1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getTarget().getCXXABI().getKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 127 IntPtrTy = llvm::IntegerType::get(LLVMContext, 128 C.getTargetInfo().getMaxPointerWidth()); 129 Int8PtrTy = Int8Ty->getPointerTo(0); 130 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 131 AllocaInt8PtrTy = Int8Ty->getPointerTo( 132 M.getDataLayout().getAllocaAddrSpace()); 133 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 134 135 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 136 137 if (LangOpts.ObjC) 138 createObjCRuntime(); 139 if (LangOpts.OpenCL) 140 createOpenCLRuntime(); 141 if (LangOpts.OpenMP) 142 createOpenMPRuntime(); 143 if (LangOpts.CUDA) 144 createCUDARuntime(); 145 146 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 147 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 148 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 149 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 150 getCXXABI().getMangleContext())); 151 152 // If debug info or coverage generation is enabled, create the CGDebugInfo 153 // object. 154 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 155 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 156 DebugInfo.reset(new CGDebugInfo(*this)); 157 158 Block.GlobalUniqueCount = 0; 159 160 if (C.getLangOpts().ObjC) 161 ObjCData.reset(new ObjCEntrypoints()); 162 163 if (CodeGenOpts.hasProfileClangUse()) { 164 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 165 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 166 if (auto E = ReaderOrErr.takeError()) { 167 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 168 "Could not read profile %0: %1"); 169 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 170 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 171 << EI.message(); 172 }); 173 } else 174 PGOReader = std::move(ReaderOrErr.get()); 175 } 176 177 // If coverage mapping generation is enabled, create the 178 // CoverageMappingModuleGen object. 179 if (CodeGenOpts.CoverageMapping) 180 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 181 } 182 183 CodeGenModule::~CodeGenModule() {} 184 185 void CodeGenModule::createObjCRuntime() { 186 // This is just isGNUFamily(), but we want to force implementors of 187 // new ABIs to decide how best to do this. 188 switch (LangOpts.ObjCRuntime.getKind()) { 189 case ObjCRuntime::GNUstep: 190 case ObjCRuntime::GCC: 191 case ObjCRuntime::ObjFW: 192 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 193 return; 194 195 case ObjCRuntime::FragileMacOSX: 196 case ObjCRuntime::MacOSX: 197 case ObjCRuntime::iOS: 198 case ObjCRuntime::WatchOS: 199 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 200 return; 201 } 202 llvm_unreachable("bad runtime kind"); 203 } 204 205 void CodeGenModule::createOpenCLRuntime() { 206 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 207 } 208 209 void CodeGenModule::createOpenMPRuntime() { 210 // Select a specialized code generation class based on the target, if any. 211 // If it does not exist use the default implementation. 212 switch (getTriple().getArch()) { 213 case llvm::Triple::nvptx: 214 case llvm::Triple::nvptx64: 215 assert(getLangOpts().OpenMPIsDevice && 216 "OpenMP NVPTX is only prepared to deal with device code."); 217 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 218 break; 219 case llvm::Triple::amdgcn: 220 assert(getLangOpts().OpenMPIsDevice && 221 "OpenMP AMDGCN is only prepared to deal with device code."); 222 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 223 break; 224 default: 225 if (LangOpts.OpenMPSimd) 226 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 227 else 228 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 229 break; 230 } 231 } 232 233 void CodeGenModule::createCUDARuntime() { 234 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 235 } 236 237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 238 Replacements[Name] = C; 239 } 240 241 void CodeGenModule::applyReplacements() { 242 for (auto &I : Replacements) { 243 StringRef MangledName = I.first(); 244 llvm::Constant *Replacement = I.second; 245 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 246 if (!Entry) 247 continue; 248 auto *OldF = cast<llvm::Function>(Entry); 249 auto *NewF = dyn_cast<llvm::Function>(Replacement); 250 if (!NewF) { 251 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 252 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 253 } else { 254 auto *CE = cast<llvm::ConstantExpr>(Replacement); 255 assert(CE->getOpcode() == llvm::Instruction::BitCast || 256 CE->getOpcode() == llvm::Instruction::GetElementPtr); 257 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 258 } 259 } 260 261 // Replace old with new, but keep the old order. 262 OldF->replaceAllUsesWith(Replacement); 263 if (NewF) { 264 NewF->removeFromParent(); 265 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 266 NewF); 267 } 268 OldF->eraseFromParent(); 269 } 270 } 271 272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 273 GlobalValReplacements.push_back(std::make_pair(GV, C)); 274 } 275 276 void CodeGenModule::applyGlobalValReplacements() { 277 for (auto &I : GlobalValReplacements) { 278 llvm::GlobalValue *GV = I.first; 279 llvm::Constant *C = I.second; 280 281 GV->replaceAllUsesWith(C); 282 GV->eraseFromParent(); 283 } 284 } 285 286 // This is only used in aliases that we created and we know they have a 287 // linear structure. 288 static const llvm::GlobalObject *getAliasedGlobal( 289 const llvm::GlobalIndirectSymbol &GIS) { 290 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 291 const llvm::Constant *C = &GIS; 292 for (;;) { 293 C = C->stripPointerCasts(); 294 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 295 return GO; 296 // stripPointerCasts will not walk over weak aliases. 297 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 298 if (!GIS2) 299 return nullptr; 300 if (!Visited.insert(GIS2).second) 301 return nullptr; 302 C = GIS2->getIndirectSymbol(); 303 } 304 } 305 306 void CodeGenModule::checkAliases() { 307 // Check if the constructed aliases are well formed. It is really unfortunate 308 // that we have to do this in CodeGen, but we only construct mangled names 309 // and aliases during codegen. 310 bool Error = false; 311 DiagnosticsEngine &Diags = getDiags(); 312 for (const GlobalDecl &GD : Aliases) { 313 const auto *D = cast<ValueDecl>(GD.getDecl()); 314 SourceLocation Location; 315 bool IsIFunc = D->hasAttr<IFuncAttr>(); 316 if (const Attr *A = D->getDefiningAttr()) 317 Location = A->getLocation(); 318 else 319 llvm_unreachable("Not an alias or ifunc?"); 320 StringRef MangledName = getMangledName(GD); 321 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 322 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 323 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 324 if (!GV) { 325 Error = true; 326 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 327 } else if (GV->isDeclaration()) { 328 Error = true; 329 Diags.Report(Location, diag::err_alias_to_undefined) 330 << IsIFunc << IsIFunc; 331 } else if (IsIFunc) { 332 // Check resolver function type. 333 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 334 GV->getType()->getPointerElementType()); 335 assert(FTy); 336 if (!FTy->getReturnType()->isPointerTy()) 337 Diags.Report(Location, diag::err_ifunc_resolver_return); 338 } 339 340 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 341 llvm::GlobalValue *AliaseeGV; 342 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 343 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 344 else 345 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 346 347 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 348 StringRef AliasSection = SA->getName(); 349 if (AliasSection != AliaseeGV->getSection()) 350 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 351 << AliasSection << IsIFunc << IsIFunc; 352 } 353 354 // We have to handle alias to weak aliases in here. LLVM itself disallows 355 // this since the object semantics would not match the IL one. For 356 // compatibility with gcc we implement it by just pointing the alias 357 // to its aliasee's aliasee. We also warn, since the user is probably 358 // expecting the link to be weak. 359 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 360 if (GA->isInterposable()) { 361 Diags.Report(Location, diag::warn_alias_to_weak_alias) 362 << GV->getName() << GA->getName() << IsIFunc; 363 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 364 GA->getIndirectSymbol(), Alias->getType()); 365 Alias->setIndirectSymbol(Aliasee); 366 } 367 } 368 } 369 if (!Error) 370 return; 371 372 for (const GlobalDecl &GD : Aliases) { 373 StringRef MangledName = getMangledName(GD); 374 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 375 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 376 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 377 Alias->eraseFromParent(); 378 } 379 } 380 381 void CodeGenModule::clear() { 382 DeferredDeclsToEmit.clear(); 383 if (OpenMPRuntime) 384 OpenMPRuntime->clear(); 385 } 386 387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 388 StringRef MainFile) { 389 if (!hasDiagnostics()) 390 return; 391 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 392 if (MainFile.empty()) 393 MainFile = "<stdin>"; 394 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 395 } else { 396 if (Mismatched > 0) 397 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 398 399 if (Missing > 0) 400 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 401 } 402 } 403 404 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 405 llvm::Module &M) { 406 if (!LO.VisibilityFromDLLStorageClass) 407 return; 408 409 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 410 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 411 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 412 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 413 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 414 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 415 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 416 CodeGenModule::GetLLVMVisibility( 417 LO.getExternDeclNoDLLStorageClassVisibility()); 418 419 for (llvm::GlobalValue &GV : M.global_values()) { 420 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 421 continue; 422 423 // Reset DSO locality before setting the visibility. This removes 424 // any effects that visibility options and annotations may have 425 // had on the DSO locality. Setting the visibility will implicitly set 426 // appropriate globals to DSO Local; however, this will be pessimistic 427 // w.r.t. to the normal compiler IRGen. 428 GV.setDSOLocal(false); 429 430 if (GV.isDeclarationForLinker()) { 431 GV.setVisibility(GV.getDLLStorageClass() == 432 llvm::GlobalValue::DLLImportStorageClass 433 ? ExternDeclDLLImportVisibility 434 : ExternDeclNoDLLStorageClassVisibility); 435 } else { 436 GV.setVisibility(GV.getDLLStorageClass() == 437 llvm::GlobalValue::DLLExportStorageClass 438 ? DLLExportVisibility 439 : NoDLLStorageClassVisibility); 440 } 441 442 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 443 } 444 } 445 446 void CodeGenModule::Release() { 447 EmitDeferred(); 448 EmitVTablesOpportunistically(); 449 applyGlobalValReplacements(); 450 applyReplacements(); 451 checkAliases(); 452 emitMultiVersionFunctions(); 453 EmitCXXGlobalInitFunc(); 454 EmitCXXGlobalCleanUpFunc(); 455 registerGlobalDtorsWithAtExit(); 456 EmitCXXThreadLocalInitFunc(); 457 if (ObjCRuntime) 458 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 459 AddGlobalCtor(ObjCInitFunction); 460 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 461 CUDARuntime) { 462 if (llvm::Function *CudaCtorFunction = 463 CUDARuntime->makeModuleCtorFunction()) 464 AddGlobalCtor(CudaCtorFunction); 465 } 466 if (OpenMPRuntime) { 467 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 468 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 469 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 470 } 471 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 472 OpenMPRuntime->clear(); 473 } 474 if (PGOReader) { 475 getModule().setProfileSummary( 476 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 477 llvm::ProfileSummary::PSK_Instr); 478 if (PGOStats.hasDiagnostics()) 479 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 480 } 481 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 482 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 483 EmitGlobalAnnotations(); 484 EmitStaticExternCAliases(); 485 EmitDeferredUnusedCoverageMappings(); 486 if (CoverageMapping) 487 CoverageMapping->emit(); 488 if (CodeGenOpts.SanitizeCfiCrossDso) { 489 CodeGenFunction(*this).EmitCfiCheckFail(); 490 CodeGenFunction(*this).EmitCfiCheckStub(); 491 } 492 emitAtAvailableLinkGuard(); 493 if (Context.getTargetInfo().getTriple().isWasm() && 494 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 495 EmitMainVoidAlias(); 496 } 497 emitLLVMUsed(); 498 if (SanStats) 499 SanStats->finish(); 500 501 if (CodeGenOpts.Autolink && 502 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 503 EmitModuleLinkOptions(); 504 } 505 506 // On ELF we pass the dependent library specifiers directly to the linker 507 // without manipulating them. This is in contrast to other platforms where 508 // they are mapped to a specific linker option by the compiler. This 509 // difference is a result of the greater variety of ELF linkers and the fact 510 // that ELF linkers tend to handle libraries in a more complicated fashion 511 // than on other platforms. This forces us to defer handling the dependent 512 // libs to the linker. 513 // 514 // CUDA/HIP device and host libraries are different. Currently there is no 515 // way to differentiate dependent libraries for host or device. Existing 516 // usage of #pragma comment(lib, *) is intended for host libraries on 517 // Windows. Therefore emit llvm.dependent-libraries only for host. 518 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 519 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 520 for (auto *MD : ELFDependentLibraries) 521 NMD->addOperand(MD); 522 } 523 524 // Record mregparm value now so it is visible through rest of codegen. 525 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 526 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 527 CodeGenOpts.NumRegisterParameters); 528 529 if (CodeGenOpts.DwarfVersion) { 530 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 531 CodeGenOpts.DwarfVersion); 532 } 533 534 if (Context.getLangOpts().SemanticInterposition) 535 // Require various optimization to respect semantic interposition. 536 getModule().setSemanticInterposition(1); 537 538 if (CodeGenOpts.EmitCodeView) { 539 // Indicate that we want CodeView in the metadata. 540 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 541 } 542 if (CodeGenOpts.CodeViewGHash) { 543 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 544 } 545 if (CodeGenOpts.ControlFlowGuard) { 546 // Function ID tables and checks for Control Flow Guard (cfguard=2). 547 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 548 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 549 // Function ID tables for Control Flow Guard (cfguard=1). 550 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 551 } 552 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 553 // We don't support LTO with 2 with different StrictVTablePointers 554 // FIXME: we could support it by stripping all the information introduced 555 // by StrictVTablePointers. 556 557 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 558 559 llvm::Metadata *Ops[2] = { 560 llvm::MDString::get(VMContext, "StrictVTablePointers"), 561 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 562 llvm::Type::getInt32Ty(VMContext), 1))}; 563 564 getModule().addModuleFlag(llvm::Module::Require, 565 "StrictVTablePointersRequirement", 566 llvm::MDNode::get(VMContext, Ops)); 567 } 568 if (getModuleDebugInfo()) 569 // We support a single version in the linked module. The LLVM 570 // parser will drop debug info with a different version number 571 // (and warn about it, too). 572 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 573 llvm::DEBUG_METADATA_VERSION); 574 575 // We need to record the widths of enums and wchar_t, so that we can generate 576 // the correct build attributes in the ARM backend. wchar_size is also used by 577 // TargetLibraryInfo. 578 uint64_t WCharWidth = 579 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 580 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 581 582 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 583 if ( Arch == llvm::Triple::arm 584 || Arch == llvm::Triple::armeb 585 || Arch == llvm::Triple::thumb 586 || Arch == llvm::Triple::thumbeb) { 587 // The minimum width of an enum in bytes 588 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 589 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 590 } 591 592 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 593 StringRef ABIStr = Target.getABI(); 594 llvm::LLVMContext &Ctx = TheModule.getContext(); 595 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 596 llvm::MDString::get(Ctx, ABIStr)); 597 } 598 599 if (CodeGenOpts.SanitizeCfiCrossDso) { 600 // Indicate that we want cross-DSO control flow integrity checks. 601 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 602 } 603 604 if (CodeGenOpts.WholeProgramVTables) { 605 // Indicate whether VFE was enabled for this module, so that the 606 // vcall_visibility metadata added under whole program vtables is handled 607 // appropriately in the optimizer. 608 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 609 CodeGenOpts.VirtualFunctionElimination); 610 } 611 612 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 613 getModule().addModuleFlag(llvm::Module::Override, 614 "CFI Canonical Jump Tables", 615 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 616 } 617 618 if (CodeGenOpts.CFProtectionReturn && 619 Target.checkCFProtectionReturnSupported(getDiags())) { 620 // Indicate that we want to instrument return control flow protection. 621 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 622 1); 623 } 624 625 if (CodeGenOpts.CFProtectionBranch && 626 Target.checkCFProtectionBranchSupported(getDiags())) { 627 // Indicate that we want to instrument branch control flow protection. 628 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 629 1); 630 } 631 632 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 633 Arch == llvm::Triple::aarch64_be) { 634 getModule().addModuleFlag(llvm::Module::Error, 635 "branch-target-enforcement", 636 LangOpts.BranchTargetEnforcement); 637 638 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 639 LangOpts.hasSignReturnAddress()); 640 641 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 642 LangOpts.isSignReturnAddressScopeAll()); 643 644 getModule().addModuleFlag(llvm::Module::Error, 645 "sign-return-address-with-bkey", 646 !LangOpts.isSignReturnAddressWithAKey()); 647 } 648 649 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 650 llvm::LLVMContext &Ctx = TheModule.getContext(); 651 getModule().addModuleFlag( 652 llvm::Module::Error, "MemProfProfileFilename", 653 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 654 } 655 656 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 657 // Indicate whether __nvvm_reflect should be configured to flush denormal 658 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 659 // property.) 660 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 661 CodeGenOpts.FP32DenormalMode.Output != 662 llvm::DenormalMode::IEEE); 663 } 664 665 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 666 if (LangOpts.OpenCL) { 667 EmitOpenCLMetadata(); 668 // Emit SPIR version. 669 if (getTriple().isSPIR()) { 670 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 671 // opencl.spir.version named metadata. 672 // C++ is backwards compatible with OpenCL v2.0. 673 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 674 llvm::Metadata *SPIRVerElts[] = { 675 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 676 Int32Ty, Version / 100)), 677 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 678 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 679 llvm::NamedMDNode *SPIRVerMD = 680 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 681 llvm::LLVMContext &Ctx = TheModule.getContext(); 682 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 683 } 684 } 685 686 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 687 assert(PLevel < 3 && "Invalid PIC Level"); 688 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 689 if (Context.getLangOpts().PIE) 690 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 691 } 692 693 if (getCodeGenOpts().CodeModel.size() > 0) { 694 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 695 .Case("tiny", llvm::CodeModel::Tiny) 696 .Case("small", llvm::CodeModel::Small) 697 .Case("kernel", llvm::CodeModel::Kernel) 698 .Case("medium", llvm::CodeModel::Medium) 699 .Case("large", llvm::CodeModel::Large) 700 .Default(~0u); 701 if (CM != ~0u) { 702 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 703 getModule().setCodeModel(codeModel); 704 } 705 } 706 707 if (CodeGenOpts.NoPLT) 708 getModule().setRtLibUseGOT(); 709 710 SimplifyPersonality(); 711 712 if (getCodeGenOpts().EmitDeclMetadata) 713 EmitDeclMetadata(); 714 715 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 716 EmitCoverageFile(); 717 718 if (CGDebugInfo *DI = getModuleDebugInfo()) 719 DI->finalize(); 720 721 if (getCodeGenOpts().EmitVersionIdentMetadata) 722 EmitVersionIdentMetadata(); 723 724 if (!getCodeGenOpts().RecordCommandLine.empty()) 725 EmitCommandLineMetadata(); 726 727 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 728 729 EmitBackendOptionsMetadata(getCodeGenOpts()); 730 731 // Set visibility from DLL storage class 732 // We do this at the end of LLVM IR generation; after any operation 733 // that might affect the DLL storage class or the visibility, and 734 // before anything that might act on these. 735 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 736 } 737 738 void CodeGenModule::EmitOpenCLMetadata() { 739 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 740 // opencl.ocl.version named metadata node. 741 // C++ is backwards compatible with OpenCL v2.0. 742 // FIXME: We might need to add CXX version at some point too? 743 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 744 llvm::Metadata *OCLVerElts[] = { 745 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 746 Int32Ty, Version / 100)), 747 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 748 Int32Ty, (Version % 100) / 10))}; 749 llvm::NamedMDNode *OCLVerMD = 750 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 751 llvm::LLVMContext &Ctx = TheModule.getContext(); 752 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 753 } 754 755 void CodeGenModule::EmitBackendOptionsMetadata( 756 const CodeGenOptions CodeGenOpts) { 757 switch (getTriple().getArch()) { 758 default: 759 break; 760 case llvm::Triple::riscv32: 761 case llvm::Triple::riscv64: 762 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 763 CodeGenOpts.SmallDataLimit); 764 break; 765 } 766 } 767 768 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 769 // Make sure that this type is translated. 770 Types.UpdateCompletedType(TD); 771 } 772 773 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 774 // Make sure that this type is translated. 775 Types.RefreshTypeCacheForClass(RD); 776 } 777 778 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 779 if (!TBAA) 780 return nullptr; 781 return TBAA->getTypeInfo(QTy); 782 } 783 784 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 785 if (!TBAA) 786 return TBAAAccessInfo(); 787 if (getLangOpts().CUDAIsDevice) { 788 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 789 // access info. 790 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 791 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 792 nullptr) 793 return TBAAAccessInfo(); 794 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 795 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 796 nullptr) 797 return TBAAAccessInfo(); 798 } 799 } 800 return TBAA->getAccessInfo(AccessType); 801 } 802 803 TBAAAccessInfo 804 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 805 if (!TBAA) 806 return TBAAAccessInfo(); 807 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 808 } 809 810 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 811 if (!TBAA) 812 return nullptr; 813 return TBAA->getTBAAStructInfo(QTy); 814 } 815 816 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 817 if (!TBAA) 818 return nullptr; 819 return TBAA->getBaseTypeInfo(QTy); 820 } 821 822 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 823 if (!TBAA) 824 return nullptr; 825 return TBAA->getAccessTagInfo(Info); 826 } 827 828 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 829 TBAAAccessInfo TargetInfo) { 830 if (!TBAA) 831 return TBAAAccessInfo(); 832 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 833 } 834 835 TBAAAccessInfo 836 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 837 TBAAAccessInfo InfoB) { 838 if (!TBAA) 839 return TBAAAccessInfo(); 840 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 841 } 842 843 TBAAAccessInfo 844 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 845 TBAAAccessInfo SrcInfo) { 846 if (!TBAA) 847 return TBAAAccessInfo(); 848 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 849 } 850 851 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 852 TBAAAccessInfo TBAAInfo) { 853 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 854 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 855 } 856 857 void CodeGenModule::DecorateInstructionWithInvariantGroup( 858 llvm::Instruction *I, const CXXRecordDecl *RD) { 859 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 860 llvm::MDNode::get(getLLVMContext(), {})); 861 } 862 863 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 864 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 865 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 866 } 867 868 /// ErrorUnsupported - Print out an error that codegen doesn't support the 869 /// specified stmt yet. 870 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 871 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 872 "cannot compile this %0 yet"); 873 std::string Msg = Type; 874 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 875 << Msg << S->getSourceRange(); 876 } 877 878 /// ErrorUnsupported - Print out an error that codegen doesn't support the 879 /// specified decl yet. 880 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 881 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 882 "cannot compile this %0 yet"); 883 std::string Msg = Type; 884 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 885 } 886 887 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 888 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 889 } 890 891 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 892 const NamedDecl *D) const { 893 if (GV->hasDLLImportStorageClass()) 894 return; 895 // Internal definitions always have default visibility. 896 if (GV->hasLocalLinkage()) { 897 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 898 return; 899 } 900 if (!D) 901 return; 902 // Set visibility for definitions, and for declarations if requested globally 903 // or set explicitly. 904 LinkageInfo LV = D->getLinkageAndVisibility(); 905 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 906 !GV->isDeclarationForLinker()) 907 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 908 } 909 910 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 911 llvm::GlobalValue *GV) { 912 if (GV->hasLocalLinkage()) 913 return true; 914 915 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 916 return true; 917 918 // DLLImport explicitly marks the GV as external. 919 if (GV->hasDLLImportStorageClass()) 920 return false; 921 922 const llvm::Triple &TT = CGM.getTriple(); 923 if (TT.isWindowsGNUEnvironment()) { 924 // In MinGW, variables without DLLImport can still be automatically 925 // imported from a DLL by the linker; don't mark variables that 926 // potentially could come from another DLL as DSO local. 