1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/StringSwitch.h" 53 #include "llvm/Analysis/TargetLibraryInfo.h" 54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 55 #include "llvm/IR/AttributeMask.h" 56 #include "llvm/IR/CallingConv.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/ProfileSummary.h" 62 #include "llvm/ProfileData/InstrProfReader.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/Support/CRC.h" 65 #include "llvm/Support/CodeGen.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/ConvertUTF.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/TimeProfiler.h" 70 #include "llvm/Support/xxhash.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include "llvm/TargetParser/X86TargetParser.h" 73 #include <optional> 74 75 using namespace clang; 76 using namespace CodeGen; 77 78 static llvm::cl::opt<bool> LimitedCoverage( 79 "limited-coverage-experimental", llvm::cl::Hidden, 80 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 81 82 static const char AnnotationSection[] = "llvm.metadata"; 83 84 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 85 switch (CGM.getContext().getCXXABIKind()) { 86 case TargetCXXABI::AppleARM64: 87 case TargetCXXABI::Fuchsia: 88 case TargetCXXABI::GenericAArch64: 89 case TargetCXXABI::GenericARM: 90 case TargetCXXABI::iOS: 91 case TargetCXXABI::WatchOS: 92 case TargetCXXABI::GenericMIPS: 93 case TargetCXXABI::GenericItanium: 94 case TargetCXXABI::WebAssembly: 95 case TargetCXXABI::XL: 96 return CreateItaniumCXXABI(CGM); 97 case TargetCXXABI::Microsoft: 98 return CreateMicrosoftCXXABI(CGM); 99 } 100 101 llvm_unreachable("invalid C++ ABI kind"); 102 } 103 104 static std::unique_ptr<TargetCodeGenInfo> 105 createTargetCodeGenInfo(CodeGenModule &CGM) { 106 const TargetInfo &Target = CGM.getTarget(); 107 const llvm::Triple &Triple = Target.getTriple(); 108 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 109 110 switch (Triple.getArch()) { 111 default: 112 return createDefaultTargetCodeGenInfo(CGM); 113 114 case llvm::Triple::le32: 115 return createPNaClTargetCodeGenInfo(CGM); 116 case llvm::Triple::m68k: 117 return createM68kTargetCodeGenInfo(CGM); 118 case llvm::Triple::mips: 119 case llvm::Triple::mipsel: 120 if (Triple.getOS() == llvm::Triple::NaCl) 121 return createPNaClTargetCodeGenInfo(CGM); 122 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 123 124 case llvm::Triple::mips64: 125 case llvm::Triple::mips64el: 126 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 127 128 case llvm::Triple::avr: { 129 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 130 // on avrtiny. For passing return value, R18~R25 are used on avr, and 131 // R22~R25 are used on avrtiny. 132 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 133 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 134 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 135 } 136 137 case llvm::Triple::aarch64: 138 case llvm::Triple::aarch64_32: 139 case llvm::Triple::aarch64_be: { 140 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 141 if (Target.getABI() == "darwinpcs") 142 Kind = AArch64ABIKind::DarwinPCS; 143 else if (Triple.isOSWindows()) 144 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 145 146 return createAArch64TargetCodeGenInfo(CGM, Kind); 147 } 148 149 case llvm::Triple::wasm32: 150 case llvm::Triple::wasm64: { 151 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 152 if (Target.getABI() == "experimental-mv") 153 Kind = WebAssemblyABIKind::ExperimentalMV; 154 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 155 } 156 157 case llvm::Triple::arm: 158 case llvm::Triple::armeb: 159 case llvm::Triple::thumb: 160 case llvm::Triple::thumbeb: { 161 if (Triple.getOS() == llvm::Triple::Win32) 162 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 163 164 ARMABIKind Kind = ARMABIKind::AAPCS; 165 StringRef ABIStr = Target.getABI(); 166 if (ABIStr == "apcs-gnu") 167 Kind = ARMABIKind::APCS; 168 else if (ABIStr == "aapcs16") 169 Kind = ARMABIKind::AAPCS16_VFP; 170 else if (CodeGenOpts.FloatABI == "hard" || 171 (CodeGenOpts.FloatABI != "soft" && 172 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 173 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 174 Triple.getEnvironment() == llvm::Triple::EABIHF))) 175 Kind = ARMABIKind::AAPCS_VFP; 176 177 return createARMTargetCodeGenInfo(CGM, Kind); 178 } 179 180 case llvm::Triple::ppc: { 181 if (Triple.isOSAIX()) 182 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 183 184 bool IsSoftFloat = 185 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 186 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 187 } 188 case llvm::Triple::ppcle: { 189 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 190 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 191 } 192 case llvm::Triple::ppc64: 193 if (Triple.isOSAIX()) 194 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 195 196 if (Triple.isOSBinFormatELF()) { 197 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 198 if (Target.getABI() == "elfv2") 199 Kind = PPC64_SVR4_ABIKind::ELFv2; 200 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 201 202 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 203 } 204 return createPPC64TargetCodeGenInfo(CGM); 205 case llvm::Triple::ppc64le: { 206 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 207 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 208 if (Target.getABI() == "elfv1") 209 Kind = PPC64_SVR4_ABIKind::ELFv1; 210 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 211 212 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 213 } 214 215 case llvm::Triple::nvptx: 216 case llvm::Triple::nvptx64: 217 return createNVPTXTargetCodeGenInfo(CGM); 218 219 case llvm::Triple::msp430: 220 return createMSP430TargetCodeGenInfo(CGM); 221 222 case llvm::Triple::riscv32: 223 case llvm::Triple::riscv64: { 224 StringRef ABIStr = Target.getABI(); 225 unsigned XLen = Target.getPointerWidth(LangAS::Default); 226 unsigned ABIFLen = 0; 227 if (ABIStr.endswith("f")) 228 ABIFLen = 32; 229 else if (ABIStr.endswith("d")) 230 ABIFLen = 64; 231 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen); 232 } 233 234 case llvm::Triple::systemz: { 235 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 236 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 237 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 238 } 239 240 case llvm::Triple::tce: 241 case llvm::Triple::tcele: 242 return createTCETargetCodeGenInfo(CGM); 243 244 case llvm::Triple::x86: { 245 bool IsDarwinVectorABI = Triple.isOSDarwin(); 246 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 247 248 if (Triple.getOS() == llvm::Triple::Win32) { 249 return createWinX86_32TargetCodeGenInfo( 250 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 251 CodeGenOpts.NumRegisterParameters); 252 } 253 return createX86_32TargetCodeGenInfo( 254 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 255 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 256 } 257 258 case llvm::Triple::x86_64: { 259 StringRef ABI = Target.getABI(); 260 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 261 : ABI == "avx" ? X86AVXABILevel::AVX 262 : X86AVXABILevel::None); 263 264 switch (Triple.getOS()) { 265 case llvm::Triple::Win32: 266 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 267 default: 268 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 269 } 270 } 271 case llvm::Triple::hexagon: 272 return createHexagonTargetCodeGenInfo(CGM); 273 case llvm::Triple::lanai: 274 return createLanaiTargetCodeGenInfo(CGM); 275 case llvm::Triple::r600: 276 return createAMDGPUTargetCodeGenInfo(CGM); 277 case llvm::Triple::amdgcn: 278 return createAMDGPUTargetCodeGenInfo(CGM); 279 case llvm::Triple::sparc: 280 return createSparcV8TargetCodeGenInfo(CGM); 281 case llvm::Triple::sparcv9: 282 return createSparcV9TargetCodeGenInfo(CGM); 283 case llvm::Triple::xcore: 284 return createXCoreTargetCodeGenInfo(CGM); 285 case llvm::Triple::arc: 286 return createARCTargetCodeGenInfo(CGM); 287 case llvm::Triple::spir: 288 case llvm::Triple::spir64: 289 return createCommonSPIRTargetCodeGenInfo(CGM); 290 case llvm::Triple::spirv32: 291 case llvm::Triple::spirv64: 292 return createSPIRVTargetCodeGenInfo(CGM); 293 case llvm::Triple::ve: 294 return createVETargetCodeGenInfo(CGM); 295 case llvm::Triple::csky: { 296 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 297 bool hasFP64 = 298 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 299 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 300 : hasFP64 ? 64 301 : 32); 302 } 303 case llvm::Triple::bpfeb: 304 case llvm::Triple::bpfel: 305 return createBPFTargetCodeGenInfo(CGM); 306 case llvm::Triple::loongarch32: 307 case llvm::Triple::loongarch64: { 308 StringRef ABIStr = Target.getABI(); 309 unsigned ABIFRLen = 0; 310 if (ABIStr.endswith("f")) 311 ABIFRLen = 32; 312 else if (ABIStr.endswith("d")) 313 ABIFRLen = 64; 314 return createLoongArchTargetCodeGenInfo( 315 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 316 } 317 } 318 } 319 320 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 321 if (!TheTargetCodeGenInfo) 322 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 323 return *TheTargetCodeGenInfo; 324 } 325 326 CodeGenModule::CodeGenModule(ASTContext &C, 327 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 328 const HeaderSearchOptions &HSO, 329 const PreprocessorOptions &PPO, 330 const CodeGenOptions &CGO, llvm::Module &M, 331 DiagnosticsEngine &diags, 332 CoverageSourceInfo *CoverageInfo) 333 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 334 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 335 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 336 VMContext(M.getContext()), Types(*this), VTables(*this), 337 SanitizerMD(new SanitizerMetadata(*this)) { 338 339 // Initialize the type cache. 340 llvm::LLVMContext &LLVMContext = M.getContext(); 341 VoidTy = llvm::Type::getVoidTy(LLVMContext); 342 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 343 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 344 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 345 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 346 HalfTy = llvm::Type::getHalfTy(LLVMContext); 347 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 348 FloatTy = llvm::Type::getFloatTy(LLVMContext); 349 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 350 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 351 PointerAlignInBytes = 352 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 353 .getQuantity(); 354 SizeSizeInBytes = 355 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 356 IntAlignInBytes = 357 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 358 CharTy = 359 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 360 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 361 IntPtrTy = llvm::IntegerType::get(LLVMContext, 362 C.getTargetInfo().getMaxPointerWidth()); 363 Int8PtrTy = Int8Ty->getPointerTo(0); 364 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 365 const llvm::DataLayout &DL = M.getDataLayout(); 366 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 367 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 368 ConstGlobalsPtrTy = Int8Ty->getPointerTo( 369 C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 370 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 371 372 // Build C++20 Module initializers. 373 // TODO: Add Microsoft here once we know the mangling required for the 374 // initializers. 375 CXX20ModuleInits = 376 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 377 ItaniumMangleContext::MK_Itanium; 378 379 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 380 381 if (LangOpts.ObjC) 382 createObjCRuntime(); 383 if (LangOpts.OpenCL) 384 createOpenCLRuntime(); 385 if (LangOpts.OpenMP) 386 createOpenMPRuntime(); 387 if (LangOpts.CUDA) 388 createCUDARuntime(); 389 if (LangOpts.HLSL) 390 createHLSLRuntime(); 391 392 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 393 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 394 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 395 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 396 getCXXABI().getMangleContext())); 397 398 // If debug info or coverage generation is enabled, create the CGDebugInfo 399 // object. 400 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 401 CodeGenOpts.CoverageNotesFile.size() || 402 CodeGenOpts.CoverageDataFile.size()) 403 DebugInfo.reset(new CGDebugInfo(*this)); 404 405 Block.GlobalUniqueCount = 0; 406 407 if (C.getLangOpts().ObjC) 408 ObjCData.reset(new ObjCEntrypoints()); 409 410 if (CodeGenOpts.hasProfileClangUse()) { 411 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 412 CodeGenOpts.ProfileInstrumentUsePath, *FS, 413 CodeGenOpts.ProfileRemappingFile); 414 // We're checking for profile read errors in CompilerInvocation, so if 415 // there was an error it should've already been caught. If it hasn't been 416 // somehow, trip an assertion. 417 assert(ReaderOrErr); 418 PGOReader = std::move(ReaderOrErr.get()); 419 } 420 421 // If coverage mapping generation is enabled, create the 422 // CoverageMappingModuleGen object. 423 if (CodeGenOpts.CoverageMapping) 424 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 425 426 // Generate the module name hash here if needed. 427 if (CodeGenOpts.UniqueInternalLinkageNames && 428 !getModule().getSourceFileName().empty()) { 429 std::string Path = getModule().getSourceFileName(); 430 // Check if a path substitution is needed from the MacroPrefixMap. 431 for (const auto &Entry : LangOpts.MacroPrefixMap) 432 if (Path.rfind(Entry.first, 0) != std::string::npos) { 433 Path = Entry.second + Path.substr(Entry.first.size()); 434 break; 435 } 436 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 437 } 438 } 439 440 CodeGenModule::~CodeGenModule() {} 441 442 void CodeGenModule::createObjCRuntime() { 443 // This is just isGNUFamily(), but we want to force implementors of 444 // new ABIs to decide how best to do this. 445 switch (LangOpts.ObjCRuntime.getKind()) { 446 case ObjCRuntime::GNUstep: 447 case ObjCRuntime::GCC: 448 case ObjCRuntime::ObjFW: 449 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 450 return; 451 452 case ObjCRuntime::FragileMacOSX: 453 case ObjCRuntime::MacOSX: 454 case ObjCRuntime::iOS: 455 case ObjCRuntime::WatchOS: 456 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 457 return; 458 } 459 llvm_unreachable("bad runtime kind"); 460 } 461 462 void CodeGenModule::createOpenCLRuntime() { 463 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 464 } 465 466 void CodeGenModule::createOpenMPRuntime() { 467 // Select a specialized code generation class based on the target, if any. 468 // If it does not exist use the default implementation. 469 switch (getTriple().getArch()) { 470 case llvm::Triple::nvptx: 471 case llvm::Triple::nvptx64: 472 case llvm::Triple::amdgcn: 473 assert(getLangOpts().OpenMPIsTargetDevice && 474 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 475 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 476 break; 477 default: 478 if (LangOpts.OpenMPSimd) 479 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 480 else 481 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 482 break; 483 } 484 } 485 486 void CodeGenModule::createCUDARuntime() { 487 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 488 } 489 490 void CodeGenModule::createHLSLRuntime() { 491 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 492 } 493 494 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 495 Replacements[Name] = C; 496 } 497 498 void CodeGenModule::applyReplacements() { 499 for (auto &I : Replacements) { 500 StringRef MangledName = I.first; 501 llvm::Constant *Replacement = I.second; 502 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 503 if (!Entry) 504 continue; 505 auto *OldF = cast<llvm::Function>(Entry); 506 auto *NewF = dyn_cast<llvm::Function>(Replacement); 507 if (!NewF) { 508 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 509 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 510 } else { 511 auto *CE = cast<llvm::ConstantExpr>(Replacement); 512 assert(CE->getOpcode() == llvm::Instruction::BitCast || 513 CE->getOpcode() == llvm::Instruction::GetElementPtr); 514 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 515 } 516 } 517 518 // Replace old with new, but keep the old order. 519 OldF->replaceAllUsesWith(Replacement); 520 if (NewF) { 521 NewF->removeFromParent(); 522 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 523 NewF); 524 } 525 OldF->eraseFromParent(); 526 } 527 } 528 529 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 530 GlobalValReplacements.push_back(std::make_pair(GV, C)); 531 } 532 533 void CodeGenModule::applyGlobalValReplacements() { 534 for (auto &I : GlobalValReplacements) { 535 llvm::GlobalValue *GV = I.first; 536 llvm::Constant *C = I.second; 537 538 GV->replaceAllUsesWith(C); 539 GV->eraseFromParent(); 540 } 541 } 542 543 // This is only used in aliases that we created and we know they have a 544 // linear structure. 545 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 546 const llvm::Constant *C; 547 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 548 C = GA->getAliasee(); 549 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 550 C = GI->getResolver(); 551 else 552 return GV; 553 554 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 555 if (!AliaseeGV) 556 return nullptr; 557 558 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 559 if (FinalGV == GV) 560 return nullptr; 561 562 return FinalGV; 563 } 564 565 static bool checkAliasedGlobal( 566 DiagnosticsEngine &Diags, SourceLocation Location, bool IsIFunc, 567 const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 568 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 569 SourceRange AliasRange) { 570 GV = getAliasedGlobal(Alias); 571 if (!GV) { 572 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 573 return false; 574 } 575 576 if (GV->isDeclaration()) { 577 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 578 Diags.Report(Location, diag::note_alias_requires_mangled_name) 579 << IsIFunc << IsIFunc; 580 // Provide a note if the given function is not found and exists as a 581 // mangled name. 582 for (const auto &[Decl, Name] : MangledDeclNames) { 583 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 584 if (ND->getName() == GV->getName()) { 585 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 586 << Name 587 << FixItHint::CreateReplacement( 588 AliasRange, 589 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 590 .str()); 591 } 592 } 593 } 594 return false; 595 } 596 597 if (IsIFunc) { 598 // Check resolver function type. 599 const auto *F = dyn_cast<llvm::Function>(GV); 600 if (!F) { 601 Diags.Report(Location, diag::err_alias_to_undefined) 602 << IsIFunc << IsIFunc; 603 return false; 604 } 605 606 llvm::FunctionType *FTy = F->getFunctionType(); 607 if (!FTy->getReturnType()->isPointerTy()) { 608 Diags.Report(Location, diag::err_ifunc_resolver_return); 609 return false; 610 } 611 } 612 613 return true; 614 } 615 616 void CodeGenModule::checkAliases() { 617 // Check if the constructed aliases are well formed. It is really unfortunate 618 // that we have to do this in CodeGen, but we only construct mangled names 619 // and aliases during codegen. 620 bool Error = false; 621 DiagnosticsEngine &Diags = getDiags(); 622 for (const GlobalDecl &GD : Aliases) { 623 const auto *D = cast<ValueDecl>(GD.getDecl()); 624 SourceLocation Location; 625 SourceRange Range; 626 bool IsIFunc = D->hasAttr<IFuncAttr>(); 627 if (const Attr *A = D->getDefiningAttr()) { 628 Location = A->getLocation(); 629 Range = A->getRange(); 630 } else 631 llvm_unreachable("Not an alias or ifunc?"); 632 633 StringRef MangledName = getMangledName(GD); 634 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 635 const llvm::GlobalValue *GV = nullptr; 636 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV, 637 MangledDeclNames, Range)) { 638 Error = true; 639 continue; 640 } 641 642 llvm::Constant *Aliasee = 643 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 644 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 645 646 llvm::GlobalValue *AliaseeGV; 647 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 648 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 649 else 650 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 651 652 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 653 StringRef AliasSection = SA->getName(); 654 if (AliasSection != AliaseeGV->getSection()) 655 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 656 << AliasSection << IsIFunc << IsIFunc; 657 } 658 659 // We have to handle alias to weak aliases in here. LLVM itself disallows 660 // this since the object semantics would not match the IL one. For 661 // compatibility with gcc we implement it by just pointing the alias 662 // to its aliasee's aliasee. We also warn, since the user is probably 663 // expecting the link to be weak. 664 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 665 if (GA->isInterposable()) { 666 Diags.Report(Location, diag::warn_alias_to_weak_alias) 667 << GV->getName() << GA->getName() << IsIFunc; 668 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 669 GA->getAliasee(), Alias->getType()); 670 671 if (IsIFunc) 672 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 673 else 674 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 675 } 676 } 677 } 678 if (!Error) 679 return; 680 681 for (const GlobalDecl &GD : Aliases) { 682 StringRef MangledName = getMangledName(GD); 683 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 684 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 685 Alias->eraseFromParent(); 686 } 687 } 688 689 void CodeGenModule::clear() { 690 DeferredDeclsToEmit.clear(); 691 EmittedDeferredDecls.clear(); 692 if (OpenMPRuntime) 693 OpenMPRuntime->clear(); 694 } 695 696 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 697 StringRef MainFile) { 698 if (!hasDiagnostics()) 699 return; 700 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 701 if (MainFile.empty()) 702 MainFile = "<stdin>"; 703 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 704 } else { 705 if (Mismatched > 0) 706 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 707 708 if (Missing > 0) 709 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 710 } 711 } 712 713 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 714 llvm::Module &M) { 715 if (!LO.VisibilityFromDLLStorageClass) 716 return; 717 718 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 719 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 720 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 721 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 722 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 723 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 724 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 725 CodeGenModule::GetLLVMVisibility( 726 LO.getExternDeclNoDLLStorageClassVisibility()); 727 728 for (llvm::GlobalValue &GV : M.global_values()) { 729 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 730 continue; 731 732 // Reset DSO locality before setting the visibility. This removes 733 // any effects that visibility options and annotations may have 734 // had on the DSO locality. Setting the visibility will implicitly set 735 // appropriate globals to DSO Local; however, this will be pessimistic 736 // w.r.t. to the normal compiler IRGen. 737 GV.setDSOLocal(false); 738 739 if (GV.isDeclarationForLinker()) { 740 GV.setVisibility(GV.getDLLStorageClass() == 741 llvm::GlobalValue::DLLImportStorageClass 742 ? ExternDeclDLLImportVisibility 743 : ExternDeclNoDLLStorageClassVisibility); 744 } else { 745 GV.setVisibility(GV.getDLLStorageClass() == 746 llvm::GlobalValue::DLLExportStorageClass 747 ? DLLExportVisibility 748 : NoDLLStorageClassVisibility); 749 } 750 751 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 752 } 753 } 754 755 void CodeGenModule::Release() { 756 Module *Primary = getContext().getCurrentNamedModule(); 757 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 758 EmitModuleInitializers(Primary); 759 EmitDeferred(); 760 DeferredDecls.insert(EmittedDeferredDecls.begin(), 761 EmittedDeferredDecls.end()); 762 EmittedDeferredDecls.clear(); 763 EmitVTablesOpportunistically(); 764 applyGlobalValReplacements(); 765 applyReplacements(); 766 emitMultiVersionFunctions(); 767 768 if (Context.getLangOpts().IncrementalExtensions && 769 GlobalTopLevelStmtBlockInFlight.first) { 770 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 771 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 772 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 773 } 774 775 // Module implementations are initialized the same way as a regular TU that 776 // imports one or more modules. 777 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 778 EmitCXXModuleInitFunc(Primary); 779 else 780 EmitCXXGlobalInitFunc(); 781 EmitCXXGlobalCleanUpFunc(); 782 registerGlobalDtorsWithAtExit(); 783 EmitCXXThreadLocalInitFunc(); 784 if (ObjCRuntime) 785 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 786 AddGlobalCtor(ObjCInitFunction); 787 if (Context.getLangOpts().CUDA && CUDARuntime) { 788 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 789 AddGlobalCtor(CudaCtorFunction); 790 } 791 if (OpenMPRuntime) { 792 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 793 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 794 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 795 } 796 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 797 OpenMPRuntime->clear(); 798 } 799 if (PGOReader) { 800 getModule().setProfileSummary( 801 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 802 llvm::ProfileSummary::PSK_Instr); 803 if (PGOStats.hasDiagnostics()) 804 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 805 } 806 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 807 return L.LexOrder < R.LexOrder; 808 }); 809 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 810 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 811 EmitGlobalAnnotations(); 812 EmitStaticExternCAliases(); 813 checkAliases(); 814 EmitDeferredUnusedCoverageMappings(); 815 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 816 if (CoverageMapping) 817 CoverageMapping->emit(); 818 if (CodeGenOpts.SanitizeCfiCrossDso) { 819 CodeGenFunction(*this).EmitCfiCheckFail(); 820 CodeGenFunction(*this).EmitCfiCheckStub(); 821 } 822 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 823 finalizeKCFITypes(); 824 emitAtAvailableLinkGuard(); 825 if (Context.getTargetInfo().getTriple().isWasm()) 826 EmitMainVoidAlias(); 827 828 if (getTriple().isAMDGPU()) { 829 // Emit amdgpu_code_object_version module flag, which is code object version 830 // times 100. 831 if (getTarget().getTargetOpts().CodeObjectVersion != 832 TargetOptions::COV_None) { 833 getModule().addModuleFlag(llvm::Module::Error, 834 "amdgpu_code_object_version", 835 getTarget().getTargetOpts().CodeObjectVersion); 836 } 837 838 // Currently, "-mprintf-kind" option is only supported for HIP 839 if (LangOpts.HIP) { 840 auto *MDStr = llvm::MDString::get( 841 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 842 TargetOptions::AMDGPUPrintfKind::Hostcall) 843 ? "hostcall" 844 : "buffered"); 845 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 846 MDStr); 847 } 848 } 849 850 // Emit a global array containing all external kernels or device variables 851 // used by host functions and mark it as used for CUDA/HIP. This is necessary 852 // to get kernels or device variables in archives linked in even if these 853 // kernels or device variables are only used in host functions. 854 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 855 SmallVector<llvm::Constant *, 8> UsedArray; 856 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 857 GlobalDecl GD; 858 if (auto *FD = dyn_cast<FunctionDecl>(D)) 859 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 860 else 861 GD = GlobalDecl(D); 862 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 863 GetAddrOfGlobal(GD), Int8PtrTy)); 864 } 865 866 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 867 868 auto *GV = new llvm::GlobalVariable( 869 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 870 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 871 addCompilerUsedGlobal(GV); 872 } 873 874 emitLLVMUsed(); 875 if (SanStats) 876 SanStats->finish(); 877 878 if (CodeGenOpts.Autolink && 879 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 880 EmitModuleLinkOptions(); 881 } 882 883 // On ELF we pass the dependent library specifiers directly to the linker 884 // without manipulating them. This is in contrast to other platforms where 885 // they are mapped to a specific linker option by the compiler. This 886 // difference is a result of the greater variety of ELF linkers and the fact 887 // that ELF linkers tend to handle libraries in a more complicated fashion 888 // than on other platforms. This forces us to defer handling the dependent 889 // libs to the linker. 890 // 891 // CUDA/HIP device and host libraries are different. Currently there is no 892 // way to differentiate dependent libraries for host or device. Existing 893 // usage of #pragma comment(lib, *) is intended for host libraries on 894 // Windows. Therefore emit llvm.dependent-libraries only for host. 895 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 896 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 897 for (auto *MD : ELFDependentLibraries) 898 NMD->addOperand(MD); 899 } 900 901 // Record mregparm value now so it is visible through rest of codegen. 902 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 903 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 904 CodeGenOpts.NumRegisterParameters); 905 906 if (CodeGenOpts.DwarfVersion) { 907 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 908 CodeGenOpts.DwarfVersion); 909 } 910 911 if (CodeGenOpts.Dwarf64) 912 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 913 914 if (Context.getLangOpts().SemanticInterposition) 915 // Require various optimization to respect semantic interposition. 916 getModule().setSemanticInterposition(true); 917 918 if (CodeGenOpts.EmitCodeView) { 919 // Indicate that we want CodeView in the metadata. 920 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 921 } 922 if (CodeGenOpts.CodeViewGHash) { 923 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 924 } 925 if (CodeGenOpts.ControlFlowGuard) { 926 // Function ID tables and checks for Control Flow Guard (cfguard=2). 927 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 928 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 929 // Function ID tables for Control Flow Guard (cfguard=1). 930 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 931 } 932 if (CodeGenOpts.EHContGuard) { 933 // Function ID tables for EH Continuation Guard. 934 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 935 } 936 if (Context.getLangOpts().Kernel) { 937 // Note if we are compiling with /kernel. 938 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 939 } 940 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 941 // We don't support LTO with 2 with different StrictVTablePointers 942 // FIXME: we could support it by stripping all the information introduced 943 // by StrictVTablePointers. 944 945 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 946 947 llvm::Metadata *Ops[2] = { 948 llvm::MDString::get(VMContext, "StrictVTablePointers"), 949 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 950 llvm::Type::getInt32Ty(VMContext), 1))}; 951 952 getModule().addModuleFlag(llvm::Module::Require, 953 "StrictVTablePointersRequirement", 954 llvm::MDNode::get(VMContext, Ops)); 955 } 956 if (getModuleDebugInfo()) 957 // We support a single version in the linked module. The LLVM 958 // parser will drop debug info with a different version number 959 // (and warn about it, too). 960 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 961 llvm::DEBUG_METADATA_VERSION); 962 963 // We need to record the widths of enums and wchar_t, so that we can generate 964 // the correct build attributes in the ARM backend. wchar_size is also used by 965 // TargetLibraryInfo. 966 uint64_t WCharWidth = 967 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 968 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 969 970 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 971 if ( Arch == llvm::Triple::arm 972 || Arch == llvm::Triple::armeb 973 || Arch == llvm::Triple::thumb 974 || Arch == llvm::Triple::thumbeb) { 975 // The minimum width of an enum in bytes 976 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 977 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 978 } 979 980 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 981 StringRef ABIStr = Target.getABI(); 982 llvm::LLVMContext &Ctx = TheModule.getContext(); 983 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 984 llvm::MDString::get(Ctx, ABIStr)); 985 } 986 987 if (CodeGenOpts.SanitizeCfiCrossDso) { 988 // Indicate that we want cross-DSO control flow integrity checks. 989 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 990 } 991 992 if (CodeGenOpts.WholeProgramVTables) { 993 // Indicate whether VFE was enabled for this module, so that the 994 // vcall_visibility metadata added under whole program vtables is handled 995 // appropriately in the optimizer. 996 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 997 CodeGenOpts.VirtualFunctionElimination); 998 } 999 1000 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1001 getModule().addModuleFlag(llvm::Module::Override, 1002 "CFI Canonical Jump Tables", 1003 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1004 } 1005 1006 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1007 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1008 // KCFI assumes patchable-function-prefix is the same for all indirectly 1009 // called functions. Store the expected offset for code generation. 