1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/FrontendDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ProfileSummary.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/ConvertUTF.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MD5.h" 61 #include "llvm/Support/TimeProfiler.h" 62 63 using namespace clang; 64 using namespace CodeGen; 65 66 static llvm::cl::opt<bool> LimitedCoverage( 67 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 68 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 69 llvm::cl::init(false)); 70 71 static const char AnnotationSection[] = "llvm.metadata"; 72 73 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 74 switch (CGM.getTarget().getCXXABI().getKind()) { 75 case TargetCXXABI::GenericAArch64: 76 case TargetCXXABI::GenericARM: 77 case TargetCXXABI::iOS: 78 case TargetCXXABI::iOS64: 79 case TargetCXXABI::WatchOS: 80 case TargetCXXABI::GenericMIPS: 81 case TargetCXXABI::GenericItanium: 82 case TargetCXXABI::WebAssembly: 83 return CreateItaniumCXXABI(CGM); 84 case TargetCXXABI::Microsoft: 85 return CreateMicrosoftCXXABI(CGM); 86 } 87 88 llvm_unreachable("invalid C++ ABI kind"); 89 } 90 91 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 92 const PreprocessorOptions &PPO, 93 const CodeGenOptions &CGO, llvm::Module &M, 94 DiagnosticsEngine &diags, 95 CoverageSourceInfo *CoverageInfo) 96 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 97 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 98 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 99 VMContext(M.getContext()), Types(*this), VTables(*this), 100 SanitizerMD(new SanitizerMetadata(*this)) { 101 102 // Initialize the type cache. 103 llvm::LLVMContext &LLVMContext = M.getContext(); 104 VoidTy = llvm::Type::getVoidTy(LLVMContext); 105 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 106 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 107 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 108 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 109 HalfTy = llvm::Type::getHalfTy(LLVMContext); 110 FloatTy = llvm::Type::getFloatTy(LLVMContext); 111 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 112 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 113 PointerAlignInBytes = 114 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 115 SizeSizeInBytes = 116 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 117 IntAlignInBytes = 118 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 119 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 120 IntPtrTy = llvm::IntegerType::get(LLVMContext, 121 C.getTargetInfo().getMaxPointerWidth()); 122 Int8PtrTy = Int8Ty->getPointerTo(0); 123 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 124 AllocaInt8PtrTy = Int8Ty->getPointerTo( 125 M.getDataLayout().getAllocaAddrSpace()); 126 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 127 128 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 129 130 if (LangOpts.ObjC) 131 createObjCRuntime(); 132 if (LangOpts.OpenCL) 133 createOpenCLRuntime(); 134 if (LangOpts.OpenMP) 135 createOpenMPRuntime(); 136 if (LangOpts.CUDA) 137 createCUDARuntime(); 138 139 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 140 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 141 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 142 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 143 getCXXABI().getMangleContext())); 144 145 // If debug info or coverage generation is enabled, create the CGDebugInfo 146 // object. 147 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 148 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 149 DebugInfo.reset(new CGDebugInfo(*this)); 150 151 Block.GlobalUniqueCount = 0; 152 153 if (C.getLangOpts().ObjC) 154 ObjCData.reset(new ObjCEntrypoints()); 155 156 if (CodeGenOpts.hasProfileClangUse()) { 157 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 158 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 159 if (auto E = ReaderOrErr.takeError()) { 160 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 161 "Could not read profile %0: %1"); 162 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 163 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 164 << EI.message(); 165 }); 166 } else 167 PGOReader = std::move(ReaderOrErr.get()); 168 } 169 170 // If coverage mapping generation is enabled, create the 171 // CoverageMappingModuleGen object. 172 if (CodeGenOpts.CoverageMapping) 173 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 174 } 175 176 CodeGenModule::~CodeGenModule() {} 177 178 void CodeGenModule::createObjCRuntime() { 179 // This is just isGNUFamily(), but we want to force implementors of 180 // new ABIs to decide how best to do this. 181 switch (LangOpts.ObjCRuntime.getKind()) { 182 case ObjCRuntime::GNUstep: 183 case ObjCRuntime::GCC: 184 case ObjCRuntime::ObjFW: 185 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 186 return; 187 188 case ObjCRuntime::FragileMacOSX: 189 case ObjCRuntime::MacOSX: 190 case ObjCRuntime::iOS: 191 case ObjCRuntime::WatchOS: 192 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 // Select a specialized code generation class based on the target, if any. 204 // If it does not exist use the default implementation. 205 switch (getTriple().getArch()) { 206 case llvm::Triple::nvptx: 207 case llvm::Triple::nvptx64: 208 assert(getLangOpts().OpenMPIsDevice && 209 "OpenMP NVPTX is only prepared to deal with device code."); 210 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 211 break; 212 default: 213 if (LangOpts.OpenMPSimd) 214 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 215 else 216 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 217 break; 218 } 219 } 220 221 void CodeGenModule::createCUDARuntime() { 222 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 223 } 224 225 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 226 Replacements[Name] = C; 227 } 228 229 void CodeGenModule::applyReplacements() { 230 for (auto &I : Replacements) { 231 StringRef MangledName = I.first(); 232 llvm::Constant *Replacement = I.second; 233 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 234 if (!Entry) 235 continue; 236 auto *OldF = cast<llvm::Function>(Entry); 237 auto *NewF = dyn_cast<llvm::Function>(Replacement); 238 if (!NewF) { 239 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 240 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 241 } else { 242 auto *CE = cast<llvm::ConstantExpr>(Replacement); 243 assert(CE->getOpcode() == llvm::Instruction::BitCast || 244 CE->getOpcode() == llvm::Instruction::GetElementPtr); 245 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 246 } 247 } 248 249 // Replace old with new, but keep the old order. 250 OldF->replaceAllUsesWith(Replacement); 251 if (NewF) { 252 NewF->removeFromParent(); 253 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 254 NewF); 255 } 256 OldF->eraseFromParent(); 257 } 258 } 259 260 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 261 GlobalValReplacements.push_back(std::make_pair(GV, C)); 262 } 263 264 void CodeGenModule::applyGlobalValReplacements() { 265 for (auto &I : GlobalValReplacements) { 266 llvm::GlobalValue *GV = I.first; 267 llvm::Constant *C = I.second; 268 269 GV->replaceAllUsesWith(C); 270 GV->eraseFromParent(); 271 } 272 } 273 274 // This is only used in aliases that we created and we know they have a 275 // linear structure. 276 static const llvm::GlobalObject *getAliasedGlobal( 277 const llvm::GlobalIndirectSymbol &GIS) { 278 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 279 const llvm::Constant *C = &GIS; 280 for (;;) { 281 C = C->stripPointerCasts(); 282 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 283 return GO; 284 // stripPointerCasts will not walk over weak aliases. 285 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 286 if (!GIS2) 287 return nullptr; 288 if (!Visited.insert(GIS2).second) 289 return nullptr; 290 C = GIS2->getIndirectSymbol(); 291 } 292 } 293 294 void CodeGenModule::checkAliases() { 295 // Check if the constructed aliases are well formed. It is really unfortunate 296 // that we have to do this in CodeGen, but we only construct mangled names 297 // and aliases during codegen. 298 bool Error = false; 299 DiagnosticsEngine &Diags = getDiags(); 300 for (const GlobalDecl &GD : Aliases) { 301 const auto *D = cast<ValueDecl>(GD.getDecl()); 302 SourceLocation Location; 303 bool IsIFunc = D->hasAttr<IFuncAttr>(); 304 if (const Attr *A = D->getDefiningAttr()) 305 Location = A->getLocation(); 306 else 307 llvm_unreachable("Not an alias or ifunc?"); 308 StringRef MangledName = getMangledName(GD); 309 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 310 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 311 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 312 if (!GV) { 313 Error = true; 314 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 315 } else if (GV->isDeclaration()) { 316 Error = true; 317 Diags.Report(Location, diag::err_alias_to_undefined) 318 << IsIFunc << IsIFunc; 319 } else if (IsIFunc) { 320 // Check resolver function type. 321 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 322 GV->getType()->getPointerElementType()); 323 assert(FTy); 324 if (!FTy->getReturnType()->isPointerTy()) 325 Diags.Report(Location, diag::err_ifunc_resolver_return); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 registerGlobalDtorsWithAtExit(); 402 EmitCXXThreadLocalInitFunc(); 403 if (ObjCRuntime) 404 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 405 AddGlobalCtor(ObjCInitFunction); 406 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 407 CUDARuntime) { 408 if (llvm::Function *CudaCtorFunction = 409 CUDARuntime->makeModuleCtorFunction()) 410 AddGlobalCtor(CudaCtorFunction); 411 } 412 if (OpenMPRuntime) { 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 OpenMPRuntime->clear(); 420 } 421 if (PGOReader) { 422 getModule().setProfileSummary( 423 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 424 llvm::ProfileSummary::PSK_Instr); 425 if (PGOStats.hasDiagnostics()) 426 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 427 } 428 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 429 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 430 EmitGlobalAnnotations(); 431 EmitStaticExternCAliases(); 432 EmitDeferredUnusedCoverageMappings(); 433 if (CoverageMapping) 434 CoverageMapping->emit(); 435 if (CodeGenOpts.SanitizeCfiCrossDso) { 436 CodeGenFunction(*this).EmitCfiCheckFail(); 437 CodeGenFunction(*this).EmitCfiCheckStub(); 438 } 439 emitAtAvailableLinkGuard(); 440 emitLLVMUsed(); 441 if (SanStats) 442 SanStats->finish(); 443 444 if (CodeGenOpts.Autolink && 445 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 446 EmitModuleLinkOptions(); 447 } 448 449 // On ELF we pass the dependent library specifiers directly to the linker 450 // without manipulating them. This is in contrast to other platforms where 451 // they are mapped to a specific linker option by the compiler. This 452 // difference is a result of the greater variety of ELF linkers and the fact 453 // that ELF linkers tend to handle libraries in a more complicated fashion 454 // than on other platforms. This forces us to defer handling the dependent 455 // libs to the linker. 456 if (!ELFDependentLibraries.empty()) { 457 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 458 for (auto *MD : ELFDependentLibraries) 459 NMD->addOperand(MD); 460 } 461 462 // Record mregparm value now so it is visible through rest of codegen. 463 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 464 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 465 CodeGenOpts.NumRegisterParameters); 466 467 if (CodeGenOpts.DwarfVersion) { 468 // We actually want the latest version when there are conflicts. 469 // We can change from Warning to Latest if such mode is supported. 470 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 471 CodeGenOpts.DwarfVersion); 472 } 473 if (CodeGenOpts.EmitCodeView) { 474 // Indicate that we want CodeView in the metadata. 475 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 476 } 477 if (CodeGenOpts.CodeViewGHash) { 478 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 479 } 480 if (CodeGenOpts.ControlFlowGuard) { 481 // We want function ID tables for Control Flow Guard. 482 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); 483 } 484 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 485 // We don't support LTO with 2 with different StrictVTablePointers 486 // FIXME: we could support it by stripping all the information introduced 487 // by StrictVTablePointers. 488 489 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 490 491 llvm::Metadata *Ops[2] = { 492 llvm::MDString::get(VMContext, "StrictVTablePointers"), 493 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 494 llvm::Type::getInt32Ty(VMContext), 1))}; 495 496 getModule().addModuleFlag(llvm::Module::Require, 497 "StrictVTablePointersRequirement", 498 llvm::MDNode::get(VMContext, Ops)); 499 } 500 if (DebugInfo) 501 // We support a single version in the linked module. The LLVM 502 // parser will drop debug info with a different version number 503 // (and warn about it, too). 504 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 505 llvm::DEBUG_METADATA_VERSION); 506 507 // We need to record the widths of enums and wchar_t, so that we can generate 508 // the correct build attributes in the ARM backend. wchar_size is also used by 509 // TargetLibraryInfo. 510 uint64_t WCharWidth = 511 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 512 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 513 514 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 515 if ( Arch == llvm::Triple::arm 516 || Arch == llvm::Triple::armeb 517 || Arch == llvm::Triple::thumb 518 || Arch == llvm::Triple::thumbeb) { 519 // The minimum width of an enum in bytes 520 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 521 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 522 } 523 524 if (CodeGenOpts.SanitizeCfiCrossDso) { 525 // Indicate that we want cross-DSO control flow integrity checks. 526 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 527 } 528 529 if (CodeGenOpts.CFProtectionReturn && 530 Target.checkCFProtectionReturnSupported(getDiags())) { 531 // Indicate that we want to instrument return control flow protection. 532 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 533 1); 534 } 535 536 if (CodeGenOpts.CFProtectionBranch && 537 Target.checkCFProtectionBranchSupported(getDiags())) { 538 // Indicate that we want to instrument branch control flow protection. 539 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 540 1); 541 } 542 543 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 544 // Indicate whether __nvvm_reflect should be configured to flush denormal 545 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 546 // property.) 547 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 548 CodeGenOpts.FlushDenorm ? 1 : 0); 549 } 550 551 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 552 if (LangOpts.OpenCL) { 553 EmitOpenCLMetadata(); 554 // Emit SPIR version. 555 if (getTriple().isSPIR()) { 556 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 557 // opencl.spir.version named metadata. 558 llvm::Metadata *SPIRVerElts[] = { 559 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 560 Int32Ty, LangOpts.OpenCLVersion / 100)), 561 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 562 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 563 llvm::NamedMDNode *SPIRVerMD = 564 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 565 llvm::LLVMContext &Ctx = TheModule.getContext(); 566 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 567 } 568 } 569 570 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 571 assert(PLevel < 3 && "Invalid PIC Level"); 572 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 573 if (Context.getLangOpts().PIE) 574 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 575 } 576 577 if (getCodeGenOpts().CodeModel.size() > 0) { 578 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 579 .Case("tiny", llvm::CodeModel::Tiny) 580 .Case("small", llvm::CodeModel::Small) 581 .Case("kernel", llvm::CodeModel::Kernel) 582 .Case("medium", llvm::CodeModel::Medium) 583 .Case("large", llvm::CodeModel::Large) 584 .Default(~0u); 585 if (CM != ~0u) { 586 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 587 getModule().setCodeModel(codeModel); 588 } 589 } 590 591 if (CodeGenOpts.NoPLT) 592 getModule().setRtLibUseGOT(); 593 594 SimplifyPersonality(); 595 596 if (getCodeGenOpts().EmitDeclMetadata) 597 EmitDeclMetadata(); 598 599 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 600 EmitCoverageFile(); 601 602 if (DebugInfo) 603 DebugInfo->finalize(); 604 605 if (getCodeGenOpts().EmitVersionIdentMetadata) 606 EmitVersionIdentMetadata(); 607 608 if (!getCodeGenOpts().RecordCommandLine.empty()) 609 EmitCommandLineMetadata(); 610 611 EmitTargetMetadata(); 612 } 613 614 void CodeGenModule::EmitOpenCLMetadata() { 615 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 616 // opencl.ocl.version named metadata node. 617 llvm::Metadata *OCLVerElts[] = { 618 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 619 Int32Ty, LangOpts.OpenCLVersion / 100)), 620 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 621 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 622 llvm::NamedMDNode *OCLVerMD = 623 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 624 llvm::LLVMContext &Ctx = TheModule.getContext(); 625 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 626 } 627 628 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 629 // Make sure that this type is translated. 630 Types.UpdateCompletedType(TD); 631 } 632 633 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 634 // Make sure that this type is translated. 635 Types.RefreshTypeCacheForClass(RD); 636 } 637 638 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 639 if (!TBAA) 640 return nullptr; 641 return TBAA->getTypeInfo(QTy); 642 } 643 644 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 645 if (!TBAA) 646 return TBAAAccessInfo(); 647 return TBAA->getAccessInfo(AccessType); 648 } 649 650 TBAAAccessInfo 651 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 652 if (!TBAA) 653 return TBAAAccessInfo(); 654 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 655 } 656 657 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 658 if (!TBAA) 659 return nullptr; 660 return TBAA->getTBAAStructInfo(QTy); 661 } 662 663 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 664 if (!TBAA) 665 return nullptr; 666 return TBAA->getBaseTypeInfo(QTy); 667 } 668 669 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 670 if (!TBAA) 671 return nullptr; 672 return TBAA->getAccessTagInfo(Info); 673 } 674 675 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 676 TBAAAccessInfo TargetInfo) { 677 if (!TBAA) 678 return TBAAAccessInfo(); 679 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 680 } 681 682 TBAAAccessInfo 683 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 684 TBAAAccessInfo InfoB) { 685 if (!TBAA) 686 return TBAAAccessInfo(); 687 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 688 } 689 690 TBAAAccessInfo 691 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 692 TBAAAccessInfo SrcInfo) { 693 if (!TBAA) 694 return TBAAAccessInfo(); 695 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 696 } 697 698 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 699 TBAAAccessInfo TBAAInfo) { 700 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 701 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 702 } 703 704 void CodeGenModule::DecorateInstructionWithInvariantGroup( 705 llvm::Instruction *I, const CXXRecordDecl *RD) { 706 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 707 llvm::MDNode::get(getLLVMContext(), {})); 708 } 709 710 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 711 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 712 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 713 } 714 715 /// ErrorUnsupported - Print out an error that codegen doesn't support the 716 /// specified stmt yet. 717 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 718 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 719 "cannot compile this %0 yet"); 720 std::string Msg = Type; 721 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 722 << Msg << S->getSourceRange(); 723 } 724 725 /// ErrorUnsupported - Print out an error that codegen doesn't support the 726 /// specified decl yet. 727 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 728 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 729 "cannot compile this %0 yet"); 730 std::string Msg = Type; 731 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 732 } 733 734 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 735 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 736 } 737 738 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 739 const NamedDecl *D) const { 740 if (GV->hasDLLImportStorageClass()) 741 return; 742 // Internal definitions always have default visibility. 743 if (GV->hasLocalLinkage()) { 744 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 745 return; 746 } 747 if (!D) 748 return; 749 // Set visibility for definitions, and for declarations if requested globally 750 // or set explicitly. 751 LinkageInfo LV = D->getLinkageAndVisibility(); 752 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 753 !GV->isDeclarationForLinker()) 754 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 755 } 756 757 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 758 llvm::GlobalValue *GV) { 759 if (GV->hasLocalLinkage()) 760 return true; 761 762 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 763 return true; 764 765 // DLLImport explicitly marks the GV as external. 766 if (GV->hasDLLImportStorageClass()) 767 return false; 768 769 const llvm::Triple &TT = CGM.getTriple(); 770 if (TT.isWindowsGNUEnvironment()) { 771 // In MinGW, variables without DLLImport can still be automatically 772 // imported from a DLL by the linker; don't mark variables that 773 // potentially could come from another DLL as DSO local. 774 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 775 !GV->isThreadLocal()) 776 return false; 777 } 778 779 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 780 // remain unresolved in the link, they can be resolved to zero, which is 781 // outside the current DSO. 782 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 783 return false; 784 785 // Every other GV is local on COFF. 786 // Make an exception for windows OS in the triple: Some firmware builds use 787 // *-win32-macho triples. This (accidentally?) produced windows relocations 788 // without GOT tables in older clang versions; Keep this behaviour. 789 // FIXME: even thread local variables? 790 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 791 return true; 792 793 // Only handle COFF and ELF for now. 794 if (!TT.isOSBinFormatELF()) 795 return false; 796 797 // If this is not an executable, don't assume anything is local. 798 const auto &CGOpts = CGM.getCodeGenOpts(); 799 llvm::Reloc::Model RM = CGOpts.RelocationModel; 800 const auto &LOpts = CGM.getLangOpts(); 801 if (RM != llvm::Reloc::Static && !LOpts.PIE) 802 return false; 803 804 // A definition cannot be preempted from an executable. 805 if (!GV->isDeclarationForLinker()) 806 return true; 807 808 // Most PIC code sequences that assume that a symbol is local cannot produce a 809 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 810 // depended, it seems worth it to handle it here. 811 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 812 return false; 813 814 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 815 llvm::Triple::ArchType Arch = TT.getArch(); 816 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 817 Arch == llvm::Triple::ppc64le) 818 return false; 819 820 // If we can use copy relocations we can assume it is local. 821 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 822 if (!Var->isThreadLocal() && 823 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 824 return true; 825 826 // If we can use a plt entry as the symbol address we can assume it 827 // is local. 828 // FIXME: This should work for PIE, but the gold linker doesn't support it. 829 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 830 return true; 831 832 // Otherwise don't assue it is local. 833 return false; 834 } 835 836 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 837 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 838 } 839 840 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 841 GlobalDecl GD) const { 842 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 843 // C++ destructors have a few C++ ABI specific special cases. 