927 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 928 !GV->isThreadLocal()) 929 return false; 930 } 931 932 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 933 // remain unresolved in the link, they can be resolved to zero, which is 934 // outside the current DSO. 935 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 936 return false; 937 938 // Every other GV is local on COFF. 939 // Make an exception for windows OS in the triple: Some firmware builds use 940 // *-win32-macho triples. This (accidentally?) produced windows relocations 941 // without GOT tables in older clang versions; Keep this behaviour. 942 // FIXME: even thread local variables? 943 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 944 return true; 945 946 const auto &CGOpts = CGM.getCodeGenOpts(); 947 llvm::Reloc::Model RM = CGOpts.RelocationModel; 948 const auto &LOpts = CGM.getLangOpts(); 949 950 if (TT.isOSBinFormatMachO()) { 951 if (RM == llvm::Reloc::Static) 952 return true; 953 return GV->isStrongDefinitionForLinker(); 954 } 955 956 // Only handle COFF and ELF for now. 957 if (!TT.isOSBinFormatELF()) 958 return false; 959 960 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 961 // On ELF, if -fno-semantic-interposition is specified and the target 962 // supports local aliases, there will be neither CC1 963 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 964 // dso_local if using a local alias is preferable (can avoid GOT 965 // indirection). 966 if (!GV->canBenefitFromLocalAlias()) 967 return false; 968 return !(CGM.getLangOpts().SemanticInterposition || 969 CGM.getLangOpts().HalfNoSemanticInterposition); 970 } 971 972 // A definition cannot be preempted from an executable. 973 if (!GV->isDeclarationForLinker()) 974 return true; 975 976 // Most PIC code sequences that assume that a symbol is local cannot produce a 977 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 978 // depended, it seems worth it to handle it here. 979 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 980 return false; 981 982 // PowerPC64 prefers TOC indirection to avoid copy relocations. 983 if (TT.isPPC64()) 984 return false; 985 986 // If we can use copy relocations we can assume it is local. 987 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 988 if (!Var->isThreadLocal() && 989 (RM == llvm::Reloc::Static || CGOpts.DirectAccessExternalData)) 990 return true; 991 992 // If we can use a plt entry as the symbol address we can assume it 993 // is local. 994 // FIXME: This should work for PIE, but the gold linker doesn't support it. 995 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 996 return true; 997 998 // Otherwise don't assume it is local. 999 return false; 1000 } 1001 1002 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1003 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1004 } 1005 1006 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1007 GlobalDecl GD) const { 1008 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1009 // C++ destructors have a few C++ ABI specific special cases. 1010 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1011 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1012 return; 1013 } 1014 setDLLImportDLLExport(GV, D); 1015 } 1016 1017 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1018 const NamedDecl *D) const { 1019 if (D && D->isExternallyVisible()) { 1020 if (D->hasAttr<DLLImportAttr>()) 1021 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1022 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1023 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1024 } 1025 } 1026 1027 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1028 GlobalDecl GD) const { 1029 setDLLImportDLLExport(GV, GD); 1030 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1031 } 1032 1033 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1034 const NamedDecl *D) const { 1035 setDLLImportDLLExport(GV, D); 1036 setGVPropertiesAux(GV, D); 1037 } 1038 1039 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1040 const NamedDecl *D) const { 1041 setGlobalVisibility(GV, D); 1042 setDSOLocal(GV); 1043 GV->setPartition(CodeGenOpts.SymbolPartition); 1044 } 1045 1046 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1047 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1048 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1049 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1050 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1051 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1052 } 1053 1054 llvm::GlobalVariable::ThreadLocalMode 1055 CodeGenModule::GetDefaultLLVMTLSModel() const { 1056 switch (CodeGenOpts.getDefaultTLSModel()) { 1057 case CodeGenOptions::GeneralDynamicTLSModel: 1058 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1059 case CodeGenOptions::LocalDynamicTLSModel: 1060 return llvm::GlobalVariable::LocalDynamicTLSModel; 1061 case CodeGenOptions::InitialExecTLSModel: 1062 return llvm::GlobalVariable::InitialExecTLSModel; 1063 case CodeGenOptions::LocalExecTLSModel: 1064 return llvm::GlobalVariable::LocalExecTLSModel; 1065 } 1066 llvm_unreachable("Invalid TLS model!"); 1067 } 1068 1069 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1070 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1071 1072 llvm::GlobalValue::ThreadLocalMode TLM; 1073 TLM = GetDefaultLLVMTLSModel(); 1074 1075 // Override the TLS model if it is explicitly specified. 1076 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1077 TLM = GetLLVMTLSModel(Attr->getModel()); 1078 } 1079 1080 GV->setThreadLocalMode(TLM); 1081 } 1082 1083 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1084 StringRef Name) { 1085 const TargetInfo &Target = CGM.getTarget(); 1086 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1087 } 1088 1089 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1090 const CPUSpecificAttr *Attr, 1091 unsigned CPUIndex, 1092 raw_ostream &Out) { 1093 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1094 // supported. 1095 if (Attr) 1096 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1097 else if (CGM.getTarget().supportsIFunc()) 1098 Out << ".resolver"; 1099 } 1100 1101 static void AppendTargetMangling(const CodeGenModule &CGM, 1102 const TargetAttr *Attr, raw_ostream &Out) { 1103 if (Attr->isDefaultVersion()) 1104 return; 1105 1106 Out << '.'; 1107 const TargetInfo &Target = CGM.getTarget(); 1108 ParsedTargetAttr Info = 1109 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1110 // Multiversioning doesn't allow "no-${feature}", so we can 1111 // only have "+" prefixes here. 1112 assert(LHS.startswith("+") && RHS.startswith("+") && 1113 "Features should always have a prefix."); 1114 return Target.multiVersionSortPriority(LHS.substr(1)) > 1115 Target.multiVersionSortPriority(RHS.substr(1)); 1116 }); 1117 1118 bool IsFirst = true; 1119 1120 if (!Info.Architecture.empty()) { 1121 IsFirst = false; 1122 Out << "arch_" << Info.Architecture; 1123 } 1124 1125 for (StringRef Feat : Info.Features) { 1126 if (!IsFirst) 1127 Out << '_'; 1128 IsFirst = false; 1129 Out << Feat.substr(1); 1130 } 1131 } 1132 1133 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1134 const NamedDecl *ND, 1135 bool OmitMultiVersionMangling = false) { 1136 SmallString<256> Buffer; 1137 llvm::raw_svector_ostream Out(Buffer); 1138 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1139 if (MC.shouldMangleDeclName(ND)) 1140 MC.mangleName(GD.getWithDecl(ND), Out); 1141 else { 1142 IdentifierInfo *II = ND->getIdentifier(); 1143 assert(II && "Attempt to mangle unnamed decl."); 1144 const auto *FD = dyn_cast<FunctionDecl>(ND); 1145 1146 if (FD && 1147 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1148 Out << "__regcall3__" << II->getName(); 1149 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1150 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1151 Out << "__device_stub__" << II->getName(); 1152 } else { 1153 Out << II->getName(); 1154 } 1155 } 1156 1157 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1158 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1159 switch (FD->getMultiVersionKind()) { 1160 case MultiVersionKind::CPUDispatch: 1161 case MultiVersionKind::CPUSpecific: 1162 AppendCPUSpecificCPUDispatchMangling(CGM, 1163 FD->getAttr<CPUSpecificAttr>(), 1164 GD.getMultiVersionIndex(), Out); 1165 break; 1166 case MultiVersionKind::Target: 1167 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1168 break; 1169 case MultiVersionKind::None: 1170 llvm_unreachable("None multiversion type isn't valid here"); 1171 } 1172 } 1173 1174 return std::string(Out.str()); 1175 } 1176 1177 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1178 const FunctionDecl *FD) { 1179 if (!FD->isMultiVersion()) 1180 return; 1181 1182 // Get the name of what this would be without the 'target' attribute. This 1183 // allows us to lookup the version that was emitted when this wasn't a 1184 // multiversion function. 1185 std::string NonTargetName = 1186 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1187 GlobalDecl OtherGD; 1188 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1189 assert(OtherGD.getCanonicalDecl() 1190 .getDecl() 1191 ->getAsFunction() 1192 ->isMultiVersion() && 1193 "Other GD should now be a multiversioned function"); 1194 // OtherFD is the version of this function that was mangled BEFORE 1195 // becoming a MultiVersion function. It potentially needs to be updated. 1196 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1197 .getDecl() 1198 ->getAsFunction() 1199 ->getMostRecentDecl(); 1200 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1201 // This is so that if the initial version was already the 'default' 1202 // version, we don't try to update it. 1203 if (OtherName != NonTargetName) { 1204 // Remove instead of erase, since others may have stored the StringRef 1205 // to this. 1206 const auto ExistingRecord = Manglings.find(NonTargetName); 1207 if (ExistingRecord != std::end(Manglings)) 1208 Manglings.remove(&(*ExistingRecord)); 1209 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1210 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1211 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1212 Entry->setName(OtherName); 1213 } 1214 } 1215 } 1216 1217 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1218 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1219 1220 // Some ABIs don't have constructor variants. Make sure that base and 1221 // complete constructors get mangled the same. 1222 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1223 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1224 CXXCtorType OrigCtorType = GD.getCtorType(); 1225 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1226 if (OrigCtorType == Ctor_Base) 1227 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1228 } 1229 } 1230 1231 auto FoundName = MangledDeclNames.find(CanonicalGD); 1232 if (FoundName != MangledDeclNames.end()) 1233 return FoundName->second; 1234 1235 // Keep the first result in the case of a mangling collision. 1236 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1237 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1238 1239 // Ensure either we have different ABIs between host and device compilations, 1240 // says host compilation following MSVC ABI but device compilation follows 1241 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1242 // mangling should be the same after name stubbing. The later checking is 1243 // very important as the device kernel name being mangled in host-compilation 1244 // is used to resolve the device binaries to be executed. Inconsistent naming 1245 // result in undefined behavior. Even though we cannot check that naming 1246 // directly between host- and device-compilations, the host- and 1247 // device-mangling in host compilation could help catching certain ones. 1248 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1249 getLangOpts().CUDAIsDevice || 1250 (getContext().getAuxTargetInfo() && 1251 (getContext().getAuxTargetInfo()->getCXXABI() != 1252 getContext().getTargetInfo().getCXXABI())) || 1253 getCUDARuntime().getDeviceSideName(ND) == 1254 getMangledNameImpl( 1255 *this, 1256 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1257 ND)); 1258 1259 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1260 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1261 } 1262 1263 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1264 const BlockDecl *BD) { 1265 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1266 const Decl *D = GD.getDecl(); 1267 1268 SmallString<256> Buffer; 1269 llvm::raw_svector_ostream Out(Buffer); 1270 if (!D) 1271 MangleCtx.mangleGlobalBlock(BD, 1272 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1273 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1274 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1275 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1276 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1277 else 1278 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1279 1280 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1281 return Result.first->first(); 1282 } 1283 1284 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1285 return getModule().getNamedValue(Name); 1286 } 1287 1288 /// AddGlobalCtor - Add a function to the list that will be called before 1289 /// main() runs. 1290 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1291 llvm::Constant *AssociatedData) { 1292 // FIXME: Type coercion of void()* types. 1293 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1294 } 1295 1296 /// AddGlobalDtor - Add a function to the list that will be called 1297 /// when the module is unloaded. 1298 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1299 bool IsDtorAttrFunc) { 1300 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1301 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1302 DtorsUsingAtExit[Priority].push_back(Dtor); 1303 return; 1304 } 1305 1306 // FIXME: Type coercion of void()* types. 1307 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1308 } 1309 1310 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1311 if (Fns.empty()) return; 1312 1313 // Ctor function type is void()*. 1314 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1315 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1316 TheModule.getDataLayout().getProgramAddressSpace()); 1317 1318 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1319 llvm::StructType *CtorStructTy = llvm::StructType::get( 1320 Int32Ty, CtorPFTy, VoidPtrTy); 1321 1322 // Construct the constructor and destructor arrays. 1323 ConstantInitBuilder builder(*this); 1324 auto ctors = builder.beginArray(CtorStructTy); 1325 for (const auto &I : Fns) { 1326 auto ctor = ctors.beginStruct(CtorStructTy); 1327 ctor.addInt(Int32Ty, I.Priority); 1328 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1329 if (I.AssociatedData) 1330 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1331 else 1332 ctor.addNullPointer(VoidPtrTy); 1333 ctor.finishAndAddTo(ctors); 1334 } 1335 1336 auto list = 1337 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1338 /*constant*/ false, 1339 llvm::GlobalValue::AppendingLinkage); 1340 1341 // The LTO linker doesn't seem to like it when we set an alignment 1342 // on appending variables. Take it off as a workaround. 1343 list->setAlignment(llvm::None); 1344 1345 Fns.clear(); 1346 } 1347 1348 llvm::GlobalValue::LinkageTypes 1349 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1350 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1351 1352 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1353 1354 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1355 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1356 1357 if (isa<CXXConstructorDecl>(D) && 1358 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1359 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1360 // Our approach to inheriting constructors is fundamentally different from 1361 // that used by the MS ABI, so keep our inheriting constructor thunks 1362 // internal rather than trying to pick an unambiguous mangling for them. 1363 return llvm::GlobalValue::InternalLinkage; 1364 } 1365 1366 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1367 } 1368 1369 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1370 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1371 if (!MDS) return nullptr; 1372 1373 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1374 } 1375 1376 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1377 const CGFunctionInfo &Info, 1378 llvm::Function *F) { 1379 unsigned CallingConv; 1380 llvm::AttributeList PAL; 1381 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1382 F->setAttributes(PAL); 1383 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1384 } 1385 1386 static void removeImageAccessQualifier(std::string& TyName) { 1387 std::string ReadOnlyQual("__read_only"); 1388 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1389 if (ReadOnlyPos != std::string::npos) 1390 // "+ 1" for the space after access qualifier. 1391 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1392 else { 1393 std::string WriteOnlyQual("__write_only"); 1394 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1395 if (WriteOnlyPos != std::string::npos) 1396 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1397 else { 1398 std::string ReadWriteQual("__read_write"); 1399 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1400 if (ReadWritePos != std::string::npos) 1401 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1402 } 1403 } 1404 } 1405 1406 // Returns the address space id that should be produced to the 1407 // kernel_arg_addr_space metadata. This is always fixed to the ids 1408 // as specified in the SPIR 2.0 specification in order to differentiate 1409 // for example in clGetKernelArgInfo() implementation between the address 1410 // spaces with targets without unique mapping to the OpenCL address spaces 1411 // (basically all single AS CPUs). 1412 static unsigned ArgInfoAddressSpace(LangAS AS) { 1413 switch (AS) { 1414 case LangAS::opencl_global: 1415 return 1; 1416 case LangAS::opencl_constant: 1417 return 2; 1418 case LangAS::opencl_local: 1419 return 3; 1420 case LangAS::opencl_generic: 1421 return 4; // Not in SPIR 2.0 specs. 1422 case LangAS::opencl_global_device: 1423 return 5; 1424 case LangAS::opencl_global_host: 1425 return 6; 1426 default: 1427 return 0; // Assume private. 1428 } 1429 } 1430 1431 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1432 const FunctionDecl *FD, 1433 CodeGenFunction *CGF) { 1434 assert(((FD && CGF) || (!FD && !CGF)) && 1435 "Incorrect use - FD and CGF should either be both null or not!"); 1436 // Create MDNodes that represent the kernel arg metadata. 1437 // Each MDNode is a list in the form of "key", N number of values which is 1438 // the same number of values as their are kernel arguments. 1439 1440 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1441 1442 // MDNode for the kernel argument address space qualifiers. 1443 SmallVector<llvm::Metadata *, 8> addressQuals; 1444 1445 // MDNode for the kernel argument access qualifiers (images only). 1446 SmallVector<llvm::Metadata *, 8> accessQuals; 1447 1448 // MDNode for the kernel argument type names. 1449 SmallVector<llvm::Metadata *, 8> argTypeNames; 1450 1451 // MDNode for the kernel argument base type names. 1452 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1453 1454 // MDNode for the kernel argument type qualifiers. 1455 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1456 1457 // MDNode for the kernel argument names. 1458 SmallVector<llvm::Metadata *, 8> argNames; 1459 1460 if (FD && CGF) 1461 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1462 const ParmVarDecl *parm = FD->getParamDecl(i); 1463 QualType ty = parm->getType(); 1464 std::string typeQuals; 1465 1466 if (ty->isPointerType()) { 1467 QualType pointeeTy = ty->getPointeeType(); 1468 1469 // Get address qualifier. 1470 addressQuals.push_back( 1471 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1472 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1473 1474 // Get argument type name. 1475 std::string typeName = 1476 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1477 1478 // Turn "unsigned type" to "utype" 1479 std::string::size_type pos = typeName.find("unsigned"); 1480 if (pointeeTy.isCanonical() && pos != std::string::npos) 1481 typeName.erase(pos + 1, 8); 1482 1483 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1484 1485 std::string baseTypeName = 1486 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1487 Policy) + 1488 "*"; 1489 1490 // Turn "unsigned type" to "utype" 1491 pos = baseTypeName.find("unsigned"); 1492 if (pos != std::string::npos) 1493 baseTypeName.erase(pos + 1, 8); 1494 1495 argBaseTypeNames.push_back( 1496 llvm::MDString::get(VMContext, baseTypeName)); 1497 1498 // Get argument type qualifiers: 1499 if (ty.isRestrictQualified()) 1500 typeQuals = "restrict"; 1501 if (pointeeTy.isConstQualified() || 1502 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1503 typeQuals += typeQuals.empty() ? "const" : " const"; 1504 if (pointeeTy.isVolatileQualified()) 1505 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1506 } else { 1507 uint32_t AddrSpc = 0; 1508 bool isPipe = ty->isPipeType(); 1509 if (ty->isImageType() || isPipe) 1510 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1511 1512 addressQuals.push_back( 1513 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1514 1515 // Get argument type name. 1516 std::string typeName; 1517 if (isPipe) 1518 typeName = ty.getCanonicalType() 1519 ->castAs<PipeType>() 1520 ->getElementType() 1521 .getAsString(Policy); 1522 else 1523 typeName = ty.getUnqualifiedType().getAsString(Policy); 1524 1525 // Turn "unsigned type" to "utype" 1526 std::string::size_type pos = typeName.find("unsigned"); 1527 if (ty.isCanonical() && pos != std::string::npos) 1528 typeName.erase(pos + 1, 8); 1529 1530 std::string baseTypeName; 1531 if (isPipe) 1532 baseTypeName = ty.getCanonicalType() 1533 ->castAs<PipeType>() 1534 ->getElementType() 1535 .getCanonicalType() 1536 .getAsString(Policy); 1537 else 1538 baseTypeName = 1539 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1540 1541 // Remove access qualifiers on images 1542 // (as they are inseparable from type in clang implementation, 1543 // but OpenCL spec provides a special query to get access qualifier 1544 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1545 if (ty->isImageType()) { 1546 removeImageAccessQualifier(typeName); 1547 removeImageAccessQualifier(baseTypeName); 1548 } 1549 1550 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1551 1552 // Turn "unsigned type" to "utype" 1553 pos = baseTypeName.find("unsigned"); 1554 if (pos != std::string::npos) 1555 baseTypeName.erase(pos + 1, 8); 1556 1557 argBaseTypeNames.push_back( 1558 llvm::MDString::get(VMContext, baseTypeName)); 1559 1560 if (isPipe) 1561 typeQuals = "pipe"; 1562 } 1563 1564 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1565 1566 // Get image and pipe access qualifier: 1567 if (ty->isImageType() || ty->isPipeType()) { 1568 const Decl *PDecl = parm; 1569 if (auto *TD = dyn_cast<TypedefType>(ty)) 1570 PDecl = TD->getDecl(); 1571 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1572 if (A && A->isWriteOnly()) 1573 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1574 else if (A && A->isReadWrite()) 1575 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1576 else 1577 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1578 } else 1579 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1580 1581 // Get argument name. 1582 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1583 } 1584 1585 Fn->setMetadata("kernel_arg_addr_space", 1586 llvm::MDNode::get(VMContext, addressQuals)); 1587 Fn->setMetadata("kernel_arg_access_qual", 1588 llvm::MDNode::get(VMContext, accessQuals)); 1589 Fn->setMetadata("kernel_arg_type", 1590 llvm::MDNode::get(VMContext, argTypeNames)); 1591 Fn->setMetadata("kernel_arg_base_type", 1592 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1593 Fn->setMetadata("kernel_arg_type_qual", 1594 llvm::MDNode::get(VMContext, argTypeQuals)); 1595 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1596 Fn->setMetadata("kernel_arg_name", 1597 llvm::MDNode::get(VMContext, argNames)); 1598 } 1599 1600 /// Determines whether the language options require us to model 1601 /// unwind exceptions. We treat -fexceptions as mandating this 1602 /// except under the fragile ObjC ABI with only ObjC exceptions 1603 /// enabled. This means, for example, that C with -fexceptions 1604 /// enables this. 1605 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1606 // If exceptions are completely disabled, obviously this is false. 1607 if (!LangOpts.Exceptions) return false; 1608 1609 // If C++ exceptions are enabled, this is true. 1610 if (LangOpts.CXXExceptions) return true; 1611 1612 // If ObjC exceptions are enabled, this depends on the ABI. 1613 if (LangOpts.ObjCExceptions) { 1614 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1615 } 1616 1617 return true; 1618 } 1619 1620 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1621 const CXXMethodDecl *MD) { 1622 // Check that the type metadata can ever actually be used by a call. 1623 if (!CGM.getCodeGenOpts().LTOUnit || 1624 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1625 return false; 1626 1627 // Only functions whose address can be taken with a member function pointer 1628 // need this sort of type metadata. 1629 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1630 !isa<CXXDestructorDecl>(MD); 1631 } 1632 1633 std::vector<const CXXRecordDecl *> 1634 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1635 llvm::SetVector<const CXXRecordDecl *> MostBases; 1636 1637 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1638 CollectMostBases = [&](const CXXRecordDecl *RD) { 1639 if (RD->getNumBases() == 0) 1640 MostBases.insert(RD); 1641 for (const CXXBaseSpecifier &B : RD->bases()) 1642 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1643 }; 1644 CollectMostBases(RD); 1645 return MostBases.takeVector(); 1646 } 1647 1648 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1649 llvm::Function *F) { 1650 llvm::AttrBuilder B; 1651 1652 if (CodeGenOpts.UnwindTables) 1653 B.addAttribute(llvm::Attribute::UWTable); 1654 1655 if (CodeGenOpts.StackClashProtector) 1656 B.addAttribute("probe-stack", "inline-asm"); 1657 1658 if (!hasUnwindExceptions(LangOpts)) 1659 B.addAttribute(llvm::Attribute::NoUnwind); 1660 1661 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1662 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1663 B.addAttribute(llvm::Attribute::StackProtect); 1664 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1665 B.addAttribute(llvm::Attribute::StackProtectStrong); 1666 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1667 B.addAttribute(llvm::Attribute::StackProtectReq); 1668 } 1669 1670 if (!D) { 1671 // If we don't have a declaration to control inlining, the function isn't 1672 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1673 // disabled, mark the function as noinline. 1674 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1675 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1676 B.addAttribute(llvm::Attribute::NoInline); 1677 1678 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1679 return; 1680 } 1681 1682 // Track whether we need to add the optnone LLVM attribute, 1683 // starting with the default for this optimization level. 1684 bool ShouldAddOptNone = 1685 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1686 // We can't add optnone in the following cases, it won't pass the verifier. 1687 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1688 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1689 1690 // Add optnone, but do so only if the function isn't always_inline. 1691 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1692 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1693 B.addAttribute(llvm::Attribute::OptimizeNone); 1694 1695 // OptimizeNone implies noinline; we should not be inlining such functions. 