1010 if (CodeGenOpts.PatchableFunctionEntryOffset) 1011 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1012 CodeGenOpts.PatchableFunctionEntryOffset); 1013 } 1014 1015 if (CodeGenOpts.CFProtectionReturn && 1016 Target.checkCFProtectionReturnSupported(getDiags())) { 1017 // Indicate that we want to instrument return control flow protection. 1018 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1019 1); 1020 } 1021 1022 if (CodeGenOpts.CFProtectionBranch && 1023 Target.checkCFProtectionBranchSupported(getDiags())) { 1024 // Indicate that we want to instrument branch control flow protection. 1025 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1026 1); 1027 } 1028 1029 if (CodeGenOpts.FunctionReturnThunks) 1030 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1031 1032 if (CodeGenOpts.IndirectBranchCSPrefix) 1033 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1034 1035 // Add module metadata for return address signing (ignoring 1036 // non-leaf/all) and stack tagging. These are actually turned on by function 1037 // attributes, but we use module metadata to emit build attributes. This is 1038 // needed for LTO, where the function attributes are inside bitcode 1039 // serialised into a global variable by the time build attributes are 1040 // emitted, so we can't access them. LTO objects could be compiled with 1041 // different flags therefore module flags are set to "Min" behavior to achieve 1042 // the same end result of the normal build where e.g BTI is off if any object 1043 // doesn't support it. 1044 if (Context.getTargetInfo().hasFeature("ptrauth") && 1045 LangOpts.getSignReturnAddressScope() != 1046 LangOptions::SignReturnAddressScopeKind::None) 1047 getModule().addModuleFlag(llvm::Module::Override, 1048 "sign-return-address-buildattr", 1); 1049 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1050 getModule().addModuleFlag(llvm::Module::Override, 1051 "tag-stack-memory-buildattr", 1); 1052 1053 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 1054 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 1055 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 1056 Arch == llvm::Triple::aarch64_be) { 1057 if (LangOpts.BranchTargetEnforcement) 1058 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1059 1); 1060 if (LangOpts.hasSignReturnAddress()) 1061 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1062 if (LangOpts.isSignReturnAddressScopeAll()) 1063 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1064 1); 1065 if (!LangOpts.isSignReturnAddressWithAKey()) 1066 getModule().addModuleFlag(llvm::Module::Min, 1067 "sign-return-address-with-bkey", 1); 1068 } 1069 1070 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1071 llvm::LLVMContext &Ctx = TheModule.getContext(); 1072 getModule().addModuleFlag( 1073 llvm::Module::Error, "MemProfProfileFilename", 1074 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1075 } 1076 1077 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1078 // Indicate whether __nvvm_reflect should be configured to flush denormal 1079 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1080 // property.) 1081 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1082 CodeGenOpts.FP32DenormalMode.Output != 1083 llvm::DenormalMode::IEEE); 1084 } 1085 1086 if (LangOpts.EHAsynch) 1087 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1088 1089 // Indicate whether this Module was compiled with -fopenmp 1090 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1091 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1092 if (getLangOpts().OpenMPIsTargetDevice) 1093 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1094 LangOpts.OpenMP); 1095 1096 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1097 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1098 EmitOpenCLMetadata(); 1099 // Emit SPIR version. 1100 if (getTriple().isSPIR()) { 1101 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1102 // opencl.spir.version named metadata. 1103 // C++ for OpenCL has a distinct mapping for version compatibility with 1104 // OpenCL. 1105 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1106 llvm::Metadata *SPIRVerElts[] = { 1107 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1108 Int32Ty, Version / 100)), 1109 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1110 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1111 llvm::NamedMDNode *SPIRVerMD = 1112 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1113 llvm::LLVMContext &Ctx = TheModule.getContext(); 1114 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1115 } 1116 } 1117 1118 // HLSL related end of code gen work items. 1119 if (LangOpts.HLSL) 1120 getHLSLRuntime().finishCodeGen(); 1121 1122 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1123 assert(PLevel < 3 && "Invalid PIC Level"); 1124 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1125 if (Context.getLangOpts().PIE) 1126 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1127 } 1128 1129 if (getCodeGenOpts().CodeModel.size() > 0) { 1130 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1131 .Case("tiny", llvm::CodeModel::Tiny) 1132 .Case("small", llvm::CodeModel::Small) 1133 .Case("kernel", llvm::CodeModel::Kernel) 1134 .Case("medium", llvm::CodeModel::Medium) 1135 .Case("large", llvm::CodeModel::Large) 1136 .Default(~0u); 1137 if (CM != ~0u) { 1138 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1139 getModule().setCodeModel(codeModel); 1140 } 1141 } 1142 1143 if (CodeGenOpts.NoPLT) 1144 getModule().setRtLibUseGOT(); 1145 if (getTriple().isOSBinFormatELF() && 1146 CodeGenOpts.DirectAccessExternalData != 1147 getModule().getDirectAccessExternalData()) { 1148 getModule().setDirectAccessExternalData( 1149 CodeGenOpts.DirectAccessExternalData); 1150 } 1151 if (CodeGenOpts.UnwindTables) 1152 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1153 1154 switch (CodeGenOpts.getFramePointer()) { 1155 case CodeGenOptions::FramePointerKind::None: 1156 // 0 ("none") is the default. 1157 break; 1158 case CodeGenOptions::FramePointerKind::NonLeaf: 1159 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1160 break; 1161 case CodeGenOptions::FramePointerKind::All: 1162 getModule().setFramePointer(llvm::FramePointerKind::All); 1163 break; 1164 } 1165 1166 SimplifyPersonality(); 1167 1168 if (getCodeGenOpts().EmitDeclMetadata) 1169 EmitDeclMetadata(); 1170 1171 if (getCodeGenOpts().CoverageNotesFile.size() || 1172 getCodeGenOpts().CoverageDataFile.size()) 1173 EmitCoverageFile(); 1174 1175 if (CGDebugInfo *DI = getModuleDebugInfo()) 1176 DI->finalize(); 1177 1178 if (getCodeGenOpts().EmitVersionIdentMetadata) 1179 EmitVersionIdentMetadata(); 1180 1181 if (!getCodeGenOpts().RecordCommandLine.empty()) 1182 EmitCommandLineMetadata(); 1183 1184 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1185 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1186 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1187 getModule().setStackProtectorGuardReg( 1188 getCodeGenOpts().StackProtectorGuardReg); 1189 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1190 getModule().setStackProtectorGuardSymbol( 1191 getCodeGenOpts().StackProtectorGuardSymbol); 1192 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1193 getModule().setStackProtectorGuardOffset( 1194 getCodeGenOpts().StackProtectorGuardOffset); 1195 if (getCodeGenOpts().StackAlignment) 1196 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1197 if (getCodeGenOpts().SkipRaxSetup) 1198 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1199 if (getLangOpts().RegCall4) 1200 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1201 1202 if (getContext().getTargetInfo().getMaxTLSAlign()) 1203 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1204 getContext().getTargetInfo().getMaxTLSAlign()); 1205 1206 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1207 1208 EmitBackendOptionsMetadata(getCodeGenOpts()); 1209 1210 // If there is device offloading code embed it in the host now. 1211 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1212 1213 // Set visibility from DLL storage class 1214 // We do this at the end of LLVM IR generation; after any operation 1215 // that might affect the DLL storage class or the visibility, and 1216 // before anything that might act on these. 1217 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1218 } 1219 1220 void CodeGenModule::EmitOpenCLMetadata() { 1221 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1222 // opencl.ocl.version named metadata node. 1223 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 1224 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1225 llvm::Metadata *OCLVerElts[] = { 1226 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1227 Int32Ty, Version / 100)), 1228 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1229 Int32Ty, (Version % 100) / 10))}; 1230 llvm::NamedMDNode *OCLVerMD = 1231 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 1232 llvm::LLVMContext &Ctx = TheModule.getContext(); 1233 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1234 } 1235 1236 void CodeGenModule::EmitBackendOptionsMetadata( 1237 const CodeGenOptions &CodeGenOpts) { 1238 if (getTriple().isRISCV()) { 1239 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1240 CodeGenOpts.SmallDataLimit); 1241 } 1242 } 1243 1244 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1245 // Make sure that this type is translated. 1246 Types.UpdateCompletedType(TD); 1247 } 1248 1249 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1250 // Make sure that this type is translated. 1251 Types.RefreshTypeCacheForClass(RD); 1252 } 1253 1254 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1255 if (!TBAA) 1256 return nullptr; 1257 return TBAA->getTypeInfo(QTy); 1258 } 1259 1260 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1261 if (!TBAA) 1262 return TBAAAccessInfo(); 1263 if (getLangOpts().CUDAIsDevice) { 1264 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1265 // access info. 1266 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1267 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1268 nullptr) 1269 return TBAAAccessInfo(); 1270 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1271 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1272 nullptr) 1273 return TBAAAccessInfo(); 1274 } 1275 } 1276 return TBAA->getAccessInfo(AccessType); 1277 } 1278 1279 TBAAAccessInfo 1280 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1281 if (!TBAA) 1282 return TBAAAccessInfo(); 1283 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1284 } 1285 1286 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1287 if (!TBAA) 1288 return nullptr; 1289 return TBAA->getTBAAStructInfo(QTy); 1290 } 1291 1292 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1293 if (!TBAA) 1294 return nullptr; 1295 return TBAA->getBaseTypeInfo(QTy); 1296 } 1297 1298 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1299 if (!TBAA) 1300 return nullptr; 1301 return TBAA->getAccessTagInfo(Info); 1302 } 1303 1304 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1305 TBAAAccessInfo TargetInfo) { 1306 if (!TBAA) 1307 return TBAAAccessInfo(); 1308 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1309 } 1310 1311 TBAAAccessInfo 1312 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1313 TBAAAccessInfo InfoB) { 1314 if (!TBAA) 1315 return TBAAAccessInfo(); 1316 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1317 } 1318 1319 TBAAAccessInfo 1320 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1321 TBAAAccessInfo SrcInfo) { 1322 if (!TBAA) 1323 return TBAAAccessInfo(); 1324 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1325 } 1326 1327 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1328 TBAAAccessInfo TBAAInfo) { 1329 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1330 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1331 } 1332 1333 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1334 llvm::Instruction *I, const CXXRecordDecl *RD) { 1335 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1336 llvm::MDNode::get(getLLVMContext(), {})); 1337 } 1338 1339 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1340 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1341 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1342 } 1343 1344 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1345 /// specified stmt yet. 1346 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1347 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1348 "cannot compile this %0 yet"); 1349 std::string Msg = Type; 1350 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1351 << Msg << S->getSourceRange(); 1352 } 1353 1354 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1355 /// specified decl yet. 1356 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1357 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1358 "cannot compile this %0 yet"); 1359 std::string Msg = Type; 1360 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1361 } 1362 1363 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1364 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1365 } 1366 1367 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1368 const NamedDecl *D) const { 1369 // Internal definitions always have default visibility. 1370 if (GV->hasLocalLinkage()) { 1371 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1372 return; 1373 } 1374 if (!D) 1375 return; 1376 // Set visibility for definitions, and for declarations if requested globally 1377 // or set explicitly. 1378 LinkageInfo LV = D->getLinkageAndVisibility(); 1379 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1380 // Reject incompatible dlllstorage and visibility annotations. 1381 if (!LV.isVisibilityExplicit()) 1382 return; 1383 if (GV->hasDLLExportStorageClass()) { 1384 if (LV.getVisibility() == HiddenVisibility) 1385 getDiags().Report(D->getLocation(), 1386 diag::err_hidden_visibility_dllexport); 1387 } else if (LV.getVisibility() != DefaultVisibility) { 1388 getDiags().Report(D->getLocation(), 1389 diag::err_non_default_visibility_dllimport); 1390 } 1391 return; 1392 } 1393 1394 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1395 !GV->isDeclarationForLinker()) 1396 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1397 } 1398 1399 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1400 llvm::GlobalValue *GV) { 1401 if (GV->hasLocalLinkage()) 1402 return true; 1403 1404 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1405 return true; 1406 1407 // DLLImport explicitly marks the GV as external. 1408 if (GV->hasDLLImportStorageClass()) 1409 return false; 1410 1411 const llvm::Triple &TT = CGM.getTriple(); 1412 if (TT.isWindowsGNUEnvironment()) { 1413 // In MinGW, variables without DLLImport can still be automatically 1414 // imported from a DLL by the linker; don't mark variables that 1415 // potentially could come from another DLL as DSO local. 1416 1417 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1418 // (and this actually happens in the public interface of libstdc++), so 1419 // such variables can't be marked as DSO local. (Native TLS variables 1420 // can't be dllimported at all, though.) 1421 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1422 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1423 return false; 1424 } 1425 1426 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1427 // remain unresolved in the link, they can be resolved to zero, which is 1428 // outside the current DSO. 1429 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1430 return false; 1431 1432 // Every other GV is local on COFF. 1433 // Make an exception for windows OS in the triple: Some firmware builds use 1434 // *-win32-macho triples. This (accidentally?) produced windows relocations 1435 // without GOT tables in older clang versions; Keep this behaviour. 1436 // FIXME: even thread local variables? 1437 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1438 return true; 1439 1440 // Only handle COFF and ELF for now. 1441 if (!TT.isOSBinFormatELF()) 1442 return false; 1443 1444 // If this is not an executable, don't assume anything is local. 1445 const auto &CGOpts = CGM.getCodeGenOpts(); 1446 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1447 const auto &LOpts = CGM.getLangOpts(); 1448 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1449 // On ELF, if -fno-semantic-interposition is specified and the target 1450 // supports local aliases, there will be neither CC1 1451 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1452 // dso_local on the function if using a local alias is preferable (can avoid 1453 // PLT indirection). 1454 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1455 return false; 1456 return !(CGM.getLangOpts().SemanticInterposition || 1457 CGM.getLangOpts().HalfNoSemanticInterposition); 1458 } 1459 1460 // A definition cannot be preempted from an executable. 1461 if (!GV->isDeclarationForLinker()) 1462 return true; 1463 1464 // Most PIC code sequences that assume that a symbol is local cannot produce a 1465 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1466 // depended, it seems worth it to handle it here. 1467 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1468 return false; 1469 1470 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1471 if (TT.isPPC64()) 1472 return false; 1473 1474 if (CGOpts.DirectAccessExternalData) { 1475 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1476 // for non-thread-local variables. If the symbol is not defined in the 1477 // executable, a copy relocation will be needed at link time. dso_local is 1478 // excluded for thread-local variables because they generally don't support 1479 // copy relocations. 1480 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1481 if (!Var->isThreadLocal()) 1482 return true; 1483 1484 // -fno-pic sets dso_local on a function declaration to allow direct 1485 // accesses when taking its address (similar to a data symbol). If the 1486 // function is not defined in the executable, a canonical PLT entry will be 1487 // needed at link time. -fno-direct-access-external-data can avoid the 1488 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1489 // it could just cause trouble without providing perceptible benefits. 1490 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1491 return true; 1492 } 1493 1494 // If we can use copy relocations we can assume it is local. 1495 1496 // Otherwise don't assume it is local. 1497 return false; 1498 } 1499 1500 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1501 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1502 } 1503 1504 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1505 GlobalDecl GD) const { 1506 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1507 // C++ destructors have a few C++ ABI specific special cases. 1508 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1509 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1510 return; 1511 } 1512 setDLLImportDLLExport(GV, D); 1513 } 1514 1515 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1516 const NamedDecl *D) const { 1517 if (D && D->isExternallyVisible()) { 1518 if (D->hasAttr<DLLImportAttr>()) 1519 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1520 else if ((D->hasAttr<DLLExportAttr>() || 1521 shouldMapVisibilityToDLLExport(D)) && 1522 !GV->isDeclarationForLinker()) 1523 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1524 } 1525 } 1526 1527 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1528 GlobalDecl GD) const { 1529 setDLLImportDLLExport(GV, GD); 1530 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1531 } 1532 1533 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1534 const NamedDecl *D) const { 1535 setDLLImportDLLExport(GV, D); 1536 setGVPropertiesAux(GV, D); 1537 } 1538 1539 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1540 const NamedDecl *D) const { 1541 setGlobalVisibility(GV, D); 1542 setDSOLocal(GV); 1543 GV->setPartition(CodeGenOpts.SymbolPartition); 1544 } 1545 1546 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1547 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1548 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1549 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1550 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1551 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1552 } 1553 1554 llvm::GlobalVariable::ThreadLocalMode 1555 CodeGenModule::GetDefaultLLVMTLSModel() const { 1556 switch (CodeGenOpts.getDefaultTLSModel()) { 1557 case CodeGenOptions::GeneralDynamicTLSModel: 1558 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1559 case CodeGenOptions::LocalDynamicTLSModel: 1560 return llvm::GlobalVariable::LocalDynamicTLSModel; 1561 case CodeGenOptions::InitialExecTLSModel: 1562 return llvm::GlobalVariable::InitialExecTLSModel; 1563 case CodeGenOptions::LocalExecTLSModel: 1564 return llvm::GlobalVariable::LocalExecTLSModel; 1565 } 1566 llvm_unreachable("Invalid TLS model!"); 1567 } 1568 1569 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1570 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1571 1572 llvm::GlobalValue::ThreadLocalMode TLM; 1573 TLM = GetDefaultLLVMTLSModel(); 1574 1575 // Override the TLS model if it is explicitly specified. 1576 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1577 TLM = GetLLVMTLSModel(Attr->getModel()); 1578 } 1579 1580 GV->setThreadLocalMode(TLM); 1581 } 1582 1583 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1584 StringRef Name) { 1585 const TargetInfo &Target = CGM.getTarget(); 1586 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1587 } 1588 1589 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1590 const CPUSpecificAttr *Attr, 1591 unsigned CPUIndex, 1592 raw_ostream &Out) { 1593 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1594 // supported. 1595 if (Attr) 1596 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1597 else if (CGM.getTarget().supportsIFunc()) 1598 Out << ".resolver"; 1599 } 1600 1601 static void AppendTargetVersionMangling(const CodeGenModule &CGM, 1602 const TargetVersionAttr *Attr, 1603 raw_ostream &Out) { 1604 if (Attr->isDefaultVersion()) 1605 return; 1606 Out << "._"; 1607 const TargetInfo &TI = CGM.getTarget(); 1608 llvm::SmallVector<StringRef, 8> Feats; 1609 Attr->getFeatures(Feats); 1610 llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) { 1611 return TI.multiVersionSortPriority(FeatL) < 1612 TI.multiVersionSortPriority(FeatR); 1613 }); 1614 for (const auto &Feat : Feats) { 1615 Out << 'M'; 1616 Out << Feat; 1617 } 1618 } 1619 1620 static void AppendTargetMangling(const CodeGenModule &CGM, 1621 const TargetAttr *Attr, raw_ostream &Out) { 1622 if (Attr->isDefaultVersion()) 1623 return; 1624 1625 Out << '.'; 1626 const TargetInfo &Target = CGM.getTarget(); 1627 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1628 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1629 // Multiversioning doesn't allow "no-${feature}", so we can 1630 // only have "+" prefixes here. 1631 assert(LHS.startswith("+") && RHS.startswith("+") && 1632 "Features should always have a prefix."); 1633 return Target.multiVersionSortPriority(LHS.substr(1)) > 1634 Target.multiVersionSortPriority(RHS.substr(1)); 1635 }); 1636 1637 bool IsFirst = true; 1638 1639 if (!Info.CPU.empty()) { 1640 IsFirst = false; 1641 Out << "arch_" << Info.CPU; 1642 } 1643 1644 for (StringRef Feat : Info.Features) { 1645 if (!IsFirst) 1646 Out << '_'; 1647 IsFirst = false; 1648 Out << Feat.substr(1); 1649 } 1650 } 1651 1652 // Returns true if GD is a function decl with internal linkage and 1653 // needs a unique suffix after the mangled name. 1654 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1655 CodeGenModule &CGM) { 1656 const Decl *D = GD.getDecl(); 1657 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1658 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1659 } 1660 1661 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1662 const TargetClonesAttr *Attr, 1663 unsigned VersionIndex, 1664 raw_ostream &Out) { 1665 const TargetInfo &TI = CGM.getTarget(); 1666 if (TI.getTriple().isAArch64()) { 1667 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1668 if (FeatureStr == "default") 1669 return; 1670 Out << "._"; 1671 SmallVector<StringRef, 8> Features; 1672 FeatureStr.split(Features, "+"); 1673 llvm::stable_sort(Features, 1674 [&TI](const StringRef FeatL, const StringRef FeatR) { 1675 return TI.multiVersionSortPriority(FeatL) < 1676 TI.multiVersionSortPriority(FeatR); 1677 }); 1678 for (auto &Feat : Features) { 1679 Out << 'M'; 1680 Out << Feat; 1681 } 1682 } else { 1683 Out << '.'; 1684 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1685 if (FeatureStr.startswith("arch=")) 1686 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1687 else 1688 Out << FeatureStr; 1689 1690 Out << '.' << Attr->getMangledIndex(VersionIndex); 1691 } 1692 } 1693 1694 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1695 const NamedDecl *ND, 1696 bool OmitMultiVersionMangling = false) { 1697 SmallString<256> Buffer; 1698 llvm::raw_svector_ostream Out(Buffer); 1699 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1700 if (!CGM.getModuleNameHash().empty()) 1701 MC.needsUniqueInternalLinkageNames(); 1702 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1703 if (ShouldMangle) 1704 MC.mangleName(GD.getWithDecl(ND), Out); 1705 else { 1706 IdentifierInfo *II = ND->getIdentifier(); 1707 assert(II && "Attempt to mangle unnamed decl."); 1708 const auto *FD = dyn_cast<FunctionDecl>(ND); 1709 1710 if (FD && 1711 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1712 if (CGM.getLangOpts().RegCall4) 1713 Out << "__regcall4__" << II->getName(); 1714 else 1715 Out << "__regcall3__" << II->getName(); 1716 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1717 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1718 Out << "__device_stub__" << II->getName(); 1719 } else { 1720 Out << II->getName(); 1721 } 1722 } 1723 1724 // Check if the module name hash should be appended for internal linkage 1725 // symbols. This should come before multi-version target suffixes are 1726 // appended. This is to keep the name and module hash suffix of the 1727 // internal linkage function together. The unique suffix should only be 1728 // added when name mangling is done to make sure that the final name can 1729 // be properly demangled. For example, for C functions without prototypes, 1730 // name mangling is not done and the unique suffix should not be appeneded 1731 // then. 1732 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1733 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1734 "Hash computed when not explicitly requested"); 1735 Out << CGM.getModuleNameHash(); 1736 } 1737 1738 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1739 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1740 switch (FD->getMultiVersionKind()) { 1741 case MultiVersionKind::CPUDispatch: 1742 case MultiVersionKind::CPUSpecific: 1743 AppendCPUSpecificCPUDispatchMangling(CGM, 1744 FD->getAttr<CPUSpecificAttr>(), 1745 GD.getMultiVersionIndex(), Out); 1746 break; 1747 case MultiVersionKind::Target: 1748 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1749 break; 1750 case MultiVersionKind::TargetVersion: 1751 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); 1752 break; 1753 case MultiVersionKind::TargetClones: 1754 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1755 GD.getMultiVersionIndex(), Out); 1756 break; 1757 case MultiVersionKind::None: 1758 llvm_unreachable("None multiversion type isn't valid here"); 1759 } 1760 } 1761 1762 // Make unique name for device side static file-scope variable for HIP. 1763 if (CGM.getContext().shouldExternalize(ND) && 1764 CGM.getLangOpts().GPURelocatableDeviceCode && 1765 CGM.getLangOpts().CUDAIsDevice) 1766 CGM.printPostfixForExternalizedDecl(Out, ND); 1767 1768 return std::string(Out.str()); 1769 } 1770 1771 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1772 const FunctionDecl *FD, 1773 StringRef &CurName) { 1774 if (!FD->isMultiVersion()) 1775 return; 1776 1777 // Get the name of what this would be without the 'target' attribute. This 1778 // allows us to lookup the version that was emitted when this wasn't a 1779 // multiversion function. 1780 std::string NonTargetName = 1781 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1782 GlobalDecl OtherGD; 1783 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1784 assert(OtherGD.getCanonicalDecl() 1785 .getDecl() 1786 ->getAsFunction() 1787 ->isMultiVersion() && 1788 "Other GD should now be a multiversioned function"); 1789 // OtherFD is the version of this function that was mangled BEFORE 1790 // becoming a MultiVersion function. It potentially needs to be updated. 1791 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1792 .getDecl() 1793 ->getAsFunction() 1794 ->getMostRecentDecl(); 1795 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1796 // This is so that if the initial version was already the 'default' 1797 // version, we don't try to update it. 1798 if (OtherName != NonTargetName) { 1799 // Remove instead of erase, since others may have stored the StringRef 1800 // to this. 1801 const auto ExistingRecord = Manglings.find(NonTargetName); 1802 if (ExistingRecord != std::end(Manglings)) 1803 Manglings.remove(&(*ExistingRecord)); 1804 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1805 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1806 Result.first->first(); 1807 // If this is the current decl is being created, make sure we update the name. 1808 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1809 CurName = OtherNameRef; 1810 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1811 Entry->setName(OtherName); 1812 } 1813 } 1814 } 1815 1816 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1817 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1818 1819 // Some ABIs don't have constructor variants. Make sure that base and 1820 // complete constructors get mangled the same. 1821 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1822 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1823 CXXCtorType OrigCtorType = GD.getCtorType(); 1824 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1825 if (OrigCtorType == Ctor_Base) 1826 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1827 } 1828 } 1829 1830 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1831 // static device variable depends on whether the variable is referenced by 1832 // a host or device host function. Therefore the mangled name cannot be 1833 // cached. 1834 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1835 auto FoundName = MangledDeclNames.find(CanonicalGD); 1836 if (FoundName != MangledDeclNames.end()) 1837 return FoundName->second; 1838 } 1839 1840 // Keep the first result in the case of a mangling collision. 1841 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1842 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1843 1844 // Ensure either we have different ABIs between host and device compilations, 1845 // says host compilation following MSVC ABI but device compilation follows 1846 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1847 // mangling should be the same after name stubbing. The later checking is 1848 // very important as the device kernel name being mangled in host-compilation 1849 // is used to resolve the device binaries to be executed. Inconsistent naming 1850 // result in undefined behavior. Even though we cannot check that naming 1851 // directly between host- and device-compilations, the host- and 1852 // device-mangling in host compilation could help catching certain ones. 1853 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1854 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1855 (getContext().getAuxTargetInfo() && 1856 (getContext().getAuxTargetInfo()->getCXXABI() != 1857 getContext().getTargetInfo().getCXXABI())) || 1858 getCUDARuntime().getDeviceSideName(ND) == 1859 getMangledNameImpl( 1860 *this, 1861 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1862 ND)); 1863 1864 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1865 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1866 } 1867 1868 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1869 const BlockDecl *BD) { 1870 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1871 const Decl *D = GD.getDecl(); 1872 1873 SmallString<256> Buffer; 1874 llvm::raw_svector_ostream Out(Buffer); 1875 if (!D) 1876 MangleCtx.mangleGlobalBlock(BD, 1877 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1878 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1879 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1880 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1881 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1882 else 1883 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1884 1885 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1886 return Result.first->first(); 1887 } 1888 1889 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1890 auto it = MangledDeclNames.begin(); 1891 while (it != MangledDeclNames.end()) { 1892 if (it->second == Name) 1893 return it->first; 1894 it++; 1895 } 1896 return GlobalDecl(); 1897 } 1898 1899 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1900 return getModule().getNamedValue(Name); 1901 } 1902 1903 /// AddGlobalCtor - Add a function to the list that will be called before 1904 /// main() runs. 1905 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1906 unsigned LexOrder, 1907 llvm::Constant *AssociatedData) { 1908 // FIXME: Type coercion of void()* types. 1909 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1910 } 1911 1912 /// AddGlobalDtor - Add a function to the list that will be called 1913 /// when the module is unloaded. 1914 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1915 bool IsDtorAttrFunc) { 1916 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1917 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1918 DtorsUsingAtExit[Priority].push_back(Dtor); 1919 return; 1920 } 1921 1922 // FIXME: Type coercion of void()* types. 1923 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 1924 } 1925 1926 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1927 if (Fns.empty()) return; 1928 1929 // Ctor function type is void()*. 