1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeGPU.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/StringSwitch.h" 51 #include "llvm/ADT/Triple.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 54 #include "llvm/IR/CallingConv.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/Intrinsics.h" 57 #include "llvm/IR/LLVMContext.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ProfileSummary.h" 60 #include "llvm/ProfileData/InstrProfReader.h" 61 #include "llvm/Support/CodeGen.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/ConvertUTF.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/MD5.h" 66 #include "llvm/Support/TimeProfiler.h" 67 #include "llvm/Support/X86TargetParser.h" 68 69 using namespace clang; 70 using namespace CodeGen; 71 72 static llvm::cl::opt<bool> LimitedCoverage( 73 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 74 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 75 llvm::cl::init(false)); 76 77 static const char AnnotationSection[] = "llvm.metadata"; 78 79 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 80 switch (CGM.getContext().getCXXABIKind()) { 81 case TargetCXXABI::AppleARM64: 82 case TargetCXXABI::Fuchsia: 83 case TargetCXXABI::GenericAArch64: 84 case TargetCXXABI::GenericARM: 85 case TargetCXXABI::iOS: 86 case TargetCXXABI::WatchOS: 87 case TargetCXXABI::GenericMIPS: 88 case TargetCXXABI::GenericItanium: 89 case TargetCXXABI::WebAssembly: 90 case TargetCXXABI::XL: 91 return CreateItaniumCXXABI(CGM); 92 case TargetCXXABI::Microsoft: 93 return CreateMicrosoftCXXABI(CGM); 94 } 95 96 llvm_unreachable("invalid C++ ABI kind"); 97 } 98 99 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 100 const PreprocessorOptions &PPO, 101 const CodeGenOptions &CGO, llvm::Module &M, 102 DiagnosticsEngine &diags, 103 CoverageSourceInfo *CoverageInfo) 104 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 105 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 106 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 107 VMContext(M.getContext()), Types(*this), VTables(*this), 108 SanitizerMD(new SanitizerMetadata(*this)) { 109 110 // Initialize the type cache. 111 llvm::LLVMContext &LLVMContext = M.getContext(); 112 VoidTy = llvm::Type::getVoidTy(LLVMContext); 113 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 114 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 115 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 116 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 117 HalfTy = llvm::Type::getHalfTy(LLVMContext); 118 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 119 FloatTy = llvm::Type::getFloatTy(LLVMContext); 120 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 121 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 122 PointerAlignInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 124 SizeSizeInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 126 IntAlignInBytes = 127 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 128 CharTy = 129 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 130 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 131 IntPtrTy = llvm::IntegerType::get(LLVMContext, 132 C.getTargetInfo().getMaxPointerWidth()); 133 Int8PtrTy = Int8Ty->getPointerTo(0); 134 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 135 const llvm::DataLayout &DL = M.getDataLayout(); 136 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 137 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 138 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 139 140 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 141 142 if (LangOpts.ObjC) 143 createObjCRuntime(); 144 if (LangOpts.OpenCL) 145 createOpenCLRuntime(); 146 if (LangOpts.OpenMP) 147 createOpenMPRuntime(); 148 if (LangOpts.CUDA) 149 createCUDARuntime(); 150 if (LangOpts.HLSL) 151 createHLSLRuntime(); 152 153 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 154 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 155 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 156 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 157 getCXXABI().getMangleContext())); 158 159 // If debug info or coverage generation is enabled, create the CGDebugInfo 160 // object. 161 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 162 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 163 DebugInfo.reset(new CGDebugInfo(*this)); 164 165 Block.GlobalUniqueCount = 0; 166 167 if (C.getLangOpts().ObjC) 168 ObjCData.reset(new ObjCEntrypoints()); 169 170 if (CodeGenOpts.hasProfileClangUse()) { 171 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 172 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 173 if (auto E = ReaderOrErr.takeError()) { 174 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 175 "Could not read profile %0: %1"); 176 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 177 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 178 << EI.message(); 179 }); 180 } else 181 PGOReader = std::move(ReaderOrErr.get()); 182 } 183 184 // If coverage mapping generation is enabled, create the 185 // CoverageMappingModuleGen object. 186 if (CodeGenOpts.CoverageMapping) 187 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 188 189 // Generate the module name hash here if needed. 190 if (CodeGenOpts.UniqueInternalLinkageNames && 191 !getModule().getSourceFileName().empty()) { 192 std::string Path = getModule().getSourceFileName(); 193 // Check if a path substitution is needed from the MacroPrefixMap. 194 for (const auto &Entry : LangOpts.MacroPrefixMap) 195 if (Path.rfind(Entry.first, 0) != std::string::npos) { 196 Path = Entry.second + Path.substr(Entry.first.size()); 197 break; 198 } 199 llvm::MD5 Md5; 200 Md5.update(Path); 201 llvm::MD5::MD5Result R; 202 Md5.final(R); 203 SmallString<32> Str; 204 llvm::MD5::stringifyResult(R, Str); 205 // Convert MD5hash to Decimal. Demangler suffixes can either contain 206 // numbers or characters but not both. 207 llvm::APInt IntHash(128, Str.str(), 16); 208 // Prepend "__uniq" before the hash for tools like profilers to understand 209 // that this symbol is of internal linkage type. The "__uniq" is the 210 // pre-determined prefix that is used to tell tools that this symbol was 211 // created with -funique-internal-linakge-symbols and the tools can strip or 212 // keep the prefix as needed. 213 ModuleNameHash = (Twine(".__uniq.") + 214 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str(); 215 } 216 } 217 218 CodeGenModule::~CodeGenModule() {} 219 220 void CodeGenModule::createObjCRuntime() { 221 // This is just isGNUFamily(), but we want to force implementors of 222 // new ABIs to decide how best to do this. 223 switch (LangOpts.ObjCRuntime.getKind()) { 224 case ObjCRuntime::GNUstep: 225 case ObjCRuntime::GCC: 226 case ObjCRuntime::ObjFW: 227 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 228 return; 229 230 case ObjCRuntime::FragileMacOSX: 231 case ObjCRuntime::MacOSX: 232 case ObjCRuntime::iOS: 233 case ObjCRuntime::WatchOS: 234 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 235 return; 236 } 237 llvm_unreachable("bad runtime kind"); 238 } 239 240 void CodeGenModule::createOpenCLRuntime() { 241 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 242 } 243 244 void CodeGenModule::createOpenMPRuntime() { 245 // Select a specialized code generation class based on the target, if any. 246 // If it does not exist use the default implementation. 247 switch (getTriple().getArch()) { 248 case llvm::Triple::nvptx: 249 case llvm::Triple::nvptx64: 250 case llvm::Triple::amdgcn: 251 assert(getLangOpts().OpenMPIsDevice && 252 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 253 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 254 break; 255 default: 256 if (LangOpts.OpenMPSimd) 257 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 258 else 259 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 260 break; 261 } 262 } 263 264 void CodeGenModule::createCUDARuntime() { 265 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 266 } 267 268 void CodeGenModule::createHLSLRuntime() { 269 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 270 } 271 272 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 273 Replacements[Name] = C; 274 } 275 276 void CodeGenModule::applyReplacements() { 277 for (auto &I : Replacements) { 278 StringRef MangledName = I.first(); 279 llvm::Constant *Replacement = I.second; 280 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 281 if (!Entry) 282 continue; 283 auto *OldF = cast<llvm::Function>(Entry); 284 auto *NewF = dyn_cast<llvm::Function>(Replacement); 285 if (!NewF) { 286 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 287 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 288 } else { 289 auto *CE = cast<llvm::ConstantExpr>(Replacement); 290 assert(CE->getOpcode() == llvm::Instruction::BitCast || 291 CE->getOpcode() == llvm::Instruction::GetElementPtr); 292 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 293 } 294 } 295 296 // Replace old with new, but keep the old order. 297 OldF->replaceAllUsesWith(Replacement); 298 if (NewF) { 299 NewF->removeFromParent(); 300 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 301 NewF); 302 } 303 OldF->eraseFromParent(); 304 } 305 } 306 307 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 308 GlobalValReplacements.push_back(std::make_pair(GV, C)); 309 } 310 311 void CodeGenModule::applyGlobalValReplacements() { 312 for (auto &I : GlobalValReplacements) { 313 llvm::GlobalValue *GV = I.first; 314 llvm::Constant *C = I.second; 315 316 GV->replaceAllUsesWith(C); 317 GV->eraseFromParent(); 318 } 319 } 320 321 // This is only used in aliases that we created and we know they have a 322 // linear structure. 323 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 324 const llvm::Constant *C; 325 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 326 C = GA->getAliasee(); 327 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 328 C = GI->getResolver(); 329 else 330 return GV; 331 332 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 333 if (!AliaseeGV) 334 return nullptr; 335 336 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 337 if (FinalGV == GV) 338 return nullptr; 339 340 return FinalGV; 341 } 342 343 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 344 SourceLocation Location, bool IsIFunc, 345 const llvm::GlobalValue *Alias, 346 const llvm::GlobalValue *&GV) { 347 GV = getAliasedGlobal(Alias); 348 if (!GV) { 349 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 350 return false; 351 } 352 353 if (GV->isDeclaration()) { 354 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 355 return false; 356 } 357 358 if (IsIFunc) { 359 // Check resolver function type. 360 const auto *F = dyn_cast<llvm::Function>(GV); 361 if (!F) { 362 Diags.Report(Location, diag::err_alias_to_undefined) 363 << IsIFunc << IsIFunc; 364 return false; 365 } 366 367 llvm::FunctionType *FTy = F->getFunctionType(); 368 if (!FTy->getReturnType()->isPointerTy()) { 369 Diags.Report(Location, diag::err_ifunc_resolver_return); 370 return false; 371 } 372 } 373 374 return true; 375 } 376 377 void CodeGenModule::checkAliases() { 378 // Check if the constructed aliases are well formed. It is really unfortunate 379 // that we have to do this in CodeGen, but we only construct mangled names 380 // and aliases during codegen. 381 bool Error = false; 382 DiagnosticsEngine &Diags = getDiags(); 383 for (const GlobalDecl &GD : Aliases) { 384 const auto *D = cast<ValueDecl>(GD.getDecl()); 385 SourceLocation Location; 386 bool IsIFunc = D->hasAttr<IFuncAttr>(); 387 if (const Attr *A = D->getDefiningAttr()) 388 Location = A->getLocation(); 389 else 390 llvm_unreachable("Not an alias or ifunc?"); 391 392 StringRef MangledName = getMangledName(GD); 393 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 394 const llvm::GlobalValue *GV = nullptr; 395 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 396 Error = true; 397 continue; 398 } 399 400 llvm::Constant *Aliasee = 401 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 402 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 403 404 llvm::GlobalValue *AliaseeGV; 405 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 406 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 407 else 408 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 409 410 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 411 StringRef AliasSection = SA->getName(); 412 if (AliasSection != AliaseeGV->getSection()) 413 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 414 << AliasSection << IsIFunc << IsIFunc; 415 } 416 417 // We have to handle alias to weak aliases in here. LLVM itself disallows 418 // this since the object semantics would not match the IL one. For 419 // compatibility with gcc we implement it by just pointing the alias 420 // to its aliasee's aliasee. We also warn, since the user is probably 421 // expecting the link to be weak. 422 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 423 if (GA->isInterposable()) { 424 Diags.Report(Location, diag::warn_alias_to_weak_alias) 425 << GV->getName() << GA->getName() << IsIFunc; 426 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 427 GA->getAliasee(), Alias->getType()); 428 429 if (IsIFunc) 430 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 431 else 432 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 433 } 434 } 435 } 436 if (!Error) 437 return; 438 439 for (const GlobalDecl &GD : Aliases) { 440 StringRef MangledName = getMangledName(GD); 441 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 442 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 443 Alias->eraseFromParent(); 444 } 445 } 446 447 void CodeGenModule::clear() { 448 DeferredDeclsToEmit.clear(); 449 if (OpenMPRuntime) 450 OpenMPRuntime->clear(); 451 } 452 453 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 454 StringRef MainFile) { 455 if (!hasDiagnostics()) 456 return; 457 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 458 if (MainFile.empty()) 459 MainFile = "<stdin>"; 460 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 461 } else { 462 if (Mismatched > 0) 463 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 464 465 if (Missing > 0) 466 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 467 } 468 } 469 470 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 471 llvm::Module &M) { 472 if (!LO.VisibilityFromDLLStorageClass) 473 return; 474 475 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 476 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 477 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 478 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 479 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 480 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 481 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 482 CodeGenModule::GetLLVMVisibility( 483 LO.getExternDeclNoDLLStorageClassVisibility()); 484 485 for (llvm::GlobalValue &GV : M.global_values()) { 486 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 487 continue; 488 489 // Reset DSO locality before setting the visibility. This removes 490 // any effects that visibility options and annotations may have 491 // had on the DSO locality. Setting the visibility will implicitly set 492 // appropriate globals to DSO Local; however, this will be pessimistic 493 // w.r.t. to the normal compiler IRGen. 494 GV.setDSOLocal(false); 495 496 if (GV.isDeclarationForLinker()) { 497 GV.setVisibility(GV.getDLLStorageClass() == 498 llvm::GlobalValue::DLLImportStorageClass 499 ? ExternDeclDLLImportVisibility 500 : ExternDeclNoDLLStorageClassVisibility); 501 } else { 502 GV.setVisibility(GV.getDLLStorageClass() == 503 llvm::GlobalValue::DLLExportStorageClass 504 ? DLLExportVisibility 505 : NoDLLStorageClassVisibility); 506 } 507 508 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 509 } 510 } 511 512 void CodeGenModule::Release() { 513 EmitDeferred(); 514 EmitVTablesOpportunistically(); 515 applyGlobalValReplacements(); 516 applyReplacements(); 517 emitMultiVersionFunctions(); 518 EmitCXXGlobalInitFunc(); 519 EmitCXXGlobalCleanUpFunc(); 520 registerGlobalDtorsWithAtExit(); 521 EmitCXXThreadLocalInitFunc(); 522 if (ObjCRuntime) 523 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 524 AddGlobalCtor(ObjCInitFunction); 525 if (Context.getLangOpts().CUDA && CUDARuntime) { 526 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 527 AddGlobalCtor(CudaCtorFunction); 528 } 529 if (OpenMPRuntime) { 530 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 531 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 532 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 533 } 534 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 535 OpenMPRuntime->clear(); 536 } 537 if (PGOReader) { 538 getModule().setProfileSummary( 539 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 540 llvm::ProfileSummary::PSK_Instr); 541 if (PGOStats.hasDiagnostics()) 542 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 543 } 544 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 545 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 546 EmitGlobalAnnotations(); 547 EmitStaticExternCAliases(); 548 checkAliases(); 549 EmitDeferredUnusedCoverageMappings(); 550 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 551 if (CoverageMapping) 552 CoverageMapping->emit(); 553 if (CodeGenOpts.SanitizeCfiCrossDso) { 554 CodeGenFunction(*this).EmitCfiCheckFail(); 555 CodeGenFunction(*this).EmitCfiCheckStub(); 556 } 557 emitAtAvailableLinkGuard(); 558 if (Context.getTargetInfo().getTriple().isWasm() && 559 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 560 EmitMainVoidAlias(); 561 } 562 563 if (getTriple().isAMDGPU()) { 564 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 565 // preserve ASAN functions in bitcode libraries. 566 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 567 auto *FT = llvm::FunctionType::get(VoidTy, {}); 568 auto *F = llvm::Function::Create( 569 FT, llvm::GlobalValue::ExternalLinkage, 570 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 571 auto *Var = new llvm::GlobalVariable( 572 getModule(), FT->getPointerTo(), 573 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 574 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 575 llvm::GlobalVariable::NotThreadLocal); 576 addCompilerUsedGlobal(Var); 577 } 578 // Emit amdgpu_code_object_version module flag, which is code object version 579 // times 100. 580 // ToDo: Enable module flag for all code object version when ROCm device 581 // library is ready. 582 if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) { 583 getModule().addModuleFlag(llvm::Module::Error, 584 "amdgpu_code_object_version", 585 getTarget().getTargetOpts().CodeObjectVersion); 586 } 587 } 588 589 // Emit a global array containing all external kernels or device variables 590 // used by host functions and mark it as used for CUDA/HIP. This is necessary 591 // to get kernels or device variables in archives linked in even if these 592 // kernels or device variables are only used in host functions. 593 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 594 SmallVector<llvm::Constant *, 8> UsedArray; 595 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 596 GlobalDecl GD; 597 if (auto *FD = dyn_cast<FunctionDecl>(D)) 598 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 599 else 600 GD = GlobalDecl(D); 601 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 602 GetAddrOfGlobal(GD), Int8PtrTy)); 603 } 604 605 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 606 607 auto *GV = new llvm::GlobalVariable( 608 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 609 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 610 addCompilerUsedGlobal(GV); 611 } 612 613 emitLLVMUsed(); 614 if (SanStats) 615 SanStats->finish(); 616 617 if (CodeGenOpts.Autolink && 618 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 619 EmitModuleLinkOptions(); 620 } 621 622 // On ELF we pass the dependent library specifiers directly to the linker 623 // without manipulating them. This is in contrast to other platforms where 624 // they are mapped to a specific linker option by the compiler. This 625 // difference is a result of the greater variety of ELF linkers and the fact 626 // that ELF linkers tend to handle libraries in a more complicated fashion 627 // than on other platforms. This forces us to defer handling the dependent 628 // libs to the linker. 629 // 630 // CUDA/HIP device and host libraries are different. Currently there is no 631 // way to differentiate dependent libraries for host or device. Existing 632 // usage of #pragma comment(lib, *) is intended for host libraries on 633 // Windows. Therefore emit llvm.dependent-libraries only for host. 634 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 635 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 636 for (auto *MD : ELFDependentLibraries) 637 NMD->addOperand(MD); 638 } 639 640 // Record mregparm value now so it is visible through rest of codegen. 641 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 642 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 643 CodeGenOpts.NumRegisterParameters); 644 645 if (CodeGenOpts.DwarfVersion) { 646 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 647 CodeGenOpts.DwarfVersion); 648 } 649 650 if (CodeGenOpts.Dwarf64) 651 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 652 653 if (Context.getLangOpts().SemanticInterposition) 654 // Require various optimization to respect semantic interposition. 655 getModule().setSemanticInterposition(true); 656 657 if (CodeGenOpts.EmitCodeView) { 658 // Indicate that we want CodeView in the metadata. 659 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 660 } 661 if (CodeGenOpts.CodeViewGHash) { 662 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 663 } 664 if (CodeGenOpts.ControlFlowGuard) { 665 // Function ID tables and checks for Control Flow Guard (cfguard=2). 666 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 667 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 668 // Function ID tables for Control Flow Guard (cfguard=1). 669 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 670 } 671 if (CodeGenOpts.EHContGuard) { 672 // Function ID tables for EH Continuation Guard. 673 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 674 } 675 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 676 // We don't support LTO with 2 with different StrictVTablePointers 677 // FIXME: we could support it by stripping all the information introduced 678 // by StrictVTablePointers. 679 680 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 681 682 llvm::Metadata *Ops[2] = { 683 llvm::MDString::get(VMContext, "StrictVTablePointers"), 684 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 685 llvm::Type::getInt32Ty(VMContext), 1))}; 686 687 getModule().addModuleFlag(llvm::Module::Require, 688 "StrictVTablePointersRequirement", 689 llvm::MDNode::get(VMContext, Ops)); 690 } 691 if (getModuleDebugInfo()) 692 // We support a single version in the linked module. The LLVM 693 // parser will drop debug info with a different version number 694 // (and warn about it, too). 695 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 696 llvm::DEBUG_METADATA_VERSION); 697 698 // We need to record the widths of enums and wchar_t, so that we can generate 699 // the correct build attributes in the ARM backend. wchar_size is also used by 700 // TargetLibraryInfo. 701 uint64_t WCharWidth = 702 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 703 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 704 705 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 706 if ( Arch == llvm::Triple::arm 707 || Arch == llvm::Triple::armeb 708 || Arch == llvm::Triple::thumb 709 || Arch == llvm::Triple::thumbeb) { 710 // The minimum width of an enum in bytes 711 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 712 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 713 } 714 715 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 716 StringRef ABIStr = Target.getABI(); 717 llvm::LLVMContext &Ctx = TheModule.getContext(); 718 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 719 llvm::MDString::get(Ctx, ABIStr)); 720 } 721 722 if (CodeGenOpts.SanitizeCfiCrossDso) { 723 // Indicate that we want cross-DSO control flow integrity checks. 724 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 725 } 726 727 if (CodeGenOpts.WholeProgramVTables) { 728 // Indicate whether VFE was enabled for this module, so that the 729 // vcall_visibility metadata added under whole program vtables is handled 730 // appropriately in the optimizer. 731 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 732 CodeGenOpts.VirtualFunctionElimination); 733 } 734 735 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 736 getModule().addModuleFlag(llvm::Module::Override, 737 "CFI Canonical Jump Tables", 738 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 739 } 740 741 if (CodeGenOpts.CFProtectionReturn && 742 Target.checkCFProtectionReturnSupported(getDiags())) { 743 // Indicate that we want to instrument return control flow protection. 744 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 745 1); 746 } 747 748 if (CodeGenOpts.CFProtectionBranch && 749 Target.checkCFProtectionBranchSupported(getDiags())) { 750 // Indicate that we want to instrument branch control flow protection. 