1696 B.addAttribute(llvm::Attribute::NoInline); 1697 1698 // We still need to handle naked functions even though optnone subsumes 1699 // much of their semantics. 1700 if (D->hasAttr<NakedAttr>()) 1701 B.addAttribute(llvm::Attribute::Naked); 1702 1703 // OptimizeNone wins over OptimizeForSize and MinSize. 1704 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1705 F->removeFnAttr(llvm::Attribute::MinSize); 1706 } else if (D->hasAttr<NakedAttr>()) { 1707 // Naked implies noinline: we should not be inlining such functions. 1708 B.addAttribute(llvm::Attribute::Naked); 1709 B.addAttribute(llvm::Attribute::NoInline); 1710 } else if (D->hasAttr<NoDuplicateAttr>()) { 1711 B.addAttribute(llvm::Attribute::NoDuplicate); 1712 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1713 // Add noinline if the function isn't always_inline. 1714 B.addAttribute(llvm::Attribute::NoInline); 1715 } else if (D->hasAttr<AlwaysInlineAttr>() && 1716 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1717 // (noinline wins over always_inline, and we can't specify both in IR) 1718 B.addAttribute(llvm::Attribute::AlwaysInline); 1719 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1720 // If we're not inlining, then force everything that isn't always_inline to 1721 // carry an explicit noinline attribute. 1722 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1723 B.addAttribute(llvm::Attribute::NoInline); 1724 } else { 1725 // Otherwise, propagate the inline hint attribute and potentially use its 1726 // absence to mark things as noinline. 1727 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1728 // Search function and template pattern redeclarations for inline. 1729 auto CheckForInline = [](const FunctionDecl *FD) { 1730 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1731 return Redecl->isInlineSpecified(); 1732 }; 1733 if (any_of(FD->redecls(), CheckRedeclForInline)) 1734 return true; 1735 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1736 if (!Pattern) 1737 return false; 1738 return any_of(Pattern->redecls(), CheckRedeclForInline); 1739 }; 1740 if (CheckForInline(FD)) { 1741 B.addAttribute(llvm::Attribute::InlineHint); 1742 } else if (CodeGenOpts.getInlining() == 1743 CodeGenOptions::OnlyHintInlining && 1744 !FD->isInlined() && 1745 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1746 B.addAttribute(llvm::Attribute::NoInline); 1747 } 1748 } 1749 } 1750 1751 // Add other optimization related attributes if we are optimizing this 1752 // function. 1753 if (!D->hasAttr<OptimizeNoneAttr>()) { 1754 if (D->hasAttr<ColdAttr>()) { 1755 if (!ShouldAddOptNone) 1756 B.addAttribute(llvm::Attribute::OptimizeForSize); 1757 B.addAttribute(llvm::Attribute::Cold); 1758 } 1759 if (D->hasAttr<HotAttr>()) 1760 B.addAttribute(llvm::Attribute::Hot); 1761 if (D->hasAttr<MinSizeAttr>()) 1762 B.addAttribute(llvm::Attribute::MinSize); 1763 } 1764 1765 if (D->hasAttr<NoMergeAttr>()) 1766 B.addAttribute(llvm::Attribute::NoMerge); 1767 1768 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1769 1770 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1771 if (alignment) 1772 F->setAlignment(llvm::Align(alignment)); 1773 1774 if (!D->hasAttr<AlignedAttr>()) 1775 if (LangOpts.FunctionAlignment) 1776 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1777 1778 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1779 // reserve a bit for differentiating between virtual and non-virtual member 1780 // functions. If the current target's C++ ABI requires this and this is a 1781 // member function, set its alignment accordingly. 1782 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1783 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1784 F->setAlignment(llvm::Align(2)); 1785 } 1786 1787 // In the cross-dso CFI mode with canonical jump tables, we want !type 1788 // attributes on definitions only. 1789 if (CodeGenOpts.SanitizeCfiCrossDso && 1790 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1791 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1792 // Skip available_externally functions. They won't be codegen'ed in the 1793 // current module anyway. 1794 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1795 CreateFunctionTypeMetadataForIcall(FD, F); 1796 } 1797 } 1798 1799 // Emit type metadata on member functions for member function pointer checks. 1800 // These are only ever necessary on definitions; we're guaranteed that the 1801 // definition will be present in the LTO unit as a result of LTO visibility. 1802 auto *MD = dyn_cast<CXXMethodDecl>(D); 1803 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1804 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1805 llvm::Metadata *Id = 1806 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1807 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1808 F->addTypeMetadata(0, Id); 1809 } 1810 } 1811 } 1812 1813 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1814 llvm::Function *F) { 1815 if (D->hasAttr<StrictFPAttr>()) { 1816 llvm::AttrBuilder FuncAttrs; 1817 FuncAttrs.addAttribute("strictfp"); 1818 F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1819 } 1820 } 1821 1822 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1823 const Decl *D = GD.getDecl(); 1824 if (dyn_cast_or_null<NamedDecl>(D)) 1825 setGVProperties(GV, GD); 1826 else 1827 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1828 1829 if (D && D->hasAttr<UsedAttr>()) 1830 addUsedGlobal(GV); 1831 1832 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1833 const auto *VD = cast<VarDecl>(D); 1834 if (VD->getType().isConstQualified() && 1835 VD->getStorageDuration() == SD_Static) 1836 addUsedGlobal(GV); 1837 } 1838 } 1839 1840 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1841 llvm::AttrBuilder &Attrs) { 1842 // Add target-cpu and target-features attributes to functions. If 1843 // we have a decl for the function and it has a target attribute then 1844 // parse that and add it to the feature set. 1845 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1846 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1847 std::vector<std::string> Features; 1848 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1849 FD = FD ? FD->getMostRecentDecl() : FD; 1850 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1851 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1852 bool AddedAttr = false; 1853 if (TD || SD) { 1854 llvm::StringMap<bool> FeatureMap; 1855 getContext().getFunctionFeatureMap(FeatureMap, GD); 1856 1857 // Produce the canonical string for this set of features. 1858 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1859 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1860 1861 // Now add the target-cpu and target-features to the function. 1862 // While we populated the feature map above, we still need to 1863 // get and parse the target attribute so we can get the cpu for 1864 // the function. 1865 if (TD) { 1866 ParsedTargetAttr ParsedAttr = TD->parse(); 1867 if (!ParsedAttr.Architecture.empty() && 1868 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1869 TargetCPU = ParsedAttr.Architecture; 1870 TuneCPU = ""; // Clear the tune CPU. 1871 } 1872 if (!ParsedAttr.Tune.empty() && 1873 getTarget().isValidCPUName(ParsedAttr.Tune)) 1874 TuneCPU = ParsedAttr.Tune; 1875 } 1876 } else { 1877 // Otherwise just add the existing target cpu and target features to the 1878 // function. 1879 Features = getTarget().getTargetOpts().Features; 1880 } 1881 1882 if (!TargetCPU.empty()) { 1883 Attrs.addAttribute("target-cpu", TargetCPU); 1884 AddedAttr = true; 1885 } 1886 if (!TuneCPU.empty()) { 1887 Attrs.addAttribute("tune-cpu", TuneCPU); 1888 AddedAttr = true; 1889 } 1890 if (!Features.empty()) { 1891 llvm::sort(Features); 1892 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1893 AddedAttr = true; 1894 } 1895 1896 return AddedAttr; 1897 } 1898 1899 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1900 llvm::GlobalObject *GO) { 1901 const Decl *D = GD.getDecl(); 1902 SetCommonAttributes(GD, GO); 1903 1904 if (D) { 1905 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1906 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1907 GV->addAttribute("bss-section", SA->getName()); 1908 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1909 GV->addAttribute("data-section", SA->getName()); 1910 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1911 GV->addAttribute("rodata-section", SA->getName()); 1912 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1913 GV->addAttribute("relro-section", SA->getName()); 1914 } 1915 1916 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1917 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1918 if (!D->getAttr<SectionAttr>()) 1919 F->addFnAttr("implicit-section-name", SA->getName()); 1920 1921 llvm::AttrBuilder Attrs; 1922 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1923 // We know that GetCPUAndFeaturesAttributes will always have the 1924 // newest set, since it has the newest possible FunctionDecl, so the 1925 // new ones should replace the old. 1926 llvm::AttrBuilder RemoveAttrs; 1927 RemoveAttrs.addAttribute("target-cpu"); 1928 RemoveAttrs.addAttribute("target-features"); 1929 RemoveAttrs.addAttribute("tune-cpu"); 1930 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs); 1931 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1932 } 1933 } 1934 1935 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1936 GO->setSection(CSA->getName()); 1937 else if (const auto *SA = D->getAttr<SectionAttr>()) 1938 GO->setSection(SA->getName()); 1939 } 1940 1941 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1942 } 1943 1944 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1945 llvm::Function *F, 1946 const CGFunctionInfo &FI) { 1947 const Decl *D = GD.getDecl(); 1948 SetLLVMFunctionAttributes(GD, FI, F); 1949 SetLLVMFunctionAttributesForDefinition(D, F); 1950 1951 F->setLinkage(llvm::Function::InternalLinkage); 1952 1953 setNonAliasAttributes(GD, F); 1954 } 1955 1956 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1957 // Set linkage and visibility in case we never see a definition. 1958 LinkageInfo LV = ND->getLinkageAndVisibility(); 1959 // Don't set internal linkage on declarations. 1960 // "extern_weak" is overloaded in LLVM; we probably should have 1961 // separate linkage types for this. 1962 if (isExternallyVisible(LV.getLinkage()) && 1963 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1964 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1965 } 1966 1967 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1968 llvm::Function *F) { 1969 // Only if we are checking indirect calls. 1970 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1971 return; 1972 1973 // Non-static class methods are handled via vtable or member function pointer 1974 // checks elsewhere. 1975 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1976 return; 1977 1978 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1979 F->addTypeMetadata(0, MD); 1980 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1981 1982 // Emit a hash-based bit set entry for cross-DSO calls. 1983 if (CodeGenOpts.SanitizeCfiCrossDso) 1984 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1985 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1986 } 1987 1988 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1989 bool IsIncompleteFunction, 1990 bool IsThunk) { 1991 1992 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1993 // If this is an intrinsic function, set the function's attributes 1994 // to the intrinsic's attributes. 1995 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1996 return; 1997 } 1998 1999 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2000 2001 if (!IsIncompleteFunction) 2002 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 2003 2004 // Add the Returned attribute for "this", except for iOS 5 and earlier 2005 // where substantial code, including the libstdc++ dylib, was compiled with 2006 // GCC and does not actually return "this". 2007 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2008 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2009 assert(!F->arg_empty() && 2010 F->arg_begin()->getType() 2011 ->canLosslesslyBitCastTo(F->getReturnType()) && 2012 "unexpected this return"); 2013 F->addAttribute(1, llvm::Attribute::Returned); 2014 } 2015 2016 // Only a few attributes are set on declarations; these may later be 2017 // overridden by a definition. 2018 2019 setLinkageForGV(F, FD); 2020 setGVProperties(F, FD); 2021 2022 // Setup target-specific attributes. 2023 if (!IsIncompleteFunction && F->isDeclaration()) 2024 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2025 2026 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2027 F->setSection(CSA->getName()); 2028 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2029 F->setSection(SA->getName()); 2030 2031 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2032 if (FD->isInlineBuiltinDeclaration()) { 2033 const FunctionDecl *FDBody; 2034 bool HasBody = FD->hasBody(FDBody); 2035 (void)HasBody; 2036 assert(HasBody && "Inline builtin declarations should always have an " 2037 "available body!"); 2038 if (shouldEmitFunction(FDBody)) 2039 F->addAttribute(llvm::AttributeList::FunctionIndex, 2040 llvm::Attribute::NoBuiltin); 2041 } 2042 2043 if (FD->isReplaceableGlobalAllocationFunction()) { 2044 // A replaceable global allocation function does not act like a builtin by 2045 // default, only if it is invoked by a new-expression or delete-expression. 2046 F->addAttribute(llvm::AttributeList::FunctionIndex, 2047 llvm::Attribute::NoBuiltin); 2048 } 2049 2050 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2051 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2052 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2053 if (MD->isVirtual()) 2054 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2055 2056 // Don't emit entries for function declarations in the cross-DSO mode. This 2057 // is handled with better precision by the receiving DSO. But if jump tables 2058 // are non-canonical then we need type metadata in order to produce the local 2059 // jump table. 2060 if (!CodeGenOpts.SanitizeCfiCrossDso || 2061 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2062 CreateFunctionTypeMetadataForIcall(FD, F); 2063 2064 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2065 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2066 2067 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2068 // Annotate the callback behavior as metadata: 2069 // - The callback callee (as argument number). 2070 // - The callback payloads (as argument numbers). 2071 llvm::LLVMContext &Ctx = F->getContext(); 2072 llvm::MDBuilder MDB(Ctx); 2073 2074 // The payload indices are all but the first one in the encoding. The first 2075 // identifies the callback callee. 2076 int CalleeIdx = *CB->encoding_begin(); 2077 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2078 F->addMetadata(llvm::LLVMContext::MD_callback, 2079 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2080 CalleeIdx, PayloadIndices, 2081 /* VarArgsArePassed */ false)})); 2082 } 2083 } 2084 2085 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2086 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2087 "Only globals with definition can force usage."); 2088 LLVMUsed.emplace_back(GV); 2089 } 2090 2091 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2092 assert(!GV->isDeclaration() && 2093 "Only globals with definition can force usage."); 2094 LLVMCompilerUsed.emplace_back(GV); 2095 } 2096 2097 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2098 std::vector<llvm::WeakTrackingVH> &List) { 2099 // Don't create llvm.used if there is no need. 2100 if (List.empty()) 2101 return; 2102 2103 // Convert List to what ConstantArray needs. 2104 SmallVector<llvm::Constant*, 8> UsedArray; 2105 UsedArray.resize(List.size()); 2106 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2107 UsedArray[i] = 2108 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2109 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2110 } 2111 2112 if (UsedArray.empty()) 2113 return; 2114 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2115 2116 auto *GV = new llvm::GlobalVariable( 2117 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2118 llvm::ConstantArray::get(ATy, UsedArray), Name); 2119 2120 GV->setSection("llvm.metadata"); 2121 } 2122 2123 void CodeGenModule::emitLLVMUsed() { 2124 emitUsed(*this, "llvm.used", LLVMUsed); 2125 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2126 } 2127 2128 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2129 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2130 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2131 } 2132 2133 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2134 llvm::SmallString<32> Opt; 2135 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2136 if (Opt.empty()) 2137 return; 2138 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2139 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2140 } 2141 2142 void CodeGenModule::AddDependentLib(StringRef Lib) { 2143 auto &C = getLLVMContext(); 2144 if (getTarget().getTriple().isOSBinFormatELF()) { 2145 ELFDependentLibraries.push_back( 2146 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2147 return; 2148 } 2149 2150 llvm::SmallString<24> Opt; 2151 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2152 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2153 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2154 } 2155 2156 /// Add link options implied by the given module, including modules 2157 /// it depends on, using a postorder walk. 2158 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2159 SmallVectorImpl<llvm::MDNode *> &Metadata, 2160 llvm::SmallPtrSet<Module *, 16> &Visited) { 2161 // Import this module's parent. 2162 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2163 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2164 } 2165 2166 // Import this module's dependencies. 2167 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2168 if (Visited.insert(Mod->Imports[I - 1]).second) 2169 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2170 } 2171 2172 // Add linker options to link against the libraries/frameworks 2173 // described by this module. 2174 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2175 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2176 2177 // For modules that use export_as for linking, use that module 2178 // name instead. 2179 if (Mod->UseExportAsModuleLinkName) 2180 return; 2181 2182 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2183 // Link against a framework. Frameworks are currently Darwin only, so we 2184 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2185 if (Mod->LinkLibraries[I-1].IsFramework) { 2186 llvm::Metadata *Args[2] = { 2187 llvm::MDString::get(Context, "-framework"), 2188 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2189 2190 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2191 continue; 2192 } 2193 2194 // Link against a library. 2195 if (IsELF) { 2196 llvm::Metadata *Args[2] = { 2197 llvm::MDString::get(Context, "lib"), 2198 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2199 }; 2200 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2201 } else { 2202 llvm::SmallString<24> Opt; 2203 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2204 Mod->LinkLibraries[I - 1].Library, Opt); 2205 auto *OptString = llvm::MDString::get(Context, Opt); 2206 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2207 } 2208 } 2209 } 2210 2211 void CodeGenModule::EmitModuleLinkOptions() { 2212 // Collect the set of all of the modules we want to visit to emit link 2213 // options, which is essentially the imported modules and all of their 2214 // non-explicit child modules. 2215 llvm::SetVector<clang::Module *> LinkModules; 2216 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2217 SmallVector<clang::Module *, 16> Stack; 2218 2219 // Seed the stack with imported modules. 2220 for (Module *M : ImportedModules) { 2221 // Do not add any link flags when an implementation TU of a module imports 2222 // a header of that same module. 2223 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2224 !getLangOpts().isCompilingModule()) 2225 continue; 2226 if (Visited.insert(M).second) 2227 Stack.push_back(M); 2228 } 2229 2230 // Find all of the modules to import, making a little effort to prune 2231 // non-leaf modules. 2232 while (!Stack.empty()) { 2233 clang::Module *Mod = Stack.pop_back_val(); 2234 2235 bool AnyChildren = false; 2236 2237 // Visit the submodules of this module. 2238 for (const auto &SM : Mod->submodules()) { 2239 // Skip explicit children; they need to be explicitly imported to be 2240 // linked against. 2241 if (SM->IsExplicit) 2242 continue; 2243 2244 if (Visited.insert(SM).second) { 2245 Stack.push_back(SM); 2246 AnyChildren = true; 2247 } 2248 } 2249 2250 // We didn't find any children, so add this module to the list of 2251 // modules to link against. 2252 if (!AnyChildren) { 2253 LinkModules.insert(Mod); 2254 } 2255 } 2256 2257 // Add link options for all of the imported modules in reverse topological 2258 // order. We don't do anything to try to order import link flags with respect 2259 // to linker options inserted by things like #pragma comment(). 2260 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2261 Visited.clear(); 2262 for (Module *M : LinkModules) 2263 if (Visited.insert(M).second) 2264 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2265 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2266 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2267 2268 // Add the linker options metadata flag. 2269 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2270 for (auto *MD : LinkerOptionsMetadata) 2271 NMD->addOperand(MD); 2272 } 2273 2274 void CodeGenModule::EmitDeferred() { 2275 // Emit deferred declare target declarations. 2276 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2277 getOpenMPRuntime().emitDeferredTargetDecls(); 2278 2279 // Emit code for any potentially referenced deferred decls. Since a 2280 // previously unused static decl may become used during the generation of code 2281 // for a static function, iterate until no changes are made. 2282 2283 if (!DeferredVTables.empty()) { 2284 EmitDeferredVTables(); 2285 2286 // Emitting a vtable doesn't directly cause more vtables to 2287 // become deferred, although it can cause functions to be 2288 // emitted that then need those vtables. 2289 assert(DeferredVTables.empty()); 2290 } 2291 2292 // Emit CUDA/HIP static device variables referenced by host code only. 2293 if (getLangOpts().CUDA) 2294 for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost) 2295 DeferredDeclsToEmit.push_back(V); 2296 2297 // Stop if we're out of both deferred vtables and deferred declarations. 2298 if (DeferredDeclsToEmit.empty()) 2299 return; 2300 2301 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2302 // work, it will not interfere with this. 2303 std::vector<GlobalDecl> CurDeclsToEmit; 2304 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2305 2306 for (GlobalDecl &D : CurDeclsToEmit) { 2307 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2308 // to get GlobalValue with exactly the type we need, not something that 2309 // might had been created for another decl with the same mangled name but 2310 // different type. 2311 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2312 GetAddrOfGlobal(D, ForDefinition)); 2313 2314 // In case of different address spaces, we may still get a cast, even with 2315 // IsForDefinition equal to true. Query mangled names table to get 2316 // GlobalValue. 2317 if (!GV) 2318 GV = GetGlobalValue(getMangledName(D)); 2319 2320 // Make sure GetGlobalValue returned non-null. 2321 assert(GV); 2322 2323 // Check to see if we've already emitted this. This is necessary 2324 // for a couple of reasons: first, decls can end up in the 2325 // deferred-decls queue multiple times, and second, decls can end 2326 // up with definitions in unusual ways (e.g. by an extern inline 2327 // function acquiring a strong function redefinition). Just 2328 // ignore these cases. 2329 if (!GV->isDeclaration()) 2330 continue; 2331 2332 // If this is OpenMP, check if it is legal to emit this global normally. 2333 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2334 continue; 2335 2336 // Otherwise, emit the definition and move on to the next one. 2337 EmitGlobalDefinition(D, GV); 2338 2339 // If we found out that we need to emit more decls, do that recursively. 2340 // This has the advantage that the decls are emitted in a DFS and related 2341 // ones are close together, which is convenient for testing. 2342 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2343 EmitDeferred(); 2344 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2345 } 2346 } 2347 } 2348 2349 void CodeGenModule::EmitVTablesOpportunistically() { 2350 // Try to emit external vtables as available_externally if they have emitted 2351 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2352 // is not allowed to create new references to things that need to be emitted 2353 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2354 2355 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2356 && "Only emit opportunistic vtables with optimizations"); 2357 2358 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2359 assert(getVTables().isVTableExternal(RD) && 2360 "This queue should only contain external vtables"); 2361 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2362 VTables.GenerateClassData(RD); 2363 } 2364 OpportunisticVTables.clear(); 2365 } 2366 2367 void CodeGenModule::EmitGlobalAnnotations() { 2368 if (Annotations.empty()) 2369 return; 2370 2371 // Create a new global variable for the ConstantStruct in the Module. 2372 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2373 Annotations[0]->getType(), Annotations.size()), Annotations); 2374 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2375 llvm::GlobalValue::AppendingLinkage, 2376 Array, "llvm.global.annotations"); 2377 gv->setSection(AnnotationSection); 2378 } 2379 2380 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2381 llvm::Constant *&AStr = AnnotationStrings[Str]; 2382 if (AStr) 2383 return AStr; 2384 2385 // Not found yet, create a new global. 2386 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2387 auto *gv = 2388 new llvm::GlobalVariable(getModule(), s->getType(), true, 2389 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2390 gv->setSection(AnnotationSection); 2391 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2392 AStr = gv; 2393 return gv; 2394 } 2395 2396 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2397 SourceManager &SM = getContext().getSourceManager(); 2398 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2399 if (PLoc.isValid()) 2400 return EmitAnnotationString(PLoc.getFilename()); 2401 return EmitAnnotationString(SM.getBufferName(Loc)); 2402 } 2403 2404 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2405 SourceManager &SM = getContext().getSourceManager(); 2406 PresumedLoc PLoc = SM.getPresumedLoc(L); 2407 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2408 SM.getExpansionLineNumber(L); 2409 return llvm::ConstantInt::get(Int32Ty, LineNo); 2410 } 2411 2412 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2413 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2414 if (Exprs.empty()) 2415 return llvm::ConstantPointerNull::get(Int8PtrTy); 2416 2417 llvm::FoldingSetNodeID ID; 2418 for (Expr *E : Exprs) { 2419 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2420 } 2421 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2422 if (Lookup) 2423 return Lookup; 2424 2425 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2426 LLVMArgs.reserve(Exprs.size()); 2427 ConstantEmitter ConstEmiter(*this); 2428 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2429 const auto *CE = cast<clang::ConstantExpr>(E); 2430 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2431 CE->getType()); 2432 }); 2433 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2434 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2435 llvm::GlobalValue::PrivateLinkage, Struct, 2436 ".args"); 2437 GV->setSection(AnnotationSection); 2438 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2439 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); 2440 2441 Lookup = Bitcasted; 2442 return Bitcasted; 2443 } 2444 2445 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2446 const AnnotateAttr *AA, 2447 SourceLocation L) { 2448 // Get the globals for file name, annotation, and the line number. 