1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/DeclCXX.h" 34 #include "clang/AST/DeclObjC.h" 35 #include "clang/AST/DeclTemplate.h" 36 #include "clang/AST/Mangle.h" 37 #include "clang/AST/RecursiveASTVisitor.h" 38 #include "clang/AST/StmtVisitor.h" 39 #include "clang/Basic/Builtins.h" 40 #include "clang/Basic/CharInfo.h" 41 #include "clang/Basic/CodeGenOptions.h" 42 #include "clang/Basic/Diagnostic.h" 43 #include "clang/Basic/FileManager.h" 44 #include "clang/Basic/Module.h" 45 #include "clang/Basic/SourceManager.h" 46 #include "clang/Basic/TargetInfo.h" 47 #include "clang/Basic/Version.h" 48 #include "clang/CodeGen/BackendUtil.h" 49 #include "clang/CodeGen/ConstantInitBuilder.h" 50 #include "clang/Frontend/FrontendDiagnostic.h" 51 #include "llvm/ADT/STLExtras.h" 52 #include "llvm/ADT/StringExtras.h" 53 #include "llvm/ADT/StringSwitch.h" 54 #include "llvm/Analysis/TargetLibraryInfo.h" 55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 56 #include "llvm/IR/AttributeMask.h" 57 #include "llvm/IR/CallingConv.h" 58 #include "llvm/IR/DataLayout.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/ProfileSummary.h" 63 #include "llvm/ProfileData/InstrProfReader.h" 64 #include "llvm/ProfileData/SampleProf.h" 65 #include "llvm/Support/CRC.h" 66 #include "llvm/Support/CodeGen.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/ConvertUTF.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/TimeProfiler.h" 71 #include "llvm/Support/xxhash.h" 72 #include "llvm/TargetParser/Triple.h" 73 #include "llvm/TargetParser/X86TargetParser.h" 74 #include <optional> 75 76 using namespace clang; 77 using namespace CodeGen; 78 79 static llvm::cl::opt<bool> LimitedCoverage( 80 "limited-coverage-experimental", llvm::cl::Hidden, 81 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 82 83 static const char AnnotationSection[] = "llvm.metadata"; 84 85 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 86 switch (CGM.getContext().getCXXABIKind()) { 87 case TargetCXXABI::AppleARM64: 88 case TargetCXXABI::Fuchsia: 89 case TargetCXXABI::GenericAArch64: 90 case TargetCXXABI::GenericARM: 91 case TargetCXXABI::iOS: 92 case TargetCXXABI::WatchOS: 93 case TargetCXXABI::GenericMIPS: 94 case TargetCXXABI::GenericItanium: 95 case TargetCXXABI::WebAssembly: 96 case TargetCXXABI::XL: 97 return CreateItaniumCXXABI(CGM); 98 case TargetCXXABI::Microsoft: 99 return CreateMicrosoftCXXABI(CGM); 100 } 101 102 llvm_unreachable("invalid C++ ABI kind"); 103 } 104 105 static std::unique_ptr<TargetCodeGenInfo> 106 createTargetCodeGenInfo(CodeGenModule &CGM) { 107 const TargetInfo &Target = CGM.getTarget(); 108 const llvm::Triple &Triple = Target.getTriple(); 109 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 110 111 switch (Triple.getArch()) { 112 default: 113 return createDefaultTargetCodeGenInfo(CGM); 114 115 case llvm::Triple::le32: 116 return createPNaClTargetCodeGenInfo(CGM); 117 case llvm::Triple::m68k: 118 return createM68kTargetCodeGenInfo(CGM); 119 case llvm::Triple::mips: 120 case llvm::Triple::mipsel: 121 if (Triple.getOS() == llvm::Triple::NaCl) 122 return createPNaClTargetCodeGenInfo(CGM); 123 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 124 125 case llvm::Triple::mips64: 126 case llvm::Triple::mips64el: 127 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 128 129 case llvm::Triple::avr: { 130 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 131 // on avrtiny. For passing return value, R18~R25 are used on avr, and 132 // R22~R25 are used on avrtiny. 133 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 134 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 135 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 136 } 137 138 case llvm::Triple::aarch64: 139 case llvm::Triple::aarch64_32: 140 case llvm::Triple::aarch64_be: { 141 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 142 if (Target.getABI() == "darwinpcs") 143 Kind = AArch64ABIKind::DarwinPCS; 144 else if (Triple.isOSWindows()) 145 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 146 147 return createAArch64TargetCodeGenInfo(CGM, Kind); 148 } 149 150 case llvm::Triple::wasm32: 151 case llvm::Triple::wasm64: { 152 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 153 if (Target.getABI() == "experimental-mv") 154 Kind = WebAssemblyABIKind::ExperimentalMV; 155 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 156 } 157 158 case llvm::Triple::arm: 159 case llvm::Triple::armeb: 160 case llvm::Triple::thumb: 161 case llvm::Triple::thumbeb: { 162 if (Triple.getOS() == llvm::Triple::Win32) 163 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 164 165 ARMABIKind Kind = ARMABIKind::AAPCS; 166 StringRef ABIStr = Target.getABI(); 167 if (ABIStr == "apcs-gnu") 168 Kind = ARMABIKind::APCS; 169 else if (ABIStr == "aapcs16") 170 Kind = ARMABIKind::AAPCS16_VFP; 171 else if (CodeGenOpts.FloatABI == "hard" || 172 (CodeGenOpts.FloatABI != "soft" && 173 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 174 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 175 Triple.getEnvironment() == llvm::Triple::EABIHF))) 176 Kind = ARMABIKind::AAPCS_VFP; 177 178 return createARMTargetCodeGenInfo(CGM, Kind); 179 } 180 181 case llvm::Triple::ppc: { 182 if (Triple.isOSAIX()) 183 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 184 185 bool IsSoftFloat = 186 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 187 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 188 } 189 case llvm::Triple::ppcle: { 190 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 191 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 192 } 193 case llvm::Triple::ppc64: 194 if (Triple.isOSAIX()) 195 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 196 197 if (Triple.isOSBinFormatELF()) { 198 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 199 if (Target.getABI() == "elfv2") 200 Kind = PPC64_SVR4_ABIKind::ELFv2; 201 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 202 203 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 204 } 205 return createPPC64TargetCodeGenInfo(CGM); 206 case llvm::Triple::ppc64le: { 207 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 208 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 209 if (Target.getABI() == "elfv1") 210 Kind = PPC64_SVR4_ABIKind::ELFv1; 211 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 212 213 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 214 } 215 216 case llvm::Triple::nvptx: 217 case llvm::Triple::nvptx64: 218 return createNVPTXTargetCodeGenInfo(CGM); 219 220 case llvm::Triple::msp430: 221 return createMSP430TargetCodeGenInfo(CGM); 222 223 case llvm::Triple::riscv32: 224 case llvm::Triple::riscv64: { 225 StringRef ABIStr = Target.getABI(); 226 unsigned XLen = Target.getPointerWidth(LangAS::Default); 227 unsigned ABIFLen = 0; 228 if (ABIStr.ends_with("f")) 229 ABIFLen = 32; 230 else if (ABIStr.ends_with("d")) 231 ABIFLen = 64; 232 bool EABI = ABIStr.ends_with("e"); 233 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 234 } 235 236 case llvm::Triple::systemz: { 237 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 238 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 239 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 240 } 241 242 case llvm::Triple::tce: 243 case llvm::Triple::tcele: 244 return createTCETargetCodeGenInfo(CGM); 245 246 case llvm::Triple::x86: { 247 bool IsDarwinVectorABI = Triple.isOSDarwin(); 248 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 249 250 if (Triple.getOS() == llvm::Triple::Win32) { 251 return createWinX86_32TargetCodeGenInfo( 252 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 253 CodeGenOpts.NumRegisterParameters); 254 } 255 return createX86_32TargetCodeGenInfo( 256 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 257 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 258 } 259 260 case llvm::Triple::x86_64: { 261 StringRef ABI = Target.getABI(); 262 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 263 : ABI == "avx" ? X86AVXABILevel::AVX 264 : X86AVXABILevel::None); 265 266 switch (Triple.getOS()) { 267 case llvm::Triple::Win32: 268 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 269 default: 270 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 271 } 272 } 273 case llvm::Triple::hexagon: 274 return createHexagonTargetCodeGenInfo(CGM); 275 case llvm::Triple::lanai: 276 return createLanaiTargetCodeGenInfo(CGM); 277 case llvm::Triple::r600: 278 return createAMDGPUTargetCodeGenInfo(CGM); 279 case llvm::Triple::amdgcn: 280 return createAMDGPUTargetCodeGenInfo(CGM); 281 case llvm::Triple::sparc: 282 return createSparcV8TargetCodeGenInfo(CGM); 283 case llvm::Triple::sparcv9: 284 return createSparcV9TargetCodeGenInfo(CGM); 285 case llvm::Triple::xcore: 286 return createXCoreTargetCodeGenInfo(CGM); 287 case llvm::Triple::arc: 288 return createARCTargetCodeGenInfo(CGM); 289 case llvm::Triple::spir: 290 case llvm::Triple::spir64: 291 return createCommonSPIRTargetCodeGenInfo(CGM); 292 case llvm::Triple::spirv32: 293 case llvm::Triple::spirv64: 294 return createSPIRVTargetCodeGenInfo(CGM); 295 case llvm::Triple::ve: 296 return createVETargetCodeGenInfo(CGM); 297 case llvm::Triple::csky: { 298 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 299 bool hasFP64 = 300 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 301 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 302 : hasFP64 ? 64 303 : 32); 304 } 305 case llvm::Triple::bpfeb: 306 case llvm::Triple::bpfel: 307 return createBPFTargetCodeGenInfo(CGM); 308 case llvm::Triple::loongarch32: 309 case llvm::Triple::loongarch64: { 310 StringRef ABIStr = Target.getABI(); 311 unsigned ABIFRLen = 0; 312 if (ABIStr.ends_with("f")) 313 ABIFRLen = 32; 314 else if (ABIStr.ends_with("d")) 315 ABIFRLen = 64; 316 return createLoongArchTargetCodeGenInfo( 317 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 318 } 319 } 320 } 321 322 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 323 if (!TheTargetCodeGenInfo) 324 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 325 return *TheTargetCodeGenInfo; 326 } 327 328 CodeGenModule::CodeGenModule(ASTContext &C, 329 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 330 const HeaderSearchOptions &HSO, 331 const PreprocessorOptions &PPO, 332 const CodeGenOptions &CGO, llvm::Module &M, 333 DiagnosticsEngine &diags, 334 CoverageSourceInfo *CoverageInfo) 335 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 336 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 337 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 338 VMContext(M.getContext()), Types(*this), VTables(*this), 339 SanitizerMD(new SanitizerMetadata(*this)) { 340 341 // Initialize the type cache. 342 llvm::LLVMContext &LLVMContext = M.getContext(); 343 VoidTy = llvm::Type::getVoidTy(LLVMContext); 344 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 345 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 346 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 347 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 348 HalfTy = llvm::Type::getHalfTy(LLVMContext); 349 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 350 FloatTy = llvm::Type::getFloatTy(LLVMContext); 351 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 352 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 353 PointerAlignInBytes = 354 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 355 .getQuantity(); 356 SizeSizeInBytes = 357 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 358 IntAlignInBytes = 359 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 360 CharTy = 361 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 362 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 363 IntPtrTy = llvm::IntegerType::get(LLVMContext, 364 C.getTargetInfo().getMaxPointerWidth()); 365 Int8PtrTy = llvm::PointerType::get(LLVMContext, 0); 366 const llvm::DataLayout &DL = M.getDataLayout(); 367 AllocaInt8PtrTy = 368 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 369 GlobalsInt8PtrTy = 370 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 371 ConstGlobalsPtrTy = llvm::PointerType::get( 372 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 373 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 374 375 // Build C++20 Module initializers. 376 // TODO: Add Microsoft here once we know the mangling required for the 377 // initializers. 378 CXX20ModuleInits = 379 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 380 ItaniumMangleContext::MK_Itanium; 381 382 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 383 384 if (LangOpts.ObjC) 385 createObjCRuntime(); 386 if (LangOpts.OpenCL) 387 createOpenCLRuntime(); 388 if (LangOpts.OpenMP) 389 createOpenMPRuntime(); 390 if (LangOpts.CUDA) 391 createCUDARuntime(); 392 if (LangOpts.HLSL) 393 createHLSLRuntime(); 394 395 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 396 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 397 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 398 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 399 getCXXABI().getMangleContext())); 400 401 // If debug info or coverage generation is enabled, create the CGDebugInfo 402 // object. 403 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 404 CodeGenOpts.CoverageNotesFile.size() || 405 CodeGenOpts.CoverageDataFile.size()) 406 DebugInfo.reset(new CGDebugInfo(*this)); 407 408 Block.GlobalUniqueCount = 0; 409 410 if (C.getLangOpts().ObjC) 411 ObjCData.reset(new ObjCEntrypoints()); 412 413 if (CodeGenOpts.hasProfileClangUse()) { 414 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 415 CodeGenOpts.ProfileInstrumentUsePath, *FS, 416 CodeGenOpts.ProfileRemappingFile); 417 // We're checking for profile read errors in CompilerInvocation, so if 418 // there was an error it should've already been caught. If it hasn't been 419 // somehow, trip an assertion. 420 assert(ReaderOrErr); 421 PGOReader = std::move(ReaderOrErr.get()); 422 } 423 424 // If coverage mapping generation is enabled, create the 425 // CoverageMappingModuleGen object. 426 if (CodeGenOpts.CoverageMapping) 427 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 428 429 // Generate the module name hash here if needed. 430 if (CodeGenOpts.UniqueInternalLinkageNames && 431 !getModule().getSourceFileName().empty()) { 432 std::string Path = getModule().getSourceFileName(); 433 // Check if a path substitution is needed from the MacroPrefixMap. 434 for (const auto &Entry : LangOpts.MacroPrefixMap) 435 if (Path.rfind(Entry.first, 0) != std::string::npos) { 436 Path = Entry.second + Path.substr(Entry.first.size()); 437 break; 438 } 439 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 440 } 441 } 442 443 CodeGenModule::~CodeGenModule() {} 444 445 void CodeGenModule::createObjCRuntime() { 446 // This is just isGNUFamily(), but we want to force implementors of 447 // new ABIs to decide how best to do this. 448 switch (LangOpts.ObjCRuntime.getKind()) { 449 case ObjCRuntime::GNUstep: 450 case ObjCRuntime::GCC: 451 case ObjCRuntime::ObjFW: 452 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 453 return; 454 455 case ObjCRuntime::FragileMacOSX: 456 case ObjCRuntime::MacOSX: 457 case ObjCRuntime::iOS: 458 case ObjCRuntime::WatchOS: 459 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 460 return; 461 } 462 llvm_unreachable("bad runtime kind"); 463 } 464 465 void CodeGenModule::createOpenCLRuntime() { 466 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 467 } 468 469 void CodeGenModule::createOpenMPRuntime() { 470 // Select a specialized code generation class based on the target, if any. 471 // If it does not exist use the default implementation. 472 switch (getTriple().getArch()) { 473 case llvm::Triple::nvptx: 474 case llvm::Triple::nvptx64: 475 case llvm::Triple::amdgcn: 476 assert(getLangOpts().OpenMPIsTargetDevice && 477 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 478 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 479 break; 480 default: 481 if (LangOpts.OpenMPSimd) 482 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 483 else 484 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 485 break; 486 } 487 } 488 489 void CodeGenModule::createCUDARuntime() { 490 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 491 } 492 493 void CodeGenModule::createHLSLRuntime() { 494 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 495 } 496 497 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 498 Replacements[Name] = C; 499 } 500 501 void CodeGenModule::applyReplacements() { 502 for (auto &I : Replacements) { 503 StringRef MangledName = I.first; 504 llvm::Constant *Replacement = I.second; 505 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 506 if (!Entry) 507 continue; 508 auto *OldF = cast<llvm::Function>(Entry); 509 auto *NewF = dyn_cast<llvm::Function>(Replacement); 510 if (!NewF) { 511 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 512 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 513 } else { 514 auto *CE = cast<llvm::ConstantExpr>(Replacement); 515 assert(CE->getOpcode() == llvm::Instruction::BitCast || 516 CE->getOpcode() == llvm::Instruction::GetElementPtr); 517 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 518 } 519 } 520 521 // Replace old with new, but keep the old order. 522 OldF->replaceAllUsesWith(Replacement); 523 if (NewF) { 524 NewF->removeFromParent(); 525 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 526 NewF); 527 } 528 OldF->eraseFromParent(); 529 } 530 } 531 532 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 533 GlobalValReplacements.push_back(std::make_pair(GV, C)); 534 } 535 536 void CodeGenModule::applyGlobalValReplacements() { 537 for (auto &I : GlobalValReplacements) { 538 llvm::GlobalValue *GV = I.first; 539 llvm::Constant *C = I.second; 540 541 GV->replaceAllUsesWith(C); 542 GV->eraseFromParent(); 543 } 544 } 545 546 // This is only used in aliases that we created and we know they have a 547 // linear structure. 548 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 549 const llvm::Constant *C; 550 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 551 C = GA->getAliasee(); 552 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 553 C = GI->getResolver(); 554 else 555 return GV; 556 557 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 558 if (!AliaseeGV) 559 return nullptr; 560 561 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 562 if (FinalGV == GV) 563 return nullptr; 564 565 return FinalGV; 566 } 567 568 static bool checkAliasedGlobal( 569 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 570 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 571 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 572 SourceRange AliasRange) { 573 GV = getAliasedGlobal(Alias); 574 if (!GV) { 575 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 576 return false; 577 } 578 579 if (GV->hasCommonLinkage()) { 580 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 581 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 582 Diags.Report(Location, diag::err_alias_to_common); 583 return false; 584 } 585 } 586 587 if (GV->isDeclaration()) { 588 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 589 Diags.Report(Location, diag::note_alias_requires_mangled_name) 590 << IsIFunc << IsIFunc; 591 // Provide a note if the given function is not found and exists as a 592 // mangled name. 593 for (const auto &[Decl, Name] : MangledDeclNames) { 594 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 595 if (ND->getName() == GV->getName()) { 596 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 597 << Name 598 << FixItHint::CreateReplacement( 599 AliasRange, 600 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 601 .str()); 602 } 603 } 604 } 605 return false; 606 } 607 608 if (IsIFunc) { 609 // Check resolver function type. 610 const auto *F = dyn_cast<llvm::Function>(GV); 611 if (!F) { 612 Diags.Report(Location, diag::err_alias_to_undefined) 613 << IsIFunc << IsIFunc; 614 return false; 615 } 616 617 llvm::FunctionType *FTy = F->getFunctionType(); 618 if (!FTy->getReturnType()->isPointerTy()) { 619 Diags.Report(Location, diag::err_ifunc_resolver_return); 620 return false; 621 } 622 } 623 624 return true; 625 } 626 627 void CodeGenModule::checkAliases() { 628 // Check if the constructed aliases are well formed. It is really unfortunate 629 // that we have to do this in CodeGen, but we only construct mangled names 630 // and aliases during codegen. 631 bool Error = false; 632 DiagnosticsEngine &Diags = getDiags(); 633 for (const GlobalDecl &GD : Aliases) { 634 const auto *D = cast<ValueDecl>(GD.getDecl()); 635 SourceLocation Location; 636 SourceRange Range; 637 bool IsIFunc = D->hasAttr<IFuncAttr>(); 638 if (const Attr *A = D->getDefiningAttr()) { 639 Location = A->getLocation(); 640 Range = A->getRange(); 641 } else 642 llvm_unreachable("Not an alias or ifunc?"); 643 644 StringRef MangledName = getMangledName(GD); 645 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 646 const llvm::GlobalValue *GV = nullptr; 647 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 648 MangledDeclNames, Range)) { 649 Error = true; 650 continue; 651 } 652 653 llvm::Constant *Aliasee = 654 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 655 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 656 657 llvm::GlobalValue *AliaseeGV; 658 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 659 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 660 else 661 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 662 663 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 664 StringRef AliasSection = SA->getName(); 665 if (AliasSection != AliaseeGV->getSection()) 666 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 667 << AliasSection << IsIFunc << IsIFunc; 668 } 669 670 // We have to handle alias to weak aliases in here. LLVM itself disallows 671 // this since the object semantics would not match the IL one. For 672 // compatibility with gcc we implement it by just pointing the alias 673 // to its aliasee's aliasee. We also warn, since the user is probably 674 // expecting the link to be weak. 675 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 676 if (GA->isInterposable()) { 677 Diags.Report(Location, diag::warn_alias_to_weak_alias) 678 << GV->getName() << GA->getName() << IsIFunc; 679 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 680 GA->getAliasee(), Alias->getType()); 681 682 if (IsIFunc) 683 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 684 else 685 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 686 } 687 } 688 } 689 if (!Error) 690 return; 691 692 for (const GlobalDecl &GD : Aliases) { 693 StringRef MangledName = getMangledName(GD); 694 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 695 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 696 Alias->eraseFromParent(); 697 } 698 } 699 700 void CodeGenModule::clear() { 701 DeferredDeclsToEmit.clear(); 702 EmittedDeferredDecls.clear(); 703 DeferredAnnotations.clear(); 704 if (OpenMPRuntime) 705 OpenMPRuntime->clear(); 706 } 707 708 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 709 StringRef MainFile) { 710 if (!hasDiagnostics()) 711 return; 712 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 713 if (MainFile.empty()) 714 MainFile = "<stdin>"; 715 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 716 } else { 717 if (Mismatched > 0) 718 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 719 720 if (Missing > 0) 721 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 722 } 723 } 724 725 static std::optional<llvm::GlobalValue::VisibilityTypes> 726 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { 727 // Map to LLVM visibility. 728 switch (K) { 729 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: 730 return std::nullopt; 731 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: 732 return llvm::GlobalValue::DefaultVisibility; 733 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: 734 return llvm::GlobalValue::HiddenVisibility; 735 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: 736 return llvm::GlobalValue::ProtectedVisibility; 737 } 738 llvm_unreachable("unknown option value!"); 739 } 740 741 void setLLVMVisibility(llvm::GlobalValue &GV, 742 std::optional<llvm::GlobalValue::VisibilityTypes> V) { 743 if (!V) 744 return; 745 746 // Reset DSO locality before setting the visibility. This removes 747 // any effects that visibility options and annotations may have 748 // had on the DSO locality. Setting the visibility will implicitly set 749 // appropriate globals to DSO Local; however, this will be pessimistic 750 // w.r.t. to the normal compiler IRGen. 751 GV.setDSOLocal(false); 752 GV.setVisibility(*V); 753 } 754 755 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 756 llvm::Module &M) { 757 if (!LO.VisibilityFromDLLStorageClass) 758 return; 759 760 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility = 761 getLLVMVisibility(LO.getDLLExportVisibility()); 762 763 std::optional<llvm::GlobalValue::VisibilityTypes> 764 NoDLLStorageClassVisibility = 765 getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 766 767 std::optional<llvm::GlobalValue::VisibilityTypes> 768 ExternDeclDLLImportVisibility = 769 getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 770 771 std::optional<llvm::GlobalValue::VisibilityTypes> 772 ExternDeclNoDLLStorageClassVisibility = 773 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); 774 775 for (llvm::GlobalValue &GV : M.global_values()) { 776 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 777 continue; 778 779 if (GV.isDeclarationForLinker()) 780 setLLVMVisibility(GV, GV.getDLLStorageClass() == 781 llvm::GlobalValue::DLLImportStorageClass 782 ? ExternDeclDLLImportVisibility 783 : ExternDeclNoDLLStorageClassVisibility); 784 else 785 setLLVMVisibility(GV, GV.getDLLStorageClass() == 786 llvm::GlobalValue::DLLExportStorageClass 787 ? DLLExportVisibility 788 : NoDLLStorageClassVisibility); 789 790 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 791 } 792 } 793 794 static bool isStackProtectorOn(const LangOptions &LangOpts, 795 const llvm::Triple &Triple, 796 clang::LangOptions::StackProtectorMode Mode) { 797 if (Triple.isAMDGPU() || Triple.isNVPTX()) 798 return false; 799 return LangOpts.getStackProtector() == Mode; 800 } 801 802 void CodeGenModule::Release() { 803 Module *Primary = getContext().getCurrentNamedModule(); 804 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 805 EmitModuleInitializers(Primary); 806 EmitDeferred(); 807 DeferredDecls.insert(EmittedDeferredDecls.begin(), 808 EmittedDeferredDecls.end()); 809 EmittedDeferredDecls.clear(); 810 EmitVTablesOpportunistically(); 811 applyGlobalValReplacements(); 812 applyReplacements(); 813 emitMultiVersionFunctions(); 814 815 if (Context.getLangOpts().IncrementalExtensions && 816 GlobalTopLevelStmtBlockInFlight.first) { 817 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 818 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 819 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 820 } 821 822 // Module implementations are initialized the same way as a regular TU that 823 // imports one or more modules. 824 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 825 EmitCXXModuleInitFunc(Primary); 826 else 827 EmitCXXGlobalInitFunc(); 828 EmitCXXGlobalCleanUpFunc(); 829 registerGlobalDtorsWithAtExit(); 830 EmitCXXThreadLocalInitFunc(); 831 if (ObjCRuntime) 832 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 833 AddGlobalCtor(ObjCInitFunction); 834 if (Context.getLangOpts().CUDA && CUDARuntime) { 835 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 836 AddGlobalCtor(CudaCtorFunction); 837 } 838 if (OpenMPRuntime) { 839 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 840 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 841 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 842 } 843 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 844 OpenMPRuntime->clear(); 845 } 846 if (PGOReader) { 847 getModule().setProfileSummary( 848 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 849 llvm::ProfileSummary::PSK_Instr); 850 if (PGOStats.hasDiagnostics()) 851 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 852 } 853 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 854 return L.LexOrder < R.LexOrder; 855 }); 856 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 857 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 858 EmitGlobalAnnotations(); 859 EmitStaticExternCAliases(); 860 checkAliases(); 861 EmitDeferredUnusedCoverageMappings(); 862 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 863 if (CoverageMapping) 864 CoverageMapping->emit(); 865 if (CodeGenOpts.SanitizeCfiCrossDso) { 866 CodeGenFunction(*this).EmitCfiCheckFail(); 867 CodeGenFunction(*this).EmitCfiCheckStub(); 868 } 869 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 870 finalizeKCFITypes(); 871 emitAtAvailableLinkGuard(); 872 if (Context.getTargetInfo().getTriple().isWasm()) 873 EmitMainVoidAlias(); 874 875 if (getTriple().isAMDGPU()) { 876 // Emit amdgpu_code_object_version module flag, which is code object version 877 // times 100. 878 if (getTarget().getTargetOpts().CodeObjectVersion != 879 llvm::CodeObjectVersionKind::COV_None) { 880 getModule().addModuleFlag(llvm::Module::Error, 881 "amdgpu_code_object_version", 882 getTarget().getTargetOpts().CodeObjectVersion); 883 } 884 885 // Currently, "-mprintf-kind" option is only supported for HIP 886 if (LangOpts.HIP) { 887 auto *MDStr = llvm::MDString::get( 888 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 889 TargetOptions::AMDGPUPrintfKind::Hostcall) 890 ? "hostcall" 891 : "buffered"); 892 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 893 MDStr); 894 } 895 } 896 897 // Emit a global array containing all external kernels or device variables 898 // used by host functions and mark it as used for CUDA/HIP. This is necessary 899 // to get kernels or device variables in archives linked in even if these 900 // kernels or device variables are only used in host functions. 901 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 902 SmallVector<llvm::Constant *, 8> UsedArray; 903 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 904 GlobalDecl GD; 905 if (auto *FD = dyn_cast<FunctionDecl>(D)) 906 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 907 else 908 GD = GlobalDecl(D); 909 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 910 GetAddrOfGlobal(GD), Int8PtrTy)); 911 } 912 913 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 914 915 auto *GV = new llvm::GlobalVariable( 916 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 917 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 918 addCompilerUsedGlobal(GV); 919 } 920 921 emitLLVMUsed(); 922 if (SanStats) 923 SanStats->finish(); 924 925 if (CodeGenOpts.Autolink && 926 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 927 EmitModuleLinkOptions(); 928 } 929 930 // On ELF we pass the dependent library specifiers directly to the linker 931 // without manipulating them. This is in contrast to other platforms where 932 // they are mapped to a specific linker option by the compiler. This 933 // difference is a result of the greater variety of ELF linkers and the fact 934 // that ELF linkers tend to handle libraries in a more complicated fashion 935 // than on other platforms. This forces us to defer handling the dependent 936 // libs to the linker. 937 // 938 // CUDA/HIP device and host libraries are different. Currently there is no 939 // way to differentiate dependent libraries for host or device. Existing 940 // usage of #pragma comment(lib, *) is intended for host libraries on 941 // Windows. Therefore emit llvm.dependent-libraries only for host. 942 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 943 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 944 for (auto *MD : ELFDependentLibraries) 945 NMD->addOperand(MD); 946 } 947 948 // Record mregparm value now so it is visible through rest of codegen. 949 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 950 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 951 CodeGenOpts.NumRegisterParameters); 952 953 if (CodeGenOpts.DwarfVersion) { 954 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 955 CodeGenOpts.DwarfVersion); 956 } 957 958 if (CodeGenOpts.Dwarf64) 959 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 960 961 if (Context.getLangOpts().SemanticInterposition) 962 // Require various optimization to respect semantic interposition. 963 getModule().setSemanticInterposition(true); 964 965 if (CodeGenOpts.EmitCodeView) { 966 // Indicate that we want CodeView in the metadata. 967 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 968 } 969 if (CodeGenOpts.CodeViewGHash) { 970 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 971 } 972 if (CodeGenOpts.ControlFlowGuard) { 973 // Function ID tables and checks for Control Flow Guard (cfguard=2). 974 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 975 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 976 // Function ID tables for Control Flow Guard (cfguard=1). 977 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 978 } 979 if (CodeGenOpts.EHContGuard) { 980 // Function ID tables for EH Continuation Guard. 981 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 982 } 983 if (Context.getLangOpts().Kernel) { 984 // Note if we are compiling with /kernel. 985 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 986 } 987 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 988 // We don't support LTO with 2 with different StrictVTablePointers 989 // FIXME: we could support it by stripping all the information introduced 990 // by StrictVTablePointers. 991 992 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 993 994 llvm::Metadata *Ops[2] = { 995 llvm::MDString::get(VMContext, "StrictVTablePointers"), 996 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 997 llvm::Type::getInt32Ty(VMContext), 1))}; 998 999 getModule().addModuleFlag(llvm::Module::Require, 1000 "StrictVTablePointersRequirement", 1001 llvm::MDNode::get(VMContext, Ops)); 1002 } 1003 if (getModuleDebugInfo()) 1004 // We support a single version in the linked module. The LLVM 1005 // parser will drop debug info with a different version number 1006 // (and warn about it, too). 1007 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 1008 llvm::DEBUG_METADATA_VERSION); 1009 1010 // We need to record the widths of enums and wchar_t, so that we can generate 1011 // the correct build attributes in the ARM backend. wchar_size is also used by 1012 // TargetLibraryInfo. 1013 uint64_t WCharWidth = 1014 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 1015 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 1016 1017 if (getTriple().isOSzOS()) { 1018 getModule().addModuleFlag(llvm::Module::Warning, 1019 "zos_product_major_version", 1020 uint32_t(CLANG_VERSION_MAJOR)); 1021 getModule().addModuleFlag(llvm::Module::Warning, 1022 "zos_product_minor_version", 1023 uint32_t(CLANG_VERSION_MINOR)); 1024 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 1025 uint32_t(CLANG_VERSION_PATCHLEVEL)); 1026 std::string ProductId = getClangVendor() + "clang"; 1027 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1028 llvm::MDString::get(VMContext, ProductId)); 1029 1030 // Record the language because we need it for the PPA2. 