751 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 752 1); 753 } 754 755 if (CodeGenOpts.IBTSeal) 756 getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1); 757 758 // Add module metadata for return address signing (ignoring 759 // non-leaf/all) and stack tagging. These are actually turned on by function 760 // attributes, but we use module metadata to emit build attributes. This is 761 // needed for LTO, where the function attributes are inside bitcode 762 // serialised into a global variable by the time build attributes are 763 // emitted, so we can't access them. LTO objects could be compiled with 764 // different flags therefore module flags are set to "Min" behavior to achieve 765 // the same end result of the normal build where e.g BTI is off if any object 766 // doesn't support it. 767 if (Context.getTargetInfo().hasFeature("ptrauth") && 768 LangOpts.getSignReturnAddressScope() != 769 LangOptions::SignReturnAddressScopeKind::None) 770 getModule().addModuleFlag(llvm::Module::Override, 771 "sign-return-address-buildattr", 1); 772 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 773 getModule().addModuleFlag(llvm::Module::Override, 774 "tag-stack-memory-buildattr", 1); 775 776 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 777 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 778 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 779 Arch == llvm::Triple::aarch64_be) { 780 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 781 LangOpts.BranchTargetEnforcement); 782 783 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 784 LangOpts.hasSignReturnAddress()); 785 786 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 787 LangOpts.isSignReturnAddressScopeAll()); 788 789 getModule().addModuleFlag(llvm::Module::Min, 790 "sign-return-address-with-bkey", 791 !LangOpts.isSignReturnAddressWithAKey()); 792 } 793 794 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 795 llvm::LLVMContext &Ctx = TheModule.getContext(); 796 getModule().addModuleFlag( 797 llvm::Module::Error, "MemProfProfileFilename", 798 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 799 } 800 801 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 802 // Indicate whether __nvvm_reflect should be configured to flush denormal 803 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 804 // property.) 805 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 806 CodeGenOpts.FP32DenormalMode.Output != 807 llvm::DenormalMode::IEEE); 808 } 809 810 if (LangOpts.EHAsynch) 811 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 812 813 // Indicate whether this Module was compiled with -fopenmp 814 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 815 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 816 if (getLangOpts().OpenMPIsDevice) 817 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 818 LangOpts.OpenMP); 819 820 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 821 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 822 EmitOpenCLMetadata(); 823 // Emit SPIR version. 824 if (getTriple().isSPIR()) { 825 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 826 // opencl.spir.version named metadata. 827 // C++ for OpenCL has a distinct mapping for version compatibility with 828 // OpenCL. 829 auto Version = LangOpts.getOpenCLCompatibleVersion(); 830 llvm::Metadata *SPIRVerElts[] = { 831 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 832 Int32Ty, Version / 100)), 833 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 834 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 835 llvm::NamedMDNode *SPIRVerMD = 836 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 837 llvm::LLVMContext &Ctx = TheModule.getContext(); 838 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 839 } 840 } 841 842 // HLSL related end of code gen work items. 843 if (LangOpts.HLSL) 844 getHLSLRuntime().finishCodeGen(); 845 846 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 847 assert(PLevel < 3 && "Invalid PIC Level"); 848 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 849 if (Context.getLangOpts().PIE) 850 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 851 } 852 853 if (getCodeGenOpts().CodeModel.size() > 0) { 854 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 855 .Case("tiny", llvm::CodeModel::Tiny) 856 .Case("small", llvm::CodeModel::Small) 857 .Case("kernel", llvm::CodeModel::Kernel) 858 .Case("medium", llvm::CodeModel::Medium) 859 .Case("large", llvm::CodeModel::Large) 860 .Default(~0u); 861 if (CM != ~0u) { 862 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 863 getModule().setCodeModel(codeModel); 864 } 865 } 866 867 if (CodeGenOpts.NoPLT) 868 getModule().setRtLibUseGOT(); 869 if (CodeGenOpts.UnwindTables) 870 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 871 872 switch (CodeGenOpts.getFramePointer()) { 873 case CodeGenOptions::FramePointerKind::None: 874 // 0 ("none") is the default. 875 break; 876 case CodeGenOptions::FramePointerKind::NonLeaf: 877 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 878 break; 879 case CodeGenOptions::FramePointerKind::All: 880 getModule().setFramePointer(llvm::FramePointerKind::All); 881 break; 882 } 883 884 SimplifyPersonality(); 885 886 if (getCodeGenOpts().EmitDeclMetadata) 887 EmitDeclMetadata(); 888 889 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 890 EmitCoverageFile(); 891 892 if (CGDebugInfo *DI = getModuleDebugInfo()) 893 DI->finalize(); 894 895 if (getCodeGenOpts().EmitVersionIdentMetadata) 896 EmitVersionIdentMetadata(); 897 898 if (!getCodeGenOpts().RecordCommandLine.empty()) 899 EmitCommandLineMetadata(); 900 901 if (!getCodeGenOpts().StackProtectorGuard.empty()) 902 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 903 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 904 getModule().setStackProtectorGuardReg( 905 getCodeGenOpts().StackProtectorGuardReg); 906 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 907 getModule().setStackProtectorGuardOffset( 908 getCodeGenOpts().StackProtectorGuardOffset); 909 if (getCodeGenOpts().StackAlignment) 910 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 911 if (getCodeGenOpts().SkipRaxSetup) 912 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 913 914 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 915 916 EmitBackendOptionsMetadata(getCodeGenOpts()); 917 918 // If there is device offloading code embed it in the host now. 919 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 920 921 // Set visibility from DLL storage class 922 // We do this at the end of LLVM IR generation; after any operation 923 // that might affect the DLL storage class or the visibility, and 924 // before anything that might act on these. 925 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 926 } 927 928 void CodeGenModule::EmitOpenCLMetadata() { 929 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 930 // opencl.ocl.version named metadata node. 931 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 932 auto Version = LangOpts.getOpenCLCompatibleVersion(); 933 llvm::Metadata *OCLVerElts[] = { 934 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 935 Int32Ty, Version / 100)), 936 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 937 Int32Ty, (Version % 100) / 10))}; 938 llvm::NamedMDNode *OCLVerMD = 939 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 940 llvm::LLVMContext &Ctx = TheModule.getContext(); 941 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 942 } 943 944 void CodeGenModule::EmitBackendOptionsMetadata( 945 const CodeGenOptions CodeGenOpts) { 946 switch (getTriple().getArch()) { 947 default: 948 break; 949 case llvm::Triple::riscv32: 950 case llvm::Triple::riscv64: 951 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 952 CodeGenOpts.SmallDataLimit); 953 break; 954 } 955 } 956 957 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 958 // Make sure that this type is translated. 959 Types.UpdateCompletedType(TD); 960 } 961 962 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 963 // Make sure that this type is translated. 964 Types.RefreshTypeCacheForClass(RD); 965 } 966 967 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 968 if (!TBAA) 969 return nullptr; 970 return TBAA->getTypeInfo(QTy); 971 } 972 973 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 974 if (!TBAA) 975 return TBAAAccessInfo(); 976 if (getLangOpts().CUDAIsDevice) { 977 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 978 // access info. 979 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 980 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 981 nullptr) 982 return TBAAAccessInfo(); 983 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 984 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 985 nullptr) 986 return TBAAAccessInfo(); 987 } 988 } 989 return TBAA->getAccessInfo(AccessType); 990 } 991 992 TBAAAccessInfo 993 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 994 if (!TBAA) 995 return TBAAAccessInfo(); 996 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 997 } 998 999 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1000 if (!TBAA) 1001 return nullptr; 1002 return TBAA->getTBAAStructInfo(QTy); 1003 } 1004 1005 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1006 if (!TBAA) 1007 return nullptr; 1008 return TBAA->getBaseTypeInfo(QTy); 1009 } 1010 1011 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1012 if (!TBAA) 1013 return nullptr; 1014 return TBAA->getAccessTagInfo(Info); 1015 } 1016 1017 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1018 TBAAAccessInfo TargetInfo) { 1019 if (!TBAA) 1020 return TBAAAccessInfo(); 1021 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1022 } 1023 1024 TBAAAccessInfo 1025 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1026 TBAAAccessInfo InfoB) { 1027 if (!TBAA) 1028 return TBAAAccessInfo(); 1029 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1030 } 1031 1032 TBAAAccessInfo 1033 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1034 TBAAAccessInfo SrcInfo) { 1035 if (!TBAA) 1036 return TBAAAccessInfo(); 1037 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1038 } 1039 1040 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1041 TBAAAccessInfo TBAAInfo) { 1042 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1043 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1044 } 1045 1046 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1047 llvm::Instruction *I, const CXXRecordDecl *RD) { 1048 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1049 llvm::MDNode::get(getLLVMContext(), {})); 1050 } 1051 1052 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1053 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1054 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1055 } 1056 1057 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1058 /// specified stmt yet. 1059 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1060 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1061 "cannot compile this %0 yet"); 1062 std::string Msg = Type; 1063 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1064 << Msg << S->getSourceRange(); 1065 } 1066 1067 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1068 /// specified decl yet. 1069 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1070 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1071 "cannot compile this %0 yet"); 1072 std::string Msg = Type; 1073 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1074 } 1075 1076 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1077 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1078 } 1079 1080 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1081 const NamedDecl *D) const { 1082 if (GV->hasDLLImportStorageClass()) 1083 return; 1084 // Internal definitions always have default visibility. 1085 if (GV->hasLocalLinkage()) { 1086 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1087 return; 1088 } 1089 if (!D) 1090 return; 1091 // Set visibility for definitions, and for declarations if requested globally 1092 // or set explicitly. 1093 LinkageInfo LV = D->getLinkageAndVisibility(); 1094 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1095 !GV->isDeclarationForLinker()) 1096 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1097 } 1098 1099 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1100 llvm::GlobalValue *GV) { 1101 if (GV->hasLocalLinkage()) 1102 return true; 1103 1104 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1105 return true; 1106 1107 // DLLImport explicitly marks the GV as external. 1108 if (GV->hasDLLImportStorageClass()) 1109 return false; 1110 1111 const llvm::Triple &TT = CGM.getTriple(); 1112 if (TT.isWindowsGNUEnvironment()) { 1113 // In MinGW, variables without DLLImport can still be automatically 1114 // imported from a DLL by the linker; don't mark variables that 1115 // potentially could come from another DLL as DSO local. 1116 1117 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1118 // (and this actually happens in the public interface of libstdc++), so 1119 // such variables can't be marked as DSO local. (Native TLS variables 1120 // can't be dllimported at all, though.) 1121 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1122 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1123 return false; 1124 } 1125 1126 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1127 // remain unresolved in the link, they can be resolved to zero, which is 1128 // outside the current DSO. 1129 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1130 return false; 1131 1132 // Every other GV is local on COFF. 1133 // Make an exception for windows OS in the triple: Some firmware builds use 1134 // *-win32-macho triples. This (accidentally?) produced windows relocations 1135 // without GOT tables in older clang versions; Keep this behaviour. 1136 // FIXME: even thread local variables? 1137 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1138 return true; 1139 1140 // Only handle COFF and ELF for now. 1141 if (!TT.isOSBinFormatELF()) 1142 return false; 1143 1144 // If this is not an executable, don't assume anything is local. 1145 const auto &CGOpts = CGM.getCodeGenOpts(); 1146 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1147 const auto &LOpts = CGM.getLangOpts(); 1148 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1149 // On ELF, if -fno-semantic-interposition is specified and the target 1150 // supports local aliases, there will be neither CC1 1151 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1152 // dso_local on the function if using a local alias is preferable (can avoid 1153 // PLT indirection). 1154 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1155 return false; 1156 return !(CGM.getLangOpts().SemanticInterposition || 1157 CGM.getLangOpts().HalfNoSemanticInterposition); 1158 } 1159 1160 // A definition cannot be preempted from an executable. 1161 if (!GV->isDeclarationForLinker()) 1162 return true; 1163 1164 // Most PIC code sequences that assume that a symbol is local cannot produce a 1165 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1166 // depended, it seems worth it to handle it here. 1167 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1168 return false; 1169 1170 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1171 if (TT.isPPC64()) 1172 return false; 1173 1174 if (CGOpts.DirectAccessExternalData) { 1175 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1176 // for non-thread-local variables. If the symbol is not defined in the 1177 // executable, a copy relocation will be needed at link time. dso_local is 1178 // excluded for thread-local variables because they generally don't support 1179 // copy relocations. 1180 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1181 if (!Var->isThreadLocal()) 1182 return true; 1183 1184 // -fno-pic sets dso_local on a function declaration to allow direct 1185 // accesses when taking its address (similar to a data symbol). If the 1186 // function is not defined in the executable, a canonical PLT entry will be 1187 // needed at link time. -fno-direct-access-external-data can avoid the 1188 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1189 // it could just cause trouble without providing perceptible benefits. 1190 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1191 return true; 1192 } 1193 1194 // If we can use copy relocations we can assume it is local. 1195 1196 // Otherwise don't assume it is local. 1197 return false; 1198 } 1199 1200 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1201 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1202 } 1203 1204 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1205 GlobalDecl GD) const { 1206 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1207 // C++ destructors have a few C++ ABI specific special cases. 1208 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1209 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1210 return; 1211 } 1212 setDLLImportDLLExport(GV, D); 1213 } 1214 1215 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1216 const NamedDecl *D) const { 1217 if (D && D->isExternallyVisible()) { 1218 if (D->hasAttr<DLLImportAttr>()) 1219 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1220 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1221 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1222 } 1223 } 1224 1225 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1226 GlobalDecl GD) const { 1227 setDLLImportDLLExport(GV, GD); 1228 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1229 } 1230 1231 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1232 const NamedDecl *D) const { 1233 setDLLImportDLLExport(GV, D); 1234 setGVPropertiesAux(GV, D); 1235 } 1236 1237 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1238 const NamedDecl *D) const { 1239 setGlobalVisibility(GV, D); 1240 setDSOLocal(GV); 1241 GV->setPartition(CodeGenOpts.SymbolPartition); 1242 } 1243 1244 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1245 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1246 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1247 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1248 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1249 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1250 } 1251 1252 llvm::GlobalVariable::ThreadLocalMode 1253 CodeGenModule::GetDefaultLLVMTLSModel() const { 1254 switch (CodeGenOpts.getDefaultTLSModel()) { 1255 case CodeGenOptions::GeneralDynamicTLSModel: 1256 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1257 case CodeGenOptions::LocalDynamicTLSModel: 1258 return llvm::GlobalVariable::LocalDynamicTLSModel; 1259 case CodeGenOptions::InitialExecTLSModel: 1260 return llvm::GlobalVariable::InitialExecTLSModel; 1261 case CodeGenOptions::LocalExecTLSModel: 1262 return llvm::GlobalVariable::LocalExecTLSModel; 1263 } 1264 llvm_unreachable("Invalid TLS model!"); 1265 } 1266 1267 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1268 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1269 1270 llvm::GlobalValue::ThreadLocalMode TLM; 1271 TLM = GetDefaultLLVMTLSModel(); 1272 1273 // Override the TLS model if it is explicitly specified. 1274 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1275 TLM = GetLLVMTLSModel(Attr->getModel()); 1276 } 1277 1278 GV->setThreadLocalMode(TLM); 1279 } 1280 1281 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1282 StringRef Name) { 1283 const TargetInfo &Target = CGM.getTarget(); 1284 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1285 } 1286 1287 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1288 const CPUSpecificAttr *Attr, 1289 unsigned CPUIndex, 1290 raw_ostream &Out) { 1291 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1292 // supported. 1293 if (Attr) 1294 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1295 else if (CGM.getTarget().supportsIFunc()) 1296 Out << ".resolver"; 1297 } 1298 1299 static void AppendTargetMangling(const CodeGenModule &CGM, 1300 const TargetAttr *Attr, raw_ostream &Out) { 1301 if (Attr->isDefaultVersion()) 1302 return; 1303 1304 Out << '.'; 1305 const TargetInfo &Target = CGM.getTarget(); 1306 ParsedTargetAttr Info = 1307 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1308 // Multiversioning doesn't allow "no-${feature}", so we can 1309 // only have "+" prefixes here. 1310 assert(LHS.startswith("+") && RHS.startswith("+") && 1311 "Features should always have a prefix."); 1312 return Target.multiVersionSortPriority(LHS.substr(1)) > 1313 Target.multiVersionSortPriority(RHS.substr(1)); 1314 }); 1315 1316 bool IsFirst = true; 1317 1318 if (!Info.Architecture.empty()) { 1319 IsFirst = false; 1320 Out << "arch_" << Info.Architecture; 1321 } 1322 1323 for (StringRef Feat : Info.Features) { 1324 if (!IsFirst) 1325 Out << '_'; 1326 IsFirst = false; 1327 Out << Feat.substr(1); 1328 } 1329 } 1330 1331 // Returns true if GD is a function decl with internal linkage and 1332 // needs a unique suffix after the mangled name. 1333 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1334 CodeGenModule &CGM) { 1335 const Decl *D = GD.getDecl(); 1336 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1337 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1338 } 1339 1340 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1341 const TargetClonesAttr *Attr, 1342 unsigned VersionIndex, 1343 raw_ostream &Out) { 1344 Out << '.'; 1345 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1346 if (FeatureStr.startswith("arch=")) 1347 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1348 else 1349 Out << FeatureStr; 1350 1351 Out << '.' << Attr->getMangledIndex(VersionIndex); 1352 } 1353 1354 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1355 const NamedDecl *ND, 1356 bool OmitMultiVersionMangling = false) { 1357 SmallString<256> Buffer; 1358 llvm::raw_svector_ostream Out(Buffer); 1359 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1360 if (!CGM.getModuleNameHash().empty()) 1361 MC.needsUniqueInternalLinkageNames(); 1362 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1363 if (ShouldMangle) 1364 MC.mangleName(GD.getWithDecl(ND), Out); 1365 else { 1366 IdentifierInfo *II = ND->getIdentifier(); 1367 assert(II && "Attempt to mangle unnamed decl."); 1368 const auto *FD = dyn_cast<FunctionDecl>(ND); 1369 1370 if (FD && 1371 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1372 Out << "__regcall3__" << II->getName(); 1373 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1374 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1375 Out << "__device_stub__" << II->getName(); 1376 } else { 1377 Out << II->getName(); 1378 } 1379 } 1380 1381 // Check if the module name hash should be appended for internal linkage 1382 // symbols. This should come before multi-version target suffixes are 1383 // appended. This is to keep the name and module hash suffix of the 1384 // internal linkage function together. The unique suffix should only be 1385 // added when name mangling is done to make sure that the final name can 1386 // be properly demangled. For example, for C functions without prototypes, 1387 // name mangling is not done and the unique suffix should not be appeneded 1388 // then. 1389 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1390 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1391 "Hash computed when not explicitly requested"); 1392 Out << CGM.getModuleNameHash(); 1393 } 1394 1395 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1396 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1397 switch (FD->getMultiVersionKind()) { 1398 case MultiVersionKind::CPUDispatch: 1399 case MultiVersionKind::CPUSpecific: 1400 AppendCPUSpecificCPUDispatchMangling(CGM, 1401 FD->getAttr<CPUSpecificAttr>(), 1402 GD.getMultiVersionIndex(), Out); 1403 break; 1404 case MultiVersionKind::Target: 1405 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1406 break; 1407 case MultiVersionKind::TargetClones: 1408 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1409 GD.getMultiVersionIndex(), Out); 1410 break; 1411 case MultiVersionKind::None: 1412 llvm_unreachable("None multiversion type isn't valid here"); 1413 } 1414 } 1415 1416 // Make unique name for device side static file-scope variable for HIP. 1417 if (CGM.getContext().shouldExternalize(ND) && 1418 CGM.getLangOpts().GPURelocatableDeviceCode && 1419 CGM.getLangOpts().CUDAIsDevice) 1420 CGM.printPostfixForExternalizedDecl(Out, ND); 1421 1422 return std::string(Out.str()); 1423 } 1424 1425 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1426 const FunctionDecl *FD, 1427 StringRef &CurName) { 1428 if (!FD->isMultiVersion()) 1429 return; 1430 1431 // Get the name of what this would be without the 'target' attribute. This 1432 // allows us to lookup the version that was emitted when this wasn't a 1433 // multiversion function. 1434 std::string NonTargetName = 1435 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1436 GlobalDecl OtherGD; 1437 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1438 assert(OtherGD.getCanonicalDecl() 1439 .getDecl() 1440 ->getAsFunction() 1441 ->isMultiVersion() && 1442 "Other GD should now be a multiversioned function"); 1443 // OtherFD is the version of this function that was mangled BEFORE 1444 // becoming a MultiVersion function. It potentially needs to be updated. 1445 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1446 .getDecl() 1447 ->getAsFunction() 1448 ->getMostRecentDecl(); 1449 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1450 // This is so that if the initial version was already the 'default' 1451 // version, we don't try to update it. 1452 if (OtherName != NonTargetName) { 1453 // Remove instead of erase, since others may have stored the StringRef 1454 // to this. 1455 const auto ExistingRecord = Manglings.find(NonTargetName); 1456 if (ExistingRecord != std::end(Manglings)) 1457 Manglings.remove(&(*ExistingRecord)); 1458 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1459 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1460 Result.first->first(); 1461 // If this is the current decl is being created, make sure we update the name. 1462 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1463 CurName = OtherNameRef; 1464 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1465 Entry->setName(OtherName); 1466 } 1467 } 1468 } 1469 1470 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1471 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1472 1473 // Some ABIs don't have constructor variants. Make sure that base and 1474 // complete constructors get mangled the same. 1475 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1476 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1477 CXXCtorType OrigCtorType = GD.getCtorType(); 1478 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1479 if (OrigCtorType == Ctor_Base) 1480 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1481 } 1482 } 1483 1484 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1485 // static device variable depends on whether the variable is referenced by 1486 // a host or device host function. Therefore the mangled name cannot be 1487 // cached. 