2449 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2450 *UnitGV = EmitAnnotationUnit(L), 2451 *LineNoCst = EmitAnnotationLineNo(L), 2452 *Args = EmitAnnotationArgs(AA); 2453 2454 llvm::Constant *ASZeroGV = GV; 2455 if (GV->getAddressSpace() != 0) { 2456 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2457 GV, GV->getValueType()->getPointerTo(0)); 2458 } 2459 2460 // Create the ConstantStruct for the global annotation. 2461 llvm::Constant *Fields[] = { 2462 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2463 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2464 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2465 LineNoCst, 2466 Args, 2467 }; 2468 return llvm::ConstantStruct::getAnon(Fields); 2469 } 2470 2471 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2472 llvm::GlobalValue *GV) { 2473 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2474 // Get the struct elements for these annotations. 2475 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2476 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2477 } 2478 2479 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2480 llvm::Function *Fn, 2481 SourceLocation Loc) const { 2482 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2483 // Blacklist by function name. 2484 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2485 return true; 2486 // Blacklist by location. 2487 if (Loc.isValid()) 2488 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2489 // If location is unknown, this may be a compiler-generated function. Assume 2490 // it's located in the main file. 2491 auto &SM = Context.getSourceManager(); 2492 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2493 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2494 } 2495 return false; 2496 } 2497 2498 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2499 SourceLocation Loc, QualType Ty, 2500 StringRef Category) const { 2501 // For now globals can be blacklisted only in ASan and KASan. 2502 const SanitizerMask EnabledAsanMask = 2503 LangOpts.Sanitize.Mask & 2504 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2505 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2506 SanitizerKind::MemTag); 2507 if (!EnabledAsanMask) 2508 return false; 2509 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2510 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2511 return true; 2512 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2513 return true; 2514 // Check global type. 2515 if (!Ty.isNull()) { 2516 // Drill down the array types: if global variable of a fixed type is 2517 // blacklisted, we also don't instrument arrays of them. 2518 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2519 Ty = AT->getElementType(); 2520 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2521 // We allow to blacklist only record types (classes, structs etc.) 2522 if (Ty->isRecordType()) { 2523 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2524 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2525 return true; 2526 } 2527 } 2528 return false; 2529 } 2530 2531 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2532 StringRef Category) const { 2533 const auto &XRayFilter = getContext().getXRayFilter(); 2534 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2535 auto Attr = ImbueAttr::NONE; 2536 if (Loc.isValid()) 2537 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2538 if (Attr == ImbueAttr::NONE) 2539 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2540 switch (Attr) { 2541 case ImbueAttr::NONE: 2542 return false; 2543 case ImbueAttr::ALWAYS: 2544 Fn->addFnAttr("function-instrument", "xray-always"); 2545 break; 2546 case ImbueAttr::ALWAYS_ARG1: 2547 Fn->addFnAttr("function-instrument", "xray-always"); 2548 Fn->addFnAttr("xray-log-args", "1"); 2549 break; 2550 case ImbueAttr::NEVER: 2551 Fn->addFnAttr("function-instrument", "xray-never"); 2552 break; 2553 } 2554 return true; 2555 } 2556 2557 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2558 // Never defer when EmitAllDecls is specified. 2559 if (LangOpts.EmitAllDecls) 2560 return true; 2561 2562 if (CodeGenOpts.KeepStaticConsts) { 2563 const auto *VD = dyn_cast<VarDecl>(Global); 2564 if (VD && VD->getType().isConstQualified() && 2565 VD->getStorageDuration() == SD_Static) 2566 return true; 2567 } 2568 2569 return getContext().DeclMustBeEmitted(Global); 2570 } 2571 2572 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2573 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2574 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2575 // Implicit template instantiations may change linkage if they are later 2576 // explicitly instantiated, so they should not be emitted eagerly. 2577 return false; 2578 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2579 // not emit them eagerly unless we sure that the function must be emitted on 2580 // the host. 2581 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2582 !LangOpts.OpenMPIsDevice && 2583 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2584 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2585 return false; 2586 } 2587 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2588 if (Context.getInlineVariableDefinitionKind(VD) == 2589 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2590 // A definition of an inline constexpr static data member may change 2591 // linkage later if it's redeclared outside the class. 2592 return false; 2593 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2594 // codegen for global variables, because they may be marked as threadprivate. 2595 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2596 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2597 !isTypeConstant(Global->getType(), false) && 2598 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2599 return false; 2600 2601 return true; 2602 } 2603 2604 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2605 StringRef Name = getMangledName(GD); 2606 2607 // The UUID descriptor should be pointer aligned. 2608 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2609 2610 // Look for an existing global. 2611 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2612 return ConstantAddress(GV, Alignment); 2613 2614 ConstantEmitter Emitter(*this); 2615 llvm::Constant *Init; 2616 2617 APValue &V = GD->getAsAPValue(); 2618 if (!V.isAbsent()) { 2619 // If possible, emit the APValue version of the initializer. In particular, 2620 // this gets the type of the constant right. 2621 Init = Emitter.emitForInitializer( 2622 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2623 } else { 2624 // As a fallback, directly construct the constant. 2625 // FIXME: This may get padding wrong under esoteric struct layout rules. 2626 // MSVC appears to create a complete type 'struct __s_GUID' that it 2627 // presumably uses to represent these constants. 2628 MSGuidDecl::Parts Parts = GD->getParts(); 2629 llvm::Constant *Fields[4] = { 2630 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2631 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2632 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2633 llvm::ConstantDataArray::getRaw( 2634 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2635 Int8Ty)}; 2636 Init = llvm::ConstantStruct::getAnon(Fields); 2637 } 2638 2639 auto *GV = new llvm::GlobalVariable( 2640 getModule(), Init->getType(), 2641 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2642 if (supportsCOMDAT()) 2643 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2644 setDSOLocal(GV); 2645 2646 llvm::Constant *Addr = GV; 2647 if (!V.isAbsent()) { 2648 Emitter.finalize(GV); 2649 } else { 2650 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2651 Addr = llvm::ConstantExpr::getBitCast( 2652 GV, Ty->getPointerTo(GV->getAddressSpace())); 2653 } 2654 return ConstantAddress(Addr, Alignment); 2655 } 2656 2657 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2658 const TemplateParamObjectDecl *TPO) { 2659 StringRef Name = getMangledName(TPO); 2660 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2661 2662 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2663 return ConstantAddress(GV, Alignment); 2664 2665 ConstantEmitter Emitter(*this); 2666 llvm::Constant *Init = Emitter.emitForInitializer( 2667 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2668 2669 if (!Init) { 2670 ErrorUnsupported(TPO, "template parameter object"); 2671 return ConstantAddress::invalid(); 2672 } 2673 2674 auto *GV = new llvm::GlobalVariable( 2675 getModule(), Init->getType(), 2676 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2677 if (supportsCOMDAT()) 2678 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2679 Emitter.finalize(GV); 2680 2681 return ConstantAddress(GV, Alignment); 2682 } 2683 2684 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2685 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2686 assert(AA && "No alias?"); 2687 2688 CharUnits Alignment = getContext().getDeclAlign(VD); 2689 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2690 2691 // See if there is already something with the target's name in the module. 2692 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2693 if (Entry) { 2694 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2695 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2696 return ConstantAddress(Ptr, Alignment); 2697 } 2698 2699 llvm::Constant *Aliasee; 2700 if (isa<llvm::FunctionType>(DeclTy)) 2701 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2702 GlobalDecl(cast<FunctionDecl>(VD)), 2703 /*ForVTable=*/false); 2704 else 2705 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2706 llvm::PointerType::getUnqual(DeclTy), 2707 nullptr); 2708 2709 auto *F = cast<llvm::GlobalValue>(Aliasee); 2710 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2711 WeakRefReferences.insert(F); 2712 2713 return ConstantAddress(Aliasee, Alignment); 2714 } 2715 2716 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2717 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2718 2719 // Weak references don't produce any output by themselves. 2720 if (Global->hasAttr<WeakRefAttr>()) 2721 return; 2722 2723 // If this is an alias definition (which otherwise looks like a declaration) 2724 // emit it now. 2725 if (Global->hasAttr<AliasAttr>()) 2726 return EmitAliasDefinition(GD); 2727 2728 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2729 if (Global->hasAttr<IFuncAttr>()) 2730 return emitIFuncDefinition(GD); 2731 2732 // If this is a cpu_dispatch multiversion function, emit the resolver. 2733 if (Global->hasAttr<CPUDispatchAttr>()) 2734 return emitCPUDispatchDefinition(GD); 2735 2736 // If this is CUDA, be selective about which declarations we emit. 2737 if (LangOpts.CUDA) { 2738 if (LangOpts.CUDAIsDevice) { 2739 if (!Global->hasAttr<CUDADeviceAttr>() && 2740 !Global->hasAttr<CUDAGlobalAttr>() && 2741 !Global->hasAttr<CUDAConstantAttr>() && 2742 !Global->hasAttr<CUDASharedAttr>() && 2743 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2744 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2745 return; 2746 } else { 2747 // We need to emit host-side 'shadows' for all global 2748 // device-side variables because the CUDA runtime needs their 2749 // size and host-side address in order to provide access to 2750 // their device-side incarnations. 2751 2752 // So device-only functions are the only things we skip. 2753 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2754 Global->hasAttr<CUDADeviceAttr>()) 2755 return; 2756 2757 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2758 "Expected Variable or Function"); 2759 } 2760 } 2761 2762 if (LangOpts.OpenMP) { 2763 // If this is OpenMP, check if it is legal to emit this global normally. 2764 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2765 return; 2766 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2767 if (MustBeEmitted(Global)) 2768 EmitOMPDeclareReduction(DRD); 2769 return; 2770 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2771 if (MustBeEmitted(Global)) 2772 EmitOMPDeclareMapper(DMD); 2773 return; 2774 } 2775 } 2776 2777 // Ignore declarations, they will be emitted on their first use. 2778 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2779 // Forward declarations are emitted lazily on first use. 2780 if (!FD->doesThisDeclarationHaveABody()) { 2781 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2782 return; 2783 2784 StringRef MangledName = getMangledName(GD); 2785 2786 // Compute the function info and LLVM type. 2787 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2788 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2789 2790 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2791 /*DontDefer=*/false); 2792 return; 2793 } 2794 } else { 2795 const auto *VD = cast<VarDecl>(Global); 2796 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2797 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2798 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2799 if (LangOpts.OpenMP) { 2800 // Emit declaration of the must-be-emitted declare target variable. 2801 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2802 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2803 bool UnifiedMemoryEnabled = 2804 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2805 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2806 !UnifiedMemoryEnabled) { 2807 (void)GetAddrOfGlobalVar(VD); 2808 } else { 2809 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2810 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2811 UnifiedMemoryEnabled)) && 2812 "Link clause or to clause with unified memory expected."); 2813 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2814 } 2815 2816 return; 2817 } 2818 } 2819 // If this declaration may have caused an inline variable definition to 2820 // change linkage, make sure that it's emitted. 2821 if (Context.getInlineVariableDefinitionKind(VD) == 2822 ASTContext::InlineVariableDefinitionKind::Strong) 2823 GetAddrOfGlobalVar(VD); 2824 return; 2825 } 2826 } 2827 2828 // Defer code generation to first use when possible, e.g. if this is an inline 2829 // function. If the global must always be emitted, do it eagerly if possible 2830 // to benefit from cache locality. 2831 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2832 // Emit the definition if it can't be deferred. 2833 EmitGlobalDefinition(GD); 2834 return; 2835 } 2836 2837 // If we're deferring emission of a C++ variable with an 2838 // initializer, remember the order in which it appeared in the file. 2839 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2840 cast<VarDecl>(Global)->hasInit()) { 2841 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2842 CXXGlobalInits.push_back(nullptr); 2843 } 2844 2845 StringRef MangledName = getMangledName(GD); 2846 if (GetGlobalValue(MangledName) != nullptr) { 2847 // The value has already been used and should therefore be emitted. 2848 addDeferredDeclToEmit(GD); 2849 } else if (MustBeEmitted(Global)) { 2850 // The value must be emitted, but cannot be emitted eagerly. 2851 assert(!MayBeEmittedEagerly(Global)); 2852 addDeferredDeclToEmit(GD); 2853 } else { 2854 // Otherwise, remember that we saw a deferred decl with this name. The 2855 // first use of the mangled name will cause it to move into 2856 // DeferredDeclsToEmit. 2857 DeferredDecls[MangledName] = GD; 2858 } 2859 } 2860 2861 // Check if T is a class type with a destructor that's not dllimport. 2862 static bool HasNonDllImportDtor(QualType T) { 2863 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2864 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2865 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2866 return true; 2867 2868 return false; 2869 } 2870 2871 namespace { 2872 struct FunctionIsDirectlyRecursive 2873 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2874 const StringRef Name; 2875 const Builtin::Context &BI; 2876 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2877 : Name(N), BI(C) {} 2878 2879 bool VisitCallExpr(const CallExpr *E) { 2880 const FunctionDecl *FD = E->getDirectCallee(); 2881 if (!FD) 2882 return false; 2883 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2884 if (Attr && Name == Attr->getLabel()) 2885 return true; 2886 unsigned BuiltinID = FD->getBuiltinID(); 2887 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2888 return false; 2889 StringRef BuiltinName = BI.getName(BuiltinID); 2890 if (BuiltinName.startswith("__builtin_") && 2891 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2892 return true; 2893 } 2894 return false; 2895 } 2896 2897 bool VisitStmt(const Stmt *S) { 2898 for (const Stmt *Child : S->children()) 2899 if (Child && this->Visit(Child)) 2900 return true; 2901 return false; 2902 } 2903 }; 2904 2905 // Make sure we're not referencing non-imported vars or functions. 2906 struct DLLImportFunctionVisitor 2907 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2908 bool SafeToInline = true; 2909 2910 bool shouldVisitImplicitCode() const { return true; } 2911 2912 bool VisitVarDecl(VarDecl *VD) { 2913 if (VD->getTLSKind()) { 2914 // A thread-local variable cannot be imported. 2915 SafeToInline = false; 2916 return SafeToInline; 2917 } 2918 2919 // A variable definition might imply a destructor call. 2920 if (VD->isThisDeclarationADefinition()) 2921 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2922 2923 return SafeToInline; 2924 } 2925 2926 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2927 if (const auto *D = E->getTemporary()->getDestructor()) 2928 SafeToInline = D->hasAttr<DLLImportAttr>(); 2929 return SafeToInline; 2930 } 2931 2932 bool VisitDeclRefExpr(DeclRefExpr *E) { 2933 ValueDecl *VD = E->getDecl(); 2934 if (isa<FunctionDecl>(VD)) 2935 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2936 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2937 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2938 return SafeToInline; 2939 } 2940 2941 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2942 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2943 return SafeToInline; 2944 } 2945 2946 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2947 CXXMethodDecl *M = E->getMethodDecl(); 2948 if (!M) { 2949 // Call through a pointer to member function. This is safe to inline. 2950 SafeToInline = true; 2951 } else { 2952 SafeToInline = M->hasAttr<DLLImportAttr>(); 2953 } 2954 return SafeToInline; 2955 } 2956 2957 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2958 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2959 return SafeToInline; 2960 } 2961 2962 bool VisitCXXNewExpr(CXXNewExpr *E) { 2963 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2964 return SafeToInline; 2965 } 2966 }; 2967 } 2968 2969 // isTriviallyRecursive - Check if this function calls another 2970 // decl that, because of the asm attribute or the other decl being a builtin, 2971 // ends up pointing to itself. 2972 bool 2973 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2974 StringRef Name; 2975 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2976 // asm labels are a special kind of mangling we have to support. 2977 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2978 if (!Attr) 2979 return false; 2980 Name = Attr->getLabel(); 2981 } else { 2982 Name = FD->getName(); 2983 } 2984 2985 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2986 const Stmt *Body = FD->getBody(); 2987 return Body ? Walker.Visit(Body) : false; 2988 } 2989 2990 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2991 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2992 return true; 2993 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2994 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2995 return false; 2996 2997 if (F->hasAttr<DLLImportAttr>()) { 2998 // Check whether it would be safe to inline this dllimport function. 2999 DLLImportFunctionVisitor Visitor; 3000 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3001 if (!Visitor.SafeToInline) 3002 return false; 3003 3004 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3005 // Implicit destructor invocations aren't captured in the AST, so the 3006 // check above can't see them. Check for them manually here. 3007 for (const Decl *Member : Dtor->getParent()->decls()) 3008 if (isa<FieldDecl>(Member)) 3009 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3010 return false; 3011 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3012 if (HasNonDllImportDtor(B.getType())) 3013 return false; 3014 } 3015 } 3016 3017 // PR9614. Avoid cases where the source code is lying to us. An available 3018 // externally function should have an equivalent function somewhere else, 3019 // but a function that calls itself through asm label/`__builtin_` trickery is 3020 // clearly not equivalent to the real implementation. 3021 // This happens in glibc's btowc and in some configure checks. 3022 return !isTriviallyRecursive(F); 3023 } 3024 3025 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3026 return CodeGenOpts.OptimizationLevel > 0; 3027 } 3028 3029 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3030 llvm::GlobalValue *GV) { 3031 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3032 3033 if (FD->isCPUSpecificMultiVersion()) { 3034 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3035 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3036 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3037 // Requires multiple emits. 3038 } else 3039 EmitGlobalFunctionDefinition(GD, GV); 3040 } 3041 3042 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3043 const auto *D = cast<ValueDecl>(GD.getDecl()); 3044 3045 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3046 Context.getSourceManager(), 3047 "Generating code for declaration"); 3048 3049 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3050 // At -O0, don't generate IR for functions with available_externally 3051 // linkage. 3052 if (!shouldEmitFunction(GD)) 3053 return; 3054 3055 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3056 std::string Name; 3057 llvm::raw_string_ostream OS(Name); 3058 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3059 /*Qualified=*/true); 3060 return Name; 3061 }); 3062 3063 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3064 // Make sure to emit the definition(s) before we emit the thunks. 3065 // This is necessary for the generation of certain thunks. 3066 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3067 ABI->emitCXXStructor(GD); 3068 else if (FD->isMultiVersion()) 3069 EmitMultiVersionFunctionDefinition(GD, GV); 3070 else 3071 EmitGlobalFunctionDefinition(GD, GV); 3072 3073 if (Method->isVirtual()) 3074 getVTables().EmitThunks(GD); 3075 3076 return; 3077 } 3078 3079 if (FD->isMultiVersion()) 3080 return EmitMultiVersionFunctionDefinition(GD, GV); 3081 return EmitGlobalFunctionDefinition(GD, GV); 3082 } 3083 3084 if (const auto *VD = dyn_cast<VarDecl>(D)) 3085 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3086 3087 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3088 } 3089 3090 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3091 llvm::Function *NewFn); 3092 3093 static unsigned 3094 TargetMVPriority(const TargetInfo &TI, 3095 const CodeGenFunction::MultiVersionResolverOption &RO) { 3096 unsigned Priority = 0; 3097 for (StringRef Feat : RO.Conditions.Features) 3098 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3099 3100 if (!RO.Conditions.Architecture.empty()) 3101 Priority = std::max( 3102 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3103 return Priority; 3104 } 3105 3106 void CodeGenModule::emitMultiVersionFunctions() { 3107 for (GlobalDecl GD : MultiVersionFuncs) { 3108 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3109 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3110 getContext().forEachMultiversionedFunctionVersion( 3111 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3112 GlobalDecl CurGD{ 3113 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3114 StringRef MangledName = getMangledName(CurGD); 3115 llvm::Constant *Func = GetGlobalValue(MangledName); 3116 if (!Func) { 3117 if (CurFD->isDefined()) { 3118 EmitGlobalFunctionDefinition(CurGD, nullptr); 3119 Func = GetGlobalValue(MangledName); 3120 } else { 3121 const CGFunctionInfo &FI = 3122 getTypes().arrangeGlobalDeclaration(GD); 3123 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3124 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3125 /*DontDefer=*/false, ForDefinition); 3126 } 3127 assert(Func && "This should have just been created"); 3128 } 3129 3130 const auto *TA = CurFD->getAttr<TargetAttr>(); 3131 llvm::SmallVector<StringRef, 8> Feats; 3132 TA->getAddedFeatures(Feats); 3133 3134 Options.emplace_back(cast<llvm::Function>(Func), 3135 TA->getArchitecture(), Feats); 3136 }); 3137 3138 llvm::Function *ResolverFunc; 3139 const TargetInfo &TI = getTarget(); 3140 3141 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3142 ResolverFunc = cast<llvm::Function>( 3143 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3144 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3145 } else { 3146 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3147 } 3148 3149 if (supportsCOMDAT()) 3150 ResolverFunc->setComdat( 3151 getModule().getOrInsertComdat(ResolverFunc->getName())); 3152 3153 llvm::stable_sort( 3154 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3155 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3156 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3157 }); 3158 CodeGenFunction CGF(*this); 3159 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3160 } 3161 } 3162 3163 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3164 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3165 assert(FD && "Not a FunctionDecl?"); 3166 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3167 assert(DD && "Not a cpu_dispatch Function?"); 3168 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3169 3170 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3171 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3172 DeclTy = getTypes().GetFunctionType(FInfo); 3173 } 3174 3175 StringRef ResolverName = getMangledName(GD); 3176 3177 llvm::Type *ResolverType; 3178 GlobalDecl ResolverGD; 3179 if (getTarget().supportsIFunc()) 3180 ResolverType = llvm::FunctionType::get( 3181 llvm::PointerType::get(DeclTy, 3182 Context.getTargetAddressSpace(FD->getType())), 3183 false); 3184 else { 3185 ResolverType = DeclTy; 3186 ResolverGD = GD; 3187 } 3188 3189 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3190 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3191 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3192 if (supportsCOMDAT()) 3193 ResolverFunc->setComdat( 3194 getModule().getOrInsertComdat(ResolverFunc->getName())); 3195 3196 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3197 const TargetInfo &Target = getTarget(); 3198 unsigned Index = 0; 3199 for (const IdentifierInfo *II : DD->cpus()) { 3200 // Get the name of the target function so we can look it up/create it. 3201 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3202 getCPUSpecificMangling(*this, II->getName()); 3203 3204 llvm::Constant *Func = GetGlobalValue(MangledName); 3205 3206 if (!Func) { 3207 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3208 if (ExistingDecl.getDecl() && 3209 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3210 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3211 Func = GetGlobalValue(MangledName); 3212 } else { 3213 if (!ExistingDecl.getDecl()) 3214 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3215 3216 Func = GetOrCreateLLVMFunction( 3217 MangledName, DeclTy, ExistingDecl, 3218 /*ForVTable=*/false, /*DontDefer=*/true, 3219 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3220 } 3221 } 3222 3223 llvm::SmallVector<StringRef, 32> Features; 3224 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3225 llvm::transform(Features, Features.begin(), 3226 [](StringRef Str) { return Str.substr(1); }); 3227 Features.erase(std::remove_if( 3228 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3229 return !Target.validateCpuSupports(Feat); 3230 }), Features.end()); 3231 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3232 ++Index; 3233 } 3234 3235 llvm::sort( 3236 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3237 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3238 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3239 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3240 }); 3241 3242 // If the list contains multiple 'default' versions, such as when it contains 3243 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3244 // always run on at least a 'pentium'). We do this by deleting the 'least 3245 // advanced' (read, lowest mangling letter). 