1031 StringRef lang_str = languageToString( 1032 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1033 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1034 llvm::MDString::get(VMContext, lang_str)); 1035 1036 time_t TT = PreprocessorOpts.SourceDateEpoch 1037 ? *PreprocessorOpts.SourceDateEpoch 1038 : std::time(nullptr); 1039 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1040 static_cast<uint64_t>(TT)); 1041 1042 // Multiple modes will be supported here. 1043 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1044 llvm::MDString::get(VMContext, "ascii")); 1045 } 1046 1047 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 1048 if ( Arch == llvm::Triple::arm 1049 || Arch == llvm::Triple::armeb 1050 || Arch == llvm::Triple::thumb 1051 || Arch == llvm::Triple::thumbeb) { 1052 // The minimum width of an enum in bytes 1053 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1054 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1055 } 1056 1057 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 1058 StringRef ABIStr = Target.getABI(); 1059 llvm::LLVMContext &Ctx = TheModule.getContext(); 1060 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1061 llvm::MDString::get(Ctx, ABIStr)); 1062 } 1063 1064 if (CodeGenOpts.SanitizeCfiCrossDso) { 1065 // Indicate that we want cross-DSO control flow integrity checks. 1066 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1067 } 1068 1069 if (CodeGenOpts.WholeProgramVTables) { 1070 // Indicate whether VFE was enabled for this module, so that the 1071 // vcall_visibility metadata added under whole program vtables is handled 1072 // appropriately in the optimizer. 1073 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1074 CodeGenOpts.VirtualFunctionElimination); 1075 } 1076 1077 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1078 getModule().addModuleFlag(llvm::Module::Override, 1079 "CFI Canonical Jump Tables", 1080 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1081 } 1082 1083 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1084 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1085 // KCFI assumes patchable-function-prefix is the same for all indirectly 1086 // called functions. Store the expected offset for code generation. 1087 if (CodeGenOpts.PatchableFunctionEntryOffset) 1088 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1089 CodeGenOpts.PatchableFunctionEntryOffset); 1090 } 1091 1092 if (CodeGenOpts.CFProtectionReturn && 1093 Target.checkCFProtectionReturnSupported(getDiags())) { 1094 // Indicate that we want to instrument return control flow protection. 1095 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1096 1); 1097 } 1098 1099 if (CodeGenOpts.CFProtectionBranch && 1100 Target.checkCFProtectionBranchSupported(getDiags())) { 1101 // Indicate that we want to instrument branch control flow protection. 1102 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1103 1); 1104 } 1105 1106 if (CodeGenOpts.FunctionReturnThunks) 1107 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1108 1109 if (CodeGenOpts.IndirectBranchCSPrefix) 1110 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1111 1112 // Add module metadata for return address signing (ignoring 1113 // non-leaf/all) and stack tagging. These are actually turned on by function 1114 // attributes, but we use module metadata to emit build attributes. This is 1115 // needed for LTO, where the function attributes are inside bitcode 1116 // serialised into a global variable by the time build attributes are 1117 // emitted, so we can't access them. LTO objects could be compiled with 1118 // different flags therefore module flags are set to "Min" behavior to achieve 1119 // the same end result of the normal build where e.g BTI is off if any object 1120 // doesn't support it. 1121 if (Context.getTargetInfo().hasFeature("ptrauth") && 1122 LangOpts.getSignReturnAddressScope() != 1123 LangOptions::SignReturnAddressScopeKind::None) 1124 getModule().addModuleFlag(llvm::Module::Override, 1125 "sign-return-address-buildattr", 1); 1126 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1127 getModule().addModuleFlag(llvm::Module::Override, 1128 "tag-stack-memory-buildattr", 1); 1129 1130 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 1131 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 1132 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 1133 Arch == llvm::Triple::aarch64_be) { 1134 if (LangOpts.BranchTargetEnforcement) 1135 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1136 1); 1137 if (LangOpts.BranchProtectionPAuthLR) 1138 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1139 1); 1140 if (LangOpts.GuardedControlStack) 1141 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1142 if (LangOpts.hasSignReturnAddress()) 1143 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1144 if (LangOpts.isSignReturnAddressScopeAll()) 1145 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1146 1); 1147 if (!LangOpts.isSignReturnAddressWithAKey()) 1148 getModule().addModuleFlag(llvm::Module::Min, 1149 "sign-return-address-with-bkey", 1); 1150 } 1151 1152 if (CodeGenOpts.StackClashProtector) 1153 getModule().addModuleFlag( 1154 llvm::Module::Override, "probe-stack", 1155 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1156 1157 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1158 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1159 CodeGenOpts.StackProbeSize); 1160 1161 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1162 llvm::LLVMContext &Ctx = TheModule.getContext(); 1163 getModule().addModuleFlag( 1164 llvm::Module::Error, "MemProfProfileFilename", 1165 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1166 } 1167 1168 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1169 // Indicate whether __nvvm_reflect should be configured to flush denormal 1170 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1171 // property.) 1172 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1173 CodeGenOpts.FP32DenormalMode.Output != 1174 llvm::DenormalMode::IEEE); 1175 } 1176 1177 if (LangOpts.EHAsynch) 1178 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1179 1180 // Indicate whether this Module was compiled with -fopenmp 1181 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1182 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1183 if (getLangOpts().OpenMPIsTargetDevice) 1184 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1185 LangOpts.OpenMP); 1186 1187 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1188 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1189 EmitOpenCLMetadata(); 1190 // Emit SPIR version. 1191 if (getTriple().isSPIR()) { 1192 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1193 // opencl.spir.version named metadata. 1194 // C++ for OpenCL has a distinct mapping for version compatibility with 1195 // OpenCL. 1196 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1197 llvm::Metadata *SPIRVerElts[] = { 1198 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1199 Int32Ty, Version / 100)), 1200 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1201 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1202 llvm::NamedMDNode *SPIRVerMD = 1203 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1204 llvm::LLVMContext &Ctx = TheModule.getContext(); 1205 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1206 } 1207 } 1208 1209 // HLSL related end of code gen work items. 1210 if (LangOpts.HLSL) 1211 getHLSLRuntime().finishCodeGen(); 1212 1213 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1214 assert(PLevel < 3 && "Invalid PIC Level"); 1215 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1216 if (Context.getLangOpts().PIE) 1217 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1218 } 1219 1220 if (getCodeGenOpts().CodeModel.size() > 0) { 1221 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1222 .Case("tiny", llvm::CodeModel::Tiny) 1223 .Case("small", llvm::CodeModel::Small) 1224 .Case("kernel", llvm::CodeModel::Kernel) 1225 .Case("medium", llvm::CodeModel::Medium) 1226 .Case("large", llvm::CodeModel::Large) 1227 .Default(~0u); 1228 if (CM != ~0u) { 1229 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1230 getModule().setCodeModel(codeModel); 1231 1232 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1233 Context.getTargetInfo().getTriple().getArch() == 1234 llvm::Triple::x86_64) { 1235 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1236 } 1237 } 1238 } 1239 1240 if (CodeGenOpts.NoPLT) 1241 getModule().setRtLibUseGOT(); 1242 if (getTriple().isOSBinFormatELF() && 1243 CodeGenOpts.DirectAccessExternalData != 1244 getModule().getDirectAccessExternalData()) { 1245 getModule().setDirectAccessExternalData( 1246 CodeGenOpts.DirectAccessExternalData); 1247 } 1248 if (CodeGenOpts.UnwindTables) 1249 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1250 1251 switch (CodeGenOpts.getFramePointer()) { 1252 case CodeGenOptions::FramePointerKind::None: 1253 // 0 ("none") is the default. 1254 break; 1255 case CodeGenOptions::FramePointerKind::NonLeaf: 1256 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1257 break; 1258 case CodeGenOptions::FramePointerKind::All: 1259 getModule().setFramePointer(llvm::FramePointerKind::All); 1260 break; 1261 } 1262 1263 SimplifyPersonality(); 1264 1265 if (getCodeGenOpts().EmitDeclMetadata) 1266 EmitDeclMetadata(); 1267 1268 if (getCodeGenOpts().CoverageNotesFile.size() || 1269 getCodeGenOpts().CoverageDataFile.size()) 1270 EmitCoverageFile(); 1271 1272 if (CGDebugInfo *DI = getModuleDebugInfo()) 1273 DI->finalize(); 1274 1275 if (getCodeGenOpts().EmitVersionIdentMetadata) 1276 EmitVersionIdentMetadata(); 1277 1278 if (!getCodeGenOpts().RecordCommandLine.empty()) 1279 EmitCommandLineMetadata(); 1280 1281 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1282 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1283 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1284 getModule().setStackProtectorGuardReg( 1285 getCodeGenOpts().StackProtectorGuardReg); 1286 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1287 getModule().setStackProtectorGuardSymbol( 1288 getCodeGenOpts().StackProtectorGuardSymbol); 1289 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1290 getModule().setStackProtectorGuardOffset( 1291 getCodeGenOpts().StackProtectorGuardOffset); 1292 if (getCodeGenOpts().StackAlignment) 1293 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1294 if (getCodeGenOpts().SkipRaxSetup) 1295 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1296 if (getLangOpts().RegCall4) 1297 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1298 1299 if (getContext().getTargetInfo().getMaxTLSAlign()) 1300 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1301 getContext().getTargetInfo().getMaxTLSAlign()); 1302 1303 getTargetCodeGenInfo().emitTargetGlobals(*this); 1304 1305 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1306 1307 EmitBackendOptionsMetadata(getCodeGenOpts()); 1308 1309 // If there is device offloading code embed it in the host now. 1310 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1311 1312 // Set visibility from DLL storage class 1313 // We do this at the end of LLVM IR generation; after any operation 1314 // that might affect the DLL storage class or the visibility, and 1315 // before anything that might act on these. 1316 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1317 } 1318 1319 void CodeGenModule::EmitOpenCLMetadata() { 1320 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1321 // opencl.ocl.version named metadata node. 1322 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 1323 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1324 llvm::Metadata *OCLVerElts[] = { 1325 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1326 Int32Ty, Version / 100)), 1327 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1328 Int32Ty, (Version % 100) / 10))}; 1329 llvm::NamedMDNode *OCLVerMD = 1330 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 1331 llvm::LLVMContext &Ctx = TheModule.getContext(); 1332 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1333 } 1334 1335 void CodeGenModule::EmitBackendOptionsMetadata( 1336 const CodeGenOptions &CodeGenOpts) { 1337 if (getTriple().isRISCV()) { 1338 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1339 CodeGenOpts.SmallDataLimit); 1340 } 1341 } 1342 1343 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1344 // Make sure that this type is translated. 1345 Types.UpdateCompletedType(TD); 1346 } 1347 1348 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1349 // Make sure that this type is translated. 1350 Types.RefreshTypeCacheForClass(RD); 1351 } 1352 1353 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1354 if (!TBAA) 1355 return nullptr; 1356 return TBAA->getTypeInfo(QTy); 1357 } 1358 1359 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1360 if (!TBAA) 1361 return TBAAAccessInfo(); 1362 if (getLangOpts().CUDAIsDevice) { 1363 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1364 // access info. 1365 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1366 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1367 nullptr) 1368 return TBAAAccessInfo(); 1369 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1370 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1371 nullptr) 1372 return TBAAAccessInfo(); 1373 } 1374 } 1375 return TBAA->getAccessInfo(AccessType); 1376 } 1377 1378 TBAAAccessInfo 1379 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1380 if (!TBAA) 1381 return TBAAAccessInfo(); 1382 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1383 } 1384 1385 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1386 if (!TBAA) 1387 return nullptr; 1388 return TBAA->getTBAAStructInfo(QTy); 1389 } 1390 1391 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1392 if (!TBAA) 1393 return nullptr; 1394 return TBAA->getBaseTypeInfo(QTy); 1395 } 1396 1397 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1398 if (!TBAA) 1399 return nullptr; 1400 return TBAA->getAccessTagInfo(Info); 1401 } 1402 1403 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1404 TBAAAccessInfo TargetInfo) { 1405 if (!TBAA) 1406 return TBAAAccessInfo(); 1407 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1408 } 1409 1410 TBAAAccessInfo 1411 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1412 TBAAAccessInfo InfoB) { 1413 if (!TBAA) 1414 return TBAAAccessInfo(); 1415 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1416 } 1417 1418 TBAAAccessInfo 1419 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1420 TBAAAccessInfo SrcInfo) { 1421 if (!TBAA) 1422 return TBAAAccessInfo(); 1423 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1424 } 1425 1426 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1427 TBAAAccessInfo TBAAInfo) { 1428 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1429 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1430 } 1431 1432 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1433 llvm::Instruction *I, const CXXRecordDecl *RD) { 1434 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1435 llvm::MDNode::get(getLLVMContext(), {})); 1436 } 1437 1438 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1439 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1440 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1441 } 1442 1443 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1444 /// specified stmt yet. 1445 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1446 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1447 "cannot compile this %0 yet"); 1448 std::string Msg = Type; 1449 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1450 << Msg << S->getSourceRange(); 1451 } 1452 1453 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1454 /// specified decl yet. 1455 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1456 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1457 "cannot compile this %0 yet"); 1458 std::string Msg = Type; 1459 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1460 } 1461 1462 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1463 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1464 } 1465 1466 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1467 const NamedDecl *D) const { 1468 // Internal definitions always have default visibility. 1469 if (GV->hasLocalLinkage()) { 1470 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1471 return; 1472 } 1473 if (!D) 1474 return; 1475 1476 // Set visibility for definitions, and for declarations if requested globally 1477 // or set explicitly. 1478 LinkageInfo LV = D->getLinkageAndVisibility(); 1479 1480 // OpenMP declare target variables must be visible to the host so they can 1481 // be registered. We require protected visibility unless the variable has 1482 // the DT_nohost modifier and does not need to be registered. 1483 if (Context.getLangOpts().OpenMP && 1484 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1485 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1486 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1487 OMPDeclareTargetDeclAttr::DT_NoHost && 1488 LV.getVisibility() == HiddenVisibility) { 1489 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1490 return; 1491 } 1492 1493 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1494 // Reject incompatible dlllstorage and visibility annotations. 1495 if (!LV.isVisibilityExplicit()) 1496 return; 1497 if (GV->hasDLLExportStorageClass()) { 1498 if (LV.getVisibility() == HiddenVisibility) 1499 getDiags().Report(D->getLocation(), 1500 diag::err_hidden_visibility_dllexport); 1501 } else if (LV.getVisibility() != DefaultVisibility) { 1502 getDiags().Report(D->getLocation(), 1503 diag::err_non_default_visibility_dllimport); 1504 } 1505 return; 1506 } 1507 1508 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1509 !GV->isDeclarationForLinker()) 1510 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1511 } 1512 1513 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1514 llvm::GlobalValue *GV) { 1515 if (GV->hasLocalLinkage()) 1516 return true; 1517 1518 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1519 return true; 1520 1521 // DLLImport explicitly marks the GV as external. 1522 if (GV->hasDLLImportStorageClass()) 1523 return false; 1524 1525 const llvm::Triple &TT = CGM.getTriple(); 1526 const auto &CGOpts = CGM.getCodeGenOpts(); 1527 if (TT.isWindowsGNUEnvironment()) { 1528 // In MinGW, variables without DLLImport can still be automatically 1529 // imported from a DLL by the linker; don't mark variables that 1530 // potentially could come from another DLL as DSO local. 1531 1532 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1533 // (and this actually happens in the public interface of libstdc++), so 1534 // such variables can't be marked as DSO local. (Native TLS variables 1535 // can't be dllimported at all, though.) 1536 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1537 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1538 CGOpts.AutoImport) 1539 return false; 1540 } 1541 1542 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1543 // remain unresolved in the link, they can be resolved to zero, which is 1544 // outside the current DSO. 1545 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1546 return false; 1547 1548 // Every other GV is local on COFF. 1549 // Make an exception for windows OS in the triple: Some firmware builds use 1550 // *-win32-macho triples. This (accidentally?) produced windows relocations 1551 // without GOT tables in older clang versions; Keep this behaviour. 1552 // FIXME: even thread local variables? 1553 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1554 return true; 1555 1556 // Only handle COFF and ELF for now. 1557 if (!TT.isOSBinFormatELF()) 1558 return false; 1559 1560 // If this is not an executable, don't assume anything is local. 1561 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1562 const auto &LOpts = CGM.getLangOpts(); 1563 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1564 // On ELF, if -fno-semantic-interposition is specified and the target 1565 // supports local aliases, there will be neither CC1 1566 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1567 // dso_local on the function if using a local alias is preferable (can avoid 1568 // PLT indirection). 1569 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1570 return false; 1571 return !(CGM.getLangOpts().SemanticInterposition || 1572 CGM.getLangOpts().HalfNoSemanticInterposition); 1573 } 1574 1575 // A definition cannot be preempted from an executable. 1576 if (!GV->isDeclarationForLinker()) 1577 return true; 1578 1579 // Most PIC code sequences that assume that a symbol is local cannot produce a 1580 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1581 // depended, it seems worth it to handle it here. 1582 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1583 return false; 1584 1585 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1586 if (TT.isPPC64()) 1587 return false; 1588 1589 if (CGOpts.DirectAccessExternalData) { 1590 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1591 // for non-thread-local variables. If the symbol is not defined in the 1592 // executable, a copy relocation will be needed at link time. dso_local is 1593 // excluded for thread-local variables because they generally don't support 1594 // copy relocations. 1595 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1596 if (!Var->isThreadLocal()) 1597 return true; 1598 1599 // -fno-pic sets dso_local on a function declaration to allow direct 1600 // accesses when taking its address (similar to a data symbol). If the 1601 // function is not defined in the executable, a canonical PLT entry will be 1602 // needed at link time. -fno-direct-access-external-data can avoid the 1603 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1604 // it could just cause trouble without providing perceptible benefits. 1605 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1606 return true; 1607 } 1608 1609 // If we can use copy relocations we can assume it is local. 1610 1611 // Otherwise don't assume it is local. 1612 return false; 1613 } 1614 1615 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1616 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1617 } 1618 1619 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1620 GlobalDecl GD) const { 1621 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1622 // C++ destructors have a few C++ ABI specific special cases. 1623 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1624 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1625 return; 1626 } 1627 setDLLImportDLLExport(GV, D); 1628 } 1629 1630 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1631 const NamedDecl *D) const { 1632 if (D && D->isExternallyVisible()) { 1633 if (D->hasAttr<DLLImportAttr>()) 1634 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1635 else if ((D->hasAttr<DLLExportAttr>() || 1636 shouldMapVisibilityToDLLExport(D)) && 1637 !GV->isDeclarationForLinker()) 1638 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1639 } 1640 } 1641 1642 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1643 GlobalDecl GD) const { 1644 setDLLImportDLLExport(GV, GD); 1645 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1646 } 1647 1648 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1649 const NamedDecl *D) const { 1650 setDLLImportDLLExport(GV, D); 1651 setGVPropertiesAux(GV, D); 1652 } 1653 1654 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1655 const NamedDecl *D) const { 1656 setGlobalVisibility(GV, D); 1657 setDSOLocal(GV); 1658 GV->setPartition(CodeGenOpts.SymbolPartition); 1659 } 1660 1661 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1662 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1663 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1664 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1665 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1666 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1667 } 1668 1669 llvm::GlobalVariable::ThreadLocalMode 1670 CodeGenModule::GetDefaultLLVMTLSModel() const { 1671 switch (CodeGenOpts.getDefaultTLSModel()) { 1672 case CodeGenOptions::GeneralDynamicTLSModel: 1673 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1674 case CodeGenOptions::LocalDynamicTLSModel: 1675 return llvm::GlobalVariable::LocalDynamicTLSModel; 1676 case CodeGenOptions::InitialExecTLSModel: 1677 return llvm::GlobalVariable::InitialExecTLSModel; 1678 case CodeGenOptions::LocalExecTLSModel: 1679 return llvm::GlobalVariable::LocalExecTLSModel; 1680 } 1681 llvm_unreachable("Invalid TLS model!"); 1682 } 1683 1684 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1685 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1686 1687 llvm::GlobalValue::ThreadLocalMode TLM; 1688 TLM = GetDefaultLLVMTLSModel(); 1689 1690 // Override the TLS model if it is explicitly specified. 1691 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1692 TLM = GetLLVMTLSModel(Attr->getModel()); 1693 } 1694 1695 GV->setThreadLocalMode(TLM); 1696 } 1697 1698 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1699 StringRef Name) { 1700 const TargetInfo &Target = CGM.getTarget(); 1701 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1702 } 1703 1704 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1705 const CPUSpecificAttr *Attr, 1706 unsigned CPUIndex, 1707 raw_ostream &Out) { 1708 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1709 // supported. 1710 if (Attr) 1711 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1712 else if (CGM.getTarget().supportsIFunc()) 1713 Out << ".resolver"; 1714 } 1715 1716 static void AppendTargetVersionMangling(const CodeGenModule &CGM, 1717 const TargetVersionAttr *Attr, 1718 raw_ostream &Out) { 1719 if (Attr->isDefaultVersion()) { 1720 Out << ".default"; 1721 return; 1722 } 1723 Out << "._"; 1724 const TargetInfo &TI = CGM.getTarget(); 1725 llvm::SmallVector<StringRef, 8> Feats; 1726 Attr->getFeatures(Feats); 1727 llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) { 1728 return TI.multiVersionSortPriority(FeatL) < 1729 TI.multiVersionSortPriority(FeatR); 1730 }); 1731 for (const auto &Feat : Feats) { 1732 Out << 'M'; 1733 Out << Feat; 1734 } 1735 } 1736 1737 static void AppendTargetMangling(const CodeGenModule &CGM, 1738 const TargetAttr *Attr, raw_ostream &Out) { 1739 if (Attr->isDefaultVersion()) 1740 return; 1741 1742 Out << '.'; 1743 const TargetInfo &Target = CGM.getTarget(); 1744 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1745 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1746 // Multiversioning doesn't allow "no-${feature}", so we can 1747 // only have "+" prefixes here. 1748 assert(LHS.starts_with("+") && RHS.starts_with("+") && 1749 "Features should always have a prefix."); 1750 return Target.multiVersionSortPriority(LHS.substr(1)) > 1751 Target.multiVersionSortPriority(RHS.substr(1)); 1752 }); 1753 1754 bool IsFirst = true; 1755 1756 if (!Info.CPU.empty()) { 1757 IsFirst = false; 1758 Out << "arch_" << Info.CPU; 1759 } 1760 1761 for (StringRef Feat : Info.Features) { 1762 if (!IsFirst) 1763 Out << '_'; 1764 IsFirst = false; 1765 Out << Feat.substr(1); 1766 } 1767 } 1768 1769 // Returns true if GD is a function decl with internal linkage and 1770 // needs a unique suffix after the mangled name. 1771 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1772 CodeGenModule &CGM) { 1773 const Decl *D = GD.getDecl(); 1774 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1775 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1776 } 1777 1778 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1779 const TargetClonesAttr *Attr, 1780 unsigned VersionIndex, 1781 raw_ostream &Out) { 1782 const TargetInfo &TI = CGM.getTarget(); 1783 if (TI.getTriple().isAArch64()) { 1784 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1785 if (FeatureStr == "default") { 1786 Out << ".default"; 1787 return; 1788 } 1789 Out << "._"; 1790 SmallVector<StringRef, 8> Features; 1791 FeatureStr.split(Features, "+"); 1792 llvm::stable_sort(Features, 1793 [&TI](const StringRef FeatL, const StringRef FeatR) { 1794 return TI.multiVersionSortPriority(FeatL) < 1795 TI.multiVersionSortPriority(FeatR); 1796 }); 1797 for (auto &Feat : Features) { 1798 Out << 'M'; 1799 Out << Feat; 1800 } 1801 } else { 1802 Out << '.'; 1803 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1804 if (FeatureStr.starts_with("arch=")) 1805 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1806 else 1807 Out << FeatureStr; 1808 1809 Out << '.' << Attr->getMangledIndex(VersionIndex); 1810 } 1811 } 1812 1813 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1814 const NamedDecl *ND, 1815 bool OmitMultiVersionMangling = false) { 1816 SmallString<256> Buffer; 1817 llvm::raw_svector_ostream Out(Buffer); 1818 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1819 if (!CGM.getModuleNameHash().empty()) 1820 MC.needsUniqueInternalLinkageNames(); 1821 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1822 if (ShouldMangle) 1823 MC.mangleName(GD.getWithDecl(ND), Out); 1824 else { 1825 IdentifierInfo *II = ND->getIdentifier(); 1826 assert(II && "Attempt to mangle unnamed decl."); 1827 const auto *FD = dyn_cast<FunctionDecl>(ND); 1828 1829 if (FD && 1830 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1831 if (CGM.getLangOpts().RegCall4) 1832 Out << "__regcall4__" << II->getName(); 1833 else 1834 Out << "__regcall3__" << II->getName(); 1835 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1836 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1837 Out << "__device_stub__" << II->getName(); 1838 } else { 1839 Out << II->getName(); 1840 } 1841 } 1842 1843 // Check if the module name hash should be appended for internal linkage 1844 // symbols. This should come before multi-version target suffixes are 1845 // appended. This is to keep the name and module hash suffix of the 1846 // internal linkage function together. The unique suffix should only be 1847 // added when name mangling is done to make sure that the final name can 1848 // be properly demangled. For example, for C functions without prototypes, 1849 // name mangling is not done and the unique suffix should not be appeneded 1850 // then. 1851 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1852 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1853 "Hash computed when not explicitly requested"); 1854 Out << CGM.getModuleNameHash(); 1855 } 1856 1857 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1858 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1859 switch (FD->getMultiVersionKind()) { 1860 case MultiVersionKind::CPUDispatch: 1861 case MultiVersionKind::CPUSpecific: 1862 AppendCPUSpecificCPUDispatchMangling(CGM, 1863 FD->getAttr<CPUSpecificAttr>(), 1864 GD.getMultiVersionIndex(), Out); 1865 break; 1866 case MultiVersionKind::Target: 1867 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1868 break; 1869 case MultiVersionKind::TargetVersion: 1870 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); 1871 break; 1872 case MultiVersionKind::TargetClones: 1873 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1874 GD.getMultiVersionIndex(), Out); 1875 break; 1876 case MultiVersionKind::None: 1877 llvm_unreachable("None multiversion type isn't valid here"); 1878 } 1879 } 1880 1881 // Make unique name for device side static file-scope variable for HIP. 1882 if (CGM.getContext().shouldExternalize(ND) && 1883 CGM.getLangOpts().GPURelocatableDeviceCode && 1884 CGM.getLangOpts().CUDAIsDevice) 1885 CGM.printPostfixForExternalizedDecl(Out, ND); 1886 1887 return std::string(Out.str()); 1888 } 1889 1890 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1891 const FunctionDecl *FD, 1892 StringRef &CurName) { 1893 if (!FD->isMultiVersion()) 1894 return; 1895 1896 // Get the name of what this would be without the 'target' attribute. This 1897 // allows us to lookup the version that was emitted when this wasn't a 1898 // multiversion function. 1899 std::string NonTargetName = 1900 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1901 GlobalDecl OtherGD; 1902 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1903 assert(OtherGD.getCanonicalDecl() 1904 .getDecl() 1905 ->getAsFunction() 1906 ->isMultiVersion() && 1907 "Other GD should now be a multiversioned function"); 1908 // OtherFD is the version of this function that was mangled BEFORE 1909 // becoming a MultiVersion function. It potentially needs to be updated. 1910 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1911 .getDecl() 1912 ->getAsFunction() 1913 ->getMostRecentDecl(); 1914 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1915 // This is so that if the initial version was already the 'default' 1916 // version, we don't try to update it. 1917 if (OtherName != NonTargetName) { 1918 // Remove instead of erase, since others may have stored the StringRef 1919 // to this. 1920 const auto ExistingRecord = Manglings.find(NonTargetName); 1921 if (ExistingRecord != std::end(Manglings)) 1922 Manglings.remove(&(*ExistingRecord)); 1923 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1924 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1925 Result.first->first(); 1926 // If this is the current decl is being created, make sure we update the name. 1927 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1928 CurName = OtherNameRef; 1929 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1930 Entry->setName(OtherName); 1931 } 1932 } 1933 } 1934 1935 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1936 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1937 1938 // Some ABIs don't have constructor variants. Make sure that base and 1939 // complete constructors get mangled the same. 1940 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1941 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1942 CXXCtorType OrigCtorType = GD.getCtorType(); 1943 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1944 if (OrigCtorType == Ctor_Base) 1945 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1946 } 1947 } 1948 1949 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1950 // static device variable depends on whether the variable is referenced by 1951 // a host or device host function. Therefore the mangled name cannot be 1952 // cached. 1953 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1954 auto FoundName = MangledDeclNames.find(CanonicalGD); 1955 if (FoundName != MangledDeclNames.end()) 1956 return FoundName->second; 1957 } 1958 1959 // Keep the first result in the case of a mangling collision. 