1488 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1489 auto FoundName = MangledDeclNames.find(CanonicalGD); 1490 if (FoundName != MangledDeclNames.end()) 1491 return FoundName->second; 1492 } 1493 1494 // Keep the first result in the case of a mangling collision. 1495 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1496 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1497 1498 // Ensure either we have different ABIs between host and device compilations, 1499 // says host compilation following MSVC ABI but device compilation follows 1500 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1501 // mangling should be the same after name stubbing. The later checking is 1502 // very important as the device kernel name being mangled in host-compilation 1503 // is used to resolve the device binaries to be executed. Inconsistent naming 1504 // result in undefined behavior. Even though we cannot check that naming 1505 // directly between host- and device-compilations, the host- and 1506 // device-mangling in host compilation could help catching certain ones. 1507 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1508 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1509 (getContext().getAuxTargetInfo() && 1510 (getContext().getAuxTargetInfo()->getCXXABI() != 1511 getContext().getTargetInfo().getCXXABI())) || 1512 getCUDARuntime().getDeviceSideName(ND) == 1513 getMangledNameImpl( 1514 *this, 1515 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1516 ND)); 1517 1518 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1519 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1520 } 1521 1522 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1523 const BlockDecl *BD) { 1524 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1525 const Decl *D = GD.getDecl(); 1526 1527 SmallString<256> Buffer; 1528 llvm::raw_svector_ostream Out(Buffer); 1529 if (!D) 1530 MangleCtx.mangleGlobalBlock(BD, 1531 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1532 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1533 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1534 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1535 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1536 else 1537 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1538 1539 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1540 return Result.first->first(); 1541 } 1542 1543 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1544 auto it = MangledDeclNames.begin(); 1545 while (it != MangledDeclNames.end()) { 1546 if (it->second == Name) 1547 return it->first; 1548 it++; 1549 } 1550 return GlobalDecl(); 1551 } 1552 1553 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1554 return getModule().getNamedValue(Name); 1555 } 1556 1557 /// AddGlobalCtor - Add a function to the list that will be called before 1558 /// main() runs. 1559 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1560 llvm::Constant *AssociatedData) { 1561 // FIXME: Type coercion of void()* types. 1562 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1563 } 1564 1565 /// AddGlobalDtor - Add a function to the list that will be called 1566 /// when the module is unloaded. 1567 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1568 bool IsDtorAttrFunc) { 1569 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1570 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1571 DtorsUsingAtExit[Priority].push_back(Dtor); 1572 return; 1573 } 1574 1575 // FIXME: Type coercion of void()* types. 1576 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1577 } 1578 1579 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1580 if (Fns.empty()) return; 1581 1582 // Ctor function type is void()*. 1583 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1584 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1585 TheModule.getDataLayout().getProgramAddressSpace()); 1586 1587 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1588 llvm::StructType *CtorStructTy = llvm::StructType::get( 1589 Int32Ty, CtorPFTy, VoidPtrTy); 1590 1591 // Construct the constructor and destructor arrays. 1592 ConstantInitBuilder builder(*this); 1593 auto ctors = builder.beginArray(CtorStructTy); 1594 for (const auto &I : Fns) { 1595 auto ctor = ctors.beginStruct(CtorStructTy); 1596 ctor.addInt(Int32Ty, I.Priority); 1597 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1598 if (I.AssociatedData) 1599 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1600 else 1601 ctor.addNullPointer(VoidPtrTy); 1602 ctor.finishAndAddTo(ctors); 1603 } 1604 1605 auto list = 1606 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1607 /*constant*/ false, 1608 llvm::GlobalValue::AppendingLinkage); 1609 1610 // The LTO linker doesn't seem to like it when we set an alignment 1611 // on appending variables. Take it off as a workaround. 1612 list->setAlignment(llvm::None); 1613 1614 Fns.clear(); 1615 } 1616 1617 llvm::GlobalValue::LinkageTypes 1618 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1619 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1620 1621 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1622 1623 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1624 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1625 1626 if (isa<CXXConstructorDecl>(D) && 1627 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1628 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1629 // Our approach to inheriting constructors is fundamentally different from 1630 // that used by the MS ABI, so keep our inheriting constructor thunks 1631 // internal rather than trying to pick an unambiguous mangling for them. 1632 return llvm::GlobalValue::InternalLinkage; 1633 } 1634 1635 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1636 } 1637 1638 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1639 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1640 if (!MDS) return nullptr; 1641 1642 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1643 } 1644 1645 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1646 const CGFunctionInfo &Info, 1647 llvm::Function *F, bool IsThunk) { 1648 unsigned CallingConv; 1649 llvm::AttributeList PAL; 1650 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1651 /*AttrOnCallSite=*/false, IsThunk); 1652 F->setAttributes(PAL); 1653 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1654 } 1655 1656 static void removeImageAccessQualifier(std::string& TyName) { 1657 std::string ReadOnlyQual("__read_only"); 1658 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1659 if (ReadOnlyPos != std::string::npos) 1660 // "+ 1" for the space after access qualifier. 1661 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1662 else { 1663 std::string WriteOnlyQual("__write_only"); 1664 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1665 if (WriteOnlyPos != std::string::npos) 1666 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1667 else { 1668 std::string ReadWriteQual("__read_write"); 1669 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1670 if (ReadWritePos != std::string::npos) 1671 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1672 } 1673 } 1674 } 1675 1676 // Returns the address space id that should be produced to the 1677 // kernel_arg_addr_space metadata. This is always fixed to the ids 1678 // as specified in the SPIR 2.0 specification in order to differentiate 1679 // for example in clGetKernelArgInfo() implementation between the address 1680 // spaces with targets without unique mapping to the OpenCL address spaces 1681 // (basically all single AS CPUs). 1682 static unsigned ArgInfoAddressSpace(LangAS AS) { 1683 switch (AS) { 1684 case LangAS::opencl_global: 1685 return 1; 1686 case LangAS::opencl_constant: 1687 return 2; 1688 case LangAS::opencl_local: 1689 return 3; 1690 case LangAS::opencl_generic: 1691 return 4; // Not in SPIR 2.0 specs. 1692 case LangAS::opencl_global_device: 1693 return 5; 1694 case LangAS::opencl_global_host: 1695 return 6; 1696 default: 1697 return 0; // Assume private. 1698 } 1699 } 1700 1701 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1702 const FunctionDecl *FD, 1703 CodeGenFunction *CGF) { 1704 assert(((FD && CGF) || (!FD && !CGF)) && 1705 "Incorrect use - FD and CGF should either be both null or not!"); 1706 // Create MDNodes that represent the kernel arg metadata. 1707 // Each MDNode is a list in the form of "key", N number of values which is 1708 // the same number of values as their are kernel arguments. 1709 1710 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1711 1712 // MDNode for the kernel argument address space qualifiers. 1713 SmallVector<llvm::Metadata *, 8> addressQuals; 1714 1715 // MDNode for the kernel argument access qualifiers (images only). 1716 SmallVector<llvm::Metadata *, 8> accessQuals; 1717 1718 // MDNode for the kernel argument type names. 1719 SmallVector<llvm::Metadata *, 8> argTypeNames; 1720 1721 // MDNode for the kernel argument base type names. 1722 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1723 1724 // MDNode for the kernel argument type qualifiers. 1725 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1726 1727 // MDNode for the kernel argument names. 1728 SmallVector<llvm::Metadata *, 8> argNames; 1729 1730 if (FD && CGF) 1731 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1732 const ParmVarDecl *parm = FD->getParamDecl(i); 1733 QualType ty = parm->getType(); 1734 std::string typeQuals; 1735 1736 // Get image and pipe access qualifier: 1737 if (ty->isImageType() || ty->isPipeType()) { 1738 const Decl *PDecl = parm; 1739 if (auto *TD = dyn_cast<TypedefType>(ty)) 1740 PDecl = TD->getDecl(); 1741 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1742 if (A && A->isWriteOnly()) 1743 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1744 else if (A && A->isReadWrite()) 1745 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1746 else 1747 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1748 } else 1749 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1750 1751 // Get argument name. 1752 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1753 1754 auto getTypeSpelling = [&](QualType Ty) { 1755 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1756 1757 if (Ty.isCanonical()) { 1758 StringRef typeNameRef = typeName; 1759 // Turn "unsigned type" to "utype" 1760 if (typeNameRef.consume_front("unsigned ")) 1761 return std::string("u") + typeNameRef.str(); 1762 if (typeNameRef.consume_front("signed ")) 1763 return typeNameRef.str(); 1764 } 1765 1766 return typeName; 1767 }; 1768 1769 if (ty->isPointerType()) { 1770 QualType pointeeTy = ty->getPointeeType(); 1771 1772 // Get address qualifier. 1773 addressQuals.push_back( 1774 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1775 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1776 1777 // Get argument type name. 1778 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1779 std::string baseTypeName = 1780 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1781 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1782 argBaseTypeNames.push_back( 1783 llvm::MDString::get(VMContext, baseTypeName)); 1784 1785 // Get argument type qualifiers: 1786 if (ty.isRestrictQualified()) 1787 typeQuals = "restrict"; 1788 if (pointeeTy.isConstQualified() || 1789 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1790 typeQuals += typeQuals.empty() ? "const" : " const"; 1791 if (pointeeTy.isVolatileQualified()) 1792 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1793 } else { 1794 uint32_t AddrSpc = 0; 1795 bool isPipe = ty->isPipeType(); 1796 if (ty->isImageType() || isPipe) 1797 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1798 1799 addressQuals.push_back( 1800 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1801 1802 // Get argument type name. 1803 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1804 std::string typeName = getTypeSpelling(ty); 1805 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1806 1807 // Remove access qualifiers on images 1808 // (as they are inseparable from type in clang implementation, 1809 // but OpenCL spec provides a special query to get access qualifier 1810 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1811 if (ty->isImageType()) { 1812 removeImageAccessQualifier(typeName); 1813 removeImageAccessQualifier(baseTypeName); 1814 } 1815 1816 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1817 argBaseTypeNames.push_back( 1818 llvm::MDString::get(VMContext, baseTypeName)); 1819 1820 if (isPipe) 1821 typeQuals = "pipe"; 1822 } 1823 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1824 } 1825 1826 Fn->setMetadata("kernel_arg_addr_space", 1827 llvm::MDNode::get(VMContext, addressQuals)); 1828 Fn->setMetadata("kernel_arg_access_qual", 1829 llvm::MDNode::get(VMContext, accessQuals)); 1830 Fn->setMetadata("kernel_arg_type", 1831 llvm::MDNode::get(VMContext, argTypeNames)); 1832 Fn->setMetadata("kernel_arg_base_type", 1833 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1834 Fn->setMetadata("kernel_arg_type_qual", 1835 llvm::MDNode::get(VMContext, argTypeQuals)); 1836 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1837 Fn->setMetadata("kernel_arg_name", 1838 llvm::MDNode::get(VMContext, argNames)); 1839 } 1840 1841 /// Determines whether the language options require us to model 1842 /// unwind exceptions. We treat -fexceptions as mandating this 1843 /// except under the fragile ObjC ABI with only ObjC exceptions 1844 /// enabled. This means, for example, that C with -fexceptions 1845 /// enables this. 1846 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1847 // If exceptions are completely disabled, obviously this is false. 1848 if (!LangOpts.Exceptions) return false; 1849 1850 // If C++ exceptions are enabled, this is true. 1851 if (LangOpts.CXXExceptions) return true; 1852 1853 // If ObjC exceptions are enabled, this depends on the ABI. 1854 if (LangOpts.ObjCExceptions) { 1855 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1856 } 1857 1858 return true; 1859 } 1860 1861 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1862 const CXXMethodDecl *MD) { 1863 // Check that the type metadata can ever actually be used by a call. 1864 if (!CGM.getCodeGenOpts().LTOUnit || 1865 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1866 return false; 1867 1868 // Only functions whose address can be taken with a member function pointer 1869 // need this sort of type metadata. 1870 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1871 !isa<CXXDestructorDecl>(MD); 1872 } 1873 1874 std::vector<const CXXRecordDecl *> 1875 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1876 llvm::SetVector<const CXXRecordDecl *> MostBases; 1877 1878 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1879 CollectMostBases = [&](const CXXRecordDecl *RD) { 1880 if (RD->getNumBases() == 0) 1881 MostBases.insert(RD); 1882 for (const CXXBaseSpecifier &B : RD->bases()) 1883 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1884 }; 1885 CollectMostBases(RD); 1886 return MostBases.takeVector(); 1887 } 1888 1889 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1890 llvm::Function *F) { 1891 llvm::AttrBuilder B(F->getContext()); 1892 1893 if (CodeGenOpts.UnwindTables) 1894 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1895 1896 if (CodeGenOpts.StackClashProtector) 1897 B.addAttribute("probe-stack", "inline-asm"); 1898 1899 if (!hasUnwindExceptions(LangOpts)) 1900 B.addAttribute(llvm::Attribute::NoUnwind); 1901 1902 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1903 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1904 B.addAttribute(llvm::Attribute::StackProtect); 1905 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1906 B.addAttribute(llvm::Attribute::StackProtectStrong); 1907 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1908 B.addAttribute(llvm::Attribute::StackProtectReq); 1909 } 1910 1911 if (!D) { 1912 // If we don't have a declaration to control inlining, the function isn't 1913 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1914 // disabled, mark the function as noinline. 1915 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1916 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1917 B.addAttribute(llvm::Attribute::NoInline); 1918 1919 F->addFnAttrs(B); 1920 return; 1921 } 1922 1923 // Track whether we need to add the optnone LLVM attribute, 1924 // starting with the default for this optimization level. 1925 bool ShouldAddOptNone = 1926 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1927 // We can't add optnone in the following cases, it won't pass the verifier. 1928 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1929 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1930 1931 // Add optnone, but do so only if the function isn't always_inline. 1932 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1933 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1934 B.addAttribute(llvm::Attribute::OptimizeNone); 1935 1936 // OptimizeNone implies noinline; we should not be inlining such functions. 1937 B.addAttribute(llvm::Attribute::NoInline); 1938 1939 // We still need to handle naked functions even though optnone subsumes 1940 // much of their semantics. 1941 if (D->hasAttr<NakedAttr>()) 1942 B.addAttribute(llvm::Attribute::Naked); 1943 1944 // OptimizeNone wins over OptimizeForSize and MinSize. 1945 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1946 F->removeFnAttr(llvm::Attribute::MinSize); 1947 } else if (D->hasAttr<NakedAttr>()) { 1948 // Naked implies noinline: we should not be inlining such functions. 1949 B.addAttribute(llvm::Attribute::Naked); 1950 B.addAttribute(llvm::Attribute::NoInline); 1951 } else if (D->hasAttr<NoDuplicateAttr>()) { 1952 B.addAttribute(llvm::Attribute::NoDuplicate); 1953 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1954 // Add noinline if the function isn't always_inline. 1955 B.addAttribute(llvm::Attribute::NoInline); 1956 } else if (D->hasAttr<AlwaysInlineAttr>() && 1957 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1958 // (noinline wins over always_inline, and we can't specify both in IR) 1959 B.addAttribute(llvm::Attribute::AlwaysInline); 1960 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1961 // If we're not inlining, then force everything that isn't always_inline to 1962 // carry an explicit noinline attribute. 1963 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1964 B.addAttribute(llvm::Attribute::NoInline); 1965 } else { 1966 // Otherwise, propagate the inline hint attribute and potentially use its 1967 // absence to mark things as noinline. 1968 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1969 // Search function and template pattern redeclarations for inline. 1970 auto CheckForInline = [](const FunctionDecl *FD) { 1971 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1972 return Redecl->isInlineSpecified(); 1973 }; 1974 if (any_of(FD->redecls(), CheckRedeclForInline)) 1975 return true; 1976 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1977 if (!Pattern) 1978 return false; 1979 return any_of(Pattern->redecls(), CheckRedeclForInline); 1980 }; 1981 if (CheckForInline(FD)) { 1982 B.addAttribute(llvm::Attribute::InlineHint); 1983 } else if (CodeGenOpts.getInlining() == 1984 CodeGenOptions::OnlyHintInlining && 1985 !FD->isInlined() && 1986 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1987 B.addAttribute(llvm::Attribute::NoInline); 1988 } 1989 } 1990 } 1991 1992 // Add other optimization related attributes if we are optimizing this 1993 // function. 1994 if (!D->hasAttr<OptimizeNoneAttr>()) { 1995 if (D->hasAttr<ColdAttr>()) { 1996 if (!ShouldAddOptNone) 1997 B.addAttribute(llvm::Attribute::OptimizeForSize); 1998 B.addAttribute(llvm::Attribute::Cold); 1999 } 2000 if (D->hasAttr<HotAttr>()) 2001 B.addAttribute(llvm::Attribute::Hot); 2002 if (D->hasAttr<MinSizeAttr>()) 2003 B.addAttribute(llvm::Attribute::MinSize); 2004 } 2005 2006 F->addFnAttrs(B); 2007 2008 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2009 if (alignment) 2010 F->setAlignment(llvm::Align(alignment)); 2011 2012 if (!D->hasAttr<AlignedAttr>()) 2013 if (LangOpts.FunctionAlignment) 2014 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2015 2016 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2017 // reserve a bit for differentiating between virtual and non-virtual member 2018 // functions. If the current target's C++ ABI requires this and this is a 2019 // member function, set its alignment accordingly. 2020 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2021 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 2022 F->setAlignment(llvm::Align(2)); 2023 } 2024 2025 // In the cross-dso CFI mode with canonical jump tables, we want !type 2026 // attributes on definitions only. 2027 if (CodeGenOpts.SanitizeCfiCrossDso && 2028 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2029 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2030 // Skip available_externally functions. They won't be codegen'ed in the 2031 // current module anyway. 2032 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2033 CreateFunctionTypeMetadataForIcall(FD, F); 2034 } 2035 } 2036 2037 // Emit type metadata on member functions for member function pointer checks. 2038 // These are only ever necessary on definitions; we're guaranteed that the 2039 // definition will be present in the LTO unit as a result of LTO visibility. 2040 auto *MD = dyn_cast<CXXMethodDecl>(D); 2041 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2042 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2043 llvm::Metadata *Id = 2044 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2045 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2046 F->addTypeMetadata(0, Id); 2047 } 2048 } 2049 } 2050 2051 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2052 llvm::Function *F) { 2053 if (D->hasAttr<StrictFPAttr>()) { 2054 llvm::AttrBuilder FuncAttrs(F->getContext()); 2055 FuncAttrs.addAttribute("strictfp"); 2056 F->addFnAttrs(FuncAttrs); 2057 } 2058 } 2059 2060 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2061 const Decl *D = GD.getDecl(); 2062 if (isa_and_nonnull<NamedDecl>(D)) 2063 setGVProperties(GV, GD); 2064 else 2065 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2066 2067 if (D && D->hasAttr<UsedAttr>()) 2068 addUsedOrCompilerUsedGlobal(GV); 2069 2070 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2071 const auto *VD = cast<VarDecl>(D); 2072 if (VD->getType().isConstQualified() && 2073 VD->getStorageDuration() == SD_Static) 2074 addUsedOrCompilerUsedGlobal(GV); 2075 } 2076 } 2077 2078 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2079 llvm::AttrBuilder &Attrs) { 2080 // Add target-cpu and target-features attributes to functions. If 2081 // we have a decl for the function and it has a target attribute then 2082 // parse that and add it to the feature set. 2083 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2084 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2085 std::vector<std::string> Features; 2086 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2087 FD = FD ? FD->getMostRecentDecl() : FD; 2088 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2089 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2090 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2091 bool AddedAttr = false; 2092 if (TD || SD || TC) { 2093 llvm::StringMap<bool> FeatureMap; 2094 getContext().getFunctionFeatureMap(FeatureMap, GD); 2095 2096 // Produce the canonical string for this set of features. 2097 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2098 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2099 2100 // Now add the target-cpu and target-features to the function. 2101 // While we populated the feature map above, we still need to 2102 // get and parse the target attribute so we can get the cpu for 2103 // the function. 2104 if (TD) { 2105 ParsedTargetAttr ParsedAttr = TD->parse(); 2106 if (!ParsedAttr.Architecture.empty() && 2107 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 2108 TargetCPU = ParsedAttr.Architecture; 2109 TuneCPU = ""; // Clear the tune CPU. 2110 } 2111 if (!ParsedAttr.Tune.empty() && 2112 getTarget().isValidCPUName(ParsedAttr.Tune)) 2113 TuneCPU = ParsedAttr.Tune; 2114 } 2115 2116 if (SD) { 2117 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2118 // favor this processor. 2119 TuneCPU = getTarget().getCPUSpecificTuneName( 2120 SD->getCPUName(GD.getMultiVersionIndex())->getName()); 2121 } 2122 } else { 2123 // Otherwise just add the existing target cpu and target features to the 2124 // function. 