3246 while (Options.size() > 1 && 3247 CodeGenFunction::GetX86CpuSupportsMask( 3248 (Options.end() - 2)->Conditions.Features) == 0) { 3249 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3250 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3251 if (LHSName.compare(RHSName) < 0) 3252 Options.erase(Options.end() - 2); 3253 else 3254 Options.erase(Options.end() - 1); 3255 } 3256 3257 CodeGenFunction CGF(*this); 3258 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3259 3260 if (getTarget().supportsIFunc()) { 3261 std::string AliasName = getMangledNameImpl( 3262 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3263 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3264 if (!AliasFunc) { 3265 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3266 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3267 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3268 auto *GA = llvm::GlobalAlias::create( 3269 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3270 GA->setLinkage(llvm::Function::WeakODRLinkage); 3271 SetCommonAttributes(GD, GA); 3272 } 3273 } 3274 } 3275 3276 /// If a dispatcher for the specified mangled name is not in the module, create 3277 /// and return an llvm Function with the specified type. 3278 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3279 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3280 std::string MangledName = 3281 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3282 3283 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3284 // a separate resolver). 3285 std::string ResolverName = MangledName; 3286 if (getTarget().supportsIFunc()) 3287 ResolverName += ".ifunc"; 3288 else if (FD->isTargetMultiVersion()) 3289 ResolverName += ".resolver"; 3290 3291 // If this already exists, just return that one. 3292 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3293 return ResolverGV; 3294 3295 // Since this is the first time we've created this IFunc, make sure 3296 // that we put this multiversioned function into the list to be 3297 // replaced later if necessary (target multiversioning only). 3298 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3299 MultiVersionFuncs.push_back(GD); 3300 3301 if (getTarget().supportsIFunc()) { 3302 llvm::Type *ResolverType = llvm::FunctionType::get( 3303 llvm::PointerType::get( 3304 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3305 false); 3306 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3307 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3308 /*ForVTable=*/false); 3309 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3310 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3311 GIF->setName(ResolverName); 3312 SetCommonAttributes(FD, GIF); 3313 3314 return GIF; 3315 } 3316 3317 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3318 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3319 assert(isa<llvm::GlobalValue>(Resolver) && 3320 "Resolver should be created for the first time"); 3321 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3322 return Resolver; 3323 } 3324 3325 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3326 /// module, create and return an llvm Function with the specified type. If there 3327 /// is something in the module with the specified name, return it potentially 3328 /// bitcasted to the right type. 3329 /// 3330 /// If D is non-null, it specifies a decl that correspond to this. This is used 3331 /// to set the attributes on the function when it is first created. 3332 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3333 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3334 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3335 ForDefinition_t IsForDefinition) { 3336 const Decl *D = GD.getDecl(); 3337 3338 // Any attempts to use a MultiVersion function should result in retrieving 3339 // the iFunc instead. Name Mangling will handle the rest of the changes. 3340 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3341 // For the device mark the function as one that should be emitted. 3342 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3343 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3344 !DontDefer && !IsForDefinition) { 3345 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3346 GlobalDecl GDDef; 3347 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3348 GDDef = GlobalDecl(CD, GD.getCtorType()); 3349 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3350 GDDef = GlobalDecl(DD, GD.getDtorType()); 3351 else 3352 GDDef = GlobalDecl(FDDef); 3353 EmitGlobal(GDDef); 3354 } 3355 } 3356 3357 if (FD->isMultiVersion()) { 3358 if (FD->hasAttr<TargetAttr>()) 3359 UpdateMultiVersionNames(GD, FD); 3360 if (!IsForDefinition) 3361 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3362 } 3363 } 3364 3365 // Lookup the entry, lazily creating it if necessary. 3366 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3367 if (Entry) { 3368 if (WeakRefReferences.erase(Entry)) { 3369 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3370 if (FD && !FD->hasAttr<WeakAttr>()) 3371 Entry->setLinkage(llvm::Function::ExternalLinkage); 3372 } 3373 3374 // Handle dropped DLL attributes. 3375 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3376 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3377 setDSOLocal(Entry); 3378 } 3379 3380 // If there are two attempts to define the same mangled name, issue an 3381 // error. 3382 if (IsForDefinition && !Entry->isDeclaration()) { 3383 GlobalDecl OtherGD; 3384 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3385 // to make sure that we issue an error only once. 3386 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3387 (GD.getCanonicalDecl().getDecl() != 3388 OtherGD.getCanonicalDecl().getDecl()) && 3389 DiagnosedConflictingDefinitions.insert(GD).second) { 3390 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3391 << MangledName; 3392 getDiags().Report(OtherGD.getDecl()->getLocation(), 3393 diag::note_previous_definition); 3394 } 3395 } 3396 3397 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3398 (Entry->getValueType() == Ty)) { 3399 return Entry; 3400 } 3401 3402 // Make sure the result is of the correct type. 3403 // (If function is requested for a definition, we always need to create a new 3404 // function, not just return a bitcast.) 3405 if (!IsForDefinition) 3406 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3407 } 3408 3409 // This function doesn't have a complete type (for example, the return 3410 // type is an incomplete struct). Use a fake type instead, and make 3411 // sure not to try to set attributes. 3412 bool IsIncompleteFunction = false; 3413 3414 llvm::FunctionType *FTy; 3415 if (isa<llvm::FunctionType>(Ty)) { 3416 FTy = cast<llvm::FunctionType>(Ty); 3417 } else { 3418 FTy = llvm::FunctionType::get(VoidTy, false); 3419 IsIncompleteFunction = true; 3420 } 3421 3422 llvm::Function *F = 3423 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3424 Entry ? StringRef() : MangledName, &getModule()); 3425 3426 // If we already created a function with the same mangled name (but different 3427 // type) before, take its name and add it to the list of functions to be 3428 // replaced with F at the end of CodeGen. 3429 // 3430 // This happens if there is a prototype for a function (e.g. "int f()") and 3431 // then a definition of a different type (e.g. "int f(int x)"). 3432 if (Entry) { 3433 F->takeName(Entry); 3434 3435 // This might be an implementation of a function without a prototype, in 3436 // which case, try to do special replacement of calls which match the new 3437 // prototype. The really key thing here is that we also potentially drop 3438 // arguments from the call site so as to make a direct call, which makes the 3439 // inliner happier and suppresses a number of optimizer warnings (!) about 3440 // dropping arguments. 3441 if (!Entry->use_empty()) { 3442 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3443 Entry->removeDeadConstantUsers(); 3444 } 3445 3446 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3447 F, Entry->getValueType()->getPointerTo()); 3448 addGlobalValReplacement(Entry, BC); 3449 } 3450 3451 assert(F->getName() == MangledName && "name was uniqued!"); 3452 if (D) 3453 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3454 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3455 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3456 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3457 } 3458 3459 if (!DontDefer) { 3460 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3461 // each other bottoming out with the base dtor. Therefore we emit non-base 3462 // dtors on usage, even if there is no dtor definition in the TU. 3463 if (D && isa<CXXDestructorDecl>(D) && 3464 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3465 GD.getDtorType())) 3466 addDeferredDeclToEmit(GD); 3467 3468 // This is the first use or definition of a mangled name. If there is a 3469 // deferred decl with this name, remember that we need to emit it at the end 3470 // of the file. 3471 auto DDI = DeferredDecls.find(MangledName); 3472 if (DDI != DeferredDecls.end()) { 3473 // Move the potentially referenced deferred decl to the 3474 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3475 // don't need it anymore). 3476 addDeferredDeclToEmit(DDI->second); 3477 DeferredDecls.erase(DDI); 3478 3479 // Otherwise, there are cases we have to worry about where we're 3480 // using a declaration for which we must emit a definition but where 3481 // we might not find a top-level definition: 3482 // - member functions defined inline in their classes 3483 // - friend functions defined inline in some class 3484 // - special member functions with implicit definitions 3485 // If we ever change our AST traversal to walk into class methods, 3486 // this will be unnecessary. 3487 // 3488 // We also don't emit a definition for a function if it's going to be an 3489 // entry in a vtable, unless it's already marked as used. 3490 } else if (getLangOpts().CPlusPlus && D) { 3491 // Look for a declaration that's lexically in a record. 3492 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3493 FD = FD->getPreviousDecl()) { 3494 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3495 if (FD->doesThisDeclarationHaveABody()) { 3496 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3497 break; 3498 } 3499 } 3500 } 3501 } 3502 } 3503 3504 // Make sure the result is of the requested type. 3505 if (!IsIncompleteFunction) { 3506 assert(F->getFunctionType() == Ty); 3507 return F; 3508 } 3509 3510 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3511 return llvm::ConstantExpr::getBitCast(F, PTy); 3512 } 3513 3514 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3515 /// non-null, then this function will use the specified type if it has to 3516 /// create it (this occurs when we see a definition of the function). 3517 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3518 llvm::Type *Ty, 3519 bool ForVTable, 3520 bool DontDefer, 3521 ForDefinition_t IsForDefinition) { 3522 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3523 "consteval function should never be emitted"); 3524 // If there was no specific requested type, just convert it now. 3525 if (!Ty) { 3526 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3527 Ty = getTypes().ConvertType(FD->getType()); 3528 } 3529 3530 // Devirtualized destructor calls may come through here instead of via 3531 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3532 // of the complete destructor when necessary. 3533 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3534 if (getTarget().getCXXABI().isMicrosoft() && 3535 GD.getDtorType() == Dtor_Complete && 3536 DD->getParent()->getNumVBases() == 0) 3537 GD = GlobalDecl(DD, Dtor_Base); 3538 } 3539 3540 StringRef MangledName = getMangledName(GD); 3541 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3542 /*IsThunk=*/false, llvm::AttributeList(), 3543 IsForDefinition); 3544 } 3545 3546 static const FunctionDecl * 3547 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3548 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3549 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3550 3551 IdentifierInfo &CII = C.Idents.get(Name); 3552 for (const auto &Result : DC->lookup(&CII)) 3553 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3554 return FD; 3555 3556 if (!C.getLangOpts().CPlusPlus) 3557 return nullptr; 3558 3559 // Demangle the premangled name from getTerminateFn() 3560 IdentifierInfo &CXXII = 3561 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3562 ? C.Idents.get("terminate") 3563 : C.Idents.get(Name); 3564 3565 for (const auto &N : {"__cxxabiv1", "std"}) { 3566 IdentifierInfo &NS = C.Idents.get(N); 3567 for (const auto &Result : DC->lookup(&NS)) { 3568 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3569 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3570 for (const auto &Result : LSD->lookup(&NS)) 3571 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3572 break; 3573 3574 if (ND) 3575 for (const auto &Result : ND->lookup(&CXXII)) 3576 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3577 return FD; 3578 } 3579 } 3580 3581 return nullptr; 3582 } 3583 3584 /// CreateRuntimeFunction - Create a new runtime function with the specified 3585 /// type and name. 3586 llvm::FunctionCallee 3587 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3588 llvm::AttributeList ExtraAttrs, bool Local, 3589 bool AssumeConvergent) { 3590 if (AssumeConvergent) { 3591 ExtraAttrs = 3592 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3593 llvm::Attribute::Convergent); 3594 } 3595 3596 llvm::Constant *C = 3597 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3598 /*DontDefer=*/false, /*IsThunk=*/false, 3599 ExtraAttrs); 3600 3601 if (auto *F = dyn_cast<llvm::Function>(C)) { 3602 if (F->empty()) { 3603 F->setCallingConv(getRuntimeCC()); 3604 3605 // In Windows Itanium environments, try to mark runtime functions 3606 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3607 // will link their standard library statically or dynamically. Marking 3608 // functions imported when they are not imported can cause linker errors 3609 // and warnings. 3610 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3611 !getCodeGenOpts().LTOVisibilityPublicStd) { 3612 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3613 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3614 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3615 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3616 } 3617 } 3618 setDSOLocal(F); 3619 } 3620 } 3621 3622 return {FTy, C}; 3623 } 3624 3625 /// isTypeConstant - Determine whether an object of this type can be emitted 3626 /// as a constant. 3627 /// 3628 /// If ExcludeCtor is true, the duration when the object's constructor runs 3629 /// will not be considered. The caller will need to verify that the object is 3630 /// not written to during its construction. 3631 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3632 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3633 return false; 3634 3635 if (Context.getLangOpts().CPlusPlus) { 3636 if (const CXXRecordDecl *Record 3637 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3638 return ExcludeCtor && !Record->hasMutableFields() && 3639 Record->hasTrivialDestructor(); 3640 } 3641 3642 return true; 3643 } 3644 3645 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3646 /// create and return an llvm GlobalVariable with the specified type. If there 3647 /// is something in the module with the specified name, return it potentially 3648 /// bitcasted to the right type. 3649 /// 3650 /// If D is non-null, it specifies a decl that correspond to this. This is used 3651 /// to set the attributes on the global when it is first created. 3652 /// 3653 /// If IsForDefinition is true, it is guaranteed that an actual global with 3654 /// type Ty will be returned, not conversion of a variable with the same 3655 /// mangled name but some other type. 3656 llvm::Constant * 3657 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3658 llvm::PointerType *Ty, 3659 const VarDecl *D, 3660 ForDefinition_t IsForDefinition) { 3661 // Lookup the entry, lazily creating it if necessary. 3662 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3663 if (Entry) { 3664 if (WeakRefReferences.erase(Entry)) { 3665 if (D && !D->hasAttr<WeakAttr>()) 3666 Entry->setLinkage(llvm::Function::ExternalLinkage); 3667 } 3668 3669 // Handle dropped DLL attributes. 3670 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3671 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3672 3673 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3674 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3675 3676 if (Entry->getType() == Ty) 3677 return Entry; 3678 3679 // If there are two attempts to define the same mangled name, issue an 3680 // error. 3681 if (IsForDefinition && !Entry->isDeclaration()) { 3682 GlobalDecl OtherGD; 3683 const VarDecl *OtherD; 3684 3685 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3686 // to make sure that we issue an error only once. 3687 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3688 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3689 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3690 OtherD->hasInit() && 3691 DiagnosedConflictingDefinitions.insert(D).second) { 3692 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3693 << MangledName; 3694 getDiags().Report(OtherGD.getDecl()->getLocation(), 3695 diag::note_previous_definition); 3696 } 3697 } 3698 3699 // Make sure the result is of the correct type. 3700 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3701 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3702 3703 // (If global is requested for a definition, we always need to create a new 3704 // global, not just return a bitcast.) 3705 if (!IsForDefinition) 3706 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3707 } 3708 3709 auto AddrSpace = GetGlobalVarAddressSpace(D); 3710 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3711 3712 auto *GV = new llvm::GlobalVariable( 3713 getModule(), Ty->getElementType(), false, 3714 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3715 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3716 3717 // If we already created a global with the same mangled name (but different 3718 // type) before, take its name and remove it from its parent. 3719 if (Entry) { 3720 GV->takeName(Entry); 3721 3722 if (!Entry->use_empty()) { 3723 llvm::Constant *NewPtrForOldDecl = 3724 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3725 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3726 } 3727 3728 Entry->eraseFromParent(); 3729 } 3730 3731 // This is the first use or definition of a mangled name. If there is a 3732 // deferred decl with this name, remember that we need to emit it at the end 3733 // of the file. 3734 auto DDI = DeferredDecls.find(MangledName); 3735 if (DDI != DeferredDecls.end()) { 3736 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3737 // list, and remove it from DeferredDecls (since we don't need it anymore). 3738 addDeferredDeclToEmit(DDI->second); 3739 DeferredDecls.erase(DDI); 3740 } 3741 3742 // Handle things which are present even on external declarations. 3743 if (D) { 3744 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3745 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3746 3747 // FIXME: This code is overly simple and should be merged with other global 3748 // handling. 3749 GV->setConstant(isTypeConstant(D->getType(), false)); 3750 3751 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3752 3753 setLinkageForGV(GV, D); 3754 3755 if (D->getTLSKind()) { 3756 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3757 CXXThreadLocals.push_back(D); 3758 setTLSMode(GV, *D); 3759 } 3760 3761 setGVProperties(GV, D); 3762 3763 // If required by the ABI, treat declarations of static data members with 3764 // inline initializers as definitions. 3765 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3766 EmitGlobalVarDefinition(D); 3767 } 3768 3769 // Emit section information for extern variables. 3770 if (D->hasExternalStorage()) { 3771 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3772 GV->setSection(SA->getName()); 3773 } 3774 3775 // Handle XCore specific ABI requirements. 3776 if (getTriple().getArch() == llvm::Triple::xcore && 3777 D->getLanguageLinkage() == CLanguageLinkage && 3778 D->getType().isConstant(Context) && 3779 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3780 GV->setSection(".cp.rodata"); 3781 3782 // Check if we a have a const declaration with an initializer, we may be 3783 // able to emit it as available_externally to expose it's value to the 3784 // optimizer. 3785 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3786 D->getType().isConstQualified() && !GV->hasInitializer() && 3787 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3788 const auto *Record = 3789 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3790 bool HasMutableFields = Record && Record->hasMutableFields(); 3791 if (!HasMutableFields) { 3792 const VarDecl *InitDecl; 3793 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3794 if (InitExpr) { 3795 ConstantEmitter emitter(*this); 3796 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3797 if (Init) { 3798 auto *InitType = Init->getType(); 3799 if (GV->getValueType() != InitType) { 3800 // The type of the initializer does not match the definition. 3801 // This happens when an initializer has a different type from 3802 // the type of the global (because of padding at the end of a 3803 // structure for instance). 3804 GV->setName(StringRef()); 3805 // Make a new global with the correct type, this is now guaranteed 3806 // to work. 3807 auto *NewGV = cast<llvm::GlobalVariable>( 3808 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3809 ->stripPointerCasts()); 3810 3811 // Erase the old global, since it is no longer used. 3812 GV->eraseFromParent(); 3813 GV = NewGV; 3814 } else { 3815 GV->setInitializer(Init); 3816 GV->setConstant(true); 3817 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3818 } 3819 emitter.finalize(GV); 3820 } 3821 } 3822 } 3823 } 3824 } 3825 3826 if (GV->isDeclaration()) 3827 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3828 3829 LangAS ExpectedAS = 3830 D ? D->getType().getAddressSpace() 3831 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3832 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3833 Ty->getPointerAddressSpace()); 3834 if (AddrSpace != ExpectedAS) 3835 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3836 ExpectedAS, Ty); 3837 3838 return GV; 3839 } 3840 3841 llvm::Constant * 3842 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 3843 const Decl *D = GD.getDecl(); 3844 3845 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3846 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3847 /*DontDefer=*/false, IsForDefinition); 3848 3849 if (isa<CXXMethodDecl>(D)) { 3850 auto FInfo = 3851 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 3852 auto Ty = getTypes().GetFunctionType(*FInfo); 3853 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3854 IsForDefinition); 3855 } 3856 3857 if (isa<FunctionDecl>(D)) { 3858 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3859 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3860 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3861 IsForDefinition); 3862 } 3863 3864 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 3865 } 3866 3867 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3868 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3869 unsigned Alignment) { 3870 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3871 llvm::GlobalVariable *OldGV = nullptr; 3872 3873 if (GV) { 3874 // Check if the variable has the right type. 3875 if (GV->getValueType() == Ty) 3876 return GV; 3877 3878 // Because C++ name mangling, the only way we can end up with an already 3879 // existing global with the same name is if it has been declared extern "C". 3880 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3881 OldGV = GV; 3882 } 3883 3884 // Create a new variable. 3885 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3886 Linkage, nullptr, Name); 3887 3888 if (OldGV) { 3889 // Replace occurrences of the old variable if needed. 3890 GV->takeName(OldGV); 3891 3892 if (!OldGV->use_empty()) { 3893 llvm::Constant *NewPtrForOldDecl = 3894 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3895 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3896 } 3897 3898 OldGV->eraseFromParent(); 3899 } 3900 3901 if (supportsCOMDAT() && GV->isWeakForLinker() && 3902 !GV->hasAvailableExternallyLinkage()) 3903 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3904 3905 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3906 3907 return GV; 3908 } 3909 3910 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3911 /// given global variable. If Ty is non-null and if the global doesn't exist, 3912 /// then it will be created with the specified type instead of whatever the 3913 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3914 /// that an actual global with type Ty will be returned, not conversion of a 3915 /// variable with the same mangled name but some other type. 3916 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3917 llvm::Type *Ty, 3918 ForDefinition_t IsForDefinition) { 3919 assert(D->hasGlobalStorage() && "Not a global variable"); 3920 QualType ASTTy = D->getType(); 3921 if (!Ty) 3922 Ty = getTypes().ConvertTypeForMem(ASTTy); 3923 3924 llvm::PointerType *PTy = 3925 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3926 3927 StringRef MangledName = getMangledName(D); 3928 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3929 } 3930 3931 /// CreateRuntimeVariable - Create a new runtime global variable with the 3932 /// specified type and name. 3933 llvm::Constant * 3934 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3935 StringRef Name) { 3936 auto PtrTy = 3937 getContext().getLangOpts().OpenCL 3938 ? llvm::PointerType::get( 3939 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3940 : llvm::PointerType::getUnqual(Ty); 3941 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3942 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3943 return Ret; 3944 } 3945 3946 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3947 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3948 3949 StringRef MangledName = getMangledName(D); 3950 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3951 3952 // We already have a definition, not declaration, with the same mangled name. 3953 // Emitting of declaration is not required (and actually overwrites emitted 3954 // definition). 3955 if (GV && !GV->isDeclaration()) 3956 return; 3957 3958 // If we have not seen a reference to this variable yet, place it into the 3959 // deferred declarations table to be emitted if needed later. 3960 if (!MustBeEmitted(D) && !GV) { 3961 DeferredDecls[MangledName] = D; 3962 return; 3963 } 3964 3965 // The tentative definition is the only definition. 