1960 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1961 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1962 1963 // Ensure either we have different ABIs between host and device compilations, 1964 // says host compilation following MSVC ABI but device compilation follows 1965 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1966 // mangling should be the same after name stubbing. The later checking is 1967 // very important as the device kernel name being mangled in host-compilation 1968 // is used to resolve the device binaries to be executed. Inconsistent naming 1969 // result in undefined behavior. Even though we cannot check that naming 1970 // directly between host- and device-compilations, the host- and 1971 // device-mangling in host compilation could help catching certain ones. 1972 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1973 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1974 (getContext().getAuxTargetInfo() && 1975 (getContext().getAuxTargetInfo()->getCXXABI() != 1976 getContext().getTargetInfo().getCXXABI())) || 1977 getCUDARuntime().getDeviceSideName(ND) == 1978 getMangledNameImpl( 1979 *this, 1980 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1981 ND)); 1982 1983 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1984 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1985 } 1986 1987 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1988 const BlockDecl *BD) { 1989 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1990 const Decl *D = GD.getDecl(); 1991 1992 SmallString<256> Buffer; 1993 llvm::raw_svector_ostream Out(Buffer); 1994 if (!D) 1995 MangleCtx.mangleGlobalBlock(BD, 1996 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1997 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1998 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1999 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 2000 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 2001 else 2002 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 2003 2004 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 2005 return Result.first->first(); 2006 } 2007 2008 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 2009 auto it = MangledDeclNames.begin(); 2010 while (it != MangledDeclNames.end()) { 2011 if (it->second == Name) 2012 return it->first; 2013 it++; 2014 } 2015 return GlobalDecl(); 2016 } 2017 2018 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 2019 return getModule().getNamedValue(Name); 2020 } 2021 2022 /// AddGlobalCtor - Add a function to the list that will be called before 2023 /// main() runs. 2024 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 2025 unsigned LexOrder, 2026 llvm::Constant *AssociatedData) { 2027 // FIXME: Type coercion of void()* types. 2028 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 2029 } 2030 2031 /// AddGlobalDtor - Add a function to the list that will be called 2032 /// when the module is unloaded. 2033 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 2034 bool IsDtorAttrFunc) { 2035 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 2036 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 2037 DtorsUsingAtExit[Priority].push_back(Dtor); 2038 return; 2039 } 2040 2041 // FIXME: Type coercion of void()* types. 2042 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2043 } 2044 2045 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2046 if (Fns.empty()) return; 2047 2048 // Ctor function type is void()*. 2049 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 2050 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 2051 TheModule.getDataLayout().getProgramAddressSpace()); 2052 2053 // Get the type of a ctor entry, { i32, void ()*, i8* }. 2054 llvm::StructType *CtorStructTy = llvm::StructType::get( 2055 Int32Ty, CtorPFTy, VoidPtrTy); 2056 2057 // Construct the constructor and destructor arrays. 2058 ConstantInitBuilder builder(*this); 2059 auto ctors = builder.beginArray(CtorStructTy); 2060 for (const auto &I : Fns) { 2061 auto ctor = ctors.beginStruct(CtorStructTy); 2062 ctor.addInt(Int32Ty, I.Priority); 2063 ctor.add(I.Initializer); 2064 if (I.AssociatedData) 2065 ctor.add(I.AssociatedData); 2066 else 2067 ctor.addNullPointer(VoidPtrTy); 2068 ctor.finishAndAddTo(ctors); 2069 } 2070 2071 auto list = 2072 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2073 /*constant*/ false, 2074 llvm::GlobalValue::AppendingLinkage); 2075 2076 // The LTO linker doesn't seem to like it when we set an alignment 2077 // on appending variables. Take it off as a workaround. 2078 list->setAlignment(std::nullopt); 2079 2080 Fns.clear(); 2081 } 2082 2083 llvm::GlobalValue::LinkageTypes 2084 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2085 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2086 2087 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2088 2089 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2090 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2091 2092 return getLLVMLinkageForDeclarator(D, Linkage); 2093 } 2094 2095 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2096 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2097 if (!MDS) return nullptr; 2098 2099 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2100 } 2101 2102 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2103 if (auto *FnType = T->getAs<FunctionProtoType>()) 2104 T = getContext().getFunctionType( 2105 FnType->getReturnType(), FnType->getParamTypes(), 2106 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2107 2108 std::string OutName; 2109 llvm::raw_string_ostream Out(OutName); 2110 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2111 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2112 2113 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2114 Out << ".normalized"; 2115 2116 return llvm::ConstantInt::get(Int32Ty, 2117 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2118 } 2119 2120 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2121 const CGFunctionInfo &Info, 2122 llvm::Function *F, bool IsThunk) { 2123 unsigned CallingConv; 2124 llvm::AttributeList PAL; 2125 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2126 /*AttrOnCallSite=*/false, IsThunk); 2127 F->setAttributes(PAL); 2128 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2129 } 2130 2131 static void removeImageAccessQualifier(std::string& TyName) { 2132 std::string ReadOnlyQual("__read_only"); 2133 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2134 if (ReadOnlyPos != std::string::npos) 2135 // "+ 1" for the space after access qualifier. 2136 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2137 else { 2138 std::string WriteOnlyQual("__write_only"); 2139 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2140 if (WriteOnlyPos != std::string::npos) 2141 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2142 else { 2143 std::string ReadWriteQual("__read_write"); 2144 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2145 if (ReadWritePos != std::string::npos) 2146 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2147 } 2148 } 2149 } 2150 2151 // Returns the address space id that should be produced to the 2152 // kernel_arg_addr_space metadata. This is always fixed to the ids 2153 // as specified in the SPIR 2.0 specification in order to differentiate 2154 // for example in clGetKernelArgInfo() implementation between the address 2155 // spaces with targets without unique mapping to the OpenCL address spaces 2156 // (basically all single AS CPUs). 2157 static unsigned ArgInfoAddressSpace(LangAS AS) { 2158 switch (AS) { 2159 case LangAS::opencl_global: 2160 return 1; 2161 case LangAS::opencl_constant: 2162 return 2; 2163 case LangAS::opencl_local: 2164 return 3; 2165 case LangAS::opencl_generic: 2166 return 4; // Not in SPIR 2.0 specs. 2167 case LangAS::opencl_global_device: 2168 return 5; 2169 case LangAS::opencl_global_host: 2170 return 6; 2171 default: 2172 return 0; // Assume private. 2173 } 2174 } 2175 2176 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2177 const FunctionDecl *FD, 2178 CodeGenFunction *CGF) { 2179 assert(((FD && CGF) || (!FD && !CGF)) && 2180 "Incorrect use - FD and CGF should either be both null or not!"); 2181 // Create MDNodes that represent the kernel arg metadata. 2182 // Each MDNode is a list in the form of "key", N number of values which is 2183 // the same number of values as their are kernel arguments. 2184 2185 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2186 2187 // MDNode for the kernel argument address space qualifiers. 2188 SmallVector<llvm::Metadata *, 8> addressQuals; 2189 2190 // MDNode for the kernel argument access qualifiers (images only). 2191 SmallVector<llvm::Metadata *, 8> accessQuals; 2192 2193 // MDNode for the kernel argument type names. 2194 SmallVector<llvm::Metadata *, 8> argTypeNames; 2195 2196 // MDNode for the kernel argument base type names. 2197 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2198 2199 // MDNode for the kernel argument type qualifiers. 2200 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2201 2202 // MDNode for the kernel argument names. 2203 SmallVector<llvm::Metadata *, 8> argNames; 2204 2205 if (FD && CGF) 2206 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2207 const ParmVarDecl *parm = FD->getParamDecl(i); 2208 // Get argument name. 2209 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2210 2211 if (!getLangOpts().OpenCL) 2212 continue; 2213 QualType ty = parm->getType(); 2214 std::string typeQuals; 2215 2216 // Get image and pipe access qualifier: 2217 if (ty->isImageType() || ty->isPipeType()) { 2218 const Decl *PDecl = parm; 2219 if (const auto *TD = ty->getAs<TypedefType>()) 2220 PDecl = TD->getDecl(); 2221 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2222 if (A && A->isWriteOnly()) 2223 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2224 else if (A && A->isReadWrite()) 2225 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2226 else 2227 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2228 } else 2229 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2230 2231 auto getTypeSpelling = [&](QualType Ty) { 2232 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2233 2234 if (Ty.isCanonical()) { 2235 StringRef typeNameRef = typeName; 2236 // Turn "unsigned type" to "utype" 2237 if (typeNameRef.consume_front("unsigned ")) 2238 return std::string("u") + typeNameRef.str(); 2239 if (typeNameRef.consume_front("signed ")) 2240 return typeNameRef.str(); 2241 } 2242 2243 return typeName; 2244 }; 2245 2246 if (ty->isPointerType()) { 2247 QualType pointeeTy = ty->getPointeeType(); 2248 2249 // Get address qualifier. 2250 addressQuals.push_back( 2251 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2252 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2253 2254 // Get argument type name. 2255 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2256 std::string baseTypeName = 2257 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2258 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2259 argBaseTypeNames.push_back( 2260 llvm::MDString::get(VMContext, baseTypeName)); 2261 2262 // Get argument type qualifiers: 2263 if (ty.isRestrictQualified()) 2264 typeQuals = "restrict"; 2265 if (pointeeTy.isConstQualified() || 2266 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2267 typeQuals += typeQuals.empty() ? "const" : " const"; 2268 if (pointeeTy.isVolatileQualified()) 2269 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2270 } else { 2271 uint32_t AddrSpc = 0; 2272 bool isPipe = ty->isPipeType(); 2273 if (ty->isImageType() || isPipe) 2274 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2275 2276 addressQuals.push_back( 2277 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2278 2279 // Get argument type name. 2280 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2281 std::string typeName = getTypeSpelling(ty); 2282 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2283 2284 // Remove access qualifiers on images 2285 // (as they are inseparable from type in clang implementation, 2286 // but OpenCL spec provides a special query to get access qualifier 2287 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2288 if (ty->isImageType()) { 2289 removeImageAccessQualifier(typeName); 2290 removeImageAccessQualifier(baseTypeName); 2291 } 2292 2293 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2294 argBaseTypeNames.push_back( 2295 llvm::MDString::get(VMContext, baseTypeName)); 2296 2297 if (isPipe) 2298 typeQuals = "pipe"; 2299 } 2300 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2301 } 2302 2303 if (getLangOpts().OpenCL) { 2304 Fn->setMetadata("kernel_arg_addr_space", 2305 llvm::MDNode::get(VMContext, addressQuals)); 2306 Fn->setMetadata("kernel_arg_access_qual", 2307 llvm::MDNode::get(VMContext, accessQuals)); 2308 Fn->setMetadata("kernel_arg_type", 2309 llvm::MDNode::get(VMContext, argTypeNames)); 2310 Fn->setMetadata("kernel_arg_base_type", 2311 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2312 Fn->setMetadata("kernel_arg_type_qual", 2313 llvm::MDNode::get(VMContext, argTypeQuals)); 2314 } 2315 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2316 getCodeGenOpts().HIPSaveKernelArgName) 2317 Fn->setMetadata("kernel_arg_name", 2318 llvm::MDNode::get(VMContext, argNames)); 2319 } 2320 2321 /// Determines whether the language options require us to model 2322 /// unwind exceptions. We treat -fexceptions as mandating this 2323 /// except under the fragile ObjC ABI with only ObjC exceptions 2324 /// enabled. This means, for example, that C with -fexceptions 2325 /// enables this. 2326 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2327 // If exceptions are completely disabled, obviously this is false. 2328 if (!LangOpts.Exceptions) return false; 2329 2330 // If C++ exceptions are enabled, this is true. 2331 if (LangOpts.CXXExceptions) return true; 2332 2333 // If ObjC exceptions are enabled, this depends on the ABI. 2334 if (LangOpts.ObjCExceptions) { 2335 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2336 } 2337 2338 return true; 2339 } 2340 2341 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2342 const CXXMethodDecl *MD) { 2343 // Check that the type metadata can ever actually be used by a call. 2344 if (!CGM.getCodeGenOpts().LTOUnit || 2345 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2346 return false; 2347 2348 // Only functions whose address can be taken with a member function pointer 2349 // need this sort of type metadata. 2350 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2351 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2352 } 2353 2354 SmallVector<const CXXRecordDecl *, 0> 2355 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2356 llvm::SetVector<const CXXRecordDecl *> MostBases; 2357 2358 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2359 CollectMostBases = [&](const CXXRecordDecl *RD) { 2360 if (RD->getNumBases() == 0) 2361 MostBases.insert(RD); 2362 for (const CXXBaseSpecifier &B : RD->bases()) 2363 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2364 }; 2365 CollectMostBases(RD); 2366 return MostBases.takeVector(); 2367 } 2368 2369 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2370 llvm::Function *F) { 2371 llvm::AttrBuilder B(F->getContext()); 2372 2373 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2374 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2375 2376 if (CodeGenOpts.StackClashProtector) 2377 B.addAttribute("probe-stack", "inline-asm"); 2378 2379 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2380 B.addAttribute("stack-probe-size", 2381 std::to_string(CodeGenOpts.StackProbeSize)); 2382 2383 if (!hasUnwindExceptions(LangOpts)) 2384 B.addAttribute(llvm::Attribute::NoUnwind); 2385 2386 if (D && D->hasAttr<NoStackProtectorAttr>()) 2387 ; // Do nothing. 2388 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2389 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2390 B.addAttribute(llvm::Attribute::StackProtectStrong); 2391 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2392 B.addAttribute(llvm::Attribute::StackProtect); 2393 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2394 B.addAttribute(llvm::Attribute::StackProtectStrong); 2395 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2396 B.addAttribute(llvm::Attribute::StackProtectReq); 2397 2398 if (!D) { 2399 // If we don't have a declaration to control inlining, the function isn't 2400 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2401 // disabled, mark the function as noinline. 2402 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2403 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2404 B.addAttribute(llvm::Attribute::NoInline); 2405 2406 F->addFnAttrs(B); 2407 return; 2408 } 2409 2410 // Handle SME attributes that apply to function definitions, 2411 // rather than to function prototypes. 2412 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2413 B.addAttribute("aarch64_pstate_sm_body"); 2414 2415 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2416 if (Attr->isNewZA()) 2417 B.addAttribute("aarch64_pstate_za_new"); 2418 } 2419 2420 // Track whether we need to add the optnone LLVM attribute, 2421 // starting with the default for this optimization level. 2422 bool ShouldAddOptNone = 2423 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2424 // We can't add optnone in the following cases, it won't pass the verifier. 2425 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2426 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2427 2428 // Add optnone, but do so only if the function isn't always_inline. 2429 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2430 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2431 B.addAttribute(llvm::Attribute::OptimizeNone); 2432 2433 // OptimizeNone implies noinline; we should not be inlining such functions. 2434 B.addAttribute(llvm::Attribute::NoInline); 2435 2436 // We still need to handle naked functions even though optnone subsumes 2437 // much of their semantics. 2438 if (D->hasAttr<NakedAttr>()) 2439 B.addAttribute(llvm::Attribute::Naked); 2440 2441 // OptimizeNone wins over OptimizeForSize and MinSize. 2442 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2443 F->removeFnAttr(llvm::Attribute::MinSize); 2444 } else if (D->hasAttr<NakedAttr>()) { 2445 // Naked implies noinline: we should not be inlining such functions. 2446 B.addAttribute(llvm::Attribute::Naked); 2447 B.addAttribute(llvm::Attribute::NoInline); 2448 } else if (D->hasAttr<NoDuplicateAttr>()) { 2449 B.addAttribute(llvm::Attribute::NoDuplicate); 2450 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2451 // Add noinline if the function isn't always_inline. 2452 B.addAttribute(llvm::Attribute::NoInline); 2453 } else if (D->hasAttr<AlwaysInlineAttr>() && 2454 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2455 // (noinline wins over always_inline, and we can't specify both in IR) 2456 B.addAttribute(llvm::Attribute::AlwaysInline); 2457 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2458 // If we're not inlining, then force everything that isn't always_inline to 2459 // carry an explicit noinline attribute. 2460 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2461 B.addAttribute(llvm::Attribute::NoInline); 2462 } else { 2463 // Otherwise, propagate the inline hint attribute and potentially use its 2464 // absence to mark things as noinline. 2465 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2466 // Search function and template pattern redeclarations for inline. 2467 auto CheckForInline = [](const FunctionDecl *FD) { 2468 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2469 return Redecl->isInlineSpecified(); 2470 }; 2471 if (any_of(FD->redecls(), CheckRedeclForInline)) 2472 return true; 2473 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2474 if (!Pattern) 2475 return false; 2476 return any_of(Pattern->redecls(), CheckRedeclForInline); 2477 }; 2478 if (CheckForInline(FD)) { 2479 B.addAttribute(llvm::Attribute::InlineHint); 2480 } else if (CodeGenOpts.getInlining() == 2481 CodeGenOptions::OnlyHintInlining && 2482 !FD->isInlined() && 2483 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2484 B.addAttribute(llvm::Attribute::NoInline); 2485 } 2486 } 2487 } 2488 2489 // Add other optimization related attributes if we are optimizing this 2490 // function. 2491 if (!D->hasAttr<OptimizeNoneAttr>()) { 2492 if (D->hasAttr<ColdAttr>()) { 2493 if (!ShouldAddOptNone) 2494 B.addAttribute(llvm::Attribute::OptimizeForSize); 2495 B.addAttribute(llvm::Attribute::Cold); 2496 } 2497 if (D->hasAttr<HotAttr>()) 2498 B.addAttribute(llvm::Attribute::Hot); 2499 if (D->hasAttr<MinSizeAttr>()) 2500 B.addAttribute(llvm::Attribute::MinSize); 2501 } 2502 2503 F->addFnAttrs(B); 2504 2505 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2506 if (alignment) 2507 F->setAlignment(llvm::Align(alignment)); 2508 2509 if (!D->hasAttr<AlignedAttr>()) 2510 if (LangOpts.FunctionAlignment) 2511 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2512 2513 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2514 // reserve a bit for differentiating between virtual and non-virtual member 2515 // functions. If the current target's C++ ABI requires this and this is a 2516 // member function, set its alignment accordingly. 2517 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2518 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2519 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2520 } 2521 2522 // In the cross-dso CFI mode with canonical jump tables, we want !type 2523 // attributes on definitions only. 2524 if (CodeGenOpts.SanitizeCfiCrossDso && 2525 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2526 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2527 // Skip available_externally functions. They won't be codegen'ed in the 2528 // current module anyway. 2529 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2530 CreateFunctionTypeMetadataForIcall(FD, F); 2531 } 2532 } 2533 2534 // Emit type metadata on member functions for member function pointer checks. 2535 // These are only ever necessary on definitions; we're guaranteed that the 2536 // definition will be present in the LTO unit as a result of LTO visibility. 2537 auto *MD = dyn_cast<CXXMethodDecl>(D); 2538 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2539 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2540 llvm::Metadata *Id = 2541 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2542 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2543 F->addTypeMetadata(0, Id); 2544 } 2545 } 2546 } 2547 2548 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2549 const Decl *D = GD.getDecl(); 2550 if (isa_and_nonnull<NamedDecl>(D)) 2551 setGVProperties(GV, GD); 2552 else 2553 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2554 2555 if (D && D->hasAttr<UsedAttr>()) 2556 addUsedOrCompilerUsedGlobal(GV); 2557 2558 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2559 VD && 2560 ((CodeGenOpts.KeepPersistentStorageVariables && 2561 (VD->getStorageDuration() == SD_Static || 2562 VD->getStorageDuration() == SD_Thread)) || 2563 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2564 VD->getType().isConstQualified()))) 2565 addUsedOrCompilerUsedGlobal(GV); 2566 } 2567 2568 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2569 llvm::AttrBuilder &Attrs, 2570 bool SetTargetFeatures) { 2571 // Add target-cpu and target-features attributes to functions. If 2572 // we have a decl for the function and it has a target attribute then 2573 // parse that and add it to the feature set. 2574 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2575 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2576 std::vector<std::string> Features; 2577 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2578 FD = FD ? FD->getMostRecentDecl() : FD; 2579 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2580 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2581 assert((!TD || !TV) && "both target_version and target specified"); 2582 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2583 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2584 bool AddedAttr = false; 2585 if (TD || TV || SD || TC) { 2586 llvm::StringMap<bool> FeatureMap; 2587 getContext().getFunctionFeatureMap(FeatureMap, GD); 2588 2589 // Produce the canonical string for this set of features. 2590 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2591 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2592 2593 // Now add the target-cpu and target-features to the function. 2594 // While we populated the feature map above, we still need to 2595 // get and parse the target attribute so we can get the cpu for 2596 // the function. 2597 if (TD) { 2598 ParsedTargetAttr ParsedAttr = 2599 Target.parseTargetAttr(TD->getFeaturesStr()); 2600 if (!ParsedAttr.CPU.empty() && 2601 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2602 TargetCPU = ParsedAttr.CPU; 2603 TuneCPU = ""; // Clear the tune CPU. 2604 } 2605 if (!ParsedAttr.Tune.empty() && 2606 getTarget().isValidCPUName(ParsedAttr.Tune)) 2607 TuneCPU = ParsedAttr.Tune; 2608 } 2609 2610 if (SD) { 2611 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2612 // favor this processor. 2613 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2614 } 2615 } else { 2616 // Otherwise just add the existing target cpu and target features to the 2617 // function. 2618 Features = getTarget().getTargetOpts().Features; 2619 } 2620 2621 if (!TargetCPU.empty()) { 2622 Attrs.addAttribute("target-cpu", TargetCPU); 2623 AddedAttr = true; 2624 } 2625 if (!TuneCPU.empty()) { 2626 Attrs.addAttribute("tune-cpu", TuneCPU); 2627 AddedAttr = true; 2628 } 2629 if (!Features.empty() && SetTargetFeatures) { 2630 llvm::erase_if(Features, [&](const std::string& F) { 2631 return getTarget().isReadOnlyFeature(F.substr(1)); 2632 }); 2633 llvm::sort(Features); 2634 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2635 AddedAttr = true; 2636 } 2637 2638 return AddedAttr; 2639 } 2640 2641 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2642 llvm::GlobalObject *GO) { 2643 const Decl *D = GD.getDecl(); 2644 SetCommonAttributes(GD, GO); 2645 2646 if (D) { 2647 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2648 if (D->hasAttr<RetainAttr>()) 2649 addUsedGlobal(GV); 2650 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2651 GV->addAttribute("bss-section", SA->getName()); 2652 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2653 GV->addAttribute("data-section", SA->getName()); 2654 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2655 GV->addAttribute("rodata-section", SA->getName()); 2656 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2657 GV->addAttribute("relro-section", SA->getName()); 2658 } 2659 2660 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2661 if (D->hasAttr<RetainAttr>()) 2662 addUsedGlobal(F); 2663 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2664 if (!D->getAttr<SectionAttr>()) 2665 F->addFnAttr("implicit-section-name", SA->getName()); 2666 2667 llvm::AttrBuilder Attrs(F->getContext()); 2668 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2669 // We know that GetCPUAndFeaturesAttributes will always have the 2670 // newest set, since it has the newest possible FunctionDecl, so the 2671 // new ones should replace the old. 2672 llvm::AttributeMask RemoveAttrs; 2673 RemoveAttrs.addAttribute("target-cpu"); 2674 RemoveAttrs.addAttribute("target-features"); 2675 RemoveAttrs.addAttribute("tune-cpu"); 2676 F->removeFnAttrs(RemoveAttrs); 2677 F->addFnAttrs(Attrs); 2678 } 2679 } 2680 2681 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2682 GO->setSection(CSA->getName()); 2683 else if (const auto *SA = D->getAttr<SectionAttr>()) 2684 GO->setSection(SA->getName()); 2685 } 2686 2687 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2688 } 2689 2690 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2691 llvm::Function *F, 2692 const CGFunctionInfo &FI) { 2693 const Decl *D = GD.getDecl(); 2694 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2695 SetLLVMFunctionAttributesForDefinition(D, F); 2696 2697 F->setLinkage(llvm::Function::InternalLinkage); 2698 2699 setNonAliasAttributes(GD, F); 2700 } 2701 2702 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2703 // Set linkage and visibility in case we never see a definition. 2704 LinkageInfo LV = ND->getLinkageAndVisibility(); 2705 // Don't set internal linkage on declarations. 2706 // "extern_weak" is overloaded in LLVM; we probably should have 2707 // separate linkage types for this. 2708 if (isExternallyVisible(LV.getLinkage()) && 2709 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2710 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2711 } 2712 2713 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2714 llvm::Function *F) { 2715 // Only if we are checking indirect calls. 2716 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2717 return; 2718 2719 // Non-static class methods are handled via vtable or member function pointer 2720 // checks elsewhere. 2721 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2722 return; 2723 2724 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2725 F->addTypeMetadata(0, MD); 2726 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2727 2728 // Emit a hash-based bit set entry for cross-DSO calls. 2729 if (CodeGenOpts.SanitizeCfiCrossDso) 2730 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2731 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2732 } 2733 2734 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2735 llvm::LLVMContext &Ctx = F->getContext(); 2736 llvm::MDBuilder MDB(Ctx); 2737 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2738 llvm::MDNode::get( 2739 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2740 } 2741 2742 static bool allowKCFIIdentifier(StringRef Name) { 2743 // KCFI type identifier constants are only necessary for external assembly 2744 // functions, which means it's safe to skip unusual names. Subset of 2745 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2746 return llvm::all_of(Name, [](const char &C) { 2747 return llvm::isAlnum(C) || C == '_' || C == '.'; 2748 }); 2749 } 2750 2751 void CodeGenModule::finalizeKCFITypes() { 2752 llvm::Module &M = getModule(); 2753 for (auto &F : M.functions()) { 2754 // Remove KCFI type metadata from non-address-taken local functions. 2755 bool AddressTaken = F.hasAddressTaken(); 2756 if (!AddressTaken && F.hasLocalLinkage()) 2757 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2758 2759 // Generate a constant with the expected KCFI type identifier for all 2760 // address-taken function declarations to support annotating indirectly 2761 // called assembly functions. 2762 if (!AddressTaken || !F.isDeclaration()) 2763 continue; 2764 2765 const llvm::ConstantInt *Type; 2766 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2767 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2768 else 2769 continue; 2770 2771 StringRef Name = F.getName(); 2772 if (!allowKCFIIdentifier(Name)) 2773 continue; 2774 2775 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2776 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2777 .str(); 2778 M.appendModuleInlineAsm(Asm); 2779 } 2780 } 2781 2782 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2783 bool IsIncompleteFunction, 2784 bool IsThunk) { 2785 2786 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2787 // If this is an intrinsic function, set the function's attributes 2788 // to the intrinsic's attributes. 2789 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2790 return; 2791 } 2792 2793 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2794 2795 if (!IsIncompleteFunction) 2796 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2797 IsThunk); 2798 2799 // Add the Returned attribute for "this", except for iOS 5 and earlier 2800 // where substantial code, including the libstdc++ dylib, was compiled with 2801 // GCC and does not actually return "this". 2802 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2803 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2804 assert(!F->arg_empty() && 2805 F->arg_begin()->getType() 2806 ->canLosslesslyBitCastTo(F->getReturnType()) && 2807 "unexpected this return"); 2808 F->addParamAttr(0, llvm::Attribute::Returned); 2809 } 2810 2811 // Only a few attributes are set on declarations; these may later be 2812 // overridden by a definition. 2813 2814 setLinkageForGV(F, FD); 2815 setGVProperties(F, FD); 2816 2817 // Setup target-specific attributes. 2818 if (!IsIncompleteFunction && F->isDeclaration()) 2819 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2820 2821 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2822 F->setSection(CSA->getName()); 2823 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2824 F->setSection(SA->getName()); 2825 2826 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2827 if (EA->isError()) 2828 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2829 else if (EA->isWarning()) 2830 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2831 } 2832 2833 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2834 if (FD->isInlineBuiltinDeclaration()) { 2835 const FunctionDecl *FDBody; 2836 bool HasBody = FD->hasBody(FDBody); 2837 (void)HasBody; 2838 assert(HasBody && "Inline builtin declarations should always have an " 2839 "available body!"); 2840 if (shouldEmitFunction(FDBody)) 2841 F->addFnAttr(llvm::Attribute::NoBuiltin); 2842 } 2843 2844 if (FD->isReplaceableGlobalAllocationFunction()) { 2845 // A replaceable global allocation function does not act like a builtin by 2846 // default, only if it is invoked by a new-expression or delete-expression. 2847 F->addFnAttr(llvm::Attribute::NoBuiltin); 2848 } 2849 2850 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2851 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2852 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2853 if (MD->isVirtual()) 2854 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2855 2856 // Don't emit entries for function declarations in the cross-DSO mode. This 2857 // is handled with better precision by the receiving DSO. But if jump tables 2858 // are non-canonical then we need type metadata in order to produce the local 2859 // jump table. 2860 if (!CodeGenOpts.SanitizeCfiCrossDso || 2861 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2862 CreateFunctionTypeMetadataForIcall(FD, F); 2863 2864 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2865 setKCFIType(FD, F); 2866 2867 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2868 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2869 2870 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2871 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2872 2873 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2874 // Annotate the callback behavior as metadata: 2875 // - The callback callee (as argument number). 2876 // - The callback payloads (as argument numbers). 