844 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 845 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 846 return; 847 } 848 setDLLImportDLLExport(GV, D); 849 } 850 851 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 852 const NamedDecl *D) const { 853 if (D && D->isExternallyVisible()) { 854 if (D->hasAttr<DLLImportAttr>()) 855 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 856 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 857 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 858 } 859 } 860 861 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 862 GlobalDecl GD) const { 863 setDLLImportDLLExport(GV, GD); 864 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 865 } 866 867 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 868 const NamedDecl *D) const { 869 setDLLImportDLLExport(GV, D); 870 setGlobalVisibilityAndLocal(GV, D); 871 } 872 873 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 874 const NamedDecl *D) const { 875 setGlobalVisibility(GV, D); 876 setDSOLocal(GV); 877 } 878 879 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 880 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 881 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 882 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 883 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 884 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 885 } 886 887 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 888 CodeGenOptions::TLSModel M) { 889 switch (M) { 890 case CodeGenOptions::GeneralDynamicTLSModel: 891 return llvm::GlobalVariable::GeneralDynamicTLSModel; 892 case CodeGenOptions::LocalDynamicTLSModel: 893 return llvm::GlobalVariable::LocalDynamicTLSModel; 894 case CodeGenOptions::InitialExecTLSModel: 895 return llvm::GlobalVariable::InitialExecTLSModel; 896 case CodeGenOptions::LocalExecTLSModel: 897 return llvm::GlobalVariable::LocalExecTLSModel; 898 } 899 llvm_unreachable("Invalid TLS model!"); 900 } 901 902 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 903 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 904 905 llvm::GlobalValue::ThreadLocalMode TLM; 906 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 907 908 // Override the TLS model if it is explicitly specified. 909 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 910 TLM = GetLLVMTLSModel(Attr->getModel()); 911 } 912 913 GV->setThreadLocalMode(TLM); 914 } 915 916 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 917 StringRef Name) { 918 const TargetInfo &Target = CGM.getTarget(); 919 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 920 } 921 922 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 923 const CPUSpecificAttr *Attr, 924 unsigned CPUIndex, 925 raw_ostream &Out) { 926 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 927 // supported. 928 if (Attr) 929 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 930 else if (CGM.getTarget().supportsIFunc()) 931 Out << ".resolver"; 932 } 933 934 static void AppendTargetMangling(const CodeGenModule &CGM, 935 const TargetAttr *Attr, raw_ostream &Out) { 936 if (Attr->isDefaultVersion()) 937 return; 938 939 Out << '.'; 940 const TargetInfo &Target = CGM.getTarget(); 941 TargetAttr::ParsedTargetAttr Info = 942 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 943 // Multiversioning doesn't allow "no-${feature}", so we can 944 // only have "+" prefixes here. 945 assert(LHS.startswith("+") && RHS.startswith("+") && 946 "Features should always have a prefix."); 947 return Target.multiVersionSortPriority(LHS.substr(1)) > 948 Target.multiVersionSortPriority(RHS.substr(1)); 949 }); 950 951 bool IsFirst = true; 952 953 if (!Info.Architecture.empty()) { 954 IsFirst = false; 955 Out << "arch_" << Info.Architecture; 956 } 957 958 for (StringRef Feat : Info.Features) { 959 if (!IsFirst) 960 Out << '_'; 961 IsFirst = false; 962 Out << Feat.substr(1); 963 } 964 } 965 966 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 967 const NamedDecl *ND, 968 bool OmitMultiVersionMangling = false) { 969 SmallString<256> Buffer; 970 llvm::raw_svector_ostream Out(Buffer); 971 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 972 if (MC.shouldMangleDeclName(ND)) { 973 llvm::raw_svector_ostream Out(Buffer); 974 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 975 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 976 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 977 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 978 else 979 MC.mangleName(ND, Out); 980 } else { 981 IdentifierInfo *II = ND->getIdentifier(); 982 assert(II && "Attempt to mangle unnamed decl."); 983 const auto *FD = dyn_cast<FunctionDecl>(ND); 984 985 if (FD && 986 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 987 llvm::raw_svector_ostream Out(Buffer); 988 Out << "__regcall3__" << II->getName(); 989 } else { 990 Out << II->getName(); 991 } 992 } 993 994 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 995 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 996 switch (FD->getMultiVersionKind()) { 997 case MultiVersionKind::CPUDispatch: 998 case MultiVersionKind::CPUSpecific: 999 AppendCPUSpecificCPUDispatchMangling(CGM, 1000 FD->getAttr<CPUSpecificAttr>(), 1001 GD.getMultiVersionIndex(), Out); 1002 break; 1003 case MultiVersionKind::Target: 1004 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1005 break; 1006 case MultiVersionKind::None: 1007 llvm_unreachable("None multiversion type isn't valid here"); 1008 } 1009 } 1010 1011 return Out.str(); 1012 } 1013 1014 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1015 const FunctionDecl *FD) { 1016 if (!FD->isMultiVersion()) 1017 return; 1018 1019 // Get the name of what this would be without the 'target' attribute. This 1020 // allows us to lookup the version that was emitted when this wasn't a 1021 // multiversion function. 1022 std::string NonTargetName = 1023 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1024 GlobalDecl OtherGD; 1025 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1026 assert(OtherGD.getCanonicalDecl() 1027 .getDecl() 1028 ->getAsFunction() 1029 ->isMultiVersion() && 1030 "Other GD should now be a multiversioned function"); 1031 // OtherFD is the version of this function that was mangled BEFORE 1032 // becoming a MultiVersion function. It potentially needs to be updated. 1033 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1034 .getDecl() 1035 ->getAsFunction() 1036 ->getMostRecentDecl(); 1037 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1038 // This is so that if the initial version was already the 'default' 1039 // version, we don't try to update it. 1040 if (OtherName != NonTargetName) { 1041 // Remove instead of erase, since others may have stored the StringRef 1042 // to this. 1043 const auto ExistingRecord = Manglings.find(NonTargetName); 1044 if (ExistingRecord != std::end(Manglings)) 1045 Manglings.remove(&(*ExistingRecord)); 1046 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1047 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1048 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1049 Entry->setName(OtherName); 1050 } 1051 } 1052 } 1053 1054 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1055 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1056 1057 // Some ABIs don't have constructor variants. Make sure that base and 1058 // complete constructors get mangled the same. 1059 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1060 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1061 CXXCtorType OrigCtorType = GD.getCtorType(); 1062 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1063 if (OrigCtorType == Ctor_Base) 1064 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1065 } 1066 } 1067 1068 auto FoundName = MangledDeclNames.find(CanonicalGD); 1069 if (FoundName != MangledDeclNames.end()) 1070 return FoundName->second; 1071 1072 // Keep the first result in the case of a mangling collision. 1073 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1074 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1075 1076 // Postfix kernel stub names with .stub to differentiate them from kernel 1077 // names in device binaries. This is to facilitate the debugger to find 1078 // the correct symbols for kernels in the device binary. 1079 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) 1080 if (getLangOpts().HIP && !getLangOpts().CUDAIsDevice && 1081 FD->hasAttr<CUDAGlobalAttr>()) 1082 MangledName = MangledName + ".stub"; 1083 1084 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1085 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1086 } 1087 1088 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1089 const BlockDecl *BD) { 1090 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1091 const Decl *D = GD.getDecl(); 1092 1093 SmallString<256> Buffer; 1094 llvm::raw_svector_ostream Out(Buffer); 1095 if (!D) 1096 MangleCtx.mangleGlobalBlock(BD, 1097 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1098 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1099 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1100 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1101 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1102 else 1103 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1104 1105 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1106 return Result.first->first(); 1107 } 1108 1109 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1110 return getModule().getNamedValue(Name); 1111 } 1112 1113 /// AddGlobalCtor - Add a function to the list that will be called before 1114 /// main() runs. 1115 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1116 llvm::Constant *AssociatedData) { 1117 // FIXME: Type coercion of void()* types. 1118 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1119 } 1120 1121 /// AddGlobalDtor - Add a function to the list that will be called 1122 /// when the module is unloaded. 1123 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1124 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1125 DtorsUsingAtExit[Priority].push_back(Dtor); 1126 return; 1127 } 1128 1129 // FIXME: Type coercion of void()* types. 1130 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1131 } 1132 1133 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1134 if (Fns.empty()) return; 1135 1136 // Ctor function type is void()*. 1137 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1138 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1139 TheModule.getDataLayout().getProgramAddressSpace()); 1140 1141 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1142 llvm::StructType *CtorStructTy = llvm::StructType::get( 1143 Int32Ty, CtorPFTy, VoidPtrTy); 1144 1145 // Construct the constructor and destructor arrays. 1146 ConstantInitBuilder builder(*this); 1147 auto ctors = builder.beginArray(CtorStructTy); 1148 for (const auto &I : Fns) { 1149 auto ctor = ctors.beginStruct(CtorStructTy); 1150 ctor.addInt(Int32Ty, I.Priority); 1151 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1152 if (I.AssociatedData) 1153 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1154 else 1155 ctor.addNullPointer(VoidPtrTy); 1156 ctor.finishAndAddTo(ctors); 1157 } 1158 1159 auto list = 1160 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1161 /*constant*/ false, 1162 llvm::GlobalValue::AppendingLinkage); 1163 1164 // The LTO linker doesn't seem to like it when we set an alignment 1165 // on appending variables. Take it off as a workaround. 1166 list->setAlignment(0); 1167 1168 Fns.clear(); 1169 } 1170 1171 llvm::GlobalValue::LinkageTypes 1172 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1173 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1174 1175 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1176 1177 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1178 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1179 1180 if (isa<CXXConstructorDecl>(D) && 1181 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1182 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1183 // Our approach to inheriting constructors is fundamentally different from 1184 // that used by the MS ABI, so keep our inheriting constructor thunks 1185 // internal rather than trying to pick an unambiguous mangling for them. 1186 return llvm::GlobalValue::InternalLinkage; 1187 } 1188 1189 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1190 } 1191 1192 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1193 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1194 if (!MDS) return nullptr; 1195 1196 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1197 } 1198 1199 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1200 const CGFunctionInfo &Info, 1201 llvm::Function *F) { 1202 unsigned CallingConv; 1203 llvm::AttributeList PAL; 1204 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1205 F->setAttributes(PAL); 1206 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1207 } 1208 1209 static void removeImageAccessQualifier(std::string& TyName) { 1210 std::string ReadOnlyQual("__read_only"); 1211 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1212 if (ReadOnlyPos != std::string::npos) 1213 // "+ 1" for the space after access qualifier. 1214 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1215 else { 1216 std::string WriteOnlyQual("__write_only"); 1217 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1218 if (WriteOnlyPos != std::string::npos) 1219 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1220 else { 1221 std::string ReadWriteQual("__read_write"); 1222 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1223 if (ReadWritePos != std::string::npos) 1224 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1225 } 1226 } 1227 } 1228 1229 // Returns the address space id that should be produced to the 1230 // kernel_arg_addr_space metadata. This is always fixed to the ids 1231 // as specified in the SPIR 2.0 specification in order to differentiate 1232 // for example in clGetKernelArgInfo() implementation between the address 1233 // spaces with targets without unique mapping to the OpenCL address spaces 1234 // (basically all single AS CPUs). 1235 static unsigned ArgInfoAddressSpace(LangAS AS) { 1236 switch (AS) { 1237 case LangAS::opencl_global: return 1; 1238 case LangAS::opencl_constant: return 2; 1239 case LangAS::opencl_local: return 3; 1240 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 1241 default: 1242 return 0; // Assume private. 1243 } 1244 } 1245 1246 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1247 const FunctionDecl *FD, 1248 CodeGenFunction *CGF) { 1249 assert(((FD && CGF) || (!FD && !CGF)) && 1250 "Incorrect use - FD and CGF should either be both null or not!"); 1251 // Create MDNodes that represent the kernel arg metadata. 1252 // Each MDNode is a list in the form of "key", N number of values which is 1253 // the same number of values as their are kernel arguments. 1254 1255 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1256 1257 // MDNode for the kernel argument address space qualifiers. 1258 SmallVector<llvm::Metadata *, 8> addressQuals; 1259 1260 // MDNode for the kernel argument access qualifiers (images only). 1261 SmallVector<llvm::Metadata *, 8> accessQuals; 1262 1263 // MDNode for the kernel argument type names. 1264 SmallVector<llvm::Metadata *, 8> argTypeNames; 1265 1266 // MDNode for the kernel argument base type names. 1267 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1268 1269 // MDNode for the kernel argument type qualifiers. 1270 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1271 1272 // MDNode for the kernel argument names. 1273 SmallVector<llvm::Metadata *, 8> argNames; 1274 1275 if (FD && CGF) 1276 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1277 const ParmVarDecl *parm = FD->getParamDecl(i); 1278 QualType ty = parm->getType(); 1279 std::string typeQuals; 1280 1281 if (ty->isPointerType()) { 1282 QualType pointeeTy = ty->getPointeeType(); 1283 1284 // Get address qualifier. 1285 addressQuals.push_back( 1286 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1287 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1288 1289 // Get argument type name. 1290 std::string typeName = 1291 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1292 1293 // Turn "unsigned type" to "utype" 1294 std::string::size_type pos = typeName.find("unsigned"); 1295 if (pointeeTy.isCanonical() && pos != std::string::npos) 1296 typeName.erase(pos + 1, 8); 1297 1298 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1299 1300 std::string baseTypeName = 1301 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1302 Policy) + 1303 "*"; 1304 1305 // Turn "unsigned type" to "utype" 1306 pos = baseTypeName.find("unsigned"); 1307 if (pos != std::string::npos) 1308 baseTypeName.erase(pos + 1, 8); 1309 1310 argBaseTypeNames.push_back( 1311 llvm::MDString::get(VMContext, baseTypeName)); 1312 1313 // Get argument type qualifiers: 1314 if (ty.isRestrictQualified()) 1315 typeQuals = "restrict"; 1316 if (pointeeTy.isConstQualified() || 1317 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1318 typeQuals += typeQuals.empty() ? "const" : " const"; 1319 if (pointeeTy.isVolatileQualified()) 1320 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1321 } else { 1322 uint32_t AddrSpc = 0; 1323 bool isPipe = ty->isPipeType(); 1324 if (ty->isImageType() || isPipe) 1325 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1326 1327 addressQuals.push_back( 1328 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1329 1330 // Get argument type name. 1331 std::string typeName; 1332 if (isPipe) 1333 typeName = ty.getCanonicalType() 1334 ->getAs<PipeType>() 1335 ->getElementType() 1336 .getAsString(Policy); 1337 else 1338 typeName = ty.getUnqualifiedType().getAsString(Policy); 1339 1340 // Turn "unsigned type" to "utype" 1341 std::string::size_type pos = typeName.find("unsigned"); 1342 if (ty.isCanonical() && pos != std::string::npos) 1343 typeName.erase(pos + 1, 8); 1344 1345 std::string baseTypeName; 1346 if (isPipe) 1347 baseTypeName = ty.getCanonicalType() 1348 ->getAs<PipeType>() 1349 ->getElementType() 1350 .getCanonicalType() 1351 .getAsString(Policy); 1352 else 1353 baseTypeName = 1354 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1355 1356 // Remove access qualifiers on images 1357 // (as they are inseparable from type in clang implementation, 1358 // but OpenCL spec provides a special query to get access qualifier 1359 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1360 if (ty->isImageType()) { 1361 removeImageAccessQualifier(typeName); 1362 removeImageAccessQualifier(baseTypeName); 1363 } 1364 1365 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1366 1367 // Turn "unsigned type" to "utype" 1368 pos = baseTypeName.find("unsigned"); 1369 if (pos != std::string::npos) 1370 baseTypeName.erase(pos + 1, 8); 1371 1372 argBaseTypeNames.push_back( 1373 llvm::MDString::get(VMContext, baseTypeName)); 1374 1375 if (isPipe) 1376 typeQuals = "pipe"; 1377 } 1378 1379 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1380 1381 // Get image and pipe access qualifier: 1382 if (ty->isImageType() || ty->isPipeType()) { 1383 const Decl *PDecl = parm; 1384 if (auto *TD = dyn_cast<TypedefType>(ty)) 1385 PDecl = TD->getDecl(); 1386 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1387 if (A && A->isWriteOnly()) 1388 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1389 else if (A && A->isReadWrite()) 1390 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1391 else 1392 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1393 } else 1394 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1395 1396 // Get argument name. 1397 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1398 } 1399 1400 Fn->setMetadata("kernel_arg_addr_space", 1401 llvm::MDNode::get(VMContext, addressQuals)); 1402 Fn->setMetadata("kernel_arg_access_qual", 1403 llvm::MDNode::get(VMContext, accessQuals)); 1404 Fn->setMetadata("kernel_arg_type", 1405 llvm::MDNode::get(VMContext, argTypeNames)); 1406 Fn->setMetadata("kernel_arg_base_type", 1407 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1408 Fn->setMetadata("kernel_arg_type_qual", 1409 llvm::MDNode::get(VMContext, argTypeQuals)); 1410 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1411 Fn->setMetadata("kernel_arg_name", 1412 llvm::MDNode::get(VMContext, argNames)); 1413 } 1414 1415 /// Determines whether the language options require us to model 1416 /// unwind exceptions. We treat -fexceptions as mandating this 1417 /// except under the fragile ObjC ABI with only ObjC exceptions 1418 /// enabled. This means, for example, that C with -fexceptions 1419 /// enables this. 1420 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1421 // If exceptions are completely disabled, obviously this is false. 1422 if (!LangOpts.Exceptions) return false; 1423 1424 // If C++ exceptions are enabled, this is true. 1425 if (LangOpts.CXXExceptions) return true; 1426 1427 // If ObjC exceptions are enabled, this depends on the ABI. 1428 if (LangOpts.ObjCExceptions) { 1429 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1430 } 1431 1432 return true; 1433 } 1434 1435 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1436 const CXXMethodDecl *MD) { 1437 // Check that the type metadata can ever actually be used by a call. 1438 if (!CGM.getCodeGenOpts().LTOUnit || 1439 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1440 return false; 1441 1442 // Only functions whose address can be taken with a member function pointer 1443 // need this sort of type metadata. 1444 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1445 !isa<CXXDestructorDecl>(MD); 1446 } 1447 1448 std::vector<const CXXRecordDecl *> 1449 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1450 llvm::SetVector<const CXXRecordDecl *> MostBases; 1451 1452 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1453 CollectMostBases = [&](const CXXRecordDecl *RD) { 1454 if (RD->getNumBases() == 0) 1455 MostBases.insert(RD); 1456 for (const CXXBaseSpecifier &B : RD->bases()) 1457 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1458 }; 1459 CollectMostBases(RD); 1460 return MostBases.takeVector(); 1461 } 1462 1463 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1464 llvm::Function *F) { 1465 llvm::AttrBuilder B; 1466 1467 if (CodeGenOpts.UnwindTables) 1468 B.addAttribute(llvm::Attribute::UWTable); 1469 1470 if (!hasUnwindExceptions(LangOpts)) 1471 B.addAttribute(llvm::Attribute::NoUnwind); 1472 1473 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1474 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1475 B.addAttribute(llvm::Attribute::StackProtect); 1476 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1477 B.addAttribute(llvm::Attribute::StackProtectStrong); 1478 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1479 B.addAttribute(llvm::Attribute::StackProtectReq); 1480 } 1481 1482 if (!D) { 1483 // If we don't have a declaration to control inlining, the function isn't 1484 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1485 // disabled, mark the function as noinline. 1486 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1487 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1488 B.addAttribute(llvm::Attribute::NoInline); 1489 1490 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1491 return; 1492 } 1493 1494 // Track whether we need to add the optnone LLVM attribute, 1495 // starting with the default for this optimization level. 1496 bool ShouldAddOptNone = 1497 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1498 // We can't add optnone in the following cases, it won't pass the verifier. 1499 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1500 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1501 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1502 1503 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1504 B.addAttribute(llvm::Attribute::OptimizeNone); 1505 1506 // OptimizeNone implies noinline; we should not be inlining such functions. 1507 B.addAttribute(llvm::Attribute::NoInline); 1508 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1509 "OptimizeNone and AlwaysInline on same function!"); 1510 1511 // We still need to handle naked functions even though optnone subsumes 1512 // much of their semantics. 1513 if (D->hasAttr<NakedAttr>()) 1514 B.addAttribute(llvm::Attribute::Naked); 1515 1516 // OptimizeNone wins over OptimizeForSize and MinSize. 1517 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1518 F->removeFnAttr(llvm::Attribute::MinSize); 1519 } else if (D->hasAttr<NakedAttr>()) { 1520 // Naked implies noinline: we should not be inlining such functions. 1521 B.addAttribute(llvm::Attribute::Naked); 1522 B.addAttribute(llvm::Attribute::NoInline); 1523 } else if (D->hasAttr<NoDuplicateAttr>()) { 1524 B.addAttribute(llvm::Attribute::NoDuplicate); 1525 } else if (D->hasAttr<NoInlineAttr>()) { 1526 B.addAttribute(llvm::Attribute::NoInline); 1527 } else if (D->hasAttr<AlwaysInlineAttr>() && 1528 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1529 // (noinline wins over always_inline, and we can't specify both in IR) 1530 B.addAttribute(llvm::Attribute::AlwaysInline); 1531 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1532 // If we're not inlining, then force everything that isn't always_inline to 1533 // carry an explicit noinline attribute. 1534 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1535 B.addAttribute(llvm::Attribute::NoInline); 1536 } else { 1537 // Otherwise, propagate the inline hint attribute and potentially use its 1538 // absence to mark things as noinline. 1539 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1540 // Search function and template pattern redeclarations for inline. 1541 auto CheckForInline = [](const FunctionDecl *FD) { 1542 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1543 return Redecl->isInlineSpecified(); 1544 }; 1545 if (any_of(FD->redecls(), CheckRedeclForInline)) 1546 return true; 1547 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1548 if (!Pattern) 1549 return false; 1550 return any_of(Pattern->redecls(), CheckRedeclForInline); 1551 }; 1552 if (CheckForInline(FD)) { 1553 B.addAttribute(llvm::Attribute::InlineHint); 1554 } else if (CodeGenOpts.getInlining() == 1555 CodeGenOptions::OnlyHintInlining && 1556 !FD->isInlined() && 1557 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1558 B.addAttribute(llvm::Attribute::NoInline); 1559 } 1560 } 1561 } 1562 1563 // Add other optimization related attributes if we are optimizing this 1564 // function. 