2125 Features = getTarget().getTargetOpts().Features; 2126 } 2127 2128 if (!TargetCPU.empty()) { 2129 Attrs.addAttribute("target-cpu", TargetCPU); 2130 AddedAttr = true; 2131 } 2132 if (!TuneCPU.empty()) { 2133 Attrs.addAttribute("tune-cpu", TuneCPU); 2134 AddedAttr = true; 2135 } 2136 if (!Features.empty()) { 2137 llvm::sort(Features); 2138 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2139 AddedAttr = true; 2140 } 2141 2142 return AddedAttr; 2143 } 2144 2145 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2146 llvm::GlobalObject *GO) { 2147 const Decl *D = GD.getDecl(); 2148 SetCommonAttributes(GD, GO); 2149 2150 if (D) { 2151 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2152 if (D->hasAttr<RetainAttr>()) 2153 addUsedGlobal(GV); 2154 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2155 GV->addAttribute("bss-section", SA->getName()); 2156 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2157 GV->addAttribute("data-section", SA->getName()); 2158 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2159 GV->addAttribute("rodata-section", SA->getName()); 2160 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2161 GV->addAttribute("relro-section", SA->getName()); 2162 } 2163 2164 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2165 if (D->hasAttr<RetainAttr>()) 2166 addUsedGlobal(F); 2167 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2168 if (!D->getAttr<SectionAttr>()) 2169 F->addFnAttr("implicit-section-name", SA->getName()); 2170 2171 llvm::AttrBuilder Attrs(F->getContext()); 2172 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2173 // We know that GetCPUAndFeaturesAttributes will always have the 2174 // newest set, since it has the newest possible FunctionDecl, so the 2175 // new ones should replace the old. 2176 llvm::AttributeMask RemoveAttrs; 2177 RemoveAttrs.addAttribute("target-cpu"); 2178 RemoveAttrs.addAttribute("target-features"); 2179 RemoveAttrs.addAttribute("tune-cpu"); 2180 F->removeFnAttrs(RemoveAttrs); 2181 F->addFnAttrs(Attrs); 2182 } 2183 } 2184 2185 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2186 GO->setSection(CSA->getName()); 2187 else if (const auto *SA = D->getAttr<SectionAttr>()) 2188 GO->setSection(SA->getName()); 2189 } 2190 2191 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2192 } 2193 2194 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2195 llvm::Function *F, 2196 const CGFunctionInfo &FI) { 2197 const Decl *D = GD.getDecl(); 2198 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2199 SetLLVMFunctionAttributesForDefinition(D, F); 2200 2201 F->setLinkage(llvm::Function::InternalLinkage); 2202 2203 setNonAliasAttributes(GD, F); 2204 } 2205 2206 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2207 // Set linkage and visibility in case we never see a definition. 2208 LinkageInfo LV = ND->getLinkageAndVisibility(); 2209 // Don't set internal linkage on declarations. 2210 // "extern_weak" is overloaded in LLVM; we probably should have 2211 // separate linkage types for this. 2212 if (isExternallyVisible(LV.getLinkage()) && 2213 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2214 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2215 } 2216 2217 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2218 llvm::Function *F) { 2219 // Only if we are checking indirect calls. 2220 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2221 return; 2222 2223 // Non-static class methods are handled via vtable or member function pointer 2224 // checks elsewhere. 2225 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2226 return; 2227 2228 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2229 F->addTypeMetadata(0, MD); 2230 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2231 2232 // Emit a hash-based bit set entry for cross-DSO calls. 2233 if (CodeGenOpts.SanitizeCfiCrossDso) 2234 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2235 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2236 } 2237 2238 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2239 bool IsIncompleteFunction, 2240 bool IsThunk) { 2241 2242 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2243 // If this is an intrinsic function, set the function's attributes 2244 // to the intrinsic's attributes. 2245 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2246 return; 2247 } 2248 2249 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2250 2251 if (!IsIncompleteFunction) 2252 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2253 IsThunk); 2254 2255 // Add the Returned attribute for "this", except for iOS 5 and earlier 2256 // where substantial code, including the libstdc++ dylib, was compiled with 2257 // GCC and does not actually return "this". 2258 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2259 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2260 assert(!F->arg_empty() && 2261 F->arg_begin()->getType() 2262 ->canLosslesslyBitCastTo(F->getReturnType()) && 2263 "unexpected this return"); 2264 F->addParamAttr(0, llvm::Attribute::Returned); 2265 } 2266 2267 // Only a few attributes are set on declarations; these may later be 2268 // overridden by a definition. 2269 2270 setLinkageForGV(F, FD); 2271 setGVProperties(F, FD); 2272 2273 // Setup target-specific attributes. 2274 if (!IsIncompleteFunction && F->isDeclaration()) 2275 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2276 2277 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2278 F->setSection(CSA->getName()); 2279 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2280 F->setSection(SA->getName()); 2281 2282 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2283 if (EA->isError()) 2284 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2285 else if (EA->isWarning()) 2286 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2287 } 2288 2289 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2290 if (FD->isInlineBuiltinDeclaration()) { 2291 const FunctionDecl *FDBody; 2292 bool HasBody = FD->hasBody(FDBody); 2293 (void)HasBody; 2294 assert(HasBody && "Inline builtin declarations should always have an " 2295 "available body!"); 2296 if (shouldEmitFunction(FDBody)) 2297 F->addFnAttr(llvm::Attribute::NoBuiltin); 2298 } 2299 2300 if (FD->isReplaceableGlobalAllocationFunction()) { 2301 // A replaceable global allocation function does not act like a builtin by 2302 // default, only if it is invoked by a new-expression or delete-expression. 2303 F->addFnAttr(llvm::Attribute::NoBuiltin); 2304 } 2305 2306 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2307 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2308 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2309 if (MD->isVirtual()) 2310 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2311 2312 // Don't emit entries for function declarations in the cross-DSO mode. This 2313 // is handled with better precision by the receiving DSO. But if jump tables 2314 // are non-canonical then we need type metadata in order to produce the local 2315 // jump table. 2316 if (!CodeGenOpts.SanitizeCfiCrossDso || 2317 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2318 CreateFunctionTypeMetadataForIcall(FD, F); 2319 2320 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2321 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2322 2323 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2324 // Annotate the callback behavior as metadata: 2325 // - The callback callee (as argument number). 2326 // - The callback payloads (as argument numbers). 2327 llvm::LLVMContext &Ctx = F->getContext(); 2328 llvm::MDBuilder MDB(Ctx); 2329 2330 // The payload indices are all but the first one in the encoding. The first 2331 // identifies the callback callee. 2332 int CalleeIdx = *CB->encoding_begin(); 2333 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2334 F->addMetadata(llvm::LLVMContext::MD_callback, 2335 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2336 CalleeIdx, PayloadIndices, 2337 /* VarArgsArePassed */ false)})); 2338 } 2339 } 2340 2341 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2342 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2343 "Only globals with definition can force usage."); 2344 LLVMUsed.emplace_back(GV); 2345 } 2346 2347 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2348 assert(!GV->isDeclaration() && 2349 "Only globals with definition can force usage."); 2350 LLVMCompilerUsed.emplace_back(GV); 2351 } 2352 2353 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2354 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2355 "Only globals with definition can force usage."); 2356 if (getTriple().isOSBinFormatELF()) 2357 LLVMCompilerUsed.emplace_back(GV); 2358 else 2359 LLVMUsed.emplace_back(GV); 2360 } 2361 2362 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2363 std::vector<llvm::WeakTrackingVH> &List) { 2364 // Don't create llvm.used if there is no need. 2365 if (List.empty()) 2366 return; 2367 2368 // Convert List to what ConstantArray needs. 2369 SmallVector<llvm::Constant*, 8> UsedArray; 2370 UsedArray.resize(List.size()); 2371 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2372 UsedArray[i] = 2373 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2374 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2375 } 2376 2377 if (UsedArray.empty()) 2378 return; 2379 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2380 2381 auto *GV = new llvm::GlobalVariable( 2382 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2383 llvm::ConstantArray::get(ATy, UsedArray), Name); 2384 2385 GV->setSection("llvm.metadata"); 2386 } 2387 2388 void CodeGenModule::emitLLVMUsed() { 2389 emitUsed(*this, "llvm.used", LLVMUsed); 2390 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2391 } 2392 2393 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2394 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2395 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2396 } 2397 2398 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2399 llvm::SmallString<32> Opt; 2400 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2401 if (Opt.empty()) 2402 return; 2403 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2404 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2405 } 2406 2407 void CodeGenModule::AddDependentLib(StringRef Lib) { 2408 auto &C = getLLVMContext(); 2409 if (getTarget().getTriple().isOSBinFormatELF()) { 2410 ELFDependentLibraries.push_back( 2411 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2412 return; 2413 } 2414 2415 llvm::SmallString<24> Opt; 2416 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2417 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2418 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2419 } 2420 2421 /// Add link options implied by the given module, including modules 2422 /// it depends on, using a postorder walk. 2423 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2424 SmallVectorImpl<llvm::MDNode *> &Metadata, 2425 llvm::SmallPtrSet<Module *, 16> &Visited) { 2426 // Import this module's parent. 2427 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2428 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2429 } 2430 2431 // Import this module's dependencies. 2432 for (Module *Import : llvm::reverse(Mod->Imports)) { 2433 if (Visited.insert(Import).second) 2434 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2435 } 2436 2437 // Add linker options to link against the libraries/frameworks 2438 // described by this module. 2439 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2440 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2441 2442 // For modules that use export_as for linking, use that module 2443 // name instead. 2444 if (Mod->UseExportAsModuleLinkName) 2445 return; 2446 2447 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2448 // Link against a framework. Frameworks are currently Darwin only, so we 2449 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2450 if (LL.IsFramework) { 2451 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2452 llvm::MDString::get(Context, LL.Library)}; 2453 2454 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2455 continue; 2456 } 2457 2458 // Link against a library. 2459 if (IsELF) { 2460 llvm::Metadata *Args[2] = { 2461 llvm::MDString::get(Context, "lib"), 2462 llvm::MDString::get(Context, LL.Library), 2463 }; 2464 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2465 } else { 2466 llvm::SmallString<24> Opt; 2467 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2468 auto *OptString = llvm::MDString::get(Context, Opt); 2469 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2470 } 2471 } 2472 } 2473 2474 void CodeGenModule::EmitModuleLinkOptions() { 2475 // Collect the set of all of the modules we want to visit to emit link 2476 // options, which is essentially the imported modules and all of their 2477 // non-explicit child modules. 2478 llvm::SetVector<clang::Module *> LinkModules; 2479 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2480 SmallVector<clang::Module *, 16> Stack; 2481 2482 // Seed the stack with imported modules. 2483 for (Module *M : ImportedModules) { 2484 // Do not add any link flags when an implementation TU of a module imports 2485 // a header of that same module. 2486 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2487 !getLangOpts().isCompilingModule()) 2488 continue; 2489 if (Visited.insert(M).second) 2490 Stack.push_back(M); 2491 } 2492 2493 // Find all of the modules to import, making a little effort to prune 2494 // non-leaf modules. 2495 while (!Stack.empty()) { 2496 clang::Module *Mod = Stack.pop_back_val(); 2497 2498 bool AnyChildren = false; 2499 2500 // Visit the submodules of this module. 2501 for (const auto &SM : Mod->submodules()) { 2502 // Skip explicit children; they need to be explicitly imported to be 2503 // linked against. 2504 if (SM->IsExplicit) 2505 continue; 2506 2507 if (Visited.insert(SM).second) { 2508 Stack.push_back(SM); 2509 AnyChildren = true; 2510 } 2511 } 2512 2513 // We didn't find any children, so add this module to the list of 2514 // modules to link against. 2515 if (!AnyChildren) { 2516 LinkModules.insert(Mod); 2517 } 2518 } 2519 2520 // Add link options for all of the imported modules in reverse topological 2521 // order. We don't do anything to try to order import link flags with respect 2522 // to linker options inserted by things like #pragma comment(). 2523 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2524 Visited.clear(); 2525 for (Module *M : LinkModules) 2526 if (Visited.insert(M).second) 2527 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2528 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2529 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2530 2531 // Add the linker options metadata flag. 2532 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2533 for (auto *MD : LinkerOptionsMetadata) 2534 NMD->addOperand(MD); 2535 } 2536 2537 void CodeGenModule::EmitDeferred() { 2538 // Emit deferred declare target declarations. 2539 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2540 getOpenMPRuntime().emitDeferredTargetDecls(); 2541 2542 // Emit code for any potentially referenced deferred decls. Since a 2543 // previously unused static decl may become used during the generation of code 2544 // for a static function, iterate until no changes are made. 2545 2546 if (!DeferredVTables.empty()) { 2547 EmitDeferredVTables(); 2548 2549 // Emitting a vtable doesn't directly cause more vtables to 2550 // become deferred, although it can cause functions to be 2551 // emitted that then need those vtables. 2552 assert(DeferredVTables.empty()); 2553 } 2554 2555 // Emit CUDA/HIP static device variables referenced by host code only. 2556 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2557 // needed for further handling. 2558 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2559 llvm::append_range(DeferredDeclsToEmit, 2560 getContext().CUDADeviceVarODRUsedByHost); 2561 2562 // Stop if we're out of both deferred vtables and deferred declarations. 2563 if (DeferredDeclsToEmit.empty()) 2564 return; 2565 2566 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2567 // work, it will not interfere with this. 2568 std::vector<GlobalDecl> CurDeclsToEmit; 2569 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2570 2571 for (GlobalDecl &D : CurDeclsToEmit) { 2572 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2573 // to get GlobalValue with exactly the type we need, not something that 2574 // might had been created for another decl with the same mangled name but 2575 // different type. 2576 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2577 GetAddrOfGlobal(D, ForDefinition)); 2578 2579 // In case of different address spaces, we may still get a cast, even with 2580 // IsForDefinition equal to true. Query mangled names table to get 2581 // GlobalValue. 2582 if (!GV) 2583 GV = GetGlobalValue(getMangledName(D)); 2584 2585 // Make sure GetGlobalValue returned non-null. 2586 assert(GV); 2587 2588 // Check to see if we've already emitted this. This is necessary 2589 // for a couple of reasons: first, decls can end up in the 2590 // deferred-decls queue multiple times, and second, decls can end 2591 // up with definitions in unusual ways (e.g. by an extern inline 2592 // function acquiring a strong function redefinition). Just 2593 // ignore these cases. 2594 if (!GV->isDeclaration()) 2595 continue; 2596 2597 // If this is OpenMP, check if it is legal to emit this global normally. 2598 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2599 continue; 2600 2601 // Otherwise, emit the definition and move on to the next one. 2602 EmitGlobalDefinition(D, GV); 2603 2604 // If we found out that we need to emit more decls, do that recursively. 2605 // This has the advantage that the decls are emitted in a DFS and related 2606 // ones are close together, which is convenient for testing. 2607 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2608 EmitDeferred(); 2609 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2610 } 2611 } 2612 } 2613 2614 void CodeGenModule::EmitVTablesOpportunistically() { 2615 // Try to emit external vtables as available_externally if they have emitted 2616 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2617 // is not allowed to create new references to things that need to be emitted 2618 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2619 2620 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2621 && "Only emit opportunistic vtables with optimizations"); 2622 2623 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2624 assert(getVTables().isVTableExternal(RD) && 2625 "This queue should only contain external vtables"); 2626 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2627 VTables.GenerateClassData(RD); 2628 } 2629 OpportunisticVTables.clear(); 2630 } 2631 2632 void CodeGenModule::EmitGlobalAnnotations() { 2633 if (Annotations.empty()) 2634 return; 2635 2636 // Create a new global variable for the ConstantStruct in the Module. 2637 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2638 Annotations[0]->getType(), Annotations.size()), Annotations); 2639 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2640 llvm::GlobalValue::AppendingLinkage, 2641 Array, "llvm.global.annotations"); 2642 gv->setSection(AnnotationSection); 2643 } 2644 2645 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2646 llvm::Constant *&AStr = AnnotationStrings[Str]; 2647 if (AStr) 2648 return AStr; 2649 2650 // Not found yet, create a new global. 2651 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2652 auto *gv = 2653 new llvm::GlobalVariable(getModule(), s->getType(), true, 2654 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2655 gv->setSection(AnnotationSection); 2656 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2657 AStr = gv; 2658 return gv; 2659 } 2660 2661 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2662 SourceManager &SM = getContext().getSourceManager(); 2663 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2664 if (PLoc.isValid()) 2665 return EmitAnnotationString(PLoc.getFilename()); 2666 return EmitAnnotationString(SM.getBufferName(Loc)); 2667 } 2668 2669 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2670 SourceManager &SM = getContext().getSourceManager(); 2671 PresumedLoc PLoc = SM.getPresumedLoc(L); 2672 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2673 SM.getExpansionLineNumber(L); 2674 return llvm::ConstantInt::get(Int32Ty, LineNo); 2675 } 2676 2677 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2678 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2679 if (Exprs.empty()) 2680 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy); 2681 2682 llvm::FoldingSetNodeID ID; 2683 for (Expr *E : Exprs) { 2684 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2685 } 2686 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2687 if (Lookup) 2688 return Lookup; 2689 2690 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2691 LLVMArgs.reserve(Exprs.size()); 2692 ConstantEmitter ConstEmiter(*this); 2693 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2694 const auto *CE = cast<clang::ConstantExpr>(E); 2695 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2696 CE->getType()); 2697 }); 2698 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2699 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2700 llvm::GlobalValue::PrivateLinkage, Struct, 2701 ".args"); 2702 GV->setSection(AnnotationSection); 2703 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2704 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2705 2706 Lookup = Bitcasted; 2707 return Bitcasted; 2708 } 2709 2710 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2711 const AnnotateAttr *AA, 2712 SourceLocation L) { 2713 // Get the globals for file name, annotation, and the line number. 2714 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2715 *UnitGV = EmitAnnotationUnit(L), 2716 *LineNoCst = EmitAnnotationLineNo(L), 2717 *Args = EmitAnnotationArgs(AA); 2718 2719 llvm::Constant *GVInGlobalsAS = GV; 2720 if (GV->getAddressSpace() != 2721 getDataLayout().getDefaultGlobalsAddressSpace()) { 2722 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2723 GV, GV->getValueType()->getPointerTo( 2724 getDataLayout().getDefaultGlobalsAddressSpace())); 2725 } 2726 2727 // Create the ConstantStruct for the global annotation. 2728 llvm::Constant *Fields[] = { 2729 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2730 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy), 2731 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy), 2732 LineNoCst, 2733 Args, 2734 }; 2735 return llvm::ConstantStruct::getAnon(Fields); 2736 } 2737 2738 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2739 llvm::GlobalValue *GV) { 2740 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2741 // Get the struct elements for these annotations. 2742 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2743 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2744 } 2745 2746 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2747 SourceLocation Loc) const { 2748 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2749 // NoSanitize by function name. 2750 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2751 return true; 2752 // NoSanitize by location. 2753 if (Loc.isValid()) 2754 return NoSanitizeL.containsLocation(Kind, Loc); 2755 // If location is unknown, this may be a compiler-generated function. Assume 2756 // it's located in the main file. 2757 auto &SM = Context.getSourceManager(); 2758 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2759 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2760 } 2761 return false; 2762 } 2763 2764 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV, 2765 SourceLocation Loc, QualType Ty, 2766 StringRef Category) const { 2767 // For now globals can be ignored only in ASan and KASan. 2768 const SanitizerMask EnabledAsanMask = 2769 LangOpts.Sanitize.Mask & 2770 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2771 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2772 SanitizerKind::MemTag); 2773 if (!EnabledAsanMask) 2774 return false; 2775 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2776 if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category)) 2777 return true; 2778 if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category)) 2779 return true; 2780 // Check global type. 2781 if (!Ty.isNull()) { 2782 // Drill down the array types: if global variable of a fixed type is 2783 // not sanitized, we also don't instrument arrays of them. 2784 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2785 Ty = AT->getElementType(); 2786 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2787 // Only record types (classes, structs etc.) are ignored. 2788 if (Ty->isRecordType()) { 2789 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2790 if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category)) 2791 return true; 2792 } 2793 } 2794 return false; 2795 } 2796 2797 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2798 StringRef Category) const { 2799 const auto &XRayFilter = getContext().getXRayFilter(); 2800 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2801 auto Attr = ImbueAttr::NONE; 2802 if (Loc.isValid()) 2803 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2804 if (Attr == ImbueAttr::NONE) 2805 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2806 switch (Attr) { 2807 case ImbueAttr::NONE: 2808 return false; 2809 case ImbueAttr::ALWAYS: 2810 Fn->addFnAttr("function-instrument", "xray-always"); 2811 break; 2812 case ImbueAttr::ALWAYS_ARG1: 2813 Fn->addFnAttr("function-instrument", "xray-always"); 2814 Fn->addFnAttr("xray-log-args", "1"); 2815 break; 2816 case ImbueAttr::NEVER: 2817 Fn->addFnAttr("function-instrument", "xray-never"); 2818 break; 2819 } 2820 return true; 2821 } 2822 2823 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2824 SourceLocation Loc) const { 2825 const auto &ProfileList = getContext().getProfileList(); 2826 // If the profile list is empty, then instrument everything. 2827 if (ProfileList.isEmpty()) 2828 return false; 2829 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2830 // First, check the function name. 2831 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2832 if (V.hasValue()) 2833 return *V; 2834 // Next, check the source location. 