2877 llvm::LLVMContext &Ctx = F->getContext(); 2878 llvm::MDBuilder MDB(Ctx); 2879 2880 // The payload indices are all but the first one in the encoding. The first 2881 // identifies the callback callee. 2882 int CalleeIdx = *CB->encoding_begin(); 2883 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2884 F->addMetadata(llvm::LLVMContext::MD_callback, 2885 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2886 CalleeIdx, PayloadIndices, 2887 /* VarArgsArePassed */ false)})); 2888 } 2889 } 2890 2891 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2892 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2893 "Only globals with definition can force usage."); 2894 LLVMUsed.emplace_back(GV); 2895 } 2896 2897 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2898 assert(!GV->isDeclaration() && 2899 "Only globals with definition can force usage."); 2900 LLVMCompilerUsed.emplace_back(GV); 2901 } 2902 2903 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2904 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2905 "Only globals with definition can force usage."); 2906 if (getTriple().isOSBinFormatELF()) 2907 LLVMCompilerUsed.emplace_back(GV); 2908 else 2909 LLVMUsed.emplace_back(GV); 2910 } 2911 2912 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2913 std::vector<llvm::WeakTrackingVH> &List) { 2914 // Don't create llvm.used if there is no need. 2915 if (List.empty()) 2916 return; 2917 2918 // Convert List to what ConstantArray needs. 2919 SmallVector<llvm::Constant*, 8> UsedArray; 2920 UsedArray.resize(List.size()); 2921 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2922 UsedArray[i] = 2923 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2924 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2925 } 2926 2927 if (UsedArray.empty()) 2928 return; 2929 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2930 2931 auto *GV = new llvm::GlobalVariable( 2932 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2933 llvm::ConstantArray::get(ATy, UsedArray), Name); 2934 2935 GV->setSection("llvm.metadata"); 2936 } 2937 2938 void CodeGenModule::emitLLVMUsed() { 2939 emitUsed(*this, "llvm.used", LLVMUsed); 2940 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2941 } 2942 2943 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2944 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2945 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2946 } 2947 2948 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2949 llvm::SmallString<32> Opt; 2950 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2951 if (Opt.empty()) 2952 return; 2953 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2954 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2955 } 2956 2957 void CodeGenModule::AddDependentLib(StringRef Lib) { 2958 auto &C = getLLVMContext(); 2959 if (getTarget().getTriple().isOSBinFormatELF()) { 2960 ELFDependentLibraries.push_back( 2961 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2962 return; 2963 } 2964 2965 llvm::SmallString<24> Opt; 2966 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2967 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2968 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2969 } 2970 2971 /// Add link options implied by the given module, including modules 2972 /// it depends on, using a postorder walk. 2973 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2974 SmallVectorImpl<llvm::MDNode *> &Metadata, 2975 llvm::SmallPtrSet<Module *, 16> &Visited) { 2976 // Import this module's parent. 2977 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2978 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2979 } 2980 2981 // Import this module's dependencies. 2982 for (Module *Import : llvm::reverse(Mod->Imports)) { 2983 if (Visited.insert(Import).second) 2984 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2985 } 2986 2987 // Add linker options to link against the libraries/frameworks 2988 // described by this module. 2989 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2990 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2991 2992 // For modules that use export_as for linking, use that module 2993 // name instead. 2994 if (Mod->UseExportAsModuleLinkName) 2995 return; 2996 2997 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2998 // Link against a framework. Frameworks are currently Darwin only, so we 2999 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 3000 if (LL.IsFramework) { 3001 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3002 llvm::MDString::get(Context, LL.Library)}; 3003 3004 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3005 continue; 3006 } 3007 3008 // Link against a library. 3009 if (IsELF) { 3010 llvm::Metadata *Args[2] = { 3011 llvm::MDString::get(Context, "lib"), 3012 llvm::MDString::get(Context, LL.Library), 3013 }; 3014 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3015 } else { 3016 llvm::SmallString<24> Opt; 3017 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 3018 auto *OptString = llvm::MDString::get(Context, Opt); 3019 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 3020 } 3021 } 3022 } 3023 3024 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 3025 assert(Primary->isNamedModuleUnit() && 3026 "We should only emit module initializers for named modules."); 3027 3028 // Emit the initializers in the order that sub-modules appear in the 3029 // source, first Global Module Fragments, if present. 3030 if (auto GMF = Primary->getGlobalModuleFragment()) { 3031 for (Decl *D : getContext().getModuleInitializers(GMF)) { 3032 if (isa<ImportDecl>(D)) 3033 continue; 3034 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 3035 EmitTopLevelDecl(D); 3036 } 3037 } 3038 // Second any associated with the module, itself. 3039 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3040 // Skip import decls, the inits for those are called explicitly. 3041 if (isa<ImportDecl>(D)) 3042 continue; 3043 EmitTopLevelDecl(D); 3044 } 3045 // Third any associated with the Privat eMOdule Fragment, if present. 3046 if (auto PMF = Primary->getPrivateModuleFragment()) { 3047 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3048 // Skip import decls, the inits for those are called explicitly. 3049 if (isa<ImportDecl>(D)) 3050 continue; 3051 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3052 EmitTopLevelDecl(D); 3053 } 3054 } 3055 } 3056 3057 void CodeGenModule::EmitModuleLinkOptions() { 3058 // Collect the set of all of the modules we want to visit to emit link 3059 // options, which is essentially the imported modules and all of their 3060 // non-explicit child modules. 3061 llvm::SetVector<clang::Module *> LinkModules; 3062 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3063 SmallVector<clang::Module *, 16> Stack; 3064 3065 // Seed the stack with imported modules. 3066 for (Module *M : ImportedModules) { 3067 // Do not add any link flags when an implementation TU of a module imports 3068 // a header of that same module. 3069 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3070 !getLangOpts().isCompilingModule()) 3071 continue; 3072 if (Visited.insert(M).second) 3073 Stack.push_back(M); 3074 } 3075 3076 // Find all of the modules to import, making a little effort to prune 3077 // non-leaf modules. 3078 while (!Stack.empty()) { 3079 clang::Module *Mod = Stack.pop_back_val(); 3080 3081 bool AnyChildren = false; 3082 3083 // Visit the submodules of this module. 3084 for (const auto &SM : Mod->submodules()) { 3085 // Skip explicit children; they need to be explicitly imported to be 3086 // linked against. 3087 if (SM->IsExplicit) 3088 continue; 3089 3090 if (Visited.insert(SM).second) { 3091 Stack.push_back(SM); 3092 AnyChildren = true; 3093 } 3094 } 3095 3096 // We didn't find any children, so add this module to the list of 3097 // modules to link against. 3098 if (!AnyChildren) { 3099 LinkModules.insert(Mod); 3100 } 3101 } 3102 3103 // Add link options for all of the imported modules in reverse topological 3104 // order. We don't do anything to try to order import link flags with respect 3105 // to linker options inserted by things like #pragma comment(). 3106 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3107 Visited.clear(); 3108 for (Module *M : LinkModules) 3109 if (Visited.insert(M).second) 3110 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3111 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3112 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3113 3114 // Add the linker options metadata flag. 3115 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3116 for (auto *MD : LinkerOptionsMetadata) 3117 NMD->addOperand(MD); 3118 } 3119 3120 void CodeGenModule::EmitDeferred() { 3121 // Emit deferred declare target declarations. 3122 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3123 getOpenMPRuntime().emitDeferredTargetDecls(); 3124 3125 // Emit code for any potentially referenced deferred decls. Since a 3126 // previously unused static decl may become used during the generation of code 3127 // for a static function, iterate until no changes are made. 3128 3129 if (!DeferredVTables.empty()) { 3130 EmitDeferredVTables(); 3131 3132 // Emitting a vtable doesn't directly cause more vtables to 3133 // become deferred, although it can cause functions to be 3134 // emitted that then need those vtables. 3135 assert(DeferredVTables.empty()); 3136 } 3137 3138 // Emit CUDA/HIP static device variables referenced by host code only. 3139 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3140 // needed for further handling. 3141 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3142 llvm::append_range(DeferredDeclsToEmit, 3143 getContext().CUDADeviceVarODRUsedByHost); 3144 3145 // Stop if we're out of both deferred vtables and deferred declarations. 3146 if (DeferredDeclsToEmit.empty()) 3147 return; 3148 3149 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3150 // work, it will not interfere with this. 3151 std::vector<GlobalDecl> CurDeclsToEmit; 3152 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3153 3154 for (GlobalDecl &D : CurDeclsToEmit) { 3155 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3156 // to get GlobalValue with exactly the type we need, not something that 3157 // might had been created for another decl with the same mangled name but 3158 // different type. 3159 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3160 GetAddrOfGlobal(D, ForDefinition)); 3161 3162 // In case of different address spaces, we may still get a cast, even with 3163 // IsForDefinition equal to true. Query mangled names table to get 3164 // GlobalValue. 3165 if (!GV) 3166 GV = GetGlobalValue(getMangledName(D)); 3167 3168 // Make sure GetGlobalValue returned non-null. 3169 assert(GV); 3170 3171 // Check to see if we've already emitted this. This is necessary 3172 // for a couple of reasons: first, decls can end up in the 3173 // deferred-decls queue multiple times, and second, decls can end 3174 // up with definitions in unusual ways (e.g. by an extern inline 3175 // function acquiring a strong function redefinition). Just 3176 // ignore these cases. 3177 if (!GV->isDeclaration()) 3178 continue; 3179 3180 // If this is OpenMP, check if it is legal to emit this global normally. 3181 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3182 continue; 3183 3184 // Otherwise, emit the definition and move on to the next one. 3185 EmitGlobalDefinition(D, GV); 3186 3187 // If we found out that we need to emit more decls, do that recursively. 3188 // This has the advantage that the decls are emitted in a DFS and related 3189 // ones are close together, which is convenient for testing. 3190 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3191 EmitDeferred(); 3192 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3193 } 3194 } 3195 } 3196 3197 void CodeGenModule::EmitVTablesOpportunistically() { 3198 // Try to emit external vtables as available_externally if they have emitted 3199 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3200 // is not allowed to create new references to things that need to be emitted 3201 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3202 3203 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3204 && "Only emit opportunistic vtables with optimizations"); 3205 3206 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3207 assert(getVTables().isVTableExternal(RD) && 3208 "This queue should only contain external vtables"); 3209 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3210 VTables.GenerateClassData(RD); 3211 } 3212 OpportunisticVTables.clear(); 3213 } 3214 3215 void CodeGenModule::EmitGlobalAnnotations() { 3216 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3217 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3218 if (GV) 3219 AddGlobalAnnotations(VD, GV); 3220 } 3221 DeferredAnnotations.clear(); 3222 3223 if (Annotations.empty()) 3224 return; 3225 3226 // Create a new global variable for the ConstantStruct in the Module. 3227 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3228 Annotations[0]->getType(), Annotations.size()), Annotations); 3229 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3230 llvm::GlobalValue::AppendingLinkage, 3231 Array, "llvm.global.annotations"); 3232 gv->setSection(AnnotationSection); 3233 } 3234 3235 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3236 llvm::Constant *&AStr = AnnotationStrings[Str]; 3237 if (AStr) 3238 return AStr; 3239 3240 // Not found yet, create a new global. 3241 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3242 auto *gv = new llvm::GlobalVariable( 3243 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3244 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3245 ConstGlobalsPtrTy->getAddressSpace()); 3246 gv->setSection(AnnotationSection); 3247 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3248 AStr = gv; 3249 return gv; 3250 } 3251 3252 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3253 SourceManager &SM = getContext().getSourceManager(); 3254 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3255 if (PLoc.isValid()) 3256 return EmitAnnotationString(PLoc.getFilename()); 3257 return EmitAnnotationString(SM.getBufferName(Loc)); 3258 } 3259 3260 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3261 SourceManager &SM = getContext().getSourceManager(); 3262 PresumedLoc PLoc = SM.getPresumedLoc(L); 3263 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3264 SM.getExpansionLineNumber(L); 3265 return llvm::ConstantInt::get(Int32Ty, LineNo); 3266 } 3267 3268 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3269 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3270 if (Exprs.empty()) 3271 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3272 3273 llvm::FoldingSetNodeID ID; 3274 for (Expr *E : Exprs) { 3275 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3276 } 3277 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3278 if (Lookup) 3279 return Lookup; 3280 3281 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3282 LLVMArgs.reserve(Exprs.size()); 3283 ConstantEmitter ConstEmiter(*this); 3284 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3285 const auto *CE = cast<clang::ConstantExpr>(E); 3286 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3287 CE->getType()); 3288 }); 3289 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3290 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3291 llvm::GlobalValue::PrivateLinkage, Struct, 3292 ".args"); 3293 GV->setSection(AnnotationSection); 3294 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3295 3296 Lookup = GV; 3297 return GV; 3298 } 3299 3300 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3301 const AnnotateAttr *AA, 3302 SourceLocation L) { 3303 // Get the globals for file name, annotation, and the line number. 3304 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3305 *UnitGV = EmitAnnotationUnit(L), 3306 *LineNoCst = EmitAnnotationLineNo(L), 3307 *Args = EmitAnnotationArgs(AA); 3308 3309 llvm::Constant *GVInGlobalsAS = GV; 3310 if (GV->getAddressSpace() != 3311 getDataLayout().getDefaultGlobalsAddressSpace()) { 3312 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3313 GV, 3314 llvm::PointerType::get( 3315 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3316 } 3317 3318 // Create the ConstantStruct for the global annotation. 3319 llvm::Constant *Fields[] = { 3320 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3321 }; 3322 return llvm::ConstantStruct::getAnon(Fields); 3323 } 3324 3325 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3326 llvm::GlobalValue *GV) { 3327 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3328 // Get the struct elements for these annotations. 3329 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3330 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3331 } 3332 3333 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3334 SourceLocation Loc) const { 3335 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3336 // NoSanitize by function name. 3337 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3338 return true; 3339 // NoSanitize by location. Check "mainfile" prefix. 3340 auto &SM = Context.getSourceManager(); 3341 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3342 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3343 return true; 3344 3345 // Check "src" prefix. 3346 if (Loc.isValid()) 3347 return NoSanitizeL.containsLocation(Kind, Loc); 3348 // If location is unknown, this may be a compiler-generated function. Assume 3349 // it's located in the main file. 3350 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3351 } 3352 3353 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3354 llvm::GlobalVariable *GV, 3355 SourceLocation Loc, QualType Ty, 3356 StringRef Category) const { 3357 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3358 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3359 return true; 3360 auto &SM = Context.getSourceManager(); 3361 if (NoSanitizeL.containsMainFile( 3362 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3363 Category)) 3364 return true; 3365 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3366 return true; 3367 3368 // Check global type. 3369 if (!Ty.isNull()) { 3370 // Drill down the array types: if global variable of a fixed type is 3371 // not sanitized, we also don't instrument arrays of them. 3372 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3373 Ty = AT->getElementType(); 3374 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3375 // Only record types (classes, structs etc.) are ignored. 3376 if (Ty->isRecordType()) { 3377 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3378 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3379 return true; 3380 } 3381 } 3382 return false; 3383 } 3384 3385 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3386 StringRef Category) const { 3387 const auto &XRayFilter = getContext().getXRayFilter(); 3388 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3389 auto Attr = ImbueAttr::NONE; 3390 if (Loc.isValid()) 3391 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3392 if (Attr == ImbueAttr::NONE) 3393 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3394 switch (Attr) { 3395 case ImbueAttr::NONE: 3396 return false; 3397 case ImbueAttr::ALWAYS: 3398 Fn->addFnAttr("function-instrument", "xray-always"); 3399 break; 3400 case ImbueAttr::ALWAYS_ARG1: 3401 Fn->addFnAttr("function-instrument", "xray-always"); 3402 Fn->addFnAttr("xray-log-args", "1"); 3403 break; 3404 case ImbueAttr::NEVER: 3405 Fn->addFnAttr("function-instrument", "xray-never"); 3406 break; 3407 } 3408 return true; 3409 } 3410 3411 ProfileList::ExclusionType 3412 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3413 SourceLocation Loc) const { 3414 const auto &ProfileList = getContext().getProfileList(); 3415 // If the profile list is empty, then instrument everything. 3416 if (ProfileList.isEmpty()) 3417 return ProfileList::Allow; 3418 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3419 // First, check the function name. 3420 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3421 return *V; 3422 // Next, check the source location. 3423 if (Loc.isValid()) 3424 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3425 return *V; 3426 // If location is unknown, this may be a compiler-generated function. Assume 3427 // it's located in the main file. 3428 auto &SM = Context.getSourceManager(); 3429 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3430 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3431 return *V; 3432 return ProfileList.getDefault(Kind); 3433 } 3434 3435 ProfileList::ExclusionType 3436 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3437 SourceLocation Loc) const { 3438 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3439 if (V != ProfileList::Allow) 3440 return V; 3441 3442 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3443 if (NumGroups > 1) { 3444 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3445 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3446 return ProfileList::Skip; 3447 } 3448 return ProfileList::Allow; 3449 } 3450 3451 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3452 // Never defer when EmitAllDecls is specified. 3453 if (LangOpts.EmitAllDecls) 3454 return true; 3455 3456 const auto *VD = dyn_cast<VarDecl>(Global); 3457 if (VD && 3458 ((CodeGenOpts.KeepPersistentStorageVariables && 3459 (VD->getStorageDuration() == SD_Static || 3460 VD->getStorageDuration() == SD_Thread)) || 3461 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3462 VD->getType().isConstQualified()))) 3463 return true; 3464 3465 return getContext().DeclMustBeEmitted(Global); 3466 } 3467 3468 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3469 // In OpenMP 5.0 variables and function may be marked as 3470 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3471 // that they must be emitted on the host/device. To be sure we need to have 3472 // seen a declare target with an explicit mentioning of the function, we know 3473 // we have if the level of the declare target attribute is -1. Note that we 3474 // check somewhere else if we should emit this at all. 3475 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3476 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3477 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3478 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3479 return false; 3480 } 3481 3482 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3483 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3484 // Implicit template instantiations may change linkage if they are later 3485 // explicitly instantiated, so they should not be emitted eagerly. 3486 return false; 3487 } 3488 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3489 if (Context.getInlineVariableDefinitionKind(VD) == 3490 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3491 // A definition of an inline constexpr static data member may change 3492 // linkage later if it's redeclared outside the class. 3493 return false; 3494 if (CXX20ModuleInits && VD->getOwningModule() && 3495 !VD->getOwningModule()->isModuleMapModule()) { 3496 // For CXX20, module-owned initializers need to be deferred, since it is 3497 // not known at this point if they will be run for the current module or 3498 // as part of the initializer for an imported one. 3499 return false; 3500 } 3501 } 3502 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3503 // codegen for global variables, because they may be marked as threadprivate. 3504 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3505 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3506 !Global->getType().isConstantStorage(getContext(), false, false) && 3507 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3508 return false; 3509 3510 return true; 3511 } 3512 3513 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3514 StringRef Name = getMangledName(GD); 3515 3516 // The UUID descriptor should be pointer aligned. 3517 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3518 3519 // Look for an existing global. 3520 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3521 return ConstantAddress(GV, GV->getValueType(), Alignment); 3522 3523 ConstantEmitter Emitter(*this); 3524 llvm::Constant *Init; 3525 3526 APValue &V = GD->getAsAPValue(); 3527 if (!V.isAbsent()) { 3528 // If possible, emit the APValue version of the initializer. In particular, 3529 // this gets the type of the constant right. 3530 Init = Emitter.emitForInitializer( 3531 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3532 } else { 3533 // As a fallback, directly construct the constant. 3534 // FIXME: This may get padding wrong under esoteric struct layout rules. 3535 // MSVC appears to create a complete type 'struct __s_GUID' that it 3536 // presumably uses to represent these constants. 3537 MSGuidDecl::Parts Parts = GD->getParts(); 3538 llvm::Constant *Fields[4] = { 3539 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3540 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3541 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3542 llvm::ConstantDataArray::getRaw( 3543 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3544 Int8Ty)}; 3545 Init = llvm::ConstantStruct::getAnon(Fields); 3546 } 3547 3548 auto *GV = new llvm::GlobalVariable( 3549 getModule(), Init->getType(), 3550 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3551 if (supportsCOMDAT()) 3552 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3553 setDSOLocal(GV); 3554 3555 if (!V.isAbsent()) { 3556 Emitter.finalize(GV); 3557 return ConstantAddress(GV, GV->getValueType(), Alignment); 3558 } 3559 3560 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3561 return ConstantAddress(GV, Ty, Alignment); 3562 } 3563 3564 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3565 const UnnamedGlobalConstantDecl *GCD) { 3566 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3567 3568 llvm::GlobalVariable **Entry = nullptr; 3569 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3570 if (*Entry) 3571 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3572 3573 ConstantEmitter Emitter(*this); 3574 llvm::Constant *Init; 3575 3576 const APValue &V = GCD->getValue(); 3577 3578 assert(!V.isAbsent()); 3579 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3580 GCD->getType()); 3581 3582 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3583 /*isConstant=*/true, 3584 llvm::GlobalValue::PrivateLinkage, Init, 3585 ".constant"); 3586 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3587 GV->setAlignment(Alignment.getAsAlign()); 3588 3589 Emitter.finalize(GV); 3590 3591 *Entry = GV; 3592 return ConstantAddress(GV, GV->getValueType(), Alignment); 3593 } 3594 3595 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3596 const TemplateParamObjectDecl *TPO) { 3597 StringRef Name = getMangledName(TPO); 3598 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3599 3600 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3601 return ConstantAddress(GV, GV->getValueType(), Alignment); 3602 3603 ConstantEmitter Emitter(*this); 3604 llvm::Constant *Init = Emitter.emitForInitializer( 3605 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3606 3607 if (!Init) { 3608 ErrorUnsupported(TPO, "template parameter object"); 3609 return ConstantAddress::invalid(); 3610 } 3611 3612 llvm::GlobalValue::LinkageTypes Linkage = 3613 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3614 ? llvm::GlobalValue::LinkOnceODRLinkage 3615 : llvm::GlobalValue::InternalLinkage; 3616 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3617 /*isConstant=*/true, Linkage, Init, Name); 3618 setGVProperties(GV, TPO); 3619 if (supportsCOMDAT()) 3620 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3621 Emitter.finalize(GV); 3622 3623 return ConstantAddress(GV, GV->getValueType(), Alignment); 3624 } 3625 3626 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3627 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3628 assert(AA && "No alias?"); 3629 3630 CharUnits Alignment = getContext().getDeclAlign(VD); 3631 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3632 3633 // See if there is already something with the target's name in the module. 3634 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3635 if (Entry) 3636 return ConstantAddress(Entry, DeclTy, Alignment); 3637 3638 llvm::Constant *Aliasee; 3639 if (isa<llvm::FunctionType>(DeclTy)) 3640 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3641 GlobalDecl(cast<FunctionDecl>(VD)), 3642 /*ForVTable=*/false); 3643 else 3644 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3645 nullptr); 3646 3647 auto *F = cast<llvm::GlobalValue>(Aliasee); 3648 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3649 WeakRefReferences.insert(F); 3650 3651 return ConstantAddress(Aliasee, DeclTy, Alignment); 3652 } 3653 3654 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3655 if (!D) 3656 return false; 3657 if (auto *A = D->getAttr<AttrT>()) 3658 return A->isImplicit(); 3659 return D->isImplicit(); 3660 } 3661 3662 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3663 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3664 3665 // Weak references don't produce any output by themselves. 3666 if (Global->hasAttr<WeakRefAttr>()) 3667 return; 3668 3669 // If this is an alias definition (which otherwise looks like a declaration) 3670 // emit it now. 3671 if (Global->hasAttr<AliasAttr>()) 3672 return EmitAliasDefinition(GD); 3673 3674 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3675 if (Global->hasAttr<IFuncAttr>()) 3676 return emitIFuncDefinition(GD); 3677 3678 // If this is a cpu_dispatch multiversion function, emit the resolver. 3679 if (Global->hasAttr<CPUDispatchAttr>()) 3680 return emitCPUDispatchDefinition(GD); 3681 3682 // If this is CUDA, be selective about which declarations we emit. 3683 // Non-constexpr non-lambda implicit host device functions are not emitted 3684 // unless they are used on device side. 3685 if (LangOpts.CUDA) { 3686 if (LangOpts.CUDAIsDevice) { 3687 const auto *FD = dyn_cast<FunctionDecl>(Global); 3688 if ((!Global->hasAttr<CUDADeviceAttr>() || 3689 (LangOpts.OffloadImplicitHostDeviceTemplates && FD && 3690 hasImplicitAttr<CUDAHostAttr>(FD) && 3691 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3692 !isLambdaCallOperator(FD) && 3693 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3694 !Global->hasAttr<CUDAGlobalAttr>() && 3695 !Global->hasAttr<CUDAConstantAttr>() && 3696 !Global->hasAttr<CUDASharedAttr>() && 3697 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3698 !Global->getType()->isCUDADeviceBuiltinTextureType() && 3699 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3700 !Global->hasAttr<CUDAHostAttr>())) 3701 return; 3702 } else { 3703 // We need to emit host-side 'shadows' for all global 3704 // device-side variables because the CUDA runtime needs their 3705 // size and host-side address in order to provide access to 3706 // their device-side incarnations. 3707 3708 // So device-only functions are the only things we skip. 3709 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3710 Global->hasAttr<CUDADeviceAttr>()) 3711 return; 3712 3713 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3714 "Expected Variable or Function"); 3715 } 3716 } 3717 3718 if (LangOpts.OpenMP) { 3719 // If this is OpenMP, check if it is legal to emit this global normally. 3720 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3721 return; 3722 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3723 if (MustBeEmitted(Global)) 3724 EmitOMPDeclareReduction(DRD); 3725 return; 3726 } 3727 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3728 if (MustBeEmitted(Global)) 3729 EmitOMPDeclareMapper(DMD); 3730 return; 3731 } 3732 } 3733 3734 // Ignore declarations, they will be emitted on their first use. 3735 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3736 // Update deferred annotations with the latest declaration if the function 3737 // function was already used or defined. 3738 if (FD->hasAttr<AnnotateAttr>()) { 3739 StringRef MangledName = getMangledName(GD); 3740 if (GetGlobalValue(MangledName)) 3741 DeferredAnnotations[MangledName] = FD; 3742 } 3743 3744 // Forward declarations are emitted lazily on first use. 3745 if (!FD->doesThisDeclarationHaveABody()) { 3746 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3747 return; 3748 3749 StringRef MangledName = getMangledName(GD); 3750 3751 // Compute the function info and LLVM type. 3752 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3753 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3754 3755 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3756 /*DontDefer=*/false); 3757 return; 3758 } 3759 } else { 3760 const auto *VD = cast<VarDecl>(Global); 3761 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3762 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3763 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3764 if (LangOpts.OpenMP) { 3765 // Emit declaration of the must-be-emitted declare target variable. 3766 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3767 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3768 3769 // If this variable has external storage and doesn't require special 3770 // link handling we defer to its canonical definition. 3771 if (VD->hasExternalStorage() && 3772 Res != OMPDeclareTargetDeclAttr::MT_Link) 3773 return; 3774 3775 bool UnifiedMemoryEnabled = 3776 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3777 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3778 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3779 !UnifiedMemoryEnabled) { 3780 (void)GetAddrOfGlobalVar(VD); 3781 } else { 3782 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3783 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3784 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3785 UnifiedMemoryEnabled)) && 3786 "Link clause or to clause with unified memory expected."); 3787 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3788 } 3789 3790 return; 3791 } 3792 } 3793 // If this declaration may have caused an inline variable definition to 3794 // change linkage, make sure that it's emitted. 3795 if (Context.getInlineVariableDefinitionKind(VD) == 3796 ASTContext::InlineVariableDefinitionKind::Strong) 3797 GetAddrOfGlobalVar(VD); 3798 return; 3799 } 3800 } 3801 3802 // Defer code generation to first use when possible, e.g. if this is an inline 3803 // function. If the global must always be emitted, do it eagerly if possible 3804 // to benefit from cache locality. 3805 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3806 // Emit the definition if it can't be deferred. 3807 EmitGlobalDefinition(GD); 3808 addEmittedDeferredDecl(GD); 3809 return; 3810 } 3811 3812 // If we're deferring emission of a C++ variable with an 3813 // initializer, remember the order in which it appeared in the file. 3814 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3815 cast<VarDecl>(Global)->hasInit()) { 3816 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3817 CXXGlobalInits.push_back(nullptr); 3818 } 3819 3820 StringRef MangledName = getMangledName(GD); 3821 if (GetGlobalValue(MangledName) != nullptr) { 3822 // The value has already been used and should therefore be emitted. 