1565 if (!D->hasAttr<OptimizeNoneAttr>()) { 1566 if (D->hasAttr<ColdAttr>()) { 1567 if (!ShouldAddOptNone) 1568 B.addAttribute(llvm::Attribute::OptimizeForSize); 1569 B.addAttribute(llvm::Attribute::Cold); 1570 } 1571 1572 if (D->hasAttr<MinSizeAttr>()) 1573 B.addAttribute(llvm::Attribute::MinSize); 1574 } 1575 1576 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1577 1578 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1579 if (alignment) 1580 F->setAlignment(alignment); 1581 1582 if (!D->hasAttr<AlignedAttr>()) 1583 if (LangOpts.FunctionAlignment) 1584 F->setAlignment(1 << LangOpts.FunctionAlignment); 1585 1586 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1587 // reserve a bit for differentiating between virtual and non-virtual member 1588 // functions. If the current target's C++ ABI requires this and this is a 1589 // member function, set its alignment accordingly. 1590 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1591 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1592 F->setAlignment(2); 1593 } 1594 1595 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1596 if (CodeGenOpts.SanitizeCfiCrossDso) 1597 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1598 CreateFunctionTypeMetadataForIcall(FD, F); 1599 1600 // Emit type metadata on member functions for member function pointer checks. 1601 // These are only ever necessary on definitions; we're guaranteed that the 1602 // definition will be present in the LTO unit as a result of LTO visibility. 1603 auto *MD = dyn_cast<CXXMethodDecl>(D); 1604 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1605 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1606 llvm::Metadata *Id = 1607 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1608 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1609 F->addTypeMetadata(0, Id); 1610 } 1611 } 1612 } 1613 1614 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1615 const Decl *D = GD.getDecl(); 1616 if (dyn_cast_or_null<NamedDecl>(D)) 1617 setGVProperties(GV, GD); 1618 else 1619 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1620 1621 if (D && D->hasAttr<UsedAttr>()) 1622 addUsedGlobal(GV); 1623 1624 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1625 const auto *VD = cast<VarDecl>(D); 1626 if (VD->getType().isConstQualified() && 1627 VD->getStorageDuration() == SD_Static) 1628 addUsedGlobal(GV); 1629 } 1630 } 1631 1632 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1633 llvm::AttrBuilder &Attrs) { 1634 // Add target-cpu and target-features attributes to functions. If 1635 // we have a decl for the function and it has a target attribute then 1636 // parse that and add it to the feature set. 1637 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1638 std::vector<std::string> Features; 1639 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1640 FD = FD ? FD->getMostRecentDecl() : FD; 1641 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1642 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1643 bool AddedAttr = false; 1644 if (TD || SD) { 1645 llvm::StringMap<bool> FeatureMap; 1646 getFunctionFeatureMap(FeatureMap, GD); 1647 1648 // Produce the canonical string for this set of features. 1649 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1650 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1651 1652 // Now add the target-cpu and target-features to the function. 1653 // While we populated the feature map above, we still need to 1654 // get and parse the target attribute so we can get the cpu for 1655 // the function. 1656 if (TD) { 1657 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1658 if (ParsedAttr.Architecture != "" && 1659 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1660 TargetCPU = ParsedAttr.Architecture; 1661 } 1662 } else { 1663 // Otherwise just add the existing target cpu and target features to the 1664 // function. 1665 Features = getTarget().getTargetOpts().Features; 1666 } 1667 1668 if (TargetCPU != "") { 1669 Attrs.addAttribute("target-cpu", TargetCPU); 1670 AddedAttr = true; 1671 } 1672 if (!Features.empty()) { 1673 llvm::sort(Features); 1674 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1675 AddedAttr = true; 1676 } 1677 1678 return AddedAttr; 1679 } 1680 1681 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1682 llvm::GlobalObject *GO) { 1683 const Decl *D = GD.getDecl(); 1684 SetCommonAttributes(GD, GO); 1685 1686 if (D) { 1687 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1688 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1689 GV->addAttribute("bss-section", SA->getName()); 1690 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1691 GV->addAttribute("data-section", SA->getName()); 1692 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1693 GV->addAttribute("rodata-section", SA->getName()); 1694 } 1695 1696 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1697 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1698 if (!D->getAttr<SectionAttr>()) 1699 F->addFnAttr("implicit-section-name", SA->getName()); 1700 1701 llvm::AttrBuilder Attrs; 1702 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1703 // We know that GetCPUAndFeaturesAttributes will always have the 1704 // newest set, since it has the newest possible FunctionDecl, so the 1705 // new ones should replace the old. 1706 F->removeFnAttr("target-cpu"); 1707 F->removeFnAttr("target-features"); 1708 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1709 } 1710 } 1711 1712 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1713 GO->setSection(CSA->getName()); 1714 else if (const auto *SA = D->getAttr<SectionAttr>()) 1715 GO->setSection(SA->getName()); 1716 } 1717 1718 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1719 } 1720 1721 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1722 llvm::Function *F, 1723 const CGFunctionInfo &FI) { 1724 const Decl *D = GD.getDecl(); 1725 SetLLVMFunctionAttributes(GD, FI, F); 1726 SetLLVMFunctionAttributesForDefinition(D, F); 1727 1728 F->setLinkage(llvm::Function::InternalLinkage); 1729 1730 setNonAliasAttributes(GD, F); 1731 } 1732 1733 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1734 // Set linkage and visibility in case we never see a definition. 1735 LinkageInfo LV = ND->getLinkageAndVisibility(); 1736 // Don't set internal linkage on declarations. 1737 // "extern_weak" is overloaded in LLVM; we probably should have 1738 // separate linkage types for this. 1739 if (isExternallyVisible(LV.getLinkage()) && 1740 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1741 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1742 } 1743 1744 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1745 llvm::Function *F) { 1746 // Only if we are checking indirect calls. 1747 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1748 return; 1749 1750 // Non-static class methods are handled via vtable or member function pointer 1751 // checks elsewhere. 1752 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1753 return; 1754 1755 // Additionally, if building with cross-DSO support... 1756 if (CodeGenOpts.SanitizeCfiCrossDso) { 1757 // Skip available_externally functions. They won't be codegen'ed in the 1758 // current module anyway. 1759 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1760 return; 1761 } 1762 1763 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1764 F->addTypeMetadata(0, MD); 1765 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1766 1767 // Emit a hash-based bit set entry for cross-DSO calls. 1768 if (CodeGenOpts.SanitizeCfiCrossDso) 1769 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1770 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1771 } 1772 1773 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1774 bool IsIncompleteFunction, 1775 bool IsThunk) { 1776 1777 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1778 // If this is an intrinsic function, set the function's attributes 1779 // to the intrinsic's attributes. 1780 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1781 return; 1782 } 1783 1784 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1785 1786 if (!IsIncompleteFunction) 1787 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1788 1789 // Add the Returned attribute for "this", except for iOS 5 and earlier 1790 // where substantial code, including the libstdc++ dylib, was compiled with 1791 // GCC and does not actually return "this". 1792 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1793 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1794 assert(!F->arg_empty() && 1795 F->arg_begin()->getType() 1796 ->canLosslesslyBitCastTo(F->getReturnType()) && 1797 "unexpected this return"); 1798 F->addAttribute(1, llvm::Attribute::Returned); 1799 } 1800 1801 // Only a few attributes are set on declarations; these may later be 1802 // overridden by a definition. 1803 1804 setLinkageForGV(F, FD); 1805 setGVProperties(F, FD); 1806 1807 // Setup target-specific attributes. 1808 if (!IsIncompleteFunction && F->isDeclaration()) 1809 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1810 1811 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1812 F->setSection(CSA->getName()); 1813 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1814 F->setSection(SA->getName()); 1815 1816 if (FD->isReplaceableGlobalAllocationFunction()) { 1817 // A replaceable global allocation function does not act like a builtin by 1818 // default, only if it is invoked by a new-expression or delete-expression. 1819 F->addAttribute(llvm::AttributeList::FunctionIndex, 1820 llvm::Attribute::NoBuiltin); 1821 1822 // A sane operator new returns a non-aliasing pointer. 1823 // FIXME: Also add NonNull attribute to the return value 1824 // for the non-nothrow forms? 1825 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1826 if (getCodeGenOpts().AssumeSaneOperatorNew && 1827 (Kind == OO_New || Kind == OO_Array_New)) 1828 F->addAttribute(llvm::AttributeList::ReturnIndex, 1829 llvm::Attribute::NoAlias); 1830 } 1831 1832 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1833 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1834 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1835 if (MD->isVirtual()) 1836 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1837 1838 // Don't emit entries for function declarations in the cross-DSO mode. This 1839 // is handled with better precision by the receiving DSO. 1840 if (!CodeGenOpts.SanitizeCfiCrossDso) 1841 CreateFunctionTypeMetadataForIcall(FD, F); 1842 1843 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1844 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1845 1846 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1847 // Annotate the callback behavior as metadata: 1848 // - The callback callee (as argument number). 1849 // - The callback payloads (as argument numbers). 1850 llvm::LLVMContext &Ctx = F->getContext(); 1851 llvm::MDBuilder MDB(Ctx); 1852 1853 // The payload indices are all but the first one in the encoding. The first 1854 // identifies the callback callee. 1855 int CalleeIdx = *CB->encoding_begin(); 1856 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1857 F->addMetadata(llvm::LLVMContext::MD_callback, 1858 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1859 CalleeIdx, PayloadIndices, 1860 /* VarArgsArePassed */ false)})); 1861 } 1862 } 1863 1864 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1865 assert(!GV->isDeclaration() && 1866 "Only globals with definition can force usage."); 1867 LLVMUsed.emplace_back(GV); 1868 } 1869 1870 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1871 assert(!GV->isDeclaration() && 1872 "Only globals with definition can force usage."); 1873 LLVMCompilerUsed.emplace_back(GV); 1874 } 1875 1876 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1877 std::vector<llvm::WeakTrackingVH> &List) { 1878 // Don't create llvm.used if there is no need. 1879 if (List.empty()) 1880 return; 1881 1882 // Convert List to what ConstantArray needs. 1883 SmallVector<llvm::Constant*, 8> UsedArray; 1884 UsedArray.resize(List.size()); 1885 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1886 UsedArray[i] = 1887 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1888 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1889 } 1890 1891 if (UsedArray.empty()) 1892 return; 1893 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1894 1895 auto *GV = new llvm::GlobalVariable( 1896 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1897 llvm::ConstantArray::get(ATy, UsedArray), Name); 1898 1899 GV->setSection("llvm.metadata"); 1900 } 1901 1902 void CodeGenModule::emitLLVMUsed() { 1903 emitUsed(*this, "llvm.used", LLVMUsed); 1904 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1905 } 1906 1907 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1908 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1909 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1910 } 1911 1912 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1913 llvm::SmallString<32> Opt; 1914 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1915 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1916 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1917 } 1918 1919 void CodeGenModule::AddDependentLib(StringRef Lib) { 1920 auto &C = getLLVMContext(); 1921 if (getTarget().getTriple().isOSBinFormatELF()) { 1922 ELFDependentLibraries.push_back( 1923 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 1924 return; 1925 } 1926 1927 llvm::SmallString<24> Opt; 1928 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1929 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1930 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 1931 } 1932 1933 /// Add link options implied by the given module, including modules 1934 /// it depends on, using a postorder walk. 1935 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1936 SmallVectorImpl<llvm::MDNode *> &Metadata, 1937 llvm::SmallPtrSet<Module *, 16> &Visited) { 1938 // Import this module's parent. 1939 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1940 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1941 } 1942 1943 // Import this module's dependencies. 1944 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1945 if (Visited.insert(Mod->Imports[I - 1]).second) 1946 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1947 } 1948 1949 // Add linker options to link against the libraries/frameworks 1950 // described by this module. 1951 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1952 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 1953 1954 // For modules that use export_as for linking, use that module 1955 // name instead. 1956 if (Mod->UseExportAsModuleLinkName) 1957 return; 1958 1959 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1960 // Link against a framework. Frameworks are currently Darwin only, so we 1961 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1962 if (Mod->LinkLibraries[I-1].IsFramework) { 1963 llvm::Metadata *Args[2] = { 1964 llvm::MDString::get(Context, "-framework"), 1965 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1966 1967 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1968 continue; 1969 } 1970 1971 // Link against a library. 1972 if (IsELF) { 1973 llvm::Metadata *Args[2] = { 1974 llvm::MDString::get(Context, "lib"), 1975 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 1976 }; 1977 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1978 } else { 1979 llvm::SmallString<24> Opt; 1980 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1981 Mod->LinkLibraries[I - 1].Library, Opt); 1982 auto *OptString = llvm::MDString::get(Context, Opt); 1983 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1984 } 1985 } 1986 } 1987 1988 void CodeGenModule::EmitModuleLinkOptions() { 1989 // Collect the set of all of the modules we want to visit to emit link 1990 // options, which is essentially the imported modules and all of their 1991 // non-explicit child modules. 1992 llvm::SetVector<clang::Module *> LinkModules; 1993 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1994 SmallVector<clang::Module *, 16> Stack; 1995 1996 // Seed the stack with imported modules. 1997 for (Module *M : ImportedModules) { 1998 // Do not add any link flags when an implementation TU of a module imports 1999 // a header of that same module. 2000 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2001 !getLangOpts().isCompilingModule()) 2002 continue; 2003 if (Visited.insert(M).second) 2004 Stack.push_back(M); 2005 } 2006 2007 // Find all of the modules to import, making a little effort to prune 2008 // non-leaf modules. 2009 while (!Stack.empty()) { 2010 clang::Module *Mod = Stack.pop_back_val(); 2011 2012 bool AnyChildren = false; 2013 2014 // Visit the submodules of this module. 2015 for (const auto &SM : Mod->submodules()) { 2016 // Skip explicit children; they need to be explicitly imported to be 2017 // linked against. 2018 if (SM->IsExplicit) 2019 continue; 2020 2021 if (Visited.insert(SM).second) { 2022 Stack.push_back(SM); 2023 AnyChildren = true; 2024 } 2025 } 2026 2027 // We didn't find any children, so add this module to the list of 2028 // modules to link against. 2029 if (!AnyChildren) { 2030 LinkModules.insert(Mod); 2031 } 2032 } 2033 2034 // Add link options for all of the imported modules in reverse topological 2035 // order. We don't do anything to try to order import link flags with respect 2036 // to linker options inserted by things like #pragma comment(). 2037 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2038 Visited.clear(); 2039 for (Module *M : LinkModules) 2040 if (Visited.insert(M).second) 2041 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2042 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2043 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2044 2045 // Add the linker options metadata flag. 2046 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2047 for (auto *MD : LinkerOptionsMetadata) 2048 NMD->addOperand(MD); 2049 } 2050 2051 void CodeGenModule::EmitDeferred() { 2052 // Emit deferred declare target declarations. 2053 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2054 getOpenMPRuntime().emitDeferredTargetDecls(); 2055 2056 // Emit code for any potentially referenced deferred decls. Since a 2057 // previously unused static decl may become used during the generation of code 2058 // for a static function, iterate until no changes are made. 2059 2060 if (!DeferredVTables.empty()) { 2061 EmitDeferredVTables(); 2062 2063 // Emitting a vtable doesn't directly cause more vtables to 2064 // become deferred, although it can cause functions to be 2065 // emitted that then need those vtables. 2066 assert(DeferredVTables.empty()); 2067 } 2068 2069 // Stop if we're out of both deferred vtables and deferred declarations. 2070 if (DeferredDeclsToEmit.empty()) 2071 return; 2072 2073 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2074 // work, it will not interfere with this. 2075 std::vector<GlobalDecl> CurDeclsToEmit; 2076 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2077 2078 for (GlobalDecl &D : CurDeclsToEmit) { 2079 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2080 // to get GlobalValue with exactly the type we need, not something that 2081 // might had been created for another decl with the same mangled name but 2082 // different type. 2083 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2084 GetAddrOfGlobal(D, ForDefinition)); 2085 2086 // In case of different address spaces, we may still get a cast, even with 2087 // IsForDefinition equal to true. Query mangled names table to get 2088 // GlobalValue. 2089 if (!GV) 2090 GV = GetGlobalValue(getMangledName(D)); 2091 2092 // Make sure GetGlobalValue returned non-null. 2093 assert(GV); 2094 2095 // Check to see if we've already emitted this. This is necessary 2096 // for a couple of reasons: first, decls can end up in the 2097 // deferred-decls queue multiple times, and second, decls can end 2098 // up with definitions in unusual ways (e.g. by an extern inline 2099 // function acquiring a strong function redefinition). Just 2100 // ignore these cases. 2101 if (!GV->isDeclaration()) 2102 continue; 2103 2104 // Otherwise, emit the definition and move on to the next one. 2105 EmitGlobalDefinition(D, GV); 2106 2107 // If we found out that we need to emit more decls, do that recursively. 2108 // This has the advantage that the decls are emitted in a DFS and related 2109 // ones are close together, which is convenient for testing. 2110 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2111 EmitDeferred(); 2112 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2113 } 2114 } 2115 } 2116 2117 void CodeGenModule::EmitVTablesOpportunistically() { 2118 // Try to emit external vtables as available_externally if they have emitted 2119 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2120 // is not allowed to create new references to things that need to be emitted 2121 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2122 2123 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2124 && "Only emit opportunistic vtables with optimizations"); 2125 2126 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2127 assert(getVTables().isVTableExternal(RD) && 2128 "This queue should only contain external vtables"); 2129 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2130 VTables.GenerateClassData(RD); 2131 } 2132 OpportunisticVTables.clear(); 2133 } 2134 2135 void CodeGenModule::EmitGlobalAnnotations() { 2136 if (Annotations.empty()) 2137 return; 2138 2139 // Create a new global variable for the ConstantStruct in the Module. 2140 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2141 Annotations[0]->getType(), Annotations.size()), Annotations); 2142 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2143 llvm::GlobalValue::AppendingLinkage, 2144 Array, "llvm.global.annotations"); 2145 gv->setSection(AnnotationSection); 2146 } 2147 2148 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2149 llvm::Constant *&AStr = AnnotationStrings[Str]; 2150 if (AStr) 2151 return AStr; 2152 2153 // Not found yet, create a new global. 2154 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2155 auto *gv = 2156 new llvm::GlobalVariable(getModule(), s->getType(), true, 2157 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2158 gv->setSection(AnnotationSection); 2159 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2160 AStr = gv; 2161 return gv; 2162 } 2163 2164 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2165 SourceManager &SM = getContext().getSourceManager(); 2166 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2167 if (PLoc.isValid()) 2168 return EmitAnnotationString(PLoc.getFilename()); 2169 return EmitAnnotationString(SM.getBufferName(Loc)); 2170 } 2171 2172 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2173 SourceManager &SM = getContext().getSourceManager(); 2174 PresumedLoc PLoc = SM.getPresumedLoc(L); 2175 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2176 SM.getExpansionLineNumber(L); 2177 return llvm::ConstantInt::get(Int32Ty, LineNo); 2178 } 2179 2180 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2181 const AnnotateAttr *AA, 2182 SourceLocation L) { 2183 // Get the globals for file name, annotation, and the line number. 2184 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2185 *UnitGV = EmitAnnotationUnit(L), 2186 *LineNoCst = EmitAnnotationLineNo(L); 2187 2188 // Create the ConstantStruct for the global annotation. 2189 llvm::Constant *Fields[4] = { 2190 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 2191 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2192 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2193 LineNoCst 2194 }; 2195 return llvm::ConstantStruct::getAnon(Fields); 2196 } 2197 2198 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2199 llvm::GlobalValue *GV) { 2200 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2201 // Get the struct elements for these annotations. 2202 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2203 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2204 } 2205 2206 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2207 llvm::Function *Fn, 2208 SourceLocation Loc) const { 2209 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2210 // Blacklist by function name. 2211 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2212 return true; 2213 // Blacklist by location. 2214 if (Loc.isValid()) 2215 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2216 // If location is unknown, this may be a compiler-generated function. Assume 2217 // it's located in the main file. 2218 auto &SM = Context.getSourceManager(); 2219 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2220 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2221 } 2222 return false; 2223 } 2224 2225 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2226 SourceLocation Loc, QualType Ty, 2227 StringRef Category) const { 2228 // For now globals can be blacklisted only in ASan and KASan. 