1930 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1931 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1932 TheModule.getDataLayout().getProgramAddressSpace()); 1933 1934 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1935 llvm::StructType *CtorStructTy = llvm::StructType::get( 1936 Int32Ty, CtorPFTy, VoidPtrTy); 1937 1938 // Construct the constructor and destructor arrays. 1939 ConstantInitBuilder builder(*this); 1940 auto ctors = builder.beginArray(CtorStructTy); 1941 for (const auto &I : Fns) { 1942 auto ctor = ctors.beginStruct(CtorStructTy); 1943 ctor.addInt(Int32Ty, I.Priority); 1944 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1945 if (I.AssociatedData) 1946 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1947 else 1948 ctor.addNullPointer(VoidPtrTy); 1949 ctor.finishAndAddTo(ctors); 1950 } 1951 1952 auto list = 1953 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1954 /*constant*/ false, 1955 llvm::GlobalValue::AppendingLinkage); 1956 1957 // The LTO linker doesn't seem to like it when we set an alignment 1958 // on appending variables. Take it off as a workaround. 1959 list->setAlignment(std::nullopt); 1960 1961 Fns.clear(); 1962 } 1963 1964 llvm::GlobalValue::LinkageTypes 1965 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1966 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1967 1968 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1969 1970 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1971 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1972 1973 return getLLVMLinkageForDeclarator(D, Linkage); 1974 } 1975 1976 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1977 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1978 if (!MDS) return nullptr; 1979 1980 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1981 } 1982 1983 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 1984 if (auto *FnType = T->getAs<FunctionProtoType>()) 1985 T = getContext().getFunctionType( 1986 FnType->getReturnType(), FnType->getParamTypes(), 1987 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 1988 1989 std::string OutName; 1990 llvm::raw_string_ostream Out(OutName); 1991 getCXXABI().getMangleContext().mangleTypeName( 1992 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 1993 1994 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 1995 Out << ".normalized"; 1996 1997 return llvm::ConstantInt::get(Int32Ty, 1998 static_cast<uint32_t>(llvm::xxHash64(OutName))); 1999 } 2000 2001 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2002 const CGFunctionInfo &Info, 2003 llvm::Function *F, bool IsThunk) { 2004 unsigned CallingConv; 2005 llvm::AttributeList PAL; 2006 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2007 /*AttrOnCallSite=*/false, IsThunk); 2008 F->setAttributes(PAL); 2009 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2010 } 2011 2012 static void removeImageAccessQualifier(std::string& TyName) { 2013 std::string ReadOnlyQual("__read_only"); 2014 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2015 if (ReadOnlyPos != std::string::npos) 2016 // "+ 1" for the space after access qualifier. 2017 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2018 else { 2019 std::string WriteOnlyQual("__write_only"); 2020 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2021 if (WriteOnlyPos != std::string::npos) 2022 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2023 else { 2024 std::string ReadWriteQual("__read_write"); 2025 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2026 if (ReadWritePos != std::string::npos) 2027 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2028 } 2029 } 2030 } 2031 2032 // Returns the address space id that should be produced to the 2033 // kernel_arg_addr_space metadata. This is always fixed to the ids 2034 // as specified in the SPIR 2.0 specification in order to differentiate 2035 // for example in clGetKernelArgInfo() implementation between the address 2036 // spaces with targets without unique mapping to the OpenCL address spaces 2037 // (basically all single AS CPUs). 2038 static unsigned ArgInfoAddressSpace(LangAS AS) { 2039 switch (AS) { 2040 case LangAS::opencl_global: 2041 return 1; 2042 case LangAS::opencl_constant: 2043 return 2; 2044 case LangAS::opencl_local: 2045 return 3; 2046 case LangAS::opencl_generic: 2047 return 4; // Not in SPIR 2.0 specs. 2048 case LangAS::opencl_global_device: 2049 return 5; 2050 case LangAS::opencl_global_host: 2051 return 6; 2052 default: 2053 return 0; // Assume private. 2054 } 2055 } 2056 2057 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2058 const FunctionDecl *FD, 2059 CodeGenFunction *CGF) { 2060 assert(((FD && CGF) || (!FD && !CGF)) && 2061 "Incorrect use - FD and CGF should either be both null or not!"); 2062 // Create MDNodes that represent the kernel arg metadata. 2063 // Each MDNode is a list in the form of "key", N number of values which is 2064 // the same number of values as their are kernel arguments. 2065 2066 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2067 2068 // MDNode for the kernel argument address space qualifiers. 2069 SmallVector<llvm::Metadata *, 8> addressQuals; 2070 2071 // MDNode for the kernel argument access qualifiers (images only). 2072 SmallVector<llvm::Metadata *, 8> accessQuals; 2073 2074 // MDNode for the kernel argument type names. 2075 SmallVector<llvm::Metadata *, 8> argTypeNames; 2076 2077 // MDNode for the kernel argument base type names. 2078 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2079 2080 // MDNode for the kernel argument type qualifiers. 2081 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2082 2083 // MDNode for the kernel argument names. 2084 SmallVector<llvm::Metadata *, 8> argNames; 2085 2086 if (FD && CGF) 2087 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2088 const ParmVarDecl *parm = FD->getParamDecl(i); 2089 // Get argument name. 2090 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2091 2092 if (!getLangOpts().OpenCL) 2093 continue; 2094 QualType ty = parm->getType(); 2095 std::string typeQuals; 2096 2097 // Get image and pipe access qualifier: 2098 if (ty->isImageType() || ty->isPipeType()) { 2099 const Decl *PDecl = parm; 2100 if (const auto *TD = ty->getAs<TypedefType>()) 2101 PDecl = TD->getDecl(); 2102 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2103 if (A && A->isWriteOnly()) 2104 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2105 else if (A && A->isReadWrite()) 2106 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2107 else 2108 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2109 } else 2110 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2111 2112 auto getTypeSpelling = [&](QualType Ty) { 2113 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2114 2115 if (Ty.isCanonical()) { 2116 StringRef typeNameRef = typeName; 2117 // Turn "unsigned type" to "utype" 2118 if (typeNameRef.consume_front("unsigned ")) 2119 return std::string("u") + typeNameRef.str(); 2120 if (typeNameRef.consume_front("signed ")) 2121 return typeNameRef.str(); 2122 } 2123 2124 return typeName; 2125 }; 2126 2127 if (ty->isPointerType()) { 2128 QualType pointeeTy = ty->getPointeeType(); 2129 2130 // Get address qualifier. 2131 addressQuals.push_back( 2132 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2133 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2134 2135 // Get argument type name. 2136 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2137 std::string baseTypeName = 2138 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2139 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2140 argBaseTypeNames.push_back( 2141 llvm::MDString::get(VMContext, baseTypeName)); 2142 2143 // Get argument type qualifiers: 2144 if (ty.isRestrictQualified()) 2145 typeQuals = "restrict"; 2146 if (pointeeTy.isConstQualified() || 2147 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2148 typeQuals += typeQuals.empty() ? "const" : " const"; 2149 if (pointeeTy.isVolatileQualified()) 2150 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2151 } else { 2152 uint32_t AddrSpc = 0; 2153 bool isPipe = ty->isPipeType(); 2154 if (ty->isImageType() || isPipe) 2155 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2156 2157 addressQuals.push_back( 2158 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2159 2160 // Get argument type name. 2161 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2162 std::string typeName = getTypeSpelling(ty); 2163 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2164 2165 // Remove access qualifiers on images 2166 // (as they are inseparable from type in clang implementation, 2167 // but OpenCL spec provides a special query to get access qualifier 2168 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2169 if (ty->isImageType()) { 2170 removeImageAccessQualifier(typeName); 2171 removeImageAccessQualifier(baseTypeName); 2172 } 2173 2174 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2175 argBaseTypeNames.push_back( 2176 llvm::MDString::get(VMContext, baseTypeName)); 2177 2178 if (isPipe) 2179 typeQuals = "pipe"; 2180 } 2181 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2182 } 2183 2184 if (getLangOpts().OpenCL) { 2185 Fn->setMetadata("kernel_arg_addr_space", 2186 llvm::MDNode::get(VMContext, addressQuals)); 2187 Fn->setMetadata("kernel_arg_access_qual", 2188 llvm::MDNode::get(VMContext, accessQuals)); 2189 Fn->setMetadata("kernel_arg_type", 2190 llvm::MDNode::get(VMContext, argTypeNames)); 2191 Fn->setMetadata("kernel_arg_base_type", 2192 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2193 Fn->setMetadata("kernel_arg_type_qual", 2194 llvm::MDNode::get(VMContext, argTypeQuals)); 2195 } 2196 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2197 getCodeGenOpts().HIPSaveKernelArgName) 2198 Fn->setMetadata("kernel_arg_name", 2199 llvm::MDNode::get(VMContext, argNames)); 2200 } 2201 2202 /// Determines whether the language options require us to model 2203 /// unwind exceptions. We treat -fexceptions as mandating this 2204 /// except under the fragile ObjC ABI with only ObjC exceptions 2205 /// enabled. This means, for example, that C with -fexceptions 2206 /// enables this. 2207 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2208 // If exceptions are completely disabled, obviously this is false. 2209 if (!LangOpts.Exceptions) return false; 2210 2211 // If C++ exceptions are enabled, this is true. 2212 if (LangOpts.CXXExceptions) return true; 2213 2214 // If ObjC exceptions are enabled, this depends on the ABI. 2215 if (LangOpts.ObjCExceptions) { 2216 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2217 } 2218 2219 return true; 2220 } 2221 2222 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2223 const CXXMethodDecl *MD) { 2224 // Check that the type metadata can ever actually be used by a call. 2225 if (!CGM.getCodeGenOpts().LTOUnit || 2226 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2227 return false; 2228 2229 // Only functions whose address can be taken with a member function pointer 2230 // need this sort of type metadata. 2231 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 2232 !isa<CXXDestructorDecl>(MD); 2233 } 2234 2235 SmallVector<const CXXRecordDecl *, 0> 2236 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2237 llvm::SetVector<const CXXRecordDecl *> MostBases; 2238 2239 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2240 CollectMostBases = [&](const CXXRecordDecl *RD) { 2241 if (RD->getNumBases() == 0) 2242 MostBases.insert(RD); 2243 for (const CXXBaseSpecifier &B : RD->bases()) 2244 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2245 }; 2246 CollectMostBases(RD); 2247 return MostBases.takeVector(); 2248 } 2249 2250 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2251 llvm::Function *F) { 2252 llvm::AttrBuilder B(F->getContext()); 2253 2254 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2255 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2256 2257 if (CodeGenOpts.StackClashProtector) 2258 B.addAttribute("probe-stack", "inline-asm"); 2259 2260 if (!hasUnwindExceptions(LangOpts)) 2261 B.addAttribute(llvm::Attribute::NoUnwind); 2262 2263 if (D && D->hasAttr<NoStackProtectorAttr>()) 2264 ; // Do nothing. 2265 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2266 LangOpts.getStackProtector() == LangOptions::SSPOn) 2267 B.addAttribute(llvm::Attribute::StackProtectStrong); 2268 else if (LangOpts.getStackProtector() == LangOptions::SSPOn) 2269 B.addAttribute(llvm::Attribute::StackProtect); 2270 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 2271 B.addAttribute(llvm::Attribute::StackProtectStrong); 2272 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 2273 B.addAttribute(llvm::Attribute::StackProtectReq); 2274 2275 if (!D) { 2276 // If we don't have a declaration to control inlining, the function isn't 2277 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2278 // disabled, mark the function as noinline. 2279 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2280 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2281 B.addAttribute(llvm::Attribute::NoInline); 2282 2283 F->addFnAttrs(B); 2284 return; 2285 } 2286 2287 // Handle SME attributes that apply to function definitions, 2288 // rather than to function prototypes. 2289 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2290 B.addAttribute("aarch64_pstate_sm_body"); 2291 2292 if (D->hasAttr<ArmNewZAAttr>()) 2293 B.addAttribute("aarch64_pstate_za_new"); 2294 2295 // Track whether we need to add the optnone LLVM attribute, 2296 // starting with the default for this optimization level. 2297 bool ShouldAddOptNone = 2298 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2299 // We can't add optnone in the following cases, it won't pass the verifier. 2300 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2301 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2302 2303 // Add optnone, but do so only if the function isn't always_inline. 2304 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2305 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2306 B.addAttribute(llvm::Attribute::OptimizeNone); 2307 2308 // OptimizeNone implies noinline; we should not be inlining such functions. 2309 B.addAttribute(llvm::Attribute::NoInline); 2310 2311 // We still need to handle naked functions even though optnone subsumes 2312 // much of their semantics. 2313 if (D->hasAttr<NakedAttr>()) 2314 B.addAttribute(llvm::Attribute::Naked); 2315 2316 // OptimizeNone wins over OptimizeForSize and MinSize. 2317 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2318 F->removeFnAttr(llvm::Attribute::MinSize); 2319 } else if (D->hasAttr<NakedAttr>()) { 2320 // Naked implies noinline: we should not be inlining such functions. 2321 B.addAttribute(llvm::Attribute::Naked); 2322 B.addAttribute(llvm::Attribute::NoInline); 2323 } else if (D->hasAttr<NoDuplicateAttr>()) { 2324 B.addAttribute(llvm::Attribute::NoDuplicate); 2325 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2326 // Add noinline if the function isn't always_inline. 2327 B.addAttribute(llvm::Attribute::NoInline); 2328 } else if (D->hasAttr<AlwaysInlineAttr>() && 2329 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2330 // (noinline wins over always_inline, and we can't specify both in IR) 2331 B.addAttribute(llvm::Attribute::AlwaysInline); 2332 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2333 // If we're not inlining, then force everything that isn't always_inline to 2334 // carry an explicit noinline attribute. 2335 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2336 B.addAttribute(llvm::Attribute::NoInline); 2337 } else { 2338 // Otherwise, propagate the inline hint attribute and potentially use its 2339 // absence to mark things as noinline. 2340 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2341 // Search function and template pattern redeclarations for inline. 2342 auto CheckForInline = [](const FunctionDecl *FD) { 2343 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2344 return Redecl->isInlineSpecified(); 2345 }; 2346 if (any_of(FD->redecls(), CheckRedeclForInline)) 2347 return true; 2348 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2349 if (!Pattern) 2350 return false; 2351 return any_of(Pattern->redecls(), CheckRedeclForInline); 2352 }; 2353 if (CheckForInline(FD)) { 2354 B.addAttribute(llvm::Attribute::InlineHint); 2355 } else if (CodeGenOpts.getInlining() == 2356 CodeGenOptions::OnlyHintInlining && 2357 !FD->isInlined() && 2358 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2359 B.addAttribute(llvm::Attribute::NoInline); 2360 } 2361 } 2362 } 2363 2364 // Add other optimization related attributes if we are optimizing this 2365 // function. 2366 if (!D->hasAttr<OptimizeNoneAttr>()) { 2367 if (D->hasAttr<ColdAttr>()) { 2368 if (!ShouldAddOptNone) 2369 B.addAttribute(llvm::Attribute::OptimizeForSize); 2370 B.addAttribute(llvm::Attribute::Cold); 2371 } 2372 if (D->hasAttr<HotAttr>()) 2373 B.addAttribute(llvm::Attribute::Hot); 2374 if (D->hasAttr<MinSizeAttr>()) 2375 B.addAttribute(llvm::Attribute::MinSize); 2376 } 2377 2378 F->addFnAttrs(B); 2379 2380 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2381 if (alignment) 2382 F->setAlignment(llvm::Align(alignment)); 2383 2384 if (!D->hasAttr<AlignedAttr>()) 2385 if (LangOpts.FunctionAlignment) 2386 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2387 2388 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2389 // reserve a bit for differentiating between virtual and non-virtual member 2390 // functions. If the current target's C++ ABI requires this and this is a 2391 // member function, set its alignment accordingly. 2392 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2393 if (F->getPointerAlignment(getDataLayout()) < 2 && isa<CXXMethodDecl>(D)) 2394 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2395 } 2396 2397 // In the cross-dso CFI mode with canonical jump tables, we want !type 2398 // attributes on definitions only. 2399 if (CodeGenOpts.SanitizeCfiCrossDso && 2400 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2401 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2402 // Skip available_externally functions. They won't be codegen'ed in the 2403 // current module anyway. 2404 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2405 CreateFunctionTypeMetadataForIcall(FD, F); 2406 } 2407 } 2408 2409 // Emit type metadata on member functions for member function pointer checks. 2410 // These are only ever necessary on definitions; we're guaranteed that the 2411 // definition will be present in the LTO unit as a result of LTO visibility. 2412 auto *MD = dyn_cast<CXXMethodDecl>(D); 2413 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2414 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2415 llvm::Metadata *Id = 2416 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2417 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2418 F->addTypeMetadata(0, Id); 2419 } 2420 } 2421 } 2422 2423 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2424 const Decl *D = GD.getDecl(); 2425 if (isa_and_nonnull<NamedDecl>(D)) 2426 setGVProperties(GV, GD); 2427 else 2428 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2429 2430 if (D && D->hasAttr<UsedAttr>()) 2431 addUsedOrCompilerUsedGlobal(GV); 2432 2433 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2434 VD && 2435 ((CodeGenOpts.KeepPersistentStorageVariables && 2436 (VD->getStorageDuration() == SD_Static || 2437 VD->getStorageDuration() == SD_Thread)) || 2438 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2439 VD->getType().isConstQualified()))) 2440 addUsedOrCompilerUsedGlobal(GV); 2441 } 2442 2443 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2444 llvm::AttrBuilder &Attrs, 2445 bool SetTargetFeatures) { 2446 // Add target-cpu and target-features attributes to functions. If 2447 // we have a decl for the function and it has a target attribute then 2448 // parse that and add it to the feature set. 2449 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2450 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2451 std::vector<std::string> Features; 2452 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2453 FD = FD ? FD->getMostRecentDecl() : FD; 2454 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2455 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2456 assert((!TD || !TV) && "both target_version and target specified"); 2457 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2458 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2459 bool AddedAttr = false; 2460 if (TD || TV || SD || TC) { 2461 llvm::StringMap<bool> FeatureMap; 2462 getContext().getFunctionFeatureMap(FeatureMap, GD); 2463 2464 // Produce the canonical string for this set of features. 2465 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2466 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2467 2468 // Now add the target-cpu and target-features to the function. 2469 // While we populated the feature map above, we still need to 2470 // get and parse the target attribute so we can get the cpu for 2471 // the function. 2472 if (TD) { 2473 ParsedTargetAttr ParsedAttr = 2474 Target.parseTargetAttr(TD->getFeaturesStr()); 2475 if (!ParsedAttr.CPU.empty() && 2476 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2477 TargetCPU = ParsedAttr.CPU; 2478 TuneCPU = ""; // Clear the tune CPU. 2479 } 2480 if (!ParsedAttr.Tune.empty() && 2481 getTarget().isValidCPUName(ParsedAttr.Tune)) 2482 TuneCPU = ParsedAttr.Tune; 2483 } 2484 2485 if (SD) { 2486 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2487 // favor this processor. 2488 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2489 } 2490 } else { 2491 // Otherwise just add the existing target cpu and target features to the 2492 // function. 2493 Features = getTarget().getTargetOpts().Features; 2494 } 2495 2496 if (!TargetCPU.empty()) { 2497 Attrs.addAttribute("target-cpu", TargetCPU); 2498 AddedAttr = true; 2499 } 2500 if (!TuneCPU.empty()) { 2501 Attrs.addAttribute("tune-cpu", TuneCPU); 2502 AddedAttr = true; 2503 } 2504 if (!Features.empty() && SetTargetFeatures) { 2505 llvm::erase_if(Features, [&](const std::string& F) { 2506 return getTarget().isReadOnlyFeature(F.substr(1)); 2507 }); 2508 llvm::sort(Features); 2509 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2510 AddedAttr = true; 2511 } 2512 2513 return AddedAttr; 2514 } 2515 2516 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2517 llvm::GlobalObject *GO) { 2518 const Decl *D = GD.getDecl(); 2519 SetCommonAttributes(GD, GO); 2520 2521 if (D) { 2522 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2523 if (D->hasAttr<RetainAttr>()) 2524 addUsedGlobal(GV); 2525 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2526 GV->addAttribute("bss-section", SA->getName()); 2527 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2528 GV->addAttribute("data-section", SA->getName()); 2529 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2530 GV->addAttribute("rodata-section", SA->getName()); 2531 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2532 GV->addAttribute("relro-section", SA->getName()); 2533 } 2534 2535 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2536 if (D->hasAttr<RetainAttr>()) 2537 addUsedGlobal(F); 2538 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2539 if (!D->getAttr<SectionAttr>()) 2540 F->addFnAttr("implicit-section-name", SA->getName()); 2541 2542 llvm::AttrBuilder Attrs(F->getContext()); 2543 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2544 // We know that GetCPUAndFeaturesAttributes will always have the 2545 // newest set, since it has the newest possible FunctionDecl, so the 2546 // new ones should replace the old. 2547 llvm::AttributeMask RemoveAttrs; 2548 RemoveAttrs.addAttribute("target-cpu"); 2549 RemoveAttrs.addAttribute("target-features"); 2550 RemoveAttrs.addAttribute("tune-cpu"); 2551 F->removeFnAttrs(RemoveAttrs); 2552 F->addFnAttrs(Attrs); 2553 } 2554 } 2555 2556 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2557 GO->setSection(CSA->getName()); 2558 else if (const auto *SA = D->getAttr<SectionAttr>()) 2559 GO->setSection(SA->getName()); 2560 } 2561 2562 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2563 } 2564 2565 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2566 llvm::Function *F, 2567 const CGFunctionInfo &FI) { 2568 const Decl *D = GD.getDecl(); 2569 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2570 SetLLVMFunctionAttributesForDefinition(D, F); 2571 2572 F->setLinkage(llvm::Function::InternalLinkage); 2573 2574 setNonAliasAttributes(GD, F); 2575 } 2576 2577 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2578 // Set linkage and visibility in case we never see a definition. 2579 LinkageInfo LV = ND->getLinkageAndVisibility(); 2580 // Don't set internal linkage on declarations. 2581 // "extern_weak" is overloaded in LLVM; we probably should have 2582 // separate linkage types for this. 2583 if (isExternallyVisible(LV.getLinkage()) && 2584 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2585 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2586 } 2587 2588 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2589 llvm::Function *F) { 2590 // Only if we are checking indirect calls. 2591 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2592 return; 2593 2594 // Non-static class methods are handled via vtable or member function pointer 2595 // checks elsewhere. 2596 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2597 return; 2598 2599 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2600 F->addTypeMetadata(0, MD); 2601 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2602 2603 // Emit a hash-based bit set entry for cross-DSO calls. 2604 if (CodeGenOpts.SanitizeCfiCrossDso) 2605 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2606 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2607 } 2608 2609 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2610 llvm::LLVMContext &Ctx = F->getContext(); 2611 llvm::MDBuilder MDB(Ctx); 2612 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2613 llvm::MDNode::get( 2614 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2615 } 2616 2617 static bool allowKCFIIdentifier(StringRef Name) { 2618 // KCFI type identifier constants are only necessary for external assembly 2619 // functions, which means it's safe to skip unusual names. Subset of 2620 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2621 return llvm::all_of(Name, [](const char &C) { 2622 return llvm::isAlnum(C) || C == '_' || C == '.'; 2623 }); 2624 } 2625 2626 void CodeGenModule::finalizeKCFITypes() { 2627 llvm::Module &M = getModule(); 2628 for (auto &F : M.functions()) { 2629 // Remove KCFI type metadata from non-address-taken local functions. 2630 bool AddressTaken = F.hasAddressTaken(); 2631 if (!AddressTaken && F.hasLocalLinkage()) 2632 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2633 2634 // Generate a constant with the expected KCFI type identifier for all 2635 // address-taken function declarations to support annotating indirectly 2636 // called assembly functions. 2637 if (!AddressTaken || !F.isDeclaration()) 2638 continue; 2639 2640 const llvm::ConstantInt *Type; 2641 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2642 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2643 else 2644 continue; 2645 2646 StringRef Name = F.getName(); 2647 if (!allowKCFIIdentifier(Name)) 2648 continue; 2649 2650 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2651 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2652 .str(); 2653 M.appendModuleInlineAsm(Asm); 2654 } 2655 } 2656 2657 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2658 bool IsIncompleteFunction, 2659 bool IsThunk) { 2660 2661 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2662 // If this is an intrinsic function, set the function's attributes 2663 // to the intrinsic's attributes. 2664 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2665 return; 2666 } 2667 2668 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2669 2670 if (!IsIncompleteFunction) 2671 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2672 IsThunk); 2673 2674 // Add the Returned attribute for "this", except for iOS 5 and earlier 2675 // where substantial code, including the libstdc++ dylib, was compiled with 2676 // GCC and does not actually return "this". 2677 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2678 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2679 assert(!F->arg_empty() && 2680 F->arg_begin()->getType() 2681 ->canLosslesslyBitCastTo(F->getReturnType()) && 2682 "unexpected this return"); 2683 F->addParamAttr(0, llvm::Attribute::Returned); 2684 } 2685 2686 // Only a few attributes are set on declarations; these may later be 2687 // overridden by a definition. 2688 2689 setLinkageForGV(F, FD); 2690 setGVProperties(F, FD); 2691 2692 // Setup target-specific attributes. 2693 if (!IsIncompleteFunction && F->isDeclaration()) 2694 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2695 2696 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2697 F->setSection(CSA->getName()); 2698 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2699 F->setSection(SA->getName()); 2700 2701 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2702 if (EA->isError()) 2703 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2704 else if (EA->isWarning()) 2705 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2706 } 2707 2708 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2709 if (FD->isInlineBuiltinDeclaration()) { 2710 const FunctionDecl *FDBody; 2711 bool HasBody = FD->hasBody(FDBody); 2712 (void)HasBody; 2713 assert(HasBody && "Inline builtin declarations should always have an " 2714 "available body!"); 2715 if (shouldEmitFunction(FDBody)) 2716 F->addFnAttr(llvm::Attribute::NoBuiltin); 2717 } 2718 2719 if (FD->isReplaceableGlobalAllocationFunction()) { 2720 // A replaceable global allocation function does not act like a builtin by 2721 // default, only if it is invoked by a new-expression or delete-expression. 2722 F->addFnAttr(llvm::Attribute::NoBuiltin); 2723 } 2724 2725 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2726 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2727 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2728 if (MD->isVirtual()) 2729 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2730 2731 // Don't emit entries for function declarations in the cross-DSO mode. This 2732 // is handled with better precision by the receiving DSO. But if jump tables 2733 // are non-canonical then we need type metadata in order to produce the local 2734 // jump table. 2735 if (!CodeGenOpts.SanitizeCfiCrossDso || 2736 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2737 CreateFunctionTypeMetadataForIcall(FD, F); 2738 2739 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2740 setKCFIType(FD, F); 2741 2742 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2743 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2744 2745 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2746 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2747 2748 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2749 // Annotate the callback behavior as metadata: 2750 // - The callback callee (as argument number). 2751 // - The callback payloads (as argument numbers). 2752 llvm::LLVMContext &Ctx = F->getContext(); 2753 llvm::MDBuilder MDB(Ctx); 2754 2755 // The payload indices are all but the first one in the encoding. The first 2756 // identifies the callback callee. 2757 int CalleeIdx = *CB->encoding_begin(); 2758 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2759 F->addMetadata(llvm::LLVMContext::MD_callback, 2760 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2761 CalleeIdx, PayloadIndices, 2762 /* VarArgsArePassed */ false)})); 2763 } 2764 } 2765 2766 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2767 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2768 "Only globals with definition can force usage."); 2769 LLVMUsed.emplace_back(GV); 2770 } 2771 2772 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2773 assert(!GV->isDeclaration() && 2774 "Only globals with definition can force usage."); 2775 LLVMCompilerUsed.emplace_back(GV); 2776 } 2777 2778 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2779 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2780 "Only globals with definition can force usage."); 2781 if (getTriple().isOSBinFormatELF()) 2782 LLVMCompilerUsed.emplace_back(GV); 2783 else 2784 LLVMUsed.emplace_back(GV); 2785 } 2786 2787 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2788 std::vector<llvm::WeakTrackingVH> &List) { 2789 // Don't create llvm.used if there is no need. 2790 if (List.empty()) 2791 return; 2792 2793 // Convert List to what ConstantArray needs. 2794 SmallVector<llvm::Constant*, 8> UsedArray; 2795 UsedArray.resize(List.size()); 2796 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2797 UsedArray[i] = 2798 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2799 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2800 } 2801 2802 if (UsedArray.empty()) 2803 return; 2804 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2805 2806 auto *GV = new llvm::GlobalVariable( 2807 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2808 llvm::ConstantArray::get(ATy, UsedArray), Name); 2809 2810 GV->setSection("llvm.metadata"); 2811 } 2812 2813 void CodeGenModule::emitLLVMUsed() { 2814 emitUsed(*this, "llvm.used", LLVMUsed); 2815 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2816 } 2817 2818 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2819 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2820 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2821 } 2822 2823 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2824 llvm::SmallString<32> Opt; 2825 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2826 if (Opt.empty()) 2827 return; 2828 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2829 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2830 } 2831 2832 void CodeGenModule::AddDependentLib(StringRef Lib) { 2833 auto &C = getLLVMContext(); 2834 if (getTarget().getTriple().isOSBinFormatELF()) { 2835 ELFDependentLibraries.push_back( 2836 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2837 return; 2838 } 2839 2840 llvm::SmallString<24> Opt; 2841 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2842 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2843 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2844 } 2845 2846 /// Add link options implied by the given module, including modules 2847 /// it depends on, using a postorder walk. 2848 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2849 SmallVectorImpl<llvm::MDNode *> &Metadata, 2850 llvm::SmallPtrSet<Module *, 16> &Visited) { 2851 // Import this module's parent. 