2835 if (Loc.isValid()) { 2836 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2837 if (V.hasValue()) 2838 return *V; 2839 } 2840 // If location is unknown, this may be a compiler-generated function. Assume 2841 // it's located in the main file. 2842 auto &SM = Context.getSourceManager(); 2843 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2844 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2845 if (V.hasValue()) 2846 return *V; 2847 } 2848 return ProfileList.getDefault(); 2849 } 2850 2851 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2852 // Never defer when EmitAllDecls is specified. 2853 if (LangOpts.EmitAllDecls) 2854 return true; 2855 2856 if (CodeGenOpts.KeepStaticConsts) { 2857 const auto *VD = dyn_cast<VarDecl>(Global); 2858 if (VD && VD->getType().isConstQualified() && 2859 VD->getStorageDuration() == SD_Static) 2860 return true; 2861 } 2862 2863 return getContext().DeclMustBeEmitted(Global); 2864 } 2865 2866 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2867 // In OpenMP 5.0 variables and function may be marked as 2868 // device_type(host/nohost) and we should not emit them eagerly unless we sure 2869 // that they must be emitted on the host/device. To be sure we need to have 2870 // seen a declare target with an explicit mentioning of the function, we know 2871 // we have if the level of the declare target attribute is -1. Note that we 2872 // check somewhere else if we should emit this at all. 2873 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 2874 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 2875 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 2876 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 2877 return false; 2878 } 2879 2880 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2881 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2882 // Implicit template instantiations may change linkage if they are later 2883 // explicitly instantiated, so they should not be emitted eagerly. 2884 return false; 2885 } 2886 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2887 if (Context.getInlineVariableDefinitionKind(VD) == 2888 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2889 // A definition of an inline constexpr static data member may change 2890 // linkage later if it's redeclared outside the class. 2891 return false; 2892 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2893 // codegen for global variables, because they may be marked as threadprivate. 2894 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2895 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2896 !isTypeConstant(Global->getType(), false) && 2897 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2898 return false; 2899 2900 return true; 2901 } 2902 2903 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2904 StringRef Name = getMangledName(GD); 2905 2906 // The UUID descriptor should be pointer aligned. 2907 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2908 2909 // Look for an existing global. 2910 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2911 return ConstantAddress(GV, GV->getValueType(), Alignment); 2912 2913 ConstantEmitter Emitter(*this); 2914 llvm::Constant *Init; 2915 2916 APValue &V = GD->getAsAPValue(); 2917 if (!V.isAbsent()) { 2918 // If possible, emit the APValue version of the initializer. In particular, 2919 // this gets the type of the constant right. 2920 Init = Emitter.emitForInitializer( 2921 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2922 } else { 2923 // As a fallback, directly construct the constant. 2924 // FIXME: This may get padding wrong under esoteric struct layout rules. 2925 // MSVC appears to create a complete type 'struct __s_GUID' that it 2926 // presumably uses to represent these constants. 2927 MSGuidDecl::Parts Parts = GD->getParts(); 2928 llvm::Constant *Fields[4] = { 2929 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2930 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2931 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2932 llvm::ConstantDataArray::getRaw( 2933 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2934 Int8Ty)}; 2935 Init = llvm::ConstantStruct::getAnon(Fields); 2936 } 2937 2938 auto *GV = new llvm::GlobalVariable( 2939 getModule(), Init->getType(), 2940 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2941 if (supportsCOMDAT()) 2942 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2943 setDSOLocal(GV); 2944 2945 if (!V.isAbsent()) { 2946 Emitter.finalize(GV); 2947 return ConstantAddress(GV, GV->getValueType(), Alignment); 2948 } 2949 2950 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2951 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 2952 GV, Ty->getPointerTo(GV->getAddressSpace())); 2953 return ConstantAddress(Addr, Ty, Alignment); 2954 } 2955 2956 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 2957 const UnnamedGlobalConstantDecl *GCD) { 2958 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 2959 2960 llvm::GlobalVariable **Entry = nullptr; 2961 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 2962 if (*Entry) 2963 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 2964 2965 ConstantEmitter Emitter(*this); 2966 llvm::Constant *Init; 2967 2968 const APValue &V = GCD->getValue(); 2969 2970 assert(!V.isAbsent()); 2971 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 2972 GCD->getType()); 2973 2974 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 2975 /*isConstant=*/true, 2976 llvm::GlobalValue::PrivateLinkage, Init, 2977 ".constant"); 2978 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2979 GV->setAlignment(Alignment.getAsAlign()); 2980 2981 Emitter.finalize(GV); 2982 2983 *Entry = GV; 2984 return ConstantAddress(GV, GV->getValueType(), Alignment); 2985 } 2986 2987 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2988 const TemplateParamObjectDecl *TPO) { 2989 StringRef Name = getMangledName(TPO); 2990 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2991 2992 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2993 return ConstantAddress(GV, GV->getValueType(), Alignment); 2994 2995 ConstantEmitter Emitter(*this); 2996 llvm::Constant *Init = Emitter.emitForInitializer( 2997 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2998 2999 if (!Init) { 3000 ErrorUnsupported(TPO, "template parameter object"); 3001 return ConstantAddress::invalid(); 3002 } 3003 3004 auto *GV = new llvm::GlobalVariable( 3005 getModule(), Init->getType(), 3006 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3007 if (supportsCOMDAT()) 3008 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3009 Emitter.finalize(GV); 3010 3011 return ConstantAddress(GV, GV->getValueType(), Alignment); 3012 } 3013 3014 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3015 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3016 assert(AA && "No alias?"); 3017 3018 CharUnits Alignment = getContext().getDeclAlign(VD); 3019 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3020 3021 // See if there is already something with the target's name in the module. 3022 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3023 if (Entry) { 3024 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 3025 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3026 return ConstantAddress(Ptr, DeclTy, Alignment); 3027 } 3028 3029 llvm::Constant *Aliasee; 3030 if (isa<llvm::FunctionType>(DeclTy)) 3031 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3032 GlobalDecl(cast<FunctionDecl>(VD)), 3033 /*ForVTable=*/false); 3034 else 3035 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3036 nullptr); 3037 3038 auto *F = cast<llvm::GlobalValue>(Aliasee); 3039 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3040 WeakRefReferences.insert(F); 3041 3042 return ConstantAddress(Aliasee, DeclTy, Alignment); 3043 } 3044 3045 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3046 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3047 3048 // Weak references don't produce any output by themselves. 3049 if (Global->hasAttr<WeakRefAttr>()) 3050 return; 3051 3052 // If this is an alias definition (which otherwise looks like a declaration) 3053 // emit it now. 3054 if (Global->hasAttr<AliasAttr>()) 3055 return EmitAliasDefinition(GD); 3056 3057 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3058 if (Global->hasAttr<IFuncAttr>()) 3059 return emitIFuncDefinition(GD); 3060 3061 // If this is a cpu_dispatch multiversion function, emit the resolver. 3062 if (Global->hasAttr<CPUDispatchAttr>()) 3063 return emitCPUDispatchDefinition(GD); 3064 3065 // If this is CUDA, be selective about which declarations we emit. 3066 if (LangOpts.CUDA) { 3067 if (LangOpts.CUDAIsDevice) { 3068 if (!Global->hasAttr<CUDADeviceAttr>() && 3069 !Global->hasAttr<CUDAGlobalAttr>() && 3070 !Global->hasAttr<CUDAConstantAttr>() && 3071 !Global->hasAttr<CUDASharedAttr>() && 3072 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3073 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3074 return; 3075 } else { 3076 // We need to emit host-side 'shadows' for all global 3077 // device-side variables because the CUDA runtime needs their 3078 // size and host-side address in order to provide access to 3079 // their device-side incarnations. 3080 3081 // So device-only functions are the only things we skip. 3082 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3083 Global->hasAttr<CUDADeviceAttr>()) 3084 return; 3085 3086 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3087 "Expected Variable or Function"); 3088 } 3089 } 3090 3091 if (LangOpts.OpenMP) { 3092 // If this is OpenMP, check if it is legal to emit this global normally. 3093 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3094 return; 3095 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3096 if (MustBeEmitted(Global)) 3097 EmitOMPDeclareReduction(DRD); 3098 return; 3099 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3100 if (MustBeEmitted(Global)) 3101 EmitOMPDeclareMapper(DMD); 3102 return; 3103 } 3104 } 3105 3106 // Ignore declarations, they will be emitted on their first use. 3107 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3108 // Forward declarations are emitted lazily on first use. 3109 if (!FD->doesThisDeclarationHaveABody()) { 3110 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3111 return; 3112 3113 StringRef MangledName = getMangledName(GD); 3114 3115 // Compute the function info and LLVM type. 3116 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3117 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3118 3119 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3120 /*DontDefer=*/false); 3121 return; 3122 } 3123 } else { 3124 const auto *VD = cast<VarDecl>(Global); 3125 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3126 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3127 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3128 if (LangOpts.OpenMP) { 3129 // Emit declaration of the must-be-emitted declare target variable. 3130 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3131 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3132 bool UnifiedMemoryEnabled = 3133 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3134 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 3135 !UnifiedMemoryEnabled) { 3136 (void)GetAddrOfGlobalVar(VD); 3137 } else { 3138 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3139 (*Res == OMPDeclareTargetDeclAttr::MT_To && 3140 UnifiedMemoryEnabled)) && 3141 "Link clause or to clause with unified memory expected."); 3142 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3143 } 3144 3145 return; 3146 } 3147 } 3148 // If this declaration may have caused an inline variable definition to 3149 // change linkage, make sure that it's emitted. 3150 if (Context.getInlineVariableDefinitionKind(VD) == 3151 ASTContext::InlineVariableDefinitionKind::Strong) 3152 GetAddrOfGlobalVar(VD); 3153 return; 3154 } 3155 } 3156 3157 // Defer code generation to first use when possible, e.g. if this is an inline 3158 // function. If the global must always be emitted, do it eagerly if possible 3159 // to benefit from cache locality. 3160 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3161 // Emit the definition if it can't be deferred. 3162 EmitGlobalDefinition(GD); 3163 return; 3164 } 3165 3166 // If we're deferring emission of a C++ variable with an 3167 // initializer, remember the order in which it appeared in the file. 3168 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3169 cast<VarDecl>(Global)->hasInit()) { 3170 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3171 CXXGlobalInits.push_back(nullptr); 3172 } 3173 3174 StringRef MangledName = getMangledName(GD); 3175 if (GetGlobalValue(MangledName) != nullptr) { 3176 // The value has already been used and should therefore be emitted. 3177 addDeferredDeclToEmit(GD); 3178 } else if (MustBeEmitted(Global)) { 3179 // The value must be emitted, but cannot be emitted eagerly. 3180 assert(!MayBeEmittedEagerly(Global)); 3181 addDeferredDeclToEmit(GD); 3182 } else { 3183 // Otherwise, remember that we saw a deferred decl with this name. The 3184 // first use of the mangled name will cause it to move into 3185 // DeferredDeclsToEmit. 3186 DeferredDecls[MangledName] = GD; 3187 } 3188 } 3189 3190 // Check if T is a class type with a destructor that's not dllimport. 3191 static bool HasNonDllImportDtor(QualType T) { 3192 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3193 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3194 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3195 return true; 3196 3197 return false; 3198 } 3199 3200 namespace { 3201 struct FunctionIsDirectlyRecursive 3202 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3203 const StringRef Name; 3204 const Builtin::Context &BI; 3205 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3206 : Name(N), BI(C) {} 3207 3208 bool VisitCallExpr(const CallExpr *E) { 3209 const FunctionDecl *FD = E->getDirectCallee(); 3210 if (!FD) 3211 return false; 3212 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3213 if (Attr && Name == Attr->getLabel()) 3214 return true; 3215 unsigned BuiltinID = FD->getBuiltinID(); 3216 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3217 return false; 3218 StringRef BuiltinName = BI.getName(BuiltinID); 3219 if (BuiltinName.startswith("__builtin_") && 3220 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3221 return true; 3222 } 3223 return false; 3224 } 3225 3226 bool VisitStmt(const Stmt *S) { 3227 for (const Stmt *Child : S->children()) 3228 if (Child && this->Visit(Child)) 3229 return true; 3230 return false; 3231 } 3232 }; 3233 3234 // Make sure we're not referencing non-imported vars or functions. 3235 struct DLLImportFunctionVisitor 3236 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3237 bool SafeToInline = true; 3238 3239 bool shouldVisitImplicitCode() const { return true; } 3240 3241 bool VisitVarDecl(VarDecl *VD) { 3242 if (VD->getTLSKind()) { 3243 // A thread-local variable cannot be imported. 3244 SafeToInline = false; 3245 return SafeToInline; 3246 } 3247 3248 // A variable definition might imply a destructor call. 3249 if (VD->isThisDeclarationADefinition()) 3250 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3251 3252 return SafeToInline; 3253 } 3254 3255 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3256 if (const auto *D = E->getTemporary()->getDestructor()) 3257 SafeToInline = D->hasAttr<DLLImportAttr>(); 3258 return SafeToInline; 3259 } 3260 3261 bool VisitDeclRefExpr(DeclRefExpr *E) { 3262 ValueDecl *VD = E->getDecl(); 3263 if (isa<FunctionDecl>(VD)) 3264 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3265 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3266 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3267 return SafeToInline; 3268 } 3269 3270 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3271 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3272 return SafeToInline; 3273 } 3274 3275 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3276 CXXMethodDecl *M = E->getMethodDecl(); 3277 if (!M) { 3278 // Call through a pointer to member function. This is safe to inline. 3279 SafeToInline = true; 3280 } else { 3281 SafeToInline = M->hasAttr<DLLImportAttr>(); 3282 } 3283 return SafeToInline; 3284 } 3285 3286 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3287 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3288 return SafeToInline; 3289 } 3290 3291 bool VisitCXXNewExpr(CXXNewExpr *E) { 3292 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3293 return SafeToInline; 3294 } 3295 }; 3296 } 3297 3298 // isTriviallyRecursive - Check if this function calls another 3299 // decl that, because of the asm attribute or the other decl being a builtin, 3300 // ends up pointing to itself. 3301 bool 3302 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3303 StringRef Name; 3304 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3305 // asm labels are a special kind of mangling we have to support. 3306 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3307 if (!Attr) 3308 return false; 3309 Name = Attr->getLabel(); 3310 } else { 3311 Name = FD->getName(); 3312 } 3313 3314 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3315 const Stmt *Body = FD->getBody(); 3316 return Body ? Walker.Visit(Body) : false; 3317 } 3318 3319 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3320 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3321 return true; 3322 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3323 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3324 return false; 3325 3326 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3327 // Check whether it would be safe to inline this dllimport function. 3328 DLLImportFunctionVisitor Visitor; 3329 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3330 if (!Visitor.SafeToInline) 3331 return false; 3332 3333 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3334 // Implicit destructor invocations aren't captured in the AST, so the 3335 // check above can't see them. Check for them manually here. 3336 for (const Decl *Member : Dtor->getParent()->decls()) 3337 if (isa<FieldDecl>(Member)) 3338 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3339 return false; 3340 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3341 if (HasNonDllImportDtor(B.getType())) 3342 return false; 3343 } 3344 } 3345 3346 // Inline builtins declaration must be emitted. They often are fortified 3347 // functions. 3348 if (F->isInlineBuiltinDeclaration()) 3349 return true; 3350 3351 // PR9614. Avoid cases where the source code is lying to us. An available 3352 // externally function should have an equivalent function somewhere else, 3353 // but a function that calls itself through asm label/`__builtin_` trickery is 3354 // clearly not equivalent to the real implementation. 3355 // This happens in glibc's btowc and in some configure checks. 3356 return !isTriviallyRecursive(F); 3357 } 3358 3359 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3360 return CodeGenOpts.OptimizationLevel > 0; 3361 } 3362 3363 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3364 llvm::GlobalValue *GV) { 3365 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3366 3367 if (FD->isCPUSpecificMultiVersion()) { 3368 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3369 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3370 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3371 } else if (FD->isTargetClonesMultiVersion()) { 3372 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3373 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3374 if (Clone->isFirstOfVersion(I)) 3375 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3376 // Ensure that the resolver function is also emitted. 3377 GetOrCreateMultiVersionResolver(GD); 3378 } else 3379 EmitGlobalFunctionDefinition(GD, GV); 3380 } 3381 3382 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3383 const auto *D = cast<ValueDecl>(GD.getDecl()); 3384 3385 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3386 Context.getSourceManager(), 3387 "Generating code for declaration"); 3388 3389 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3390 // At -O0, don't generate IR for functions with available_externally 3391 // linkage. 3392 if (!shouldEmitFunction(GD)) 3393 return; 3394 3395 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3396 std::string Name; 3397 llvm::raw_string_ostream OS(Name); 3398 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3399 /*Qualified=*/true); 3400 return Name; 3401 }); 3402 3403 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3404 // Make sure to emit the definition(s) before we emit the thunks. 3405 // This is necessary for the generation of certain thunks. 3406 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3407 ABI->emitCXXStructor(GD); 3408 else if (FD->isMultiVersion()) 3409 EmitMultiVersionFunctionDefinition(GD, GV); 3410 else 3411 EmitGlobalFunctionDefinition(GD, GV); 3412 3413 if (Method->isVirtual()) 3414 getVTables().EmitThunks(GD); 3415 3416 return; 3417 } 3418 3419 if (FD->isMultiVersion()) 3420 return EmitMultiVersionFunctionDefinition(GD, GV); 3421 return EmitGlobalFunctionDefinition(GD, GV); 3422 } 3423 3424 if (const auto *VD = dyn_cast<VarDecl>(D)) 3425 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3426 3427 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3428 } 3429 3430 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3431 llvm::Function *NewFn); 3432 3433 static unsigned 3434 TargetMVPriority(const TargetInfo &TI, 3435 const CodeGenFunction::MultiVersionResolverOption &RO) { 3436 unsigned Priority = 0; 3437 for (StringRef Feat : RO.Conditions.Features) 3438 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3439 3440 if (!RO.Conditions.Architecture.empty()) 3441 Priority = std::max( 3442 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3443 return Priority; 3444 } 3445 3446 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3447 // TU can forward declare the function without causing problems. Particularly 3448 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3449 // work with internal linkage functions, so that the same function name can be 3450 // used with internal linkage in multiple TUs. 3451 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3452 GlobalDecl GD) { 3453 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3454 if (FD->getFormalLinkage() == InternalLinkage) 3455 return llvm::GlobalValue::InternalLinkage; 3456 return llvm::GlobalValue::WeakODRLinkage; 3457 } 3458 3459 void CodeGenModule::emitMultiVersionFunctions() { 3460 std::vector<GlobalDecl> MVFuncsToEmit; 3461 MultiVersionFuncs.swap(MVFuncsToEmit); 3462 for (GlobalDecl GD : MVFuncsToEmit) { 3463 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3464 assert(FD && "Expected a FunctionDecl"); 3465 3466 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3467 if (FD->isTargetMultiVersion()) { 3468 getContext().forEachMultiversionedFunctionVersion( 3469 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3470 GlobalDecl CurGD{ 3471 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3472 StringRef MangledName = getMangledName(CurGD); 3473 llvm::Constant *Func = GetGlobalValue(MangledName); 3474 if (!Func) { 3475 if (CurFD->isDefined()) { 3476 EmitGlobalFunctionDefinition(CurGD, nullptr); 3477 Func = GetGlobalValue(MangledName); 3478 } else { 3479 const CGFunctionInfo &FI = 3480 getTypes().arrangeGlobalDeclaration(GD); 3481 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3482 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3483 /*DontDefer=*/false, ForDefinition); 3484 } 3485 assert(Func && "This should have just been created"); 3486 } 3487 3488 const auto *TA = CurFD->getAttr<TargetAttr>(); 3489 llvm::SmallVector<StringRef, 8> Feats; 3490 TA->getAddedFeatures(Feats); 3491 3492 Options.emplace_back(cast<llvm::Function>(Func), 3493 TA->getArchitecture(), Feats); 3494 }); 3495 } else if (FD->isTargetClonesMultiVersion()) { 3496 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3497 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3498 ++VersionIndex) { 3499 if (!TC->isFirstOfVersion(VersionIndex)) 3500 continue; 3501 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 3502 VersionIndex}; 3503 StringRef Version = TC->getFeatureStr(VersionIndex); 3504 StringRef MangledName = getMangledName(CurGD); 3505 llvm::Constant *Func = GetGlobalValue(MangledName); 3506 if (!Func) { 3507 if (FD->isDefined()) { 3508 EmitGlobalFunctionDefinition(CurGD, nullptr); 3509 Func = GetGlobalValue(MangledName); 3510 } else { 3511 const CGFunctionInfo &FI = 3512 getTypes().arrangeGlobalDeclaration(CurGD); 3513 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3514 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3515 /*DontDefer=*/false, ForDefinition); 3516 } 3517 assert(Func && "This should have just been created"); 3518 } 3519 3520 StringRef Architecture; 3521 llvm::SmallVector<StringRef, 1> Feature; 3522 3523 if (Version.startswith("arch=")) 3524 Architecture = Version.drop_front(sizeof("arch=") - 1); 3525 else if (Version != "default") 3526 Feature.push_back(Version); 3527 3528 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3529 } 3530 } else { 3531 assert(0 && "Expected a target or target_clones multiversion function"); 3532 continue; 3533 } 3534 3535 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 3536 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 3537 ResolverConstant = IFunc->getResolver(); 3538 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 3539 3540 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3541 3542 if (supportsCOMDAT()) 3543 ResolverFunc->setComdat( 3544 getModule().getOrInsertComdat(ResolverFunc->getName())); 3545 3546 const TargetInfo &TI = getTarget(); 3547 llvm::stable_sort( 3548 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3549 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3550 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3551 }); 3552 CodeGenFunction CGF(*this); 3553 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3554 } 3555 3556 // Ensure that any additions to the deferred decls list caused by emitting a 3557 // variant are emitted. This can happen when the variant itself is inline and 3558 // calls a function without linkage. 