3966 EmitGlobalVarDefinition(D); 3967 } 3968 3969 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3970 EmitExternalVarDeclaration(D); 3971 } 3972 3973 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3974 return Context.toCharUnitsFromBits( 3975 getDataLayout().getTypeStoreSizeInBits(Ty)); 3976 } 3977 3978 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3979 LangAS AddrSpace = LangAS::Default; 3980 if (LangOpts.OpenCL) { 3981 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3982 assert(AddrSpace == LangAS::opencl_global || 3983 AddrSpace == LangAS::opencl_global_device || 3984 AddrSpace == LangAS::opencl_global_host || 3985 AddrSpace == LangAS::opencl_constant || 3986 AddrSpace == LangAS::opencl_local || 3987 AddrSpace >= LangAS::FirstTargetAddressSpace); 3988 return AddrSpace; 3989 } 3990 3991 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3992 if (D && D->hasAttr<CUDAConstantAttr>()) 3993 return LangAS::cuda_constant; 3994 else if (D && D->hasAttr<CUDASharedAttr>()) 3995 return LangAS::cuda_shared; 3996 else if (D && D->hasAttr<CUDADeviceAttr>()) 3997 return LangAS::cuda_device; 3998 else if (D && D->getType().isConstQualified()) 3999 return LangAS::cuda_constant; 4000 else 4001 return LangAS::cuda_device; 4002 } 4003 4004 if (LangOpts.OpenMP) { 4005 LangAS AS; 4006 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4007 return AS; 4008 } 4009 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4010 } 4011 4012 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 4013 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4014 if (LangOpts.OpenCL) 4015 return LangAS::opencl_constant; 4016 if (auto AS = getTarget().getConstantAddressSpace()) 4017 return AS.getValue(); 4018 return LangAS::Default; 4019 } 4020 4021 // In address space agnostic languages, string literals are in default address 4022 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4023 // emitted in constant address space in LLVM IR. To be consistent with other 4024 // parts of AST, string literal global variables in constant address space 4025 // need to be casted to default address space before being put into address 4026 // map and referenced by other part of CodeGen. 4027 // In OpenCL, string literals are in constant address space in AST, therefore 4028 // they should not be casted to default address space. 4029 static llvm::Constant * 4030 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4031 llvm::GlobalVariable *GV) { 4032 llvm::Constant *Cast = GV; 4033 if (!CGM.getLangOpts().OpenCL) { 4034 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 4035 if (AS != LangAS::Default) 4036 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4037 CGM, GV, AS.getValue(), LangAS::Default, 4038 GV->getValueType()->getPointerTo( 4039 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4040 } 4041 } 4042 return Cast; 4043 } 4044 4045 template<typename SomeDecl> 4046 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4047 llvm::GlobalValue *GV) { 4048 if (!getLangOpts().CPlusPlus) 4049 return; 4050 4051 // Must have 'used' attribute, or else inline assembly can't rely on 4052 // the name existing. 4053 if (!D->template hasAttr<UsedAttr>()) 4054 return; 4055 4056 // Must have internal linkage and an ordinary name. 4057 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4058 return; 4059 4060 // Must be in an extern "C" context. Entities declared directly within 4061 // a record are not extern "C" even if the record is in such a context. 4062 const SomeDecl *First = D->getFirstDecl(); 4063 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4064 return; 4065 4066 // OK, this is an internal linkage entity inside an extern "C" linkage 4067 // specification. Make a note of that so we can give it the "expected" 4068 // mangled name if nothing else is using that name. 4069 std::pair<StaticExternCMap::iterator, bool> R = 4070 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4071 4072 // If we have multiple internal linkage entities with the same name 4073 // in extern "C" regions, none of them gets that name. 4074 if (!R.second) 4075 R.first->second = nullptr; 4076 } 4077 4078 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4079 if (!CGM.supportsCOMDAT()) 4080 return false; 4081 4082 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 4083 // them being "merged" by the COMDAT Folding linker optimization. 4084 if (D.hasAttr<CUDAGlobalAttr>()) 4085 return false; 4086 4087 if (D.hasAttr<SelectAnyAttr>()) 4088 return true; 4089 4090 GVALinkage Linkage; 4091 if (auto *VD = dyn_cast<VarDecl>(&D)) 4092 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4093 else 4094 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4095 4096 switch (Linkage) { 4097 case GVA_Internal: 4098 case GVA_AvailableExternally: 4099 case GVA_StrongExternal: 4100 return false; 4101 case GVA_DiscardableODR: 4102 case GVA_StrongODR: 4103 return true; 4104 } 4105 llvm_unreachable("No such linkage"); 4106 } 4107 4108 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4109 llvm::GlobalObject &GO) { 4110 if (!shouldBeInCOMDAT(*this, D)) 4111 return; 4112 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4113 } 4114 4115 /// Pass IsTentative as true if you want to create a tentative definition. 4116 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4117 bool IsTentative) { 4118 // OpenCL global variables of sampler type are translated to function calls, 4119 // therefore no need to be translated. 4120 QualType ASTTy = D->getType(); 4121 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4122 return; 4123 4124 // If this is OpenMP device, check if it is legal to emit this global 4125 // normally. 4126 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4127 OpenMPRuntime->emitTargetGlobalVariable(D)) 4128 return; 4129 4130 llvm::Constant *Init = nullptr; 4131 bool NeedsGlobalCtor = false; 4132 bool NeedsGlobalDtor = 4133 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4134 4135 const VarDecl *InitDecl; 4136 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4137 4138 Optional<ConstantEmitter> emitter; 4139 4140 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4141 // as part of their declaration." Sema has already checked for 4142 // error cases, so we just need to set Init to UndefValue. 4143 bool IsCUDASharedVar = 4144 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4145 // Shadows of initialized device-side global variables are also left 4146 // undefined. 4147 bool IsCUDAShadowVar = 4148 !getLangOpts().CUDAIsDevice && 4149 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4150 D->hasAttr<CUDASharedAttr>()); 4151 bool IsCUDADeviceShadowVar = 4152 getLangOpts().CUDAIsDevice && 4153 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4154 D->getType()->isCUDADeviceBuiltinTextureType()); 4155 // HIP pinned shadow of initialized host-side global variables are also 4156 // left undefined. 4157 if (getLangOpts().CUDA && 4158 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4159 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4160 else if (D->hasAttr<LoaderUninitializedAttr>()) 4161 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4162 else if (!InitExpr) { 4163 // This is a tentative definition; tentative definitions are 4164 // implicitly initialized with { 0 }. 4165 // 4166 // Note that tentative definitions are only emitted at the end of 4167 // a translation unit, so they should never have incomplete 4168 // type. In addition, EmitTentativeDefinition makes sure that we 4169 // never attempt to emit a tentative definition if a real one 4170 // exists. A use may still exists, however, so we still may need 4171 // to do a RAUW. 4172 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4173 Init = EmitNullConstant(D->getType()); 4174 } else { 4175 initializedGlobalDecl = GlobalDecl(D); 4176 emitter.emplace(*this); 4177 Init = emitter->tryEmitForInitializer(*InitDecl); 4178 4179 if (!Init) { 4180 QualType T = InitExpr->getType(); 4181 if (D->getType()->isReferenceType()) 4182 T = D->getType(); 4183 4184 if (getLangOpts().CPlusPlus) { 4185 Init = EmitNullConstant(T); 4186 NeedsGlobalCtor = true; 4187 } else { 4188 ErrorUnsupported(D, "static initializer"); 4189 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4190 } 4191 } else { 4192 // We don't need an initializer, so remove the entry for the delayed 4193 // initializer position (just in case this entry was delayed) if we 4194 // also don't need to register a destructor. 4195 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4196 DelayedCXXInitPosition.erase(D); 4197 } 4198 } 4199 4200 llvm::Type* InitType = Init->getType(); 4201 llvm::Constant *Entry = 4202 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4203 4204 // Strip off pointer casts if we got them. 4205 Entry = Entry->stripPointerCasts(); 4206 4207 // Entry is now either a Function or GlobalVariable. 4208 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4209 4210 // We have a definition after a declaration with the wrong type. 4211 // We must make a new GlobalVariable* and update everything that used OldGV 4212 // (a declaration or tentative definition) with the new GlobalVariable* 4213 // (which will be a definition). 4214 // 4215 // This happens if there is a prototype for a global (e.g. 4216 // "extern int x[];") and then a definition of a different type (e.g. 4217 // "int x[10];"). This also happens when an initializer has a different type 4218 // from the type of the global (this happens with unions). 4219 if (!GV || GV->getValueType() != InitType || 4220 GV->getType()->getAddressSpace() != 4221 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4222 4223 // Move the old entry aside so that we'll create a new one. 4224 Entry->setName(StringRef()); 4225 4226 // Make a new global with the correct type, this is now guaranteed to work. 4227 GV = cast<llvm::GlobalVariable>( 4228 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4229 ->stripPointerCasts()); 4230 4231 // Replace all uses of the old global with the new global 4232 llvm::Constant *NewPtrForOldDecl = 4233 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4234 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4235 4236 // Erase the old global, since it is no longer used. 4237 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4238 } 4239 4240 MaybeHandleStaticInExternC(D, GV); 4241 4242 if (D->hasAttr<AnnotateAttr>()) 4243 AddGlobalAnnotations(D, GV); 4244 4245 // Set the llvm linkage type as appropriate. 4246 llvm::GlobalValue::LinkageTypes Linkage = 4247 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4248 4249 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4250 // the device. [...]" 4251 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4252 // __device__, declares a variable that: [...] 4253 // Is accessible from all the threads within the grid and from the host 4254 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4255 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4256 if (GV && LangOpts.CUDA) { 4257 if (LangOpts.CUDAIsDevice) { 4258 if (Linkage != llvm::GlobalValue::InternalLinkage && 4259 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4260 GV->setExternallyInitialized(true); 4261 } else { 4262 // Host-side shadows of external declarations of device-side 4263 // global variables become internal definitions. These have to 4264 // be internal in order to prevent name conflicts with global 4265 // host variables with the same name in a different TUs. 4266 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 4267 Linkage = llvm::GlobalValue::InternalLinkage; 4268 // Shadow variables and their properties must be registered with CUDA 4269 // runtime. Skip Extern global variables, which will be registered in 4270 // the TU where they are defined. 4271 // 4272 // Don't register a C++17 inline variable. The local symbol can be 4273 // discarded and referencing a discarded local symbol from outside the 4274 // comdat (__cuda_register_globals) is disallowed by the ELF spec. 4275 // TODO: Reject __device__ constexpr and __device__ inline in Sema. 4276 if (!D->hasExternalStorage() && !D->isInline()) 4277 getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(), 4278 D->hasAttr<CUDAConstantAttr>()); 4279 } else if (D->hasAttr<CUDASharedAttr>()) { 4280 // __shared__ variables are odd. Shadows do get created, but 4281 // they are not registered with the CUDA runtime, so they 4282 // can't really be used to access their device-side 4283 // counterparts. It's not clear yet whether it's nvcc's bug or 4284 // a feature, but we've got to do the same for compatibility. 4285 Linkage = llvm::GlobalValue::InternalLinkage; 4286 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4287 D->getType()->isCUDADeviceBuiltinTextureType()) { 4288 // Builtin surfaces and textures and their template arguments are 4289 // also registered with CUDA runtime. 4290 Linkage = llvm::GlobalValue::InternalLinkage; 4291 const ClassTemplateSpecializationDecl *TD = 4292 cast<ClassTemplateSpecializationDecl>( 4293 D->getType()->getAs<RecordType>()->getDecl()); 4294 const TemplateArgumentList &Args = TD->getTemplateArgs(); 4295 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 4296 assert(Args.size() == 2 && 4297 "Unexpected number of template arguments of CUDA device " 4298 "builtin surface type."); 4299 auto SurfType = Args[1].getAsIntegral(); 4300 if (!D->hasExternalStorage()) 4301 getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(), 4302 SurfType.getSExtValue()); 4303 } else { 4304 assert(Args.size() == 3 && 4305 "Unexpected number of template arguments of CUDA device " 4306 "builtin texture type."); 4307 auto TexType = Args[1].getAsIntegral(); 4308 auto Normalized = Args[2].getAsIntegral(); 4309 if (!D->hasExternalStorage()) 4310 getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(), 4311 TexType.getSExtValue(), 4312 Normalized.getZExtValue()); 4313 } 4314 } 4315 } 4316 } 4317 4318 GV->setInitializer(Init); 4319 if (emitter) 4320 emitter->finalize(GV); 4321 4322 // If it is safe to mark the global 'constant', do so now. 4323 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4324 isTypeConstant(D->getType(), true)); 4325 4326 // If it is in a read-only section, mark it 'constant'. 4327 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4328 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4329 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4330 GV->setConstant(true); 4331 } 4332 4333 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4334 4335 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4336 // function is only defined alongside the variable, not also alongside 4337 // callers. Normally, all accesses to a thread_local go through the 4338 // thread-wrapper in order to ensure initialization has occurred, underlying 4339 // variable will never be used other than the thread-wrapper, so it can be 4340 // converted to internal linkage. 4341 // 4342 // However, if the variable has the 'constinit' attribute, it _can_ be 4343 // referenced directly, without calling the thread-wrapper, so the linkage 4344 // must not be changed. 4345 // 4346 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4347 // weak or linkonce, the de-duplication semantics are important to preserve, 4348 // so we don't change the linkage. 4349 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4350 Linkage == llvm::GlobalValue::ExternalLinkage && 4351 Context.getTargetInfo().getTriple().isOSDarwin() && 4352 !D->hasAttr<ConstInitAttr>()) 4353 Linkage = llvm::GlobalValue::InternalLinkage; 4354 4355 GV->setLinkage(Linkage); 4356 if (D->hasAttr<DLLImportAttr>()) 4357 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4358 else if (D->hasAttr<DLLExportAttr>()) 4359 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4360 else 4361 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4362 4363 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4364 // common vars aren't constant even if declared const. 4365 GV->setConstant(false); 4366 // Tentative definition of global variables may be initialized with 4367 // non-zero null pointers. In this case they should have weak linkage 4368 // since common linkage must have zero initializer and must not have 4369 // explicit section therefore cannot have non-zero initial value. 4370 if (!GV->getInitializer()->isNullValue()) 4371 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4372 } 4373 4374 setNonAliasAttributes(D, GV); 4375 4376 if (D->getTLSKind() && !GV->isThreadLocal()) { 4377 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4378 CXXThreadLocals.push_back(D); 4379 setTLSMode(GV, *D); 4380 } 4381 4382 maybeSetTrivialComdat(*D, *GV); 4383 4384 // Emit the initializer function if necessary. 4385 if (NeedsGlobalCtor || NeedsGlobalDtor) 4386 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4387 4388 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4389 4390 // Emit global variable debug information. 4391 if (CGDebugInfo *DI = getModuleDebugInfo()) 4392 if (getCodeGenOpts().hasReducedDebugInfo()) 4393 DI->EmitGlobalVariable(GV, D); 4394 } 4395 4396 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4397 if (CGDebugInfo *DI = getModuleDebugInfo()) 4398 if (getCodeGenOpts().hasReducedDebugInfo()) { 4399 QualType ASTTy = D->getType(); 4400 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4401 llvm::PointerType *PTy = 4402 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4403 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4404 DI->EmitExternalVariable( 4405 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4406 } 4407 } 4408 4409 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4410 CodeGenModule &CGM, const VarDecl *D, 4411 bool NoCommon) { 4412 // Don't give variables common linkage if -fno-common was specified unless it 4413 // was overridden by a NoCommon attribute. 4414 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4415 return true; 4416 4417 // C11 6.9.2/2: 4418 // A declaration of an identifier for an object that has file scope without 4419 // an initializer, and without a storage-class specifier or with the 4420 // storage-class specifier static, constitutes a tentative definition. 4421 if (D->getInit() || D->hasExternalStorage()) 4422 return true; 4423 4424 // A variable cannot be both common and exist in a section. 4425 if (D->hasAttr<SectionAttr>()) 4426 return true; 4427 4428 // A variable cannot be both common and exist in a section. 4429 // We don't try to determine which is the right section in the front-end. 4430 // If no specialized section name is applicable, it will resort to default. 4431 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4432 D->hasAttr<PragmaClangDataSectionAttr>() || 4433 D->hasAttr<PragmaClangRelroSectionAttr>() || 4434 D->hasAttr<PragmaClangRodataSectionAttr>()) 4435 return true; 4436 4437 // Thread local vars aren't considered common linkage. 4438 if (D->getTLSKind()) 4439 return true; 4440 4441 // Tentative definitions marked with WeakImportAttr are true definitions. 4442 if (D->hasAttr<WeakImportAttr>()) 4443 return true; 4444 4445 // A variable cannot be both common and exist in a comdat. 4446 if (shouldBeInCOMDAT(CGM, *D)) 4447 return true; 4448 4449 // Declarations with a required alignment do not have common linkage in MSVC 4450 // mode. 4451 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4452 if (D->hasAttr<AlignedAttr>()) 4453 return true; 4454 QualType VarType = D->getType(); 4455 if (Context.isAlignmentRequired(VarType)) 4456 return true; 4457 4458 if (const auto *RT = VarType->getAs<RecordType>()) { 4459 const RecordDecl *RD = RT->getDecl(); 4460 for (const FieldDecl *FD : RD->fields()) { 4461 if (FD->isBitField()) 4462 continue; 4463 if (FD->hasAttr<AlignedAttr>()) 4464 return true; 4465 if (Context.isAlignmentRequired(FD->getType())) 4466 return true; 4467 } 4468 } 4469 } 4470 4471 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4472 // common symbols, so symbols with greater alignment requirements cannot be 4473 // common. 4474 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4475 // alignments for common symbols via the aligncomm directive, so this 4476 // restriction only applies to MSVC environments. 4477 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4478 Context.getTypeAlignIfKnown(D->getType()) > 4479 Context.toBits(CharUnits::fromQuantity(32))) 4480 return true; 4481 4482 return false; 4483 } 4484 4485 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4486 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4487 if (Linkage == GVA_Internal) 4488 return llvm::Function::InternalLinkage; 4489 4490 if (D->hasAttr<WeakAttr>()) { 4491 if (IsConstantVariable) 4492 return llvm::GlobalVariable::WeakODRLinkage; 4493 else 4494 return llvm::GlobalVariable::WeakAnyLinkage; 4495 } 4496 4497 if (const auto *FD = D->getAsFunction()) 4498 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4499 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4500 4501 // We are guaranteed to have a strong definition somewhere else, 4502 // so we can use available_externally linkage. 4503 if (Linkage == GVA_AvailableExternally) 4504 return llvm::GlobalValue::AvailableExternallyLinkage; 4505 4506 // Note that Apple's kernel linker doesn't support symbol 4507 // coalescing, so we need to avoid linkonce and weak linkages there. 4508 // Normally, this means we just map to internal, but for explicit 4509 // instantiations we'll map to external. 4510 4511 // In C++, the compiler has to emit a definition in every translation unit 4512 // that references the function. We should use linkonce_odr because 4513 // a) if all references in this translation unit are optimized away, we 4514 // don't need to codegen it. b) if the function persists, it needs to be 4515 // merged with other definitions. c) C++ has the ODR, so we know the 4516 // definition is dependable. 4517 if (Linkage == GVA_DiscardableODR) 4518 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4519 : llvm::Function::InternalLinkage; 4520 4521 // An explicit instantiation of a template has weak linkage, since 4522 // explicit instantiations can occur in multiple translation units 4523 // and must all be equivalent. However, we are not allowed to 4524 // throw away these explicit instantiations. 4525 // 4526 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4527 // so say that CUDA templates are either external (for kernels) or internal. 4528 // This lets llvm perform aggressive inter-procedural optimizations. For 4529 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4530 // therefore we need to follow the normal linkage paradigm. 4531 if (Linkage == GVA_StrongODR) { 4532 if (getLangOpts().AppleKext) 4533 return llvm::Function::ExternalLinkage; 4534 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4535 !getLangOpts().GPURelocatableDeviceCode) 4536 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4537 : llvm::Function::InternalLinkage; 4538 return llvm::Function::WeakODRLinkage; 4539 } 4540 4541 // C++ doesn't have tentative definitions and thus cannot have common 4542 // linkage. 4543 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4544 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4545 CodeGenOpts.NoCommon)) 4546 return llvm::GlobalVariable::CommonLinkage; 4547 4548 // selectany symbols are externally visible, so use weak instead of 4549 // linkonce. MSVC optimizes away references to const selectany globals, so 4550 // all definitions should be the same and ODR linkage should be used. 4551 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4552 if (D->hasAttr<SelectAnyAttr>()) 4553 return llvm::GlobalVariable::WeakODRLinkage; 4554 4555 // Otherwise, we have strong external linkage. 4556 assert(Linkage == GVA_StrongExternal); 4557 return llvm::GlobalVariable::ExternalLinkage; 4558 } 4559 4560 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4561 const VarDecl *VD, bool IsConstant) { 4562 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4563 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4564 } 4565 4566 /// Replace the uses of a function that was declared with a non-proto type. 4567 /// We want to silently drop extra arguments from call sites 4568 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4569 llvm::Function *newFn) { 4570 // Fast path. 4571 if (old->use_empty()) return; 4572 4573 llvm::Type *newRetTy = newFn->getReturnType(); 4574 SmallVector<llvm::Value*, 4> newArgs; 4575 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4576 4577 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4578 ui != ue; ) { 4579 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4580 llvm::User *user = use->getUser(); 4581 4582 // Recognize and replace uses of bitcasts. Most calls to 4583 // unprototyped functions will use bitcasts. 4584 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4585 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4586 replaceUsesOfNonProtoConstant(bitcast, newFn); 4587 continue; 4588 } 4589 4590 // Recognize calls to the function. 4591 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4592 if (!callSite) continue; 4593 if (!callSite->isCallee(&*use)) 4594 continue; 4595 4596 // If the return types don't match exactly, then we can't 4597 // transform this call unless it's dead. 4598 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4599 continue; 4600 4601 // Get the call site's attribute list. 4602 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4603 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4604 4605 // If the function was passed too few arguments, don't transform. 4606 unsigned newNumArgs = newFn->arg_size(); 4607 if (callSite->arg_size() < newNumArgs) 4608 continue; 4609 4610 // If extra arguments were passed, we silently drop them. 4611 // If any of the types mismatch, we don't transform. 4612 unsigned argNo = 0; 4613 bool dontTransform = false; 4614 for (llvm::Argument &A : newFn->args()) { 4615 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4616 dontTransform = true; 4617 break; 4618 } 4619 4620 // Add any parameter attributes. 4621 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4622 argNo++; 4623 } 4624 if (dontTransform) 4625 continue; 4626 4627 // Okay, we can transform this. Create the new call instruction and copy 4628 // over the required information. 4629 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4630 4631 // Copy over any operand bundles. 4632 callSite->getOperandBundlesAsDefs(newBundles); 4633 4634 llvm::CallBase *newCall; 4635 if (dyn_cast<llvm::CallInst>(callSite)) { 4636 newCall = 4637 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4638 } else { 4639 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4640 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4641 oldInvoke->getUnwindDest(), newArgs, 4642 newBundles, "", callSite); 4643 } 4644 newArgs.clear(); // for the next iteration 4645 4646 if (!newCall->getType()->isVoidTy()) 4647 newCall->takeName(callSite); 4648 newCall->setAttributes(llvm::AttributeList::get( 4649 newFn->getContext(), oldAttrs.getFnAttributes(), 4650 oldAttrs.getRetAttributes(), newArgAttrs)); 4651 newCall->setCallingConv(callSite->getCallingConv()); 4652 4653 // Finally, remove the old call, replacing any uses with the new one. 4654 if (!callSite->use_empty()) 4655 callSite->replaceAllUsesWith(newCall); 4656 4657 // Copy debug location attached to CI. 4658 if (callSite->getDebugLoc()) 4659 newCall->setDebugLoc(callSite->getDebugLoc()); 4660 4661 callSite->eraseFromParent(); 4662 } 4663 } 4664 4665 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4666 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4667 /// existing call uses of the old function in the module, this adjusts them to 4668 /// call the new function directly. 4669 /// 4670 /// This is not just a cleanup: the always_inline pass requires direct calls to 4671 /// functions to be able to inline them. If there is a bitcast in the way, it 4672 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4673 /// run at -O0. 