2852 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2853 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2854 } 2855 2856 // Import this module's dependencies. 2857 for (Module *Import : llvm::reverse(Mod->Imports)) { 2858 if (Visited.insert(Import).second) 2859 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2860 } 2861 2862 // Add linker options to link against the libraries/frameworks 2863 // described by this module. 2864 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2865 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2866 2867 // For modules that use export_as for linking, use that module 2868 // name instead. 2869 if (Mod->UseExportAsModuleLinkName) 2870 return; 2871 2872 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2873 // Link against a framework. Frameworks are currently Darwin only, so we 2874 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2875 if (LL.IsFramework) { 2876 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2877 llvm::MDString::get(Context, LL.Library)}; 2878 2879 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2880 continue; 2881 } 2882 2883 // Link against a library. 2884 if (IsELF) { 2885 llvm::Metadata *Args[2] = { 2886 llvm::MDString::get(Context, "lib"), 2887 llvm::MDString::get(Context, LL.Library), 2888 }; 2889 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2890 } else { 2891 llvm::SmallString<24> Opt; 2892 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2893 auto *OptString = llvm::MDString::get(Context, Opt); 2894 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2895 } 2896 } 2897 } 2898 2899 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2900 // Emit the initializers in the order that sub-modules appear in the 2901 // source, first Global Module Fragments, if present. 2902 if (auto GMF = Primary->getGlobalModuleFragment()) { 2903 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2904 if (isa<ImportDecl>(D)) 2905 continue; 2906 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 2907 EmitTopLevelDecl(D); 2908 } 2909 } 2910 // Second any associated with the module, itself. 2911 for (Decl *D : getContext().getModuleInitializers(Primary)) { 2912 // Skip import decls, the inits for those are called explicitly. 2913 if (isa<ImportDecl>(D)) 2914 continue; 2915 EmitTopLevelDecl(D); 2916 } 2917 // Third any associated with the Privat eMOdule Fragment, if present. 2918 if (auto PMF = Primary->getPrivateModuleFragment()) { 2919 for (Decl *D : getContext().getModuleInitializers(PMF)) { 2920 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 2921 EmitTopLevelDecl(D); 2922 } 2923 } 2924 } 2925 2926 void CodeGenModule::EmitModuleLinkOptions() { 2927 // Collect the set of all of the modules we want to visit to emit link 2928 // options, which is essentially the imported modules and all of their 2929 // non-explicit child modules. 2930 llvm::SetVector<clang::Module *> LinkModules; 2931 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2932 SmallVector<clang::Module *, 16> Stack; 2933 2934 // Seed the stack with imported modules. 2935 for (Module *M : ImportedModules) { 2936 // Do not add any link flags when an implementation TU of a module imports 2937 // a header of that same module. 2938 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2939 !getLangOpts().isCompilingModule()) 2940 continue; 2941 if (Visited.insert(M).second) 2942 Stack.push_back(M); 2943 } 2944 2945 // Find all of the modules to import, making a little effort to prune 2946 // non-leaf modules. 2947 while (!Stack.empty()) { 2948 clang::Module *Mod = Stack.pop_back_val(); 2949 2950 bool AnyChildren = false; 2951 2952 // Visit the submodules of this module. 2953 for (const auto &SM : Mod->submodules()) { 2954 // Skip explicit children; they need to be explicitly imported to be 2955 // linked against. 2956 if (SM->IsExplicit) 2957 continue; 2958 2959 if (Visited.insert(SM).second) { 2960 Stack.push_back(SM); 2961 AnyChildren = true; 2962 } 2963 } 2964 2965 // We didn't find any children, so add this module to the list of 2966 // modules to link against. 2967 if (!AnyChildren) { 2968 LinkModules.insert(Mod); 2969 } 2970 } 2971 2972 // Add link options for all of the imported modules in reverse topological 2973 // order. We don't do anything to try to order import link flags with respect 2974 // to linker options inserted by things like #pragma comment(). 2975 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2976 Visited.clear(); 2977 for (Module *M : LinkModules) 2978 if (Visited.insert(M).second) 2979 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2980 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2981 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2982 2983 // Add the linker options metadata flag. 2984 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2985 for (auto *MD : LinkerOptionsMetadata) 2986 NMD->addOperand(MD); 2987 } 2988 2989 void CodeGenModule::EmitDeferred() { 2990 // Emit deferred declare target declarations. 2991 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2992 getOpenMPRuntime().emitDeferredTargetDecls(); 2993 2994 // Emit code for any potentially referenced deferred decls. Since a 2995 // previously unused static decl may become used during the generation of code 2996 // for a static function, iterate until no changes are made. 2997 2998 if (!DeferredVTables.empty()) { 2999 EmitDeferredVTables(); 3000 3001 // Emitting a vtable doesn't directly cause more vtables to 3002 // become deferred, although it can cause functions to be 3003 // emitted that then need those vtables. 3004 assert(DeferredVTables.empty()); 3005 } 3006 3007 // Emit CUDA/HIP static device variables referenced by host code only. 3008 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3009 // needed for further handling. 3010 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3011 llvm::append_range(DeferredDeclsToEmit, 3012 getContext().CUDADeviceVarODRUsedByHost); 3013 3014 // Stop if we're out of both deferred vtables and deferred declarations. 3015 if (DeferredDeclsToEmit.empty()) 3016 return; 3017 3018 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3019 // work, it will not interfere with this. 3020 std::vector<GlobalDecl> CurDeclsToEmit; 3021 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3022 3023 for (GlobalDecl &D : CurDeclsToEmit) { 3024 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3025 // to get GlobalValue with exactly the type we need, not something that 3026 // might had been created for another decl with the same mangled name but 3027 // different type. 3028 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3029 GetAddrOfGlobal(D, ForDefinition)); 3030 3031 // In case of different address spaces, we may still get a cast, even with 3032 // IsForDefinition equal to true. Query mangled names table to get 3033 // GlobalValue. 3034 if (!GV) 3035 GV = GetGlobalValue(getMangledName(D)); 3036 3037 // Make sure GetGlobalValue returned non-null. 3038 assert(GV); 3039 3040 // Check to see if we've already emitted this. This is necessary 3041 // for a couple of reasons: first, decls can end up in the 3042 // deferred-decls queue multiple times, and second, decls can end 3043 // up with definitions in unusual ways (e.g. by an extern inline 3044 // function acquiring a strong function redefinition). Just 3045 // ignore these cases. 3046 if (!GV->isDeclaration()) 3047 continue; 3048 3049 // If this is OpenMP, check if it is legal to emit this global normally. 3050 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3051 continue; 3052 3053 // Otherwise, emit the definition and move on to the next one. 3054 EmitGlobalDefinition(D, GV); 3055 3056 // If we found out that we need to emit more decls, do that recursively. 3057 // This has the advantage that the decls are emitted in a DFS and related 3058 // ones are close together, which is convenient for testing. 3059 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3060 EmitDeferred(); 3061 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3062 } 3063 } 3064 } 3065 3066 void CodeGenModule::EmitVTablesOpportunistically() { 3067 // Try to emit external vtables as available_externally if they have emitted 3068 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3069 // is not allowed to create new references to things that need to be emitted 3070 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3071 3072 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3073 && "Only emit opportunistic vtables with optimizations"); 3074 3075 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3076 assert(getVTables().isVTableExternal(RD) && 3077 "This queue should only contain external vtables"); 3078 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3079 VTables.GenerateClassData(RD); 3080 } 3081 OpportunisticVTables.clear(); 3082 } 3083 3084 void CodeGenModule::EmitGlobalAnnotations() { 3085 if (Annotations.empty()) 3086 return; 3087 3088 // Create a new global variable for the ConstantStruct in the Module. 3089 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3090 Annotations[0]->getType(), Annotations.size()), Annotations); 3091 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3092 llvm::GlobalValue::AppendingLinkage, 3093 Array, "llvm.global.annotations"); 3094 gv->setSection(AnnotationSection); 3095 } 3096 3097 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3098 llvm::Constant *&AStr = AnnotationStrings[Str]; 3099 if (AStr) 3100 return AStr; 3101 3102 // Not found yet, create a new global. 3103 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3104 auto *gv = new llvm::GlobalVariable( 3105 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3106 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3107 ConstGlobalsPtrTy->getAddressSpace()); 3108 gv->setSection(AnnotationSection); 3109 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3110 AStr = gv; 3111 return gv; 3112 } 3113 3114 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3115 SourceManager &SM = getContext().getSourceManager(); 3116 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3117 if (PLoc.isValid()) 3118 return EmitAnnotationString(PLoc.getFilename()); 3119 return EmitAnnotationString(SM.getBufferName(Loc)); 3120 } 3121 3122 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3123 SourceManager &SM = getContext().getSourceManager(); 3124 PresumedLoc PLoc = SM.getPresumedLoc(L); 3125 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3126 SM.getExpansionLineNumber(L); 3127 return llvm::ConstantInt::get(Int32Ty, LineNo); 3128 } 3129 3130 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3131 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3132 if (Exprs.empty()) 3133 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3134 3135 llvm::FoldingSetNodeID ID; 3136 for (Expr *E : Exprs) { 3137 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3138 } 3139 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3140 if (Lookup) 3141 return Lookup; 3142 3143 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3144 LLVMArgs.reserve(Exprs.size()); 3145 ConstantEmitter ConstEmiter(*this); 3146 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3147 const auto *CE = cast<clang::ConstantExpr>(E); 3148 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3149 CE->getType()); 3150 }); 3151 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3152 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3153 llvm::GlobalValue::PrivateLinkage, Struct, 3154 ".args"); 3155 GV->setSection(AnnotationSection); 3156 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3157 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 3158 3159 Lookup = Bitcasted; 3160 return Bitcasted; 3161 } 3162 3163 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3164 const AnnotateAttr *AA, 3165 SourceLocation L) { 3166 // Get the globals for file name, annotation, and the line number. 3167 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3168 *UnitGV = EmitAnnotationUnit(L), 3169 *LineNoCst = EmitAnnotationLineNo(L), 3170 *Args = EmitAnnotationArgs(AA); 3171 3172 llvm::Constant *GVInGlobalsAS = GV; 3173 if (GV->getAddressSpace() != 3174 getDataLayout().getDefaultGlobalsAddressSpace()) { 3175 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3176 GV, GV->getValueType()->getPointerTo( 3177 getDataLayout().getDefaultGlobalsAddressSpace())); 3178 } 3179 3180 // Create the ConstantStruct for the global annotation. 3181 llvm::Constant *Fields[] = { 3182 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 3183 llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy), 3184 llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy), 3185 LineNoCst, 3186 Args, 3187 }; 3188 return llvm::ConstantStruct::getAnon(Fields); 3189 } 3190 3191 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3192 llvm::GlobalValue *GV) { 3193 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3194 // Get the struct elements for these annotations. 3195 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3196 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3197 } 3198 3199 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3200 SourceLocation Loc) const { 3201 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3202 // NoSanitize by function name. 3203 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3204 return true; 3205 // NoSanitize by location. Check "mainfile" prefix. 3206 auto &SM = Context.getSourceManager(); 3207 const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID()); 3208 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3209 return true; 3210 3211 // Check "src" prefix. 3212 if (Loc.isValid()) 3213 return NoSanitizeL.containsLocation(Kind, Loc); 3214 // If location is unknown, this may be a compiler-generated function. Assume 3215 // it's located in the main file. 3216 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3217 } 3218 3219 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3220 llvm::GlobalVariable *GV, 3221 SourceLocation Loc, QualType Ty, 3222 StringRef Category) const { 3223 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3224 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3225 return true; 3226 auto &SM = Context.getSourceManager(); 3227 if (NoSanitizeL.containsMainFile( 3228 Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category)) 3229 return true; 3230 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3231 return true; 3232 3233 // Check global type. 3234 if (!Ty.isNull()) { 3235 // Drill down the array types: if global variable of a fixed type is 3236 // not sanitized, we also don't instrument arrays of them. 3237 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3238 Ty = AT->getElementType(); 3239 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3240 // Only record types (classes, structs etc.) are ignored. 3241 if (Ty->isRecordType()) { 3242 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3243 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3244 return true; 3245 } 3246 } 3247 return false; 3248 } 3249 3250 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3251 StringRef Category) const { 3252 const auto &XRayFilter = getContext().getXRayFilter(); 3253 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3254 auto Attr = ImbueAttr::NONE; 3255 if (Loc.isValid()) 3256 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3257 if (Attr == ImbueAttr::NONE) 3258 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3259 switch (Attr) { 3260 case ImbueAttr::NONE: 3261 return false; 3262 case ImbueAttr::ALWAYS: 3263 Fn->addFnAttr("function-instrument", "xray-always"); 3264 break; 3265 case ImbueAttr::ALWAYS_ARG1: 3266 Fn->addFnAttr("function-instrument", "xray-always"); 3267 Fn->addFnAttr("xray-log-args", "1"); 3268 break; 3269 case ImbueAttr::NEVER: 3270 Fn->addFnAttr("function-instrument", "xray-never"); 3271 break; 3272 } 3273 return true; 3274 } 3275 3276 ProfileList::ExclusionType 3277 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3278 SourceLocation Loc) const { 3279 const auto &ProfileList = getContext().getProfileList(); 3280 // If the profile list is empty, then instrument everything. 3281 if (ProfileList.isEmpty()) 3282 return ProfileList::Allow; 3283 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3284 // First, check the function name. 3285 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3286 return *V; 3287 // Next, check the source location. 3288 if (Loc.isValid()) 3289 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3290 return *V; 3291 // If location is unknown, this may be a compiler-generated function. Assume 3292 // it's located in the main file. 3293 auto &SM = Context.getSourceManager(); 3294 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) 3295 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3296 return *V; 3297 return ProfileList.getDefault(Kind); 3298 } 3299 3300 ProfileList::ExclusionType 3301 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3302 SourceLocation Loc) const { 3303 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3304 if (V != ProfileList::Allow) 3305 return V; 3306 3307 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3308 if (NumGroups > 1) { 3309 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3310 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3311 return ProfileList::Skip; 3312 } 3313 return ProfileList::Allow; 3314 } 3315 3316 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3317 // Never defer when EmitAllDecls is specified. 3318 if (LangOpts.EmitAllDecls) 3319 return true; 3320 3321 const auto *VD = dyn_cast<VarDecl>(Global); 3322 if (VD && 3323 ((CodeGenOpts.KeepPersistentStorageVariables && 3324 (VD->getStorageDuration() == SD_Static || 3325 VD->getStorageDuration() == SD_Thread)) || 3326 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3327 VD->getType().isConstQualified()))) 3328 return true; 3329 3330 return getContext().DeclMustBeEmitted(Global); 3331 } 3332 3333 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3334 // In OpenMP 5.0 variables and function may be marked as 3335 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3336 // that they must be emitted on the host/device. To be sure we need to have 3337 // seen a declare target with an explicit mentioning of the function, we know 3338 // we have if the level of the declare target attribute is -1. Note that we 3339 // check somewhere else if we should emit this at all. 3340 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3341 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3342 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3343 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3344 return false; 3345 } 3346 3347 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3348 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3349 // Implicit template instantiations may change linkage if they are later 3350 // explicitly instantiated, so they should not be emitted eagerly. 3351 return false; 3352 } 3353 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3354 if (Context.getInlineVariableDefinitionKind(VD) == 3355 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3356 // A definition of an inline constexpr static data member may change 3357 // linkage later if it's redeclared outside the class. 3358 return false; 3359 if (CXX20ModuleInits && VD->getOwningModule() && 3360 !VD->getOwningModule()->isModuleMapModule()) { 3361 // For CXX20, module-owned initializers need to be deferred, since it is 3362 // not known at this point if they will be run for the current module or 3363 // as part of the initializer for an imported one. 3364 return false; 3365 } 3366 } 3367 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3368 // codegen for global variables, because they may be marked as threadprivate. 3369 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3370 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3371 !Global->getType().isConstantStorage(getContext(), false, false) && 3372 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3373 return false; 3374 3375 return true; 3376 } 3377 3378 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3379 StringRef Name = getMangledName(GD); 3380 3381 // The UUID descriptor should be pointer aligned. 3382 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3383 3384 // Look for an existing global. 3385 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3386 return ConstantAddress(GV, GV->getValueType(), Alignment); 3387 3388 ConstantEmitter Emitter(*this); 3389 llvm::Constant *Init; 3390 3391 APValue &V = GD->getAsAPValue(); 3392 if (!V.isAbsent()) { 3393 // If possible, emit the APValue version of the initializer. In particular, 3394 // this gets the type of the constant right. 3395 Init = Emitter.emitForInitializer( 3396 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3397 } else { 3398 // As a fallback, directly construct the constant. 3399 // FIXME: This may get padding wrong under esoteric struct layout rules. 3400 // MSVC appears to create a complete type 'struct __s_GUID' that it 3401 // presumably uses to represent these constants. 3402 MSGuidDecl::Parts Parts = GD->getParts(); 3403 llvm::Constant *Fields[4] = { 3404 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3405 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3406 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3407 llvm::ConstantDataArray::getRaw( 3408 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3409 Int8Ty)}; 3410 Init = llvm::ConstantStruct::getAnon(Fields); 3411 } 3412 3413 auto *GV = new llvm::GlobalVariable( 3414 getModule(), Init->getType(), 3415 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3416 if (supportsCOMDAT()) 3417 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3418 setDSOLocal(GV); 3419 3420 if (!V.isAbsent()) { 3421 Emitter.finalize(GV); 3422 return ConstantAddress(GV, GV->getValueType(), Alignment); 3423 } 3424 3425 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3426 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 3427 GV, Ty->getPointerTo(GV->getAddressSpace())); 3428 return ConstantAddress(Addr, Ty, Alignment); 3429 } 3430 3431 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3432 const UnnamedGlobalConstantDecl *GCD) { 3433 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3434 3435 llvm::GlobalVariable **Entry = nullptr; 3436 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3437 if (*Entry) 3438 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3439 3440 ConstantEmitter Emitter(*this); 3441 llvm::Constant *Init; 3442 3443 const APValue &V = GCD->getValue(); 3444 3445 assert(!V.isAbsent()); 3446 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3447 GCD->getType()); 3448 3449 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3450 /*isConstant=*/true, 3451 llvm::GlobalValue::PrivateLinkage, Init, 3452 ".constant"); 3453 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3454 GV->setAlignment(Alignment.getAsAlign()); 3455 3456 Emitter.finalize(GV); 3457 3458 *Entry = GV; 3459 return ConstantAddress(GV, GV->getValueType(), Alignment); 3460 } 3461 3462 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3463 const TemplateParamObjectDecl *TPO) { 3464 StringRef Name = getMangledName(TPO); 3465 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3466 3467 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3468 return ConstantAddress(GV, GV->getValueType(), Alignment); 3469 3470 ConstantEmitter Emitter(*this); 3471 llvm::Constant *Init = Emitter.emitForInitializer( 3472 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3473 3474 if (!Init) { 3475 ErrorUnsupported(TPO, "template parameter object"); 3476 return ConstantAddress::invalid(); 3477 } 3478 3479 llvm::GlobalValue::LinkageTypes Linkage = 3480 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3481 ? llvm::GlobalValue::LinkOnceODRLinkage 3482 : llvm::GlobalValue::InternalLinkage; 3483 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3484 /*isConstant=*/true, Linkage, Init, Name); 3485 setGVProperties(GV, TPO); 3486 if (supportsCOMDAT()) 3487 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3488 Emitter.finalize(GV); 3489 3490 return ConstantAddress(GV, GV->getValueType(), Alignment); 3491 } 3492 3493 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3494 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3495 assert(AA && "No alias?"); 3496 3497 CharUnits Alignment = getContext().getDeclAlign(VD); 3498 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3499 3500 // See if there is already something with the target's name in the module. 3501 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3502 if (Entry) { 3503 unsigned AS = getTypes().getTargetAddressSpace(VD->getType()); 3504 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3505 return ConstantAddress(Ptr, DeclTy, Alignment); 3506 } 3507 3508 llvm::Constant *Aliasee; 3509 if (isa<llvm::FunctionType>(DeclTy)) 3510 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3511 GlobalDecl(cast<FunctionDecl>(VD)), 3512 /*ForVTable=*/false); 3513 else 3514 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3515 nullptr); 3516 3517 auto *F = cast<llvm::GlobalValue>(Aliasee); 3518 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3519 WeakRefReferences.insert(F); 3520 3521 return ConstantAddress(Aliasee, DeclTy, Alignment); 3522 } 3523 3524 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3525 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3526 3527 // Weak references don't produce any output by themselves. 3528 if (Global->hasAttr<WeakRefAttr>()) 3529 return; 3530 3531 // If this is an alias definition (which otherwise looks like a declaration) 3532 // emit it now. 3533 if (Global->hasAttr<AliasAttr>()) 3534 return EmitAliasDefinition(GD); 3535 3536 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3537 if (Global->hasAttr<IFuncAttr>()) 3538 return emitIFuncDefinition(GD); 3539 3540 // If this is a cpu_dispatch multiversion function, emit the resolver. 3541 if (Global->hasAttr<CPUDispatchAttr>()) 3542 return emitCPUDispatchDefinition(GD); 3543 3544 // If this is CUDA, be selective about which declarations we emit. 3545 if (LangOpts.CUDA) { 3546 if (LangOpts.CUDAIsDevice) { 3547 if (!Global->hasAttr<CUDADeviceAttr>() && 3548 !Global->hasAttr<CUDAGlobalAttr>() && 3549 !Global->hasAttr<CUDAConstantAttr>() && 3550 !Global->hasAttr<CUDASharedAttr>() && 3551 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3552 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3553 return; 3554 } else { 3555 // We need to emit host-side 'shadows' for all global 3556 // device-side variables because the CUDA runtime needs their 3557 // size and host-side address in order to provide access to 3558 // their device-side incarnations. 3559 3560 // So device-only functions are the only things we skip. 3561 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3562 Global->hasAttr<CUDADeviceAttr>()) 3563 return; 3564 3565 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3566 "Expected Variable or Function"); 3567 } 3568 } 3569 3570 if (LangOpts.OpenMP) { 3571 // If this is OpenMP, check if it is legal to emit this global normally. 3572 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3573 return; 3574 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3575 if (MustBeEmitted(Global)) 3576 EmitOMPDeclareReduction(DRD); 3577 return; 3578 } 3579 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3580 if (MustBeEmitted(Global)) 3581 EmitOMPDeclareMapper(DMD); 3582 return; 3583 } 3584 } 3585 3586 // Ignore declarations, they will be emitted on their first use. 3587 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3588 // Forward declarations are emitted lazily on first use. 3589 if (!FD->doesThisDeclarationHaveABody()) { 3590 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3591 return; 3592 3593 StringRef MangledName = getMangledName(GD); 3594 3595 // Compute the function info and LLVM type. 3596 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3597 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3598 3599 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3600 /*DontDefer=*/false); 3601 return; 3602 } 3603 } else { 3604 const auto *VD = cast<VarDecl>(Global); 3605 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3606 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3607 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3608 if (LangOpts.OpenMP) { 3609 // Emit declaration of the must-be-emitted declare target variable. 3610 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3611 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3612 3613 // If this variable has external storage and doesn't require special 3614 // link handling we defer to its canonical definition. 3615 if (VD->hasExternalStorage() && 3616 Res != OMPDeclareTargetDeclAttr::MT_Link) 3617 return; 3618 3619 bool UnifiedMemoryEnabled = 3620 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3621 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3622 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3623 !UnifiedMemoryEnabled) { 3624 (void)GetAddrOfGlobalVar(VD); 3625 } else { 3626 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3627 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3628 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3629 UnifiedMemoryEnabled)) && 3630 "Link clause or to clause with unified memory expected."); 3631 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3632 } 3633 3634 return; 3635 } 3636 } 3637 // If this declaration may have caused an inline variable definition to 3638 // change linkage, make sure that it's emitted. 3639 if (Context.getInlineVariableDefinitionKind(VD) == 3640 ASTContext::InlineVariableDefinitionKind::Strong) 3641 GetAddrOfGlobalVar(VD); 3642 return; 3643 } 3644 } 3645 3646 // Defer code generation to first use when possible, e.g. if this is an inline 3647 // function. If the global must always be emitted, do it eagerly if possible 3648 // to benefit from cache locality. 3649 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3650 // Emit the definition if it can't be deferred. 3651 EmitGlobalDefinition(GD); 3652 addEmittedDeferredDecl(GD); 3653 return; 3654 } 3655 3656 // If we're deferring emission of a C++ variable with an 3657 // initializer, remember the order in which it appeared in the file. 3658 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3659 cast<VarDecl>(Global)->hasInit()) { 3660 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3661 CXXGlobalInits.push_back(nullptr); 3662 } 3663 3664 StringRef MangledName = getMangledName(GD); 3665 if (GetGlobalValue(MangledName) != nullptr) { 3666 // The value has already been used and should therefore be emitted. 3667 addDeferredDeclToEmit(GD); 3668 } else if (MustBeEmitted(Global)) { 3669 // The value must be emitted, but cannot be emitted eagerly. 3670 assert(!MayBeEmittedEagerly(Global)); 3671 addDeferredDeclToEmit(GD); 3672 } else { 3673 // Otherwise, remember that we saw a deferred decl with this name. The 3674 // first use of the mangled name will cause it to move into 3675 // DeferredDeclsToEmit. 3676 DeferredDecls[MangledName] = GD; 3677 } 3678 } 3679 3680 // Check if T is a class type with a destructor that's not dllimport. 3681 static bool HasNonDllImportDtor(QualType T) { 3682 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3683 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3684 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3685 return true; 3686 3687 return false; 3688 } 3689 3690 namespace { 3691 struct FunctionIsDirectlyRecursive 3692 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3693 const StringRef Name; 3694 const Builtin::Context &BI; 3695 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3696 : Name(N), BI(C) {} 3697 3698 bool VisitCallExpr(const CallExpr *E) { 3699 const FunctionDecl *FD = E->getDirectCallee(); 3700 if (!FD) 3701 return false; 3702 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3703 if (Attr && Name == Attr->getLabel()) 3704 return true; 3705 unsigned BuiltinID = FD->getBuiltinID(); 3706 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3707 return false; 3708 StringRef BuiltinName = BI.getName(BuiltinID); 3709 if (BuiltinName.startswith("__builtin_") && 3710 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3711 return true; 3712 } 3713 return false; 3714 } 3715 3716 bool VisitStmt(const Stmt *S) { 3717 for (const Stmt *Child : S->children()) 3718 if (Child && this->Visit(Child)) 3719 return true; 3720 return false; 3721 } 3722 }; 3723 3724 // Make sure we're not referencing non-imported vars or functions. 3725 struct DLLImportFunctionVisitor 3726 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3727 bool SafeToInline = true; 3728 3729 bool shouldVisitImplicitCode() const { return true; } 3730 3731 bool VisitVarDecl(VarDecl *VD) { 3732 if (VD->getTLSKind()) { 3733 // A thread-local variable cannot be imported. 