3823 addDeferredDeclToEmit(GD); 3824 } else if (MustBeEmitted(Global)) { 3825 // The value must be emitted, but cannot be emitted eagerly. 3826 assert(!MayBeEmittedEagerly(Global)); 3827 addDeferredDeclToEmit(GD); 3828 } else { 3829 // Otherwise, remember that we saw a deferred decl with this name. The 3830 // first use of the mangled name will cause it to move into 3831 // DeferredDeclsToEmit. 3832 DeferredDecls[MangledName] = GD; 3833 } 3834 } 3835 3836 // Check if T is a class type with a destructor that's not dllimport. 3837 static bool HasNonDllImportDtor(QualType T) { 3838 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3839 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3840 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3841 return true; 3842 3843 return false; 3844 } 3845 3846 namespace { 3847 struct FunctionIsDirectlyRecursive 3848 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3849 const StringRef Name; 3850 const Builtin::Context &BI; 3851 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3852 : Name(N), BI(C) {} 3853 3854 bool VisitCallExpr(const CallExpr *E) { 3855 const FunctionDecl *FD = E->getDirectCallee(); 3856 if (!FD) 3857 return false; 3858 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3859 if (Attr && Name == Attr->getLabel()) 3860 return true; 3861 unsigned BuiltinID = FD->getBuiltinID(); 3862 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3863 return false; 3864 StringRef BuiltinName = BI.getName(BuiltinID); 3865 if (BuiltinName.starts_with("__builtin_") && 3866 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3867 return true; 3868 } 3869 return false; 3870 } 3871 3872 bool VisitStmt(const Stmt *S) { 3873 for (const Stmt *Child : S->children()) 3874 if (Child && this->Visit(Child)) 3875 return true; 3876 return false; 3877 } 3878 }; 3879 3880 // Make sure we're not referencing non-imported vars or functions. 3881 struct DLLImportFunctionVisitor 3882 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3883 bool SafeToInline = true; 3884 3885 bool shouldVisitImplicitCode() const { return true; } 3886 3887 bool VisitVarDecl(VarDecl *VD) { 3888 if (VD->getTLSKind()) { 3889 // A thread-local variable cannot be imported. 3890 SafeToInline = false; 3891 return SafeToInline; 3892 } 3893 3894 // A variable definition might imply a destructor call. 3895 if (VD->isThisDeclarationADefinition()) 3896 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3897 3898 return SafeToInline; 3899 } 3900 3901 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3902 if (const auto *D = E->getTemporary()->getDestructor()) 3903 SafeToInline = D->hasAttr<DLLImportAttr>(); 3904 return SafeToInline; 3905 } 3906 3907 bool VisitDeclRefExpr(DeclRefExpr *E) { 3908 ValueDecl *VD = E->getDecl(); 3909 if (isa<FunctionDecl>(VD)) 3910 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3911 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3912 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3913 return SafeToInline; 3914 } 3915 3916 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3917 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3918 return SafeToInline; 3919 } 3920 3921 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3922 CXXMethodDecl *M = E->getMethodDecl(); 3923 if (!M) { 3924 // Call through a pointer to member function. This is safe to inline. 3925 SafeToInline = true; 3926 } else { 3927 SafeToInline = M->hasAttr<DLLImportAttr>(); 3928 } 3929 return SafeToInline; 3930 } 3931 3932 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3933 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3934 return SafeToInline; 3935 } 3936 3937 bool VisitCXXNewExpr(CXXNewExpr *E) { 3938 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3939 return SafeToInline; 3940 } 3941 }; 3942 } 3943 3944 // isTriviallyRecursive - Check if this function calls another 3945 // decl that, because of the asm attribute or the other decl being a builtin, 3946 // ends up pointing to itself. 3947 bool 3948 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3949 StringRef Name; 3950 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3951 // asm labels are a special kind of mangling we have to support. 3952 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3953 if (!Attr) 3954 return false; 3955 Name = Attr->getLabel(); 3956 } else { 3957 Name = FD->getName(); 3958 } 3959 3960 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3961 const Stmt *Body = FD->getBody(); 3962 return Body ? Walker.Visit(Body) : false; 3963 } 3964 3965 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3966 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3967 return true; 3968 3969 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3970 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3971 return false; 3972 3973 // We don't import function bodies from other named module units since that 3974 // behavior may break ABI compatibility of the current unit. 3975 if (const Module *M = F->getOwningModule(); 3976 M && M->getTopLevelModule()->isNamedModule() && 3977 getContext().getCurrentNamedModule() != M->getTopLevelModule() && 3978 !F->hasAttr<AlwaysInlineAttr>()) 3979 return false; 3980 3981 if (F->hasAttr<NoInlineAttr>()) 3982 return false; 3983 3984 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3985 // Check whether it would be safe to inline this dllimport function. 3986 DLLImportFunctionVisitor Visitor; 3987 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3988 if (!Visitor.SafeToInline) 3989 return false; 3990 3991 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3992 // Implicit destructor invocations aren't captured in the AST, so the 3993 // check above can't see them. Check for them manually here. 3994 for (const Decl *Member : Dtor->getParent()->decls()) 3995 if (isa<FieldDecl>(Member)) 3996 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3997 return false; 3998 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3999 if (HasNonDllImportDtor(B.getType())) 4000 return false; 4001 } 4002 } 4003 4004 // Inline builtins declaration must be emitted. They often are fortified 4005 // functions. 4006 if (F->isInlineBuiltinDeclaration()) 4007 return true; 4008 4009 // PR9614. Avoid cases where the source code is lying to us. An available 4010 // externally function should have an equivalent function somewhere else, 4011 // but a function that calls itself through asm label/`__builtin_` trickery is 4012 // clearly not equivalent to the real implementation. 4013 // This happens in glibc's btowc and in some configure checks. 4014 return !isTriviallyRecursive(F); 4015 } 4016 4017 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 4018 return CodeGenOpts.OptimizationLevel > 0; 4019 } 4020 4021 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 4022 llvm::GlobalValue *GV) { 4023 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4024 4025 if (FD->isCPUSpecificMultiVersion()) { 4026 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 4027 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 4028 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4029 } else if (FD->isTargetClonesMultiVersion()) { 4030 auto *Clone = FD->getAttr<TargetClonesAttr>(); 4031 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 4032 if (Clone->isFirstOfVersion(I)) 4033 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4034 // Ensure that the resolver function is also emitted. 4035 GetOrCreateMultiVersionResolver(GD); 4036 } else if (FD->hasAttr<TargetVersionAttr>()) { 4037 GetOrCreateMultiVersionResolver(GD); 4038 } else 4039 EmitGlobalFunctionDefinition(GD, GV); 4040 } 4041 4042 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4043 const auto *D = cast<ValueDecl>(GD.getDecl()); 4044 4045 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4046 Context.getSourceManager(), 4047 "Generating code for declaration"); 4048 4049 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4050 // At -O0, don't generate IR for functions with available_externally 4051 // linkage. 4052 if (!shouldEmitFunction(GD)) 4053 return; 4054 4055 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4056 std::string Name; 4057 llvm::raw_string_ostream OS(Name); 4058 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4059 /*Qualified=*/true); 4060 return Name; 4061 }); 4062 4063 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4064 // Make sure to emit the definition(s) before we emit the thunks. 4065 // This is necessary for the generation of certain thunks. 4066 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4067 ABI->emitCXXStructor(GD); 4068 else if (FD->isMultiVersion()) 4069 EmitMultiVersionFunctionDefinition(GD, GV); 4070 else 4071 EmitGlobalFunctionDefinition(GD, GV); 4072 4073 if (Method->isVirtual()) 4074 getVTables().EmitThunks(GD); 4075 4076 return; 4077 } 4078 4079 if (FD->isMultiVersion()) 4080 return EmitMultiVersionFunctionDefinition(GD, GV); 4081 return EmitGlobalFunctionDefinition(GD, GV); 4082 } 4083 4084 if (const auto *VD = dyn_cast<VarDecl>(D)) 4085 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4086 4087 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4088 } 4089 4090 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4091 llvm::Function *NewFn); 4092 4093 static unsigned 4094 TargetMVPriority(const TargetInfo &TI, 4095 const CodeGenFunction::MultiVersionResolverOption &RO) { 4096 unsigned Priority = 0; 4097 unsigned NumFeatures = 0; 4098 for (StringRef Feat : RO.Conditions.Features) { 4099 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4100 NumFeatures++; 4101 } 4102 4103 if (!RO.Conditions.Architecture.empty()) 4104 Priority = std::max( 4105 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4106 4107 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4108 4109 return Priority; 4110 } 4111 4112 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4113 // TU can forward declare the function without causing problems. Particularly 4114 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4115 // work with internal linkage functions, so that the same function name can be 4116 // used with internal linkage in multiple TUs. 4117 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 4118 GlobalDecl GD) { 4119 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4120 if (FD->getFormalLinkage() == Linkage::Internal) 4121 return llvm::GlobalValue::InternalLinkage; 4122 return llvm::GlobalValue::WeakODRLinkage; 4123 } 4124 4125 void CodeGenModule::emitMultiVersionFunctions() { 4126 std::vector<GlobalDecl> MVFuncsToEmit; 4127 MultiVersionFuncs.swap(MVFuncsToEmit); 4128 for (GlobalDecl GD : MVFuncsToEmit) { 4129 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4130 assert(FD && "Expected a FunctionDecl"); 4131 4132 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4133 if (FD->isTargetMultiVersion()) { 4134 getContext().forEachMultiversionedFunctionVersion( 4135 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 4136 GlobalDecl CurGD{ 4137 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 4138 StringRef MangledName = getMangledName(CurGD); 4139 llvm::Constant *Func = GetGlobalValue(MangledName); 4140 if (!Func) { 4141 if (CurFD->isDefined()) { 4142 EmitGlobalFunctionDefinition(CurGD, nullptr); 4143 Func = GetGlobalValue(MangledName); 4144 } else { 4145 const CGFunctionInfo &FI = 4146 getTypes().arrangeGlobalDeclaration(GD); 4147 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4148 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4149 /*DontDefer=*/false, ForDefinition); 4150 } 4151 assert(Func && "This should have just been created"); 4152 } 4153 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 4154 const auto *TA = CurFD->getAttr<TargetAttr>(); 4155 llvm::SmallVector<StringRef, 8> Feats; 4156 TA->getAddedFeatures(Feats); 4157 Options.emplace_back(cast<llvm::Function>(Func), 4158 TA->getArchitecture(), Feats); 4159 } else { 4160 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 4161 llvm::SmallVector<StringRef, 8> Feats; 4162 TVA->getFeatures(Feats); 4163 Options.emplace_back(cast<llvm::Function>(Func), 4164 /*Architecture*/ "", Feats); 4165 } 4166 }); 4167 } else if (FD->isTargetClonesMultiVersion()) { 4168 const auto *TC = FD->getAttr<TargetClonesAttr>(); 4169 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 4170 ++VersionIndex) { 4171 if (!TC->isFirstOfVersion(VersionIndex)) 4172 continue; 4173 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 4174 VersionIndex}; 4175 StringRef Version = TC->getFeatureStr(VersionIndex); 4176 StringRef MangledName = getMangledName(CurGD); 4177 llvm::Constant *Func = GetGlobalValue(MangledName); 4178 if (!Func) { 4179 if (FD->isDefined()) { 4180 EmitGlobalFunctionDefinition(CurGD, nullptr); 4181 Func = GetGlobalValue(MangledName); 4182 } else { 4183 const CGFunctionInfo &FI = 4184 getTypes().arrangeGlobalDeclaration(CurGD); 4185 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4186 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4187 /*DontDefer=*/false, ForDefinition); 4188 } 4189 assert(Func && "This should have just been created"); 4190 } 4191 4192 StringRef Architecture; 4193 llvm::SmallVector<StringRef, 1> Feature; 4194 4195 if (getTarget().getTriple().isAArch64()) { 4196 if (Version != "default") { 4197 llvm::SmallVector<StringRef, 8> VerFeats; 4198 Version.split(VerFeats, "+"); 4199 for (auto &CurFeat : VerFeats) 4200 Feature.push_back(CurFeat.trim()); 4201 } 4202 } else { 4203 if (Version.starts_with("arch=")) 4204 Architecture = Version.drop_front(sizeof("arch=") - 1); 4205 else if (Version != "default") 4206 Feature.push_back(Version); 4207 } 4208 4209 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 4210 } 4211 } else { 4212 assert(0 && "Expected a target or target_clones multiversion function"); 4213 continue; 4214 } 4215 4216 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4217 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4218 ResolverConstant = IFunc->getResolver(); 4219 if (FD->isTargetClonesMultiVersion()) { 4220 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4221 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4222 std::string MangledName = getMangledNameImpl( 4223 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4224 // In prior versions of Clang, the mangling for ifuncs incorrectly 4225 // included an .ifunc suffix. This alias is generated for backward 4226 // compatibility. It is deprecated, and may be removed in the future. 4227 auto *Alias = llvm::GlobalAlias::create( 4228 DeclTy, 0, getMultiversionLinkage(*this, GD), 4229 MangledName + ".ifunc", IFunc, &getModule()); 4230 SetCommonAttributes(FD, Alias); 4231 } 4232 } 4233 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4234 4235 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4236 4237 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4238 ResolverFunc->setComdat( 4239 getModule().getOrInsertComdat(ResolverFunc->getName())); 4240 4241 const TargetInfo &TI = getTarget(); 4242 llvm::stable_sort( 4243 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4244 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4245 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4246 }); 4247 CodeGenFunction CGF(*this); 4248 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4249 } 4250 4251 // Ensure that any additions to the deferred decls list caused by emitting a 4252 // variant are emitted. This can happen when the variant itself is inline and 4253 // calls a function without linkage. 4254 if (!MVFuncsToEmit.empty()) 4255 EmitDeferred(); 4256 4257 // Ensure that any additions to the multiversion funcs list from either the 4258 // deferred decls or the multiversion functions themselves are emitted. 4259 if (!MultiVersionFuncs.empty()) 4260 emitMultiVersionFunctions(); 4261 } 4262 4263 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4264 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4265 assert(FD && "Not a FunctionDecl?"); 4266 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4267 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4268 assert(DD && "Not a cpu_dispatch Function?"); 4269 4270 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4271 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4272 4273 StringRef ResolverName = getMangledName(GD); 4274 UpdateMultiVersionNames(GD, FD, ResolverName); 4275 4276 llvm::Type *ResolverType; 4277 GlobalDecl ResolverGD; 4278 if (getTarget().supportsIFunc()) { 4279 ResolverType = llvm::FunctionType::get( 4280 llvm::PointerType::get(DeclTy, 4281 getTypes().getTargetAddressSpace(FD->getType())), 4282 false); 4283 } 4284 else { 4285 ResolverType = DeclTy; 4286 ResolverGD = GD; 4287 } 4288 4289 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4290 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4291 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4292 if (supportsCOMDAT()) 4293 ResolverFunc->setComdat( 4294 getModule().getOrInsertComdat(ResolverFunc->getName())); 4295 4296 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4297 const TargetInfo &Target = getTarget(); 4298 unsigned Index = 0; 4299 for (const IdentifierInfo *II : DD->cpus()) { 4300 // Get the name of the target function so we can look it up/create it. 4301 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4302 getCPUSpecificMangling(*this, II->getName()); 4303 4304 llvm::Constant *Func = GetGlobalValue(MangledName); 4305 4306 if (!Func) { 4307 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4308 if (ExistingDecl.getDecl() && 4309 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4310 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4311 Func = GetGlobalValue(MangledName); 4312 } else { 4313 if (!ExistingDecl.getDecl()) 4314 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4315 4316 Func = GetOrCreateLLVMFunction( 4317 MangledName, DeclTy, ExistingDecl, 4318 /*ForVTable=*/false, /*DontDefer=*/true, 4319 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4320 } 4321 } 4322 4323 llvm::SmallVector<StringRef, 32> Features; 4324 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4325 llvm::transform(Features, Features.begin(), 4326 [](StringRef Str) { return Str.substr(1); }); 4327 llvm::erase_if(Features, [&Target](StringRef Feat) { 4328 return !Target.validateCpuSupports(Feat); 4329 }); 4330 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4331 ++Index; 4332 } 4333 4334 llvm::stable_sort( 4335 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4336 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4337 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4338 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4339 }); 4340 4341 // If the list contains multiple 'default' versions, such as when it contains 4342 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4343 // always run on at least a 'pentium'). We do this by deleting the 'least 4344 // advanced' (read, lowest mangling letter). 4345 while (Options.size() > 1 && 4346 llvm::all_of(llvm::X86::getCpuSupportsMask( 4347 (Options.end() - 2)->Conditions.Features), 4348 [](auto X) { return X == 0; })) { 4349 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4350 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4351 if (LHSName.compare(RHSName) < 0) 4352 Options.erase(Options.end() - 2); 4353 else 4354 Options.erase(Options.end() - 1); 4355 } 4356 4357 CodeGenFunction CGF(*this); 4358 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4359 4360 if (getTarget().supportsIFunc()) { 4361 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4362 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4363 4364 // Fix up function declarations that were created for cpu_specific before 4365 // cpu_dispatch was known 4366 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4367 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 4368 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4369 &getModule()); 4370 GI->takeName(IFunc); 4371 IFunc->replaceAllUsesWith(GI); 4372 IFunc->eraseFromParent(); 4373 IFunc = GI; 4374 } 4375 4376 std::string AliasName = getMangledNameImpl( 4377 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4378 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4379 if (!AliasFunc) { 4380 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4381 &getModule()); 4382 SetCommonAttributes(GD, GA); 4383 } 4384 } 4385 } 4386 4387 /// If a dispatcher for the specified mangled name is not in the module, create 4388 /// and return an llvm Function with the specified type. 4389 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4390 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4391 assert(FD && "Not a FunctionDecl?"); 4392 4393 std::string MangledName = 4394 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4395 4396 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4397 // a separate resolver). 4398 std::string ResolverName = MangledName; 4399 if (getTarget().supportsIFunc()) { 4400 if (!FD->isTargetClonesMultiVersion()) 4401 ResolverName += ".ifunc"; 4402 } else if (FD->isTargetMultiVersion()) { 4403 ResolverName += ".resolver"; 4404 } 4405 4406 // If the resolver has already been created, just return it. 4407 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 4408 return ResolverGV; 4409 4410 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4411 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4412 4413 // The resolver needs to be created. For target and target_clones, defer 4414 // creation until the end of the TU. 4415 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4416 MultiVersionFuncs.push_back(GD); 4417 4418 // For cpu_specific, don't create an ifunc yet because we don't know if the 4419 // cpu_dispatch will be emitted in this translation unit. 4420 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4421 llvm::Type *ResolverType = llvm::FunctionType::get( 4422 llvm::PointerType::get(DeclTy, 4423 getTypes().getTargetAddressSpace(FD->getType())), 4424 false); 4425 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4426 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4427 /*ForVTable=*/false); 4428 llvm::GlobalIFunc *GIF = 4429 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4430 "", Resolver, &getModule()); 4431 GIF->setName(ResolverName); 4432 SetCommonAttributes(FD, GIF); 4433 4434 return GIF; 4435 } 4436 4437 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4438 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4439 assert(isa<llvm::GlobalValue>(Resolver) && 4440 "Resolver should be created for the first time"); 4441 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4442 return Resolver; 4443 } 4444 4445 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4446 /// module, create and return an llvm Function with the specified type. If there 4447 /// is something in the module with the specified name, return it potentially 4448 /// bitcasted to the right type. 4449 /// 4450 /// If D is non-null, it specifies a decl that correspond to this. This is used 4451 /// to set the attributes on the function when it is first created. 4452 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4453 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4454 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4455 ForDefinition_t IsForDefinition) { 4456 const Decl *D = GD.getDecl(); 4457 4458 // Any attempts to use a MultiVersion function should result in retrieving 4459 // the iFunc instead. Name Mangling will handle the rest of the changes. 4460 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4461 // For the device mark the function as one that should be emitted. 4462 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4463 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4464 !DontDefer && !IsForDefinition) { 4465 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4466 GlobalDecl GDDef; 4467 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4468 GDDef = GlobalDecl(CD, GD.getCtorType()); 4469 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4470 GDDef = GlobalDecl(DD, GD.getDtorType()); 4471 else 4472 GDDef = GlobalDecl(FDDef); 4473 EmitGlobal(GDDef); 4474 } 4475 } 4476 4477 if (FD->isMultiVersion()) { 4478 UpdateMultiVersionNames(GD, FD, MangledName); 4479 if (!IsForDefinition) 4480 return GetOrCreateMultiVersionResolver(GD); 4481 } 4482 } 4483 4484 // Lookup the entry, lazily creating it if necessary. 4485 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4486 if (Entry) { 4487 if (WeakRefReferences.erase(Entry)) { 4488 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4489 if (FD && !FD->hasAttr<WeakAttr>()) 4490 Entry->setLinkage(llvm::Function::ExternalLinkage); 4491 } 4492 4493 // Handle dropped DLL attributes. 4494 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4495 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4496 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4497 setDSOLocal(Entry); 4498 } 4499 4500 // If there are two attempts to define the same mangled name, issue an 4501 // error. 4502 if (IsForDefinition && !Entry->isDeclaration()) { 4503 GlobalDecl OtherGD; 4504 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4505 // to make sure that we issue an error only once. 4506 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4507 (GD.getCanonicalDecl().getDecl() != 4508 OtherGD.getCanonicalDecl().getDecl()) && 4509 DiagnosedConflictingDefinitions.insert(GD).second) { 4510 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4511 << MangledName; 4512 getDiags().Report(OtherGD.getDecl()->getLocation(), 4513 diag::note_previous_definition); 4514 } 4515 } 4516 4517 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4518 (Entry->getValueType() == Ty)) { 4519 return Entry; 4520 } 4521 4522 // Make sure the result is of the correct type. 4523 // (If function is requested for a definition, we always need to create a new 4524 // function, not just return a bitcast.) 4525 if (!IsForDefinition) 4526 return Entry; 4527 } 4528 4529 // This function doesn't have a complete type (for example, the return 4530 // type is an incomplete struct). Use a fake type instead, and make 4531 // sure not to try to set attributes. 4532 bool IsIncompleteFunction = false; 4533 4534 llvm::FunctionType *FTy; 4535 if (isa<llvm::FunctionType>(Ty)) { 4536 FTy = cast<llvm::FunctionType>(Ty); 4537 } else { 4538 FTy = llvm::FunctionType::get(VoidTy, false); 4539 IsIncompleteFunction = true; 4540 } 4541 4542 llvm::Function *F = 4543 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4544 Entry ? StringRef() : MangledName, &getModule()); 4545 4546 // Store the declaration associated with this function so it is potentially 4547 // updated by further declarations or definitions and emitted at the end. 4548 if (D && D->hasAttr<AnnotateAttr>()) 4549 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4550 4551 // If we already created a function with the same mangled name (but different 4552 // type) before, take its name and add it to the list of functions to be 4553 // replaced with F at the end of CodeGen. 4554 // 4555 // This happens if there is a prototype for a function (e.g. "int f()") and 4556 // then a definition of a different type (e.g. "int f(int x)"). 4557 if (Entry) { 4558 F->takeName(Entry); 4559 4560 // This might be an implementation of a function without a prototype, in 4561 // which case, try to do special replacement of calls which match the new 4562 // prototype. The really key thing here is that we also potentially drop 4563 // arguments from the call site so as to make a direct call, which makes the 4564 // inliner happier and suppresses a number of optimizer warnings (!) about 4565 // dropping arguments. 4566 if (!Entry->use_empty()) { 4567 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4568 Entry->removeDeadConstantUsers(); 4569 } 4570 4571 addGlobalValReplacement(Entry, F); 4572 } 4573 4574 assert(F->getName() == MangledName && "name was uniqued!"); 4575 if (D) 4576 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4577 if (ExtraAttrs.hasFnAttrs()) { 4578 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4579 F->addFnAttrs(B); 4580 } 4581 4582 if (!DontDefer) { 4583 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4584 // each other bottoming out with the base dtor. Therefore we emit non-base 4585 // dtors on usage, even if there is no dtor definition in the TU. 4586 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4587 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4588 GD.getDtorType())) 4589 addDeferredDeclToEmit(GD); 4590 4591 // This is the first use or definition of a mangled name. If there is a 4592 // deferred decl with this name, remember that we need to emit it at the end 4593 // of the file. 4594 auto DDI = DeferredDecls.find(MangledName); 4595 if (DDI != DeferredDecls.end()) { 4596 // Move the potentially referenced deferred decl to the 4597 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4598 // don't need it anymore). 4599 addDeferredDeclToEmit(DDI->second); 4600 DeferredDecls.erase(DDI); 4601 4602 // Otherwise, there are cases we have to worry about where we're 4603 // using a declaration for which we must emit a definition but where 4604 // we might not find a top-level definition: 4605 // - member functions defined inline in their classes 4606 // - friend functions defined inline in some class 4607 // - special member functions with implicit definitions 4608 // If we ever change our AST traversal to walk into class methods, 4609 // this will be unnecessary. 4610 // 4611 // We also don't emit a definition for a function if it's going to be an 4612 // entry in a vtable, unless it's already marked as used. 4613 } else if (getLangOpts().CPlusPlus && D) { 4614 // Look for a declaration that's lexically in a record. 4615 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4616 FD = FD->getPreviousDecl()) { 4617 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4618 if (FD->doesThisDeclarationHaveABody()) { 4619 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4620 break; 4621 } 4622 } 4623 } 4624 } 4625 } 4626 4627 // Make sure the result is of the requested type. 4628 if (!IsIncompleteFunction) { 4629 assert(F->getFunctionType() == Ty); 4630 return F; 4631 } 4632 4633 return F; 4634 } 4635 4636 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4637 /// non-null, then this function will use the specified type if it has to 4638 /// create it (this occurs when we see a definition of the function). 4639 llvm::Constant * 4640 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4641 bool DontDefer, 4642 ForDefinition_t IsForDefinition) { 4643 // If there was no specific requested type, just convert it now. 4644 if (!Ty) { 4645 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4646 Ty = getTypes().ConvertType(FD->getType()); 4647 } 4648 4649 // Devirtualized destructor calls may come through here instead of via 4650 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4651 // of the complete destructor when necessary. 4652 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4653 if (getTarget().getCXXABI().isMicrosoft() && 4654 GD.getDtorType() == Dtor_Complete && 4655 DD->getParent()->getNumVBases() == 0) 4656 GD = GlobalDecl(DD, Dtor_Base); 4657 } 4658 4659 StringRef MangledName = getMangledName(GD); 4660 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4661 /*IsThunk=*/false, llvm::AttributeList(), 4662 IsForDefinition); 4663 // Returns kernel handle for HIP kernel stub function. 4664 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4665 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4666 auto *Handle = getCUDARuntime().getKernelHandle( 4667 cast<llvm::Function>(F->stripPointerCasts()), GD); 4668 if (IsForDefinition) 4669 return F; 4670 return Handle; 4671 } 4672 return F; 4673 } 4674 4675 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4676 llvm::GlobalValue *F = 4677 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4678 4679 return llvm::NoCFIValue::get(F); 4680 } 4681 4682 static const FunctionDecl * 4683 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4684 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4685 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4686 4687 IdentifierInfo &CII = C.Idents.get(Name); 4688 for (const auto *Result : DC->lookup(&CII)) 4689 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4690 return FD; 4691 4692 if (!C.getLangOpts().CPlusPlus) 4693 return nullptr; 4694 4695 // Demangle the premangled name from getTerminateFn() 4696 IdentifierInfo &CXXII = 4697 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4698 ? C.Idents.get("terminate") 4699 : C.Idents.get(Name); 4700 4701 for (const auto &N : {"__cxxabiv1", "std"}) { 4702 IdentifierInfo &NS = C.Idents.get(N); 4703 for (const auto *Result : DC->lookup(&NS)) { 4704 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4705 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4706 for (const auto *Result : LSD->lookup(&NS)) 4707 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4708 break; 4709 4710 if (ND) 4711 for (const auto *Result : ND->lookup(&CXXII)) 4712 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4713 return FD; 4714 } 4715 } 4716 4717 return nullptr; 4718 } 4719 4720 /// CreateRuntimeFunction - Create a new runtime function with the specified 4721 /// type and name. 4722 llvm::FunctionCallee 4723 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4724 llvm::AttributeList ExtraAttrs, bool Local, 4725 bool AssumeConvergent) { 4726 if (AssumeConvergent) { 4727 ExtraAttrs = 4728 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4729 } 4730 4731 llvm::Constant *C = 4732 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4733 /*DontDefer=*/false, /*IsThunk=*/false, 4734 ExtraAttrs); 4735 4736 if (auto *F = dyn_cast<llvm::Function>(C)) { 4737 if (F->empty()) { 4738 F->setCallingConv(getRuntimeCC()); 4739 4740 // In Windows Itanium environments, try to mark runtime functions 4741 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4742 // will link their standard library statically or dynamically. Marking 4743 // functions imported when they are not imported can cause linker errors 4744 // and warnings. 4745 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4746 !getCodeGenOpts().LTOVisibilityPublicStd) { 4747 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4748 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4749 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4750 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4751 } 4752 } 4753 setDSOLocal(F); 4754 } 4755 } 4756 4757 return {FTy, C}; 4758 } 4759 4760 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4761 /// create and return an llvm GlobalVariable with the specified type and address 4762 /// space. If there is something in the module with the specified name, return 4763 /// it potentially bitcasted to the right type. 4764 /// 4765 /// If D is non-null, it specifies a decl that correspond to this. This is used 4766 /// to set the attributes on the global when it is first created. 