4674 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4675 llvm::Function *NewFn) { 4676 // If we're redefining a global as a function, don't transform it. 4677 if (!isa<llvm::Function>(Old)) return; 4678 4679 replaceUsesOfNonProtoConstant(Old, NewFn); 4680 } 4681 4682 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4683 auto DK = VD->isThisDeclarationADefinition(); 4684 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4685 return; 4686 4687 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4688 // If we have a definition, this might be a deferred decl. If the 4689 // instantiation is explicit, make sure we emit it at the end. 4690 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4691 GetAddrOfGlobalVar(VD); 4692 4693 EmitTopLevelDecl(VD); 4694 } 4695 4696 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4697 llvm::GlobalValue *GV) { 4698 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4699 4700 // Compute the function info and LLVM type. 4701 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4702 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4703 4704 // Get or create the prototype for the function. 4705 if (!GV || (GV->getValueType() != Ty)) 4706 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4707 /*DontDefer=*/true, 4708 ForDefinition)); 4709 4710 // Already emitted. 4711 if (!GV->isDeclaration()) 4712 return; 4713 4714 // We need to set linkage and visibility on the function before 4715 // generating code for it because various parts of IR generation 4716 // want to propagate this information down (e.g. to local static 4717 // declarations). 4718 auto *Fn = cast<llvm::Function>(GV); 4719 setFunctionLinkage(GD, Fn); 4720 4721 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4722 setGVProperties(Fn, GD); 4723 4724 MaybeHandleStaticInExternC(D, Fn); 4725 4726 maybeSetTrivialComdat(*D, *Fn); 4727 4728 // Set CodeGen attributes that represent floating point environment. 4729 setLLVMFunctionFEnvAttributes(D, Fn); 4730 4731 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4732 4733 setNonAliasAttributes(GD, Fn); 4734 SetLLVMFunctionAttributesForDefinition(D, Fn); 4735 4736 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4737 AddGlobalCtor(Fn, CA->getPriority()); 4738 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4739 AddGlobalDtor(Fn, DA->getPriority(), true); 4740 if (D->hasAttr<AnnotateAttr>()) 4741 AddGlobalAnnotations(D, Fn); 4742 } 4743 4744 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4745 const auto *D = cast<ValueDecl>(GD.getDecl()); 4746 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4747 assert(AA && "Not an alias?"); 4748 4749 StringRef MangledName = getMangledName(GD); 4750 4751 if (AA->getAliasee() == MangledName) { 4752 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4753 return; 4754 } 4755 4756 // If there is a definition in the module, then it wins over the alias. 4757 // This is dubious, but allow it to be safe. Just ignore the alias. 4758 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4759 if (Entry && !Entry->isDeclaration()) 4760 return; 4761 4762 Aliases.push_back(GD); 4763 4764 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4765 4766 // Create a reference to the named value. This ensures that it is emitted 4767 // if a deferred decl. 4768 llvm::Constant *Aliasee; 4769 llvm::GlobalValue::LinkageTypes LT; 4770 if (isa<llvm::FunctionType>(DeclTy)) { 4771 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4772 /*ForVTable=*/false); 4773 LT = getFunctionLinkage(GD); 4774 } else { 4775 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4776 llvm::PointerType::getUnqual(DeclTy), 4777 /*D=*/nullptr); 4778 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 4779 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 4780 else 4781 LT = getFunctionLinkage(GD); 4782 } 4783 4784 // Create the new alias itself, but don't set a name yet. 4785 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4786 auto *GA = 4787 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4788 4789 if (Entry) { 4790 if (GA->getAliasee() == Entry) { 4791 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4792 return; 4793 } 4794 4795 assert(Entry->isDeclaration()); 4796 4797 // If there is a declaration in the module, then we had an extern followed 4798 // by the alias, as in: 4799 // extern int test6(); 4800 // ... 4801 // int test6() __attribute__((alias("test7"))); 4802 // 4803 // Remove it and replace uses of it with the alias. 4804 GA->takeName(Entry); 4805 4806 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4807 Entry->getType())); 4808 Entry->eraseFromParent(); 4809 } else { 4810 GA->setName(MangledName); 4811 } 4812 4813 // Set attributes which are particular to an alias; this is a 4814 // specialization of the attributes which may be set on a global 4815 // variable/function. 4816 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4817 D->isWeakImported()) { 4818 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4819 } 4820 4821 if (const auto *VD = dyn_cast<VarDecl>(D)) 4822 if (VD->getTLSKind()) 4823 setTLSMode(GA, *VD); 4824 4825 SetCommonAttributes(GD, GA); 4826 } 4827 4828 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4829 const auto *D = cast<ValueDecl>(GD.getDecl()); 4830 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4831 assert(IFA && "Not an ifunc?"); 4832 4833 StringRef MangledName = getMangledName(GD); 4834 4835 if (IFA->getResolver() == MangledName) { 4836 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4837 return; 4838 } 4839 4840 // Report an error if some definition overrides ifunc. 4841 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4842 if (Entry && !Entry->isDeclaration()) { 4843 GlobalDecl OtherGD; 4844 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4845 DiagnosedConflictingDefinitions.insert(GD).second) { 4846 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4847 << MangledName; 4848 Diags.Report(OtherGD.getDecl()->getLocation(), 4849 diag::note_previous_definition); 4850 } 4851 return; 4852 } 4853 4854 Aliases.push_back(GD); 4855 4856 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4857 llvm::Constant *Resolver = 4858 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4859 /*ForVTable=*/false); 4860 llvm::GlobalIFunc *GIF = 4861 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4862 "", Resolver, &getModule()); 4863 if (Entry) { 4864 if (GIF->getResolver() == Entry) { 4865 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4866 return; 4867 } 4868 assert(Entry->isDeclaration()); 4869 4870 // If there is a declaration in the module, then we had an extern followed 4871 // by the ifunc, as in: 4872 // extern int test(); 4873 // ... 4874 // int test() __attribute__((ifunc("resolver"))); 4875 // 4876 // Remove it and replace uses of it with the ifunc. 4877 GIF->takeName(Entry); 4878 4879 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4880 Entry->getType())); 4881 Entry->eraseFromParent(); 4882 } else 4883 GIF->setName(MangledName); 4884 4885 SetCommonAttributes(GD, GIF); 4886 } 4887 4888 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4889 ArrayRef<llvm::Type*> Tys) { 4890 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4891 Tys); 4892 } 4893 4894 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4895 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4896 const StringLiteral *Literal, bool TargetIsLSB, 4897 bool &IsUTF16, unsigned &StringLength) { 4898 StringRef String = Literal->getString(); 4899 unsigned NumBytes = String.size(); 4900 4901 // Check for simple case. 4902 if (!Literal->containsNonAsciiOrNull()) { 4903 StringLength = NumBytes; 4904 return *Map.insert(std::make_pair(String, nullptr)).first; 4905 } 4906 4907 // Otherwise, convert the UTF8 literals into a string of shorts. 4908 IsUTF16 = true; 4909 4910 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4911 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4912 llvm::UTF16 *ToPtr = &ToBuf[0]; 4913 4914 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4915 ToPtr + NumBytes, llvm::strictConversion); 4916 4917 // ConvertUTF8toUTF16 returns the length in ToPtr. 4918 StringLength = ToPtr - &ToBuf[0]; 4919 4920 // Add an explicit null. 4921 *ToPtr = 0; 4922 return *Map.insert(std::make_pair( 4923 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4924 (StringLength + 1) * 2), 4925 nullptr)).first; 4926 } 4927 4928 ConstantAddress 4929 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4930 unsigned StringLength = 0; 4931 bool isUTF16 = false; 4932 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4933 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4934 getDataLayout().isLittleEndian(), isUTF16, 4935 StringLength); 4936 4937 if (auto *C = Entry.second) 4938 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4939 4940 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4941 llvm::Constant *Zeros[] = { Zero, Zero }; 4942 4943 const ASTContext &Context = getContext(); 4944 const llvm::Triple &Triple = getTriple(); 4945 4946 const auto CFRuntime = getLangOpts().CFRuntime; 4947 const bool IsSwiftABI = 4948 static_cast<unsigned>(CFRuntime) >= 4949 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4950 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4951 4952 // If we don't already have it, get __CFConstantStringClassReference. 4953 if (!CFConstantStringClassRef) { 4954 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4955 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4956 Ty = llvm::ArrayType::get(Ty, 0); 4957 4958 switch (CFRuntime) { 4959 default: break; 4960 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4961 case LangOptions::CoreFoundationABI::Swift5_0: 4962 CFConstantStringClassName = 4963 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4964 : "$s10Foundation19_NSCFConstantStringCN"; 4965 Ty = IntPtrTy; 4966 break; 4967 case LangOptions::CoreFoundationABI::Swift4_2: 4968 CFConstantStringClassName = 4969 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4970 : "$S10Foundation19_NSCFConstantStringCN"; 4971 Ty = IntPtrTy; 4972 break; 4973 case LangOptions::CoreFoundationABI::Swift4_1: 4974 CFConstantStringClassName = 4975 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4976 : "__T010Foundation19_NSCFConstantStringCN"; 4977 Ty = IntPtrTy; 4978 break; 4979 } 4980 4981 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4982 4983 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4984 llvm::GlobalValue *GV = nullptr; 4985 4986 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4987 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4988 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4989 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4990 4991 const VarDecl *VD = nullptr; 4992 for (const auto &Result : DC->lookup(&II)) 4993 if ((VD = dyn_cast<VarDecl>(Result))) 4994 break; 4995 4996 if (Triple.isOSBinFormatELF()) { 4997 if (!VD) 4998 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4999 } else { 5000 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5001 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5002 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5003 else 5004 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5005 } 5006 5007 setDSOLocal(GV); 5008 } 5009 } 5010 5011 // Decay array -> ptr 5012 CFConstantStringClassRef = 5013 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5014 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5015 } 5016 5017 QualType CFTy = Context.getCFConstantStringType(); 5018 5019 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5020 5021 ConstantInitBuilder Builder(*this); 5022 auto Fields = Builder.beginStruct(STy); 5023 5024 // Class pointer. 5025 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5026 5027 // Flags. 5028 if (IsSwiftABI) { 5029 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5030 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5031 } else { 5032 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5033 } 5034 5035 // String pointer. 5036 llvm::Constant *C = nullptr; 5037 if (isUTF16) { 5038 auto Arr = llvm::makeArrayRef( 5039 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5040 Entry.first().size() / 2); 5041 C = llvm::ConstantDataArray::get(VMContext, Arr); 5042 } else { 5043 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5044 } 5045 5046 // Note: -fwritable-strings doesn't make the backing store strings of 5047 // CFStrings writable. (See <rdar://problem/10657500>) 5048 auto *GV = 5049 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5050 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5051 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5052 // Don't enforce the target's minimum global alignment, since the only use 5053 // of the string is via this class initializer. 5054 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5055 : Context.getTypeAlignInChars(Context.CharTy); 5056 GV->setAlignment(Align.getAsAlign()); 5057 5058 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5059 // Without it LLVM can merge the string with a non unnamed_addr one during 5060 // LTO. Doing that changes the section it ends in, which surprises ld64. 5061 if (Triple.isOSBinFormatMachO()) 5062 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5063 : "__TEXT,__cstring,cstring_literals"); 5064 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5065 // the static linker to adjust permissions to read-only later on. 5066 else if (Triple.isOSBinFormatELF()) 5067 GV->setSection(".rodata"); 5068 5069 // String. 5070 llvm::Constant *Str = 5071 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5072 5073 if (isUTF16) 5074 // Cast the UTF16 string to the correct type. 5075 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5076 Fields.add(Str); 5077 5078 // String length. 5079 llvm::IntegerType *LengthTy = 5080 llvm::IntegerType::get(getModule().getContext(), 5081 Context.getTargetInfo().getLongWidth()); 5082 if (IsSwiftABI) { 5083 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5084 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5085 LengthTy = Int32Ty; 5086 else 5087 LengthTy = IntPtrTy; 5088 } 5089 Fields.addInt(LengthTy, StringLength); 5090 5091 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5092 // properly aligned on 32-bit platforms. 5093 CharUnits Alignment = 5094 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5095 5096 // The struct. 5097 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5098 /*isConstant=*/false, 5099 llvm::GlobalVariable::PrivateLinkage); 5100 GV->addAttribute("objc_arc_inert"); 5101 switch (Triple.getObjectFormat()) { 5102 case llvm::Triple::UnknownObjectFormat: 5103 llvm_unreachable("unknown file format"); 5104 case llvm::Triple::GOFF: 5105 llvm_unreachable("GOFF is not yet implemented"); 5106 case llvm::Triple::XCOFF: 5107 llvm_unreachable("XCOFF is not yet implemented"); 5108 case llvm::Triple::COFF: 5109 case llvm::Triple::ELF: 5110 case llvm::Triple::Wasm: 5111 GV->setSection("cfstring"); 5112 break; 5113 case llvm::Triple::MachO: 5114 GV->setSection("__DATA,__cfstring"); 5115 break; 5116 } 5117 Entry.second = GV; 5118 5119 return ConstantAddress(GV, Alignment); 5120 } 5121 5122 bool CodeGenModule::getExpressionLocationsEnabled() const { 5123 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5124 } 5125 5126 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5127 if (ObjCFastEnumerationStateType.isNull()) { 5128 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5129 D->startDefinition(); 5130 5131 QualType FieldTypes[] = { 5132 Context.UnsignedLongTy, 5133 Context.getPointerType(Context.getObjCIdType()), 5134 Context.getPointerType(Context.UnsignedLongTy), 5135 Context.getConstantArrayType(Context.UnsignedLongTy, 5136 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5137 }; 5138 5139 for (size_t i = 0; i < 4; ++i) { 5140 FieldDecl *Field = FieldDecl::Create(Context, 5141 D, 5142 SourceLocation(), 5143 SourceLocation(), nullptr, 5144 FieldTypes[i], /*TInfo=*/nullptr, 5145 /*BitWidth=*/nullptr, 5146 /*Mutable=*/false, 5147 ICIS_NoInit); 5148 Field->setAccess(AS_public); 5149 D->addDecl(Field); 5150 } 5151 5152 D->completeDefinition(); 5153 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5154 } 5155 5156 return ObjCFastEnumerationStateType; 5157 } 5158 5159 llvm::Constant * 5160 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5161 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5162 5163 // Don't emit it as the address of the string, emit the string data itself 5164 // as an inline array. 5165 if (E->getCharByteWidth() == 1) { 5166 SmallString<64> Str(E->getString()); 5167 5168 // Resize the string to the right size, which is indicated by its type. 5169 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5170 Str.resize(CAT->getSize().getZExtValue()); 5171 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5172 } 5173 5174 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5175 llvm::Type *ElemTy = AType->getElementType(); 5176 unsigned NumElements = AType->getNumElements(); 5177 5178 // Wide strings have either 2-byte or 4-byte elements. 5179 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5180 SmallVector<uint16_t, 32> Elements; 5181 Elements.reserve(NumElements); 5182 5183 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5184 Elements.push_back(E->getCodeUnit(i)); 5185 Elements.resize(NumElements); 5186 return llvm::ConstantDataArray::get(VMContext, Elements); 5187 } 5188 5189 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5190 SmallVector<uint32_t, 32> Elements; 5191 Elements.reserve(NumElements); 5192 5193 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5194 Elements.push_back(E->getCodeUnit(i)); 5195 Elements.resize(NumElements); 5196 return llvm::ConstantDataArray::get(VMContext, Elements); 5197 } 5198 5199 static llvm::GlobalVariable * 5200 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5201 CodeGenModule &CGM, StringRef GlobalName, 5202 CharUnits Alignment) { 5203 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5204 CGM.getStringLiteralAddressSpace()); 5205 5206 llvm::Module &M = CGM.getModule(); 5207 // Create a global variable for this string 5208 auto *GV = new llvm::GlobalVariable( 5209 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5210 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5211 GV->setAlignment(Alignment.getAsAlign()); 5212 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5213 if (GV->isWeakForLinker()) { 5214 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5215 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5216 } 5217 CGM.setDSOLocal(GV); 5218 5219 return GV; 5220 } 5221 5222 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5223 /// constant array for the given string literal. 5224 ConstantAddress 5225 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5226 StringRef Name) { 5227 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5228 5229 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5230 llvm::GlobalVariable **Entry = nullptr; 5231 if (!LangOpts.WritableStrings) { 5232 Entry = &ConstantStringMap[C]; 5233 if (auto GV = *Entry) { 5234 if (Alignment.getQuantity() > GV->getAlignment()) 5235 GV->setAlignment(Alignment.getAsAlign()); 5236 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5237 Alignment); 5238 } 5239 } 5240 5241 SmallString<256> MangledNameBuffer; 5242 StringRef GlobalVariableName; 5243 llvm::GlobalValue::LinkageTypes LT; 5244 5245 // Mangle the string literal if that's how the ABI merges duplicate strings. 5246 // Don't do it if they are writable, since we don't want writes in one TU to 5247 // affect strings in another. 5248 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5249 !LangOpts.WritableStrings) { 5250 llvm::raw_svector_ostream Out(MangledNameBuffer); 5251 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5252 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5253 GlobalVariableName = MangledNameBuffer; 5254 } else { 5255 LT = llvm::GlobalValue::PrivateLinkage; 5256 GlobalVariableName = Name; 5257 } 5258 5259 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5260 if (Entry) 5261 *Entry = GV; 5262 5263 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5264 QualType()); 5265 5266 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5267 Alignment); 5268 } 5269 5270 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5271 /// array for the given ObjCEncodeExpr node. 5272 ConstantAddress 5273 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5274 std::string Str; 5275 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5276 5277 return GetAddrOfConstantCString(Str); 5278 } 5279 5280 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5281 /// the literal and a terminating '\0' character. 5282 /// The result has pointer to array type. 5283 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5284 const std::string &Str, const char *GlobalName) { 5285 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5286 CharUnits Alignment = 5287 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5288 5289 llvm::Constant *C = 5290 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5291 5292 // Don't share any string literals if strings aren't constant. 5293 llvm::GlobalVariable **Entry = nullptr; 5294 if (!LangOpts.WritableStrings) { 5295 Entry = &ConstantStringMap[C]; 5296 if (auto GV = *Entry) { 5297 if (Alignment.getQuantity() > GV->getAlignment()) 5298 GV->setAlignment(Alignment.getAsAlign()); 5299 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5300 Alignment); 5301 } 5302 } 5303 5304 // Get the default prefix if a name wasn't specified. 5305 if (!GlobalName) 5306 GlobalName = ".str"; 5307 // Create a global variable for this. 5308 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5309 GlobalName, Alignment); 5310 if (Entry) 5311 *Entry = GV; 5312 5313 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5314 Alignment); 5315 } 5316 5317 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5318 const MaterializeTemporaryExpr *E, const Expr *Init) { 5319 assert((E->getStorageDuration() == SD_Static || 5320 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5321 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5322 5323 // If we're not materializing a subobject of the temporary, keep the 5324 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5325 QualType MaterializedType = Init->getType(); 5326 if (Init == E->getSubExpr()) 5327 MaterializedType = E->getType(); 5328 5329 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5330 5331 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5332 return ConstantAddress(Slot, Align); 5333 5334 // FIXME: If an externally-visible declaration extends multiple temporaries, 5335 // we need to give each temporary the same name in every translation unit (and 5336 // we also need to make the temporaries externally-visible). 5337 SmallString<256> Name; 5338 llvm::raw_svector_ostream Out(Name); 5339 getCXXABI().getMangleContext().mangleReferenceTemporary( 5340 VD, E->getManglingNumber(), Out); 5341 5342 APValue *Value = nullptr; 5343 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5344 // If the initializer of the extending declaration is a constant 5345 // initializer, we should have a cached constant initializer for this 5346 // temporary. Note that this might have a different value from the value 5347 // computed by evaluating the initializer if the surrounding constant 5348 // expression modifies the temporary. 5349 Value = E->getOrCreateValue(false); 5350 } 5351 5352 // Try evaluating it now, it might have a constant initializer. 5353 Expr::EvalResult EvalResult; 5354 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5355 !EvalResult.hasSideEffects()) 5356 Value = &EvalResult.Val; 5357 5358 LangAS AddrSpace = 5359 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5360 5361 Optional<ConstantEmitter> emitter; 5362 llvm::Constant *InitialValue = nullptr; 5363 bool Constant = false; 5364 llvm::Type *Type; 5365 if (Value) { 5366 // The temporary has a constant initializer, use it. 5367 emitter.emplace(*this); 5368 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5369 MaterializedType); 5370 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5371 Type = InitialValue->getType(); 5372 } else { 5373 // No initializer, the initialization will be provided when we 5374 // initialize the declaration which performed lifetime extension. 5375 Type = getTypes().ConvertTypeForMem(MaterializedType); 5376 } 5377 5378 // Create a global variable for this lifetime-extended temporary. 5379 llvm::GlobalValue::LinkageTypes Linkage = 5380 getLLVMLinkageVarDefinition(VD, Constant); 5381 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5382 const VarDecl *InitVD; 5383 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5384 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5385 // Temporaries defined inside a class get linkonce_odr linkage because the 5386 // class can be defined in multiple translation units. 5387 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5388 } else { 5389 // There is no need for this temporary to have external linkage if the 5390 // VarDecl has external linkage. 5391 Linkage = llvm::GlobalVariable::InternalLinkage; 5392 } 5393 } 5394 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5395 auto *GV = new llvm::GlobalVariable( 5396 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5397 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5398 if (emitter) emitter->finalize(GV); 5399 setGVProperties(GV, VD); 5400 GV->setAlignment(Align.getAsAlign()); 5401 if (supportsCOMDAT() && GV->isWeakForLinker()) 5402 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5403 if (VD->getTLSKind()) 5404 setTLSMode(GV, *VD); 5405 llvm::Constant *CV = GV; 5406 if (AddrSpace != LangAS::Default) 5407 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5408 *this, GV, AddrSpace, LangAS::Default, 5409 Type->getPointerTo( 5410 getContext().getTargetAddressSpace(LangAS::Default))); 5411 MaterializedGlobalTemporaryMap[E] = CV; 5412 return ConstantAddress(CV, Align); 5413 } 5414 5415 /// EmitObjCPropertyImplementations - Emit information for synthesized 5416 /// properties for an implementation. 5417 void CodeGenModule::EmitObjCPropertyImplementations(const 5418 ObjCImplementationDecl *D) { 5419 for (const auto *PID : D->property_impls()) { 5420 // Dynamic is just for type-checking. 5421 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5422 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5423 5424 // Determine which methods need to be implemented, some may have 5425 // been overridden. Note that ::isPropertyAccessor is not the method 5426 // we want, that just indicates if the decl came from a 5427 // property. What we want to know is if the method is defined in 5428 // this implementation. 5429 auto *Getter = PID->getGetterMethodDecl(); 5430 if (!Getter || Getter->isSynthesizedAccessorStub()) 5431 CodeGenFunction(*this).GenerateObjCGetter( 5432 const_cast<ObjCImplementationDecl *>(D), PID); 5433 auto *Setter = PID->getSetterMethodDecl(); 5434 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5435 CodeGenFunction(*this).GenerateObjCSetter( 5436 const_cast<ObjCImplementationDecl *>(D), PID); 5437 } 5438 } 5439 } 5440 5441 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5442 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5443 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5444 ivar; ivar = ivar->getNextIvar()) 5445 if (ivar->getType().isDestructedType()) 5446 return true; 5447 5448 return false; 5449 } 5450 5451 static bool AllTrivialInitializers(CodeGenModule &CGM, 5452 ObjCImplementationDecl *D) { 5453 CodeGenFunction CGF(CGM); 5454 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5455 E = D->init_end(); B != E; ++B) { 5456 CXXCtorInitializer *CtorInitExp = *B; 5457 Expr *Init = CtorInitExp->getInit(); 5458 if (!CGF.isTrivialInitializer(Init)) 5459 return false; 5460 } 5461 return true; 5462 } 5463 5464 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5465 /// for an implementation. 