2229 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 2230 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2231 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 2232 if (!EnabledAsanMask) 2233 return false; 2234 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2235 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2236 return true; 2237 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2238 return true; 2239 // Check global type. 2240 if (!Ty.isNull()) { 2241 // Drill down the array types: if global variable of a fixed type is 2242 // blacklisted, we also don't instrument arrays of them. 2243 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2244 Ty = AT->getElementType(); 2245 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2246 // We allow to blacklist only record types (classes, structs etc.) 2247 if (Ty->isRecordType()) { 2248 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2249 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2250 return true; 2251 } 2252 } 2253 return false; 2254 } 2255 2256 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2257 StringRef Category) const { 2258 const auto &XRayFilter = getContext().getXRayFilter(); 2259 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2260 auto Attr = ImbueAttr::NONE; 2261 if (Loc.isValid()) 2262 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2263 if (Attr == ImbueAttr::NONE) 2264 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2265 switch (Attr) { 2266 case ImbueAttr::NONE: 2267 return false; 2268 case ImbueAttr::ALWAYS: 2269 Fn->addFnAttr("function-instrument", "xray-always"); 2270 break; 2271 case ImbueAttr::ALWAYS_ARG1: 2272 Fn->addFnAttr("function-instrument", "xray-always"); 2273 Fn->addFnAttr("xray-log-args", "1"); 2274 break; 2275 case ImbueAttr::NEVER: 2276 Fn->addFnAttr("function-instrument", "xray-never"); 2277 break; 2278 } 2279 return true; 2280 } 2281 2282 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2283 // Never defer when EmitAllDecls is specified. 2284 if (LangOpts.EmitAllDecls) 2285 return true; 2286 2287 if (CodeGenOpts.KeepStaticConsts) { 2288 const auto *VD = dyn_cast<VarDecl>(Global); 2289 if (VD && VD->getType().isConstQualified() && 2290 VD->getStorageDuration() == SD_Static) 2291 return true; 2292 } 2293 2294 return getContext().DeclMustBeEmitted(Global); 2295 } 2296 2297 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2298 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 2299 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2300 // Implicit template instantiations may change linkage if they are later 2301 // explicitly instantiated, so they should not be emitted eagerly. 2302 return false; 2303 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2304 if (Context.getInlineVariableDefinitionKind(VD) == 2305 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2306 // A definition of an inline constexpr static data member may change 2307 // linkage later if it's redeclared outside the class. 2308 return false; 2309 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2310 // codegen for global variables, because they may be marked as threadprivate. 2311 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2312 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2313 !isTypeConstant(Global->getType(), false) && 2314 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2315 return false; 2316 2317 return true; 2318 } 2319 2320 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2321 const CXXUuidofExpr* E) { 2322 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2323 // well-formed. 2324 StringRef Uuid = E->getUuidStr(); 2325 std::string Name = "_GUID_" + Uuid.lower(); 2326 std::replace(Name.begin(), Name.end(), '-', '_'); 2327 2328 // The UUID descriptor should be pointer aligned. 2329 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2330 2331 // Look for an existing global. 2332 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2333 return ConstantAddress(GV, Alignment); 2334 2335 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2336 assert(Init && "failed to initialize as constant"); 2337 2338 auto *GV = new llvm::GlobalVariable( 2339 getModule(), Init->getType(), 2340 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2341 if (supportsCOMDAT()) 2342 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2343 setDSOLocal(GV); 2344 return ConstantAddress(GV, Alignment); 2345 } 2346 2347 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2348 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2349 assert(AA && "No alias?"); 2350 2351 CharUnits Alignment = getContext().getDeclAlign(VD); 2352 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2353 2354 // See if there is already something with the target's name in the module. 2355 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2356 if (Entry) { 2357 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2358 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2359 return ConstantAddress(Ptr, Alignment); 2360 } 2361 2362 llvm::Constant *Aliasee; 2363 if (isa<llvm::FunctionType>(DeclTy)) 2364 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2365 GlobalDecl(cast<FunctionDecl>(VD)), 2366 /*ForVTable=*/false); 2367 else 2368 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2369 llvm::PointerType::getUnqual(DeclTy), 2370 nullptr); 2371 2372 auto *F = cast<llvm::GlobalValue>(Aliasee); 2373 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2374 WeakRefReferences.insert(F); 2375 2376 return ConstantAddress(Aliasee, Alignment); 2377 } 2378 2379 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2380 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2381 2382 // Weak references don't produce any output by themselves. 2383 if (Global->hasAttr<WeakRefAttr>()) 2384 return; 2385 2386 // If this is an alias definition (which otherwise looks like a declaration) 2387 // emit it now. 2388 if (Global->hasAttr<AliasAttr>()) 2389 return EmitAliasDefinition(GD); 2390 2391 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2392 if (Global->hasAttr<IFuncAttr>()) 2393 return emitIFuncDefinition(GD); 2394 2395 // If this is a cpu_dispatch multiversion function, emit the resolver. 2396 if (Global->hasAttr<CPUDispatchAttr>()) 2397 return emitCPUDispatchDefinition(GD); 2398 2399 // If this is CUDA, be selective about which declarations we emit. 2400 if (LangOpts.CUDA) { 2401 if (LangOpts.CUDAIsDevice) { 2402 if (!Global->hasAttr<CUDADeviceAttr>() && 2403 !Global->hasAttr<CUDAGlobalAttr>() && 2404 !Global->hasAttr<CUDAConstantAttr>() && 2405 !Global->hasAttr<CUDASharedAttr>()) 2406 return; 2407 } else { 2408 // We need to emit host-side 'shadows' for all global 2409 // device-side variables because the CUDA runtime needs their 2410 // size and host-side address in order to provide access to 2411 // their device-side incarnations. 2412 2413 // So device-only functions are the only things we skip. 2414 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2415 Global->hasAttr<CUDADeviceAttr>()) 2416 return; 2417 2418 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2419 "Expected Variable or Function"); 2420 } 2421 } 2422 2423 if (LangOpts.OpenMP) { 2424 // If this is OpenMP device, check if it is legal to emit this global 2425 // normally. 2426 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2427 return; 2428 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2429 if (MustBeEmitted(Global)) 2430 EmitOMPDeclareReduction(DRD); 2431 return; 2432 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2433 if (MustBeEmitted(Global)) 2434 EmitOMPDeclareMapper(DMD); 2435 return; 2436 } 2437 } 2438 2439 // Ignore declarations, they will be emitted on their first use. 2440 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2441 // Forward declarations are emitted lazily on first use. 2442 if (!FD->doesThisDeclarationHaveABody()) { 2443 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2444 return; 2445 2446 StringRef MangledName = getMangledName(GD); 2447 2448 // Compute the function info and LLVM type. 2449 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2450 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2451 2452 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2453 /*DontDefer=*/false); 2454 return; 2455 } 2456 } else { 2457 const auto *VD = cast<VarDecl>(Global); 2458 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2459 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2460 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2461 if (LangOpts.OpenMP) { 2462 // Emit declaration of the must-be-emitted declare target variable. 2463 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2464 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2465 if (*Res == OMPDeclareTargetDeclAttr::MT_To) { 2466 (void)GetAddrOfGlobalVar(VD); 2467 } else { 2468 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && 2469 "link claue expected."); 2470 (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2471 } 2472 return; 2473 } 2474 } 2475 // If this declaration may have caused an inline variable definition to 2476 // change linkage, make sure that it's emitted. 2477 if (Context.getInlineVariableDefinitionKind(VD) == 2478 ASTContext::InlineVariableDefinitionKind::Strong) 2479 GetAddrOfGlobalVar(VD); 2480 return; 2481 } 2482 } 2483 2484 // Defer code generation to first use when possible, e.g. if this is an inline 2485 // function. If the global must always be emitted, do it eagerly if possible 2486 // to benefit from cache locality. 2487 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2488 // Emit the definition if it can't be deferred. 2489 EmitGlobalDefinition(GD); 2490 return; 2491 } 2492 2493 // If we're deferring emission of a C++ variable with an 2494 // initializer, remember the order in which it appeared in the file. 2495 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2496 cast<VarDecl>(Global)->hasInit()) { 2497 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2498 CXXGlobalInits.push_back(nullptr); 2499 } 2500 2501 StringRef MangledName = getMangledName(GD); 2502 if (GetGlobalValue(MangledName) != nullptr) { 2503 // The value has already been used and should therefore be emitted. 2504 addDeferredDeclToEmit(GD); 2505 } else if (MustBeEmitted(Global)) { 2506 // The value must be emitted, but cannot be emitted eagerly. 2507 assert(!MayBeEmittedEagerly(Global)); 2508 addDeferredDeclToEmit(GD); 2509 } else { 2510 // Otherwise, remember that we saw a deferred decl with this name. The 2511 // first use of the mangled name will cause it to move into 2512 // DeferredDeclsToEmit. 2513 DeferredDecls[MangledName] = GD; 2514 } 2515 } 2516 2517 // Check if T is a class type with a destructor that's not dllimport. 2518 static bool HasNonDllImportDtor(QualType T) { 2519 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2520 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2521 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2522 return true; 2523 2524 return false; 2525 } 2526 2527 namespace { 2528 struct FunctionIsDirectlyRecursive 2529 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2530 const StringRef Name; 2531 const Builtin::Context &BI; 2532 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2533 : Name(N), BI(C) {} 2534 2535 bool VisitCallExpr(const CallExpr *E) { 2536 const FunctionDecl *FD = E->getDirectCallee(); 2537 if (!FD) 2538 return false; 2539 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2540 if (Attr && Name == Attr->getLabel()) 2541 return true; 2542 unsigned BuiltinID = FD->getBuiltinID(); 2543 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2544 return false; 2545 StringRef BuiltinName = BI.getName(BuiltinID); 2546 if (BuiltinName.startswith("__builtin_") && 2547 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2548 return true; 2549 } 2550 return false; 2551 } 2552 2553 bool VisitStmt(const Stmt *S) { 2554 for (const Stmt *Child : S->children()) 2555 if (Child && this->Visit(Child)) 2556 return true; 2557 return false; 2558 } 2559 }; 2560 2561 // Make sure we're not referencing non-imported vars or functions. 2562 struct DLLImportFunctionVisitor 2563 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2564 bool SafeToInline = true; 2565 2566 bool shouldVisitImplicitCode() const { return true; } 2567 2568 bool VisitVarDecl(VarDecl *VD) { 2569 if (VD->getTLSKind()) { 2570 // A thread-local variable cannot be imported. 2571 SafeToInline = false; 2572 return SafeToInline; 2573 } 2574 2575 // A variable definition might imply a destructor call. 2576 if (VD->isThisDeclarationADefinition()) 2577 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2578 2579 return SafeToInline; 2580 } 2581 2582 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2583 if (const auto *D = E->getTemporary()->getDestructor()) 2584 SafeToInline = D->hasAttr<DLLImportAttr>(); 2585 return SafeToInline; 2586 } 2587 2588 bool VisitDeclRefExpr(DeclRefExpr *E) { 2589 ValueDecl *VD = E->getDecl(); 2590 if (isa<FunctionDecl>(VD)) 2591 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2592 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2593 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2594 return SafeToInline; 2595 } 2596 2597 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2598 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2599 return SafeToInline; 2600 } 2601 2602 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2603 CXXMethodDecl *M = E->getMethodDecl(); 2604 if (!M) { 2605 // Call through a pointer to member function. This is safe to inline. 2606 SafeToInline = true; 2607 } else { 2608 SafeToInline = M->hasAttr<DLLImportAttr>(); 2609 } 2610 return SafeToInline; 2611 } 2612 2613 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2614 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2615 return SafeToInline; 2616 } 2617 2618 bool VisitCXXNewExpr(CXXNewExpr *E) { 2619 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2620 return SafeToInline; 2621 } 2622 }; 2623 } 2624 2625 // isTriviallyRecursive - Check if this function calls another 2626 // decl that, because of the asm attribute or the other decl being a builtin, 2627 // ends up pointing to itself. 2628 bool 2629 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2630 StringRef Name; 2631 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2632 // asm labels are a special kind of mangling we have to support. 2633 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2634 if (!Attr) 2635 return false; 2636 Name = Attr->getLabel(); 2637 } else { 2638 Name = FD->getName(); 2639 } 2640 2641 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2642 const Stmt *Body = FD->getBody(); 2643 return Body ? Walker.Visit(Body) : false; 2644 } 2645 2646 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2647 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2648 return true; 2649 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2650 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2651 return false; 2652 2653 if (F->hasAttr<DLLImportAttr>()) { 2654 // Check whether it would be safe to inline this dllimport function. 2655 DLLImportFunctionVisitor Visitor; 2656 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2657 if (!Visitor.SafeToInline) 2658 return false; 2659 2660 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2661 // Implicit destructor invocations aren't captured in the AST, so the 2662 // check above can't see them. Check for them manually here. 2663 for (const Decl *Member : Dtor->getParent()->decls()) 2664 if (isa<FieldDecl>(Member)) 2665 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2666 return false; 2667 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2668 if (HasNonDllImportDtor(B.getType())) 2669 return false; 2670 } 2671 } 2672 2673 // PR9614. Avoid cases where the source code is lying to us. An available 2674 // externally function should have an equivalent function somewhere else, 2675 // but a function that calls itself is clearly not equivalent to the real 2676 // implementation. 2677 // This happens in glibc's btowc and in some configure checks. 2678 return !isTriviallyRecursive(F); 2679 } 2680 2681 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2682 return CodeGenOpts.OptimizationLevel > 0; 2683 } 2684 2685 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2686 llvm::GlobalValue *GV) { 2687 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2688 2689 if (FD->isCPUSpecificMultiVersion()) { 2690 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2691 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2692 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2693 // Requires multiple emits. 2694 } else 2695 EmitGlobalFunctionDefinition(GD, GV); 2696 } 2697 2698 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2699 const auto *D = cast<ValueDecl>(GD.getDecl()); 2700 2701 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2702 Context.getSourceManager(), 2703 "Generating code for declaration"); 2704 2705 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2706 // At -O0, don't generate IR for functions with available_externally 2707 // linkage. 2708 if (!shouldEmitFunction(GD)) 2709 return; 2710 2711 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 2712 std::string Name; 2713 llvm::raw_string_ostream OS(Name); 2714 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 2715 /*Qualified=*/true); 2716 return Name; 2717 }); 2718 2719 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2720 // Make sure to emit the definition(s) before we emit the thunks. 2721 // This is necessary for the generation of certain thunks. 2722 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2723 ABI->emitCXXStructor(GD); 2724 else if (FD->isMultiVersion()) 2725 EmitMultiVersionFunctionDefinition(GD, GV); 2726 else 2727 EmitGlobalFunctionDefinition(GD, GV); 2728 2729 if (Method->isVirtual()) 2730 getVTables().EmitThunks(GD); 2731 2732 return; 2733 } 2734 2735 if (FD->isMultiVersion()) 2736 return EmitMultiVersionFunctionDefinition(GD, GV); 2737 return EmitGlobalFunctionDefinition(GD, GV); 2738 } 2739 2740 if (const auto *VD = dyn_cast<VarDecl>(D)) 2741 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2742 2743 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2744 } 2745 2746 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2747 llvm::Function *NewFn); 2748 2749 static unsigned 2750 TargetMVPriority(const TargetInfo &TI, 2751 const CodeGenFunction::MultiVersionResolverOption &RO) { 2752 unsigned Priority = 0; 2753 for (StringRef Feat : RO.Conditions.Features) 2754 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2755 2756 if (!RO.Conditions.Architecture.empty()) 2757 Priority = std::max( 2758 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2759 return Priority; 2760 } 2761 2762 void CodeGenModule::emitMultiVersionFunctions() { 2763 for (GlobalDecl GD : MultiVersionFuncs) { 2764 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2765 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2766 getContext().forEachMultiversionedFunctionVersion( 2767 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2768 GlobalDecl CurGD{ 2769 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2770 StringRef MangledName = getMangledName(CurGD); 2771 llvm::Constant *Func = GetGlobalValue(MangledName); 2772 if (!Func) { 2773 if (CurFD->isDefined()) { 2774 EmitGlobalFunctionDefinition(CurGD, nullptr); 2775 Func = GetGlobalValue(MangledName); 2776 } else { 2777 const CGFunctionInfo &FI = 2778 getTypes().arrangeGlobalDeclaration(GD); 2779 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2780 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2781 /*DontDefer=*/false, ForDefinition); 2782 } 2783 assert(Func && "This should have just been created"); 2784 } 2785 2786 const auto *TA = CurFD->getAttr<TargetAttr>(); 2787 llvm::SmallVector<StringRef, 8> Feats; 2788 TA->getAddedFeatures(Feats); 2789 2790 Options.emplace_back(cast<llvm::Function>(Func), 2791 TA->getArchitecture(), Feats); 2792 }); 2793 2794 llvm::Function *ResolverFunc; 2795 const TargetInfo &TI = getTarget(); 2796 2797 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) 2798 ResolverFunc = cast<llvm::Function>( 2799 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2800 else 2801 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2802 2803 if (supportsCOMDAT()) 2804 ResolverFunc->setComdat( 2805 getModule().getOrInsertComdat(ResolverFunc->getName())); 2806 2807 llvm::stable_sort( 2808 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2809 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2810 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2811 }); 2812 CodeGenFunction CGF(*this); 2813 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2814 } 2815 } 2816 2817 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2818 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2819 assert(FD && "Not a FunctionDecl?"); 2820 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2821 assert(DD && "Not a cpu_dispatch Function?"); 2822 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2823 2824 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2825 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2826 DeclTy = getTypes().GetFunctionType(FInfo); 2827 } 2828 2829 StringRef ResolverName = getMangledName(GD); 2830 2831 llvm::Type *ResolverType; 2832 GlobalDecl ResolverGD; 2833 if (getTarget().supportsIFunc()) 2834 ResolverType = llvm::FunctionType::get( 2835 llvm::PointerType::get(DeclTy, 2836 Context.getTargetAddressSpace(FD->getType())), 2837 false); 2838 else { 2839 ResolverType = DeclTy; 2840 ResolverGD = GD; 2841 } 2842 2843 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2844 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2845 2846 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2847 const TargetInfo &Target = getTarget(); 2848 unsigned Index = 0; 2849 for (const IdentifierInfo *II : DD->cpus()) { 2850 // Get the name of the target function so we can look it up/create it. 2851 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2852 getCPUSpecificMangling(*this, II->getName()); 2853 2854 llvm::Constant *Func = GetGlobalValue(MangledName); 2855 2856 if (!Func) { 2857 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 2858 if (ExistingDecl.getDecl() && 2859 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 2860 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 2861 Func = GetGlobalValue(MangledName); 2862 } else { 2863 if (!ExistingDecl.getDecl()) 2864 ExistingDecl = GD.getWithMultiVersionIndex(Index); 2865 2866 Func = GetOrCreateLLVMFunction( 2867 MangledName, DeclTy, ExistingDecl, 2868 /*ForVTable=*/false, /*DontDefer=*/true, 2869 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2870 } 2871 } 2872 2873 llvm::SmallVector<StringRef, 32> Features; 2874 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2875 llvm::transform(Features, Features.begin(), 2876 [](StringRef Str) { return Str.substr(1); }); 2877 Features.erase(std::remove_if( 2878 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2879 return !Target.validateCpuSupports(Feat); 2880 }), Features.end()); 2881 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2882 ++Index; 2883 } 2884 2885 llvm::sort( 2886 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2887 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2888 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2889 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2890 }); 2891 2892 // If the list contains multiple 'default' versions, such as when it contains 2893 // 'pentium' and 'generic', don't emit the call to the generic one (since we 2894 // always run on at least a 'pentium'). We do this by deleting the 'least 2895 // advanced' (read, lowest mangling letter). 2896 while (Options.size() > 1 && 2897 CodeGenFunction::GetX86CpuSupportsMask( 2898 (Options.end() - 2)->Conditions.Features) == 0) { 2899 StringRef LHSName = (Options.end() - 2)->Function->getName(); 2900 StringRef RHSName = (Options.end() - 1)->Function->getName(); 2901 if (LHSName.compare(RHSName) < 0) 2902 Options.erase(Options.end() - 2); 2903 else 2904 Options.erase(Options.end() - 1); 2905 } 2906 2907 CodeGenFunction CGF(*this); 2908 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2909 } 2910 2911 /// If a dispatcher for the specified mangled name is not in the module, create 2912 /// and return an llvm Function with the specified type. 2913 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 2914 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 2915 std::string MangledName = 2916 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2917 2918 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 2919 // a separate resolver). 2920 std::string ResolverName = MangledName; 2921 if (getTarget().supportsIFunc()) 2922 ResolverName += ".ifunc"; 2923 else if (FD->isTargetMultiVersion()) 2924 ResolverName += ".resolver"; 2925 2926 // If this already exists, just return that one. 2927 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 2928 return ResolverGV; 2929 2930 // Since this is the first time we've created this IFunc, make sure 2931 // that we put this multiversioned function into the list to be 2932 // replaced later if necessary (target multiversioning only). 2933 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2934 MultiVersionFuncs.push_back(GD); 2935 2936 if (getTarget().supportsIFunc()) { 2937 llvm::Type *ResolverType = llvm::FunctionType::get( 2938 llvm::PointerType::get( 2939 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 2940 false); 2941 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2942 MangledName + ".resolver", ResolverType, GlobalDecl{}, 2943 /*ForVTable=*/false); 2944 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2945 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2946 GIF->setName(ResolverName); 2947 SetCommonAttributes(FD, GIF); 2948 2949 return GIF; 2950 } 2951 2952 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2953 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 2954 assert(isa<llvm::GlobalValue>(Resolver) && 2955 "Resolver should be created for the first time"); 2956 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 2957 return Resolver; 2958 } 2959 2960 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2961 /// module, create and return an llvm Function with the specified type. If there 2962 /// is something in the module with the specified name, return it potentially 2963 /// bitcasted to the right type. 2964 /// 2965 /// If D is non-null, it specifies a decl that correspond to this. This is used 2966 /// to set the attributes on the function when it is first created. 