3559 if (!MVFuncsToEmit.empty()) 3560 EmitDeferred(); 3561 3562 // Ensure that any additions to the multiversion funcs list from either the 3563 // deferred decls or the multiversion functions themselves are emitted. 3564 if (!MultiVersionFuncs.empty()) 3565 emitMultiVersionFunctions(); 3566 } 3567 3568 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3569 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3570 assert(FD && "Not a FunctionDecl?"); 3571 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3572 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3573 assert(DD && "Not a cpu_dispatch Function?"); 3574 3575 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3576 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3577 3578 StringRef ResolverName = getMangledName(GD); 3579 UpdateMultiVersionNames(GD, FD, ResolverName); 3580 3581 llvm::Type *ResolverType; 3582 GlobalDecl ResolverGD; 3583 if (getTarget().supportsIFunc()) { 3584 ResolverType = llvm::FunctionType::get( 3585 llvm::PointerType::get(DeclTy, 3586 Context.getTargetAddressSpace(FD->getType())), 3587 false); 3588 } 3589 else { 3590 ResolverType = DeclTy; 3591 ResolverGD = GD; 3592 } 3593 3594 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3595 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3596 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3597 if (supportsCOMDAT()) 3598 ResolverFunc->setComdat( 3599 getModule().getOrInsertComdat(ResolverFunc->getName())); 3600 3601 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3602 const TargetInfo &Target = getTarget(); 3603 unsigned Index = 0; 3604 for (const IdentifierInfo *II : DD->cpus()) { 3605 // Get the name of the target function so we can look it up/create it. 3606 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3607 getCPUSpecificMangling(*this, II->getName()); 3608 3609 llvm::Constant *Func = GetGlobalValue(MangledName); 3610 3611 if (!Func) { 3612 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3613 if (ExistingDecl.getDecl() && 3614 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3615 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3616 Func = GetGlobalValue(MangledName); 3617 } else { 3618 if (!ExistingDecl.getDecl()) 3619 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3620 3621 Func = GetOrCreateLLVMFunction( 3622 MangledName, DeclTy, ExistingDecl, 3623 /*ForVTable=*/false, /*DontDefer=*/true, 3624 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3625 } 3626 } 3627 3628 llvm::SmallVector<StringRef, 32> Features; 3629 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3630 llvm::transform(Features, Features.begin(), 3631 [](StringRef Str) { return Str.substr(1); }); 3632 llvm::erase_if(Features, [&Target](StringRef Feat) { 3633 return !Target.validateCpuSupports(Feat); 3634 }); 3635 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3636 ++Index; 3637 } 3638 3639 llvm::stable_sort( 3640 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3641 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3642 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3643 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3644 }); 3645 3646 // If the list contains multiple 'default' versions, such as when it contains 3647 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3648 // always run on at least a 'pentium'). We do this by deleting the 'least 3649 // advanced' (read, lowest mangling letter). 3650 while (Options.size() > 1 && 3651 llvm::X86::getCpuSupportsMask( 3652 (Options.end() - 2)->Conditions.Features) == 0) { 3653 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3654 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3655 if (LHSName.compare(RHSName) < 0) 3656 Options.erase(Options.end() - 2); 3657 else 3658 Options.erase(Options.end() - 1); 3659 } 3660 3661 CodeGenFunction CGF(*this); 3662 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3663 3664 if (getTarget().supportsIFunc()) { 3665 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3666 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 3667 3668 // Fix up function declarations that were created for cpu_specific before 3669 // cpu_dispatch was known 3670 if (!dyn_cast<llvm::GlobalIFunc>(IFunc)) { 3671 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3672 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3673 &getModule()); 3674 GI->takeName(IFunc); 3675 IFunc->replaceAllUsesWith(GI); 3676 IFunc->eraseFromParent(); 3677 IFunc = GI; 3678 } 3679 3680 std::string AliasName = getMangledNameImpl( 3681 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3682 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3683 if (!AliasFunc) { 3684 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3685 &getModule()); 3686 SetCommonAttributes(GD, GA); 3687 } 3688 } 3689 } 3690 3691 /// If a dispatcher for the specified mangled name is not in the module, create 3692 /// and return an llvm Function with the specified type. 3693 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 3694 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3695 assert(FD && "Not a FunctionDecl?"); 3696 3697 std::string MangledName = 3698 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3699 3700 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3701 // a separate resolver). 3702 std::string ResolverName = MangledName; 3703 if (getTarget().supportsIFunc()) 3704 ResolverName += ".ifunc"; 3705 else if (FD->isTargetMultiVersion()) 3706 ResolverName += ".resolver"; 3707 3708 // If the resolver has already been created, just return it. 3709 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3710 return ResolverGV; 3711 3712 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3713 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3714 3715 // The resolver needs to be created. For target and target_clones, defer 3716 // creation until the end of the TU. 3717 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 3718 MultiVersionFuncs.push_back(GD); 3719 3720 // For cpu_specific, don't create an ifunc yet because we don't know if the 3721 // cpu_dispatch will be emitted in this translation unit. 3722 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 3723 llvm::Type *ResolverType = llvm::FunctionType::get( 3724 llvm::PointerType::get( 3725 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3726 false); 3727 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3728 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3729 /*ForVTable=*/false); 3730 llvm::GlobalIFunc *GIF = 3731 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3732 "", Resolver, &getModule()); 3733 GIF->setName(ResolverName); 3734 SetCommonAttributes(FD, GIF); 3735 3736 return GIF; 3737 } 3738 3739 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3740 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3741 assert(isa<llvm::GlobalValue>(Resolver) && 3742 "Resolver should be created for the first time"); 3743 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3744 return Resolver; 3745 } 3746 3747 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3748 /// module, create and return an llvm Function with the specified type. If there 3749 /// is something in the module with the specified name, return it potentially 3750 /// bitcasted to the right type. 3751 /// 3752 /// If D is non-null, it specifies a decl that correspond to this. This is used 3753 /// to set the attributes on the function when it is first created. 3754 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3755 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3756 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3757 ForDefinition_t IsForDefinition) { 3758 const Decl *D = GD.getDecl(); 3759 3760 // Any attempts to use a MultiVersion function should result in retrieving 3761 // the iFunc instead. Name Mangling will handle the rest of the changes. 3762 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3763 // For the device mark the function as one that should be emitted. 3764 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3765 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3766 !DontDefer && !IsForDefinition) { 3767 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3768 GlobalDecl GDDef; 3769 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3770 GDDef = GlobalDecl(CD, GD.getCtorType()); 3771 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3772 GDDef = GlobalDecl(DD, GD.getDtorType()); 3773 else 3774 GDDef = GlobalDecl(FDDef); 3775 EmitGlobal(GDDef); 3776 } 3777 } 3778 3779 if (FD->isMultiVersion()) { 3780 UpdateMultiVersionNames(GD, FD, MangledName); 3781 if (!IsForDefinition) 3782 return GetOrCreateMultiVersionResolver(GD); 3783 } 3784 } 3785 3786 // Lookup the entry, lazily creating it if necessary. 3787 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3788 if (Entry) { 3789 if (WeakRefReferences.erase(Entry)) { 3790 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3791 if (FD && !FD->hasAttr<WeakAttr>()) 3792 Entry->setLinkage(llvm::Function::ExternalLinkage); 3793 } 3794 3795 // Handle dropped DLL attributes. 3796 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3797 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3798 setDSOLocal(Entry); 3799 } 3800 3801 // If there are two attempts to define the same mangled name, issue an 3802 // error. 3803 if (IsForDefinition && !Entry->isDeclaration()) { 3804 GlobalDecl OtherGD; 3805 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3806 // to make sure that we issue an error only once. 3807 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3808 (GD.getCanonicalDecl().getDecl() != 3809 OtherGD.getCanonicalDecl().getDecl()) && 3810 DiagnosedConflictingDefinitions.insert(GD).second) { 3811 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3812 << MangledName; 3813 getDiags().Report(OtherGD.getDecl()->getLocation(), 3814 diag::note_previous_definition); 3815 } 3816 } 3817 3818 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3819 (Entry->getValueType() == Ty)) { 3820 return Entry; 3821 } 3822 3823 // Make sure the result is of the correct type. 3824 // (If function is requested for a definition, we always need to create a new 3825 // function, not just return a bitcast.) 3826 if (!IsForDefinition) 3827 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3828 } 3829 3830 // This function doesn't have a complete type (for example, the return 3831 // type is an incomplete struct). Use a fake type instead, and make 3832 // sure not to try to set attributes. 3833 bool IsIncompleteFunction = false; 3834 3835 llvm::FunctionType *FTy; 3836 if (isa<llvm::FunctionType>(Ty)) { 3837 FTy = cast<llvm::FunctionType>(Ty); 3838 } else { 3839 FTy = llvm::FunctionType::get(VoidTy, false); 3840 IsIncompleteFunction = true; 3841 } 3842 3843 llvm::Function *F = 3844 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3845 Entry ? StringRef() : MangledName, &getModule()); 3846 3847 // If we already created a function with the same mangled name (but different 3848 // type) before, take its name and add it to the list of functions to be 3849 // replaced with F at the end of CodeGen. 3850 // 3851 // This happens if there is a prototype for a function (e.g. "int f()") and 3852 // then a definition of a different type (e.g. "int f(int x)"). 3853 if (Entry) { 3854 F->takeName(Entry); 3855 3856 // This might be an implementation of a function without a prototype, in 3857 // which case, try to do special replacement of calls which match the new 3858 // prototype. The really key thing here is that we also potentially drop 3859 // arguments from the call site so as to make a direct call, which makes the 3860 // inliner happier and suppresses a number of optimizer warnings (!) about 3861 // dropping arguments. 3862 if (!Entry->use_empty()) { 3863 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3864 Entry->removeDeadConstantUsers(); 3865 } 3866 3867 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3868 F, Entry->getValueType()->getPointerTo()); 3869 addGlobalValReplacement(Entry, BC); 3870 } 3871 3872 assert(F->getName() == MangledName && "name was uniqued!"); 3873 if (D) 3874 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3875 if (ExtraAttrs.hasFnAttrs()) { 3876 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 3877 F->addFnAttrs(B); 3878 } 3879 3880 if (!DontDefer) { 3881 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3882 // each other bottoming out with the base dtor. Therefore we emit non-base 3883 // dtors on usage, even if there is no dtor definition in the TU. 3884 if (D && isa<CXXDestructorDecl>(D) && 3885 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3886 GD.getDtorType())) 3887 addDeferredDeclToEmit(GD); 3888 3889 // This is the first use or definition of a mangled name. If there is a 3890 // deferred decl with this name, remember that we need to emit it at the end 3891 // of the file. 3892 auto DDI = DeferredDecls.find(MangledName); 3893 if (DDI != DeferredDecls.end()) { 3894 // Move the potentially referenced deferred decl to the 3895 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3896 // don't need it anymore). 3897 addDeferredDeclToEmit(DDI->second); 3898 DeferredDecls.erase(DDI); 3899 3900 // Otherwise, there are cases we have to worry about where we're 3901 // using a declaration for which we must emit a definition but where 3902 // we might not find a top-level definition: 3903 // - member functions defined inline in their classes 3904 // - friend functions defined inline in some class 3905 // - special member functions with implicit definitions 3906 // If we ever change our AST traversal to walk into class methods, 3907 // this will be unnecessary. 3908 // 3909 // We also don't emit a definition for a function if it's going to be an 3910 // entry in a vtable, unless it's already marked as used. 3911 } else if (getLangOpts().CPlusPlus && D) { 3912 // Look for a declaration that's lexically in a record. 3913 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3914 FD = FD->getPreviousDecl()) { 3915 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3916 if (FD->doesThisDeclarationHaveABody()) { 3917 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3918 break; 3919 } 3920 } 3921 } 3922 } 3923 } 3924 3925 // Make sure the result is of the requested type. 3926 if (!IsIncompleteFunction) { 3927 assert(F->getFunctionType() == Ty); 3928 return F; 3929 } 3930 3931 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3932 return llvm::ConstantExpr::getBitCast(F, PTy); 3933 } 3934 3935 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3936 /// non-null, then this function will use the specified type if it has to 3937 /// create it (this occurs when we see a definition of the function). 3938 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3939 llvm::Type *Ty, 3940 bool ForVTable, 3941 bool DontDefer, 3942 ForDefinition_t IsForDefinition) { 3943 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3944 "consteval function should never be emitted"); 3945 // If there was no specific requested type, just convert it now. 3946 if (!Ty) { 3947 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3948 Ty = getTypes().ConvertType(FD->getType()); 3949 } 3950 3951 // Devirtualized destructor calls may come through here instead of via 3952 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3953 // of the complete destructor when necessary. 3954 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3955 if (getTarget().getCXXABI().isMicrosoft() && 3956 GD.getDtorType() == Dtor_Complete && 3957 DD->getParent()->getNumVBases() == 0) 3958 GD = GlobalDecl(DD, Dtor_Base); 3959 } 3960 3961 StringRef MangledName = getMangledName(GD); 3962 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3963 /*IsThunk=*/false, llvm::AttributeList(), 3964 IsForDefinition); 3965 // Returns kernel handle for HIP kernel stub function. 3966 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 3967 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 3968 auto *Handle = getCUDARuntime().getKernelHandle( 3969 cast<llvm::Function>(F->stripPointerCasts()), GD); 3970 if (IsForDefinition) 3971 return F; 3972 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 3973 } 3974 return F; 3975 } 3976 3977 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 3978 llvm::GlobalValue *F = 3979 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 3980 3981 return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F), 3982 llvm::Type::getInt8PtrTy(VMContext)); 3983 } 3984 3985 static const FunctionDecl * 3986 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3987 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3988 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3989 3990 IdentifierInfo &CII = C.Idents.get(Name); 3991 for (const auto *Result : DC->lookup(&CII)) 3992 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3993 return FD; 3994 3995 if (!C.getLangOpts().CPlusPlus) 3996 return nullptr; 3997 3998 // Demangle the premangled name from getTerminateFn() 3999 IdentifierInfo &CXXII = 4000 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4001 ? C.Idents.get("terminate") 4002 : C.Idents.get(Name); 4003 4004 for (const auto &N : {"__cxxabiv1", "std"}) { 4005 IdentifierInfo &NS = C.Idents.get(N); 4006 for (const auto *Result : DC->lookup(&NS)) { 4007 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4008 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4009 for (const auto *Result : LSD->lookup(&NS)) 4010 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4011 break; 4012 4013 if (ND) 4014 for (const auto *Result : ND->lookup(&CXXII)) 4015 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4016 return FD; 4017 } 4018 } 4019 4020 return nullptr; 4021 } 4022 4023 /// CreateRuntimeFunction - Create a new runtime function with the specified 4024 /// type and name. 4025 llvm::FunctionCallee 4026 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4027 llvm::AttributeList ExtraAttrs, bool Local, 4028 bool AssumeConvergent) { 4029 if (AssumeConvergent) { 4030 ExtraAttrs = 4031 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4032 } 4033 4034 llvm::Constant *C = 4035 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4036 /*DontDefer=*/false, /*IsThunk=*/false, 4037 ExtraAttrs); 4038 4039 if (auto *F = dyn_cast<llvm::Function>(C)) { 4040 if (F->empty()) { 4041 F->setCallingConv(getRuntimeCC()); 4042 4043 // In Windows Itanium environments, try to mark runtime functions 4044 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4045 // will link their standard library statically or dynamically. Marking 4046 // functions imported when they are not imported can cause linker errors 4047 // and warnings. 4048 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4049 !getCodeGenOpts().LTOVisibilityPublicStd) { 4050 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4051 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4052 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4053 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4054 } 4055 } 4056 setDSOLocal(F); 4057 } 4058 } 4059 4060 return {FTy, C}; 4061 } 4062 4063 /// isTypeConstant - Determine whether an object of this type can be emitted 4064 /// as a constant. 4065 /// 4066 /// If ExcludeCtor is true, the duration when the object's constructor runs 4067 /// will not be considered. The caller will need to verify that the object is 4068 /// not written to during its construction. 4069 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4070 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4071 return false; 4072 4073 if (Context.getLangOpts().CPlusPlus) { 4074 if (const CXXRecordDecl *Record 4075 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4076 return ExcludeCtor && !Record->hasMutableFields() && 4077 Record->hasTrivialDestructor(); 4078 } 4079 4080 return true; 4081 } 4082 4083 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4084 /// create and return an llvm GlobalVariable with the specified type and address 4085 /// space. If there is something in the module with the specified name, return 4086 /// it potentially bitcasted to the right type. 4087 /// 4088 /// If D is non-null, it specifies a decl that correspond to this. This is used 4089 /// to set the attributes on the global when it is first created. 4090 /// 4091 /// If IsForDefinition is true, it is guaranteed that an actual global with 4092 /// type Ty will be returned, not conversion of a variable with the same 4093 /// mangled name but some other type. 4094 llvm::Constant * 4095 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4096 LangAS AddrSpace, const VarDecl *D, 4097 ForDefinition_t IsForDefinition) { 4098 // Lookup the entry, lazily creating it if necessary. 4099 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4100 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4101 if (Entry) { 4102 if (WeakRefReferences.erase(Entry)) { 4103 if (D && !D->hasAttr<WeakAttr>()) 4104 Entry->setLinkage(llvm::Function::ExternalLinkage); 4105 } 4106 4107 // Handle dropped DLL attributes. 4108 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 4109 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4110 4111 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4112 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4113 4114 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4115 return Entry; 4116 4117 // If there are two attempts to define the same mangled name, issue an 4118 // error. 4119 if (IsForDefinition && !Entry->isDeclaration()) { 4120 GlobalDecl OtherGD; 4121 const VarDecl *OtherD; 4122 4123 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4124 // to make sure that we issue an error only once. 4125 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4126 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4127 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4128 OtherD->hasInit() && 4129 DiagnosedConflictingDefinitions.insert(D).second) { 4130 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4131 << MangledName; 4132 getDiags().Report(OtherGD.getDecl()->getLocation(), 4133 diag::note_previous_definition); 4134 } 4135 } 4136 4137 // Make sure the result is of the correct type. 4138 if (Entry->getType()->getAddressSpace() != TargetAS) { 4139 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4140 Ty->getPointerTo(TargetAS)); 4141 } 4142 4143 // (If global is requested for a definition, we always need to create a new 4144 // global, not just return a bitcast.) 4145 if (!IsForDefinition) 4146 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4147 } 4148 4149 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4150 4151 auto *GV = new llvm::GlobalVariable( 4152 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4153 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4154 getContext().getTargetAddressSpace(DAddrSpace)); 4155 4156 // If we already created a global with the same mangled name (but different 4157 // type) before, take its name and remove it from its parent. 4158 if (Entry) { 4159 GV->takeName(Entry); 4160 4161 if (!Entry->use_empty()) { 4162 llvm::Constant *NewPtrForOldDecl = 4163 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4164 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4165 } 4166 4167 Entry->eraseFromParent(); 4168 } 4169 4170 // This is the first use or definition of a mangled name. If there is a 4171 // deferred decl with this name, remember that we need to emit it at the end 4172 // of the file. 4173 auto DDI = DeferredDecls.find(MangledName); 4174 if (DDI != DeferredDecls.end()) { 4175 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4176 // list, and remove it from DeferredDecls (since we don't need it anymore). 4177 addDeferredDeclToEmit(DDI->second); 4178 DeferredDecls.erase(DDI); 4179 } 4180 4181 // Handle things which are present even on external declarations. 4182 if (D) { 4183 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4184 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4185 4186 // FIXME: This code is overly simple and should be merged with other global 4187 // handling. 4188 GV->setConstant(isTypeConstant(D->getType(), false)); 4189 4190 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4191 4192 setLinkageForGV(GV, D); 4193 4194 if (D->getTLSKind()) { 4195 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4196 CXXThreadLocals.push_back(D); 4197 setTLSMode(GV, *D); 4198 } 4199 4200 setGVProperties(GV, D); 4201 4202 // If required by the ABI, treat declarations of static data members with 4203 // inline initializers as definitions. 4204 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4205 EmitGlobalVarDefinition(D); 4206 } 4207 4208 // Emit section information for extern variables. 4209 if (D->hasExternalStorage()) { 4210 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4211 GV->setSection(SA->getName()); 4212 } 4213 4214 // Handle XCore specific ABI requirements. 4215 if (getTriple().getArch() == llvm::Triple::xcore && 4216 D->getLanguageLinkage() == CLanguageLinkage && 4217 D->getType().isConstant(Context) && 4218 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4219 GV->setSection(".cp.rodata"); 4220 4221 // Check if we a have a const declaration with an initializer, we may be 4222 // able to emit it as available_externally to expose it's value to the 4223 // optimizer. 