3734 SafeToInline = false; 3735 return SafeToInline; 3736 } 3737 3738 // A variable definition might imply a destructor call. 3739 if (VD->isThisDeclarationADefinition()) 3740 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3741 3742 return SafeToInline; 3743 } 3744 3745 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3746 if (const auto *D = E->getTemporary()->getDestructor()) 3747 SafeToInline = D->hasAttr<DLLImportAttr>(); 3748 return SafeToInline; 3749 } 3750 3751 bool VisitDeclRefExpr(DeclRefExpr *E) { 3752 ValueDecl *VD = E->getDecl(); 3753 if (isa<FunctionDecl>(VD)) 3754 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3755 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3756 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3757 return SafeToInline; 3758 } 3759 3760 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3761 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3762 return SafeToInline; 3763 } 3764 3765 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3766 CXXMethodDecl *M = E->getMethodDecl(); 3767 if (!M) { 3768 // Call through a pointer to member function. This is safe to inline. 3769 SafeToInline = true; 3770 } else { 3771 SafeToInline = M->hasAttr<DLLImportAttr>(); 3772 } 3773 return SafeToInline; 3774 } 3775 3776 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3777 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3778 return SafeToInline; 3779 } 3780 3781 bool VisitCXXNewExpr(CXXNewExpr *E) { 3782 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3783 return SafeToInline; 3784 } 3785 }; 3786 } 3787 3788 // isTriviallyRecursive - Check if this function calls another 3789 // decl that, because of the asm attribute or the other decl being a builtin, 3790 // ends up pointing to itself. 3791 bool 3792 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3793 StringRef Name; 3794 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3795 // asm labels are a special kind of mangling we have to support. 3796 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3797 if (!Attr) 3798 return false; 3799 Name = Attr->getLabel(); 3800 } else { 3801 Name = FD->getName(); 3802 } 3803 3804 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3805 const Stmt *Body = FD->getBody(); 3806 return Body ? Walker.Visit(Body) : false; 3807 } 3808 3809 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3810 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3811 return true; 3812 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3813 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3814 return false; 3815 3816 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3817 // Check whether it would be safe to inline this dllimport function. 3818 DLLImportFunctionVisitor Visitor; 3819 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3820 if (!Visitor.SafeToInline) 3821 return false; 3822 3823 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3824 // Implicit destructor invocations aren't captured in the AST, so the 3825 // check above can't see them. Check for them manually here. 3826 for (const Decl *Member : Dtor->getParent()->decls()) 3827 if (isa<FieldDecl>(Member)) 3828 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3829 return false; 3830 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3831 if (HasNonDllImportDtor(B.getType())) 3832 return false; 3833 } 3834 } 3835 3836 // Inline builtins declaration must be emitted. They often are fortified 3837 // functions. 3838 if (F->isInlineBuiltinDeclaration()) 3839 return true; 3840 3841 // PR9614. Avoid cases where the source code is lying to us. An available 3842 // externally function should have an equivalent function somewhere else, 3843 // but a function that calls itself through asm label/`__builtin_` trickery is 3844 // clearly not equivalent to the real implementation. 3845 // This happens in glibc's btowc and in some configure checks. 3846 return !isTriviallyRecursive(F); 3847 } 3848 3849 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3850 return CodeGenOpts.OptimizationLevel > 0; 3851 } 3852 3853 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3854 llvm::GlobalValue *GV) { 3855 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3856 3857 if (FD->isCPUSpecificMultiVersion()) { 3858 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3859 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3860 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3861 } else if (FD->isTargetClonesMultiVersion()) { 3862 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3863 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3864 if (Clone->isFirstOfVersion(I)) 3865 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3866 // Ensure that the resolver function is also emitted. 3867 GetOrCreateMultiVersionResolver(GD); 3868 } else 3869 EmitGlobalFunctionDefinition(GD, GV); 3870 } 3871 3872 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3873 const auto *D = cast<ValueDecl>(GD.getDecl()); 3874 3875 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3876 Context.getSourceManager(), 3877 "Generating code for declaration"); 3878 3879 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3880 // At -O0, don't generate IR for functions with available_externally 3881 // linkage. 3882 if (!shouldEmitFunction(GD)) 3883 return; 3884 3885 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3886 std::string Name; 3887 llvm::raw_string_ostream OS(Name); 3888 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3889 /*Qualified=*/true); 3890 return Name; 3891 }); 3892 3893 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3894 // Make sure to emit the definition(s) before we emit the thunks. 3895 // This is necessary for the generation of certain thunks. 3896 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3897 ABI->emitCXXStructor(GD); 3898 else if (FD->isMultiVersion()) 3899 EmitMultiVersionFunctionDefinition(GD, GV); 3900 else 3901 EmitGlobalFunctionDefinition(GD, GV); 3902 3903 if (Method->isVirtual()) 3904 getVTables().EmitThunks(GD); 3905 3906 return; 3907 } 3908 3909 if (FD->isMultiVersion()) 3910 return EmitMultiVersionFunctionDefinition(GD, GV); 3911 return EmitGlobalFunctionDefinition(GD, GV); 3912 } 3913 3914 if (const auto *VD = dyn_cast<VarDecl>(D)) 3915 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3916 3917 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3918 } 3919 3920 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3921 llvm::Function *NewFn); 3922 3923 static unsigned 3924 TargetMVPriority(const TargetInfo &TI, 3925 const CodeGenFunction::MultiVersionResolverOption &RO) { 3926 unsigned Priority = 0; 3927 unsigned NumFeatures = 0; 3928 for (StringRef Feat : RO.Conditions.Features) { 3929 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3930 NumFeatures++; 3931 } 3932 3933 if (!RO.Conditions.Architecture.empty()) 3934 Priority = std::max( 3935 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3936 3937 Priority += TI.multiVersionFeatureCost() * NumFeatures; 3938 3939 return Priority; 3940 } 3941 3942 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3943 // TU can forward declare the function without causing problems. Particularly 3944 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3945 // work with internal linkage functions, so that the same function name can be 3946 // used with internal linkage in multiple TUs. 3947 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3948 GlobalDecl GD) { 3949 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3950 if (FD->getFormalLinkage() == InternalLinkage) 3951 return llvm::GlobalValue::InternalLinkage; 3952 return llvm::GlobalValue::WeakODRLinkage; 3953 } 3954 3955 void CodeGenModule::emitMultiVersionFunctions() { 3956 std::vector<GlobalDecl> MVFuncsToEmit; 3957 MultiVersionFuncs.swap(MVFuncsToEmit); 3958 for (GlobalDecl GD : MVFuncsToEmit) { 3959 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3960 assert(FD && "Expected a FunctionDecl"); 3961 3962 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3963 if (FD->isTargetMultiVersion()) { 3964 getContext().forEachMultiversionedFunctionVersion( 3965 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3966 GlobalDecl CurGD{ 3967 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3968 StringRef MangledName = getMangledName(CurGD); 3969 llvm::Constant *Func = GetGlobalValue(MangledName); 3970 if (!Func) { 3971 if (CurFD->isDefined()) { 3972 EmitGlobalFunctionDefinition(CurGD, nullptr); 3973 Func = GetGlobalValue(MangledName); 3974 } else { 3975 const CGFunctionInfo &FI = 3976 getTypes().arrangeGlobalDeclaration(GD); 3977 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3978 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3979 /*DontDefer=*/false, ForDefinition); 3980 } 3981 assert(Func && "This should have just been created"); 3982 } 3983 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 3984 const auto *TA = CurFD->getAttr<TargetAttr>(); 3985 llvm::SmallVector<StringRef, 8> Feats; 3986 TA->getAddedFeatures(Feats); 3987 Options.emplace_back(cast<llvm::Function>(Func), 3988 TA->getArchitecture(), Feats); 3989 } else { 3990 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 3991 llvm::SmallVector<StringRef, 8> Feats; 3992 TVA->getFeatures(Feats); 3993 Options.emplace_back(cast<llvm::Function>(Func), 3994 /*Architecture*/ "", Feats); 3995 } 3996 }); 3997 } else if (FD->isTargetClonesMultiVersion()) { 3998 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3999 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 4000 ++VersionIndex) { 4001 if (!TC->isFirstOfVersion(VersionIndex)) 4002 continue; 4003 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 4004 VersionIndex}; 4005 StringRef Version = TC->getFeatureStr(VersionIndex); 4006 StringRef MangledName = getMangledName(CurGD); 4007 llvm::Constant *Func = GetGlobalValue(MangledName); 4008 if (!Func) { 4009 if (FD->isDefined()) { 4010 EmitGlobalFunctionDefinition(CurGD, nullptr); 4011 Func = GetGlobalValue(MangledName); 4012 } else { 4013 const CGFunctionInfo &FI = 4014 getTypes().arrangeGlobalDeclaration(CurGD); 4015 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4016 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4017 /*DontDefer=*/false, ForDefinition); 4018 } 4019 assert(Func && "This should have just been created"); 4020 } 4021 4022 StringRef Architecture; 4023 llvm::SmallVector<StringRef, 1> Feature; 4024 4025 if (getTarget().getTriple().isAArch64()) { 4026 if (Version != "default") { 4027 llvm::SmallVector<StringRef, 8> VerFeats; 4028 Version.split(VerFeats, "+"); 4029 for (auto &CurFeat : VerFeats) 4030 Feature.push_back(CurFeat.trim()); 4031 } 4032 } else { 4033 if (Version.startswith("arch=")) 4034 Architecture = Version.drop_front(sizeof("arch=") - 1); 4035 else if (Version != "default") 4036 Feature.push_back(Version); 4037 } 4038 4039 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 4040 } 4041 } else { 4042 assert(0 && "Expected a target or target_clones multiversion function"); 4043 continue; 4044 } 4045 4046 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4047 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 4048 ResolverConstant = IFunc->getResolver(); 4049 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4050 4051 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4052 4053 if (supportsCOMDAT()) 4054 ResolverFunc->setComdat( 4055 getModule().getOrInsertComdat(ResolverFunc->getName())); 4056 4057 const TargetInfo &TI = getTarget(); 4058 llvm::stable_sort( 4059 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4060 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4061 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4062 }); 4063 CodeGenFunction CGF(*this); 4064 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4065 } 4066 4067 // Ensure that any additions to the deferred decls list caused by emitting a 4068 // variant are emitted. This can happen when the variant itself is inline and 4069 // calls a function without linkage. 4070 if (!MVFuncsToEmit.empty()) 4071 EmitDeferred(); 4072 4073 // Ensure that any additions to the multiversion funcs list from either the 4074 // deferred decls or the multiversion functions themselves are emitted. 4075 if (!MultiVersionFuncs.empty()) 4076 emitMultiVersionFunctions(); 4077 } 4078 4079 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4080 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4081 assert(FD && "Not a FunctionDecl?"); 4082 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4083 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4084 assert(DD && "Not a cpu_dispatch Function?"); 4085 4086 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4087 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4088 4089 StringRef ResolverName = getMangledName(GD); 4090 UpdateMultiVersionNames(GD, FD, ResolverName); 4091 4092 llvm::Type *ResolverType; 4093 GlobalDecl ResolverGD; 4094 if (getTarget().supportsIFunc()) { 4095 ResolverType = llvm::FunctionType::get( 4096 llvm::PointerType::get(DeclTy, 4097 getTypes().getTargetAddressSpace(FD->getType())), 4098 false); 4099 } 4100 else { 4101 ResolverType = DeclTy; 4102 ResolverGD = GD; 4103 } 4104 4105 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4106 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4107 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4108 if (supportsCOMDAT()) 4109 ResolverFunc->setComdat( 4110 getModule().getOrInsertComdat(ResolverFunc->getName())); 4111 4112 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4113 const TargetInfo &Target = getTarget(); 4114 unsigned Index = 0; 4115 for (const IdentifierInfo *II : DD->cpus()) { 4116 // Get the name of the target function so we can look it up/create it. 4117 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4118 getCPUSpecificMangling(*this, II->getName()); 4119 4120 llvm::Constant *Func = GetGlobalValue(MangledName); 4121 4122 if (!Func) { 4123 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4124 if (ExistingDecl.getDecl() && 4125 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4126 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4127 Func = GetGlobalValue(MangledName); 4128 } else { 4129 if (!ExistingDecl.getDecl()) 4130 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4131 4132 Func = GetOrCreateLLVMFunction( 4133 MangledName, DeclTy, ExistingDecl, 4134 /*ForVTable=*/false, /*DontDefer=*/true, 4135 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4136 } 4137 } 4138 4139 llvm::SmallVector<StringRef, 32> Features; 4140 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4141 llvm::transform(Features, Features.begin(), 4142 [](StringRef Str) { return Str.substr(1); }); 4143 llvm::erase_if(Features, [&Target](StringRef Feat) { 4144 return !Target.validateCpuSupports(Feat); 4145 }); 4146 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4147 ++Index; 4148 } 4149 4150 llvm::stable_sort( 4151 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4152 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4153 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4154 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4155 }); 4156 4157 // If the list contains multiple 'default' versions, such as when it contains 4158 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4159 // always run on at least a 'pentium'). We do this by deleting the 'least 4160 // advanced' (read, lowest mangling letter). 4161 while (Options.size() > 1 && 4162 llvm::all_of(llvm::X86::getCpuSupportsMask( 4163 (Options.end() - 2)->Conditions.Features), 4164 [](auto X) { return X == 0; })) { 4165 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4166 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4167 if (LHSName.compare(RHSName) < 0) 4168 Options.erase(Options.end() - 2); 4169 else 4170 Options.erase(Options.end() - 1); 4171 } 4172 4173 CodeGenFunction CGF(*this); 4174 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4175 4176 if (getTarget().supportsIFunc()) { 4177 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4178 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4179 4180 // Fix up function declarations that were created for cpu_specific before 4181 // cpu_dispatch was known 4182 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4183 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 4184 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4185 &getModule()); 4186 GI->takeName(IFunc); 4187 IFunc->replaceAllUsesWith(GI); 4188 IFunc->eraseFromParent(); 4189 IFunc = GI; 4190 } 4191 4192 std::string AliasName = getMangledNameImpl( 4193 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4194 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4195 if (!AliasFunc) { 4196 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4197 &getModule()); 4198 SetCommonAttributes(GD, GA); 4199 } 4200 } 4201 } 4202 4203 /// If a dispatcher for the specified mangled name is not in the module, create 4204 /// and return an llvm Function with the specified type. 4205 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4206 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4207 assert(FD && "Not a FunctionDecl?"); 4208 4209 std::string MangledName = 4210 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4211 4212 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4213 // a separate resolver). 4214 std::string ResolverName = MangledName; 4215 if (getTarget().supportsIFunc()) 4216 ResolverName += ".ifunc"; 4217 else if (FD->isTargetMultiVersion()) 4218 ResolverName += ".resolver"; 4219 4220 // If the resolver has already been created, just return it. 4221 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 4222 return ResolverGV; 4223 4224 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4225 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4226 4227 // The resolver needs to be created. For target and target_clones, defer 4228 // creation until the end of the TU. 4229 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4230 MultiVersionFuncs.push_back(GD); 4231 4232 // For cpu_specific, don't create an ifunc yet because we don't know if the 4233 // cpu_dispatch will be emitted in this translation unit. 4234 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4235 llvm::Type *ResolverType = llvm::FunctionType::get( 4236 llvm::PointerType::get(DeclTy, 4237 getTypes().getTargetAddressSpace(FD->getType())), 4238 false); 4239 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4240 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4241 /*ForVTable=*/false); 4242 llvm::GlobalIFunc *GIF = 4243 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4244 "", Resolver, &getModule()); 4245 GIF->setName(ResolverName); 4246 SetCommonAttributes(FD, GIF); 4247 4248 return GIF; 4249 } 4250 4251 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4252 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4253 assert(isa<llvm::GlobalValue>(Resolver) && 4254 "Resolver should be created for the first time"); 4255 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4256 return Resolver; 4257 } 4258 4259 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4260 /// module, create and return an llvm Function with the specified type. If there 4261 /// is something in the module with the specified name, return it potentially 4262 /// bitcasted to the right type. 4263 /// 4264 /// If D is non-null, it specifies a decl that correspond to this. This is used 4265 /// to set the attributes on the function when it is first created. 4266 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4267 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4268 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4269 ForDefinition_t IsForDefinition) { 4270 const Decl *D = GD.getDecl(); 4271 4272 // Any attempts to use a MultiVersion function should result in retrieving 4273 // the iFunc instead. Name Mangling will handle the rest of the changes. 4274 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4275 // For the device mark the function as one that should be emitted. 4276 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4277 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4278 !DontDefer && !IsForDefinition) { 4279 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4280 GlobalDecl GDDef; 4281 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4282 GDDef = GlobalDecl(CD, GD.getCtorType()); 4283 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4284 GDDef = GlobalDecl(DD, GD.getDtorType()); 4285 else 4286 GDDef = GlobalDecl(FDDef); 4287 EmitGlobal(GDDef); 4288 } 4289 } 4290 4291 if (FD->isMultiVersion()) { 4292 UpdateMultiVersionNames(GD, FD, MangledName); 4293 if (!IsForDefinition) 4294 return GetOrCreateMultiVersionResolver(GD); 4295 } 4296 } 4297 4298 // Lookup the entry, lazily creating it if necessary. 4299 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4300 if (Entry) { 4301 if (WeakRefReferences.erase(Entry)) { 4302 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4303 if (FD && !FD->hasAttr<WeakAttr>()) 4304 Entry->setLinkage(llvm::Function::ExternalLinkage); 4305 } 4306 4307 // Handle dropped DLL attributes. 4308 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4309 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4310 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4311 setDSOLocal(Entry); 4312 } 4313 4314 // If there are two attempts to define the same mangled name, issue an 4315 // error. 4316 if (IsForDefinition && !Entry->isDeclaration()) { 4317 GlobalDecl OtherGD; 4318 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4319 // to make sure that we issue an error only once. 4320 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4321 (GD.getCanonicalDecl().getDecl() != 4322 OtherGD.getCanonicalDecl().getDecl()) && 4323 DiagnosedConflictingDefinitions.insert(GD).second) { 4324 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4325 << MangledName; 4326 getDiags().Report(OtherGD.getDecl()->getLocation(), 4327 diag::note_previous_definition); 4328 } 4329 } 4330 4331 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4332 (Entry->getValueType() == Ty)) { 4333 return Entry; 4334 } 4335 4336 // Make sure the result is of the correct type. 4337 // (If function is requested for a definition, we always need to create a new 4338 // function, not just return a bitcast.) 4339 if (!IsForDefinition) 4340 return llvm::ConstantExpr::getBitCast( 4341 Entry, Ty->getPointerTo(Entry->getAddressSpace())); 4342 } 4343 4344 // This function doesn't have a complete type (for example, the return 4345 // type is an incomplete struct). Use a fake type instead, and make 4346 // sure not to try to set attributes. 4347 bool IsIncompleteFunction = false; 4348 4349 llvm::FunctionType *FTy; 4350 if (isa<llvm::FunctionType>(Ty)) { 4351 FTy = cast<llvm::FunctionType>(Ty); 4352 } else { 4353 FTy = llvm::FunctionType::get(VoidTy, false); 4354 IsIncompleteFunction = true; 4355 } 4356 4357 llvm::Function *F = 4358 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4359 Entry ? StringRef() : MangledName, &getModule()); 4360 4361 // If we already created a function with the same mangled name (but different 4362 // type) before, take its name and add it to the list of functions to be 4363 // replaced with F at the end of CodeGen. 4364 // 4365 // This happens if there is a prototype for a function (e.g. "int f()") and 4366 // then a definition of a different type (e.g. "int f(int x)"). 4367 if (Entry) { 4368 F->takeName(Entry); 4369 4370 // This might be an implementation of a function without a prototype, in 4371 // which case, try to do special replacement of calls which match the new 4372 // prototype. The really key thing here is that we also potentially drop 4373 // arguments from the call site so as to make a direct call, which makes the 4374 // inliner happier and suppresses a number of optimizer warnings (!) about 4375 // dropping arguments. 4376 if (!Entry->use_empty()) { 4377 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4378 Entry->removeDeadConstantUsers(); 4379 } 4380 4381 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 4382 F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace())); 4383 addGlobalValReplacement(Entry, BC); 4384 } 4385 4386 assert(F->getName() == MangledName && "name was uniqued!"); 4387 if (D) 4388 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4389 if (ExtraAttrs.hasFnAttrs()) { 4390 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4391 F->addFnAttrs(B); 4392 } 4393 4394 if (!DontDefer) { 4395 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4396 // each other bottoming out with the base dtor. Therefore we emit non-base 4397 // dtors on usage, even if there is no dtor definition in the TU. 4398 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4399 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4400 GD.getDtorType())) 4401 addDeferredDeclToEmit(GD); 4402 4403 // This is the first use or definition of a mangled name. If there is a 4404 // deferred decl with this name, remember that we need to emit it at the end 4405 // of the file. 4406 auto DDI = DeferredDecls.find(MangledName); 4407 if (DDI != DeferredDecls.end()) { 4408 // Move the potentially referenced deferred decl to the 4409 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4410 // don't need it anymore). 4411 addDeferredDeclToEmit(DDI->second); 4412 DeferredDecls.erase(DDI); 4413 4414 // Otherwise, there are cases we have to worry about where we're 4415 // using a declaration for which we must emit a definition but where 4416 // we might not find a top-level definition: 4417 // - member functions defined inline in their classes 4418 // - friend functions defined inline in some class 4419 // - special member functions with implicit definitions 4420 // If we ever change our AST traversal to walk into class methods, 4421 // this will be unnecessary. 4422 // 4423 // We also don't emit a definition for a function if it's going to be an 4424 // entry in a vtable, unless it's already marked as used. 4425 } else if (getLangOpts().CPlusPlus && D) { 4426 // Look for a declaration that's lexically in a record. 4427 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4428 FD = FD->getPreviousDecl()) { 4429 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4430 if (FD->doesThisDeclarationHaveABody()) { 4431 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4432 break; 4433 } 4434 } 4435 } 4436 } 4437 } 4438 4439 // Make sure the result is of the requested type. 4440 if (!IsIncompleteFunction) { 4441 assert(F->getFunctionType() == Ty); 4442 return F; 4443 } 4444 4445 return llvm::ConstantExpr::getBitCast(F, 4446 Ty->getPointerTo(F->getAddressSpace())); 4447 } 4448 4449 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4450 /// non-null, then this function will use the specified type if it has to 4451 /// create it (this occurs when we see a definition of the function). 4452 llvm::Constant * 4453 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4454 bool DontDefer, 4455 ForDefinition_t IsForDefinition) { 4456 // If there was no specific requested type, just convert it now. 4457 if (!Ty) { 4458 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4459 Ty = getTypes().ConvertType(FD->getType()); 4460 } 4461 4462 // Devirtualized destructor calls may come through here instead of via 4463 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4464 // of the complete destructor when necessary. 4465 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4466 if (getTarget().getCXXABI().isMicrosoft() && 4467 GD.getDtorType() == Dtor_Complete && 4468 DD->getParent()->getNumVBases() == 0) 4469 GD = GlobalDecl(DD, Dtor_Base); 4470 } 4471 4472 StringRef MangledName = getMangledName(GD); 4473 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4474 /*IsThunk=*/false, llvm::AttributeList(), 4475 IsForDefinition); 4476 // Returns kernel handle for HIP kernel stub function. 4477 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4478 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4479 auto *Handle = getCUDARuntime().getKernelHandle( 4480 cast<llvm::Function>(F->stripPointerCasts()), GD); 4481 if (IsForDefinition) 4482 return F; 4483 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 4484 } 4485 return F; 4486 } 4487 4488 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4489 llvm::GlobalValue *F = 4490 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4491 4492 return llvm::ConstantExpr::getBitCast( 4493 llvm::NoCFIValue::get(F), 4494 llvm::PointerType::get(VMContext, F->getAddressSpace())); 4495 } 4496 4497 static const FunctionDecl * 4498 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4499 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4500 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4501 4502 IdentifierInfo &CII = C.Idents.get(Name); 4503 for (const auto *Result : DC->lookup(&CII)) 4504 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4505 return FD; 4506 4507 if (!C.getLangOpts().CPlusPlus) 4508 return nullptr; 4509 4510 // Demangle the premangled name from getTerminateFn() 4511 IdentifierInfo &CXXII = 4512 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4513 ? C.Idents.get("terminate") 4514 : C.Idents.get(Name); 4515 4516 for (const auto &N : {"__cxxabiv1", "std"}) { 4517 IdentifierInfo &NS = C.Idents.get(N); 4518 for (const auto *Result : DC->lookup(&NS)) { 4519 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4520 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4521 for (const auto *Result : LSD->lookup(&NS)) 4522 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4523 break; 4524 4525 if (ND) 4526 for (const auto *Result : ND->lookup(&CXXII)) 4527 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4528 return FD; 4529 } 4530 } 4531 4532 return nullptr; 4533 } 4534 4535 /// CreateRuntimeFunction - Create a new runtime function with the specified 4536 /// type and name. 4537 llvm::FunctionCallee 4538 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4539 llvm::AttributeList ExtraAttrs, bool Local, 4540 bool AssumeConvergent) { 4541 if (AssumeConvergent) { 4542 ExtraAttrs = 4543 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4544 } 4545 4546 llvm::Constant *C = 4547 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4548 /*DontDefer=*/false, /*IsThunk=*/false, 4549 ExtraAttrs); 4550 4551 if (auto *F = dyn_cast<llvm::Function>(C)) { 4552 if (F->empty()) { 4553 F->setCallingConv(getRuntimeCC()); 4554 4555 // In Windows Itanium environments, try to mark runtime functions 4556 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4557 // will link their standard library statically or dynamically. Marking 4558 // functions imported when they are not imported can cause linker errors 4559 // and warnings. 4560 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4561 !getCodeGenOpts().LTOVisibilityPublicStd) { 4562 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4563 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4564 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4565 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4566 } 4567 } 4568 setDSOLocal(F); 4569 } 4570 } 4571 4572 return {FTy, C}; 4573 } 4574 4575 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4576 /// create and return an llvm GlobalVariable with the specified type and address 4577 /// space. If there is something in the module with the specified name, return 4578 /// it potentially bitcasted to the right type. 4579 /// 4580 /// If D is non-null, it specifies a decl that correspond to this. This is used 4581 /// to set the attributes on the global when it is first created. 4582 /// 4583 /// If IsForDefinition is true, it is guaranteed that an actual global with 4584 /// type Ty will be returned, not conversion of a variable with the same 4585 /// mangled name but some other type. 4586 llvm::Constant * 4587 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4588 LangAS AddrSpace, const VarDecl *D, 4589 ForDefinition_t IsForDefinition) { 4590 // Lookup the entry, lazily creating it if necessary. 4591 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4592 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4593 if (Entry) { 4594 if (WeakRefReferences.erase(Entry)) { 4595 if (D && !D->hasAttr<WeakAttr>()) 4596 Entry->setLinkage(llvm::Function::ExternalLinkage); 4597 } 4598 4599 // Handle dropped DLL attributes. 4600 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4601 !shouldMapVisibilityToDLLExport(D)) 4602 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4603 4604 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4605 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4606 4607 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4608 return Entry; 4609 4610 // If there are two attempts to define the same mangled name, issue an 4611 // error. 4612 if (IsForDefinition && !Entry->isDeclaration()) { 4613 GlobalDecl OtherGD; 4614 const VarDecl *OtherD; 4615 4616 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4617 // to make sure that we issue an error only once. 4618 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4619 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4620 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4621 OtherD->hasInit() && 4622 DiagnosedConflictingDefinitions.insert(D).second) { 4623 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4624 << MangledName; 4625 getDiags().Report(OtherGD.getDecl()->getLocation(), 4626 diag::note_previous_definition); 4627 } 4628 } 4629 4630 // Make sure the result is of the correct type. 4631 if (Entry->getType()->getAddressSpace() != TargetAS) { 4632 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4633 Ty->getPointerTo(TargetAS)); 4634 } 4635 4636 // (If global is requested for a definition, we always need to create a new 4637 // global, not just return a bitcast.) 4638 if (!IsForDefinition) 4639 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4640 } 4641 4642 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4643 4644 auto *GV = new llvm::GlobalVariable( 4645 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4646 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4647 getContext().getTargetAddressSpace(DAddrSpace)); 4648 4649 // If we already created a global with the same mangled name (but different 4650 // type) before, take its name and remove it from its parent. 