2967 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2968 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2969 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2970 ForDefinition_t IsForDefinition) { 2971 const Decl *D = GD.getDecl(); 2972 2973 // Any attempts to use a MultiVersion function should result in retrieving 2974 // the iFunc instead. Name Mangling will handle the rest of the changes. 2975 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2976 // For the device mark the function as one that should be emitted. 2977 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2978 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2979 !DontDefer && !IsForDefinition) { 2980 if (const FunctionDecl *FDDef = FD->getDefinition()) { 2981 GlobalDecl GDDef; 2982 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2983 GDDef = GlobalDecl(CD, GD.getCtorType()); 2984 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2985 GDDef = GlobalDecl(DD, GD.getDtorType()); 2986 else 2987 GDDef = GlobalDecl(FDDef); 2988 EmitGlobal(GDDef); 2989 } 2990 } 2991 2992 if (FD->isMultiVersion()) { 2993 const auto *TA = FD->getAttr<TargetAttr>(); 2994 if (TA && TA->isDefaultVersion()) 2995 UpdateMultiVersionNames(GD, FD); 2996 if (!IsForDefinition) 2997 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 2998 } 2999 } 3000 3001 // Lookup the entry, lazily creating it if necessary. 3002 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3003 if (Entry) { 3004 if (WeakRefReferences.erase(Entry)) { 3005 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3006 if (FD && !FD->hasAttr<WeakAttr>()) 3007 Entry->setLinkage(llvm::Function::ExternalLinkage); 3008 } 3009 3010 // Handle dropped DLL attributes. 3011 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3012 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3013 setDSOLocal(Entry); 3014 } 3015 3016 // If there are two attempts to define the same mangled name, issue an 3017 // error. 3018 if (IsForDefinition && !Entry->isDeclaration()) { 3019 GlobalDecl OtherGD; 3020 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3021 // to make sure that we issue an error only once. 3022 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3023 (GD.getCanonicalDecl().getDecl() != 3024 OtherGD.getCanonicalDecl().getDecl()) && 3025 DiagnosedConflictingDefinitions.insert(GD).second) { 3026 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3027 << MangledName; 3028 getDiags().Report(OtherGD.getDecl()->getLocation(), 3029 diag::note_previous_definition); 3030 } 3031 } 3032 3033 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3034 (Entry->getType()->getElementType() == Ty)) { 3035 return Entry; 3036 } 3037 3038 // Make sure the result is of the correct type. 3039 // (If function is requested for a definition, we always need to create a new 3040 // function, not just return a bitcast.) 3041 if (!IsForDefinition) 3042 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3043 } 3044 3045 // This function doesn't have a complete type (for example, the return 3046 // type is an incomplete struct). Use a fake type instead, and make 3047 // sure not to try to set attributes. 3048 bool IsIncompleteFunction = false; 3049 3050 llvm::FunctionType *FTy; 3051 if (isa<llvm::FunctionType>(Ty)) { 3052 FTy = cast<llvm::FunctionType>(Ty); 3053 } else { 3054 FTy = llvm::FunctionType::get(VoidTy, false); 3055 IsIncompleteFunction = true; 3056 } 3057 3058 llvm::Function *F = 3059 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3060 Entry ? StringRef() : MangledName, &getModule()); 3061 3062 // If we already created a function with the same mangled name (but different 3063 // type) before, take its name and add it to the list of functions to be 3064 // replaced with F at the end of CodeGen. 3065 // 3066 // This happens if there is a prototype for a function (e.g. "int f()") and 3067 // then a definition of a different type (e.g. "int f(int x)"). 3068 if (Entry) { 3069 F->takeName(Entry); 3070 3071 // This might be an implementation of a function without a prototype, in 3072 // which case, try to do special replacement of calls which match the new 3073 // prototype. The really key thing here is that we also potentially drop 3074 // arguments from the call site so as to make a direct call, which makes the 3075 // inliner happier and suppresses a number of optimizer warnings (!) about 3076 // dropping arguments. 3077 if (!Entry->use_empty()) { 3078 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3079 Entry->removeDeadConstantUsers(); 3080 } 3081 3082 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3083 F, Entry->getType()->getElementType()->getPointerTo()); 3084 addGlobalValReplacement(Entry, BC); 3085 } 3086 3087 assert(F->getName() == MangledName && "name was uniqued!"); 3088 if (D) 3089 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3090 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3091 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3092 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3093 } 3094 3095 if (!DontDefer) { 3096 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3097 // each other bottoming out with the base dtor. Therefore we emit non-base 3098 // dtors on usage, even if there is no dtor definition in the TU. 3099 if (D && isa<CXXDestructorDecl>(D) && 3100 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3101 GD.getDtorType())) 3102 addDeferredDeclToEmit(GD); 3103 3104 // This is the first use or definition of a mangled name. If there is a 3105 // deferred decl with this name, remember that we need to emit it at the end 3106 // of the file. 3107 auto DDI = DeferredDecls.find(MangledName); 3108 if (DDI != DeferredDecls.end()) { 3109 // Move the potentially referenced deferred decl to the 3110 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3111 // don't need it anymore). 3112 addDeferredDeclToEmit(DDI->second); 3113 DeferredDecls.erase(DDI); 3114 3115 // Otherwise, there are cases we have to worry about where we're 3116 // using a declaration for which we must emit a definition but where 3117 // we might not find a top-level definition: 3118 // - member functions defined inline in their classes 3119 // - friend functions defined inline in some class 3120 // - special member functions with implicit definitions 3121 // If we ever change our AST traversal to walk into class methods, 3122 // this will be unnecessary. 3123 // 3124 // We also don't emit a definition for a function if it's going to be an 3125 // entry in a vtable, unless it's already marked as used. 3126 } else if (getLangOpts().CPlusPlus && D) { 3127 // Look for a declaration that's lexically in a record. 3128 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3129 FD = FD->getPreviousDecl()) { 3130 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3131 if (FD->doesThisDeclarationHaveABody()) { 3132 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3133 break; 3134 } 3135 } 3136 } 3137 } 3138 } 3139 3140 // Make sure the result is of the requested type. 3141 if (!IsIncompleteFunction) { 3142 assert(F->getType()->getElementType() == Ty); 3143 return F; 3144 } 3145 3146 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3147 return llvm::ConstantExpr::getBitCast(F, PTy); 3148 } 3149 3150 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3151 /// non-null, then this function will use the specified type if it has to 3152 /// create it (this occurs when we see a definition of the function). 3153 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3154 llvm::Type *Ty, 3155 bool ForVTable, 3156 bool DontDefer, 3157 ForDefinition_t IsForDefinition) { 3158 // If there was no specific requested type, just convert it now. 3159 if (!Ty) { 3160 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3161 Ty = getTypes().ConvertType(FD->getType()); 3162 } 3163 3164 // Devirtualized destructor calls may come through here instead of via 3165 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3166 // of the complete destructor when necessary. 3167 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3168 if (getTarget().getCXXABI().isMicrosoft() && 3169 GD.getDtorType() == Dtor_Complete && 3170 DD->getParent()->getNumVBases() == 0) 3171 GD = GlobalDecl(DD, Dtor_Base); 3172 } 3173 3174 StringRef MangledName = getMangledName(GD); 3175 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3176 /*IsThunk=*/false, llvm::AttributeList(), 3177 IsForDefinition); 3178 } 3179 3180 static const FunctionDecl * 3181 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3182 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3183 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3184 3185 IdentifierInfo &CII = C.Idents.get(Name); 3186 for (const auto &Result : DC->lookup(&CII)) 3187 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3188 return FD; 3189 3190 if (!C.getLangOpts().CPlusPlus) 3191 return nullptr; 3192 3193 // Demangle the premangled name from getTerminateFn() 3194 IdentifierInfo &CXXII = 3195 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3196 ? C.Idents.get("terminate") 3197 : C.Idents.get(Name); 3198 3199 for (const auto &N : {"__cxxabiv1", "std"}) { 3200 IdentifierInfo &NS = C.Idents.get(N); 3201 for (const auto &Result : DC->lookup(&NS)) { 3202 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3203 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3204 for (const auto &Result : LSD->lookup(&NS)) 3205 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3206 break; 3207 3208 if (ND) 3209 for (const auto &Result : ND->lookup(&CXXII)) 3210 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3211 return FD; 3212 } 3213 } 3214 3215 return nullptr; 3216 } 3217 3218 /// CreateRuntimeFunction - Create a new runtime function with the specified 3219 /// type and name. 3220 llvm::FunctionCallee 3221 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3222 llvm::AttributeList ExtraAttrs, 3223 bool Local) { 3224 llvm::Constant *C = 3225 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3226 /*DontDefer=*/false, /*IsThunk=*/false, 3227 ExtraAttrs); 3228 3229 if (auto *F = dyn_cast<llvm::Function>(C)) { 3230 if (F->empty()) { 3231 F->setCallingConv(getRuntimeCC()); 3232 3233 // In Windows Itanium environments, try to mark runtime functions 3234 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3235 // will link their standard library statically or dynamically. Marking 3236 // functions imported when they are not imported can cause linker errors 3237 // and warnings. 3238 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3239 !getCodeGenOpts().LTOVisibilityPublicStd) { 3240 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3241 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3242 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3243 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3244 } 3245 } 3246 setDSOLocal(F); 3247 } 3248 } 3249 3250 return {FTy, C}; 3251 } 3252 3253 /// isTypeConstant - Determine whether an object of this type can be emitted 3254 /// as a constant. 3255 /// 3256 /// If ExcludeCtor is true, the duration when the object's constructor runs 3257 /// will not be considered. The caller will need to verify that the object is 3258 /// not written to during its construction. 3259 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3260 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3261 return false; 3262 3263 if (Context.getLangOpts().CPlusPlus) { 3264 if (const CXXRecordDecl *Record 3265 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3266 return ExcludeCtor && !Record->hasMutableFields() && 3267 Record->hasTrivialDestructor(); 3268 } 3269 3270 return true; 3271 } 3272 3273 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3274 /// create and return an llvm GlobalVariable with the specified type. If there 3275 /// is something in the module with the specified name, return it potentially 3276 /// bitcasted to the right type. 3277 /// 3278 /// If D is non-null, it specifies a decl that correspond to this. This is used 3279 /// to set the attributes on the global when it is first created. 3280 /// 3281 /// If IsForDefinition is true, it is guaranteed that an actual global with 3282 /// type Ty will be returned, not conversion of a variable with the same 3283 /// mangled name but some other type. 3284 llvm::Constant * 3285 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3286 llvm::PointerType *Ty, 3287 const VarDecl *D, 3288 ForDefinition_t IsForDefinition) { 3289 // Lookup the entry, lazily creating it if necessary. 3290 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3291 if (Entry) { 3292 if (WeakRefReferences.erase(Entry)) { 3293 if (D && !D->hasAttr<WeakAttr>()) 3294 Entry->setLinkage(llvm::Function::ExternalLinkage); 3295 } 3296 3297 // Handle dropped DLL attributes. 3298 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3299 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3300 3301 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3302 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3303 3304 if (Entry->getType() == Ty) 3305 return Entry; 3306 3307 // If there are two attempts to define the same mangled name, issue an 3308 // error. 3309 if (IsForDefinition && !Entry->isDeclaration()) { 3310 GlobalDecl OtherGD; 3311 const VarDecl *OtherD; 3312 3313 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3314 // to make sure that we issue an error only once. 3315 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3316 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3317 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3318 OtherD->hasInit() && 3319 DiagnosedConflictingDefinitions.insert(D).second) { 3320 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3321 << MangledName; 3322 getDiags().Report(OtherGD.getDecl()->getLocation(), 3323 diag::note_previous_definition); 3324 } 3325 } 3326 3327 // Make sure the result is of the correct type. 3328 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3329 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3330 3331 // (If global is requested for a definition, we always need to create a new 3332 // global, not just return a bitcast.) 3333 if (!IsForDefinition) 3334 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3335 } 3336 3337 auto AddrSpace = GetGlobalVarAddressSpace(D); 3338 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3339 3340 auto *GV = new llvm::GlobalVariable( 3341 getModule(), Ty->getElementType(), false, 3342 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3343 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3344 3345 // If we already created a global with the same mangled name (but different 3346 // type) before, take its name and remove it from its parent. 3347 if (Entry) { 3348 GV->takeName(Entry); 3349 3350 if (!Entry->use_empty()) { 3351 llvm::Constant *NewPtrForOldDecl = 3352 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3353 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3354 } 3355 3356 Entry->eraseFromParent(); 3357 } 3358 3359 // This is the first use or definition of a mangled name. If there is a 3360 // deferred decl with this name, remember that we need to emit it at the end 3361 // of the file. 3362 auto DDI = DeferredDecls.find(MangledName); 3363 if (DDI != DeferredDecls.end()) { 3364 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3365 // list, and remove it from DeferredDecls (since we don't need it anymore). 3366 addDeferredDeclToEmit(DDI->second); 3367 DeferredDecls.erase(DDI); 3368 } 3369 3370 // Handle things which are present even on external declarations. 3371 if (D) { 3372 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3373 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3374 3375 // FIXME: This code is overly simple and should be merged with other global 3376 // handling. 3377 GV->setConstant(isTypeConstant(D->getType(), false)); 3378 3379 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3380 3381 setLinkageForGV(GV, D); 3382 3383 if (D->getTLSKind()) { 3384 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3385 CXXThreadLocals.push_back(D); 3386 setTLSMode(GV, *D); 3387 } 3388 3389 setGVProperties(GV, D); 3390 3391 // If required by the ABI, treat declarations of static data members with 3392 // inline initializers as definitions. 3393 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3394 EmitGlobalVarDefinition(D); 3395 } 3396 3397 // Emit section information for extern variables. 3398 if (D->hasExternalStorage()) { 3399 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3400 GV->setSection(SA->getName()); 3401 } 3402 3403 // Handle XCore specific ABI requirements. 3404 if (getTriple().getArch() == llvm::Triple::xcore && 3405 D->getLanguageLinkage() == CLanguageLinkage && 3406 D->getType().isConstant(Context) && 3407 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3408 GV->setSection(".cp.rodata"); 3409 3410 // Check if we a have a const declaration with an initializer, we may be 3411 // able to emit it as available_externally to expose it's value to the 3412 // optimizer. 3413 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3414 D->getType().isConstQualified() && !GV->hasInitializer() && 3415 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3416 const auto *Record = 3417 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3418 bool HasMutableFields = Record && Record->hasMutableFields(); 3419 if (!HasMutableFields) { 3420 const VarDecl *InitDecl; 3421 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3422 if (InitExpr) { 3423 ConstantEmitter emitter(*this); 3424 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3425 if (Init) { 3426 auto *InitType = Init->getType(); 3427 if (GV->getType()->getElementType() != InitType) { 3428 // The type of the initializer does not match the definition. 3429 // This happens when an initializer has a different type from 3430 // the type of the global (because of padding at the end of a 3431 // structure for instance). 3432 GV->setName(StringRef()); 3433 // Make a new global with the correct type, this is now guaranteed 3434 // to work. 3435 auto *NewGV = cast<llvm::GlobalVariable>( 3436 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3437 3438 // Erase the old global, since it is no longer used. 3439 GV->eraseFromParent(); 3440 GV = NewGV; 3441 } else { 3442 GV->setInitializer(Init); 3443 GV->setConstant(true); 3444 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3445 } 3446 emitter.finalize(GV); 3447 } 3448 } 3449 } 3450 } 3451 } 3452 3453 LangAS ExpectedAS = 3454 D ? D->getType().getAddressSpace() 3455 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3456 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3457 Ty->getPointerAddressSpace()); 3458 if (AddrSpace != ExpectedAS) 3459 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3460 ExpectedAS, Ty); 3461 3462 if (GV->isDeclaration()) 3463 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3464 3465 return GV; 3466 } 3467 3468 llvm::Constant * 3469 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3470 ForDefinition_t IsForDefinition) { 3471 const Decl *D = GD.getDecl(); 3472 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3473 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3474 /*DontDefer=*/false, IsForDefinition); 3475 else if (isa<CXXMethodDecl>(D)) { 3476 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3477 cast<CXXMethodDecl>(D)); 3478 auto Ty = getTypes().GetFunctionType(*FInfo); 3479 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3480 IsForDefinition); 3481 } else if (isa<FunctionDecl>(D)) { 3482 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3483 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3484 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3485 IsForDefinition); 3486 } else 3487 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3488 IsForDefinition); 3489 } 3490 3491 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3492 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3493 unsigned Alignment) { 3494 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3495 llvm::GlobalVariable *OldGV = nullptr; 3496 3497 if (GV) { 3498 // Check if the variable has the right type. 3499 if (GV->getType()->getElementType() == Ty) 3500 return GV; 3501 3502 // Because C++ name mangling, the only way we can end up with an already 3503 // existing global with the same name is if it has been declared extern "C". 3504 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3505 OldGV = GV; 3506 } 3507 3508 // Create a new variable. 3509 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3510 Linkage, nullptr, Name); 3511 3512 if (OldGV) { 3513 // Replace occurrences of the old variable if needed. 3514 GV->takeName(OldGV); 3515 3516 if (!OldGV->use_empty()) { 3517 llvm::Constant *NewPtrForOldDecl = 3518 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3519 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3520 } 3521 3522 OldGV->eraseFromParent(); 3523 } 3524 3525 if (supportsCOMDAT() && GV->isWeakForLinker() && 3526 !GV->hasAvailableExternallyLinkage()) 3527 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3528 3529 GV->setAlignment(Alignment); 3530 3531 return GV; 3532 } 3533 3534 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3535 /// given global variable. If Ty is non-null and if the global doesn't exist, 3536 /// then it will be created with the specified type instead of whatever the 3537 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3538 /// that an actual global with type Ty will be returned, not conversion of a 3539 /// variable with the same mangled name but some other type. 3540 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3541 llvm::Type *Ty, 3542 ForDefinition_t IsForDefinition) { 3543 assert(D->hasGlobalStorage() && "Not a global variable"); 3544 QualType ASTTy = D->getType(); 3545 if (!Ty) 3546 Ty = getTypes().ConvertTypeForMem(ASTTy); 3547 3548 llvm::PointerType *PTy = 3549 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3550 3551 StringRef MangledName = getMangledName(D); 3552 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3553 } 3554 3555 /// CreateRuntimeVariable - Create a new runtime global variable with the 3556 /// specified type and name. 3557 llvm::Constant * 3558 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3559 StringRef Name) { 3560 auto *Ret = 3561 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3562 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3563 return Ret; 3564 } 3565 3566 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3567 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3568 3569 StringRef MangledName = getMangledName(D); 3570 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3571 3572 // We already have a definition, not declaration, with the same mangled name. 3573 // Emitting of declaration is not required (and actually overwrites emitted 3574 // definition). 3575 if (GV && !GV->isDeclaration()) 3576 return; 3577 3578 // If we have not seen a reference to this variable yet, place it into the 3579 // deferred declarations table to be emitted if needed later. 3580 if (!MustBeEmitted(D) && !GV) { 3581 DeferredDecls[MangledName] = D; 3582 return; 3583 } 3584 3585 // The tentative definition is the only definition. 3586 EmitGlobalVarDefinition(D); 3587 } 3588 3589 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3590 return Context.toCharUnitsFromBits( 3591 getDataLayout().getTypeStoreSizeInBits(Ty)); 3592 } 3593 3594 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3595 LangAS AddrSpace = LangAS::Default; 3596 if (LangOpts.OpenCL) { 3597 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3598 assert(AddrSpace == LangAS::opencl_global || 3599 AddrSpace == LangAS::opencl_constant || 3600 AddrSpace == LangAS::opencl_local || 3601 AddrSpace >= LangAS::FirstTargetAddressSpace); 3602 return AddrSpace; 3603 } 3604 3605 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3606 if (D && D->hasAttr<CUDAConstantAttr>()) 3607 return LangAS::cuda_constant; 3608 else if (D && D->hasAttr<CUDASharedAttr>()) 3609 return LangAS::cuda_shared; 3610 else if (D && D->hasAttr<CUDADeviceAttr>()) 3611 return LangAS::cuda_device; 3612 else if (D && D->getType().isConstQualified()) 3613 return LangAS::cuda_constant; 3614 else 3615 return LangAS::cuda_device; 3616 } 3617 3618 if (LangOpts.OpenMP) { 3619 LangAS AS; 3620 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3621 return AS; 3622 } 3623 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3624 } 3625 3626 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3627 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3628 if (LangOpts.OpenCL) 3629 return LangAS::opencl_constant; 3630 if (auto AS = getTarget().getConstantAddressSpace()) 3631 return AS.getValue(); 3632 return LangAS::Default; 3633 } 3634 3635 // In address space agnostic languages, string literals are in default address 3636 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3637 // emitted in constant address space in LLVM IR. To be consistent with other 3638 // parts of AST, string literal global variables in constant address space 3639 // need to be casted to default address space before being put into address 3640 // map and referenced by other part of CodeGen. 3641 // In OpenCL, string literals are in constant address space in AST, therefore 3642 // they should not be casted to default address space. 