for which we couldn't emit the target 4217 // metadata when we emitted the declaration. 4218 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4219 auto Val = *(MangledDeclNames.begin() + I); 4220 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4221 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4222 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4223 } 4224 } 4225 4226 void CodeGenModule::EmitCoverageFile() { 4227 if (getCodeGenOpts().CoverageDataFile.empty() && 4228 getCodeGenOpts().CoverageNotesFile.empty()) 4229 return; 4230 4231 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4232 if (!CUNode) 4233 return; 4234 4235 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4236 llvm::LLVMContext &Ctx = TheModule.getContext(); 4237 auto *CoverageDataFile = 4238 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4239 auto *CoverageNotesFile = 4240 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4241 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4242 llvm::MDNode *CU = CUNode->getOperand(i); 4243 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4244 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4245 } 4246 } 4247 4248 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4249 // Sema has checked that all uuid strings are of the form 4250 // "12345678-1234-1234-1234-1234567890ab". 4251 assert(Uuid.size() == 36); 4252 for (unsigned i = 0; i < 36; ++i) { 4253 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4254 else assert(isHexDigit(Uuid[i])); 4255 } 4256 4257 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4258 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4259 4260 llvm::Constant *Field3[8]; 4261 for (unsigned Idx = 0; Idx < 8; ++Idx) 4262 Field3[Idx] = llvm::ConstantInt::get( 4263 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4264 4265 llvm::Constant *Fields[4] = { 4266 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4267 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4268 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4269 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4270 }; 4271 4272 return llvm::ConstantStruct::getAnon(Fields); 4273 } 4274 4275 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4276 bool ForEH) { 4277 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4278 // FIXME: should we even be calling this method if RTTI is disabled 4279 // and it's not for EH? 4280 if (!ForEH && !getLangOpts().RTTI) 4281 return llvm::Constant::getNullValue(Int8PtrTy); 4282 4283 if (ForEH && Ty->isObjCObjectPointerType() && 4284 LangOpts.ObjCRuntime.isGNUFamily()) 4285 return ObjCRuntime->GetEHType(Ty); 4286 4287 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4288 } 4289 4290 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4291 for (auto RefExpr : D->varlists()) { 4292 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4293 bool PerformInit = 4294 VD->getAnyInitializer() && 4295 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4296 /*ForRef=*/false); 4297 4298 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4299 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4300 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4301 CXXGlobalInits.push_back(InitFunction); 4302 } 4303 } 4304 4305 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4306 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4307 if (InternalId) 4308 return InternalId; 4309 4310 if (isExternallyVisible(T->getLinkage())) { 4311 std::string OutName; 4312 llvm::raw_string_ostream Out(OutName); 4313 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4314 4315 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4316 } else { 4317 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4318 llvm::ArrayRef<llvm::Metadata *>()); 4319 } 4320 4321 return InternalId; 4322 } 4323 4324 /// Returns whether this module needs the "all-vtables" type identifier. 4325 bool CodeGenModule::NeedAllVtablesTypeId() const { 4326 // Returns true if at least one of vtable-based CFI checkers is enabled and 4327 // is not in the trapping mode. 4328 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4329 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4330 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4331 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4332 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4333 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4334 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4335 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4336 } 4337 4338 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4339 CharUnits Offset, 4340 const CXXRecordDecl *RD) { 4341 llvm::Metadata *MD = 4342 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4343 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4344 4345 if (CodeGenOpts.SanitizeCfiCrossDso) 4346 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4347 VTable->addTypeMetadata(Offset.getQuantity(), 4348 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4349 4350 if (NeedAllVtablesTypeId()) { 4351 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4352 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4353 } 4354 } 4355 4356 // Fills in the supplied string map with the set of target features for the 4357 // passed in function. 4358 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4359 const FunctionDecl *FD) { 4360 StringRef TargetCPU = Target.getTargetOpts().CPU; 4361 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4362 // If we have a TargetAttr build up the feature map based on that. 4363 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4364 4365 // Make a copy of the features as passed on the command line into the 4366 // beginning of the additional features from the function to override. 4367 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4368 Target.getTargetOpts().FeaturesAsWritten.begin(), 4369 Target.getTargetOpts().FeaturesAsWritten.end()); 4370 4371 if (ParsedAttr.second != "") 4372 TargetCPU = ParsedAttr.second; 4373 4374 // Now populate the feature map, first with the TargetCPU which is either 4375 // the default or a new one from the target attribute string. Then we'll use 4376 // the passed in features (FeaturesAsWritten) along with the new ones from 4377 // the attribute. 4378 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4379 } else { 4380 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4381 Target.getTargetOpts().Features); 4382 } 4383 } 4384 4385 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4386 if (!SanStats) 4387 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4388 4389 return *SanStats; 4390 } 4391 llvm::Value * 4392 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4393 CodeGenFunction &CGF) { 4394 llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF); 4395 auto SamplerT = getOpenCLRuntime().getSamplerType(); 4396 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4397 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4398 "__translate_sampler_initializer"), 4399 {C}); 4400 } 4401