4767 /// 4768 /// If IsForDefinition is true, it is guaranteed that an actual global with 4769 /// type Ty will be returned, not conversion of a variable with the same 4770 /// mangled name but some other type. 4771 llvm::Constant * 4772 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4773 LangAS AddrSpace, const VarDecl *D, 4774 ForDefinition_t IsForDefinition) { 4775 // Lookup the entry, lazily creating it if necessary. 4776 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4777 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4778 if (Entry) { 4779 if (WeakRefReferences.erase(Entry)) { 4780 if (D && !D->hasAttr<WeakAttr>()) 4781 Entry->setLinkage(llvm::Function::ExternalLinkage); 4782 } 4783 4784 // Handle dropped DLL attributes. 4785 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4786 !shouldMapVisibilityToDLLExport(D)) 4787 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4788 4789 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4790 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4791 4792 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4793 return Entry; 4794 4795 // If there are two attempts to define the same mangled name, issue an 4796 // error. 4797 if (IsForDefinition && !Entry->isDeclaration()) { 4798 GlobalDecl OtherGD; 4799 const VarDecl *OtherD; 4800 4801 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4802 // to make sure that we issue an error only once. 4803 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4804 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4805 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4806 OtherD->hasInit() && 4807 DiagnosedConflictingDefinitions.insert(D).second) { 4808 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4809 << MangledName; 4810 getDiags().Report(OtherGD.getDecl()->getLocation(), 4811 diag::note_previous_definition); 4812 } 4813 } 4814 4815 // Make sure the result is of the correct type. 4816 if (Entry->getType()->getAddressSpace() != TargetAS) 4817 return llvm::ConstantExpr::getAddrSpaceCast( 4818 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 4819 4820 // (If global is requested for a definition, we always need to create a new 4821 // global, not just return a bitcast.) 4822 if (!IsForDefinition) 4823 return Entry; 4824 } 4825 4826 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4827 4828 auto *GV = new llvm::GlobalVariable( 4829 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4830 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4831 getContext().getTargetAddressSpace(DAddrSpace)); 4832 4833 // If we already created a global with the same mangled name (but different 4834 // type) before, take its name and remove it from its parent. 4835 if (Entry) { 4836 GV->takeName(Entry); 4837 4838 if (!Entry->use_empty()) { 4839 Entry->replaceAllUsesWith(GV); 4840 } 4841 4842 Entry->eraseFromParent(); 4843 } 4844 4845 // This is the first use or definition of a mangled name. If there is a 4846 // deferred decl with this name, remember that we need to emit it at the end 4847 // of the file. 4848 auto DDI = DeferredDecls.find(MangledName); 4849 if (DDI != DeferredDecls.end()) { 4850 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4851 // list, and remove it from DeferredDecls (since we don't need it anymore). 4852 addDeferredDeclToEmit(DDI->second); 4853 DeferredDecls.erase(DDI); 4854 } 4855 4856 // Handle things which are present even on external declarations. 4857 if (D) { 4858 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4859 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4860 4861 // FIXME: This code is overly simple and should be merged with other global 4862 // handling. 4863 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 4864 4865 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4866 4867 setLinkageForGV(GV, D); 4868 4869 if (D->getTLSKind()) { 4870 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4871 CXXThreadLocals.push_back(D); 4872 setTLSMode(GV, *D); 4873 } 4874 4875 setGVProperties(GV, D); 4876 4877 // If required by the ABI, treat declarations of static data members with 4878 // inline initializers as definitions. 4879 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4880 EmitGlobalVarDefinition(D); 4881 } 4882 4883 // Emit section information for extern variables. 4884 if (D->hasExternalStorage()) { 4885 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4886 GV->setSection(SA->getName()); 4887 } 4888 4889 // Handle XCore specific ABI requirements. 4890 if (getTriple().getArch() == llvm::Triple::xcore && 4891 D->getLanguageLinkage() == CLanguageLinkage && 4892 D->getType().isConstant(Context) && 4893 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4894 GV->setSection(".cp.rodata"); 4895 4896 // Handle code model attribute 4897 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 4898 GV->setCodeModel(CMA->getModel()); 4899 4900 // Check if we a have a const declaration with an initializer, we may be 4901 // able to emit it as available_externally to expose it's value to the 4902 // optimizer. 4903 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4904 D->getType().isConstQualified() && !GV->hasInitializer() && 4905 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4906 const auto *Record = 4907 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4908 bool HasMutableFields = Record && Record->hasMutableFields(); 4909 if (!HasMutableFields) { 4910 const VarDecl *InitDecl; 4911 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4912 if (InitExpr) { 4913 ConstantEmitter emitter(*this); 4914 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4915 if (Init) { 4916 auto *InitType = Init->getType(); 4917 if (GV->getValueType() != InitType) { 4918 // The type of the initializer does not match the definition. 4919 // This happens when an initializer has a different type from 4920 // the type of the global (because of padding at the end of a 4921 // structure for instance). 4922 GV->setName(StringRef()); 4923 // Make a new global with the correct type, this is now guaranteed 4924 // to work. 4925 auto *NewGV = cast<llvm::GlobalVariable>( 4926 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4927 ->stripPointerCasts()); 4928 4929 // Erase the old global, since it is no longer used. 4930 GV->eraseFromParent(); 4931 GV = NewGV; 4932 } else { 4933 GV->setInitializer(Init); 4934 GV->setConstant(true); 4935 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4936 } 4937 emitter.finalize(GV); 4938 } 4939 } 4940 } 4941 } 4942 } 4943 4944 if (D && 4945 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 4946 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4947 // External HIP managed variables needed to be recorded for transformation 4948 // in both device and host compilations. 4949 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4950 D->hasExternalStorage()) 4951 getCUDARuntime().handleVarRegistration(D, *GV); 4952 } 4953 4954 if (D) 4955 SanitizerMD->reportGlobal(GV, *D); 4956 4957 LangAS ExpectedAS = 4958 D ? D->getType().getAddressSpace() 4959 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4960 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4961 if (DAddrSpace != ExpectedAS) { 4962 return getTargetCodeGenInfo().performAddrSpaceCast( 4963 *this, GV, DAddrSpace, ExpectedAS, 4964 llvm::PointerType::get(getLLVMContext(), TargetAS)); 4965 } 4966 4967 return GV; 4968 } 4969 4970 llvm::Constant * 4971 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4972 const Decl *D = GD.getDecl(); 4973 4974 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4975 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4976 /*DontDefer=*/false, IsForDefinition); 4977 4978 if (isa<CXXMethodDecl>(D)) { 4979 auto FInfo = 4980 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4981 auto Ty = getTypes().GetFunctionType(*FInfo); 4982 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4983 IsForDefinition); 4984 } 4985 4986 if (isa<FunctionDecl>(D)) { 4987 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4988 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4989 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4990 IsForDefinition); 4991 } 4992 4993 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4994 } 4995 4996 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4997 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4998 llvm::Align Alignment) { 4999 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 5000 llvm::GlobalVariable *OldGV = nullptr; 5001 5002 if (GV) { 5003 // Check if the variable has the right type. 5004 if (GV->getValueType() == Ty) 5005 return GV; 5006 5007 // Because C++ name mangling, the only way we can end up with an already 5008 // existing global with the same name is if it has been declared extern "C". 5009 assert(GV->isDeclaration() && "Declaration has wrong type!"); 5010 OldGV = GV; 5011 } 5012 5013 // Create a new variable. 5014 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 5015 Linkage, nullptr, Name); 5016 5017 if (OldGV) { 5018 // Replace occurrences of the old variable if needed. 5019 GV->takeName(OldGV); 5020 5021 if (!OldGV->use_empty()) { 5022 OldGV->replaceAllUsesWith(GV); 5023 } 5024 5025 OldGV->eraseFromParent(); 5026 } 5027 5028 if (supportsCOMDAT() && GV->isWeakForLinker() && 5029 !GV->hasAvailableExternallyLinkage()) 5030 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5031 5032 GV->setAlignment(Alignment); 5033 5034 return GV; 5035 } 5036 5037 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5038 /// given global variable. If Ty is non-null and if the global doesn't exist, 5039 /// then it will be created with the specified type instead of whatever the 5040 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5041 /// that an actual global with type Ty will be returned, not conversion of a 5042 /// variable with the same mangled name but some other type. 5043 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5044 llvm::Type *Ty, 5045 ForDefinition_t IsForDefinition) { 5046 assert(D->hasGlobalStorage() && "Not a global variable"); 5047 QualType ASTTy = D->getType(); 5048 if (!Ty) 5049 Ty = getTypes().ConvertTypeForMem(ASTTy); 5050 5051 StringRef MangledName = getMangledName(D); 5052 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5053 IsForDefinition); 5054 } 5055 5056 /// CreateRuntimeVariable - Create a new runtime global variable with the 5057 /// specified type and name. 5058 llvm::Constant * 5059 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5060 StringRef Name) { 5061 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5062 : LangAS::Default; 5063 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5064 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5065 return Ret; 5066 } 5067 5068 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5069 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5070 5071 StringRef MangledName = getMangledName(D); 5072 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5073 5074 // We already have a definition, not declaration, with the same mangled name. 5075 // Emitting of declaration is not required (and actually overwrites emitted 5076 // definition). 5077 if (GV && !GV->isDeclaration()) 5078 return; 5079 5080 // If we have not seen a reference to this variable yet, place it into the 5081 // deferred declarations table to be emitted if needed later. 5082 if (!MustBeEmitted(D) && !GV) { 5083 DeferredDecls[MangledName] = D; 5084 return; 5085 } 5086 5087 // The tentative definition is the only definition. 5088 EmitGlobalVarDefinition(D); 5089 } 5090 5091 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 5092 EmitExternalVarDeclaration(D); 5093 } 5094 5095 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5096 return Context.toCharUnitsFromBits( 5097 getDataLayout().getTypeStoreSizeInBits(Ty)); 5098 } 5099 5100 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5101 if (LangOpts.OpenCL) { 5102 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5103 assert(AS == LangAS::opencl_global || 5104 AS == LangAS::opencl_global_device || 5105 AS == LangAS::opencl_global_host || 5106 AS == LangAS::opencl_constant || 5107 AS == LangAS::opencl_local || 5108 AS >= LangAS::FirstTargetAddressSpace); 5109 return AS; 5110 } 5111 5112 if (LangOpts.SYCLIsDevice && 5113 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5114 return LangAS::sycl_global; 5115 5116 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5117 if (D) { 5118 if (D->hasAttr<CUDAConstantAttr>()) 5119 return LangAS::cuda_constant; 5120 if (D->hasAttr<CUDASharedAttr>()) 5121 return LangAS::cuda_shared; 5122 if (D->hasAttr<CUDADeviceAttr>()) 5123 return LangAS::cuda_device; 5124 if (D->getType().isConstQualified()) 5125 return LangAS::cuda_constant; 5126 } 5127 return LangAS::cuda_device; 5128 } 5129 5130 if (LangOpts.OpenMP) { 5131 LangAS AS; 5132 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5133 return AS; 5134 } 5135 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5136 } 5137 5138 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5139 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5140 if (LangOpts.OpenCL) 5141 return LangAS::opencl_constant; 5142 if (LangOpts.SYCLIsDevice) 5143 return LangAS::sycl_global; 5144 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5145 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5146 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5147 // with OpVariable instructions with Generic storage class which is not 5148 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5149 // UniformConstant storage class is not viable as pointers to it may not be 5150 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5151 return LangAS::cuda_device; 5152 if (auto AS = getTarget().getConstantAddressSpace()) 5153 return *AS; 5154 return LangAS::Default; 5155 } 5156 5157 // In address space agnostic languages, string literals are in default address 5158 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5159 // emitted in constant address space in LLVM IR. To be consistent with other 5160 // parts of AST, string literal global variables in constant address space 5161 // need to be casted to default address space before being put into address 5162 // map and referenced by other part of CodeGen. 5163 // In OpenCL, string literals are in constant address space in AST, therefore 5164 // they should not be casted to default address space. 5165 static llvm::Constant * 5166 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5167 llvm::GlobalVariable *GV) { 5168 llvm::Constant *Cast = GV; 5169 if (!CGM.getLangOpts().OpenCL) { 5170 auto AS = CGM.GetGlobalConstantAddressSpace(); 5171 if (AS != LangAS::Default) 5172 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5173 CGM, GV, AS, LangAS::Default, 5174 llvm::PointerType::get( 5175 CGM.getLLVMContext(), 5176 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5177 } 5178 return Cast; 5179 } 5180 5181 template<typename SomeDecl> 5182 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5183 llvm::GlobalValue *GV) { 5184 if (!getLangOpts().CPlusPlus) 5185 return; 5186 5187 // Must have 'used' attribute, or else inline assembly can't rely on 5188 // the name existing. 5189 if (!D->template hasAttr<UsedAttr>()) 5190 return; 5191 5192 // Must have internal linkage and an ordinary name. 5193 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5194 return; 5195 5196 // Must be in an extern "C" context. Entities declared directly within 5197 // a record are not extern "C" even if the record is in such a context. 5198 const SomeDecl *First = D->getFirstDecl(); 5199 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5200 return; 5201 5202 // OK, this is an internal linkage entity inside an extern "C" linkage 5203 // specification. Make a note of that so we can give it the "expected" 5204 // mangled name if nothing else is using that name. 5205 std::pair<StaticExternCMap::iterator, bool> R = 5206 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5207 5208 // If we have multiple internal linkage entities with the same name 5209 // in extern "C" regions, none of them gets that name. 5210 if (!R.second) 5211 R.first->second = nullptr; 5212 } 5213 5214 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5215 if (!CGM.supportsCOMDAT()) 5216 return false; 5217 5218 if (D.hasAttr<SelectAnyAttr>()) 5219 return true; 5220 5221 GVALinkage Linkage; 5222 if (auto *VD = dyn_cast<VarDecl>(&D)) 5223 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5224 else 5225 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5226 5227 switch (Linkage) { 5228 case GVA_Internal: 5229 case GVA_AvailableExternally: 5230 case GVA_StrongExternal: 5231 return false; 5232 case GVA_DiscardableODR: 5233 case GVA_StrongODR: 5234 return true; 5235 } 5236 llvm_unreachable("No such linkage"); 5237 } 5238 5239 bool CodeGenModule::supportsCOMDAT() const { 5240 return getTriple().supportsCOMDAT(); 5241 } 5242 5243 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5244 llvm::GlobalObject &GO) { 5245 if (!shouldBeInCOMDAT(*this, D)) 5246 return; 5247 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5248 } 5249 5250 /// Pass IsTentative as true if you want to create a tentative definition. 5251 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5252 bool IsTentative) { 5253 // OpenCL global variables of sampler type are translated to function calls, 5254 // therefore no need to be translated. 5255 QualType ASTTy = D->getType(); 5256 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5257 return; 5258 5259 // If this is OpenMP device, check if it is legal to emit this global 5260 // normally. 5261 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5262 OpenMPRuntime->emitTargetGlobalVariable(D)) 5263 return; 5264 5265 llvm::TrackingVH<llvm::Constant> Init; 5266 bool NeedsGlobalCtor = false; 5267 // Whether the definition of the variable is available externally. 5268 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5269 // since this is the job for its original source. 5270 bool IsDefinitionAvailableExternally = 5271 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5272 bool NeedsGlobalDtor = 5273 !IsDefinitionAvailableExternally && 5274 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5275 5276 const VarDecl *InitDecl; 5277 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5278 5279 std::optional<ConstantEmitter> emitter; 5280 5281 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5282 // as part of their declaration." Sema has already checked for 5283 // error cases, so we just need to set Init to UndefValue. 5284 bool IsCUDASharedVar = 5285 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5286 // Shadows of initialized device-side global variables are also left 5287 // undefined. 5288 // Managed Variables should be initialized on both host side and device side. 5289 bool IsCUDAShadowVar = 5290 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5291 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5292 D->hasAttr<CUDASharedAttr>()); 5293 bool IsCUDADeviceShadowVar = 5294 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5295 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5296 D->getType()->isCUDADeviceBuiltinTextureType()); 5297 if (getLangOpts().CUDA && 5298 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5299 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5300 else if (D->hasAttr<LoaderUninitializedAttr>()) 5301 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5302 else if (!InitExpr) { 5303 // This is a tentative definition; tentative definitions are 5304 // implicitly initialized with { 0 }. 5305 // 5306 // Note that tentative definitions are only emitted at the end of 5307 // a translation unit, so they should never have incomplete 5308 // type. In addition, EmitTentativeDefinition makes sure that we 5309 // never attempt to emit a tentative definition if a real one 5310 // exists. A use may still exists, however, so we still may need 5311 // to do a RAUW. 5312 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5313 Init = EmitNullConstant(D->getType()); 5314 } else { 5315 initializedGlobalDecl = GlobalDecl(D); 5316 emitter.emplace(*this); 5317 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5318 if (!Initializer) { 5319 QualType T = InitExpr->getType(); 5320 if (D->getType()->isReferenceType()) 5321 T = D->getType(); 5322 5323 if (getLangOpts().CPlusPlus) { 5324 if (InitDecl->hasFlexibleArrayInit(getContext())) 5325 ErrorUnsupported(D, "flexible array initializer"); 5326 Init = EmitNullConstant(T); 5327 5328 if (!IsDefinitionAvailableExternally) 5329 NeedsGlobalCtor = true; 5330 } else { 5331 ErrorUnsupported(D, "static initializer"); 5332 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5333 } 5334 } else { 5335 Init = Initializer; 5336 // We don't need an initializer, so remove the entry for the delayed 5337 // initializer position (just in case this entry was delayed) if we 5338 // also don't need to register a destructor. 5339 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5340 DelayedCXXInitPosition.erase(D); 5341 5342 #ifndef NDEBUG 5343 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5344 InitDecl->getFlexibleArrayInitChars(getContext()); 5345 CharUnits CstSize = CharUnits::fromQuantity( 5346 getDataLayout().getTypeAllocSize(Init->getType())); 5347 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5348 #endif 5349 } 5350 } 5351 5352 llvm::Type* InitType = Init->getType(); 5353 llvm::Constant *Entry = 5354 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5355 5356 // Strip off pointer casts if we got them. 5357 Entry = Entry->stripPointerCasts(); 5358 5359 // Entry is now either a Function or GlobalVariable. 5360 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5361 5362 // We have a definition after a declaration with the wrong type. 5363 // We must make a new GlobalVariable* and update everything that used OldGV 5364 // (a declaration or tentative definition) with the new GlobalVariable* 5365 // (which will be a definition). 5366 // 5367 // This happens if there is a prototype for a global (e.g. 5368 // "extern int x[];") and then a definition of a different type (e.g. 5369 // "int x[10];"). This also happens when an initializer has a different type 5370 // from the type of the global (this happens with unions). 5371 if (!GV || GV->getValueType() != InitType || 5372 GV->getType()->getAddressSpace() != 5373 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5374 5375 // Move the old entry aside so that we'll create a new one. 5376 Entry->setName(StringRef()); 5377 5378 // Make a new global with the correct type, this is now guaranteed to work. 5379 GV = cast<llvm::GlobalVariable>( 5380 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5381 ->stripPointerCasts()); 5382 5383 // Replace all uses of the old global with the new global 5384 llvm::Constant *NewPtrForOldDecl = 5385 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5386 Entry->getType()); 5387 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5388 5389 // Erase the old global, since it is no longer used. 5390 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5391 } 5392 5393 MaybeHandleStaticInExternC(D, GV); 5394 5395 if (D->hasAttr<AnnotateAttr>()) 5396 AddGlobalAnnotations(D, GV); 5397 5398 // Set the llvm linkage type as appropriate. 5399 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5400 5401 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5402 // the device. [...]" 5403 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5404 // __device__, declares a variable that: [...] 5405 // Is accessible from all the threads within the grid and from the host 5406 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5407 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5408 if (LangOpts.CUDA) { 5409 if (LangOpts.CUDAIsDevice) { 5410 if (Linkage != llvm::GlobalValue::InternalLinkage && 5411 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5412 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5413 D->getType()->isCUDADeviceBuiltinTextureType())) 5414 GV->setExternallyInitialized(true); 5415 } else { 5416 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5417 } 5418 getCUDARuntime().handleVarRegistration(D, *GV); 5419 } 5420 5421 GV->setInitializer(Init); 5422 if (emitter) 5423 emitter->finalize(GV); 5424 5425 // If it is safe to mark the global 'constant', do so now. 5426 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5427 D->getType().isConstantStorage(getContext(), true, true)); 5428 5429 // If it is in a read-only section, mark it 'constant'. 5430 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5431 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5432 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5433 GV->setConstant(true); 5434 } 5435 5436 CharUnits AlignVal = getContext().getDeclAlign(D); 5437 // Check for alignment specifed in an 'omp allocate' directive. 5438 if (std::optional<CharUnits> AlignValFromAllocate = 5439 getOMPAllocateAlignment(D)) 5440 AlignVal = *AlignValFromAllocate; 5441 GV->setAlignment(AlignVal.getAsAlign()); 5442 5443 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5444 // function is only defined alongside the variable, not also alongside 5445 // callers. Normally, all accesses to a thread_local go through the 5446 // thread-wrapper in order to ensure initialization has occurred, underlying 5447 // variable will never be used other than the thread-wrapper, so it can be 5448 // converted to internal linkage. 5449 // 5450 // However, if the variable has the 'constinit' attribute, it _can_ be 5451 // referenced directly, without calling the thread-wrapper, so the linkage 5452 // must not be changed. 5453 // 5454 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5455 // weak or linkonce, the de-duplication semantics are important to preserve, 5456 // so we don't change the linkage. 5457 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5458 Linkage == llvm::GlobalValue::ExternalLinkage && 5459 Context.getTargetInfo().getTriple().isOSDarwin() && 5460 !D->hasAttr<ConstInitAttr>()) 5461 Linkage = llvm::GlobalValue::InternalLinkage; 5462 5463 GV->setLinkage(Linkage); 5464 if (D->hasAttr<DLLImportAttr>()) 5465 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5466 else if (D->hasAttr<DLLExportAttr>()) 5467 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5468 else 5469 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5470 5471 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5472 // common vars aren't constant even if declared const. 5473 GV->setConstant(false); 5474 // Tentative definition of global variables may be initialized with 5475 // non-zero null pointers. In this case they should have weak linkage 5476 // since common linkage must have zero initializer and must not have 5477 // explicit section therefore cannot have non-zero initial value. 5478 if (!GV->getInitializer()->isNullValue()) 5479 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5480 } 5481 5482 setNonAliasAttributes(D, GV); 5483 5484 if (D->getTLSKind() && !GV->isThreadLocal()) { 5485 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5486 CXXThreadLocals.push_back(D); 5487 setTLSMode(GV, *D); 5488 } 5489 5490 maybeSetTrivialComdat(*D, *GV); 5491 5492 // Emit the initializer function if necessary. 5493 if (NeedsGlobalCtor || NeedsGlobalDtor) 5494 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5495 5496 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5497 5498 // Emit global variable debug information. 5499 if (CGDebugInfo *DI = getModuleDebugInfo()) 5500 if (getCodeGenOpts().hasReducedDebugInfo()) 5501 DI->EmitGlobalVariable(GV, D); 5502 } 5503 5504 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5505 if (CGDebugInfo *DI = getModuleDebugInfo()) 5506 if (getCodeGenOpts().hasReducedDebugInfo()) { 5507 QualType ASTTy = D->getType(); 5508 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5509 llvm::Constant *GV = 5510 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5511 DI->EmitExternalVariable( 5512 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5513 } 5514 } 5515 5516 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5517 CodeGenModule &CGM, const VarDecl *D, 5518 bool NoCommon) { 5519 // Don't give variables common linkage if -fno-common was specified unless it 5520 // was overridden by a NoCommon attribute. 5521 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5522 return true; 5523 5524 // C11 6.9.2/2: 5525 // A declaration of an identifier for an object that has file scope without 5526 // an initializer, and without a storage-class specifier or with the 5527 // storage-class specifier static, constitutes a tentative definition. 5528 if (D->getInit() || D->hasExternalStorage()) 5529 return true; 5530 5531 // A variable cannot be both common and exist in a section. 5532 if (D->hasAttr<SectionAttr>()) 5533 return true; 5534 5535 // A variable cannot be both common and exist in a section. 5536 // We don't try to determine which is the right section in the front-end. 5537 // If no specialized section name is applicable, it will resort to default. 5538 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5539 D->hasAttr<PragmaClangDataSectionAttr>() || 5540 D->hasAttr<PragmaClangRelroSectionAttr>() || 5541 D->hasAttr<PragmaClangRodataSectionAttr>()) 5542 return true; 5543 5544 // Thread local vars aren't considered common linkage. 5545 if (D->getTLSKind()) 5546 return true; 5547 5548 // Tentative definitions marked with WeakImportAttr are true definitions. 5549 if (D->hasAttr<WeakImportAttr>()) 5550 return true; 5551 5552 // A variable cannot be both common and exist in a comdat. 5553 if (shouldBeInCOMDAT(CGM, *D)) 5554 return true; 5555 5556 // Declarations with a required alignment do not have common linkage in MSVC 5557 // mode. 5558 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5559 if (D->hasAttr<AlignedAttr>()) 5560 return true; 5561 QualType VarType = D->getType(); 5562 if (Context.isAlignmentRequired(VarType)) 5563 return true; 5564 5565 if (const auto *RT = VarType->getAs<RecordType>()) { 5566 const RecordDecl *RD = RT->getDecl(); 5567 for (const FieldDecl *FD : RD->fields()) { 5568 if (FD->isBitField()) 5569 continue; 5570 if (FD->hasAttr<AlignedAttr>()) 5571 return true; 5572 if (Context.isAlignmentRequired(FD->getType())) 5573 return true; 5574 } 5575 } 5576 } 5577 5578 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5579 // common symbols, so symbols with greater alignment requirements cannot be 5580 // common. 5581 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5582 // alignments for common symbols via the aligncomm directive, so this 5583 // restriction only applies to MSVC environments. 5584 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5585 Context.getTypeAlignIfKnown(D->getType()) > 5586 Context.toBits(CharUnits::fromQuantity(32))) 5587 return true; 5588 5589 return false; 5590 } 5591 5592 llvm::GlobalValue::LinkageTypes 5593 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5594 GVALinkage Linkage) { 5595 if (Linkage == GVA_Internal) 5596 return llvm::Function::InternalLinkage; 5597 5598 if (D->hasAttr<WeakAttr>()) 5599 return llvm::GlobalVariable::WeakAnyLinkage; 5600 5601 if (const auto *FD = D->getAsFunction()) 5602 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5603 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5604 5605 // We are guaranteed to have a strong definition somewhere else, 5606 // so we can use available_externally linkage. 5607 if (Linkage == GVA_AvailableExternally) 5608 return llvm::GlobalValue::AvailableExternallyLinkage; 5609 5610 // Note that Apple's kernel linker doesn't support symbol 5611 // coalescing, so we need to avoid linkonce and weak linkages there. 5612 // Normally, this means we just map to internal, but for explicit 5613 // instantiations we'll map to external. 5614 5615 // In C++, the compiler has to emit a definition in every translation unit 5616 // that references the function. We should use linkonce_odr because 5617 // a) if all references in this translation unit are optimized away, we 5618 // don't need to codegen it. b) if the function persists, it needs to be 5619 // merged with other definitions. c) C++ has the ODR, so we know the 5620 // definition is dependable. 5621 if (Linkage == GVA_DiscardableODR) 5622 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5623 : llvm::Function::InternalLinkage; 5624 5625 // An explicit instantiation of a template has weak linkage, since 5626 // explicit instantiations can occur in multiple translation units 5627 // and must all be equivalent. However, we are not allowed to 5628 // throw away these explicit instantiations. 5629 // 5630 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5631 // so say that CUDA templates are either external (for kernels) or internal. 5632 // This lets llvm perform aggressive inter-procedural optimizations. For 5633 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5634 // therefore we need to follow the normal linkage paradigm. 5635 if (Linkage == GVA_StrongODR) { 5636 if (getLangOpts().AppleKext) 5637 return llvm::Function::ExternalLinkage; 5638 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5639 !getLangOpts().GPURelocatableDeviceCode) 5640 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5641 : llvm::Function::InternalLinkage; 5642 return llvm::Function::WeakODRLinkage; 5643 } 5644 5645 // C++ doesn't have tentative definitions and thus cannot have common 5646 // linkage. 5647 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5648 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5649 CodeGenOpts.NoCommon)) 5650 return llvm::GlobalVariable::CommonLinkage; 5651 5652 // selectany symbols are externally visible, so use weak instead of 5653 // linkonce. MSVC optimizes away references to const selectany globals, so 5654 // all definitions should be the same and ODR linkage should be used. 5655 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5656 if (D->hasAttr<SelectAnyAttr>()) 5657 return llvm::GlobalVariable::WeakODRLinkage; 5658 5659 // Otherwise, we have strong external linkage. 5660 assert(Linkage == GVA_StrongExternal); 5661 return llvm::GlobalVariable::ExternalLinkage; 5662 } 5663 5664 llvm::GlobalValue::LinkageTypes 5665 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5666 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5667 return getLLVMLinkageForDeclarator(VD, Linkage); 5668 } 5669 5670 /// Replace the uses of a function that was declared with a non-proto type. 5671 /// We want to silently drop extra arguments from call sites 5672 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5673 llvm::Function *newFn) { 5674 // Fast path. 5675 if (old->use_empty()) return; 5676 5677 llvm::Type *newRetTy = newFn->getReturnType(); 5678 SmallVector<llvm::Value*, 4> newArgs; 5679 5680 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5681 ui != ue; ) { 5682 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5683 llvm::User *user = use->getUser(); 5684 5685 // Recognize and replace uses of bitcasts. Most calls to 5686 // unprototyped functions will use bitcasts. 