3643 static llvm::Constant * 3644 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3645 llvm::GlobalVariable *GV) { 3646 llvm::Constant *Cast = GV; 3647 if (!CGM.getLangOpts().OpenCL) { 3648 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3649 if (AS != LangAS::Default) 3650 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3651 CGM, GV, AS.getValue(), LangAS::Default, 3652 GV->getValueType()->getPointerTo( 3653 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3654 } 3655 } 3656 return Cast; 3657 } 3658 3659 template<typename SomeDecl> 3660 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3661 llvm::GlobalValue *GV) { 3662 if (!getLangOpts().CPlusPlus) 3663 return; 3664 3665 // Must have 'used' attribute, or else inline assembly can't rely on 3666 // the name existing. 3667 if (!D->template hasAttr<UsedAttr>()) 3668 return; 3669 3670 // Must have internal linkage and an ordinary name. 3671 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3672 return; 3673 3674 // Must be in an extern "C" context. Entities declared directly within 3675 // a record are not extern "C" even if the record is in such a context. 3676 const SomeDecl *First = D->getFirstDecl(); 3677 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3678 return; 3679 3680 // OK, this is an internal linkage entity inside an extern "C" linkage 3681 // specification. Make a note of that so we can give it the "expected" 3682 // mangled name if nothing else is using that name. 3683 std::pair<StaticExternCMap::iterator, bool> R = 3684 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3685 3686 // If we have multiple internal linkage entities with the same name 3687 // in extern "C" regions, none of them gets that name. 3688 if (!R.second) 3689 R.first->second = nullptr; 3690 } 3691 3692 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3693 if (!CGM.supportsCOMDAT()) 3694 return false; 3695 3696 if (D.hasAttr<SelectAnyAttr>()) 3697 return true; 3698 3699 GVALinkage Linkage; 3700 if (auto *VD = dyn_cast<VarDecl>(&D)) 3701 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3702 else 3703 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3704 3705 switch (Linkage) { 3706 case GVA_Internal: 3707 case GVA_AvailableExternally: 3708 case GVA_StrongExternal: 3709 return false; 3710 case GVA_DiscardableODR: 3711 case GVA_StrongODR: 3712 return true; 3713 } 3714 llvm_unreachable("No such linkage"); 3715 } 3716 3717 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3718 llvm::GlobalObject &GO) { 3719 if (!shouldBeInCOMDAT(*this, D)) 3720 return; 3721 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3722 } 3723 3724 /// Pass IsTentative as true if you want to create a tentative definition. 3725 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3726 bool IsTentative) { 3727 // OpenCL global variables of sampler type are translated to function calls, 3728 // therefore no need to be translated. 3729 QualType ASTTy = D->getType(); 3730 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3731 return; 3732 3733 // If this is OpenMP device, check if it is legal to emit this global 3734 // normally. 3735 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3736 OpenMPRuntime->emitTargetGlobalVariable(D)) 3737 return; 3738 3739 llvm::Constant *Init = nullptr; 3740 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3741 bool NeedsGlobalCtor = false; 3742 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3743 3744 const VarDecl *InitDecl; 3745 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3746 3747 Optional<ConstantEmitter> emitter; 3748 3749 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3750 // as part of their declaration." Sema has already checked for 3751 // error cases, so we just need to set Init to UndefValue. 3752 bool IsCUDASharedVar = 3753 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3754 // Shadows of initialized device-side global variables are also left 3755 // undefined. 3756 bool IsCUDAShadowVar = 3757 !getLangOpts().CUDAIsDevice && 3758 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3759 D->hasAttr<CUDASharedAttr>()); 3760 if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar)) 3761 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3762 else if (!InitExpr) { 3763 // This is a tentative definition; tentative definitions are 3764 // implicitly initialized with { 0 }. 3765 // 3766 // Note that tentative definitions are only emitted at the end of 3767 // a translation unit, so they should never have incomplete 3768 // type. In addition, EmitTentativeDefinition makes sure that we 3769 // never attempt to emit a tentative definition if a real one 3770 // exists. A use may still exists, however, so we still may need 3771 // to do a RAUW. 3772 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3773 Init = EmitNullConstant(D->getType()); 3774 } else { 3775 initializedGlobalDecl = GlobalDecl(D); 3776 emitter.emplace(*this); 3777 Init = emitter->tryEmitForInitializer(*InitDecl); 3778 3779 if (!Init) { 3780 QualType T = InitExpr->getType(); 3781 if (D->getType()->isReferenceType()) 3782 T = D->getType(); 3783 3784 if (getLangOpts().CPlusPlus) { 3785 Init = EmitNullConstant(T); 3786 NeedsGlobalCtor = true; 3787 } else { 3788 ErrorUnsupported(D, "static initializer"); 3789 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3790 } 3791 } else { 3792 // We don't need an initializer, so remove the entry for the delayed 3793 // initializer position (just in case this entry was delayed) if we 3794 // also don't need to register a destructor. 3795 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3796 DelayedCXXInitPosition.erase(D); 3797 } 3798 } 3799 3800 llvm::Type* InitType = Init->getType(); 3801 llvm::Constant *Entry = 3802 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3803 3804 // Strip off a bitcast if we got one back. 3805 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3806 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3807 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3808 // All zero index gep. 3809 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3810 Entry = CE->getOperand(0); 3811 } 3812 3813 // Entry is now either a Function or GlobalVariable. 3814 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3815 3816 // We have a definition after a declaration with the wrong type. 3817 // We must make a new GlobalVariable* and update everything that used OldGV 3818 // (a declaration or tentative definition) with the new GlobalVariable* 3819 // (which will be a definition). 3820 // 3821 // This happens if there is a prototype for a global (e.g. 3822 // "extern int x[];") and then a definition of a different type (e.g. 3823 // "int x[10];"). This also happens when an initializer has a different type 3824 // from the type of the global (this happens with unions). 3825 if (!GV || GV->getType()->getElementType() != InitType || 3826 GV->getType()->getAddressSpace() != 3827 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3828 3829 // Move the old entry aside so that we'll create a new one. 3830 Entry->setName(StringRef()); 3831 3832 // Make a new global with the correct type, this is now guaranteed to work. 3833 GV = cast<llvm::GlobalVariable>( 3834 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3835 3836 // Replace all uses of the old global with the new global 3837 llvm::Constant *NewPtrForOldDecl = 3838 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3839 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3840 3841 // Erase the old global, since it is no longer used. 3842 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3843 } 3844 3845 MaybeHandleStaticInExternC(D, GV); 3846 3847 if (D->hasAttr<AnnotateAttr>()) 3848 AddGlobalAnnotations(D, GV); 3849 3850 // Set the llvm linkage type as appropriate. 3851 llvm::GlobalValue::LinkageTypes Linkage = 3852 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3853 3854 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3855 // the device. [...]" 3856 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3857 // __device__, declares a variable that: [...] 3858 // Is accessible from all the threads within the grid and from the host 3859 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3860 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3861 if (GV && LangOpts.CUDA) { 3862 if (LangOpts.CUDAIsDevice) { 3863 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3864 GV->setExternallyInitialized(true); 3865 } else { 3866 // Host-side shadows of external declarations of device-side 3867 // global variables become internal definitions. These have to 3868 // be internal in order to prevent name conflicts with global 3869 // host variables with the same name in a different TUs. 3870 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3871 Linkage = llvm::GlobalValue::InternalLinkage; 3872 3873 // Shadow variables and their properties must be registered 3874 // with CUDA runtime. 3875 unsigned Flags = 0; 3876 if (!D->hasDefinition()) 3877 Flags |= CGCUDARuntime::ExternDeviceVar; 3878 if (D->hasAttr<CUDAConstantAttr>()) 3879 Flags |= CGCUDARuntime::ConstantDeviceVar; 3880 // Extern global variables will be registered in the TU where they are 3881 // defined. 3882 if (!D->hasExternalStorage()) 3883 getCUDARuntime().registerDeviceVar(D, *GV, Flags); 3884 } else if (D->hasAttr<CUDASharedAttr>()) 3885 // __shared__ variables are odd. Shadows do get created, but 3886 // they are not registered with the CUDA runtime, so they 3887 // can't really be used to access their device-side 3888 // counterparts. It's not clear yet whether it's nvcc's bug or 3889 // a feature, but we've got to do the same for compatibility. 3890 Linkage = llvm::GlobalValue::InternalLinkage; 3891 } 3892 } 3893 3894 GV->setInitializer(Init); 3895 if (emitter) emitter->finalize(GV); 3896 3897 // If it is safe to mark the global 'constant', do so now. 3898 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3899 isTypeConstant(D->getType(), true)); 3900 3901 // If it is in a read-only section, mark it 'constant'. 3902 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3903 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3904 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3905 GV->setConstant(true); 3906 } 3907 3908 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3909 3910 3911 // On Darwin, if the normal linkage of a C++ thread_local variable is 3912 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3913 // copies within a linkage unit; otherwise, the backing variable has 3914 // internal linkage and all accesses should just be calls to the 3915 // Itanium-specified entry point, which has the normal linkage of the 3916 // variable. This is to preserve the ability to change the implementation 3917 // behind the scenes. 3918 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3919 Context.getTargetInfo().getTriple().isOSDarwin() && 3920 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3921 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3922 Linkage = llvm::GlobalValue::InternalLinkage; 3923 3924 GV->setLinkage(Linkage); 3925 if (D->hasAttr<DLLImportAttr>()) 3926 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3927 else if (D->hasAttr<DLLExportAttr>()) 3928 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3929 else 3930 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3931 3932 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3933 // common vars aren't constant even if declared const. 3934 GV->setConstant(false); 3935 // Tentative definition of global variables may be initialized with 3936 // non-zero null pointers. In this case they should have weak linkage 3937 // since common linkage must have zero initializer and must not have 3938 // explicit section therefore cannot have non-zero initial value. 3939 if (!GV->getInitializer()->isNullValue()) 3940 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3941 } 3942 3943 setNonAliasAttributes(D, GV); 3944 3945 if (D->getTLSKind() && !GV->isThreadLocal()) { 3946 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3947 CXXThreadLocals.push_back(D); 3948 setTLSMode(GV, *D); 3949 } 3950 3951 maybeSetTrivialComdat(*D, *GV); 3952 3953 // Emit the initializer function if necessary. 3954 if (NeedsGlobalCtor || NeedsGlobalDtor) 3955 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3956 3957 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3958 3959 // Emit global variable debug information. 3960 if (CGDebugInfo *DI = getModuleDebugInfo()) 3961 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3962 DI->EmitGlobalVariable(GV, D); 3963 } 3964 3965 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3966 CodeGenModule &CGM, const VarDecl *D, 3967 bool NoCommon) { 3968 // Don't give variables common linkage if -fno-common was specified unless it 3969 // was overridden by a NoCommon attribute. 3970 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3971 return true; 3972 3973 // C11 6.9.2/2: 3974 // A declaration of an identifier for an object that has file scope without 3975 // an initializer, and without a storage-class specifier or with the 3976 // storage-class specifier static, constitutes a tentative definition. 3977 if (D->getInit() || D->hasExternalStorage()) 3978 return true; 3979 3980 // A variable cannot be both common and exist in a section. 3981 if (D->hasAttr<SectionAttr>()) 3982 return true; 3983 3984 // A variable cannot be both common and exist in a section. 3985 // We don't try to determine which is the right section in the front-end. 3986 // If no specialized section name is applicable, it will resort to default. 3987 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3988 D->hasAttr<PragmaClangDataSectionAttr>() || 3989 D->hasAttr<PragmaClangRodataSectionAttr>()) 3990 return true; 3991 3992 // Thread local vars aren't considered common linkage. 3993 if (D->getTLSKind()) 3994 return true; 3995 3996 // Tentative definitions marked with WeakImportAttr are true definitions. 3997 if (D->hasAttr<WeakImportAttr>()) 3998 return true; 3999 4000 // A variable cannot be both common and exist in a comdat. 4001 if (shouldBeInCOMDAT(CGM, *D)) 4002 return true; 4003 4004 // Declarations with a required alignment do not have common linkage in MSVC 4005 // mode. 4006 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4007 if (D->hasAttr<AlignedAttr>()) 4008 return true; 4009 QualType VarType = D->getType(); 4010 if (Context.isAlignmentRequired(VarType)) 4011 return true; 4012 4013 if (const auto *RT = VarType->getAs<RecordType>()) { 4014 const RecordDecl *RD = RT->getDecl(); 4015 for (const FieldDecl *FD : RD->fields()) { 4016 if (FD->isBitField()) 4017 continue; 4018 if (FD->hasAttr<AlignedAttr>()) 4019 return true; 4020 if (Context.isAlignmentRequired(FD->getType())) 4021 return true; 4022 } 4023 } 4024 } 4025 4026 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4027 // common symbols, so symbols with greater alignment requirements cannot be 4028 // common. 4029 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4030 // alignments for common symbols via the aligncomm directive, so this 4031 // restriction only applies to MSVC environments. 4032 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4033 Context.getTypeAlignIfKnown(D->getType()) > 4034 Context.toBits(CharUnits::fromQuantity(32))) 4035 return true; 4036 4037 return false; 4038 } 4039 4040 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4041 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4042 if (Linkage == GVA_Internal) 4043 return llvm::Function::InternalLinkage; 4044 4045 if (D->hasAttr<WeakAttr>()) { 4046 if (IsConstantVariable) 4047 return llvm::GlobalVariable::WeakODRLinkage; 4048 else 4049 return llvm::GlobalVariable::WeakAnyLinkage; 4050 } 4051 4052 if (const auto *FD = D->getAsFunction()) 4053 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4054 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4055 4056 // We are guaranteed to have a strong definition somewhere else, 4057 // so we can use available_externally linkage. 4058 if (Linkage == GVA_AvailableExternally) 4059 return llvm::GlobalValue::AvailableExternallyLinkage; 4060 4061 // Note that Apple's kernel linker doesn't support symbol 4062 // coalescing, so we need to avoid linkonce and weak linkages there. 4063 // Normally, this means we just map to internal, but for explicit 4064 // instantiations we'll map to external. 4065 4066 // In C++, the compiler has to emit a definition in every translation unit 4067 // that references the function. We should use linkonce_odr because 4068 // a) if all references in this translation unit are optimized away, we 4069 // don't need to codegen it. b) if the function persists, it needs to be 4070 // merged with other definitions. c) C++ has the ODR, so we know the 4071 // definition is dependable. 4072 if (Linkage == GVA_DiscardableODR) 4073 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4074 : llvm::Function::InternalLinkage; 4075 4076 // An explicit instantiation of a template has weak linkage, since 4077 // explicit instantiations can occur in multiple translation units 4078 // and must all be equivalent. However, we are not allowed to 4079 // throw away these explicit instantiations. 4080 // 4081 // We don't currently support CUDA device code spread out across multiple TUs, 4082 // so say that CUDA templates are either external (for kernels) or internal. 4083 // This lets llvm perform aggressive inter-procedural optimizations. 4084 if (Linkage == GVA_StrongODR) { 4085 if (Context.getLangOpts().AppleKext) 4086 return llvm::Function::ExternalLinkage; 4087 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 4088 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4089 : llvm::Function::InternalLinkage; 4090 return llvm::Function::WeakODRLinkage; 4091 } 4092 4093 // C++ doesn't have tentative definitions and thus cannot have common 4094 // linkage. 4095 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4096 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4097 CodeGenOpts.NoCommon)) 4098 return llvm::GlobalVariable::CommonLinkage; 4099 4100 // selectany symbols are externally visible, so use weak instead of 4101 // linkonce. MSVC optimizes away references to const selectany globals, so 4102 // all definitions should be the same and ODR linkage should be used. 4103 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4104 if (D->hasAttr<SelectAnyAttr>()) 4105 return llvm::GlobalVariable::WeakODRLinkage; 4106 4107 // Otherwise, we have strong external linkage. 4108 assert(Linkage == GVA_StrongExternal); 4109 return llvm::GlobalVariable::ExternalLinkage; 4110 } 4111 4112 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4113 const VarDecl *VD, bool IsConstant) { 4114 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4115 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4116 } 4117 4118 /// Replace the uses of a function that was declared with a non-proto type. 4119 /// We want to silently drop extra arguments from call sites 4120 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4121 llvm::Function *newFn) { 4122 // Fast path. 4123 if (old->use_empty()) return; 4124 4125 llvm::Type *newRetTy = newFn->getReturnType(); 4126 SmallVector<llvm::Value*, 4> newArgs; 4127 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4128 4129 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4130 ui != ue; ) { 4131 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4132 llvm::User *user = use->getUser(); 4133 4134 // Recognize and replace uses of bitcasts. Most calls to 4135 // unprototyped functions will use bitcasts. 4136 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4137 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4138 replaceUsesOfNonProtoConstant(bitcast, newFn); 4139 continue; 4140 } 4141 4142 // Recognize calls to the function. 4143 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4144 if (!callSite) continue; 4145 if (!callSite->isCallee(&*use)) 4146 continue; 4147 4148 // If the return types don't match exactly, then we can't 4149 // transform this call unless it's dead. 4150 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4151 continue; 4152 4153 // Get the call site's attribute list. 4154 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4155 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4156 4157 // If the function was passed too few arguments, don't transform. 4158 unsigned newNumArgs = newFn->arg_size(); 4159 if (callSite->arg_size() < newNumArgs) 4160 continue; 4161 4162 // If extra arguments were passed, we silently drop them. 4163 // If any of the types mismatch, we don't transform. 4164 unsigned argNo = 0; 4165 bool dontTransform = false; 4166 for (llvm::Argument &A : newFn->args()) { 4167 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4168 dontTransform = true; 4169 break; 4170 } 4171 4172 // Add any parameter attributes. 4173 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4174 argNo++; 4175 } 4176 if (dontTransform) 4177 continue; 4178 4179 // Okay, we can transform this. Create the new call instruction and copy 4180 // over the required information. 4181 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4182 4183 // Copy over any operand bundles. 4184 callSite->getOperandBundlesAsDefs(newBundles); 4185 4186 llvm::CallBase *newCall; 4187 if (dyn_cast<llvm::CallInst>(callSite)) { 4188 newCall = 4189 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4190 } else { 4191 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4192 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4193 oldInvoke->getUnwindDest(), newArgs, 4194 newBundles, "", callSite); 4195 } 4196 newArgs.clear(); // for the next iteration 4197 4198 if (!newCall->getType()->isVoidTy()) 4199 newCall->takeName(callSite); 4200 newCall->setAttributes(llvm::AttributeList::get( 4201 newFn->getContext(), oldAttrs.getFnAttributes(), 4202 oldAttrs.getRetAttributes(), newArgAttrs)); 4203 newCall->setCallingConv(callSite->getCallingConv()); 4204 4205 // Finally, remove the old call, replacing any uses with the new one. 4206 if (!callSite->use_empty()) 4207 callSite->replaceAllUsesWith(newCall); 4208 4209 // Copy debug location attached to CI. 4210 if (callSite->getDebugLoc()) 4211 newCall->setDebugLoc(callSite->getDebugLoc()); 4212 4213 callSite->eraseFromParent(); 4214 } 4215 } 4216 4217 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4218 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4219 /// existing call uses of the old function in the module, this adjusts them to 4220 /// call the new function directly. 4221 /// 4222 /// This is not just a cleanup: the always_inline pass requires direct calls to 4223 /// functions to be able to inline them. If there is a bitcast in the way, it 4224 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4225 /// run at -O0. 4226 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4227 llvm::Function *NewFn) { 4228 // If we're redefining a global as a function, don't transform it. 4229 if (!isa<llvm::Function>(Old)) return; 4230 4231 replaceUsesOfNonProtoConstant(Old, NewFn); 4232 } 4233 4234 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4235 auto DK = VD->isThisDeclarationADefinition(); 4236 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4237 return; 4238 4239 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4240 // If we have a definition, this might be a deferred decl. If the 4241 // instantiation is explicit, make sure we emit it at the end. 4242 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4243 GetAddrOfGlobalVar(VD); 4244 4245 EmitTopLevelDecl(VD); 4246 } 4247 4248 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4249 llvm::GlobalValue *GV) { 4250 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4251 4252 // Compute the function info and LLVM type. 4253 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4254 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4255 4256 // Get or create the prototype for the function. 4257 if (!GV || (GV->getType()->getElementType() != Ty)) 4258 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4259 /*DontDefer=*/true, 4260 ForDefinition)); 4261 4262 // Already emitted. 4263 if (!GV->isDeclaration()) 4264 return; 4265 4266 // We need to set linkage and visibility on the function before 4267 // generating code for it because various parts of IR generation 4268 // want to propagate this information down (e.g. to local static 4269 // declarations). 4270 auto *Fn = cast<llvm::Function>(GV); 4271 setFunctionLinkage(GD, Fn); 4272 4273 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4274 setGVProperties(Fn, GD); 4275 4276 MaybeHandleStaticInExternC(D, Fn); 4277 4278 4279 maybeSetTrivialComdat(*D, *Fn); 4280 4281 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 4282 4283 setNonAliasAttributes(GD, Fn); 4284 SetLLVMFunctionAttributesForDefinition(D, Fn); 4285 4286 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4287 AddGlobalCtor(Fn, CA->getPriority()); 4288 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4289 AddGlobalDtor(Fn, DA->getPriority()); 4290 if (D->hasAttr<AnnotateAttr>()) 4291 AddGlobalAnnotations(D, Fn); 4292 } 4293 4294 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4295 const auto *D = cast<ValueDecl>(GD.getDecl()); 4296 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4297 assert(AA && "Not an alias?"); 4298 4299 StringRef MangledName = getMangledName(GD); 4300 4301 if (AA->getAliasee() == MangledName) { 4302 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4303 return; 4304 } 4305 4306 // If there is a definition in the module, then it wins over the alias. 4307 // This is dubious, but allow it to be safe. Just ignore the alias. 