4651 if (Entry) { 4652 GV->takeName(Entry); 4653 4654 if (!Entry->use_empty()) { 4655 llvm::Constant *NewPtrForOldDecl = 4656 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4657 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4658 } 4659 4660 Entry->eraseFromParent(); 4661 } 4662 4663 // This is the first use or definition of a mangled name. If there is a 4664 // deferred decl with this name, remember that we need to emit it at the end 4665 // of the file. 4666 auto DDI = DeferredDecls.find(MangledName); 4667 if (DDI != DeferredDecls.end()) { 4668 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4669 // list, and remove it from DeferredDecls (since we don't need it anymore). 4670 addDeferredDeclToEmit(DDI->second); 4671 DeferredDecls.erase(DDI); 4672 } 4673 4674 // Handle things which are present even on external declarations. 4675 if (D) { 4676 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4677 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4678 4679 // FIXME: This code is overly simple and should be merged with other global 4680 // handling. 4681 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 4682 4683 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4684 4685 setLinkageForGV(GV, D); 4686 4687 if (D->getTLSKind()) { 4688 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4689 CXXThreadLocals.push_back(D); 4690 setTLSMode(GV, *D); 4691 } 4692 4693 setGVProperties(GV, D); 4694 4695 // If required by the ABI, treat declarations of static data members with 4696 // inline initializers as definitions. 4697 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4698 EmitGlobalVarDefinition(D); 4699 } 4700 4701 // Emit section information for extern variables. 4702 if (D->hasExternalStorage()) { 4703 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4704 GV->setSection(SA->getName()); 4705 } 4706 4707 // Handle XCore specific ABI requirements. 4708 if (getTriple().getArch() == llvm::Triple::xcore && 4709 D->getLanguageLinkage() == CLanguageLinkage && 4710 D->getType().isConstant(Context) && 4711 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4712 GV->setSection(".cp.rodata"); 4713 4714 // Check if we a have a const declaration with an initializer, we may be 4715 // able to emit it as available_externally to expose it's value to the 4716 // optimizer. 4717 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4718 D->getType().isConstQualified() && !GV->hasInitializer() && 4719 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4720 const auto *Record = 4721 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4722 bool HasMutableFields = Record && Record->hasMutableFields(); 4723 if (!HasMutableFields) { 4724 const VarDecl *InitDecl; 4725 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4726 if (InitExpr) { 4727 ConstantEmitter emitter(*this); 4728 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4729 if (Init) { 4730 auto *InitType = Init->getType(); 4731 if (GV->getValueType() != InitType) { 4732 // The type of the initializer does not match the definition. 4733 // This happens when an initializer has a different type from 4734 // the type of the global (because of padding at the end of a 4735 // structure for instance). 4736 GV->setName(StringRef()); 4737 // Make a new global with the correct type, this is now guaranteed 4738 // to work. 4739 auto *NewGV = cast<llvm::GlobalVariable>( 4740 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4741 ->stripPointerCasts()); 4742 4743 // Erase the old global, since it is no longer used. 4744 GV->eraseFromParent(); 4745 GV = NewGV; 4746 } else { 4747 GV->setInitializer(Init); 4748 GV->setConstant(true); 4749 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4750 } 4751 emitter.finalize(GV); 4752 } 4753 } 4754 } 4755 } 4756 } 4757 4758 if (D && 4759 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 4760 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4761 // External HIP managed variables needed to be recorded for transformation 4762 // in both device and host compilations. 4763 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4764 D->hasExternalStorage()) 4765 getCUDARuntime().handleVarRegistration(D, *GV); 4766 } 4767 4768 if (D) 4769 SanitizerMD->reportGlobal(GV, *D); 4770 4771 LangAS ExpectedAS = 4772 D ? D->getType().getAddressSpace() 4773 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4774 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4775 if (DAddrSpace != ExpectedAS) { 4776 return getTargetCodeGenInfo().performAddrSpaceCast( 4777 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4778 } 4779 4780 return GV; 4781 } 4782 4783 llvm::Constant * 4784 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4785 const Decl *D = GD.getDecl(); 4786 4787 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4788 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4789 /*DontDefer=*/false, IsForDefinition); 4790 4791 if (isa<CXXMethodDecl>(D)) { 4792 auto FInfo = 4793 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4794 auto Ty = getTypes().GetFunctionType(*FInfo); 4795 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4796 IsForDefinition); 4797 } 4798 4799 if (isa<FunctionDecl>(D)) { 4800 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4801 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4802 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4803 IsForDefinition); 4804 } 4805 4806 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4807 } 4808 4809 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4810 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4811 llvm::Align Alignment) { 4812 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4813 llvm::GlobalVariable *OldGV = nullptr; 4814 4815 if (GV) { 4816 // Check if the variable has the right type. 4817 if (GV->getValueType() == Ty) 4818 return GV; 4819 4820 // Because C++ name mangling, the only way we can end up with an already 4821 // existing global with the same name is if it has been declared extern "C". 4822 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4823 OldGV = GV; 4824 } 4825 4826 // Create a new variable. 4827 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4828 Linkage, nullptr, Name); 4829 4830 if (OldGV) { 4831 // Replace occurrences of the old variable if needed. 4832 GV->takeName(OldGV); 4833 4834 if (!OldGV->use_empty()) { 4835 llvm::Constant *NewPtrForOldDecl = 4836 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4837 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4838 } 4839 4840 OldGV->eraseFromParent(); 4841 } 4842 4843 if (supportsCOMDAT() && GV->isWeakForLinker() && 4844 !GV->hasAvailableExternallyLinkage()) 4845 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4846 4847 GV->setAlignment(Alignment); 4848 4849 return GV; 4850 } 4851 4852 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4853 /// given global variable. If Ty is non-null and if the global doesn't exist, 4854 /// then it will be created with the specified type instead of whatever the 4855 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4856 /// that an actual global with type Ty will be returned, not conversion of a 4857 /// variable with the same mangled name but some other type. 4858 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4859 llvm::Type *Ty, 4860 ForDefinition_t IsForDefinition) { 4861 assert(D->hasGlobalStorage() && "Not a global variable"); 4862 QualType ASTTy = D->getType(); 4863 if (!Ty) 4864 Ty = getTypes().ConvertTypeForMem(ASTTy); 4865 4866 StringRef MangledName = getMangledName(D); 4867 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4868 IsForDefinition); 4869 } 4870 4871 /// CreateRuntimeVariable - Create a new runtime global variable with the 4872 /// specified type and name. 4873 llvm::Constant * 4874 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4875 StringRef Name) { 4876 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4877 : LangAS::Default; 4878 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4879 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4880 return Ret; 4881 } 4882 4883 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4884 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4885 4886 StringRef MangledName = getMangledName(D); 4887 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4888 4889 // We already have a definition, not declaration, with the same mangled name. 4890 // Emitting of declaration is not required (and actually overwrites emitted 4891 // definition). 4892 if (GV && !GV->isDeclaration()) 4893 return; 4894 4895 // If we have not seen a reference to this variable yet, place it into the 4896 // deferred declarations table to be emitted if needed later. 4897 if (!MustBeEmitted(D) && !GV) { 4898 DeferredDecls[MangledName] = D; 4899 return; 4900 } 4901 4902 // The tentative definition is the only definition. 4903 EmitGlobalVarDefinition(D); 4904 } 4905 4906 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4907 EmitExternalVarDeclaration(D); 4908 } 4909 4910 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4911 return Context.toCharUnitsFromBits( 4912 getDataLayout().getTypeStoreSizeInBits(Ty)); 4913 } 4914 4915 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4916 if (LangOpts.OpenCL) { 4917 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4918 assert(AS == LangAS::opencl_global || 4919 AS == LangAS::opencl_global_device || 4920 AS == LangAS::opencl_global_host || 4921 AS == LangAS::opencl_constant || 4922 AS == LangAS::opencl_local || 4923 AS >= LangAS::FirstTargetAddressSpace); 4924 return AS; 4925 } 4926 4927 if (LangOpts.SYCLIsDevice && 4928 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4929 return LangAS::sycl_global; 4930 4931 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4932 if (D) { 4933 if (D->hasAttr<CUDAConstantAttr>()) 4934 return LangAS::cuda_constant; 4935 if (D->hasAttr<CUDASharedAttr>()) 4936 return LangAS::cuda_shared; 4937 if (D->hasAttr<CUDADeviceAttr>()) 4938 return LangAS::cuda_device; 4939 if (D->getType().isConstQualified()) 4940 return LangAS::cuda_constant; 4941 } 4942 return LangAS::cuda_device; 4943 } 4944 4945 if (LangOpts.OpenMP) { 4946 LangAS AS; 4947 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4948 return AS; 4949 } 4950 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4951 } 4952 4953 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4954 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4955 if (LangOpts.OpenCL) 4956 return LangAS::opencl_constant; 4957 if (LangOpts.SYCLIsDevice) 4958 return LangAS::sycl_global; 4959 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4960 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4961 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4962 // with OpVariable instructions with Generic storage class which is not 4963 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4964 // UniformConstant storage class is not viable as pointers to it may not be 4965 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4966 return LangAS::cuda_device; 4967 if (auto AS = getTarget().getConstantAddressSpace()) 4968 return *AS; 4969 return LangAS::Default; 4970 } 4971 4972 // In address space agnostic languages, string literals are in default address 4973 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4974 // emitted in constant address space in LLVM IR. To be consistent with other 4975 // parts of AST, string literal global variables in constant address space 4976 // need to be casted to default address space before being put into address 4977 // map and referenced by other part of CodeGen. 4978 // In OpenCL, string literals are in constant address space in AST, therefore 4979 // they should not be casted to default address space. 4980 static llvm::Constant * 4981 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4982 llvm::GlobalVariable *GV) { 4983 llvm::Constant *Cast = GV; 4984 if (!CGM.getLangOpts().OpenCL) { 4985 auto AS = CGM.GetGlobalConstantAddressSpace(); 4986 if (AS != LangAS::Default) 4987 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4988 CGM, GV, AS, LangAS::Default, 4989 GV->getValueType()->getPointerTo( 4990 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4991 } 4992 return Cast; 4993 } 4994 4995 template<typename SomeDecl> 4996 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4997 llvm::GlobalValue *GV) { 4998 if (!getLangOpts().CPlusPlus) 4999 return; 5000 5001 // Must have 'used' attribute, or else inline assembly can't rely on 5002 // the name existing. 5003 if (!D->template hasAttr<UsedAttr>()) 5004 return; 5005 5006 // Must have internal linkage and an ordinary name. 5007 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 5008 return; 5009 5010 // Must be in an extern "C" context. Entities declared directly within 5011 // a record are not extern "C" even if the record is in such a context. 5012 const SomeDecl *First = D->getFirstDecl(); 5013 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5014 return; 5015 5016 // OK, this is an internal linkage entity inside an extern "C" linkage 5017 // specification. Make a note of that so we can give it the "expected" 5018 // mangled name if nothing else is using that name. 5019 std::pair<StaticExternCMap::iterator, bool> R = 5020 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5021 5022 // If we have multiple internal linkage entities with the same name 5023 // in extern "C" regions, none of them gets that name. 5024 if (!R.second) 5025 R.first->second = nullptr; 5026 } 5027 5028 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5029 if (!CGM.supportsCOMDAT()) 5030 return false; 5031 5032 if (D.hasAttr<SelectAnyAttr>()) 5033 return true; 5034 5035 GVALinkage Linkage; 5036 if (auto *VD = dyn_cast<VarDecl>(&D)) 5037 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5038 else 5039 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5040 5041 switch (Linkage) { 5042 case GVA_Internal: 5043 case GVA_AvailableExternally: 5044 case GVA_StrongExternal: 5045 return false; 5046 case GVA_DiscardableODR: 5047 case GVA_StrongODR: 5048 return true; 5049 } 5050 llvm_unreachable("No such linkage"); 5051 } 5052 5053 bool CodeGenModule::supportsCOMDAT() const { 5054 return getTriple().supportsCOMDAT(); 5055 } 5056 5057 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5058 llvm::GlobalObject &GO) { 5059 if (!shouldBeInCOMDAT(*this, D)) 5060 return; 5061 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5062 } 5063 5064 /// Pass IsTentative as true if you want to create a tentative definition. 5065 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5066 bool IsTentative) { 5067 // OpenCL global variables of sampler type are translated to function calls, 5068 // therefore no need to be translated. 5069 QualType ASTTy = D->getType(); 5070 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5071 return; 5072 5073 // If this is OpenMP device, check if it is legal to emit this global 5074 // normally. 5075 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5076 OpenMPRuntime->emitTargetGlobalVariable(D)) 5077 return; 5078 5079 llvm::TrackingVH<llvm::Constant> Init; 5080 bool NeedsGlobalCtor = false; 5081 // Whether the definition of the variable is available externally. 5082 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5083 // since this is the job for its original source. 5084 bool IsDefinitionAvailableExternally = 5085 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5086 bool NeedsGlobalDtor = 5087 !IsDefinitionAvailableExternally && 5088 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5089 5090 const VarDecl *InitDecl; 5091 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5092 5093 std::optional<ConstantEmitter> emitter; 5094 5095 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5096 // as part of their declaration." Sema has already checked for 5097 // error cases, so we just need to set Init to UndefValue. 5098 bool IsCUDASharedVar = 5099 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5100 // Shadows of initialized device-side global variables are also left 5101 // undefined. 5102 // Managed Variables should be initialized on both host side and device side. 5103 bool IsCUDAShadowVar = 5104 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5105 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5106 D->hasAttr<CUDASharedAttr>()); 5107 bool IsCUDADeviceShadowVar = 5108 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5109 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5110 D->getType()->isCUDADeviceBuiltinTextureType()); 5111 if (getLangOpts().CUDA && 5112 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5113 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5114 else if (D->hasAttr<LoaderUninitializedAttr>()) 5115 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5116 else if (!InitExpr) { 5117 // This is a tentative definition; tentative definitions are 5118 // implicitly initialized with { 0 }. 5119 // 5120 // Note that tentative definitions are only emitted at the end of 5121 // a translation unit, so they should never have incomplete 5122 // type. In addition, EmitTentativeDefinition makes sure that we 5123 // never attempt to emit a tentative definition if a real one 5124 // exists. A use may still exists, however, so we still may need 5125 // to do a RAUW. 5126 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5127 Init = EmitNullConstant(D->getType()); 5128 } else { 5129 initializedGlobalDecl = GlobalDecl(D); 5130 emitter.emplace(*this); 5131 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5132 if (!Initializer) { 5133 QualType T = InitExpr->getType(); 5134 if (D->getType()->isReferenceType()) 5135 T = D->getType(); 5136 5137 if (getLangOpts().CPlusPlus) { 5138 if (InitDecl->hasFlexibleArrayInit(getContext())) 5139 ErrorUnsupported(D, "flexible array initializer"); 5140 Init = EmitNullConstant(T); 5141 5142 if (!IsDefinitionAvailableExternally) 5143 NeedsGlobalCtor = true; 5144 } else { 5145 ErrorUnsupported(D, "static initializer"); 5146 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5147 } 5148 } else { 5149 Init = Initializer; 5150 // We don't need an initializer, so remove the entry for the delayed 5151 // initializer position (just in case this entry was delayed) if we 5152 // also don't need to register a destructor. 5153 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5154 DelayedCXXInitPosition.erase(D); 5155 5156 #ifndef NDEBUG 5157 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5158 InitDecl->getFlexibleArrayInitChars(getContext()); 5159 CharUnits CstSize = CharUnits::fromQuantity( 5160 getDataLayout().getTypeAllocSize(Init->getType())); 5161 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5162 #endif 5163 } 5164 } 5165 5166 llvm::Type* InitType = Init->getType(); 5167 llvm::Constant *Entry = 5168 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5169 5170 // Strip off pointer casts if we got them. 5171 Entry = Entry->stripPointerCasts(); 5172 5173 // Entry is now either a Function or GlobalVariable. 5174 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5175 5176 // We have a definition after a declaration with the wrong type. 5177 // We must make a new GlobalVariable* and update everything that used OldGV 5178 // (a declaration or tentative definition) with the new GlobalVariable* 5179 // (which will be a definition). 5180 // 5181 // This happens if there is a prototype for a global (e.g. 5182 // "extern int x[];") and then a definition of a different type (e.g. 5183 // "int x[10];"). This also happens when an initializer has a different type 5184 // from the type of the global (this happens with unions). 5185 if (!GV || GV->getValueType() != InitType || 5186 GV->getType()->getAddressSpace() != 5187 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5188 5189 // Move the old entry aside so that we'll create a new one. 5190 Entry->setName(StringRef()); 5191 5192 // Make a new global with the correct type, this is now guaranteed to work. 5193 GV = cast<llvm::GlobalVariable>( 5194 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5195 ->stripPointerCasts()); 5196 5197 // Replace all uses of the old global with the new global 5198 llvm::Constant *NewPtrForOldDecl = 5199 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5200 Entry->getType()); 5201 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5202 5203 // Erase the old global, since it is no longer used. 5204 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5205 } 5206 5207 MaybeHandleStaticInExternC(D, GV); 5208 5209 if (D->hasAttr<AnnotateAttr>()) 5210 AddGlobalAnnotations(D, GV); 5211 5212 // Set the llvm linkage type as appropriate. 5213 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5214 5215 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5216 // the device. [...]" 5217 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5218 // __device__, declares a variable that: [...] 5219 // Is accessible from all the threads within the grid and from the host 5220 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5221 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5222 if (LangOpts.CUDA) { 5223 if (LangOpts.CUDAIsDevice) { 5224 if (Linkage != llvm::GlobalValue::InternalLinkage && 5225 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5226 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5227 D->getType()->isCUDADeviceBuiltinTextureType())) 5228 GV->setExternallyInitialized(true); 5229 } else { 5230 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5231 } 5232 getCUDARuntime().handleVarRegistration(D, *GV); 5233 } 5234 5235 GV->setInitializer(Init); 5236 if (emitter) 5237 emitter->finalize(GV); 5238 5239 // If it is safe to mark the global 'constant', do so now. 5240 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5241 D->getType().isConstantStorage(getContext(), true, true)); 5242 5243 // If it is in a read-only section, mark it 'constant'. 5244 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5245 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5246 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5247 GV->setConstant(true); 5248 } 5249 5250 CharUnits AlignVal = getContext().getDeclAlign(D); 5251 // Check for alignment specifed in an 'omp allocate' directive. 5252 if (std::optional<CharUnits> AlignValFromAllocate = 5253 getOMPAllocateAlignment(D)) 5254 AlignVal = *AlignValFromAllocate; 5255 GV->setAlignment(AlignVal.getAsAlign()); 5256 5257 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5258 // function is only defined alongside the variable, not also alongside 5259 // callers. Normally, all accesses to a thread_local go through the 5260 // thread-wrapper in order to ensure initialization has occurred, underlying 5261 // variable will never be used other than the thread-wrapper, so it can be 5262 // converted to internal linkage. 5263 // 5264 // However, if the variable has the 'constinit' attribute, it _can_ be 5265 // referenced directly, without calling the thread-wrapper, so the linkage 5266 // must not be changed. 5267 // 5268 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5269 // weak or linkonce, the de-duplication semantics are important to preserve, 5270 // so we don't change the linkage. 5271 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5272 Linkage == llvm::GlobalValue::ExternalLinkage && 5273 Context.getTargetInfo().getTriple().isOSDarwin() && 5274 !D->hasAttr<ConstInitAttr>()) 5275 Linkage = llvm::GlobalValue::InternalLinkage; 5276 5277 GV->setLinkage(Linkage); 5278 if (D->hasAttr<DLLImportAttr>()) 5279 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5280 else if (D->hasAttr<DLLExportAttr>()) 5281 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5282 else 5283 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5284 5285 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5286 // common vars aren't constant even if declared const. 5287 GV->setConstant(false); 5288 // Tentative definition of global variables may be initialized with 5289 // non-zero null pointers. In this case they should have weak linkage 5290 // since common linkage must have zero initializer and must not have 5291 // explicit section therefore cannot have non-zero initial value. 5292 if (!GV->getInitializer()->isNullValue()) 5293 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5294 } 5295 5296 setNonAliasAttributes(D, GV); 5297 5298 if (D->getTLSKind() && !GV->isThreadLocal()) { 5299 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5300 CXXThreadLocals.push_back(D); 5301 setTLSMode(GV, *D); 5302 } 5303 5304 maybeSetTrivialComdat(*D, *GV); 5305 5306 // Emit the initializer function if necessary. 5307 if (NeedsGlobalCtor || NeedsGlobalDtor) 5308 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5309 5310 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5311 5312 // Emit global variable debug information. 5313 if (CGDebugInfo *DI = getModuleDebugInfo()) 5314 if (getCodeGenOpts().hasReducedDebugInfo()) 5315 DI->EmitGlobalVariable(GV, D); 5316 } 5317 5318 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5319 if (CGDebugInfo *DI = getModuleDebugInfo()) 5320 if (getCodeGenOpts().hasReducedDebugInfo()) { 5321 QualType ASTTy = D->getType(); 5322 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5323 llvm::Constant *GV = 5324 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5325 DI->EmitExternalVariable( 5326 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5327 } 5328 } 5329 5330 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5331 CodeGenModule &CGM, const VarDecl *D, 5332 bool NoCommon) { 5333 // Don't give variables common linkage if -fno-common was specified unless it 5334 // was overridden by a NoCommon attribute. 5335 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5336 return true; 5337 5338 // C11 6.9.2/2: 5339 // A declaration of an identifier for an object that has file scope without 5340 // an initializer, and without a storage-class specifier or with the 5341 // storage-class specifier static, constitutes a tentative definition. 5342 if (D->getInit() || D->hasExternalStorage()) 5343 return true; 5344 5345 // A variable cannot be both common and exist in a section. 5346 if (D->hasAttr<SectionAttr>()) 5347 return true; 5348 5349 // A variable cannot be both common and exist in a section. 5350 // We don't try to determine which is the right section in the front-end. 5351 // If no specialized section name is applicable, it will resort to default. 5352 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5353 D->hasAttr<PragmaClangDataSectionAttr>() || 5354 D->hasAttr<PragmaClangRelroSectionAttr>() || 5355 D->hasAttr<PragmaClangRodataSectionAttr>()) 5356 return true; 5357 5358 // Thread local vars aren't considered common linkage. 5359 if (D->getTLSKind()) 5360 return true; 5361 5362 // Tentative definitions marked with WeakImportAttr are true definitions. 5363 if (D->hasAttr<WeakImportAttr>()) 5364 return true; 5365 5366 // A variable cannot be both common and exist in a comdat. 5367 if (shouldBeInCOMDAT(CGM, *D)) 5368 return true; 5369 5370 // Declarations with a required alignment do not have common linkage in MSVC 5371 // mode. 5372 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5373 if (D->hasAttr<AlignedAttr>()) 5374 return true; 5375 QualType VarType = D->getType(); 5376 if (Context.isAlignmentRequired(VarType)) 5377 return true; 5378 5379 if (const auto *RT = VarType->getAs<RecordType>()) { 5380 const RecordDecl *RD = RT->getDecl(); 5381 for (const FieldDecl *FD : RD->fields()) { 5382 if (FD->isBitField()) 5383 continue; 5384 if (FD->hasAttr<AlignedAttr>()) 5385 return true; 5386 if (Context.isAlignmentRequired(FD->getType())) 5387 return true; 5388 } 5389 } 5390 } 5391 5392 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5393 // common symbols, so symbols with greater alignment requirements cannot be 5394 // common. 5395 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5396 // alignments for common symbols via the aligncomm directive, so this 5397 // restriction only applies to MSVC environments. 5398 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5399 Context.getTypeAlignIfKnown(D->getType()) > 5400 Context.toBits(CharUnits::fromQuantity(32))) 5401 return true; 5402 5403 return false; 5404 } 5405 5406 llvm::GlobalValue::LinkageTypes 5407 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5408 GVALinkage Linkage) { 5409 if (Linkage == GVA_Internal) 5410 return llvm::Function::InternalLinkage; 5411 5412 if (D->hasAttr<WeakAttr>()) 5413 return llvm::GlobalVariable::WeakAnyLinkage; 5414 5415 if (const auto *FD = D->getAsFunction()) 5416 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5417 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5418 5419 // We are guaranteed to have a strong definition somewhere else, 5420 // so we can use available_externally linkage. 5421 if (Linkage == GVA_AvailableExternally) 5422 return llvm::GlobalValue::AvailableExternallyLinkage; 5423 5424 // Note that Apple's kernel linker doesn't support symbol 5425 // coalescing, so we need to avoid linkonce and weak linkages there. 5426 // Normally, this means we just map to internal, but for explicit 5427 // instantiations we'll map to external. 5428 5429 // In C++, the compiler has to emit a definition in every translation unit 5430 // that references the function. We should use linkonce_odr because 5431 // a) if all references in this translation unit are optimized away, we 5432 // don't need to codegen it. b) if the function persists, it needs to be 5433 // merged with other definitions. c) C++ has the ODR, so we know the 5434 // definition is dependable. 5435 if (Linkage == GVA_DiscardableODR) 5436 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5437 : llvm::Function::InternalLinkage; 5438 5439 // An explicit instantiation of a template has weak linkage, since 5440 // explicit instantiations can occur in multiple translation units 5441 // and must all be equivalent. However, we are not allowed to 5442 // throw away these explicit instantiations. 5443 // 5444 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5445 // so say that CUDA templates are either external (for kernels) or internal. 5446 // This lets llvm perform aggressive inter-procedural optimizations. For 5447 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5448 // therefore we need to follow the normal linkage paradigm. 5449 if (Linkage == GVA_StrongODR) { 5450 if (getLangOpts().AppleKext) 5451 return llvm::Function::ExternalLinkage; 5452 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5453 !getLangOpts().GPURelocatableDeviceCode) 5454 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5455 : llvm::Function::InternalLinkage; 5456 return llvm::Function::WeakODRLinkage; 5457 } 5458 5459 // C++ doesn't have tentative definitions and thus cannot have common 5460 // linkage. 5461 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5462 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5463 CodeGenOpts.NoCommon)) 5464 return llvm::GlobalVariable::CommonLinkage; 5465 5466 // selectany symbols are externally visible, so use weak instead of 5467 // linkonce. MSVC optimizes away references to const selectany globals, so 5468 // all definitions should be the same and ODR linkage should be used. 5469 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5470 if (D->hasAttr<SelectAnyAttr>()) 5471 return llvm::GlobalVariable::WeakODRLinkage; 5472 5473 // Otherwise, we have strong external linkage. 5474 assert(Linkage == GVA_StrongExternal); 5475 return llvm::GlobalVariable::ExternalLinkage; 5476 } 5477 5478 llvm::GlobalValue::LinkageTypes 5479 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5480 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5481 return getLLVMLinkageForDeclarator(VD, Linkage); 5482 } 5483 5484 /// Replace the uses of a function that was declared with a non-proto type. 5485 /// We want to silently drop extra arguments from call sites 5486 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5487 llvm::Function *newFn) { 5488 // Fast path. 5489 if (old->use_empty()) return; 5490 5491 llvm::Type *newRetTy = newFn->getReturnType(); 5492 SmallVector<llvm::Value*, 4> newArgs; 5493 5494 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5495 ui != ue; ) { 5496 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5497 llvm::User *user = use->getUser(); 5498 5499 // Recognize and replace uses of bitcasts. Most calls to 5500 // unprototyped functions will use bitcasts. 5501 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5502 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5503 replaceUsesOfNonProtoConstant(bitcast, newFn); 5504 continue; 5505 } 5506 5507 // Recognize calls to the function. 5508 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5509 if (!callSite) continue; 5510 if (!callSite->isCallee(&*use)) 5511 continue; 5512 5513 // If the return types don't match exactly, then we can't 5514 // transform this call unless it's dead. 5515 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5516 continue; 5517 5518 // Get the call site's attribute list. 5519 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5520 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5521 5522 // If the function was passed too few arguments, don't transform. 5523 unsigned newNumArgs = newFn->arg_size(); 5524 if (callSite->arg_size() < newNumArgs) 5525 continue; 5526 5527 // If extra arguments were passed, we silently drop them. 5528 // If any of the types mismatch, we don't transform. 5529 unsigned argNo = 0; 5530 bool dontTransform = false; 5531 for (llvm::Argument &A : newFn->args()) { 5532 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5533 dontTransform = true; 5534 break; 5535 } 5536 5537 // Add any parameter attributes. 5538 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5539 argNo++; 5540 } 5541 if (dontTransform) 5542 continue; 5543 5544 // Okay, we can transform this. Create the new call instruction and copy 5545 // over the required information. 5546 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5547 5548 // Copy over any operand bundles. 