5687 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5688 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5689 replaceUsesOfNonProtoConstant(bitcast, newFn); 5690 continue; 5691 } 5692 5693 // Recognize calls to the function. 5694 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5695 if (!callSite) continue; 5696 if (!callSite->isCallee(&*use)) 5697 continue; 5698 5699 // If the return types don't match exactly, then we can't 5700 // transform this call unless it's dead. 5701 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5702 continue; 5703 5704 // Get the call site's attribute list. 5705 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5706 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5707 5708 // If the function was passed too few arguments, don't transform. 5709 unsigned newNumArgs = newFn->arg_size(); 5710 if (callSite->arg_size() < newNumArgs) 5711 continue; 5712 5713 // If extra arguments were passed, we silently drop them. 5714 // If any of the types mismatch, we don't transform. 5715 unsigned argNo = 0; 5716 bool dontTransform = false; 5717 for (llvm::Argument &A : newFn->args()) { 5718 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5719 dontTransform = true; 5720 break; 5721 } 5722 5723 // Add any parameter attributes. 5724 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5725 argNo++; 5726 } 5727 if (dontTransform) 5728 continue; 5729 5730 // Okay, we can transform this. Create the new call instruction and copy 5731 // over the required information. 5732 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5733 5734 // Copy over any operand bundles. 5735 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5736 callSite->getOperandBundlesAsDefs(newBundles); 5737 5738 llvm::CallBase *newCall; 5739 if (isa<llvm::CallInst>(callSite)) { 5740 newCall = 5741 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5742 } else { 5743 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5744 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5745 oldInvoke->getUnwindDest(), newArgs, 5746 newBundles, "", callSite); 5747 } 5748 newArgs.clear(); // for the next iteration 5749 5750 if (!newCall->getType()->isVoidTy()) 5751 newCall->takeName(callSite); 5752 newCall->setAttributes( 5753 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5754 oldAttrs.getRetAttrs(), newArgAttrs)); 5755 newCall->setCallingConv(callSite->getCallingConv()); 5756 5757 // Finally, remove the old call, replacing any uses with the new one. 5758 if (!callSite->use_empty()) 5759 callSite->replaceAllUsesWith(newCall); 5760 5761 // Copy debug location attached to CI. 5762 if (callSite->getDebugLoc()) 5763 newCall->setDebugLoc(callSite->getDebugLoc()); 5764 5765 callSite->eraseFromParent(); 5766 } 5767 } 5768 5769 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5770 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5771 /// existing call uses of the old function in the module, this adjusts them to 5772 /// call the new function directly. 5773 /// 5774 /// This is not just a cleanup: the always_inline pass requires direct calls to 5775 /// functions to be able to inline them. If there is a bitcast in the way, it 5776 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5777 /// run at -O0. 5778 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5779 llvm::Function *NewFn) { 5780 // If we're redefining a global as a function, don't transform it. 5781 if (!isa<llvm::Function>(Old)) return; 5782 5783 replaceUsesOfNonProtoConstant(Old, NewFn); 5784 } 5785 5786 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5787 auto DK = VD->isThisDeclarationADefinition(); 5788 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5789 return; 5790 5791 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5792 // If we have a definition, this might be a deferred decl. If the 5793 // instantiation is explicit, make sure we emit it at the end. 5794 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5795 GetAddrOfGlobalVar(VD); 5796 5797 EmitTopLevelDecl(VD); 5798 } 5799 5800 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5801 llvm::GlobalValue *GV) { 5802 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5803 5804 // Compute the function info and LLVM type. 5805 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5806 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5807 5808 // Get or create the prototype for the function. 5809 if (!GV || (GV->getValueType() != Ty)) 5810 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5811 /*DontDefer=*/true, 5812 ForDefinition)); 5813 5814 // Already emitted. 5815 if (!GV->isDeclaration()) 5816 return; 5817 5818 // We need to set linkage and visibility on the function before 5819 // generating code for it because various parts of IR generation 5820 // want to propagate this information down (e.g. to local static 5821 // declarations). 5822 auto *Fn = cast<llvm::Function>(GV); 5823 setFunctionLinkage(GD, Fn); 5824 5825 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5826 setGVProperties(Fn, GD); 5827 5828 MaybeHandleStaticInExternC(D, Fn); 5829 5830 maybeSetTrivialComdat(*D, *Fn); 5831 5832 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5833 5834 setNonAliasAttributes(GD, Fn); 5835 SetLLVMFunctionAttributesForDefinition(D, Fn); 5836 5837 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5838 AddGlobalCtor(Fn, CA->getPriority()); 5839 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5840 AddGlobalDtor(Fn, DA->getPriority(), true); 5841 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 5842 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 5843 } 5844 5845 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5846 const auto *D = cast<ValueDecl>(GD.getDecl()); 5847 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5848 assert(AA && "Not an alias?"); 5849 5850 StringRef MangledName = getMangledName(GD); 5851 5852 if (AA->getAliasee() == MangledName) { 5853 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5854 return; 5855 } 5856 5857 // If there is a definition in the module, then it wins over the alias. 5858 // This is dubious, but allow it to be safe. Just ignore the alias. 5859 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5860 if (Entry && !Entry->isDeclaration()) 5861 return; 5862 5863 Aliases.push_back(GD); 5864 5865 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5866 5867 // Create a reference to the named value. This ensures that it is emitted 5868 // if a deferred decl. 5869 llvm::Constant *Aliasee; 5870 llvm::GlobalValue::LinkageTypes LT; 5871 if (isa<llvm::FunctionType>(DeclTy)) { 5872 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5873 /*ForVTable=*/false); 5874 LT = getFunctionLinkage(GD); 5875 } else { 5876 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5877 /*D=*/nullptr); 5878 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5879 LT = getLLVMLinkageVarDefinition(VD); 5880 else 5881 LT = getFunctionLinkage(GD); 5882 } 5883 5884 // Create the new alias itself, but don't set a name yet. 5885 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5886 auto *GA = 5887 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5888 5889 if (Entry) { 5890 if (GA->getAliasee() == Entry) { 5891 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5892 return; 5893 } 5894 5895 assert(Entry->isDeclaration()); 5896 5897 // If there is a declaration in the module, then we had an extern followed 5898 // by the alias, as in: 5899 // extern int test6(); 5900 // ... 5901 // int test6() __attribute__((alias("test7"))); 5902 // 5903 // Remove it and replace uses of it with the alias. 5904 GA->takeName(Entry); 5905 5906 Entry->replaceAllUsesWith(GA); 5907 Entry->eraseFromParent(); 5908 } else { 5909 GA->setName(MangledName); 5910 } 5911 5912 // Set attributes which are particular to an alias; this is a 5913 // specialization of the attributes which may be set on a global 5914 // variable/function. 5915 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5916 D->isWeakImported()) { 5917 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5918 } 5919 5920 if (const auto *VD = dyn_cast<VarDecl>(D)) 5921 if (VD->getTLSKind()) 5922 setTLSMode(GA, *VD); 5923 5924 SetCommonAttributes(GD, GA); 5925 5926 // Emit global alias debug information. 5927 if (isa<VarDecl>(D)) 5928 if (CGDebugInfo *DI = getModuleDebugInfo()) 5929 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5930 } 5931 5932 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5933 const auto *D = cast<ValueDecl>(GD.getDecl()); 5934 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5935 assert(IFA && "Not an ifunc?"); 5936 5937 StringRef MangledName = getMangledName(GD); 5938 5939 if (IFA->getResolver() == MangledName) { 5940 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5941 return; 5942 } 5943 5944 // Report an error if some definition overrides ifunc. 5945 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5946 if (Entry && !Entry->isDeclaration()) { 5947 GlobalDecl OtherGD; 5948 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5949 DiagnosedConflictingDefinitions.insert(GD).second) { 5950 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5951 << MangledName; 5952 Diags.Report(OtherGD.getDecl()->getLocation(), 5953 diag::note_previous_definition); 5954 } 5955 return; 5956 } 5957 5958 Aliases.push_back(GD); 5959 5960 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5961 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5962 llvm::Constant *Resolver = 5963 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5964 /*ForVTable=*/false); 5965 llvm::GlobalIFunc *GIF = 5966 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5967 "", Resolver, &getModule()); 5968 if (Entry) { 5969 if (GIF->getResolver() == Entry) { 5970 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5971 return; 5972 } 5973 assert(Entry->isDeclaration()); 5974 5975 // If there is a declaration in the module, then we had an extern followed 5976 // by the ifunc, as in: 5977 // extern int test(); 5978 // ... 5979 // int test() __attribute__((ifunc("resolver"))); 5980 // 5981 // Remove it and replace uses of it with the ifunc. 5982 GIF->takeName(Entry); 5983 5984 Entry->replaceAllUsesWith(GIF); 5985 Entry->eraseFromParent(); 5986 } else 5987 GIF->setName(MangledName); 5988 if (auto *F = dyn_cast<llvm::Function>(Resolver)) { 5989 F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 5990 } 5991 SetCommonAttributes(GD, GIF); 5992 } 5993 5994 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5995 ArrayRef<llvm::Type*> Tys) { 5996 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5997 Tys); 5998 } 5999 6000 static llvm::StringMapEntry<llvm::GlobalVariable *> & 6001 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 6002 const StringLiteral *Literal, bool TargetIsLSB, 6003 bool &IsUTF16, unsigned &StringLength) { 6004 StringRef String = Literal->getString(); 6005 unsigned NumBytes = String.size(); 6006 6007 // Check for simple case. 6008 if (!Literal->containsNonAsciiOrNull()) { 6009 StringLength = NumBytes; 6010 return *Map.insert(std::make_pair(String, nullptr)).first; 6011 } 6012 6013 // Otherwise, convert the UTF8 literals into a string of shorts. 6014 IsUTF16 = true; 6015 6016 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 6017 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6018 llvm::UTF16 *ToPtr = &ToBuf[0]; 6019 6020 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6021 ToPtr + NumBytes, llvm::strictConversion); 6022 6023 // ConvertUTF8toUTF16 returns the length in ToPtr. 6024 StringLength = ToPtr - &ToBuf[0]; 6025 6026 // Add an explicit null. 6027 *ToPtr = 0; 6028 return *Map.insert(std::make_pair( 6029 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 6030 (StringLength + 1) * 2), 6031 nullptr)).first; 6032 } 6033 6034 ConstantAddress 6035 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6036 unsigned StringLength = 0; 6037 bool isUTF16 = false; 6038 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6039 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6040 getDataLayout().isLittleEndian(), isUTF16, 6041 StringLength); 6042 6043 if (auto *C = Entry.second) 6044 return ConstantAddress( 6045 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6046 6047 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 6048 llvm::Constant *Zeros[] = { Zero, Zero }; 6049 6050 const ASTContext &Context = getContext(); 6051 const llvm::Triple &Triple = getTriple(); 6052 6053 const auto CFRuntime = getLangOpts().CFRuntime; 6054 const bool IsSwiftABI = 6055 static_cast<unsigned>(CFRuntime) >= 6056 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6057 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6058 6059 // If we don't already have it, get __CFConstantStringClassReference. 6060 if (!CFConstantStringClassRef) { 6061 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6062 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6063 Ty = llvm::ArrayType::get(Ty, 0); 6064 6065 switch (CFRuntime) { 6066 default: break; 6067 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6068 case LangOptions::CoreFoundationABI::Swift5_0: 6069 CFConstantStringClassName = 6070 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6071 : "$s10Foundation19_NSCFConstantStringCN"; 6072 Ty = IntPtrTy; 6073 break; 6074 case LangOptions::CoreFoundationABI::Swift4_2: 6075 CFConstantStringClassName = 6076 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6077 : "$S10Foundation19_NSCFConstantStringCN"; 6078 Ty = IntPtrTy; 6079 break; 6080 case LangOptions::CoreFoundationABI::Swift4_1: 6081 CFConstantStringClassName = 6082 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6083 : "__T010Foundation19_NSCFConstantStringCN"; 6084 Ty = IntPtrTy; 6085 break; 6086 } 6087 6088 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6089 6090 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6091 llvm::GlobalValue *GV = nullptr; 6092 6093 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6094 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6095 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6096 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6097 6098 const VarDecl *VD = nullptr; 6099 for (const auto *Result : DC->lookup(&II)) 6100 if ((VD = dyn_cast<VarDecl>(Result))) 6101 break; 6102 6103 if (Triple.isOSBinFormatELF()) { 6104 if (!VD) 6105 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6106 } else { 6107 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6108 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6109 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6110 else 6111 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6112 } 6113 6114 setDSOLocal(GV); 6115 } 6116 } 6117 6118 // Decay array -> ptr 6119 CFConstantStringClassRef = 6120 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 6121 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 6122 } 6123 6124 QualType CFTy = Context.getCFConstantStringType(); 6125 6126 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6127 6128 ConstantInitBuilder Builder(*this); 6129 auto Fields = Builder.beginStruct(STy); 6130 6131 // Class pointer. 6132 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6133 6134 // Flags. 6135 if (IsSwiftABI) { 6136 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6137 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6138 } else { 6139 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6140 } 6141 6142 // String pointer. 6143 llvm::Constant *C = nullptr; 6144 if (isUTF16) { 6145 auto Arr = llvm::ArrayRef( 6146 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6147 Entry.first().size() / 2); 6148 C = llvm::ConstantDataArray::get(VMContext, Arr); 6149 } else { 6150 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6151 } 6152 6153 // Note: -fwritable-strings doesn't make the backing store strings of 6154 // CFStrings writable. 6155 auto *GV = 6156 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6157 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6158 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6159 // Don't enforce the target's minimum global alignment, since the only use 6160 // of the string is via this class initializer. 6161 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6162 : Context.getTypeAlignInChars(Context.CharTy); 6163 GV->setAlignment(Align.getAsAlign()); 6164 6165 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6166 // Without it LLVM can merge the string with a non unnamed_addr one during 6167 // LTO. Doing that changes the section it ends in, which surprises ld64. 6168 if (Triple.isOSBinFormatMachO()) 6169 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6170 : "__TEXT,__cstring,cstring_literals"); 6171 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6172 // the static linker to adjust permissions to read-only later on. 6173 else if (Triple.isOSBinFormatELF()) 6174 GV->setSection(".rodata"); 6175 6176 // String. 6177 llvm::Constant *Str = 6178 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 6179 6180 Fields.add(Str); 6181 6182 // String length. 6183 llvm::IntegerType *LengthTy = 6184 llvm::IntegerType::get(getModule().getContext(), 6185 Context.getTargetInfo().getLongWidth()); 6186 if (IsSwiftABI) { 6187 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6188 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6189 LengthTy = Int32Ty; 6190 else 6191 LengthTy = IntPtrTy; 6192 } 6193 Fields.addInt(LengthTy, StringLength); 6194 6195 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6196 // properly aligned on 32-bit platforms. 6197 CharUnits Alignment = 6198 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6199 6200 // The struct. 6201 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6202 /*isConstant=*/false, 6203 llvm::GlobalVariable::PrivateLinkage); 6204 GV->addAttribute("objc_arc_inert"); 6205 switch (Triple.getObjectFormat()) { 6206 case llvm::Triple::UnknownObjectFormat: 6207 llvm_unreachable("unknown file format"); 6208 case llvm::Triple::DXContainer: 6209 case llvm::Triple::GOFF: 6210 case llvm::Triple::SPIRV: 6211 case llvm::Triple::XCOFF: 6212 llvm_unreachable("unimplemented"); 6213 case llvm::Triple::COFF: 6214 case llvm::Triple::ELF: 6215 case llvm::Triple::Wasm: 6216 GV->setSection("cfstring"); 6217 break; 6218 case llvm::Triple::MachO: 6219 GV->setSection("__DATA,__cfstring"); 6220 break; 6221 } 6222 Entry.second = GV; 6223 6224 return ConstantAddress(GV, GV->getValueType(), Alignment); 6225 } 6226 6227 bool CodeGenModule::getExpressionLocationsEnabled() const { 6228 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6229 } 6230 6231 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6232 if (ObjCFastEnumerationStateType.isNull()) { 6233 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6234 D->startDefinition(); 6235 6236 QualType FieldTypes[] = { 6237 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6238 Context.getPointerType(Context.UnsignedLongTy), 6239 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6240 nullptr, ArraySizeModifier::Normal, 0)}; 6241 6242 for (size_t i = 0; i < 4; ++i) { 6243 FieldDecl *Field = FieldDecl::Create(Context, 6244 D, 6245 SourceLocation(), 6246 SourceLocation(), nullptr, 6247 FieldTypes[i], /*TInfo=*/nullptr, 6248 /*BitWidth=*/nullptr, 6249 /*Mutable=*/false, 6250 ICIS_NoInit); 6251 Field->setAccess(AS_public); 6252 D->addDecl(Field); 6253 } 6254 6255 D->completeDefinition(); 6256 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6257 } 6258 6259 return ObjCFastEnumerationStateType; 6260 } 6261 6262 llvm::Constant * 6263 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6264 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6265 6266 // Don't emit it as the address of the string, emit the string data itself 6267 // as an inline array. 6268 if (E->getCharByteWidth() == 1) { 6269 SmallString<64> Str(E->getString()); 6270 6271 // Resize the string to the right size, which is indicated by its type. 6272 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6273 assert(CAT && "String literal not of constant array type!"); 6274 Str.resize(CAT->getSize().getZExtValue()); 6275 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6276 } 6277 6278 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6279 llvm::Type *ElemTy = AType->getElementType(); 6280 unsigned NumElements = AType->getNumElements(); 6281 6282 // Wide strings have either 2-byte or 4-byte elements. 6283 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6284 SmallVector<uint16_t, 32> Elements; 6285 Elements.reserve(NumElements); 6286 6287 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6288 Elements.push_back(E->getCodeUnit(i)); 6289 Elements.resize(NumElements); 6290 return llvm::ConstantDataArray::get(VMContext, Elements); 6291 } 6292 6293 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6294 SmallVector<uint32_t, 32> Elements; 6295 Elements.reserve(NumElements); 6296 6297 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6298 Elements.push_back(E->getCodeUnit(i)); 6299 Elements.resize(NumElements); 6300 return llvm::ConstantDataArray::get(VMContext, Elements); 6301 } 6302 6303 static llvm::GlobalVariable * 6304 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6305 CodeGenModule &CGM, StringRef GlobalName, 6306 CharUnits Alignment) { 6307 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6308 CGM.GetGlobalConstantAddressSpace()); 6309 6310 llvm::Module &M = CGM.getModule(); 6311 // Create a global variable for this string 6312 auto *GV = new llvm::GlobalVariable( 6313 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6314 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6315 GV->setAlignment(Alignment.getAsAlign()); 6316 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6317 if (GV->isWeakForLinker()) { 6318 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6319 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6320 } 6321 CGM.setDSOLocal(GV); 6322 6323 return GV; 6324 } 6325 6326 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6327 /// constant array for the given string literal. 6328 ConstantAddress 6329 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6330 StringRef Name) { 6331 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 6332 6333 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6334 llvm::GlobalVariable **Entry = nullptr; 6335 if (!LangOpts.WritableStrings) { 6336 Entry = &ConstantStringMap[C]; 6337 if (auto GV = *Entry) { 6338 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6339 GV->setAlignment(Alignment.getAsAlign()); 6340 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6341 GV->getValueType(), Alignment); 6342 } 6343 } 6344 6345 SmallString<256> MangledNameBuffer; 6346 StringRef GlobalVariableName; 6347 llvm::GlobalValue::LinkageTypes LT; 6348 6349 // Mangle the string literal if that's how the ABI merges duplicate strings. 6350 // Don't do it if they are writable, since we don't want writes in one TU to 6351 // affect strings in another. 6352 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6353 !LangOpts.WritableStrings) { 6354 llvm::raw_svector_ostream Out(MangledNameBuffer); 6355 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6356 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6357 GlobalVariableName = MangledNameBuffer; 6358 } else { 6359 LT = llvm::GlobalValue::PrivateLinkage; 6360 GlobalVariableName = Name; 6361 } 6362 6363 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6364 6365 CGDebugInfo *DI = getModuleDebugInfo(); 6366 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6367 DI->AddStringLiteralDebugInfo(GV, S); 6368 6369 if (Entry) 6370 *Entry = GV; 6371 6372 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6373 6374 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6375 GV->getValueType(), Alignment); 6376 } 6377 6378 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6379 /// array for the given ObjCEncodeExpr node. 6380 ConstantAddress 6381 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6382 std::string Str; 6383 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6384 6385 return GetAddrOfConstantCString(Str); 6386 } 6387 6388 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6389 /// the literal and a terminating '\0' character. 6390 /// The result has pointer to array type. 6391 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6392 const std::string &Str, const char *GlobalName) { 6393 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6394 CharUnits Alignment = 6395 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 6396 6397 llvm::Constant *C = 6398 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6399 6400 // Don't share any string literals if strings aren't constant. 6401 llvm::GlobalVariable **Entry = nullptr; 6402 if (!LangOpts.WritableStrings) { 6403 Entry = &ConstantStringMap[C]; 6404 if (auto GV = *Entry) { 6405 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6406 GV->setAlignment(Alignment.getAsAlign()); 6407 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6408 GV->getValueType(), Alignment); 6409 } 6410 } 6411 6412 // Get the default prefix if a name wasn't specified. 6413 if (!GlobalName) 6414 GlobalName = ".str"; 6415 // Create a global variable for this. 6416 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6417 GlobalName, Alignment); 6418 if (Entry) 6419 *Entry = GV; 6420 6421 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6422 GV->getValueType(), Alignment); 6423 } 6424 6425 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6426 const MaterializeTemporaryExpr *E, const Expr *Init) { 6427 assert((E->getStorageDuration() == SD_Static || 6428 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6429 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6430 6431 // If we're not materializing a subobject of the temporary, keep the 6432 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6433 QualType MaterializedType = Init->getType(); 6434 if (Init == E->getSubExpr()) 6435 MaterializedType = E->getType(); 6436 6437 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6438 6439 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6440 if (!InsertResult.second) { 6441 // We've seen this before: either we already created it or we're in the 6442 // process of doing so. 6443 if (!InsertResult.first->second) { 6444 // We recursively re-entered this function, probably during emission of 6445 // the initializer. Create a placeholder. We'll clean this up in the 6446 // outer call, at the end of this function. 6447 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6448 InsertResult.first->second = new llvm::GlobalVariable( 6449 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6450 nullptr); 6451 } 6452 return ConstantAddress(InsertResult.first->second, 6453 llvm::cast<llvm::GlobalVariable>( 6454 InsertResult.first->second->stripPointerCasts()) 6455 ->getValueType(), 6456 Align); 6457 } 6458 6459 // FIXME: If an externally-visible declaration extends multiple temporaries, 6460 // we need to give each temporary the same name in every translation unit (and 6461 // we also need to make the temporaries externally-visible). 6462 SmallString<256> Name; 6463 llvm::raw_svector_ostream Out(Name); 6464 getCXXABI().getMangleContext().mangleReferenceTemporary( 6465 VD, E->getManglingNumber(), Out); 6466 6467 APValue *Value = nullptr; 6468 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6469 // If the initializer of the extending declaration is a constant 6470 // initializer, we should have a cached constant initializer for this 6471 // temporary. Note that this might have a different value from the value 6472 // computed by evaluating the initializer if the surrounding constant 6473 // expression modifies the temporary. 6474 Value = E->getOrCreateValue(false); 6475 } 6476 6477 // Try evaluating it now, it might have a constant initializer. 6478 Expr::EvalResult EvalResult; 6479 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6480 !EvalResult.hasSideEffects()) 6481 Value = &EvalResult.Val; 6482 6483 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6484 6485 std::optional<ConstantEmitter> emitter; 6486 llvm::Constant *InitialValue = nullptr; 6487 bool Constant = false; 6488 llvm::Type *Type; 6489 if (Value) { 6490 // The temporary has a constant initializer, use it. 6491 emitter.emplace(*this); 6492 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6493 MaterializedType); 6494 Constant = 6495 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6496 /*ExcludeDtor*/ false); 6497 Type = InitialValue->getType(); 6498 } else { 6499 // No initializer, the initialization will be provided when we 6500 // initialize the declaration which performed lifetime extension. 6501 Type = getTypes().ConvertTypeForMem(MaterializedType); 6502 } 6503 6504 // Create a global variable for this lifetime-extended temporary. 6505 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6506 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6507 const VarDecl *InitVD; 6508 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6509 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6510 // Temporaries defined inside a class get linkonce_odr linkage because the 6511 // class can be defined in multiple translation units. 6512 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6513 } else { 6514 // There is no need for this temporary to have external linkage if the 6515 // VarDecl has external linkage. 6516 Linkage = llvm::GlobalVariable::InternalLinkage; 6517 } 6518 } 6519 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6520 auto *GV = new llvm::GlobalVariable( 6521 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6522 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6523 if (emitter) emitter->finalize(GV); 6524 // Don't assign dllimport or dllexport to local linkage globals. 6525 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6526 setGVProperties(GV, VD); 6527 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6528 // The reference temporary should never be dllexport. 6529 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6530 } 6531 GV->setAlignment(Align.getAsAlign()); 6532 if (supportsCOMDAT() && GV->isWeakForLinker()) 6533 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6534 if (VD->getTLSKind()) 6535 setTLSMode(GV, *VD); 6536 llvm::Constant *CV = GV; 6537 if (AddrSpace != LangAS::Default) 6538 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6539 *this, GV, AddrSpace, LangAS::Default, 6540 llvm::PointerType::get( 6541 getLLVMContext(), 6542 getContext().getTargetAddressSpace(LangAS::Default))); 6543 6544 // Update the map with the new temporary. If we created a placeholder above, 6545 // replace it with the new global now. 6546 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6547 if (Entry) { 6548 Entry->replaceAllUsesWith(CV); 6549 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6550 } 6551 Entry = CV; 6552 6553 return ConstantAddress(CV, Type, Align); 6554 } 6555 6556 /// EmitObjCPropertyImplementations - Emit information for synthesized 6557 /// properties for an implementation. 6558 void CodeGenModule::EmitObjCPropertyImplementations(const 6559 ObjCImplementationDecl *D) { 6560 for (const auto *PID : D->property_impls()) { 6561 // Dynamic is just for type-checking. 6562 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6563 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6564 6565 // Determine which methods need to be implemented, some may have 6566 // been overridden. Note that ::isPropertyAccessor is not the method 6567 // we want, that just indicates if the decl came from a 6568 // property. What we want to know is if the method is defined in 6569 // this implementation. 6570 auto *Getter = PID->getGetterMethodDecl(); 6571 if (!Getter || Getter->isSynthesizedAccessorStub()) 6572 CodeGenFunction(*this).GenerateObjCGetter( 6573 const_cast<ObjCImplementationDecl *>(D), PID); 6574 auto *Setter = PID->getSetterMethodDecl(); 6575 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6576 CodeGenFunction(*this).GenerateObjCSetter( 6577 const_cast<ObjCImplementationDecl *>(D), PID); 6578 } 6579 } 6580 } 6581 6582 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6583 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6584 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6585 ivar; ivar = ivar->getNextIvar()) 6586 if (ivar->getType().isDestructedType()) 6587 return true; 6588 6589 return false; 6590 } 6591 6592 static bool AllTrivialInitializers(CodeGenModule &CGM, 6593 ObjCImplementationDecl *D) { 6594 CodeGenFunction CGF(CGM); 6595 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6596 E = D->init_end(); B != E; ++B) { 6597 CXXCtorInitializer *CtorInitExp = *B; 6598 Expr *Init = CtorInitExp->getInit(); 6599 if (!CGF.isTrivialInitializer(Init)) 6600 return false; 6601 } 6602 return true; 6603 } 6604 6605 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6606 /// for an implementation. 6607 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6608 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6609 if (needsDestructMethod(D)) { 6610 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6611 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6612 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6613 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6614 getContext().VoidTy, nullptr, D, 6615 /*isInstance=*/true, /*isVariadic=*/false, 6616 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6617 /*isImplicitlyDeclared=*/true, 6618 /*isDefined=*/false, ObjCImplementationControl::Required); 6619 D->addInstanceMethod(DTORMethod); 6620 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6621 D->setHasDestructors(true); 6622 } 6623 6624 // If the implementation doesn't have any ivar initializers, we don't need 6625 // a .cxx_construct. 6626 if (D->getNumIvarInitializers() == 0 || 6627 AllTrivialInitializers(*this, D)) 6628 return; 6629 6630 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6631 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6632 // The constructor returns 'self'. 