4308 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4309 if (Entry && !Entry->isDeclaration()) 4310 return; 4311 4312 Aliases.push_back(GD); 4313 4314 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4315 4316 // Create a reference to the named value. This ensures that it is emitted 4317 // if a deferred decl. 4318 llvm::Constant *Aliasee; 4319 if (isa<llvm::FunctionType>(DeclTy)) 4320 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4321 /*ForVTable=*/false); 4322 else 4323 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4324 llvm::PointerType::getUnqual(DeclTy), 4325 /*D=*/nullptr); 4326 4327 // Create the new alias itself, but don't set a name yet. 4328 auto *GA = llvm::GlobalAlias::create( 4329 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 4330 4331 if (Entry) { 4332 if (GA->getAliasee() == Entry) { 4333 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4334 return; 4335 } 4336 4337 assert(Entry->isDeclaration()); 4338 4339 // If there is a declaration in the module, then we had an extern followed 4340 // by the alias, as in: 4341 // extern int test6(); 4342 // ... 4343 // int test6() __attribute__((alias("test7"))); 4344 // 4345 // Remove it and replace uses of it with the alias. 4346 GA->takeName(Entry); 4347 4348 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4349 Entry->getType())); 4350 Entry->eraseFromParent(); 4351 } else { 4352 GA->setName(MangledName); 4353 } 4354 4355 // Set attributes which are particular to an alias; this is a 4356 // specialization of the attributes which may be set on a global 4357 // variable/function. 4358 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4359 D->isWeakImported()) { 4360 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4361 } 4362 4363 if (const auto *VD = dyn_cast<VarDecl>(D)) 4364 if (VD->getTLSKind()) 4365 setTLSMode(GA, *VD); 4366 4367 SetCommonAttributes(GD, GA); 4368 } 4369 4370 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4371 const auto *D = cast<ValueDecl>(GD.getDecl()); 4372 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4373 assert(IFA && "Not an ifunc?"); 4374 4375 StringRef MangledName = getMangledName(GD); 4376 4377 if (IFA->getResolver() == MangledName) { 4378 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4379 return; 4380 } 4381 4382 // Report an error if some definition overrides ifunc. 4383 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4384 if (Entry && !Entry->isDeclaration()) { 4385 GlobalDecl OtherGD; 4386 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4387 DiagnosedConflictingDefinitions.insert(GD).second) { 4388 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4389 << MangledName; 4390 Diags.Report(OtherGD.getDecl()->getLocation(), 4391 diag::note_previous_definition); 4392 } 4393 return; 4394 } 4395 4396 Aliases.push_back(GD); 4397 4398 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4399 llvm::Constant *Resolver = 4400 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4401 /*ForVTable=*/false); 4402 llvm::GlobalIFunc *GIF = 4403 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4404 "", Resolver, &getModule()); 4405 if (Entry) { 4406 if (GIF->getResolver() == Entry) { 4407 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4408 return; 4409 } 4410 assert(Entry->isDeclaration()); 4411 4412 // If there is a declaration in the module, then we had an extern followed 4413 // by the ifunc, as in: 4414 // extern int test(); 4415 // ... 4416 // int test() __attribute__((ifunc("resolver"))); 4417 // 4418 // Remove it and replace uses of it with the ifunc. 4419 GIF->takeName(Entry); 4420 4421 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4422 Entry->getType())); 4423 Entry->eraseFromParent(); 4424 } else 4425 GIF->setName(MangledName); 4426 4427 SetCommonAttributes(GD, GIF); 4428 } 4429 4430 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4431 ArrayRef<llvm::Type*> Tys) { 4432 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4433 Tys); 4434 } 4435 4436 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4437 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4438 const StringLiteral *Literal, bool TargetIsLSB, 4439 bool &IsUTF16, unsigned &StringLength) { 4440 StringRef String = Literal->getString(); 4441 unsigned NumBytes = String.size(); 4442 4443 // Check for simple case. 4444 if (!Literal->containsNonAsciiOrNull()) { 4445 StringLength = NumBytes; 4446 return *Map.insert(std::make_pair(String, nullptr)).first; 4447 } 4448 4449 // Otherwise, convert the UTF8 literals into a string of shorts. 4450 IsUTF16 = true; 4451 4452 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4453 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4454 llvm::UTF16 *ToPtr = &ToBuf[0]; 4455 4456 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4457 ToPtr + NumBytes, llvm::strictConversion); 4458 4459 // ConvertUTF8toUTF16 returns the length in ToPtr. 4460 StringLength = ToPtr - &ToBuf[0]; 4461 4462 // Add an explicit null. 4463 *ToPtr = 0; 4464 return *Map.insert(std::make_pair( 4465 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4466 (StringLength + 1) * 2), 4467 nullptr)).first; 4468 } 4469 4470 ConstantAddress 4471 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4472 unsigned StringLength = 0; 4473 bool isUTF16 = false; 4474 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4475 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4476 getDataLayout().isLittleEndian(), isUTF16, 4477 StringLength); 4478 4479 if (auto *C = Entry.second) 4480 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4481 4482 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4483 llvm::Constant *Zeros[] = { Zero, Zero }; 4484 4485 const ASTContext &Context = getContext(); 4486 const llvm::Triple &Triple = getTriple(); 4487 4488 const auto CFRuntime = getLangOpts().CFRuntime; 4489 const bool IsSwiftABI = 4490 static_cast<unsigned>(CFRuntime) >= 4491 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4492 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4493 4494 // If we don't already have it, get __CFConstantStringClassReference. 4495 if (!CFConstantStringClassRef) { 4496 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4497 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4498 Ty = llvm::ArrayType::get(Ty, 0); 4499 4500 switch (CFRuntime) { 4501 default: break; 4502 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4503 case LangOptions::CoreFoundationABI::Swift5_0: 4504 CFConstantStringClassName = 4505 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4506 : "$s10Foundation19_NSCFConstantStringCN"; 4507 Ty = IntPtrTy; 4508 break; 4509 case LangOptions::CoreFoundationABI::Swift4_2: 4510 CFConstantStringClassName = 4511 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4512 : "$S10Foundation19_NSCFConstantStringCN"; 4513 Ty = IntPtrTy; 4514 break; 4515 case LangOptions::CoreFoundationABI::Swift4_1: 4516 CFConstantStringClassName = 4517 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4518 : "__T010Foundation19_NSCFConstantStringCN"; 4519 Ty = IntPtrTy; 4520 break; 4521 } 4522 4523 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4524 4525 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4526 llvm::GlobalValue *GV = nullptr; 4527 4528 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4529 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4530 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4531 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4532 4533 const VarDecl *VD = nullptr; 4534 for (const auto &Result : DC->lookup(&II)) 4535 if ((VD = dyn_cast<VarDecl>(Result))) 4536 break; 4537 4538 if (Triple.isOSBinFormatELF()) { 4539 if (!VD) 4540 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4541 } else { 4542 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4543 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4544 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4545 else 4546 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4547 } 4548 4549 setDSOLocal(GV); 4550 } 4551 } 4552 4553 // Decay array -> ptr 4554 CFConstantStringClassRef = 4555 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4556 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4557 } 4558 4559 QualType CFTy = Context.getCFConstantStringType(); 4560 4561 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4562 4563 ConstantInitBuilder Builder(*this); 4564 auto Fields = Builder.beginStruct(STy); 4565 4566 // Class pointer. 4567 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4568 4569 // Flags. 4570 if (IsSwiftABI) { 4571 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4572 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4573 } else { 4574 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4575 } 4576 4577 // String pointer. 4578 llvm::Constant *C = nullptr; 4579 if (isUTF16) { 4580 auto Arr = llvm::makeArrayRef( 4581 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4582 Entry.first().size() / 2); 4583 C = llvm::ConstantDataArray::get(VMContext, Arr); 4584 } else { 4585 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4586 } 4587 4588 // Note: -fwritable-strings doesn't make the backing store strings of 4589 // CFStrings writable. (See <rdar://problem/10657500>) 4590 auto *GV = 4591 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4592 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4593 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4594 // Don't enforce the target's minimum global alignment, since the only use 4595 // of the string is via this class initializer. 4596 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4597 : Context.getTypeAlignInChars(Context.CharTy); 4598 GV->setAlignment(Align.getQuantity()); 4599 4600 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4601 // Without it LLVM can merge the string with a non unnamed_addr one during 4602 // LTO. Doing that changes the section it ends in, which surprises ld64. 4603 if (Triple.isOSBinFormatMachO()) 4604 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4605 : "__TEXT,__cstring,cstring_literals"); 4606 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4607 // the static linker to adjust permissions to read-only later on. 4608 else if (Triple.isOSBinFormatELF()) 4609 GV->setSection(".rodata"); 4610 4611 // String. 4612 llvm::Constant *Str = 4613 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4614 4615 if (isUTF16) 4616 // Cast the UTF16 string to the correct type. 4617 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4618 Fields.add(Str); 4619 4620 // String length. 4621 llvm::IntegerType *LengthTy = 4622 llvm::IntegerType::get(getModule().getContext(), 4623 Context.getTargetInfo().getLongWidth()); 4624 if (IsSwiftABI) { 4625 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4626 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4627 LengthTy = Int32Ty; 4628 else 4629 LengthTy = IntPtrTy; 4630 } 4631 Fields.addInt(LengthTy, StringLength); 4632 4633 CharUnits Alignment = getPointerAlign(); 4634 4635 // The struct. 4636 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4637 /*isConstant=*/false, 4638 llvm::GlobalVariable::PrivateLinkage); 4639 switch (Triple.getObjectFormat()) { 4640 case llvm::Triple::UnknownObjectFormat: 4641 llvm_unreachable("unknown file format"); 4642 case llvm::Triple::XCOFF: 4643 llvm_unreachable("XCOFF is not yet implemented"); 4644 case llvm::Triple::COFF: 4645 case llvm::Triple::ELF: 4646 case llvm::Triple::Wasm: 4647 GV->setSection("cfstring"); 4648 break; 4649 case llvm::Triple::MachO: 4650 GV->setSection("__DATA,__cfstring"); 4651 break; 4652 } 4653 Entry.second = GV; 4654 4655 return ConstantAddress(GV, Alignment); 4656 } 4657 4658 bool CodeGenModule::getExpressionLocationsEnabled() const { 4659 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4660 } 4661 4662 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4663 if (ObjCFastEnumerationStateType.isNull()) { 4664 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4665 D->startDefinition(); 4666 4667 QualType FieldTypes[] = { 4668 Context.UnsignedLongTy, 4669 Context.getPointerType(Context.getObjCIdType()), 4670 Context.getPointerType(Context.UnsignedLongTy), 4671 Context.getConstantArrayType(Context.UnsignedLongTy, 4672 llvm::APInt(32, 5), ArrayType::Normal, 0) 4673 }; 4674 4675 for (size_t i = 0; i < 4; ++i) { 4676 FieldDecl *Field = FieldDecl::Create(Context, 4677 D, 4678 SourceLocation(), 4679 SourceLocation(), nullptr, 4680 FieldTypes[i], /*TInfo=*/nullptr, 4681 /*BitWidth=*/nullptr, 4682 /*Mutable=*/false, 4683 ICIS_NoInit); 4684 Field->setAccess(AS_public); 4685 D->addDecl(Field); 4686 } 4687 4688 D->completeDefinition(); 4689 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4690 } 4691 4692 return ObjCFastEnumerationStateType; 4693 } 4694 4695 llvm::Constant * 4696 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4697 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4698 4699 // Don't emit it as the address of the string, emit the string data itself 4700 // as an inline array. 4701 if (E->getCharByteWidth() == 1) { 4702 SmallString<64> Str(E->getString()); 4703 4704 // Resize the string to the right size, which is indicated by its type. 4705 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4706 Str.resize(CAT->getSize().getZExtValue()); 4707 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4708 } 4709 4710 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4711 llvm::Type *ElemTy = AType->getElementType(); 4712 unsigned NumElements = AType->getNumElements(); 4713 4714 // Wide strings have either 2-byte or 4-byte elements. 4715 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4716 SmallVector<uint16_t, 32> Elements; 4717 Elements.reserve(NumElements); 4718 4719 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4720 Elements.push_back(E->getCodeUnit(i)); 4721 Elements.resize(NumElements); 4722 return llvm::ConstantDataArray::get(VMContext, Elements); 4723 } 4724 4725 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4726 SmallVector<uint32_t, 32> Elements; 4727 Elements.reserve(NumElements); 4728 4729 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4730 Elements.push_back(E->getCodeUnit(i)); 4731 Elements.resize(NumElements); 4732 return llvm::ConstantDataArray::get(VMContext, Elements); 4733 } 4734 4735 static llvm::GlobalVariable * 4736 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4737 CodeGenModule &CGM, StringRef GlobalName, 4738 CharUnits Alignment) { 4739 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4740 CGM.getStringLiteralAddressSpace()); 4741 4742 llvm::Module &M = CGM.getModule(); 4743 // Create a global variable for this string 4744 auto *GV = new llvm::GlobalVariable( 4745 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4746 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4747 GV->setAlignment(Alignment.getQuantity()); 4748 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4749 if (GV->isWeakForLinker()) { 4750 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4751 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4752 } 4753 CGM.setDSOLocal(GV); 4754 4755 return GV; 4756 } 4757 4758 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4759 /// constant array for the given string literal. 4760 ConstantAddress 4761 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4762 StringRef Name) { 4763 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4764 4765 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4766 llvm::GlobalVariable **Entry = nullptr; 4767 if (!LangOpts.WritableStrings) { 4768 Entry = &ConstantStringMap[C]; 4769 if (auto GV = *Entry) { 4770 if (Alignment.getQuantity() > GV->getAlignment()) 4771 GV->setAlignment(Alignment.getQuantity()); 4772 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4773 Alignment); 4774 } 4775 } 4776 4777 SmallString<256> MangledNameBuffer; 4778 StringRef GlobalVariableName; 4779 llvm::GlobalValue::LinkageTypes LT; 4780 4781 // Mangle the string literal if that's how the ABI merges duplicate strings. 4782 // Don't do it if they are writable, since we don't want writes in one TU to 4783 // affect strings in another. 4784 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4785 !LangOpts.WritableStrings) { 4786 llvm::raw_svector_ostream Out(MangledNameBuffer); 4787 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4788 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4789 GlobalVariableName = MangledNameBuffer; 4790 } else { 4791 LT = llvm::GlobalValue::PrivateLinkage; 4792 GlobalVariableName = Name; 4793 } 4794 4795 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4796 if (Entry) 4797 *Entry = GV; 4798 4799 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4800 QualType()); 4801 4802 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4803 Alignment); 4804 } 4805 4806 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4807 /// array for the given ObjCEncodeExpr node. 4808 ConstantAddress 4809 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4810 std::string Str; 4811 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4812 4813 return GetAddrOfConstantCString(Str); 4814 } 4815 4816 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4817 /// the literal and a terminating '\0' character. 4818 /// The result has pointer to array type. 4819 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4820 const std::string &Str, const char *GlobalName) { 4821 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4822 CharUnits Alignment = 4823 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4824 4825 llvm::Constant *C = 4826 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4827 4828 // Don't share any string literals if strings aren't constant. 4829 llvm::GlobalVariable **Entry = nullptr; 4830 if (!LangOpts.WritableStrings) { 4831 Entry = &ConstantStringMap[C]; 4832 if (auto GV = *Entry) { 4833 if (Alignment.getQuantity() > GV->getAlignment()) 4834 GV->setAlignment(Alignment.getQuantity()); 4835 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4836 Alignment); 4837 } 4838 } 4839 4840 // Get the default prefix if a name wasn't specified. 4841 if (!GlobalName) 4842 GlobalName = ".str"; 4843 // Create a global variable for this. 4844 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4845 GlobalName, Alignment); 4846 if (Entry) 4847 *Entry = GV; 4848 4849 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4850 Alignment); 4851 } 4852 4853 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4854 const MaterializeTemporaryExpr *E, const Expr *Init) { 4855 assert((E->getStorageDuration() == SD_Static || 4856 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4857 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4858 4859 // If we're not materializing a subobject of the temporary, keep the 4860 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4861 QualType MaterializedType = Init->getType(); 4862 if (Init == E->GetTemporaryExpr()) 4863 MaterializedType = E->getType(); 4864 4865 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4866 4867 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4868 return ConstantAddress(Slot, Align); 4869 4870 // FIXME: If an externally-visible declaration extends multiple temporaries, 4871 // we need to give each temporary the same name in every translation unit (and 4872 // we also need to make the temporaries externally-visible). 4873 SmallString<256> Name; 4874 llvm::raw_svector_ostream Out(Name); 4875 getCXXABI().getMangleContext().mangleReferenceTemporary( 4876 VD, E->getManglingNumber(), Out); 4877 4878 APValue *Value = nullptr; 4879 if (E->getStorageDuration() == SD_Static) { 4880 // We might have a cached constant initializer for this temporary. Note 4881 // that this might have a different value from the value computed by 4882 // evaluating the initializer if the surrounding constant expression 4883 // modifies the temporary. 4884 Value = getContext().getMaterializedTemporaryValue(E, false); 4885 if (Value && Value->isUninit()) 4886 Value = nullptr; 4887 } 4888 4889 // Try evaluating it now, it might have a constant initializer. 4890 Expr::EvalResult EvalResult; 4891 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4892 !EvalResult.hasSideEffects()) 4893 Value = &EvalResult.Val; 4894 4895 LangAS AddrSpace = 4896 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4897 4898 Optional<ConstantEmitter> emitter; 4899 llvm::Constant *InitialValue = nullptr; 4900 bool Constant = false; 4901 llvm::Type *Type; 4902 if (Value) { 4903 // The temporary has a constant initializer, use it. 4904 emitter.emplace(*this); 4905 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4906 MaterializedType); 4907 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4908 Type = InitialValue->getType(); 4909 } else { 4910 // No initializer, the initialization will be provided when we 4911 // initialize the declaration which performed lifetime extension. 4912 Type = getTypes().ConvertTypeForMem(MaterializedType); 4913 } 4914 4915 // Create a global variable for this lifetime-extended temporary. 4916 llvm::GlobalValue::LinkageTypes Linkage = 4917 getLLVMLinkageVarDefinition(VD, Constant); 4918 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4919 const VarDecl *InitVD; 4920 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4921 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4922 // Temporaries defined inside a class get linkonce_odr linkage because the 4923 // class can be defined in multiple translation units. 4924 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4925 } else { 4926 // There is no need for this temporary to have external linkage if the 4927 // VarDecl has external linkage. 4928 Linkage = llvm::GlobalVariable::InternalLinkage; 4929 } 4930 } 4931 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4932 auto *GV = new llvm::GlobalVariable( 4933 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4934 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4935 if (emitter) emitter->finalize(GV); 4936 setGVProperties(GV, VD); 4937 GV->setAlignment(Align.getQuantity()); 4938 if (supportsCOMDAT() && GV->isWeakForLinker()) 4939 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4940 if (VD->getTLSKind()) 4941 setTLSMode(GV, *VD); 4942 llvm::Constant *CV = GV; 4943 if (AddrSpace != LangAS::Default) 4944 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4945 *this, GV, AddrSpace, LangAS::Default, 4946 Type->getPointerTo( 4947 getContext().getTargetAddressSpace(LangAS::Default))); 4948 MaterializedGlobalTemporaryMap[E] = CV; 4949 return ConstantAddress(CV, Align); 4950 } 4951 4952 /// EmitObjCPropertyImplementations - Emit information for synthesized 4953 /// properties for an implementation. 4954 void CodeGenModule::EmitObjCPropertyImplementations(const 4955 ObjCImplementationDecl *D) { 4956 for (const auto *PID : D->property_impls()) { 4957 // Dynamic is just for type-checking. 4958 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4959 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4960 4961 // Determine which methods need to be implemented, some may have 4962 // been overridden. Note that ::isPropertyAccessor is not the method 4963 // we want, that just indicates if the decl came from a 4964 // property. What we want to know is if the method is defined in 4965 // this implementation. 4966 if (!D->getInstanceMethod(PD->getGetterName())) 4967 CodeGenFunction(*this).GenerateObjCGetter( 4968 const_cast<ObjCImplementationDecl *>(D), PID); 4969 if (!PD->isReadOnly() && 4970 !D->getInstanceMethod(PD->getSetterName())) 4971 CodeGenFunction(*this).GenerateObjCSetter( 4972 const_cast<ObjCImplementationDecl *>(D), PID); 4973 } 4974 } 4975 } 4976 4977 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4978 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4979 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4980 ivar; ivar = ivar->getNextIvar()) 4981 if (ivar->getType().isDestructedType()) 4982 return true; 4983 4984 return false; 4985 } 4986 4987 static bool AllTrivialInitializers(CodeGenModule &CGM, 4988 ObjCImplementationDecl *D) { 4989 CodeGenFunction CGF(CGM); 4990 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4991 E = D->init_end(); B != E; ++B) { 4992 CXXCtorInitializer *CtorInitExp = *B; 4993 Expr *Init = CtorInitExp->getInit(); 4994 if (!CGF.isTrivialInitializer(Init)) 4995 return false; 4996 } 4997 return true; 4998 } 4999 5000 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5001 /// for an implementation. 5002 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5003 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5004 if (needsDestructMethod(D)) { 5005 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5006 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5007 ObjCMethodDecl *DTORMethod = 5008 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 5009 cxxSelector, getContext().VoidTy, nullptr, D, 5010 /*isInstance=*/true, /*isVariadic=*/false, 5011 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 5012 /*isDefined=*/false, ObjCMethodDecl::Required); 5013 D->addInstanceMethod(DTORMethod); 5014 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5015 D->setHasDestructors(true); 5016 } 5017 5018 // If the implementation doesn't have any ivar initializers, we don't need 5019 // a .cxx_construct. 5020 if (D->getNumIvarInitializers() == 0 || 5021 AllTrivialInitializers(*this, D)) 5022 return; 5023 5024 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5025 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5026 // The constructor returns 'self'. 