4224 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4225 D->getType().isConstQualified() && !GV->hasInitializer() && 4226 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4227 const auto *Record = 4228 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4229 bool HasMutableFields = Record && Record->hasMutableFields(); 4230 if (!HasMutableFields) { 4231 const VarDecl *InitDecl; 4232 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4233 if (InitExpr) { 4234 ConstantEmitter emitter(*this); 4235 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4236 if (Init) { 4237 auto *InitType = Init->getType(); 4238 if (GV->getValueType() != InitType) { 4239 // The type of the initializer does not match the definition. 4240 // This happens when an initializer has a different type from 4241 // the type of the global (because of padding at the end of a 4242 // structure for instance). 4243 GV->setName(StringRef()); 4244 // Make a new global with the correct type, this is now guaranteed 4245 // to work. 4246 auto *NewGV = cast<llvm::GlobalVariable>( 4247 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4248 ->stripPointerCasts()); 4249 4250 // Erase the old global, since it is no longer used. 4251 GV->eraseFromParent(); 4252 GV = NewGV; 4253 } else { 4254 GV->setInitializer(Init); 4255 GV->setConstant(true); 4256 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4257 } 4258 emitter.finalize(GV); 4259 } 4260 } 4261 } 4262 } 4263 } 4264 4265 if (GV->isDeclaration()) { 4266 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4267 // External HIP managed variables needed to be recorded for transformation 4268 // in both device and host compilations. 4269 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4270 D->hasExternalStorage()) 4271 getCUDARuntime().handleVarRegistration(D, *GV); 4272 } 4273 4274 LangAS ExpectedAS = 4275 D ? D->getType().getAddressSpace() 4276 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4277 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4278 if (DAddrSpace != ExpectedAS) { 4279 return getTargetCodeGenInfo().performAddrSpaceCast( 4280 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4281 } 4282 4283 return GV; 4284 } 4285 4286 llvm::Constant * 4287 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4288 const Decl *D = GD.getDecl(); 4289 4290 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4291 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4292 /*DontDefer=*/false, IsForDefinition); 4293 4294 if (isa<CXXMethodDecl>(D)) { 4295 auto FInfo = 4296 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4297 auto Ty = getTypes().GetFunctionType(*FInfo); 4298 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4299 IsForDefinition); 4300 } 4301 4302 if (isa<FunctionDecl>(D)) { 4303 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4304 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4305 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4306 IsForDefinition); 4307 } 4308 4309 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4310 } 4311 4312 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4313 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4314 unsigned Alignment) { 4315 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4316 llvm::GlobalVariable *OldGV = nullptr; 4317 4318 if (GV) { 4319 // Check if the variable has the right type. 4320 if (GV->getValueType() == Ty) 4321 return GV; 4322 4323 // Because C++ name mangling, the only way we can end up with an already 4324 // existing global with the same name is if it has been declared extern "C". 4325 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4326 OldGV = GV; 4327 } 4328 4329 // Create a new variable. 4330 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4331 Linkage, nullptr, Name); 4332 4333 if (OldGV) { 4334 // Replace occurrences of the old variable if needed. 4335 GV->takeName(OldGV); 4336 4337 if (!OldGV->use_empty()) { 4338 llvm::Constant *NewPtrForOldDecl = 4339 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4340 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4341 } 4342 4343 OldGV->eraseFromParent(); 4344 } 4345 4346 if (supportsCOMDAT() && GV->isWeakForLinker() && 4347 !GV->hasAvailableExternallyLinkage()) 4348 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4349 4350 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4351 4352 return GV; 4353 } 4354 4355 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4356 /// given global variable. If Ty is non-null and if the global doesn't exist, 4357 /// then it will be created with the specified type instead of whatever the 4358 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4359 /// that an actual global with type Ty will be returned, not conversion of a 4360 /// variable with the same mangled name but some other type. 4361 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4362 llvm::Type *Ty, 4363 ForDefinition_t IsForDefinition) { 4364 assert(D->hasGlobalStorage() && "Not a global variable"); 4365 QualType ASTTy = D->getType(); 4366 if (!Ty) 4367 Ty = getTypes().ConvertTypeForMem(ASTTy); 4368 4369 StringRef MangledName = getMangledName(D); 4370 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4371 IsForDefinition); 4372 } 4373 4374 /// CreateRuntimeVariable - Create a new runtime global variable with the 4375 /// specified type and name. 4376 llvm::Constant * 4377 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4378 StringRef Name) { 4379 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4380 : LangAS::Default; 4381 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4382 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4383 return Ret; 4384 } 4385 4386 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4387 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4388 4389 StringRef MangledName = getMangledName(D); 4390 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4391 4392 // We already have a definition, not declaration, with the same mangled name. 4393 // Emitting of declaration is not required (and actually overwrites emitted 4394 // definition). 4395 if (GV && !GV->isDeclaration()) 4396 return; 4397 4398 // If we have not seen a reference to this variable yet, place it into the 4399 // deferred declarations table to be emitted if needed later. 4400 if (!MustBeEmitted(D) && !GV) { 4401 DeferredDecls[MangledName] = D; 4402 return; 4403 } 4404 4405 // The tentative definition is the only definition. 4406 EmitGlobalVarDefinition(D); 4407 } 4408 4409 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4410 EmitExternalVarDeclaration(D); 4411 } 4412 4413 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4414 return Context.toCharUnitsFromBits( 4415 getDataLayout().getTypeStoreSizeInBits(Ty)); 4416 } 4417 4418 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4419 if (LangOpts.OpenCL) { 4420 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4421 assert(AS == LangAS::opencl_global || 4422 AS == LangAS::opencl_global_device || 4423 AS == LangAS::opencl_global_host || 4424 AS == LangAS::opencl_constant || 4425 AS == LangAS::opencl_local || 4426 AS >= LangAS::FirstTargetAddressSpace); 4427 return AS; 4428 } 4429 4430 if (LangOpts.SYCLIsDevice && 4431 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4432 return LangAS::sycl_global; 4433 4434 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4435 if (D && D->hasAttr<CUDAConstantAttr>()) 4436 return LangAS::cuda_constant; 4437 else if (D && D->hasAttr<CUDASharedAttr>()) 4438 return LangAS::cuda_shared; 4439 else if (D && D->hasAttr<CUDADeviceAttr>()) 4440 return LangAS::cuda_device; 4441 else if (D && D->getType().isConstQualified()) 4442 return LangAS::cuda_constant; 4443 else 4444 return LangAS::cuda_device; 4445 } 4446 4447 if (LangOpts.OpenMP) { 4448 LangAS AS; 4449 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4450 return AS; 4451 } 4452 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4453 } 4454 4455 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4456 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4457 if (LangOpts.OpenCL) 4458 return LangAS::opencl_constant; 4459 if (LangOpts.SYCLIsDevice) 4460 return LangAS::sycl_global; 4461 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4462 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4463 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4464 // with OpVariable instructions with Generic storage class which is not 4465 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4466 // UniformConstant storage class is not viable as pointers to it may not be 4467 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4468 return LangAS::cuda_device; 4469 if (auto AS = getTarget().getConstantAddressSpace()) 4470 return AS.getValue(); 4471 return LangAS::Default; 4472 } 4473 4474 // In address space agnostic languages, string literals are in default address 4475 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4476 // emitted in constant address space in LLVM IR. To be consistent with other 4477 // parts of AST, string literal global variables in constant address space 4478 // need to be casted to default address space before being put into address 4479 // map and referenced by other part of CodeGen. 4480 // In OpenCL, string literals are in constant address space in AST, therefore 4481 // they should not be casted to default address space. 4482 static llvm::Constant * 4483 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4484 llvm::GlobalVariable *GV) { 4485 llvm::Constant *Cast = GV; 4486 if (!CGM.getLangOpts().OpenCL) { 4487 auto AS = CGM.GetGlobalConstantAddressSpace(); 4488 if (AS != LangAS::Default) 4489 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4490 CGM, GV, AS, LangAS::Default, 4491 GV->getValueType()->getPointerTo( 4492 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4493 } 4494 return Cast; 4495 } 4496 4497 template<typename SomeDecl> 4498 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4499 llvm::GlobalValue *GV) { 4500 if (!getLangOpts().CPlusPlus) 4501 return; 4502 4503 // Must have 'used' attribute, or else inline assembly can't rely on 4504 // the name existing. 4505 if (!D->template hasAttr<UsedAttr>()) 4506 return; 4507 4508 // Must have internal linkage and an ordinary name. 4509 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4510 return; 4511 4512 // Must be in an extern "C" context. Entities declared directly within 4513 // a record are not extern "C" even if the record is in such a context. 4514 const SomeDecl *First = D->getFirstDecl(); 4515 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4516 return; 4517 4518 // OK, this is an internal linkage entity inside an extern "C" linkage 4519 // specification. Make a note of that so we can give it the "expected" 4520 // mangled name if nothing else is using that name. 4521 std::pair<StaticExternCMap::iterator, bool> R = 4522 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4523 4524 // If we have multiple internal linkage entities with the same name 4525 // in extern "C" regions, none of them gets that name. 4526 if (!R.second) 4527 R.first->second = nullptr; 4528 } 4529 4530 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4531 if (!CGM.supportsCOMDAT()) 4532 return false; 4533 4534 if (D.hasAttr<SelectAnyAttr>()) 4535 return true; 4536 4537 GVALinkage Linkage; 4538 if (auto *VD = dyn_cast<VarDecl>(&D)) 4539 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4540 else 4541 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4542 4543 switch (Linkage) { 4544 case GVA_Internal: 4545 case GVA_AvailableExternally: 4546 case GVA_StrongExternal: 4547 return false; 4548 case GVA_DiscardableODR: 4549 case GVA_StrongODR: 4550 return true; 4551 } 4552 llvm_unreachable("No such linkage"); 4553 } 4554 4555 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4556 llvm::GlobalObject &GO) { 4557 if (!shouldBeInCOMDAT(*this, D)) 4558 return; 4559 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4560 } 4561 4562 /// Pass IsTentative as true if you want to create a tentative definition. 4563 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4564 bool IsTentative) { 4565 // OpenCL global variables of sampler type are translated to function calls, 4566 // therefore no need to be translated. 4567 QualType ASTTy = D->getType(); 4568 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4569 return; 4570 4571 // If this is OpenMP device, check if it is legal to emit this global 4572 // normally. 4573 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4574 OpenMPRuntime->emitTargetGlobalVariable(D)) 4575 return; 4576 4577 llvm::TrackingVH<llvm::Constant> Init; 4578 bool NeedsGlobalCtor = false; 4579 bool NeedsGlobalDtor = 4580 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4581 4582 const VarDecl *InitDecl; 4583 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4584 4585 Optional<ConstantEmitter> emitter; 4586 4587 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4588 // as part of their declaration." Sema has already checked for 4589 // error cases, so we just need to set Init to UndefValue. 4590 bool IsCUDASharedVar = 4591 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4592 // Shadows of initialized device-side global variables are also left 4593 // undefined. 4594 // Managed Variables should be initialized on both host side and device side. 4595 bool IsCUDAShadowVar = 4596 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4597 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4598 D->hasAttr<CUDASharedAttr>()); 4599 bool IsCUDADeviceShadowVar = 4600 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4601 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4602 D->getType()->isCUDADeviceBuiltinTextureType()); 4603 if (getLangOpts().CUDA && 4604 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4605 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4606 else if (D->hasAttr<LoaderUninitializedAttr>()) 4607 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4608 else if (!InitExpr) { 4609 // This is a tentative definition; tentative definitions are 4610 // implicitly initialized with { 0 }. 4611 // 4612 // Note that tentative definitions are only emitted at the end of 4613 // a translation unit, so they should never have incomplete 4614 // type. In addition, EmitTentativeDefinition makes sure that we 4615 // never attempt to emit a tentative definition if a real one 4616 // exists. A use may still exists, however, so we still may need 4617 // to do a RAUW. 4618 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4619 Init = EmitNullConstant(D->getType()); 4620 } else { 4621 initializedGlobalDecl = GlobalDecl(D); 4622 emitter.emplace(*this); 4623 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4624 if (!Initializer) { 4625 QualType T = InitExpr->getType(); 4626 if (D->getType()->isReferenceType()) 4627 T = D->getType(); 4628 4629 if (getLangOpts().CPlusPlus) { 4630 if (InitDecl->hasFlexibleArrayInit(getContext())) 4631 ErrorUnsupported(D, "flexible array initializer"); 4632 Init = EmitNullConstant(T); 4633 NeedsGlobalCtor = true; 4634 } else { 4635 ErrorUnsupported(D, "static initializer"); 4636 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4637 } 4638 } else { 4639 Init = Initializer; 4640 // We don't need an initializer, so remove the entry for the delayed 4641 // initializer position (just in case this entry was delayed) if we 4642 // also don't need to register a destructor. 4643 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4644 DelayedCXXInitPosition.erase(D); 4645 4646 #ifndef NDEBUG 4647 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 4648 InitDecl->getFlexibleArrayInitChars(getContext()); 4649 CharUnits CstSize = CharUnits::fromQuantity( 4650 getDataLayout().getTypeAllocSize(Init->getType())); 4651 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 4652 #endif 4653 } 4654 } 4655 4656 llvm::Type* InitType = Init->getType(); 4657 llvm::Constant *Entry = 4658 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4659 4660 // Strip off pointer casts if we got them. 4661 Entry = Entry->stripPointerCasts(); 4662 4663 // Entry is now either a Function or GlobalVariable. 4664 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4665 4666 // We have a definition after a declaration with the wrong type. 4667 // We must make a new GlobalVariable* and update everything that used OldGV 4668 // (a declaration or tentative definition) with the new GlobalVariable* 4669 // (which will be a definition). 4670 // 4671 // This happens if there is a prototype for a global (e.g. 4672 // "extern int x[];") and then a definition of a different type (e.g. 4673 // "int x[10];"). This also happens when an initializer has a different type 4674 // from the type of the global (this happens with unions). 4675 if (!GV || GV->getValueType() != InitType || 4676 GV->getType()->getAddressSpace() != 4677 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4678 4679 // Move the old entry aside so that we'll create a new one. 4680 Entry->setName(StringRef()); 4681 4682 // Make a new global with the correct type, this is now guaranteed to work. 4683 GV = cast<llvm::GlobalVariable>( 4684 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4685 ->stripPointerCasts()); 4686 4687 // Replace all uses of the old global with the new global 4688 llvm::Constant *NewPtrForOldDecl = 4689 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4690 Entry->getType()); 4691 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4692 4693 // Erase the old global, since it is no longer used. 4694 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4695 } 4696 4697 MaybeHandleStaticInExternC(D, GV); 4698 4699 if (D->hasAttr<AnnotateAttr>()) 4700 AddGlobalAnnotations(D, GV); 4701 4702 // Set the llvm linkage type as appropriate. 4703 llvm::GlobalValue::LinkageTypes Linkage = 4704 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4705 4706 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4707 // the device. [...]" 4708 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4709 // __device__, declares a variable that: [...] 4710 // Is accessible from all the threads within the grid and from the host 4711 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4712 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4713 if (GV && LangOpts.CUDA) { 4714 if (LangOpts.CUDAIsDevice) { 4715 if (Linkage != llvm::GlobalValue::InternalLinkage && 4716 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4717 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4718 D->getType()->isCUDADeviceBuiltinTextureType())) 4719 GV->setExternallyInitialized(true); 4720 } else { 4721 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4722 } 4723 getCUDARuntime().handleVarRegistration(D, *GV); 4724 } 4725 4726 GV->setInitializer(Init); 4727 if (emitter) 4728 emitter->finalize(GV); 4729 4730 // If it is safe to mark the global 'constant', do so now. 4731 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4732 isTypeConstant(D->getType(), true)); 4733 4734 // If it is in a read-only section, mark it 'constant'. 4735 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4736 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4737 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4738 GV->setConstant(true); 4739 } 4740 4741 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4742 4743 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4744 // function is only defined alongside the variable, not also alongside 4745 // callers. Normally, all accesses to a thread_local go through the 4746 // thread-wrapper in order to ensure initialization has occurred, underlying 4747 // variable will never be used other than the thread-wrapper, so it can be 4748 // converted to internal linkage. 4749 // 4750 // However, if the variable has the 'constinit' attribute, it _can_ be 4751 // referenced directly, without calling the thread-wrapper, so the linkage 4752 // must not be changed. 4753 // 4754 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4755 // weak or linkonce, the de-duplication semantics are important to preserve, 4756 // so we don't change the linkage. 4757 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4758 Linkage == llvm::GlobalValue::ExternalLinkage && 4759 Context.getTargetInfo().getTriple().isOSDarwin() && 4760 !D->hasAttr<ConstInitAttr>()) 4761 Linkage = llvm::GlobalValue::InternalLinkage; 4762 4763 GV->setLinkage(Linkage); 4764 if (D->hasAttr<DLLImportAttr>()) 4765 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4766 else if (D->hasAttr<DLLExportAttr>()) 4767 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4768 else 4769 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4770 4771 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4772 // common vars aren't constant even if declared const. 4773 GV->setConstant(false); 4774 // Tentative definition of global variables may be initialized with 4775 // non-zero null pointers. In this case they should have weak linkage 4776 // since common linkage must have zero initializer and must not have 4777 // explicit section therefore cannot have non-zero initial value. 4778 if (!GV->getInitializer()->isNullValue()) 4779 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4780 } 4781 4782 setNonAliasAttributes(D, GV); 4783 4784 if (D->getTLSKind() && !GV->isThreadLocal()) { 4785 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4786 CXXThreadLocals.push_back(D); 4787 setTLSMode(GV, *D); 4788 } 4789 4790 maybeSetTrivialComdat(*D, *GV); 4791 4792 // Emit the initializer function if necessary. 4793 if (NeedsGlobalCtor || NeedsGlobalDtor) 4794 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4795 4796 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4797 4798 // Emit global variable debug information. 4799 if (CGDebugInfo *DI = getModuleDebugInfo()) 4800 if (getCodeGenOpts().hasReducedDebugInfo()) 4801 DI->EmitGlobalVariable(GV, D); 4802 } 4803 4804 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4805 if (CGDebugInfo *DI = getModuleDebugInfo()) 4806 if (getCodeGenOpts().hasReducedDebugInfo()) { 4807 QualType ASTTy = D->getType(); 4808 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4809 llvm::Constant *GV = 4810 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 4811 DI->EmitExternalVariable( 4812 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4813 } 4814 } 4815 4816 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4817 CodeGenModule &CGM, const VarDecl *D, 4818 bool NoCommon) { 4819 // Don't give variables common linkage if -fno-common was specified unless it 4820 // was overridden by a NoCommon attribute. 4821 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4822 return true; 4823 4824 // C11 6.9.2/2: 4825 // A declaration of an identifier for an object that has file scope without 4826 // an initializer, and without a storage-class specifier or with the 4827 // storage-class specifier static, constitutes a tentative definition. 4828 if (D->getInit() || D->hasExternalStorage()) 4829 return true; 4830 4831 // A variable cannot be both common and exist in a section. 4832 if (D->hasAttr<SectionAttr>()) 4833 return true; 4834 4835 // A variable cannot be both common and exist in a section. 4836 // We don't try to determine which is the right section in the front-end. 4837 // If no specialized section name is applicable, it will resort to default. 4838 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4839 D->hasAttr<PragmaClangDataSectionAttr>() || 4840 D->hasAttr<PragmaClangRelroSectionAttr>() || 4841 D->hasAttr<PragmaClangRodataSectionAttr>()) 4842 return true; 4843 4844 // Thread local vars aren't considered common linkage. 4845 if (D->getTLSKind()) 4846 return true; 4847 4848 // Tentative definitions marked with WeakImportAttr are true definitions. 4849 if (D->hasAttr<WeakImportAttr>()) 4850 return true; 4851 4852 // A variable cannot be both common and exist in a comdat. 4853 if (shouldBeInCOMDAT(CGM, *D)) 4854 return true; 4855 4856 // Declarations with a required alignment do not have common linkage in MSVC 4857 // mode. 4858 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4859 if (D->hasAttr<AlignedAttr>()) 4860 return true; 4861 QualType VarType = D->getType(); 4862 if (Context.isAlignmentRequired(VarType)) 4863 return true; 4864 4865 if (const auto *RT = VarType->getAs<RecordType>()) { 4866 const RecordDecl *RD = RT->getDecl(); 4867 for (const FieldDecl *FD : RD->fields()) { 4868 if (FD->isBitField()) 4869 continue; 4870 if (FD->hasAttr<AlignedAttr>()) 4871 return true; 4872 if (Context.isAlignmentRequired(FD->getType())) 4873 return true; 4874 } 4875 } 4876 } 4877 4878 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4879 // common symbols, so symbols with greater alignment requirements cannot be 4880 // common. 4881 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4882 // alignments for common symbols via the aligncomm directive, so this 4883 // restriction only applies to MSVC environments. 4884 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4885 Context.getTypeAlignIfKnown(D->getType()) > 4886 Context.toBits(CharUnits::fromQuantity(32))) 4887 return true; 4888 4889 return false; 4890 } 4891 4892 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4893 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4894 if (Linkage == GVA_Internal) 4895 return llvm::Function::InternalLinkage; 4896 4897 if (D->hasAttr<WeakAttr>()) { 4898 if (IsConstantVariable) 4899 return llvm::GlobalVariable::WeakODRLinkage; 4900 else 4901 return llvm::GlobalVariable::WeakAnyLinkage; 4902 } 4903 4904 if (const auto *FD = D->getAsFunction()) 4905 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4906 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4907 4908 // We are guaranteed to have a strong definition somewhere else, 4909 // so we can use available_externally linkage. 4910 if (Linkage == GVA_AvailableExternally) 4911 return llvm::GlobalValue::AvailableExternallyLinkage; 4912 4913 // Note that Apple's kernel linker doesn't support symbol 4914 // coalescing, so we need to avoid linkonce and weak linkages there. 4915 // Normally, this means we just map to internal, but for explicit 4916 // instantiations we'll map to external. 