5549 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5550 callSite->getOperandBundlesAsDefs(newBundles); 5551 5552 llvm::CallBase *newCall; 5553 if (isa<llvm::CallInst>(callSite)) { 5554 newCall = 5555 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5556 } else { 5557 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5558 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5559 oldInvoke->getUnwindDest(), newArgs, 5560 newBundles, "", callSite); 5561 } 5562 newArgs.clear(); // for the next iteration 5563 5564 if (!newCall->getType()->isVoidTy()) 5565 newCall->takeName(callSite); 5566 newCall->setAttributes( 5567 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5568 oldAttrs.getRetAttrs(), newArgAttrs)); 5569 newCall->setCallingConv(callSite->getCallingConv()); 5570 5571 // Finally, remove the old call, replacing any uses with the new one. 5572 if (!callSite->use_empty()) 5573 callSite->replaceAllUsesWith(newCall); 5574 5575 // Copy debug location attached to CI. 5576 if (callSite->getDebugLoc()) 5577 newCall->setDebugLoc(callSite->getDebugLoc()); 5578 5579 callSite->eraseFromParent(); 5580 } 5581 } 5582 5583 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5584 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5585 /// existing call uses of the old function in the module, this adjusts them to 5586 /// call the new function directly. 5587 /// 5588 /// This is not just a cleanup: the always_inline pass requires direct calls to 5589 /// functions to be able to inline them. If there is a bitcast in the way, it 5590 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5591 /// run at -O0. 5592 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5593 llvm::Function *NewFn) { 5594 // If we're redefining a global as a function, don't transform it. 5595 if (!isa<llvm::Function>(Old)) return; 5596 5597 replaceUsesOfNonProtoConstant(Old, NewFn); 5598 } 5599 5600 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5601 auto DK = VD->isThisDeclarationADefinition(); 5602 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5603 return; 5604 5605 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5606 // If we have a definition, this might be a deferred decl. If the 5607 // instantiation is explicit, make sure we emit it at the end. 5608 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5609 GetAddrOfGlobalVar(VD); 5610 5611 EmitTopLevelDecl(VD); 5612 } 5613 5614 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5615 llvm::GlobalValue *GV) { 5616 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5617 5618 // Compute the function info and LLVM type. 5619 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5620 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5621 5622 // Get or create the prototype for the function. 5623 if (!GV || (GV->getValueType() != Ty)) 5624 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5625 /*DontDefer=*/true, 5626 ForDefinition)); 5627 5628 // Already emitted. 5629 if (!GV->isDeclaration()) 5630 return; 5631 5632 // We need to set linkage and visibility on the function before 5633 // generating code for it because various parts of IR generation 5634 // want to propagate this information down (e.g. to local static 5635 // declarations). 5636 auto *Fn = cast<llvm::Function>(GV); 5637 setFunctionLinkage(GD, Fn); 5638 5639 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5640 setGVProperties(Fn, GD); 5641 5642 MaybeHandleStaticInExternC(D, Fn); 5643 5644 maybeSetTrivialComdat(*D, *Fn); 5645 5646 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5647 5648 setNonAliasAttributes(GD, Fn); 5649 SetLLVMFunctionAttributesForDefinition(D, Fn); 5650 5651 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5652 AddGlobalCtor(Fn, CA->getPriority()); 5653 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5654 AddGlobalDtor(Fn, DA->getPriority(), true); 5655 if (D->hasAttr<AnnotateAttr>()) 5656 AddGlobalAnnotations(D, Fn); 5657 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 5658 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 5659 } 5660 5661 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5662 const auto *D = cast<ValueDecl>(GD.getDecl()); 5663 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5664 assert(AA && "Not an alias?"); 5665 5666 StringRef MangledName = getMangledName(GD); 5667 5668 if (AA->getAliasee() == MangledName) { 5669 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5670 return; 5671 } 5672 5673 // If there is a definition in the module, then it wins over the alias. 5674 // This is dubious, but allow it to be safe. Just ignore the alias. 5675 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5676 if (Entry && !Entry->isDeclaration()) 5677 return; 5678 5679 Aliases.push_back(GD); 5680 5681 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5682 5683 // Create a reference to the named value. This ensures that it is emitted 5684 // if a deferred decl. 5685 llvm::Constant *Aliasee; 5686 llvm::GlobalValue::LinkageTypes LT; 5687 if (isa<llvm::FunctionType>(DeclTy)) { 5688 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5689 /*ForVTable=*/false); 5690 LT = getFunctionLinkage(GD); 5691 } else { 5692 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5693 /*D=*/nullptr); 5694 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5695 LT = getLLVMLinkageVarDefinition(VD); 5696 else 5697 LT = getFunctionLinkage(GD); 5698 } 5699 5700 // Create the new alias itself, but don't set a name yet. 5701 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5702 auto *GA = 5703 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5704 5705 if (Entry) { 5706 if (GA->getAliasee() == Entry) { 5707 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5708 return; 5709 } 5710 5711 assert(Entry->isDeclaration()); 5712 5713 // If there is a declaration in the module, then we had an extern followed 5714 // by the alias, as in: 5715 // extern int test6(); 5716 // ... 5717 // int test6() __attribute__((alias("test7"))); 5718 // 5719 // Remove it and replace uses of it with the alias. 5720 GA->takeName(Entry); 5721 5722 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5723 Entry->getType())); 5724 Entry->eraseFromParent(); 5725 } else { 5726 GA->setName(MangledName); 5727 } 5728 5729 // Set attributes which are particular to an alias; this is a 5730 // specialization of the attributes which may be set on a global 5731 // variable/function. 5732 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5733 D->isWeakImported()) { 5734 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5735 } 5736 5737 if (const auto *VD = dyn_cast<VarDecl>(D)) 5738 if (VD->getTLSKind()) 5739 setTLSMode(GA, *VD); 5740 5741 SetCommonAttributes(GD, GA); 5742 5743 // Emit global alias debug information. 5744 if (isa<VarDecl>(D)) 5745 if (CGDebugInfo *DI = getModuleDebugInfo()) 5746 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5747 } 5748 5749 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5750 const auto *D = cast<ValueDecl>(GD.getDecl()); 5751 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5752 assert(IFA && "Not an ifunc?"); 5753 5754 StringRef MangledName = getMangledName(GD); 5755 5756 if (IFA->getResolver() == MangledName) { 5757 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5758 return; 5759 } 5760 5761 // Report an error if some definition overrides ifunc. 5762 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5763 if (Entry && !Entry->isDeclaration()) { 5764 GlobalDecl OtherGD; 5765 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5766 DiagnosedConflictingDefinitions.insert(GD).second) { 5767 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5768 << MangledName; 5769 Diags.Report(OtherGD.getDecl()->getLocation(), 5770 diag::note_previous_definition); 5771 } 5772 return; 5773 } 5774 5775 Aliases.push_back(GD); 5776 5777 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5778 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5779 llvm::Constant *Resolver = 5780 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5781 /*ForVTable=*/false); 5782 llvm::GlobalIFunc *GIF = 5783 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5784 "", Resolver, &getModule()); 5785 if (Entry) { 5786 if (GIF->getResolver() == Entry) { 5787 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5788 return; 5789 } 5790 assert(Entry->isDeclaration()); 5791 5792 // If there is a declaration in the module, then we had an extern followed 5793 // by the ifunc, as in: 5794 // extern int test(); 5795 // ... 5796 // int test() __attribute__((ifunc("resolver"))); 5797 // 5798 // Remove it and replace uses of it with the ifunc. 5799 GIF->takeName(Entry); 5800 5801 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5802 Entry->getType())); 5803 Entry->eraseFromParent(); 5804 } else 5805 GIF->setName(MangledName); 5806 if (auto *F = dyn_cast<llvm::Function>(Resolver)) { 5807 F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 5808 } 5809 SetCommonAttributes(GD, GIF); 5810 } 5811 5812 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5813 ArrayRef<llvm::Type*> Tys) { 5814 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5815 Tys); 5816 } 5817 5818 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5819 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5820 const StringLiteral *Literal, bool TargetIsLSB, 5821 bool &IsUTF16, unsigned &StringLength) { 5822 StringRef String = Literal->getString(); 5823 unsigned NumBytes = String.size(); 5824 5825 // Check for simple case. 5826 if (!Literal->containsNonAsciiOrNull()) { 5827 StringLength = NumBytes; 5828 return *Map.insert(std::make_pair(String, nullptr)).first; 5829 } 5830 5831 // Otherwise, convert the UTF8 literals into a string of shorts. 5832 IsUTF16 = true; 5833 5834 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5835 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5836 llvm::UTF16 *ToPtr = &ToBuf[0]; 5837 5838 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5839 ToPtr + NumBytes, llvm::strictConversion); 5840 5841 // ConvertUTF8toUTF16 returns the length in ToPtr. 5842 StringLength = ToPtr - &ToBuf[0]; 5843 5844 // Add an explicit null. 5845 *ToPtr = 0; 5846 return *Map.insert(std::make_pair( 5847 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5848 (StringLength + 1) * 2), 5849 nullptr)).first; 5850 } 5851 5852 ConstantAddress 5853 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5854 unsigned StringLength = 0; 5855 bool isUTF16 = false; 5856 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5857 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5858 getDataLayout().isLittleEndian(), isUTF16, 5859 StringLength); 5860 5861 if (auto *C = Entry.second) 5862 return ConstantAddress( 5863 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5864 5865 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5866 llvm::Constant *Zeros[] = { Zero, Zero }; 5867 5868 const ASTContext &Context = getContext(); 5869 const llvm::Triple &Triple = getTriple(); 5870 5871 const auto CFRuntime = getLangOpts().CFRuntime; 5872 const bool IsSwiftABI = 5873 static_cast<unsigned>(CFRuntime) >= 5874 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5875 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5876 5877 // If we don't already have it, get __CFConstantStringClassReference. 5878 if (!CFConstantStringClassRef) { 5879 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5880 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5881 Ty = llvm::ArrayType::get(Ty, 0); 5882 5883 switch (CFRuntime) { 5884 default: break; 5885 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 5886 case LangOptions::CoreFoundationABI::Swift5_0: 5887 CFConstantStringClassName = 5888 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5889 : "$s10Foundation19_NSCFConstantStringCN"; 5890 Ty = IntPtrTy; 5891 break; 5892 case LangOptions::CoreFoundationABI::Swift4_2: 5893 CFConstantStringClassName = 5894 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5895 : "$S10Foundation19_NSCFConstantStringCN"; 5896 Ty = IntPtrTy; 5897 break; 5898 case LangOptions::CoreFoundationABI::Swift4_1: 5899 CFConstantStringClassName = 5900 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5901 : "__T010Foundation19_NSCFConstantStringCN"; 5902 Ty = IntPtrTy; 5903 break; 5904 } 5905 5906 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5907 5908 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5909 llvm::GlobalValue *GV = nullptr; 5910 5911 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5912 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5913 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5914 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5915 5916 const VarDecl *VD = nullptr; 5917 for (const auto *Result : DC->lookup(&II)) 5918 if ((VD = dyn_cast<VarDecl>(Result))) 5919 break; 5920 5921 if (Triple.isOSBinFormatELF()) { 5922 if (!VD) 5923 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5924 } else { 5925 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5926 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5927 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5928 else 5929 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5930 } 5931 5932 setDSOLocal(GV); 5933 } 5934 } 5935 5936 // Decay array -> ptr 5937 CFConstantStringClassRef = 5938 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5939 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5940 } 5941 5942 QualType CFTy = Context.getCFConstantStringType(); 5943 5944 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5945 5946 ConstantInitBuilder Builder(*this); 5947 auto Fields = Builder.beginStruct(STy); 5948 5949 // Class pointer. 5950 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5951 5952 // Flags. 5953 if (IsSwiftABI) { 5954 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5955 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5956 } else { 5957 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5958 } 5959 5960 // String pointer. 5961 llvm::Constant *C = nullptr; 5962 if (isUTF16) { 5963 auto Arr = llvm::ArrayRef( 5964 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5965 Entry.first().size() / 2); 5966 C = llvm::ConstantDataArray::get(VMContext, Arr); 5967 } else { 5968 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5969 } 5970 5971 // Note: -fwritable-strings doesn't make the backing store strings of 5972 // CFStrings writable. 5973 auto *GV = 5974 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5975 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5976 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5977 // Don't enforce the target's minimum global alignment, since the only use 5978 // of the string is via this class initializer. 5979 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5980 : Context.getTypeAlignInChars(Context.CharTy); 5981 GV->setAlignment(Align.getAsAlign()); 5982 5983 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5984 // Without it LLVM can merge the string with a non unnamed_addr one during 5985 // LTO. Doing that changes the section it ends in, which surprises ld64. 5986 if (Triple.isOSBinFormatMachO()) 5987 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5988 : "__TEXT,__cstring,cstring_literals"); 5989 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5990 // the static linker to adjust permissions to read-only later on. 5991 else if (Triple.isOSBinFormatELF()) 5992 GV->setSection(".rodata"); 5993 5994 // String. 5995 llvm::Constant *Str = 5996 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5997 5998 if (isUTF16) 5999 // Cast the UTF16 string to the correct type. 6000 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 6001 Fields.add(Str); 6002 6003 // String length. 6004 llvm::IntegerType *LengthTy = 6005 llvm::IntegerType::get(getModule().getContext(), 6006 Context.getTargetInfo().getLongWidth()); 6007 if (IsSwiftABI) { 6008 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6009 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6010 LengthTy = Int32Ty; 6011 else 6012 LengthTy = IntPtrTy; 6013 } 6014 Fields.addInt(LengthTy, StringLength); 6015 6016 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6017 // properly aligned on 32-bit platforms. 6018 CharUnits Alignment = 6019 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6020 6021 // The struct. 6022 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6023 /*isConstant=*/false, 6024 llvm::GlobalVariable::PrivateLinkage); 6025 GV->addAttribute("objc_arc_inert"); 6026 switch (Triple.getObjectFormat()) { 6027 case llvm::Triple::UnknownObjectFormat: 6028 llvm_unreachable("unknown file format"); 6029 case llvm::Triple::DXContainer: 6030 case llvm::Triple::GOFF: 6031 case llvm::Triple::SPIRV: 6032 case llvm::Triple::XCOFF: 6033 llvm_unreachable("unimplemented"); 6034 case llvm::Triple::COFF: 6035 case llvm::Triple::ELF: 6036 case llvm::Triple::Wasm: 6037 GV->setSection("cfstring"); 6038 break; 6039 case llvm::Triple::MachO: 6040 GV->setSection("__DATA,__cfstring"); 6041 break; 6042 } 6043 Entry.second = GV; 6044 6045 return ConstantAddress(GV, GV->getValueType(), Alignment); 6046 } 6047 6048 bool CodeGenModule::getExpressionLocationsEnabled() const { 6049 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6050 } 6051 6052 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6053 if (ObjCFastEnumerationStateType.isNull()) { 6054 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6055 D->startDefinition(); 6056 6057 QualType FieldTypes[] = { 6058 Context.UnsignedLongTy, 6059 Context.getPointerType(Context.getObjCIdType()), 6060 Context.getPointerType(Context.UnsignedLongTy), 6061 Context.getConstantArrayType(Context.UnsignedLongTy, 6062 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 6063 }; 6064 6065 for (size_t i = 0; i < 4; ++i) { 6066 FieldDecl *Field = FieldDecl::Create(Context, 6067 D, 6068 SourceLocation(), 6069 SourceLocation(), nullptr, 6070 FieldTypes[i], /*TInfo=*/nullptr, 6071 /*BitWidth=*/nullptr, 6072 /*Mutable=*/false, 6073 ICIS_NoInit); 6074 Field->setAccess(AS_public); 6075 D->addDecl(Field); 6076 } 6077 6078 D->completeDefinition(); 6079 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6080 } 6081 6082 return ObjCFastEnumerationStateType; 6083 } 6084 6085 llvm::Constant * 6086 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6087 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6088 6089 // Don't emit it as the address of the string, emit the string data itself 6090 // as an inline array. 6091 if (E->getCharByteWidth() == 1) { 6092 SmallString<64> Str(E->getString()); 6093 6094 // Resize the string to the right size, which is indicated by its type. 6095 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6096 assert(CAT && "String literal not of constant array type!"); 6097 Str.resize(CAT->getSize().getZExtValue()); 6098 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6099 } 6100 6101 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6102 llvm::Type *ElemTy = AType->getElementType(); 6103 unsigned NumElements = AType->getNumElements(); 6104 6105 // Wide strings have either 2-byte or 4-byte elements. 6106 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6107 SmallVector<uint16_t, 32> Elements; 6108 Elements.reserve(NumElements); 6109 6110 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6111 Elements.push_back(E->getCodeUnit(i)); 6112 Elements.resize(NumElements); 6113 return llvm::ConstantDataArray::get(VMContext, Elements); 6114 } 6115 6116 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6117 SmallVector<uint32_t, 32> Elements; 6118 Elements.reserve(NumElements); 6119 6120 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6121 Elements.push_back(E->getCodeUnit(i)); 6122 Elements.resize(NumElements); 6123 return llvm::ConstantDataArray::get(VMContext, Elements); 6124 } 6125 6126 static llvm::GlobalVariable * 6127 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6128 CodeGenModule &CGM, StringRef GlobalName, 6129 CharUnits Alignment) { 6130 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6131 CGM.GetGlobalConstantAddressSpace()); 6132 6133 llvm::Module &M = CGM.getModule(); 6134 // Create a global variable for this string 6135 auto *GV = new llvm::GlobalVariable( 6136 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6137 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6138 GV->setAlignment(Alignment.getAsAlign()); 6139 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6140 if (GV->isWeakForLinker()) { 6141 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6142 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6143 } 6144 CGM.setDSOLocal(GV); 6145 6146 return GV; 6147 } 6148 6149 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6150 /// constant array for the given string literal. 6151 ConstantAddress 6152 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6153 StringRef Name) { 6154 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 6155 6156 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6157 llvm::GlobalVariable **Entry = nullptr; 6158 if (!LangOpts.WritableStrings) { 6159 Entry = &ConstantStringMap[C]; 6160 if (auto GV = *Entry) { 6161 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6162 GV->setAlignment(Alignment.getAsAlign()); 6163 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6164 GV->getValueType(), Alignment); 6165 } 6166 } 6167 6168 SmallString<256> MangledNameBuffer; 6169 StringRef GlobalVariableName; 6170 llvm::GlobalValue::LinkageTypes LT; 6171 6172 // Mangle the string literal if that's how the ABI merges duplicate strings. 6173 // Don't do it if they are writable, since we don't want writes in one TU to 6174 // affect strings in another. 6175 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6176 !LangOpts.WritableStrings) { 6177 llvm::raw_svector_ostream Out(MangledNameBuffer); 6178 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6179 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6180 GlobalVariableName = MangledNameBuffer; 6181 } else { 6182 LT = llvm::GlobalValue::PrivateLinkage; 6183 GlobalVariableName = Name; 6184 } 6185 6186 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6187 6188 CGDebugInfo *DI = getModuleDebugInfo(); 6189 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6190 DI->AddStringLiteralDebugInfo(GV, S); 6191 6192 if (Entry) 6193 *Entry = GV; 6194 6195 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6196 6197 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6198 GV->getValueType(), Alignment); 6199 } 6200 6201 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6202 /// array for the given ObjCEncodeExpr node. 6203 ConstantAddress 6204 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6205 std::string Str; 6206 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6207 6208 return GetAddrOfConstantCString(Str); 6209 } 6210 6211 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6212 /// the literal and a terminating '\0' character. 6213 /// The result has pointer to array type. 6214 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6215 const std::string &Str, const char *GlobalName) { 6216 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6217 CharUnits Alignment = 6218 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 6219 6220 llvm::Constant *C = 6221 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6222 6223 // Don't share any string literals if strings aren't constant. 6224 llvm::GlobalVariable **Entry = nullptr; 6225 if (!LangOpts.WritableStrings) { 6226 Entry = &ConstantStringMap[C]; 6227 if (auto GV = *Entry) { 6228 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6229 GV->setAlignment(Alignment.getAsAlign()); 6230 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6231 GV->getValueType(), Alignment); 6232 } 6233 } 6234 6235 // Get the default prefix if a name wasn't specified. 6236 if (!GlobalName) 6237 GlobalName = ".str"; 6238 // Create a global variable for this. 6239 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6240 GlobalName, Alignment); 6241 if (Entry) 6242 *Entry = GV; 6243 6244 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6245 GV->getValueType(), Alignment); 6246 } 6247 6248 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6249 const MaterializeTemporaryExpr *E, const Expr *Init) { 6250 assert((E->getStorageDuration() == SD_Static || 6251 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6252 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6253 6254 // If we're not materializing a subobject of the temporary, keep the 6255 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6256 QualType MaterializedType = Init->getType(); 6257 if (Init == E->getSubExpr()) 6258 MaterializedType = E->getType(); 6259 6260 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6261 6262 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6263 if (!InsertResult.second) { 6264 // We've seen this before: either we already created it or we're in the 6265 // process of doing so. 6266 if (!InsertResult.first->second) { 6267 // We recursively re-entered this function, probably during emission of 6268 // the initializer. Create a placeholder. We'll clean this up in the 6269 // outer call, at the end of this function. 6270 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6271 InsertResult.first->second = new llvm::GlobalVariable( 6272 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6273 nullptr); 6274 } 6275 return ConstantAddress(InsertResult.first->second, 6276 llvm::cast<llvm::GlobalVariable>( 6277 InsertResult.first->second->stripPointerCasts()) 6278 ->getValueType(), 6279 Align); 6280 } 6281 6282 // FIXME: If an externally-visible declaration extends multiple temporaries, 6283 // we need to give each temporary the same name in every translation unit (and 6284 // we also need to make the temporaries externally-visible). 6285 SmallString<256> Name; 6286 llvm::raw_svector_ostream Out(Name); 6287 getCXXABI().getMangleContext().mangleReferenceTemporary( 6288 VD, E->getManglingNumber(), Out); 6289 6290 APValue *Value = nullptr; 6291 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 6292 // If the initializer of the extending declaration is a constant 6293 // initializer, we should have a cached constant initializer for this 6294 // temporary. Note that this might have a different value from the value 6295 // computed by evaluating the initializer if the surrounding constant 6296 // expression modifies the temporary. 6297 Value = E->getOrCreateValue(false); 6298 } 6299 6300 // Try evaluating it now, it might have a constant initializer. 6301 Expr::EvalResult EvalResult; 6302 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6303 !EvalResult.hasSideEffects()) 6304 Value = &EvalResult.Val; 6305 6306 LangAS AddrSpace = 6307 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 6308 6309 std::optional<ConstantEmitter> emitter; 6310 llvm::Constant *InitialValue = nullptr; 6311 bool Constant = false; 6312 llvm::Type *Type; 6313 if (Value) { 6314 // The temporary has a constant initializer, use it. 6315 emitter.emplace(*this); 6316 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6317 MaterializedType); 6318 Constant = 6319 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6320 /*ExcludeDtor*/ false); 6321 Type = InitialValue->getType(); 6322 } else { 6323 // No initializer, the initialization will be provided when we 6324 // initialize the declaration which performed lifetime extension. 6325 Type = getTypes().ConvertTypeForMem(MaterializedType); 6326 } 6327 6328 // Create a global variable for this lifetime-extended temporary. 6329 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6330 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6331 const VarDecl *InitVD; 6332 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6333 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6334 // Temporaries defined inside a class get linkonce_odr linkage because the 6335 // class can be defined in multiple translation units. 6336 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6337 } else { 6338 // There is no need for this temporary to have external linkage if the 6339 // VarDecl has external linkage. 6340 Linkage = llvm::GlobalVariable::InternalLinkage; 6341 } 6342 } 6343 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6344 auto *GV = new llvm::GlobalVariable( 6345 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6346 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6347 if (emitter) emitter->finalize(GV); 6348 // Don't assign dllimport or dllexport to local linkage globals. 6349 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6350 setGVProperties(GV, VD); 6351 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6352 // The reference temporary should never be dllexport. 6353 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6354 } 6355 GV->setAlignment(Align.getAsAlign()); 6356 if (supportsCOMDAT() && GV->isWeakForLinker()) 6357 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6358 if (VD->getTLSKind()) 6359 setTLSMode(GV, *VD); 6360 llvm::Constant *CV = GV; 6361 if (AddrSpace != LangAS::Default) 6362 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6363 *this, GV, AddrSpace, LangAS::Default, 6364 Type->getPointerTo( 6365 getContext().getTargetAddressSpace(LangAS::Default))); 6366 6367 // Update the map with the new temporary. If we created a placeholder above, 6368 // replace it with the new global now. 6369 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6370 if (Entry) { 6371 Entry->replaceAllUsesWith( 6372 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 6373 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6374 } 6375 Entry = CV; 6376 6377 return ConstantAddress(CV, Type, Align); 6378 } 6379 6380 /// EmitObjCPropertyImplementations - Emit information for synthesized 6381 /// properties for an implementation. 6382 void CodeGenModule::EmitObjCPropertyImplementations(const 6383 ObjCImplementationDecl *D) { 6384 for (const auto *PID : D->property_impls()) { 6385 // Dynamic is just for type-checking. 6386 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6387 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6388 6389 // Determine which methods need to be implemented, some may have 6390 // been overridden. Note that ::isPropertyAccessor is not the method 6391 // we want, that just indicates if the decl came from a 6392 // property. What we want to know is if the method is defined in 6393 // this implementation. 6394 auto *Getter = PID->getGetterMethodDecl(); 6395 if (!Getter || Getter->isSynthesizedAccessorStub()) 6396 CodeGenFunction(*this).GenerateObjCGetter( 6397 const_cast<ObjCImplementationDecl *>(D), PID); 6398 auto *Setter = PID->getSetterMethodDecl(); 6399 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6400 CodeGenFunction(*this).GenerateObjCSetter( 6401 const_cast<ObjCImplementationDecl *>(D), PID); 6402 } 6403 } 6404 } 6405 6406 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6407 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6408 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6409 ivar; ivar = ivar->getNextIvar()) 6410 if (ivar->getType().isDestructedType()) 6411 return true; 6412 6413 return false; 6414 } 6415 6416 static bool AllTrivialInitializers(CodeGenModule &CGM, 6417 ObjCImplementationDecl *D) { 6418 CodeGenFunction CGF(CGM); 6419 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6420 E = D->init_end(); B != E; ++B) { 6421 CXXCtorInitializer *CtorInitExp = *B; 6422 Expr *Init = CtorInitExp->getInit(); 6423 if (!CGF.isTrivialInitializer(Init)) 6424 return false; 6425 } 6426 return true; 6427 } 6428 6429 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6430 /// for an implementation. 6431 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6432 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6433 if (needsDestructMethod(D)) { 6434 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6435 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6436 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6437 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6438 getContext().VoidTy, nullptr, D, 6439 /*isInstance=*/true, /*isVariadic=*/false, 6440 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6441 /*isImplicitlyDeclared=*/true, 6442 /*isDefined=*/false, ObjCMethodDecl::Required); 6443 D->addInstanceMethod(DTORMethod); 6444 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6445 D->setHasDestructors(true); 6446 } 6447 6448 // If the implementation doesn't have any ivar initializers, we don't need 6449 // a .cxx_construct. 6450 if (D->getNumIvarInitializers() == 0 || 6451 AllTrivialInitializers(*this, D)) 6452 return; 6453 6454 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6455 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6456 // The constructor returns 'self'. 6457 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6458 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6459 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6460 /*isVariadic=*/false, 6461 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6462 /*isImplicitlyDeclared=*/true, 6463 /*isDefined=*/false, ObjCMethodDecl::Required); 6464 D->addInstanceMethod(CTORMethod); 6465 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6466 D->setHasNonZeroConstructors(true); 6467 } 6468 6469 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6470 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6471 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 6472 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6473 ErrorUnsupported(LSD, "linkage spec"); 6474 return; 6475 } 6476 6477 EmitDeclContext(LSD); 6478 } 6479 6480 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6481 // Device code should not be at top level. 6482 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6483 return; 6484 6485 std::unique_ptr<CodeGenFunction> &CurCGF = 6486 GlobalTopLevelStmtBlockInFlight.first; 6487 6488 // We emitted a top-level stmt but after it there is initialization. 6489 // Stop squashing the top-level stmts into a single function. 