5027 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 5028 D->getLocation(), 5029 D->getLocation(), 5030 cxxSelector, 5031 getContext().getObjCIdType(), 5032 nullptr, D, /*isInstance=*/true, 5033 /*isVariadic=*/false, 5034 /*isPropertyAccessor=*/true, 5035 /*isImplicitlyDeclared=*/true, 5036 /*isDefined=*/false, 5037 ObjCMethodDecl::Required); 5038 D->addInstanceMethod(CTORMethod); 5039 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5040 D->setHasNonZeroConstructors(true); 5041 } 5042 5043 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5044 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5045 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5046 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5047 ErrorUnsupported(LSD, "linkage spec"); 5048 return; 5049 } 5050 5051 EmitDeclContext(LSD); 5052 } 5053 5054 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5055 for (auto *I : DC->decls()) { 5056 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5057 // are themselves considered "top-level", so EmitTopLevelDecl on an 5058 // ObjCImplDecl does not recursively visit them. We need to do that in 5059 // case they're nested inside another construct (LinkageSpecDecl / 5060 // ExportDecl) that does stop them from being considered "top-level". 5061 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5062 for (auto *M : OID->methods()) 5063 EmitTopLevelDecl(M); 5064 } 5065 5066 EmitTopLevelDecl(I); 5067 } 5068 } 5069 5070 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5071 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5072 // Ignore dependent declarations. 5073 if (D->isTemplated()) 5074 return; 5075 5076 switch (D->getKind()) { 5077 case Decl::CXXConversion: 5078 case Decl::CXXMethod: 5079 case Decl::Function: 5080 EmitGlobal(cast<FunctionDecl>(D)); 5081 // Always provide some coverage mapping 5082 // even for the functions that aren't emitted. 5083 AddDeferredUnusedCoverageMapping(D); 5084 break; 5085 5086 case Decl::CXXDeductionGuide: 5087 // Function-like, but does not result in code emission. 5088 break; 5089 5090 case Decl::Var: 5091 case Decl::Decomposition: 5092 case Decl::VarTemplateSpecialization: 5093 EmitGlobal(cast<VarDecl>(D)); 5094 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5095 for (auto *B : DD->bindings()) 5096 if (auto *HD = B->getHoldingVar()) 5097 EmitGlobal(HD); 5098 break; 5099 5100 // Indirect fields from global anonymous structs and unions can be 5101 // ignored; only the actual variable requires IR gen support. 5102 case Decl::IndirectField: 5103 break; 5104 5105 // C++ Decls 5106 case Decl::Namespace: 5107 EmitDeclContext(cast<NamespaceDecl>(D)); 5108 break; 5109 case Decl::ClassTemplateSpecialization: { 5110 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5111 if (DebugInfo && 5112 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 5113 Spec->hasDefinition()) 5114 DebugInfo->completeTemplateDefinition(*Spec); 5115 } LLVM_FALLTHROUGH; 5116 case Decl::CXXRecord: 5117 if (DebugInfo) { 5118 if (auto *ES = D->getASTContext().getExternalSource()) 5119 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5120 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 5121 } 5122 // Emit any static data members, they may be definitions. 5123 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 5124 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5125 EmitTopLevelDecl(I); 5126 break; 5127 // No code generation needed. 5128 case Decl::UsingShadow: 5129 case Decl::ClassTemplate: 5130 case Decl::VarTemplate: 5131 case Decl::VarTemplatePartialSpecialization: 5132 case Decl::FunctionTemplate: 5133 case Decl::TypeAliasTemplate: 5134 case Decl::Block: 5135 case Decl::Empty: 5136 case Decl::Binding: 5137 break; 5138 case Decl::Using: // using X; [C++] 5139 if (CGDebugInfo *DI = getModuleDebugInfo()) 5140 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5141 return; 5142 case Decl::NamespaceAlias: 5143 if (CGDebugInfo *DI = getModuleDebugInfo()) 5144 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5145 return; 5146 case Decl::UsingDirective: // using namespace X; [C++] 5147 if (CGDebugInfo *DI = getModuleDebugInfo()) 5148 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5149 return; 5150 case Decl::CXXConstructor: 5151 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5152 break; 5153 case Decl::CXXDestructor: 5154 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5155 break; 5156 5157 case Decl::StaticAssert: 5158 // Nothing to do. 5159 break; 5160 5161 // Objective-C Decls 5162 5163 // Forward declarations, no (immediate) code generation. 5164 case Decl::ObjCInterface: 5165 case Decl::ObjCCategory: 5166 break; 5167 5168 case Decl::ObjCProtocol: { 5169 auto *Proto = cast<ObjCProtocolDecl>(D); 5170 if (Proto->isThisDeclarationADefinition()) 5171 ObjCRuntime->GenerateProtocol(Proto); 5172 break; 5173 } 5174 5175 case Decl::ObjCCategoryImpl: 5176 // Categories have properties but don't support synthesize so we 5177 // can ignore them here. 5178 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5179 break; 5180 5181 case Decl::ObjCImplementation: { 5182 auto *OMD = cast<ObjCImplementationDecl>(D); 5183 EmitObjCPropertyImplementations(OMD); 5184 EmitObjCIvarInitializations(OMD); 5185 ObjCRuntime->GenerateClass(OMD); 5186 // Emit global variable debug information. 5187 if (CGDebugInfo *DI = getModuleDebugInfo()) 5188 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 5189 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5190 OMD->getClassInterface()), OMD->getLocation()); 5191 break; 5192 } 5193 case Decl::ObjCMethod: { 5194 auto *OMD = cast<ObjCMethodDecl>(D); 5195 // If this is not a prototype, emit the body. 5196 if (OMD->getBody()) 5197 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5198 break; 5199 } 5200 case Decl::ObjCCompatibleAlias: 5201 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5202 break; 5203 5204 case Decl::PragmaComment: { 5205 const auto *PCD = cast<PragmaCommentDecl>(D); 5206 switch (PCD->getCommentKind()) { 5207 case PCK_Unknown: 5208 llvm_unreachable("unexpected pragma comment kind"); 5209 case PCK_Linker: 5210 AppendLinkerOptions(PCD->getArg()); 5211 break; 5212 case PCK_Lib: 5213 AddDependentLib(PCD->getArg()); 5214 break; 5215 case PCK_Compiler: 5216 case PCK_ExeStr: 5217 case PCK_User: 5218 break; // We ignore all of these. 5219 } 5220 break; 5221 } 5222 5223 case Decl::PragmaDetectMismatch: { 5224 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5225 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5226 break; 5227 } 5228 5229 case Decl::LinkageSpec: 5230 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5231 break; 5232 5233 case Decl::FileScopeAsm: { 5234 // File-scope asm is ignored during device-side CUDA compilation. 5235 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5236 break; 5237 // File-scope asm is ignored during device-side OpenMP compilation. 5238 if (LangOpts.OpenMPIsDevice) 5239 break; 5240 auto *AD = cast<FileScopeAsmDecl>(D); 5241 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5242 break; 5243 } 5244 5245 case Decl::Import: { 5246 auto *Import = cast<ImportDecl>(D); 5247 5248 // If we've already imported this module, we're done. 5249 if (!ImportedModules.insert(Import->getImportedModule())) 5250 break; 5251 5252 // Emit debug information for direct imports. 5253 if (!Import->getImportedOwningModule()) { 5254 if (CGDebugInfo *DI = getModuleDebugInfo()) 5255 DI->EmitImportDecl(*Import); 5256 } 5257 5258 // Find all of the submodules and emit the module initializers. 5259 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5260 SmallVector<clang::Module *, 16> Stack; 5261 Visited.insert(Import->getImportedModule()); 5262 Stack.push_back(Import->getImportedModule()); 5263 5264 while (!Stack.empty()) { 5265 clang::Module *Mod = Stack.pop_back_val(); 5266 if (!EmittedModuleInitializers.insert(Mod).second) 5267 continue; 5268 5269 for (auto *D : Context.getModuleInitializers(Mod)) 5270 EmitTopLevelDecl(D); 5271 5272 // Visit the submodules of this module. 5273 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5274 SubEnd = Mod->submodule_end(); 5275 Sub != SubEnd; ++Sub) { 5276 // Skip explicit children; they need to be explicitly imported to emit 5277 // the initializers. 5278 if ((*Sub)->IsExplicit) 5279 continue; 5280 5281 if (Visited.insert(*Sub).second) 5282 Stack.push_back(*Sub); 5283 } 5284 } 5285 break; 5286 } 5287 5288 case Decl::Export: 5289 EmitDeclContext(cast<ExportDecl>(D)); 5290 break; 5291 5292 case Decl::OMPThreadPrivate: 5293 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5294 break; 5295 5296 case Decl::OMPAllocate: 5297 break; 5298 5299 case Decl::OMPDeclareReduction: 5300 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5301 break; 5302 5303 case Decl::OMPDeclareMapper: 5304 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5305 break; 5306 5307 case Decl::OMPRequires: 5308 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5309 break; 5310 5311 default: 5312 // Make sure we handled everything we should, every other kind is a 5313 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5314 // function. Need to recode Decl::Kind to do that easily. 5315 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5316 break; 5317 } 5318 } 5319 5320 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5321 // Do we need to generate coverage mapping? 5322 if (!CodeGenOpts.CoverageMapping) 5323 return; 5324 switch (D->getKind()) { 5325 case Decl::CXXConversion: 5326 case Decl::CXXMethod: 5327 case Decl::Function: 5328 case Decl::ObjCMethod: 5329 case Decl::CXXConstructor: 5330 case Decl::CXXDestructor: { 5331 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5332 return; 5333 SourceManager &SM = getContext().getSourceManager(); 5334 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5335 return; 5336 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5337 if (I == DeferredEmptyCoverageMappingDecls.end()) 5338 DeferredEmptyCoverageMappingDecls[D] = true; 5339 break; 5340 } 5341 default: 5342 break; 5343 }; 5344 } 5345 5346 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5347 // Do we need to generate coverage mapping? 5348 if (!CodeGenOpts.CoverageMapping) 5349 return; 5350 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5351 if (Fn->isTemplateInstantiation()) 5352 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5353 } 5354 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5355 if (I == DeferredEmptyCoverageMappingDecls.end()) 5356 DeferredEmptyCoverageMappingDecls[D] = false; 5357 else 5358 I->second = false; 5359 } 5360 5361 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5362 // We call takeVector() here to avoid use-after-free. 5363 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5364 // we deserialize function bodies to emit coverage info for them, and that 5365 // deserializes more declarations. How should we handle that case? 5366 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5367 if (!Entry.second) 5368 continue; 5369 const Decl *D = Entry.first; 5370 switch (D->getKind()) { 5371 case Decl::CXXConversion: 5372 case Decl::CXXMethod: 5373 case Decl::Function: 5374 case Decl::ObjCMethod: { 5375 CodeGenPGO PGO(*this); 5376 GlobalDecl GD(cast<FunctionDecl>(D)); 5377 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5378 getFunctionLinkage(GD)); 5379 break; 5380 } 5381 case Decl::CXXConstructor: { 5382 CodeGenPGO PGO(*this); 5383 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5384 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5385 getFunctionLinkage(GD)); 5386 break; 5387 } 5388 case Decl::CXXDestructor: { 5389 CodeGenPGO PGO(*this); 5390 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5391 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5392 getFunctionLinkage(GD)); 5393 break; 5394 } 5395 default: 5396 break; 5397 }; 5398 } 5399 } 5400 5401 /// Turns the given pointer into a constant. 5402 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5403 const void *Ptr) { 5404 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5405 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5406 return llvm::ConstantInt::get(i64, PtrInt); 5407 } 5408 5409 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5410 llvm::NamedMDNode *&GlobalMetadata, 5411 GlobalDecl D, 5412 llvm::GlobalValue *Addr) { 5413 if (!GlobalMetadata) 5414 GlobalMetadata = 5415 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5416 5417 // TODO: should we report variant information for ctors/dtors? 5418 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5419 llvm::ConstantAsMetadata::get(GetPointerConstant( 5420 CGM.getLLVMContext(), D.getDecl()))}; 5421 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5422 } 5423 5424 /// For each function which is declared within an extern "C" region and marked 5425 /// as 'used', but has internal linkage, create an alias from the unmangled 5426 /// name to the mangled name if possible. People expect to be able to refer 5427 /// to such functions with an unmangled name from inline assembly within the 5428 /// same translation unit. 5429 void CodeGenModule::EmitStaticExternCAliases() { 5430 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5431 return; 5432 for (auto &I : StaticExternCValues) { 5433 IdentifierInfo *Name = I.first; 5434 llvm::GlobalValue *Val = I.second; 5435 if (Val && !getModule().getNamedValue(Name->getName())) 5436 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5437 } 5438 } 5439 5440 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5441 GlobalDecl &Result) const { 5442 auto Res = Manglings.find(MangledName); 5443 if (Res == Manglings.end()) 5444 return false; 5445 Result = Res->getValue(); 5446 return true; 5447 } 5448 5449 /// Emits metadata nodes associating all the global values in the 5450 /// current module with the Decls they came from. This is useful for 5451 /// projects using IR gen as a subroutine. 5452 /// 5453 /// Since there's currently no way to associate an MDNode directly 5454 /// with an llvm::GlobalValue, we create a global named metadata 5455 /// with the name 'clang.global.decl.ptrs'. 5456 void CodeGenModule::EmitDeclMetadata() { 5457 llvm::NamedMDNode *GlobalMetadata = nullptr; 5458 5459 for (auto &I : MangledDeclNames) { 5460 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5461 // Some mangled names don't necessarily have an associated GlobalValue 5462 // in this module, e.g. if we mangled it for DebugInfo. 5463 if (Addr) 5464 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5465 } 5466 } 5467 5468 /// Emits metadata nodes for all the local variables in the current 5469 /// function. 5470 void CodeGenFunction::EmitDeclMetadata() { 5471 if (LocalDeclMap.empty()) return; 5472 5473 llvm::LLVMContext &Context = getLLVMContext(); 5474 5475 // Find the unique metadata ID for this name. 5476 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5477 5478 llvm::NamedMDNode *GlobalMetadata = nullptr; 5479 5480 for (auto &I : LocalDeclMap) { 5481 const Decl *D = I.first; 5482 llvm::Value *Addr = I.second.getPointer(); 5483 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5484 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5485 Alloca->setMetadata( 5486 DeclPtrKind, llvm::MDNode::get( 5487 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5488 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5489 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5490 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5491 } 5492 } 5493 } 5494 5495 void CodeGenModule::EmitVersionIdentMetadata() { 5496 llvm::NamedMDNode *IdentMetadata = 5497 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5498 std::string Version = getClangFullVersion(); 5499 llvm::LLVMContext &Ctx = TheModule.getContext(); 5500 5501 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5502 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5503 } 5504 5505 void CodeGenModule::EmitCommandLineMetadata() { 5506 llvm::NamedMDNode *CommandLineMetadata = 5507 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5508 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5509 llvm::LLVMContext &Ctx = TheModule.getContext(); 5510 5511 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5512 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5513 } 5514 5515 void CodeGenModule::EmitTargetMetadata() { 5516 // Warning, new MangledDeclNames may be appended within this loop. 5517 // We rely on MapVector insertions adding new elements to the end 5518 // of the container. 5519 // FIXME: Move this loop into the one target that needs it, and only 5520 // loop over those declarations for which we couldn't emit the target 5521 // metadata when we emitted the declaration. 5522 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5523 auto Val = *(MangledDeclNames.begin() + I); 5524 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5525 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5526 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5527 } 5528 } 5529 5530 void CodeGenModule::EmitCoverageFile() { 5531 if (getCodeGenOpts().CoverageDataFile.empty() && 5532 getCodeGenOpts().CoverageNotesFile.empty()) 5533 return; 5534 5535 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5536 if (!CUNode) 5537 return; 5538 5539 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5540 llvm::LLVMContext &Ctx = TheModule.getContext(); 5541 auto *CoverageDataFile = 5542 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5543 auto *CoverageNotesFile = 5544 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5545 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5546 llvm::MDNode *CU = CUNode->getOperand(i); 5547 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5548 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5549 } 5550 } 5551 5552 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5553 // Sema has checked that all uuid strings are of the form 5554 // "12345678-1234-1234-1234-1234567890ab". 5555 assert(Uuid.size() == 36); 5556 for (unsigned i = 0; i < 36; ++i) { 5557 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5558 else assert(isHexDigit(Uuid[i])); 5559 } 5560 5561 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5562 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5563 5564 llvm::Constant *Field3[8]; 5565 for (unsigned Idx = 0; Idx < 8; ++Idx) 5566 Field3[Idx] = llvm::ConstantInt::get( 5567 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5568 5569 llvm::Constant *Fields[4] = { 5570 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5571 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5572 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5573 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5574 }; 5575 5576 return llvm::ConstantStruct::getAnon(Fields); 5577 } 5578 5579 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5580 bool ForEH) { 5581 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5582 // FIXME: should we even be calling this method if RTTI is disabled 5583 // and it's not for EH? 5584 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5585 return llvm::Constant::getNullValue(Int8PtrTy); 5586 5587 if (ForEH && Ty->isObjCObjectPointerType() && 5588 LangOpts.ObjCRuntime.isGNUFamily()) 5589 return ObjCRuntime->GetEHType(Ty); 5590 5591 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5592 } 5593 5594 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5595 // Do not emit threadprivates in simd-only mode. 5596 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5597 return; 5598 for (auto RefExpr : D->varlists()) { 5599 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5600 bool PerformInit = 5601 VD->getAnyInitializer() && 5602 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5603 /*ForRef=*/false); 5604 5605 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5606 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5607 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5608 CXXGlobalInits.push_back(InitFunction); 5609 } 5610 } 5611 5612 llvm::Metadata * 5613 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5614 StringRef Suffix) { 5615 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5616 if (InternalId) 5617 return InternalId; 5618 5619 if (isExternallyVisible(T->getLinkage())) { 5620 std::string OutName; 5621 llvm::raw_string_ostream Out(OutName); 5622 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5623 Out << Suffix; 5624 5625 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5626 } else { 5627 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5628 llvm::ArrayRef<llvm::Metadata *>()); 5629 } 5630 5631 return InternalId; 5632 } 5633 5634 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5635 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5636 } 5637 5638 llvm::Metadata * 5639 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5640 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5641 } 5642 5643 // Generalize pointer types to a void pointer with the qualifiers of the 5644 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5645 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5646 // 'void *'. 5647 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5648 if (!Ty->isPointerType()) 5649 return Ty; 5650 5651 return Ctx.getPointerType( 5652 QualType(Ctx.VoidTy).withCVRQualifiers( 5653 Ty->getPointeeType().getCVRQualifiers())); 5654 } 5655 5656 // Apply type generalization to a FunctionType's return and argument types 5657 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5658 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5659 SmallVector<QualType, 8> GeneralizedParams; 5660 for (auto &Param : FnType->param_types()) 5661 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5662 5663 return Ctx.getFunctionType( 5664 GeneralizeType(Ctx, FnType->getReturnType()), 5665 GeneralizedParams, FnType->getExtProtoInfo()); 5666 } 5667 5668 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5669 return Ctx.getFunctionNoProtoType( 5670 GeneralizeType(Ctx, FnType->getReturnType())); 5671 5672 llvm_unreachable("Encountered unknown FunctionType"); 5673 } 5674 5675 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5676 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5677 GeneralizedMetadataIdMap, ".generalized"); 5678 } 5679 5680 /// Returns whether this module needs the "all-vtables" type identifier. 5681 bool CodeGenModule::NeedAllVtablesTypeId() const { 5682 // Returns true if at least one of vtable-based CFI checkers is enabled and 5683 // is not in the trapping mode. 5684 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5685 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5686 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5687 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5688 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5689 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5690 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5691 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5692 } 5693 5694 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5695 CharUnits Offset, 5696 const CXXRecordDecl *RD) { 5697 llvm::Metadata *MD = 5698 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5699 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5700 5701 if (CodeGenOpts.SanitizeCfiCrossDso) 5702 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5703 VTable->addTypeMetadata(Offset.getQuantity(), 5704 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5705 5706 if (NeedAllVtablesTypeId()) { 5707 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5708 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5709 } 5710 } 5711 5712 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5713 assert(TD != nullptr); 5714 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5715 5716 ParsedAttr.Features.erase( 5717 llvm::remove_if(ParsedAttr.Features, 5718 [&](const std::string &Feat) { 5719 return !Target.isValidFeatureName( 5720 StringRef{Feat}.substr(1)); 5721 }), 5722 ParsedAttr.Features.end()); 5723 return ParsedAttr; 5724 } 5725 5726 5727 // Fills in the supplied string map with the set of target features for the 5728 // passed in function. 5729 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5730 GlobalDecl GD) { 5731 StringRef TargetCPU = Target.getTargetOpts().CPU; 5732 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 5733 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5734 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5735 5736 // Make a copy of the features as passed on the command line into the 5737 // beginning of the additional features from the function to override. 5738 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5739 Target.getTargetOpts().FeaturesAsWritten.begin(), 5740 Target.getTargetOpts().FeaturesAsWritten.end()); 5741 5742 if (ParsedAttr.Architecture != "" && 5743 Target.isValidCPUName(ParsedAttr.Architecture)) 5744 TargetCPU = ParsedAttr.Architecture; 5745 5746 // Now populate the feature map, first with the TargetCPU which is either 5747 // the default or a new one from the target attribute string. Then we'll use 5748 // the passed in features (FeaturesAsWritten) along with the new ones from 5749 // the attribute. 5750 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5751 ParsedAttr.Features); 5752 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5753 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5754 Target.getCPUSpecificCPUDispatchFeatures( 5755 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); 5756 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5757 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5758 } else { 5759 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5760 Target.getTargetOpts().Features); 5761 } 5762 } 5763 5764 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5765 if (!SanStats) 5766 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5767 5768 return *SanStats; 5769 } 5770 llvm::Value * 5771 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5772 CodeGenFunction &CGF) { 5773 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5774 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5775 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5776 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5777 "__translate_sampler_initializer"), 5778 {C}); 5779 } 5780