5466 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5467 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5468 if (needsDestructMethod(D)) { 5469 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5470 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5471 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5472 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5473 getContext().VoidTy, nullptr, D, 5474 /*isInstance=*/true, /*isVariadic=*/false, 5475 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5476 /*isImplicitlyDeclared=*/true, 5477 /*isDefined=*/false, ObjCMethodDecl::Required); 5478 D->addInstanceMethod(DTORMethod); 5479 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5480 D->setHasDestructors(true); 5481 } 5482 5483 // If the implementation doesn't have any ivar initializers, we don't need 5484 // a .cxx_construct. 5485 if (D->getNumIvarInitializers() == 0 || 5486 AllTrivialInitializers(*this, D)) 5487 return; 5488 5489 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5490 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5491 // The constructor returns 'self'. 5492 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5493 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5494 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5495 /*isVariadic=*/false, 5496 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5497 /*isImplicitlyDeclared=*/true, 5498 /*isDefined=*/false, ObjCMethodDecl::Required); 5499 D->addInstanceMethod(CTORMethod); 5500 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5501 D->setHasNonZeroConstructors(true); 5502 } 5503 5504 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5505 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5506 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5507 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5508 ErrorUnsupported(LSD, "linkage spec"); 5509 return; 5510 } 5511 5512 EmitDeclContext(LSD); 5513 } 5514 5515 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5516 for (auto *I : DC->decls()) { 5517 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5518 // are themselves considered "top-level", so EmitTopLevelDecl on an 5519 // ObjCImplDecl does not recursively visit them. We need to do that in 5520 // case they're nested inside another construct (LinkageSpecDecl / 5521 // ExportDecl) that does stop them from being considered "top-level". 5522 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5523 for (auto *M : OID->methods()) 5524 EmitTopLevelDecl(M); 5525 } 5526 5527 EmitTopLevelDecl(I); 5528 } 5529 } 5530 5531 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5532 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5533 // Ignore dependent declarations. 5534 if (D->isTemplated()) 5535 return; 5536 5537 // Consteval function shouldn't be emitted. 5538 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5539 if (FD->isConsteval()) 5540 return; 5541 5542 switch (D->getKind()) { 5543 case Decl::CXXConversion: 5544 case Decl::CXXMethod: 5545 case Decl::Function: 5546 EmitGlobal(cast<FunctionDecl>(D)); 5547 // Always provide some coverage mapping 5548 // even for the functions that aren't emitted. 5549 AddDeferredUnusedCoverageMapping(D); 5550 break; 5551 5552 case Decl::CXXDeductionGuide: 5553 // Function-like, but does not result in code emission. 5554 break; 5555 5556 case Decl::Var: 5557 case Decl::Decomposition: 5558 case Decl::VarTemplateSpecialization: 5559 EmitGlobal(cast<VarDecl>(D)); 5560 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5561 for (auto *B : DD->bindings()) 5562 if (auto *HD = B->getHoldingVar()) 5563 EmitGlobal(HD); 5564 break; 5565 5566 // Indirect fields from global anonymous structs and unions can be 5567 // ignored; only the actual variable requires IR gen support. 5568 case Decl::IndirectField: 5569 break; 5570 5571 // C++ Decls 5572 case Decl::Namespace: 5573 EmitDeclContext(cast<NamespaceDecl>(D)); 5574 break; 5575 case Decl::ClassTemplateSpecialization: { 5576 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5577 if (CGDebugInfo *DI = getModuleDebugInfo()) 5578 if (Spec->getSpecializationKind() == 5579 TSK_ExplicitInstantiationDefinition && 5580 Spec->hasDefinition()) 5581 DI->completeTemplateDefinition(*Spec); 5582 } LLVM_FALLTHROUGH; 5583 case Decl::CXXRecord: { 5584 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5585 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5586 if (CRD->hasDefinition()) 5587 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5588 if (auto *ES = D->getASTContext().getExternalSource()) 5589 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5590 DI->completeUnusedClass(*CRD); 5591 } 5592 // Emit any static data members, they may be definitions. 5593 for (auto *I : CRD->decls()) 5594 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5595 EmitTopLevelDecl(I); 5596 break; 5597 } 5598 // No code generation needed. 5599 case Decl::UsingShadow: 5600 case Decl::ClassTemplate: 5601 case Decl::VarTemplate: 5602 case Decl::Concept: 5603 case Decl::VarTemplatePartialSpecialization: 5604 case Decl::FunctionTemplate: 5605 case Decl::TypeAliasTemplate: 5606 case Decl::Block: 5607 case Decl::Empty: 5608 case Decl::Binding: 5609 break; 5610 case Decl::Using: // using X; [C++] 5611 if (CGDebugInfo *DI = getModuleDebugInfo()) 5612 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5613 break; 5614 case Decl::NamespaceAlias: 5615 if (CGDebugInfo *DI = getModuleDebugInfo()) 5616 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5617 break; 5618 case Decl::UsingDirective: // using namespace X; [C++] 5619 if (CGDebugInfo *DI = getModuleDebugInfo()) 5620 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5621 break; 5622 case Decl::CXXConstructor: 5623 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5624 break; 5625 case Decl::CXXDestructor: 5626 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5627 break; 5628 5629 case Decl::StaticAssert: 5630 // Nothing to do. 5631 break; 5632 5633 // Objective-C Decls 5634 5635 // Forward declarations, no (immediate) code generation. 5636 case Decl::ObjCInterface: 5637 case Decl::ObjCCategory: 5638 break; 5639 5640 case Decl::ObjCProtocol: { 5641 auto *Proto = cast<ObjCProtocolDecl>(D); 5642 if (Proto->isThisDeclarationADefinition()) 5643 ObjCRuntime->GenerateProtocol(Proto); 5644 break; 5645 } 5646 5647 case Decl::ObjCCategoryImpl: 5648 // Categories have properties but don't support synthesize so we 5649 // can ignore them here. 5650 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5651 break; 5652 5653 case Decl::ObjCImplementation: { 5654 auto *OMD = cast<ObjCImplementationDecl>(D); 5655 EmitObjCPropertyImplementations(OMD); 5656 EmitObjCIvarInitializations(OMD); 5657 ObjCRuntime->GenerateClass(OMD); 5658 // Emit global variable debug information. 5659 if (CGDebugInfo *DI = getModuleDebugInfo()) 5660 if (getCodeGenOpts().hasReducedDebugInfo()) 5661 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5662 OMD->getClassInterface()), OMD->getLocation()); 5663 break; 5664 } 5665 case Decl::ObjCMethod: { 5666 auto *OMD = cast<ObjCMethodDecl>(D); 5667 // If this is not a prototype, emit the body. 5668 if (OMD->getBody()) 5669 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5670 break; 5671 } 5672 case Decl::ObjCCompatibleAlias: 5673 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5674 break; 5675 5676 case Decl::PragmaComment: { 5677 const auto *PCD = cast<PragmaCommentDecl>(D); 5678 switch (PCD->getCommentKind()) { 5679 case PCK_Unknown: 5680 llvm_unreachable("unexpected pragma comment kind"); 5681 case PCK_Linker: 5682 AppendLinkerOptions(PCD->getArg()); 5683 break; 5684 case PCK_Lib: 5685 AddDependentLib(PCD->getArg()); 5686 break; 5687 case PCK_Compiler: 5688 case PCK_ExeStr: 5689 case PCK_User: 5690 break; // We ignore all of these. 5691 } 5692 break; 5693 } 5694 5695 case Decl::PragmaDetectMismatch: { 5696 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5697 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5698 break; 5699 } 5700 5701 case Decl::LinkageSpec: 5702 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5703 break; 5704 5705 case Decl::FileScopeAsm: { 5706 // File-scope asm is ignored during device-side CUDA compilation. 5707 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5708 break; 5709 // File-scope asm is ignored during device-side OpenMP compilation. 5710 if (LangOpts.OpenMPIsDevice) 5711 break; 5712 auto *AD = cast<FileScopeAsmDecl>(D); 5713 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5714 break; 5715 } 5716 5717 case Decl::Import: { 5718 auto *Import = cast<ImportDecl>(D); 5719 5720 // If we've already imported this module, we're done. 5721 if (!ImportedModules.insert(Import->getImportedModule())) 5722 break; 5723 5724 // Emit debug information for direct imports. 5725 if (!Import->getImportedOwningModule()) { 5726 if (CGDebugInfo *DI = getModuleDebugInfo()) 5727 DI->EmitImportDecl(*Import); 5728 } 5729 5730 // Find all of the submodules and emit the module initializers. 5731 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5732 SmallVector<clang::Module *, 16> Stack; 5733 Visited.insert(Import->getImportedModule()); 5734 Stack.push_back(Import->getImportedModule()); 5735 5736 while (!Stack.empty()) { 5737 clang::Module *Mod = Stack.pop_back_val(); 5738 if (!EmittedModuleInitializers.insert(Mod).second) 5739 continue; 5740 5741 for (auto *D : Context.getModuleInitializers(Mod)) 5742 EmitTopLevelDecl(D); 5743 5744 // Visit the submodules of this module. 5745 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5746 SubEnd = Mod->submodule_end(); 5747 Sub != SubEnd; ++Sub) { 5748 // Skip explicit children; they need to be explicitly imported to emit 5749 // the initializers. 5750 if ((*Sub)->IsExplicit) 5751 continue; 5752 5753 if (Visited.insert(*Sub).second) 5754 Stack.push_back(*Sub); 5755 } 5756 } 5757 break; 5758 } 5759 5760 case Decl::Export: 5761 EmitDeclContext(cast<ExportDecl>(D)); 5762 break; 5763 5764 case Decl::OMPThreadPrivate: 5765 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5766 break; 5767 5768 case Decl::OMPAllocate: 5769 break; 5770 5771 case Decl::OMPDeclareReduction: 5772 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5773 break; 5774 5775 case Decl::OMPDeclareMapper: 5776 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5777 break; 5778 5779 case Decl::OMPRequires: 5780 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5781 break; 5782 5783 case Decl::Typedef: 5784 case Decl::TypeAlias: // using foo = bar; [C++11] 5785 if (CGDebugInfo *DI = getModuleDebugInfo()) 5786 DI->EmitAndRetainType( 5787 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5788 break; 5789 5790 case Decl::Record: 5791 if (CGDebugInfo *DI = getModuleDebugInfo()) 5792 if (cast<RecordDecl>(D)->getDefinition()) 5793 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5794 break; 5795 5796 case Decl::Enum: 5797 if (CGDebugInfo *DI = getModuleDebugInfo()) 5798 if (cast<EnumDecl>(D)->getDefinition()) 5799 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5800 break; 5801 5802 default: 5803 // Make sure we handled everything we should, every other kind is a 5804 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5805 // function. Need to recode Decl::Kind to do that easily. 5806 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5807 break; 5808 } 5809 } 5810 5811 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5812 // Do we need to generate coverage mapping? 5813 if (!CodeGenOpts.CoverageMapping) 5814 return; 5815 switch (D->getKind()) { 5816 case Decl::CXXConversion: 5817 case Decl::CXXMethod: 5818 case Decl::Function: 5819 case Decl::ObjCMethod: 5820 case Decl::CXXConstructor: 5821 case Decl::CXXDestructor: { 5822 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5823 break; 5824 SourceManager &SM = getContext().getSourceManager(); 5825 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5826 break; 5827 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5828 if (I == DeferredEmptyCoverageMappingDecls.end()) 5829 DeferredEmptyCoverageMappingDecls[D] = true; 5830 break; 5831 } 5832 default: 5833 break; 5834 }; 5835 } 5836 5837 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5838 // Do we need to generate coverage mapping? 5839 if (!CodeGenOpts.CoverageMapping) 5840 return; 5841 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5842 if (Fn->isTemplateInstantiation()) 5843 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5844 } 5845 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5846 if (I == DeferredEmptyCoverageMappingDecls.end()) 5847 DeferredEmptyCoverageMappingDecls[D] = false; 5848 else 5849 I->second = false; 5850 } 5851 5852 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5853 // We call takeVector() here to avoid use-after-free. 5854 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5855 // we deserialize function bodies to emit coverage info for them, and that 5856 // deserializes more declarations. How should we handle that case? 5857 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5858 if (!Entry.second) 5859 continue; 5860 const Decl *D = Entry.first; 5861 switch (D->getKind()) { 5862 case Decl::CXXConversion: 5863 case Decl::CXXMethod: 5864 case Decl::Function: 5865 case Decl::ObjCMethod: { 5866 CodeGenPGO PGO(*this); 5867 GlobalDecl GD(cast<FunctionDecl>(D)); 5868 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5869 getFunctionLinkage(GD)); 5870 break; 5871 } 5872 case Decl::CXXConstructor: { 5873 CodeGenPGO PGO(*this); 5874 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5875 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5876 getFunctionLinkage(GD)); 5877 break; 5878 } 5879 case Decl::CXXDestructor: { 5880 CodeGenPGO PGO(*this); 5881 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5882 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5883 getFunctionLinkage(GD)); 5884 break; 5885 } 5886 default: 5887 break; 5888 }; 5889 } 5890 } 5891 5892 void CodeGenModule::EmitMainVoidAlias() { 5893 // In order to transition away from "__original_main" gracefully, emit an 5894 // alias for "main" in the no-argument case so that libc can detect when 5895 // new-style no-argument main is in used. 5896 if (llvm::Function *F = getModule().getFunction("main")) { 5897 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5898 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5899 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5900 } 5901 } 5902 5903 /// Turns the given pointer into a constant. 5904 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5905 const void *Ptr) { 5906 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5907 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5908 return llvm::ConstantInt::get(i64, PtrInt); 5909 } 5910 5911 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5912 llvm::NamedMDNode *&GlobalMetadata, 5913 GlobalDecl D, 5914 llvm::GlobalValue *Addr) { 5915 if (!GlobalMetadata) 5916 GlobalMetadata = 5917 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5918 5919 // TODO: should we report variant information for ctors/dtors? 5920 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5921 llvm::ConstantAsMetadata::get(GetPointerConstant( 5922 CGM.getLLVMContext(), D.getDecl()))}; 5923 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5924 } 5925 5926 /// For each function which is declared within an extern "C" region and marked 5927 /// as 'used', but has internal linkage, create an alias from the unmangled 5928 /// name to the mangled name if possible. People expect to be able to refer 5929 /// to such functions with an unmangled name from inline assembly within the 5930 /// same translation unit. 5931 void CodeGenModule::EmitStaticExternCAliases() { 5932 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5933 return; 5934 for (auto &I : StaticExternCValues) { 5935 IdentifierInfo *Name = I.first; 5936 llvm::GlobalValue *Val = I.second; 5937 if (Val && !getModule().getNamedValue(Name->getName())) 5938 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5939 } 5940 } 5941 5942 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5943 GlobalDecl &Result) const { 5944 auto Res = Manglings.find(MangledName); 5945 if (Res == Manglings.end()) 5946 return false; 5947 Result = Res->getValue(); 5948 return true; 5949 } 5950 5951 /// Emits metadata nodes associating all the global values in the 5952 /// current module with the Decls they came from. This is useful for 5953 /// projects using IR gen as a subroutine. 5954 /// 5955 /// Since there's currently no way to associate an MDNode directly 5956 /// with an llvm::GlobalValue, we create a global named metadata 5957 /// with the name 'clang.global.decl.ptrs'. 5958 void CodeGenModule::EmitDeclMetadata() { 5959 llvm::NamedMDNode *GlobalMetadata = nullptr; 5960 5961 for (auto &I : MangledDeclNames) { 5962 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5963 // Some mangled names don't necessarily have an associated GlobalValue 5964 // in this module, e.g. if we mangled it for DebugInfo. 5965 if (Addr) 5966 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5967 } 5968 } 5969 5970 /// Emits metadata nodes for all the local variables in the current 5971 /// function. 5972 void CodeGenFunction::EmitDeclMetadata() { 5973 if (LocalDeclMap.empty()) return; 5974 5975 llvm::LLVMContext &Context = getLLVMContext(); 5976 5977 // Find the unique metadata ID for this name. 5978 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5979 5980 llvm::NamedMDNode *GlobalMetadata = nullptr; 5981 5982 for (auto &I : LocalDeclMap) { 5983 const Decl *D = I.first; 5984 llvm::Value *Addr = I.second.getPointer(); 5985 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5986 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5987 Alloca->setMetadata( 5988 DeclPtrKind, llvm::MDNode::get( 5989 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5990 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5991 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5992 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5993 } 5994 } 5995 } 5996 5997 void CodeGenModule::EmitVersionIdentMetadata() { 5998 llvm::NamedMDNode *IdentMetadata = 5999 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6000 std::string Version = getClangFullVersion(); 6001 llvm::LLVMContext &Ctx = TheModule.getContext(); 6002 6003 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6004 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6005 } 6006 6007 void CodeGenModule::EmitCommandLineMetadata() { 6008 llvm::NamedMDNode *CommandLineMetadata = 6009 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6010 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6011 llvm::LLVMContext &Ctx = TheModule.getContext(); 6012 6013 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6014 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6015 } 6016 6017 void CodeGenModule::EmitCoverageFile() { 6018 if (getCodeGenOpts().CoverageDataFile.empty() && 6019 getCodeGenOpts().CoverageNotesFile.empty()) 6020 return; 6021 6022 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6023 if (!CUNode) 6024 return; 6025 6026 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6027 llvm::LLVMContext &Ctx = TheModule.getContext(); 6028 auto *CoverageDataFile = 6029 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6030 auto *CoverageNotesFile = 6031 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6032 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6033 llvm::MDNode *CU = CUNode->getOperand(i); 6034 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6035 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6036 } 6037 } 6038 6039 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6040 bool ForEH) { 6041 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6042 // FIXME: should we even be calling this method if RTTI is disabled 6043 // and it's not for EH? 6044 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6045 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6046 getTriple().isNVPTX())) 6047 return llvm::Constant::getNullValue(Int8PtrTy); 6048 6049 if (ForEH && Ty->isObjCObjectPointerType() && 6050 LangOpts.ObjCRuntime.isGNUFamily()) 6051 return ObjCRuntime->GetEHType(Ty); 6052 6053 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6054 } 6055 6056 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6057 // Do not emit threadprivates in simd-only mode. 6058 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6059 return; 6060 for (auto RefExpr : D->varlists()) { 6061 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6062 bool PerformInit = 6063 VD->getAnyInitializer() && 6064 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6065 /*ForRef=*/false); 6066 6067 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6068 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6069 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6070 CXXGlobalInits.push_back(InitFunction); 6071 } 6072 } 6073 6074 llvm::Metadata * 6075 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6076 StringRef Suffix) { 6077 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6078 if (InternalId) 6079 return InternalId; 6080 6081 if (isExternallyVisible(T->getLinkage())) { 6082 std::string OutName; 6083 llvm::raw_string_ostream Out(OutName); 6084 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6085 Out << Suffix; 6086 6087 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6088 } else { 6089 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6090 llvm::ArrayRef<llvm::Metadata *>()); 6091 } 6092 6093 return InternalId; 6094 } 6095 6096 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6097 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6098 } 6099 6100 llvm::Metadata * 6101 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6102 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6103 } 6104 6105 // Generalize pointer types to a void pointer with the qualifiers of the 6106 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6107 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6108 // 'void *'. 6109 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6110 if (!Ty->isPointerType()) 6111 return Ty; 6112 6113 return Ctx.getPointerType( 6114 QualType(Ctx.VoidTy).withCVRQualifiers( 6115 Ty->getPointeeType().getCVRQualifiers())); 6116 } 6117 6118 // Apply type generalization to a FunctionType's return and argument types 6119 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6120 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6121 SmallVector<QualType, 8> GeneralizedParams; 6122 for (auto &Param : FnType->param_types()) 6123 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6124 6125 return Ctx.getFunctionType( 6126 GeneralizeType(Ctx, FnType->getReturnType()), 6127 GeneralizedParams, FnType->getExtProtoInfo()); 6128 } 6129 6130 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6131 return Ctx.getFunctionNoProtoType( 6132 GeneralizeType(Ctx, FnType->getReturnType())); 6133 6134 llvm_unreachable("Encountered unknown FunctionType"); 6135 } 6136 6137 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6138 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6139 GeneralizedMetadataIdMap, ".generalized"); 6140 } 6141 6142 /// Returns whether this module needs the "all-vtables" type identifier. 6143 bool CodeGenModule::NeedAllVtablesTypeId() const { 6144 // Returns true if at least one of vtable-based CFI checkers is enabled and 6145 // is not in the trapping mode. 6146 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6147 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6148 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6149 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6150 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6151 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6152 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6153 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6154 } 6155 6156 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6157 CharUnits Offset, 6158 const CXXRecordDecl *RD) { 6159 llvm::Metadata *MD = 6160 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6161 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6162 6163 if (CodeGenOpts.SanitizeCfiCrossDso) 6164 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6165 VTable->addTypeMetadata(Offset.getQuantity(), 6166 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6167 6168 if (NeedAllVtablesTypeId()) { 6169 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6170 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6171 } 6172 } 6173 6174 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6175 if (!SanStats) 6176 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6177 6178 return *SanStats; 6179 } 6180 llvm::Value * 6181 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6182 CodeGenFunction &CGF) { 6183 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6184 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6185 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6186 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 6187 "__translate_sampler_initializer"), 6188 {C}); 6189 } 6190 6191 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6192 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6193 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6194 /* forPointeeType= */ true); 6195 } 6196 6197 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6198 LValueBaseInfo *BaseInfo, 6199 TBAAAccessInfo *TBAAInfo, 6200 bool forPointeeType) { 6201 if (TBAAInfo) 6202 *TBAAInfo = getTBAAAccessInfo(T); 6203 6204 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6205 // that doesn't return the information we need to compute BaseInfo. 6206 6207 // Honor alignment typedef attributes even on incomplete types. 6208 // We also honor them straight for C++ class types, even as pointees; 6209 // there's an expressivity gap here. 6210 if (auto TT = T->getAs<TypedefType>()) { 6211 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6212 if (BaseInfo) 6213 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6214 return getContext().toCharUnitsFromBits(Align); 6215 } 6216 } 6217 6218 bool AlignForArray = T->isArrayType(); 6219 6220 // Analyze the base element type, so we don't get confused by incomplete 6221 // array types. 6222 T = getContext().getBaseElementType(T); 6223 6224 if (T->isIncompleteType()) { 6225 // We could try to replicate the logic from 6226 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6227 // type is incomplete, so it's impossible to test. We could try to reuse 6228 // getTypeAlignIfKnown, but that doesn't return the information we need 6229 // to set BaseInfo. So just ignore the possibility that the alignment is 6230 // greater than one. 6231 if (BaseInfo) 6232 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6233 return CharUnits::One(); 6234 } 6235 6236 if (BaseInfo) 6237 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6238 6239 CharUnits Alignment; 6240 const CXXRecordDecl *RD; 6241 if (T.getQualifiers().hasUnaligned()) { 6242 Alignment = CharUnits::One(); 6243 } else if (forPointeeType && !AlignForArray && 6244 (RD = T->getAsCXXRecordDecl())) { 6245 // For C++ class pointees, we don't know whether we're pointing at a 6246 // base or a complete object, so we generally need to use the 6247 // non-virtual alignment. 6248 Alignment = getClassPointerAlignment(RD); 6249 } else { 6250 Alignment = getContext().getTypeAlignInChars(T); 6251 } 6252 6253 // Cap to the global maximum type alignment unless the alignment 6254 // was somehow explicit on the type. 6255 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6256 if (Alignment.getQuantity() > MaxAlign && 6257 !getContext().isAlignmentRequired(T)) 6258 Alignment = CharUnits::fromQuantity(MaxAlign); 6259 } 6260 return Alignment; 6261 } 6262 6263 bool CodeGenModule::stopAutoInit() { 6264 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6265 if (StopAfter) { 6266 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6267 // used 6268 if (NumAutoVarInit >= StopAfter) { 6269 return true; 6270 } 6271 if (!NumAutoVarInit) { 6272 unsigned DiagID = getDiags().getCustomDiagID( 6273 DiagnosticsEngine::Warning, 6274 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6275 "number of times ftrivial-auto-var-init=%1 gets applied."); 6276 getDiags().Report(DiagID) 6277 << StopAfter 6278 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6279 LangOptions::TrivialAutoVarInitKind::Zero 6280 ? "zero" 6281 : "pattern"); 6282 } 6283 ++NumAutoVarInit; 6284 } 6285 return false; 6286 } 6287