6490 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6491 CurCGF->FinishFunction(D->getEndLoc()); 6492 CurCGF = nullptr; 6493 } 6494 6495 if (!CurCGF) { 6496 // void __stmts__N(void) 6497 // FIXME: Ask the ABI name mangler to pick a name. 6498 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6499 FunctionArgList Args; 6500 QualType RetTy = getContext().VoidTy; 6501 const CGFunctionInfo &FnInfo = 6502 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6503 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6504 llvm::Function *Fn = llvm::Function::Create( 6505 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6506 6507 CurCGF.reset(new CodeGenFunction(*this)); 6508 GlobalTopLevelStmtBlockInFlight.second = D; 6509 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6510 D->getBeginLoc(), D->getBeginLoc()); 6511 CXXGlobalInits.push_back(Fn); 6512 } 6513 6514 CurCGF->EmitStmt(D->getStmt()); 6515 } 6516 6517 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6518 for (auto *I : DC->decls()) { 6519 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6520 // are themselves considered "top-level", so EmitTopLevelDecl on an 6521 // ObjCImplDecl does not recursively visit them. We need to do that in 6522 // case they're nested inside another construct (LinkageSpecDecl / 6523 // ExportDecl) that does stop them from being considered "top-level". 6524 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6525 for (auto *M : OID->methods()) 6526 EmitTopLevelDecl(M); 6527 } 6528 6529 EmitTopLevelDecl(I); 6530 } 6531 } 6532 6533 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6534 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6535 // Ignore dependent declarations. 6536 if (D->isTemplated()) 6537 return; 6538 6539 // Consteval function shouldn't be emitted. 6540 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6541 return; 6542 6543 switch (D->getKind()) { 6544 case Decl::CXXConversion: 6545 case Decl::CXXMethod: 6546 case Decl::Function: 6547 EmitGlobal(cast<FunctionDecl>(D)); 6548 // Always provide some coverage mapping 6549 // even for the functions that aren't emitted. 6550 AddDeferredUnusedCoverageMapping(D); 6551 break; 6552 6553 case Decl::CXXDeductionGuide: 6554 // Function-like, but does not result in code emission. 6555 break; 6556 6557 case Decl::Var: 6558 case Decl::Decomposition: 6559 case Decl::VarTemplateSpecialization: 6560 EmitGlobal(cast<VarDecl>(D)); 6561 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6562 for (auto *B : DD->bindings()) 6563 if (auto *HD = B->getHoldingVar()) 6564 EmitGlobal(HD); 6565 break; 6566 6567 // Indirect fields from global anonymous structs and unions can be 6568 // ignored; only the actual variable requires IR gen support. 6569 case Decl::IndirectField: 6570 break; 6571 6572 // C++ Decls 6573 case Decl::Namespace: 6574 EmitDeclContext(cast<NamespaceDecl>(D)); 6575 break; 6576 case Decl::ClassTemplateSpecialization: { 6577 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6578 if (CGDebugInfo *DI = getModuleDebugInfo()) 6579 if (Spec->getSpecializationKind() == 6580 TSK_ExplicitInstantiationDefinition && 6581 Spec->hasDefinition()) 6582 DI->completeTemplateDefinition(*Spec); 6583 } [[fallthrough]]; 6584 case Decl::CXXRecord: { 6585 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6586 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6587 if (CRD->hasDefinition()) 6588 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6589 if (auto *ES = D->getASTContext().getExternalSource()) 6590 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6591 DI->completeUnusedClass(*CRD); 6592 } 6593 // Emit any static data members, they may be definitions. 6594 for (auto *I : CRD->decls()) 6595 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6596 EmitTopLevelDecl(I); 6597 break; 6598 } 6599 // No code generation needed. 6600 case Decl::UsingShadow: 6601 case Decl::ClassTemplate: 6602 case Decl::VarTemplate: 6603 case Decl::Concept: 6604 case Decl::VarTemplatePartialSpecialization: 6605 case Decl::FunctionTemplate: 6606 case Decl::TypeAliasTemplate: 6607 case Decl::Block: 6608 case Decl::Empty: 6609 case Decl::Binding: 6610 break; 6611 case Decl::Using: // using X; [C++] 6612 if (CGDebugInfo *DI = getModuleDebugInfo()) 6613 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6614 break; 6615 case Decl::UsingEnum: // using enum X; [C++] 6616 if (CGDebugInfo *DI = getModuleDebugInfo()) 6617 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6618 break; 6619 case Decl::NamespaceAlias: 6620 if (CGDebugInfo *DI = getModuleDebugInfo()) 6621 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6622 break; 6623 case Decl::UsingDirective: // using namespace X; [C++] 6624 if (CGDebugInfo *DI = getModuleDebugInfo()) 6625 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6626 break; 6627 case Decl::CXXConstructor: 6628 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6629 break; 6630 case Decl::CXXDestructor: 6631 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6632 break; 6633 6634 case Decl::StaticAssert: 6635 // Nothing to do. 6636 break; 6637 6638 // Objective-C Decls 6639 6640 // Forward declarations, no (immediate) code generation. 6641 case Decl::ObjCInterface: 6642 case Decl::ObjCCategory: 6643 break; 6644 6645 case Decl::ObjCProtocol: { 6646 auto *Proto = cast<ObjCProtocolDecl>(D); 6647 if (Proto->isThisDeclarationADefinition()) 6648 ObjCRuntime->GenerateProtocol(Proto); 6649 break; 6650 } 6651 6652 case Decl::ObjCCategoryImpl: 6653 // Categories have properties but don't support synthesize so we 6654 // can ignore them here. 6655 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6656 break; 6657 6658 case Decl::ObjCImplementation: { 6659 auto *OMD = cast<ObjCImplementationDecl>(D); 6660 EmitObjCPropertyImplementations(OMD); 6661 EmitObjCIvarInitializations(OMD); 6662 ObjCRuntime->GenerateClass(OMD); 6663 // Emit global variable debug information. 6664 if (CGDebugInfo *DI = getModuleDebugInfo()) 6665 if (getCodeGenOpts().hasReducedDebugInfo()) 6666 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6667 OMD->getClassInterface()), OMD->getLocation()); 6668 break; 6669 } 6670 case Decl::ObjCMethod: { 6671 auto *OMD = cast<ObjCMethodDecl>(D); 6672 // If this is not a prototype, emit the body. 6673 if (OMD->getBody()) 6674 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6675 break; 6676 } 6677 case Decl::ObjCCompatibleAlias: 6678 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6679 break; 6680 6681 case Decl::PragmaComment: { 6682 const auto *PCD = cast<PragmaCommentDecl>(D); 6683 switch (PCD->getCommentKind()) { 6684 case PCK_Unknown: 6685 llvm_unreachable("unexpected pragma comment kind"); 6686 case PCK_Linker: 6687 AppendLinkerOptions(PCD->getArg()); 6688 break; 6689 case PCK_Lib: 6690 AddDependentLib(PCD->getArg()); 6691 break; 6692 case PCK_Compiler: 6693 case PCK_ExeStr: 6694 case PCK_User: 6695 break; // We ignore all of these. 6696 } 6697 break; 6698 } 6699 6700 case Decl::PragmaDetectMismatch: { 6701 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6702 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6703 break; 6704 } 6705 6706 case Decl::LinkageSpec: 6707 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6708 break; 6709 6710 case Decl::FileScopeAsm: { 6711 // File-scope asm is ignored during device-side CUDA compilation. 6712 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6713 break; 6714 // File-scope asm is ignored during device-side OpenMP compilation. 6715 if (LangOpts.OpenMPIsTargetDevice) 6716 break; 6717 // File-scope asm is ignored during device-side SYCL compilation. 6718 if (LangOpts.SYCLIsDevice) 6719 break; 6720 auto *AD = cast<FileScopeAsmDecl>(D); 6721 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6722 break; 6723 } 6724 6725 case Decl::TopLevelStmt: 6726 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6727 break; 6728 6729 case Decl::Import: { 6730 auto *Import = cast<ImportDecl>(D); 6731 6732 // If we've already imported this module, we're done. 6733 if (!ImportedModules.insert(Import->getImportedModule())) 6734 break; 6735 6736 // Emit debug information for direct imports. 6737 if (!Import->getImportedOwningModule()) { 6738 if (CGDebugInfo *DI = getModuleDebugInfo()) 6739 DI->EmitImportDecl(*Import); 6740 } 6741 6742 // For C++ standard modules we are done - we will call the module 6743 // initializer for imported modules, and that will likewise call those for 6744 // any imports it has. 6745 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6746 !Import->getImportedOwningModule()->isModuleMapModule()) 6747 break; 6748 6749 // For clang C++ module map modules the initializers for sub-modules are 6750 // emitted here. 6751 6752 // Find all of the submodules and emit the module initializers. 6753 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6754 SmallVector<clang::Module *, 16> Stack; 6755 Visited.insert(Import->getImportedModule()); 6756 Stack.push_back(Import->getImportedModule()); 6757 6758 while (!Stack.empty()) { 6759 clang::Module *Mod = Stack.pop_back_val(); 6760 if (!EmittedModuleInitializers.insert(Mod).second) 6761 continue; 6762 6763 for (auto *D : Context.getModuleInitializers(Mod)) 6764 EmitTopLevelDecl(D); 6765 6766 // Visit the submodules of this module. 6767 for (auto *Submodule : Mod->submodules()) { 6768 // Skip explicit children; they need to be explicitly imported to emit 6769 // the initializers. 6770 if (Submodule->IsExplicit) 6771 continue; 6772 6773 if (Visited.insert(Submodule).second) 6774 Stack.push_back(Submodule); 6775 } 6776 } 6777 break; 6778 } 6779 6780 case Decl::Export: 6781 EmitDeclContext(cast<ExportDecl>(D)); 6782 break; 6783 6784 case Decl::OMPThreadPrivate: 6785 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6786 break; 6787 6788 case Decl::OMPAllocate: 6789 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6790 break; 6791 6792 case Decl::OMPDeclareReduction: 6793 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6794 break; 6795 6796 case Decl::OMPDeclareMapper: 6797 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6798 break; 6799 6800 case Decl::OMPRequires: 6801 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6802 break; 6803 6804 case Decl::Typedef: 6805 case Decl::TypeAlias: // using foo = bar; [C++11] 6806 if (CGDebugInfo *DI = getModuleDebugInfo()) 6807 DI->EmitAndRetainType( 6808 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6809 break; 6810 6811 case Decl::Record: 6812 if (CGDebugInfo *DI = getModuleDebugInfo()) 6813 if (cast<RecordDecl>(D)->getDefinition()) 6814 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6815 break; 6816 6817 case Decl::Enum: 6818 if (CGDebugInfo *DI = getModuleDebugInfo()) 6819 if (cast<EnumDecl>(D)->getDefinition()) 6820 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6821 break; 6822 6823 case Decl::HLSLBuffer: 6824 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 6825 break; 6826 6827 default: 6828 // Make sure we handled everything we should, every other kind is a 6829 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6830 // function. Need to recode Decl::Kind to do that easily. 6831 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6832 break; 6833 } 6834 } 6835 6836 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6837 // Do we need to generate coverage mapping? 6838 if (!CodeGenOpts.CoverageMapping) 6839 return; 6840 switch (D->getKind()) { 6841 case Decl::CXXConversion: 6842 case Decl::CXXMethod: 6843 case Decl::Function: 6844 case Decl::ObjCMethod: 6845 case Decl::CXXConstructor: 6846 case Decl::CXXDestructor: { 6847 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6848 break; 6849 SourceManager &SM = getContext().getSourceManager(); 6850 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6851 break; 6852 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6853 if (I == DeferredEmptyCoverageMappingDecls.end()) 6854 DeferredEmptyCoverageMappingDecls[D] = true; 6855 break; 6856 } 6857 default: 6858 break; 6859 }; 6860 } 6861 6862 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6863 // Do we need to generate coverage mapping? 6864 if (!CodeGenOpts.CoverageMapping) 6865 return; 6866 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6867 if (Fn->isTemplateInstantiation()) 6868 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6869 } 6870 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6871 if (I == DeferredEmptyCoverageMappingDecls.end()) 6872 DeferredEmptyCoverageMappingDecls[D] = false; 6873 else 6874 I->second = false; 6875 } 6876 6877 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6878 // We call takeVector() here to avoid use-after-free. 6879 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6880 // we deserialize function bodies to emit coverage info for them, and that 6881 // deserializes more declarations. How should we handle that case? 6882 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6883 if (!Entry.second) 6884 continue; 6885 const Decl *D = Entry.first; 6886 switch (D->getKind()) { 6887 case Decl::CXXConversion: 6888 case Decl::CXXMethod: 6889 case Decl::Function: 6890 case Decl::ObjCMethod: { 6891 CodeGenPGO PGO(*this); 6892 GlobalDecl GD(cast<FunctionDecl>(D)); 6893 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6894 getFunctionLinkage(GD)); 6895 break; 6896 } 6897 case Decl::CXXConstructor: { 6898 CodeGenPGO PGO(*this); 6899 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6900 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6901 getFunctionLinkage(GD)); 6902 break; 6903 } 6904 case Decl::CXXDestructor: { 6905 CodeGenPGO PGO(*this); 6906 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6907 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6908 getFunctionLinkage(GD)); 6909 break; 6910 } 6911 default: 6912 break; 6913 }; 6914 } 6915 } 6916 6917 void CodeGenModule::EmitMainVoidAlias() { 6918 // In order to transition away from "__original_main" gracefully, emit an 6919 // alias for "main" in the no-argument case so that libc can detect when 6920 // new-style no-argument main is in used. 6921 if (llvm::Function *F = getModule().getFunction("main")) { 6922 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6923 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6924 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6925 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6926 } 6927 } 6928 } 6929 6930 /// Turns the given pointer into a constant. 6931 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6932 const void *Ptr) { 6933 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6934 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6935 return llvm::ConstantInt::get(i64, PtrInt); 6936 } 6937 6938 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6939 llvm::NamedMDNode *&GlobalMetadata, 6940 GlobalDecl D, 6941 llvm::GlobalValue *Addr) { 6942 if (!GlobalMetadata) 6943 GlobalMetadata = 6944 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6945 6946 // TODO: should we report variant information for ctors/dtors? 6947 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6948 llvm::ConstantAsMetadata::get(GetPointerConstant( 6949 CGM.getLLVMContext(), D.getDecl()))}; 6950 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6951 } 6952 6953 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6954 llvm::GlobalValue *CppFunc) { 6955 // Store the list of ifuncs we need to replace uses in. 6956 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6957 // List of ConstantExprs that we should be able to delete when we're done 6958 // here. 6959 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6960 6961 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6962 if (Elem == CppFunc) 6963 return false; 6964 6965 // First make sure that all users of this are ifuncs (or ifuncs via a 6966 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6967 // later. 6968 for (llvm::User *User : Elem->users()) { 6969 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6970 // ifunc directly. In any other case, just give up, as we don't know what we 6971 // could break by changing those. 6972 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6973 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6974 return false; 6975 6976 for (llvm::User *CEUser : ConstExpr->users()) { 6977 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6978 IFuncs.push_back(IFunc); 6979 } else { 6980 return false; 6981 } 6982 } 6983 CEs.push_back(ConstExpr); 6984 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6985 IFuncs.push_back(IFunc); 6986 } else { 6987 // This user is one we don't know how to handle, so fail redirection. This 6988 // will result in an ifunc retaining a resolver name that will ultimately 6989 // fail to be resolved to a defined function. 6990 return false; 6991 } 6992 } 6993 6994 // Now we know this is a valid case where we can do this alias replacement, we 6995 // need to remove all of the references to Elem (and the bitcasts!) so we can 6996 // delete it. 6997 for (llvm::GlobalIFunc *IFunc : IFuncs) 6998 IFunc->setResolver(nullptr); 6999 for (llvm::ConstantExpr *ConstExpr : CEs) 7000 ConstExpr->destroyConstant(); 7001 7002 // We should now be out of uses for the 'old' version of this function, so we 7003 // can erase it as well. 7004 Elem->eraseFromParent(); 7005 7006 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7007 // The type of the resolver is always just a function-type that returns the 7008 // type of the IFunc, so create that here. If the type of the actual 7009 // resolver doesn't match, it just gets bitcast to the right thing. 7010 auto *ResolverTy = 7011 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7012 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7013 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7014 IFunc->setResolver(Resolver); 7015 } 7016 return true; 7017 } 7018 7019 /// For each function which is declared within an extern "C" region and marked 7020 /// as 'used', but has internal linkage, create an alias from the unmangled 7021 /// name to the mangled name if possible. People expect to be able to refer 7022 /// to such functions with an unmangled name from inline assembly within the 7023 /// same translation unit. 7024 void CodeGenModule::EmitStaticExternCAliases() { 7025 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7026 return; 7027 for (auto &I : StaticExternCValues) { 7028 IdentifierInfo *Name = I.first; 7029 llvm::GlobalValue *Val = I.second; 7030 7031 // If Val is null, that implies there were multiple declarations that each 7032 // had a claim to the unmangled name. In this case, generation of the alias 7033 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7034 if (!Val) 7035 break; 7036 7037 llvm::GlobalValue *ExistingElem = 7038 getModule().getNamedValue(Name->getName()); 7039 7040 // If there is either not something already by this name, or we were able to 7041 // replace all uses from IFuncs, create the alias. 7042 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7043 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7044 } 7045 } 7046 7047 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7048 GlobalDecl &Result) const { 7049 auto Res = Manglings.find(MangledName); 7050 if (Res == Manglings.end()) 7051 return false; 7052 Result = Res->getValue(); 7053 return true; 7054 } 7055 7056 /// Emits metadata nodes associating all the global values in the 7057 /// current module with the Decls they came from. This is useful for 7058 /// projects using IR gen as a subroutine. 7059 /// 7060 /// Since there's currently no way to associate an MDNode directly 7061 /// with an llvm::GlobalValue, we create a global named metadata 7062 /// with the name 'clang.global.decl.ptrs'. 7063 void CodeGenModule::EmitDeclMetadata() { 7064 llvm::NamedMDNode *GlobalMetadata = nullptr; 7065 7066 for (auto &I : MangledDeclNames) { 7067 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7068 // Some mangled names don't necessarily have an associated GlobalValue 7069 // in this module, e.g. if we mangled it for DebugInfo. 7070 if (Addr) 7071 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7072 } 7073 } 7074 7075 /// Emits metadata nodes for all the local variables in the current 7076 /// function. 7077 void CodeGenFunction::EmitDeclMetadata() { 7078 if (LocalDeclMap.empty()) return; 7079 7080 llvm::LLVMContext &Context = getLLVMContext(); 7081 7082 // Find the unique metadata ID for this name. 7083 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7084 7085 llvm::NamedMDNode *GlobalMetadata = nullptr; 7086 7087 for (auto &I : LocalDeclMap) { 7088 const Decl *D = I.first; 7089 llvm::Value *Addr = I.second.getPointer(); 7090 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7091 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7092 Alloca->setMetadata( 7093 DeclPtrKind, llvm::MDNode::get( 7094 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7095 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7096 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7097 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7098 } 7099 } 7100 } 7101 7102 void CodeGenModule::EmitVersionIdentMetadata() { 7103 llvm::NamedMDNode *IdentMetadata = 7104 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7105 std::string Version = getClangFullVersion(); 7106 llvm::LLVMContext &Ctx = TheModule.getContext(); 7107 7108 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7109 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7110 } 7111 7112 void CodeGenModule::EmitCommandLineMetadata() { 7113 llvm::NamedMDNode *CommandLineMetadata = 7114 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7115 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7116 llvm::LLVMContext &Ctx = TheModule.getContext(); 7117 7118 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7119 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7120 } 7121 7122 void CodeGenModule::EmitCoverageFile() { 7123 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7124 if (!CUNode) 7125 return; 7126 7127 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7128 llvm::LLVMContext &Ctx = TheModule.getContext(); 7129 auto *CoverageDataFile = 7130 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7131 auto *CoverageNotesFile = 7132 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7133 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7134 llvm::MDNode *CU = CUNode->getOperand(i); 7135 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7136 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7137 } 7138 } 7139 7140 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7141 bool ForEH) { 7142 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7143 // FIXME: should we even be calling this method if RTTI is disabled 7144 // and it's not for EH? 7145 if (!shouldEmitRTTI(ForEH)) 7146 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7147 7148 if (ForEH && Ty->isObjCObjectPointerType() && 7149 LangOpts.ObjCRuntime.isGNUFamily()) 7150 return ObjCRuntime->GetEHType(Ty); 7151 7152 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7153 } 7154 7155 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7156 // Do not emit threadprivates in simd-only mode. 7157 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7158 return; 7159 for (auto RefExpr : D->varlists()) { 7160 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7161 bool PerformInit = 7162 VD->getAnyInitializer() && 7163 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7164 /*ForRef=*/false); 7165 7166 Address Addr(GetAddrOfGlobalVar(VD), 7167 getTypes().ConvertTypeForMem(VD->getType()), 7168 getContext().getDeclAlign(VD)); 7169 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7170 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7171 CXXGlobalInits.push_back(InitFunction); 7172 } 7173 } 7174 7175 llvm::Metadata * 7176 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7177 StringRef Suffix) { 7178 if (auto *FnType = T->getAs<FunctionProtoType>()) 7179 T = getContext().getFunctionType( 7180 FnType->getReturnType(), FnType->getParamTypes(), 7181 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7182 7183 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7184 if (InternalId) 7185 return InternalId; 7186 7187 if (isExternallyVisible(T->getLinkage())) { 7188 std::string OutName; 7189 llvm::raw_string_ostream Out(OutName); 7190 getCXXABI().getMangleContext().mangleTypeName( 7191 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7192 7193 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7194 Out << ".normalized"; 7195 7196 Out << Suffix; 7197 7198 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7199 } else { 7200 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7201 llvm::ArrayRef<llvm::Metadata *>()); 7202 } 7203 7204 return InternalId; 7205 } 7206 7207 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7208 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7209 } 7210 7211 llvm::Metadata * 7212 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7213 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7214 } 7215 7216 // Generalize pointer types to a void pointer with the qualifiers of the 7217 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7218 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7219 // 'void *'. 7220 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7221 if (!Ty->isPointerType()) 7222 return Ty; 7223 7224 return Ctx.getPointerType( 7225 QualType(Ctx.VoidTy).withCVRQualifiers( 7226 Ty->getPointeeType().getCVRQualifiers())); 7227 } 7228 7229 // Apply type generalization to a FunctionType's return and argument types 7230 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7231 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7232 SmallVector<QualType, 8> GeneralizedParams; 7233 for (auto &Param : FnType->param_types()) 7234 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7235 7236 return Ctx.getFunctionType( 7237 GeneralizeType(Ctx, FnType->getReturnType()), 7238 GeneralizedParams, FnType->getExtProtoInfo()); 7239 } 7240 7241 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7242 return Ctx.getFunctionNoProtoType( 7243 GeneralizeType(Ctx, FnType->getReturnType())); 7244 7245 llvm_unreachable("Encountered unknown FunctionType"); 7246 } 7247 7248 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7249 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7250 GeneralizedMetadataIdMap, ".generalized"); 7251 } 7252 7253 /// Returns whether this module needs the "all-vtables" type identifier. 7254 bool CodeGenModule::NeedAllVtablesTypeId() const { 7255 // Returns true if at least one of vtable-based CFI checkers is enabled and 7256 // is not in the trapping mode. 7257 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7258 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7259 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7260 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7261 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7262 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7263 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7264 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7265 } 7266 7267 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7268 CharUnits Offset, 7269 const CXXRecordDecl *RD) { 7270 llvm::Metadata *MD = 7271 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7272 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7273 7274 if (CodeGenOpts.SanitizeCfiCrossDso) 7275 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7276 VTable->addTypeMetadata(Offset.getQuantity(), 7277 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7278 7279 if (NeedAllVtablesTypeId()) { 7280 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7281 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7282 } 7283 } 7284 7285 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7286 if (!SanStats) 7287 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7288 7289 return *SanStats; 7290 } 7291 7292 llvm::Value * 7293 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7294 CodeGenFunction &CGF) { 7295 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7296 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7297 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7298 auto *Call = CGF.EmitRuntimeCall( 7299 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7300 return Call; 7301 } 7302 7303 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7304 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7305 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7306 /* forPointeeType= */ true); 7307 } 7308 7309 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7310 LValueBaseInfo *BaseInfo, 7311 TBAAAccessInfo *TBAAInfo, 7312 bool forPointeeType) { 7313 if (TBAAInfo) 7314 *TBAAInfo = getTBAAAccessInfo(T); 7315 7316 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7317 // that doesn't return the information we need to compute BaseInfo. 7318 7319 // Honor alignment typedef attributes even on incomplete types. 7320 // We also honor them straight for C++ class types, even as pointees; 7321 // there's an expressivity gap here. 7322 if (auto TT = T->getAs<TypedefType>()) { 7323 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7324 if (BaseInfo) 7325 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7326 return getContext().toCharUnitsFromBits(Align); 7327 } 7328 } 7329 7330 bool AlignForArray = T->isArrayType(); 7331 7332 // Analyze the base element type, so we don't get confused by incomplete 7333 // array types. 7334 T = getContext().getBaseElementType(T); 7335 7336 if (T->isIncompleteType()) { 7337 // We could try to replicate the logic from 7338 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7339 // type is incomplete, so it's impossible to test. We could try to reuse 7340 // getTypeAlignIfKnown, but that doesn't return the information we need 7341 // to set BaseInfo. So just ignore the possibility that the alignment is 7342 // greater than one. 7343 if (BaseInfo) 7344 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7345 return CharUnits::One(); 7346 } 7347 7348 if (BaseInfo) 7349 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7350 7351 CharUnits Alignment; 7352 const CXXRecordDecl *RD; 7353 if (T.getQualifiers().hasUnaligned()) { 7354 Alignment = CharUnits::One(); 7355 } else if (forPointeeType && !AlignForArray && 7356 (RD = T->getAsCXXRecordDecl())) { 7357 // For C++ class pointees, we don't know whether we're pointing at a 7358 // base or a complete object, so we generally need to use the 7359 // non-virtual alignment. 7360 Alignment = getClassPointerAlignment(RD); 7361 } else { 7362 Alignment = getContext().getTypeAlignInChars(T); 7363 } 7364 7365 // Cap to the global maximum type alignment unless the alignment 7366 // was somehow explicit on the type. 7367 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7368 if (Alignment.getQuantity() > MaxAlign && 7369 !getContext().isAlignmentRequired(T)) 7370 Alignment = CharUnits::fromQuantity(MaxAlign); 7371 } 7372 return Alignment; 7373 } 7374 7375 bool CodeGenModule::stopAutoInit() { 7376 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7377 if (StopAfter) { 7378 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7379 // used 7380 if (NumAutoVarInit >= StopAfter) { 7381 return true; 7382 } 7383 if (!NumAutoVarInit) { 7384 unsigned DiagID = getDiags().getCustomDiagID( 7385 DiagnosticsEngine::Warning, 7386 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7387 "number of times ftrivial-auto-var-init=%1 gets applied."); 7388 getDiags().Report(DiagID) 7389 << StopAfter 7390 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7391 LangOptions::TrivialAutoVarInitKind::Zero 7392 ? "zero" 7393 : "pattern"); 7394 } 7395 ++NumAutoVarInit; 7396 } 7397 return false; 7398 } 7399 7400 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7401 const Decl *D) const { 7402 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7403 // postfix beginning with '.' since the symbol name can be demangled. 7404 if (LangOpts.HIP) 7405 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7406 else 7407 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7408 7409 // If the CUID is not specified we try to generate a unique postfix. 7410 if (getLangOpts().CUID.empty()) { 7411 SourceManager &SM = getContext().getSourceManager(); 7412 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7413 assert(PLoc.isValid() && "Source location is expected to be valid."); 7414 7415 // Get the hash of the user defined macros. 7416 llvm::MD5 Hash; 7417 llvm::MD5::MD5Result Result; 7418 for (const auto &Arg : PreprocessorOpts.Macros) 7419 Hash.update(Arg.first); 7420 Hash.final(Result); 7421 7422 // Get the UniqueID for the file containing the decl. 7423 llvm::sys::fs::UniqueID ID; 7424 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7425 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7426 assert(PLoc.isValid() && "Source location is expected to be valid."); 7427 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7428 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7429 << PLoc.getFilename() << EC.message(); 7430 } 7431 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7432 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7433 } else { 7434 OS << getContext().getCUIDHash(); 7435 } 7436 } 7437 7438 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7439 assert(DeferredDeclsToEmit.empty() && 7440 "Should have emitted all decls deferred to emit."); 7441 assert(NewBuilder->DeferredDecls.empty() && 7442 "Newly created module should not have deferred decls"); 7443 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7444 assert(EmittedDeferredDecls.empty() && 7445 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7446 7447 assert(NewBuilder->DeferredVTables.empty() && 7448 "Newly created module should not have deferred vtables"); 7449 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7450 7451 assert(NewBuilder->MangledDeclNames.empty() && 7452 "Newly created module should not have mangled decl names"); 7453 assert(NewBuilder->Manglings.empty() && 7454 "Newly created module should not have manglings"); 7455 NewBuilder->Manglings = std::move(Manglings); 7456 7457 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7458 7459 NewBuilder->TBAA = std::move(TBAA); 7460 7461 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7462 } 7463