6633 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6634 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6635 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6636 /*isVariadic=*/false, 6637 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6638 /*isImplicitlyDeclared=*/true, 6639 /*isDefined=*/false, ObjCImplementationControl::Required); 6640 D->addInstanceMethod(CTORMethod); 6641 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6642 D->setHasNonZeroConstructors(true); 6643 } 6644 6645 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6646 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6647 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6648 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6649 ErrorUnsupported(LSD, "linkage spec"); 6650 return; 6651 } 6652 6653 EmitDeclContext(LSD); 6654 } 6655 6656 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6657 // Device code should not be at top level. 6658 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6659 return; 6660 6661 std::unique_ptr<CodeGenFunction> &CurCGF = 6662 GlobalTopLevelStmtBlockInFlight.first; 6663 6664 // We emitted a top-level stmt but after it there is initialization. 6665 // Stop squashing the top-level stmts into a single function. 6666 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6667 CurCGF->FinishFunction(D->getEndLoc()); 6668 CurCGF = nullptr; 6669 } 6670 6671 if (!CurCGF) { 6672 // void __stmts__N(void) 6673 // FIXME: Ask the ABI name mangler to pick a name. 6674 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6675 FunctionArgList Args; 6676 QualType RetTy = getContext().VoidTy; 6677 const CGFunctionInfo &FnInfo = 6678 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6679 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6680 llvm::Function *Fn = llvm::Function::Create( 6681 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6682 6683 CurCGF.reset(new CodeGenFunction(*this)); 6684 GlobalTopLevelStmtBlockInFlight.second = D; 6685 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6686 D->getBeginLoc(), D->getBeginLoc()); 6687 CXXGlobalInits.push_back(Fn); 6688 } 6689 6690 CurCGF->EmitStmt(D->getStmt()); 6691 } 6692 6693 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6694 for (auto *I : DC->decls()) { 6695 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6696 // are themselves considered "top-level", so EmitTopLevelDecl on an 6697 // ObjCImplDecl does not recursively visit them. We need to do that in 6698 // case they're nested inside another construct (LinkageSpecDecl / 6699 // ExportDecl) that does stop them from being considered "top-level". 6700 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6701 for (auto *M : OID->methods()) 6702 EmitTopLevelDecl(M); 6703 } 6704 6705 EmitTopLevelDecl(I); 6706 } 6707 } 6708 6709 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6710 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6711 // Ignore dependent declarations. 6712 if (D->isTemplated()) 6713 return; 6714 6715 // Consteval function shouldn't be emitted. 6716 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6717 return; 6718 6719 switch (D->getKind()) { 6720 case Decl::CXXConversion: 6721 case Decl::CXXMethod: 6722 case Decl::Function: 6723 EmitGlobal(cast<FunctionDecl>(D)); 6724 // Always provide some coverage mapping 6725 // even for the functions that aren't emitted. 6726 AddDeferredUnusedCoverageMapping(D); 6727 break; 6728 6729 case Decl::CXXDeductionGuide: 6730 // Function-like, but does not result in code emission. 6731 break; 6732 6733 case Decl::Var: 6734 case Decl::Decomposition: 6735 case Decl::VarTemplateSpecialization: 6736 EmitGlobal(cast<VarDecl>(D)); 6737 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6738 for (auto *B : DD->bindings()) 6739 if (auto *HD = B->getHoldingVar()) 6740 EmitGlobal(HD); 6741 break; 6742 6743 // Indirect fields from global anonymous structs and unions can be 6744 // ignored; only the actual variable requires IR gen support. 6745 case Decl::IndirectField: 6746 break; 6747 6748 // C++ Decls 6749 case Decl::Namespace: 6750 EmitDeclContext(cast<NamespaceDecl>(D)); 6751 break; 6752 case Decl::ClassTemplateSpecialization: { 6753 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6754 if (CGDebugInfo *DI = getModuleDebugInfo()) 6755 if (Spec->getSpecializationKind() == 6756 TSK_ExplicitInstantiationDefinition && 6757 Spec->hasDefinition()) 6758 DI->completeTemplateDefinition(*Spec); 6759 } [[fallthrough]]; 6760 case Decl::CXXRecord: { 6761 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6762 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6763 if (CRD->hasDefinition()) 6764 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6765 if (auto *ES = D->getASTContext().getExternalSource()) 6766 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6767 DI->completeUnusedClass(*CRD); 6768 } 6769 // Emit any static data members, they may be definitions. 6770 for (auto *I : CRD->decls()) 6771 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6772 EmitTopLevelDecl(I); 6773 break; 6774 } 6775 // No code generation needed. 6776 case Decl::UsingShadow: 6777 case Decl::ClassTemplate: 6778 case Decl::VarTemplate: 6779 case Decl::Concept: 6780 case Decl::VarTemplatePartialSpecialization: 6781 case Decl::FunctionTemplate: 6782 case Decl::TypeAliasTemplate: 6783 case Decl::Block: 6784 case Decl::Empty: 6785 case Decl::Binding: 6786 break; 6787 case Decl::Using: // using X; [C++] 6788 if (CGDebugInfo *DI = getModuleDebugInfo()) 6789 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6790 break; 6791 case Decl::UsingEnum: // using enum X; [C++] 6792 if (CGDebugInfo *DI = getModuleDebugInfo()) 6793 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6794 break; 6795 case Decl::NamespaceAlias: 6796 if (CGDebugInfo *DI = getModuleDebugInfo()) 6797 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6798 break; 6799 case Decl::UsingDirective: // using namespace X; [C++] 6800 if (CGDebugInfo *DI = getModuleDebugInfo()) 6801 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6802 break; 6803 case Decl::CXXConstructor: 6804 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6805 break; 6806 case Decl::CXXDestructor: 6807 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6808 break; 6809 6810 case Decl::StaticAssert: 6811 // Nothing to do. 6812 break; 6813 6814 // Objective-C Decls 6815 6816 // Forward declarations, no (immediate) code generation. 6817 case Decl::ObjCInterface: 6818 case Decl::ObjCCategory: 6819 break; 6820 6821 case Decl::ObjCProtocol: { 6822 auto *Proto = cast<ObjCProtocolDecl>(D); 6823 if (Proto->isThisDeclarationADefinition()) 6824 ObjCRuntime->GenerateProtocol(Proto); 6825 break; 6826 } 6827 6828 case Decl::ObjCCategoryImpl: 6829 // Categories have properties but don't support synthesize so we 6830 // can ignore them here. 6831 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6832 break; 6833 6834 case Decl::ObjCImplementation: { 6835 auto *OMD = cast<ObjCImplementationDecl>(D); 6836 EmitObjCPropertyImplementations(OMD); 6837 EmitObjCIvarInitializations(OMD); 6838 ObjCRuntime->GenerateClass(OMD); 6839 // Emit global variable debug information. 6840 if (CGDebugInfo *DI = getModuleDebugInfo()) 6841 if (getCodeGenOpts().hasReducedDebugInfo()) 6842 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6843 OMD->getClassInterface()), OMD->getLocation()); 6844 break; 6845 } 6846 case Decl::ObjCMethod: { 6847 auto *OMD = cast<ObjCMethodDecl>(D); 6848 // If this is not a prototype, emit the body. 6849 if (OMD->getBody()) 6850 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6851 break; 6852 } 6853 case Decl::ObjCCompatibleAlias: 6854 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6855 break; 6856 6857 case Decl::PragmaComment: { 6858 const auto *PCD = cast<PragmaCommentDecl>(D); 6859 switch (PCD->getCommentKind()) { 6860 case PCK_Unknown: 6861 llvm_unreachable("unexpected pragma comment kind"); 6862 case PCK_Linker: 6863 AppendLinkerOptions(PCD->getArg()); 6864 break; 6865 case PCK_Lib: 6866 AddDependentLib(PCD->getArg()); 6867 break; 6868 case PCK_Compiler: 6869 case PCK_ExeStr: 6870 case PCK_User: 6871 break; // We ignore all of these. 6872 } 6873 break; 6874 } 6875 6876 case Decl::PragmaDetectMismatch: { 6877 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6878 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6879 break; 6880 } 6881 6882 case Decl::LinkageSpec: 6883 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6884 break; 6885 6886 case Decl::FileScopeAsm: { 6887 // File-scope asm is ignored during device-side CUDA compilation. 6888 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6889 break; 6890 // File-scope asm is ignored during device-side OpenMP compilation. 6891 if (LangOpts.OpenMPIsTargetDevice) 6892 break; 6893 // File-scope asm is ignored during device-side SYCL compilation. 6894 if (LangOpts.SYCLIsDevice) 6895 break; 6896 auto *AD = cast<FileScopeAsmDecl>(D); 6897 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6898 break; 6899 } 6900 6901 case Decl::TopLevelStmt: 6902 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6903 break; 6904 6905 case Decl::Import: { 6906 auto *Import = cast<ImportDecl>(D); 6907 6908 // If we've already imported this module, we're done. 6909 if (!ImportedModules.insert(Import->getImportedModule())) 6910 break; 6911 6912 // Emit debug information for direct imports. 6913 if (!Import->getImportedOwningModule()) { 6914 if (CGDebugInfo *DI = getModuleDebugInfo()) 6915 DI->EmitImportDecl(*Import); 6916 } 6917 6918 // For C++ standard modules we are done - we will call the module 6919 // initializer for imported modules, and that will likewise call those for 6920 // any imports it has. 6921 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6922 !Import->getImportedOwningModule()->isModuleMapModule()) 6923 break; 6924 6925 // For clang C++ module map modules the initializers for sub-modules are 6926 // emitted here. 6927 6928 // Find all of the submodules and emit the module initializers. 6929 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6930 SmallVector<clang::Module *, 16> Stack; 6931 Visited.insert(Import->getImportedModule()); 6932 Stack.push_back(Import->getImportedModule()); 6933 6934 while (!Stack.empty()) { 6935 clang::Module *Mod = Stack.pop_back_val(); 6936 if (!EmittedModuleInitializers.insert(Mod).second) 6937 continue; 6938 6939 for (auto *D : Context.getModuleInitializers(Mod)) 6940 EmitTopLevelDecl(D); 6941 6942 // Visit the submodules of this module. 6943 for (auto *Submodule : Mod->submodules()) { 6944 // Skip explicit children; they need to be explicitly imported to emit 6945 // the initializers. 6946 if (Submodule->IsExplicit) 6947 continue; 6948 6949 if (Visited.insert(Submodule).second) 6950 Stack.push_back(Submodule); 6951 } 6952 } 6953 break; 6954 } 6955 6956 case Decl::Export: 6957 EmitDeclContext(cast<ExportDecl>(D)); 6958 break; 6959 6960 case Decl::OMPThreadPrivate: 6961 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6962 break; 6963 6964 case Decl::OMPAllocate: 6965 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6966 break; 6967 6968 case Decl::OMPDeclareReduction: 6969 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6970 break; 6971 6972 case Decl::OMPDeclareMapper: 6973 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6974 break; 6975 6976 case Decl::OMPRequires: 6977 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6978 break; 6979 6980 case Decl::Typedef: 6981 case Decl::TypeAlias: // using foo = bar; [C++11] 6982 if (CGDebugInfo *DI = getModuleDebugInfo()) 6983 DI->EmitAndRetainType( 6984 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6985 break; 6986 6987 case Decl::Record: 6988 if (CGDebugInfo *DI = getModuleDebugInfo()) 6989 if (cast<RecordDecl>(D)->getDefinition()) 6990 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6991 break; 6992 6993 case Decl::Enum: 6994 if (CGDebugInfo *DI = getModuleDebugInfo()) 6995 if (cast<EnumDecl>(D)->getDefinition()) 6996 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6997 break; 6998 6999 case Decl::HLSLBuffer: 7000 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 7001 break; 7002 7003 default: 7004 // Make sure we handled everything we should, every other kind is a 7005 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 7006 // function. Need to recode Decl::Kind to do that easily. 7007 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 7008 break; 7009 } 7010 } 7011 7012 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 7013 // Do we need to generate coverage mapping? 7014 if (!CodeGenOpts.CoverageMapping) 7015 return; 7016 switch (D->getKind()) { 7017 case Decl::CXXConversion: 7018 case Decl::CXXMethod: 7019 case Decl::Function: 7020 case Decl::ObjCMethod: 7021 case Decl::CXXConstructor: 7022 case Decl::CXXDestructor: { 7023 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 7024 break; 7025 SourceManager &SM = getContext().getSourceManager(); 7026 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 7027 break; 7028 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 7029 break; 7030 } 7031 default: 7032 break; 7033 }; 7034 } 7035 7036 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7037 // Do we need to generate coverage mapping? 7038 if (!CodeGenOpts.CoverageMapping) 7039 return; 7040 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7041 if (Fn->isTemplateInstantiation()) 7042 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7043 } 7044 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7045 } 7046 7047 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7048 // We call takeVector() here to avoid use-after-free. 7049 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7050 // we deserialize function bodies to emit coverage info for them, and that 7051 // deserializes more declarations. How should we handle that case? 7052 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7053 if (!Entry.second) 7054 continue; 7055 const Decl *D = Entry.first; 7056 switch (D->getKind()) { 7057 case Decl::CXXConversion: 7058 case Decl::CXXMethod: 7059 case Decl::Function: 7060 case Decl::ObjCMethod: { 7061 CodeGenPGO PGO(*this); 7062 GlobalDecl GD(cast<FunctionDecl>(D)); 7063 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7064 getFunctionLinkage(GD)); 7065 break; 7066 } 7067 case Decl::CXXConstructor: { 7068 CodeGenPGO PGO(*this); 7069 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7070 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7071 getFunctionLinkage(GD)); 7072 break; 7073 } 7074 case Decl::CXXDestructor: { 7075 CodeGenPGO PGO(*this); 7076 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7077 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7078 getFunctionLinkage(GD)); 7079 break; 7080 } 7081 default: 7082 break; 7083 }; 7084 } 7085 } 7086 7087 void CodeGenModule::EmitMainVoidAlias() { 7088 // In order to transition away from "__original_main" gracefully, emit an 7089 // alias for "main" in the no-argument case so that libc can detect when 7090 // new-style no-argument main is in used. 7091 if (llvm::Function *F = getModule().getFunction("main")) { 7092 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7093 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7094 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7095 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7096 } 7097 } 7098 } 7099 7100 /// Turns the given pointer into a constant. 7101 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7102 const void *Ptr) { 7103 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7104 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7105 return llvm::ConstantInt::get(i64, PtrInt); 7106 } 7107 7108 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7109 llvm::NamedMDNode *&GlobalMetadata, 7110 GlobalDecl D, 7111 llvm::GlobalValue *Addr) { 7112 if (!GlobalMetadata) 7113 GlobalMetadata = 7114 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7115 7116 // TODO: should we report variant information for ctors/dtors? 7117 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7118 llvm::ConstantAsMetadata::get(GetPointerConstant( 7119 CGM.getLLVMContext(), D.getDecl()))}; 7120 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7121 } 7122 7123 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7124 llvm::GlobalValue *CppFunc) { 7125 // Store the list of ifuncs we need to replace uses in. 7126 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7127 // List of ConstantExprs that we should be able to delete when we're done 7128 // here. 7129 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7130 7131 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7132 if (Elem == CppFunc) 7133 return false; 7134 7135 // First make sure that all users of this are ifuncs (or ifuncs via a 7136 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7137 // later. 7138 for (llvm::User *User : Elem->users()) { 7139 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7140 // ifunc directly. In any other case, just give up, as we don't know what we 7141 // could break by changing those. 7142 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7143 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7144 return false; 7145 7146 for (llvm::User *CEUser : ConstExpr->users()) { 7147 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7148 IFuncs.push_back(IFunc); 7149 } else { 7150 return false; 7151 } 7152 } 7153 CEs.push_back(ConstExpr); 7154 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7155 IFuncs.push_back(IFunc); 7156 } else { 7157 // This user is one we don't know how to handle, so fail redirection. This 7158 // will result in an ifunc retaining a resolver name that will ultimately 7159 // fail to be resolved to a defined function. 7160 return false; 7161 } 7162 } 7163 7164 // Now we know this is a valid case where we can do this alias replacement, we 7165 // need to remove all of the references to Elem (and the bitcasts!) so we can 7166 // delete it. 7167 for (llvm::GlobalIFunc *IFunc : IFuncs) 7168 IFunc->setResolver(nullptr); 7169 for (llvm::ConstantExpr *ConstExpr : CEs) 7170 ConstExpr->destroyConstant(); 7171 7172 // We should now be out of uses for the 'old' version of this function, so we 7173 // can erase it as well. 7174 Elem->eraseFromParent(); 7175 7176 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7177 // The type of the resolver is always just a function-type that returns the 7178 // type of the IFunc, so create that here. If the type of the actual 7179 // resolver doesn't match, it just gets bitcast to the right thing. 7180 auto *ResolverTy = 7181 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7182 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7183 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7184 IFunc->setResolver(Resolver); 7185 } 7186 return true; 7187 } 7188 7189 /// For each function which is declared within an extern "C" region and marked 7190 /// as 'used', but has internal linkage, create an alias from the unmangled 7191 /// name to the mangled name if possible. People expect to be able to refer 7192 /// to such functions with an unmangled name from inline assembly within the 7193 /// same translation unit. 7194 void CodeGenModule::EmitStaticExternCAliases() { 7195 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7196 return; 7197 for (auto &I : StaticExternCValues) { 7198 IdentifierInfo *Name = I.first; 7199 llvm::GlobalValue *Val = I.second; 7200 7201 // If Val is null, that implies there were multiple declarations that each 7202 // had a claim to the unmangled name. In this case, generation of the alias 7203 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7204 if (!Val) 7205 break; 7206 7207 llvm::GlobalValue *ExistingElem = 7208 getModule().getNamedValue(Name->getName()); 7209 7210 // If there is either not something already by this name, or we were able to 7211 // replace all uses from IFuncs, create the alias. 7212 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7213 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7214 } 7215 } 7216 7217 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7218 GlobalDecl &Result) const { 7219 auto Res = Manglings.find(MangledName); 7220 if (Res == Manglings.end()) 7221 return false; 7222 Result = Res->getValue(); 7223 return true; 7224 } 7225 7226 /// Emits metadata nodes associating all the global values in the 7227 /// current module with the Decls they came from. This is useful for 7228 /// projects using IR gen as a subroutine. 7229 /// 7230 /// Since there's currently no way to associate an MDNode directly 7231 /// with an llvm::GlobalValue, we create a global named metadata 7232 /// with the name 'clang.global.decl.ptrs'. 7233 void CodeGenModule::EmitDeclMetadata() { 7234 llvm::NamedMDNode *GlobalMetadata = nullptr; 7235 7236 for (auto &I : MangledDeclNames) { 7237 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7238 // Some mangled names don't necessarily have an associated GlobalValue 7239 // in this module, e.g. if we mangled it for DebugInfo. 7240 if (Addr) 7241 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7242 } 7243 } 7244 7245 /// Emits metadata nodes for all the local variables in the current 7246 /// function. 7247 void CodeGenFunction::EmitDeclMetadata() { 7248 if (LocalDeclMap.empty()) return; 7249 7250 llvm::LLVMContext &Context = getLLVMContext(); 7251 7252 // Find the unique metadata ID for this name. 7253 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7254 7255 llvm::NamedMDNode *GlobalMetadata = nullptr; 7256 7257 for (auto &I : LocalDeclMap) { 7258 const Decl *D = I.first; 7259 llvm::Value *Addr = I.second.getPointer(); 7260 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7261 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7262 Alloca->setMetadata( 7263 DeclPtrKind, llvm::MDNode::get( 7264 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7265 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7266 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7267 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7268 } 7269 } 7270 } 7271 7272 void CodeGenModule::EmitVersionIdentMetadata() { 7273 llvm::NamedMDNode *IdentMetadata = 7274 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7275 std::string Version = getClangFullVersion(); 7276 llvm::LLVMContext &Ctx = TheModule.getContext(); 7277 7278 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7279 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7280 } 7281 7282 void CodeGenModule::EmitCommandLineMetadata() { 7283 llvm::NamedMDNode *CommandLineMetadata = 7284 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7285 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7286 llvm::LLVMContext &Ctx = TheModule.getContext(); 7287 7288 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7289 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7290 } 7291 7292 void CodeGenModule::EmitCoverageFile() { 7293 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7294 if (!CUNode) 7295 return; 7296 7297 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7298 llvm::LLVMContext &Ctx = TheModule.getContext(); 7299 auto *CoverageDataFile = 7300 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7301 auto *CoverageNotesFile = 7302 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7303 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7304 llvm::MDNode *CU = CUNode->getOperand(i); 7305 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7306 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7307 } 7308 } 7309 7310 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7311 bool ForEH) { 7312 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7313 // FIXME: should we even be calling this method if RTTI is disabled 7314 // and it's not for EH? 7315 if (!shouldEmitRTTI(ForEH)) 7316 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7317 7318 if (ForEH && Ty->isObjCObjectPointerType() && 7319 LangOpts.ObjCRuntime.isGNUFamily()) 7320 return ObjCRuntime->GetEHType(Ty); 7321 7322 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7323 } 7324 7325 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7326 // Do not emit threadprivates in simd-only mode. 7327 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7328 return; 7329 for (auto RefExpr : D->varlists()) { 7330 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7331 bool PerformInit = 7332 VD->getAnyInitializer() && 7333 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7334 /*ForRef=*/false); 7335 7336 Address Addr(GetAddrOfGlobalVar(VD), 7337 getTypes().ConvertTypeForMem(VD->getType()), 7338 getContext().getDeclAlign(VD)); 7339 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7340 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7341 CXXGlobalInits.push_back(InitFunction); 7342 } 7343 } 7344 7345 llvm::Metadata * 7346 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7347 StringRef Suffix) { 7348 if (auto *FnType = T->getAs<FunctionProtoType>()) 7349 T = getContext().getFunctionType( 7350 FnType->getReturnType(), FnType->getParamTypes(), 7351 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7352 7353 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7354 if (InternalId) 7355 return InternalId; 7356 7357 if (isExternallyVisible(T->getLinkage())) { 7358 std::string OutName; 7359 llvm::raw_string_ostream Out(OutName); 7360 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7361 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7362 7363 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7364 Out << ".normalized"; 7365 7366 Out << Suffix; 7367 7368 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7369 } else { 7370 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7371 llvm::ArrayRef<llvm::Metadata *>()); 7372 } 7373 7374 return InternalId; 7375 } 7376 7377 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7378 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7379 } 7380 7381 llvm::Metadata * 7382 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7383 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7384 } 7385 7386 // Generalize pointer types to a void pointer with the qualifiers of the 7387 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7388 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7389 // 'void *'. 7390 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7391 if (!Ty->isPointerType()) 7392 return Ty; 7393 7394 return Ctx.getPointerType( 7395 QualType(Ctx.VoidTy).withCVRQualifiers( 7396 Ty->getPointeeType().getCVRQualifiers())); 7397 } 7398 7399 // Apply type generalization to a FunctionType's return and argument types 7400 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7401 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7402 SmallVector<QualType, 8> GeneralizedParams; 7403 for (auto &Param : FnType->param_types()) 7404 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7405 7406 return Ctx.getFunctionType( 7407 GeneralizeType(Ctx, FnType->getReturnType()), 7408 GeneralizedParams, FnType->getExtProtoInfo()); 7409 } 7410 7411 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7412 return Ctx.getFunctionNoProtoType( 7413 GeneralizeType(Ctx, FnType->getReturnType())); 7414 7415 llvm_unreachable("Encountered unknown FunctionType"); 7416 } 7417 7418 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7419 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7420 GeneralizedMetadataIdMap, ".generalized"); 7421 } 7422 7423 /// Returns whether this module needs the "all-vtables" type identifier. 7424 bool CodeGenModule::NeedAllVtablesTypeId() const { 7425 // Returns true if at least one of vtable-based CFI checkers is enabled and 7426 // is not in the trapping mode. 7427 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7428 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7429 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7430 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7431 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7432 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7433 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7434 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7435 } 7436 7437 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7438 CharUnits Offset, 7439 const CXXRecordDecl *RD) { 7440 llvm::Metadata *MD = 7441 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7442 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7443 7444 if (CodeGenOpts.SanitizeCfiCrossDso) 7445 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7446 VTable->addTypeMetadata(Offset.getQuantity(), 7447 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7448 7449 if (NeedAllVtablesTypeId()) { 7450 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7451 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7452 } 7453 } 7454 7455 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7456 if (!SanStats) 7457 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7458 7459 return *SanStats; 7460 } 7461 7462 llvm::Value * 7463 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7464 CodeGenFunction &CGF) { 7465 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7466 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7467 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7468 auto *Call = CGF.EmitRuntimeCall( 7469 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7470 return Call; 7471 } 7472 7473 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7474 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7475 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7476 /* forPointeeType= */ true); 7477 } 7478 7479 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7480 LValueBaseInfo *BaseInfo, 7481 TBAAAccessInfo *TBAAInfo, 7482 bool forPointeeType) { 7483 if (TBAAInfo) 7484 *TBAAInfo = getTBAAAccessInfo(T); 7485 7486 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7487 // that doesn't return the information we need to compute BaseInfo. 7488 7489 // Honor alignment typedef attributes even on incomplete types. 7490 // We also honor them straight for C++ class types, even as pointees; 7491 // there's an expressivity gap here. 7492 if (auto TT = T->getAs<TypedefType>()) { 7493 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7494 if (BaseInfo) 7495 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7496 return getContext().toCharUnitsFromBits(Align); 7497 } 7498 } 7499 7500 bool AlignForArray = T->isArrayType(); 7501 7502 // Analyze the base element type, so we don't get confused by incomplete 7503 // array types. 7504 T = getContext().getBaseElementType(T); 7505 7506 if (T->isIncompleteType()) { 7507 // We could try to replicate the logic from 7508 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7509 // type is incomplete, so it's impossible to test. We could try to reuse 7510 // getTypeAlignIfKnown, but that doesn't return the information we need 7511 // to set BaseInfo. So just ignore the possibility that the alignment is 7512 // greater than one. 7513 if (BaseInfo) 7514 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7515 return CharUnits::One(); 7516 } 7517 7518 if (BaseInfo) 7519 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7520 7521 CharUnits Alignment; 7522 const CXXRecordDecl *RD; 7523 if (T.getQualifiers().hasUnaligned()) { 7524 Alignment = CharUnits::One(); 7525 } else if (forPointeeType && !AlignForArray && 7526 (RD = T->getAsCXXRecordDecl())) { 7527 // For C++ class pointees, we don't know whether we're pointing at a 7528 // base or a complete object, so we generally need to use the 7529 // non-virtual alignment. 7530 Alignment = getClassPointerAlignment(RD); 7531 } else { 7532 Alignment = getContext().getTypeAlignInChars(T); 7533 } 7534 7535 // Cap to the global maximum type alignment unless the alignment 7536 // was somehow explicit on the type. 7537 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7538 if (Alignment.getQuantity() > MaxAlign && 7539 !getContext().isAlignmentRequired(T)) 7540 Alignment = CharUnits::fromQuantity(MaxAlign); 7541 } 7542 return Alignment; 7543 } 7544 7545 bool CodeGenModule::stopAutoInit() { 7546 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7547 if (StopAfter) { 7548 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7549 // used 7550 if (NumAutoVarInit >= StopAfter) { 7551 return true; 7552 } 7553 if (!NumAutoVarInit) { 7554 unsigned DiagID = getDiags().getCustomDiagID( 7555 DiagnosticsEngine::Warning, 7556 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7557 "number of times ftrivial-auto-var-init=%1 gets applied."); 7558 getDiags().Report(DiagID) 7559 << StopAfter 7560 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7561 LangOptions::TrivialAutoVarInitKind::Zero 7562 ? "zero" 7563 : "pattern"); 7564 } 7565 ++NumAutoVarInit; 7566 } 7567 return false; 7568 } 7569 7570 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7571 const Decl *D) const { 7572 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7573 // postfix beginning with '.' since the symbol name can be demangled. 7574 if (LangOpts.HIP) 7575 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7576 else 7577 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7578 7579 // If the CUID is not specified we try to generate a unique postfix. 7580 if (getLangOpts().CUID.empty()) { 7581 SourceManager &SM = getContext().getSourceManager(); 7582 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7583 assert(PLoc.isValid() && "Source location is expected to be valid."); 7584 7585 // Get the hash of the user defined macros. 7586 llvm::MD5 Hash; 7587 llvm::MD5::MD5Result Result; 7588 for (const auto &Arg : PreprocessorOpts.Macros) 7589 Hash.update(Arg.first); 7590 Hash.final(Result); 7591 7592 // Get the UniqueID for the file containing the decl. 7593 llvm::sys::fs::UniqueID ID; 7594 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7595 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7596 assert(PLoc.isValid() && "Source location is expected to be valid."); 7597 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7598 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7599 << PLoc.getFilename() << EC.message(); 7600 } 7601 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7602 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7603 } else { 7604 OS << getContext().getCUIDHash(); 7605 } 7606 } 7607 7608 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7609 assert(DeferredDeclsToEmit.empty() && 7610 "Should have emitted all decls deferred to emit."); 7611 assert(NewBuilder->DeferredDecls.empty() && 7612 "Newly created module should not have deferred decls"); 7613 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7614 assert(EmittedDeferredDecls.empty() && 7615 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7616 7617 assert(NewBuilder->DeferredVTables.empty() && 7618 "Newly created module should not have deferred vtables"); 7619 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7620 7621 assert(NewBuilder->MangledDeclNames.empty() && 7622 "Newly created module should not have mangled decl names"); 7623 assert(NewBuilder->Manglings.empty() && 7624 "Newly created module should not have manglings"); 7625 NewBuilder->Manglings = std::move(Manglings); 7626 7627 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7628 7629 NewBuilder->TBAA = std::move(TBAA); 7630 7631 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7632 } 7633