4917 4918 // In C++, the compiler has to emit a definition in every translation unit 4919 // that references the function. We should use linkonce_odr because 4920 // a) if all references in this translation unit are optimized away, we 4921 // don't need to codegen it. b) if the function persists, it needs to be 4922 // merged with other definitions. c) C++ has the ODR, so we know the 4923 // definition is dependable. 4924 if (Linkage == GVA_DiscardableODR) 4925 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4926 : llvm::Function::InternalLinkage; 4927 4928 // An explicit instantiation of a template has weak linkage, since 4929 // explicit instantiations can occur in multiple translation units 4930 // and must all be equivalent. However, we are not allowed to 4931 // throw away these explicit instantiations. 4932 // 4933 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4934 // so say that CUDA templates are either external (for kernels) or internal. 4935 // This lets llvm perform aggressive inter-procedural optimizations. For 4936 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4937 // therefore we need to follow the normal linkage paradigm. 4938 if (Linkage == GVA_StrongODR) { 4939 if (getLangOpts().AppleKext) 4940 return llvm::Function::ExternalLinkage; 4941 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4942 !getLangOpts().GPURelocatableDeviceCode) 4943 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4944 : llvm::Function::InternalLinkage; 4945 return llvm::Function::WeakODRLinkage; 4946 } 4947 4948 // C++ doesn't have tentative definitions and thus cannot have common 4949 // linkage. 4950 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4951 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4952 CodeGenOpts.NoCommon)) 4953 return llvm::GlobalVariable::CommonLinkage; 4954 4955 // selectany symbols are externally visible, so use weak instead of 4956 // linkonce. MSVC optimizes away references to const selectany globals, so 4957 // all definitions should be the same and ODR linkage should be used. 4958 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4959 if (D->hasAttr<SelectAnyAttr>()) 4960 return llvm::GlobalVariable::WeakODRLinkage; 4961 4962 // Otherwise, we have strong external linkage. 4963 assert(Linkage == GVA_StrongExternal); 4964 return llvm::GlobalVariable::ExternalLinkage; 4965 } 4966 4967 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4968 const VarDecl *VD, bool IsConstant) { 4969 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4970 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4971 } 4972 4973 /// Replace the uses of a function that was declared with a non-proto type. 4974 /// We want to silently drop extra arguments from call sites 4975 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4976 llvm::Function *newFn) { 4977 // Fast path. 4978 if (old->use_empty()) return; 4979 4980 llvm::Type *newRetTy = newFn->getReturnType(); 4981 SmallVector<llvm::Value*, 4> newArgs; 4982 4983 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4984 ui != ue; ) { 4985 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4986 llvm::User *user = use->getUser(); 4987 4988 // Recognize and replace uses of bitcasts. Most calls to 4989 // unprototyped functions will use bitcasts. 4990 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4991 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4992 replaceUsesOfNonProtoConstant(bitcast, newFn); 4993 continue; 4994 } 4995 4996 // Recognize calls to the function. 4997 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4998 if (!callSite) continue; 4999 if (!callSite->isCallee(&*use)) 5000 continue; 5001 5002 // If the return types don't match exactly, then we can't 5003 // transform this call unless it's dead. 5004 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5005 continue; 5006 5007 // Get the call site's attribute list. 5008 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5009 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5010 5011 // If the function was passed too few arguments, don't transform. 5012 unsigned newNumArgs = newFn->arg_size(); 5013 if (callSite->arg_size() < newNumArgs) 5014 continue; 5015 5016 // If extra arguments were passed, we silently drop them. 5017 // If any of the types mismatch, we don't transform. 5018 unsigned argNo = 0; 5019 bool dontTransform = false; 5020 for (llvm::Argument &A : newFn->args()) { 5021 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5022 dontTransform = true; 5023 break; 5024 } 5025 5026 // Add any parameter attributes. 5027 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5028 argNo++; 5029 } 5030 if (dontTransform) 5031 continue; 5032 5033 // Okay, we can transform this. Create the new call instruction and copy 5034 // over the required information. 5035 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5036 5037 // Copy over any operand bundles. 5038 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5039 callSite->getOperandBundlesAsDefs(newBundles); 5040 5041 llvm::CallBase *newCall; 5042 if (isa<llvm::CallInst>(callSite)) { 5043 newCall = 5044 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5045 } else { 5046 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5047 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5048 oldInvoke->getUnwindDest(), newArgs, 5049 newBundles, "", callSite); 5050 } 5051 newArgs.clear(); // for the next iteration 5052 5053 if (!newCall->getType()->isVoidTy()) 5054 newCall->takeName(callSite); 5055 newCall->setAttributes( 5056 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5057 oldAttrs.getRetAttrs(), newArgAttrs)); 5058 newCall->setCallingConv(callSite->getCallingConv()); 5059 5060 // Finally, remove the old call, replacing any uses with the new one. 5061 if (!callSite->use_empty()) 5062 callSite->replaceAllUsesWith(newCall); 5063 5064 // Copy debug location attached to CI. 5065 if (callSite->getDebugLoc()) 5066 newCall->setDebugLoc(callSite->getDebugLoc()); 5067 5068 callSite->eraseFromParent(); 5069 } 5070 } 5071 5072 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5073 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5074 /// existing call uses of the old function in the module, this adjusts them to 5075 /// call the new function directly. 5076 /// 5077 /// This is not just a cleanup: the always_inline pass requires direct calls to 5078 /// functions to be able to inline them. If there is a bitcast in the way, it 5079 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5080 /// run at -O0. 5081 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5082 llvm::Function *NewFn) { 5083 // If we're redefining a global as a function, don't transform it. 5084 if (!isa<llvm::Function>(Old)) return; 5085 5086 replaceUsesOfNonProtoConstant(Old, NewFn); 5087 } 5088 5089 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5090 auto DK = VD->isThisDeclarationADefinition(); 5091 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5092 return; 5093 5094 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5095 // If we have a definition, this might be a deferred decl. If the 5096 // instantiation is explicit, make sure we emit it at the end. 5097 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5098 GetAddrOfGlobalVar(VD); 5099 5100 EmitTopLevelDecl(VD); 5101 } 5102 5103 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5104 llvm::GlobalValue *GV) { 5105 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5106 5107 // Compute the function info and LLVM type. 5108 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5109 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5110 5111 // Get or create the prototype for the function. 5112 if (!GV || (GV->getValueType() != Ty)) 5113 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5114 /*DontDefer=*/true, 5115 ForDefinition)); 5116 5117 // Already emitted. 5118 if (!GV->isDeclaration()) 5119 return; 5120 5121 // We need to set linkage and visibility on the function before 5122 // generating code for it because various parts of IR generation 5123 // want to propagate this information down (e.g. to local static 5124 // declarations). 5125 auto *Fn = cast<llvm::Function>(GV); 5126 setFunctionLinkage(GD, Fn); 5127 5128 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5129 setGVProperties(Fn, GD); 5130 5131 MaybeHandleStaticInExternC(D, Fn); 5132 5133 maybeSetTrivialComdat(*D, *Fn); 5134 5135 // Set CodeGen attributes that represent floating point environment. 5136 setLLVMFunctionFEnvAttributes(D, Fn); 5137 5138 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5139 5140 setNonAliasAttributes(GD, Fn); 5141 SetLLVMFunctionAttributesForDefinition(D, Fn); 5142 5143 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5144 AddGlobalCtor(Fn, CA->getPriority()); 5145 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5146 AddGlobalDtor(Fn, DA->getPriority(), true); 5147 if (D->hasAttr<AnnotateAttr>()) 5148 AddGlobalAnnotations(D, Fn); 5149 } 5150 5151 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5152 const auto *D = cast<ValueDecl>(GD.getDecl()); 5153 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5154 assert(AA && "Not an alias?"); 5155 5156 StringRef MangledName = getMangledName(GD); 5157 5158 if (AA->getAliasee() == MangledName) { 5159 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5160 return; 5161 } 5162 5163 // If there is a definition in the module, then it wins over the alias. 5164 // This is dubious, but allow it to be safe. Just ignore the alias. 5165 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5166 if (Entry && !Entry->isDeclaration()) 5167 return; 5168 5169 Aliases.push_back(GD); 5170 5171 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5172 5173 // Create a reference to the named value. This ensures that it is emitted 5174 // if a deferred decl. 5175 llvm::Constant *Aliasee; 5176 llvm::GlobalValue::LinkageTypes LT; 5177 if (isa<llvm::FunctionType>(DeclTy)) { 5178 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5179 /*ForVTable=*/false); 5180 LT = getFunctionLinkage(GD); 5181 } else { 5182 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5183 /*D=*/nullptr); 5184 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5185 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5186 else 5187 LT = getFunctionLinkage(GD); 5188 } 5189 5190 // Create the new alias itself, but don't set a name yet. 5191 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5192 auto *GA = 5193 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5194 5195 if (Entry) { 5196 if (GA->getAliasee() == Entry) { 5197 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5198 return; 5199 } 5200 5201 assert(Entry->isDeclaration()); 5202 5203 // If there is a declaration in the module, then we had an extern followed 5204 // by the alias, as in: 5205 // extern int test6(); 5206 // ... 5207 // int test6() __attribute__((alias("test7"))); 5208 // 5209 // Remove it and replace uses of it with the alias. 5210 GA->takeName(Entry); 5211 5212 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5213 Entry->getType())); 5214 Entry->eraseFromParent(); 5215 } else { 5216 GA->setName(MangledName); 5217 } 5218 5219 // Set attributes which are particular to an alias; this is a 5220 // specialization of the attributes which may be set on a global 5221 // variable/function. 5222 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5223 D->isWeakImported()) { 5224 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5225 } 5226 5227 if (const auto *VD = dyn_cast<VarDecl>(D)) 5228 if (VD->getTLSKind()) 5229 setTLSMode(GA, *VD); 5230 5231 SetCommonAttributes(GD, GA); 5232 5233 // Emit global alias debug information. 5234 if (isa<VarDecl>(D)) 5235 if (CGDebugInfo *DI = getModuleDebugInfo()) 5236 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()), GD); 5237 } 5238 5239 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5240 const auto *D = cast<ValueDecl>(GD.getDecl()); 5241 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5242 assert(IFA && "Not an ifunc?"); 5243 5244 StringRef MangledName = getMangledName(GD); 5245 5246 if (IFA->getResolver() == MangledName) { 5247 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5248 return; 5249 } 5250 5251 // Report an error if some definition overrides ifunc. 5252 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5253 if (Entry && !Entry->isDeclaration()) { 5254 GlobalDecl OtherGD; 5255 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5256 DiagnosedConflictingDefinitions.insert(GD).second) { 5257 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5258 << MangledName; 5259 Diags.Report(OtherGD.getDecl()->getLocation(), 5260 diag::note_previous_definition); 5261 } 5262 return; 5263 } 5264 5265 Aliases.push_back(GD); 5266 5267 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5268 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5269 llvm::Constant *Resolver = 5270 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5271 /*ForVTable=*/false); 5272 llvm::GlobalIFunc *GIF = 5273 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5274 "", Resolver, &getModule()); 5275 if (Entry) { 5276 if (GIF->getResolver() == Entry) { 5277 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5278 return; 5279 } 5280 assert(Entry->isDeclaration()); 5281 5282 // If there is a declaration in the module, then we had an extern followed 5283 // by the ifunc, as in: 5284 // extern int test(); 5285 // ... 5286 // int test() __attribute__((ifunc("resolver"))); 5287 // 5288 // Remove it and replace uses of it with the ifunc. 5289 GIF->takeName(Entry); 5290 5291 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5292 Entry->getType())); 5293 Entry->eraseFromParent(); 5294 } else 5295 GIF->setName(MangledName); 5296 5297 SetCommonAttributes(GD, GIF); 5298 } 5299 5300 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5301 ArrayRef<llvm::Type*> Tys) { 5302 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5303 Tys); 5304 } 5305 5306 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5307 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5308 const StringLiteral *Literal, bool TargetIsLSB, 5309 bool &IsUTF16, unsigned &StringLength) { 5310 StringRef String = Literal->getString(); 5311 unsigned NumBytes = String.size(); 5312 5313 // Check for simple case. 5314 if (!Literal->containsNonAsciiOrNull()) { 5315 StringLength = NumBytes; 5316 return *Map.insert(std::make_pair(String, nullptr)).first; 5317 } 5318 5319 // Otherwise, convert the UTF8 literals into a string of shorts. 5320 IsUTF16 = true; 5321 5322 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5323 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5324 llvm::UTF16 *ToPtr = &ToBuf[0]; 5325 5326 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5327 ToPtr + NumBytes, llvm::strictConversion); 5328 5329 // ConvertUTF8toUTF16 returns the length in ToPtr. 5330 StringLength = ToPtr - &ToBuf[0]; 5331 5332 // Add an explicit null. 5333 *ToPtr = 0; 5334 return *Map.insert(std::make_pair( 5335 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5336 (StringLength + 1) * 2), 5337 nullptr)).first; 5338 } 5339 5340 ConstantAddress 5341 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5342 unsigned StringLength = 0; 5343 bool isUTF16 = false; 5344 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5345 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5346 getDataLayout().isLittleEndian(), isUTF16, 5347 StringLength); 5348 5349 if (auto *C = Entry.second) 5350 return ConstantAddress( 5351 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5352 5353 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5354 llvm::Constant *Zeros[] = { Zero, Zero }; 5355 5356 const ASTContext &Context = getContext(); 5357 const llvm::Triple &Triple = getTriple(); 5358 5359 const auto CFRuntime = getLangOpts().CFRuntime; 5360 const bool IsSwiftABI = 5361 static_cast<unsigned>(CFRuntime) >= 5362 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5363 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5364 5365 // If we don't already have it, get __CFConstantStringClassReference. 5366 if (!CFConstantStringClassRef) { 5367 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5368 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5369 Ty = llvm::ArrayType::get(Ty, 0); 5370 5371 switch (CFRuntime) { 5372 default: break; 5373 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5374 case LangOptions::CoreFoundationABI::Swift5_0: 5375 CFConstantStringClassName = 5376 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5377 : "$s10Foundation19_NSCFConstantStringCN"; 5378 Ty = IntPtrTy; 5379 break; 5380 case LangOptions::CoreFoundationABI::Swift4_2: 5381 CFConstantStringClassName = 5382 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5383 : "$S10Foundation19_NSCFConstantStringCN"; 5384 Ty = IntPtrTy; 5385 break; 5386 case LangOptions::CoreFoundationABI::Swift4_1: 5387 CFConstantStringClassName = 5388 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5389 : "__T010Foundation19_NSCFConstantStringCN"; 5390 Ty = IntPtrTy; 5391 break; 5392 } 5393 5394 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5395 5396 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5397 llvm::GlobalValue *GV = nullptr; 5398 5399 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5400 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5401 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5402 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5403 5404 const VarDecl *VD = nullptr; 5405 for (const auto *Result : DC->lookup(&II)) 5406 if ((VD = dyn_cast<VarDecl>(Result))) 5407 break; 5408 5409 if (Triple.isOSBinFormatELF()) { 5410 if (!VD) 5411 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5412 } else { 5413 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5414 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5415 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5416 else 5417 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5418 } 5419 5420 setDSOLocal(GV); 5421 } 5422 } 5423 5424 // Decay array -> ptr 5425 CFConstantStringClassRef = 5426 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5427 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5428 } 5429 5430 QualType CFTy = Context.getCFConstantStringType(); 5431 5432 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5433 5434 ConstantInitBuilder Builder(*this); 5435 auto Fields = Builder.beginStruct(STy); 5436 5437 // Class pointer. 5438 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5439 5440 // Flags. 5441 if (IsSwiftABI) { 5442 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5443 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5444 } else { 5445 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5446 } 5447 5448 // String pointer. 5449 llvm::Constant *C = nullptr; 5450 if (isUTF16) { 5451 auto Arr = llvm::makeArrayRef( 5452 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5453 Entry.first().size() / 2); 5454 C = llvm::ConstantDataArray::get(VMContext, Arr); 5455 } else { 5456 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5457 } 5458 5459 // Note: -fwritable-strings doesn't make the backing store strings of 5460 // CFStrings writable. (See <rdar://problem/10657500>) 5461 auto *GV = 5462 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5463 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5464 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5465 // Don't enforce the target's minimum global alignment, since the only use 5466 // of the string is via this class initializer. 5467 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5468 : Context.getTypeAlignInChars(Context.CharTy); 5469 GV->setAlignment(Align.getAsAlign()); 5470 5471 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5472 // Without it LLVM can merge the string with a non unnamed_addr one during 5473 // LTO. Doing that changes the section it ends in, which surprises ld64. 5474 if (Triple.isOSBinFormatMachO()) 5475 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5476 : "__TEXT,__cstring,cstring_literals"); 5477 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5478 // the static linker to adjust permissions to read-only later on. 5479 else if (Triple.isOSBinFormatELF()) 5480 GV->setSection(".rodata"); 5481 5482 // String. 5483 llvm::Constant *Str = 5484 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5485 5486 if (isUTF16) 5487 // Cast the UTF16 string to the correct type. 5488 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5489 Fields.add(Str); 5490 5491 // String length. 5492 llvm::IntegerType *LengthTy = 5493 llvm::IntegerType::get(getModule().getContext(), 5494 Context.getTargetInfo().getLongWidth()); 5495 if (IsSwiftABI) { 5496 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5497 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5498 LengthTy = Int32Ty; 5499 else 5500 LengthTy = IntPtrTy; 5501 } 5502 Fields.addInt(LengthTy, StringLength); 5503 5504 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5505 // properly aligned on 32-bit platforms. 5506 CharUnits Alignment = 5507 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5508 5509 // The struct. 5510 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5511 /*isConstant=*/false, 5512 llvm::GlobalVariable::PrivateLinkage); 5513 GV->addAttribute("objc_arc_inert"); 5514 switch (Triple.getObjectFormat()) { 5515 case llvm::Triple::UnknownObjectFormat: 5516 llvm_unreachable("unknown file format"); 5517 case llvm::Triple::DXContainer: 5518 case llvm::Triple::GOFF: 5519 case llvm::Triple::SPIRV: 5520 case llvm::Triple::XCOFF: 5521 llvm_unreachable("unimplemented"); 5522 case llvm::Triple::COFF: 5523 case llvm::Triple::ELF: 5524 case llvm::Triple::Wasm: 5525 GV->setSection("cfstring"); 5526 break; 5527 case llvm::Triple::MachO: 5528 GV->setSection("__DATA,__cfstring"); 5529 break; 5530 } 5531 Entry.second = GV; 5532 5533 return ConstantAddress(GV, GV->getValueType(), Alignment); 5534 } 5535 5536 bool CodeGenModule::getExpressionLocationsEnabled() const { 5537 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5538 } 5539 5540 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5541 if (ObjCFastEnumerationStateType.isNull()) { 5542 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5543 D->startDefinition(); 5544 5545 QualType FieldTypes[] = { 5546 Context.UnsignedLongTy, 5547 Context.getPointerType(Context.getObjCIdType()), 5548 Context.getPointerType(Context.UnsignedLongTy), 5549 Context.getConstantArrayType(Context.UnsignedLongTy, 5550 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5551 }; 5552 5553 for (size_t i = 0; i < 4; ++i) { 5554 FieldDecl *Field = FieldDecl::Create(Context, 5555 D, 5556 SourceLocation(), 5557 SourceLocation(), nullptr, 5558 FieldTypes[i], /*TInfo=*/nullptr, 5559 /*BitWidth=*/nullptr, 5560 /*Mutable=*/false, 5561 ICIS_NoInit); 5562 Field->setAccess(AS_public); 5563 D->addDecl(Field); 5564 } 5565 5566 D->completeDefinition(); 5567 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5568 } 5569 5570 return ObjCFastEnumerationStateType; 5571 } 5572 5573 llvm::Constant * 5574 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5575 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5576 5577 // Don't emit it as the address of the string, emit the string data itself 5578 // as an inline array. 5579 if (E->getCharByteWidth() == 1) { 5580 SmallString<64> Str(E->getString()); 5581 5582 // Resize the string to the right size, which is indicated by its type. 5583 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5584 Str.resize(CAT->getSize().getZExtValue()); 5585 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5586 } 5587 5588 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5589 llvm::Type *ElemTy = AType->getElementType(); 5590 unsigned NumElements = AType->getNumElements(); 5591 5592 // Wide strings have either 2-byte or 4-byte elements. 5593 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5594 SmallVector<uint16_t, 32> Elements; 5595 Elements.reserve(NumElements); 5596 5597 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5598 Elements.push_back(E->getCodeUnit(i)); 5599 Elements.resize(NumElements); 5600 return llvm::ConstantDataArray::get(VMContext, Elements); 5601 } 5602 5603 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5604 SmallVector<uint32_t, 32> Elements; 5605 Elements.reserve(NumElements); 5606 5607 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5608 Elements.push_back(E->getCodeUnit(i)); 5609 Elements.resize(NumElements); 5610 return llvm::ConstantDataArray::get(VMContext, Elements); 5611 } 5612 5613 static llvm::GlobalVariable * 5614 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5615 CodeGenModule &CGM, StringRef GlobalName, 5616 CharUnits Alignment) { 5617 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5618 CGM.GetGlobalConstantAddressSpace()); 5619 5620 llvm::Module &M = CGM.getModule(); 5621 // Create a global variable for this string 5622 auto *GV = new llvm::GlobalVariable( 5623 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5624 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5625 GV->setAlignment(Alignment.getAsAlign()); 5626 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5627 if (GV->isWeakForLinker()) { 5628 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5629 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5630 } 5631 CGM.setDSOLocal(GV); 5632 5633 return GV; 5634 } 5635 5636 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5637 /// constant array for the given string literal. 5638 ConstantAddress 5639 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5640 StringRef Name) { 5641 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5642 5643 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5644 llvm::GlobalVariable **Entry = nullptr; 5645 if (!LangOpts.WritableStrings) { 5646 Entry = &ConstantStringMap[C]; 5647 if (auto GV = *Entry) { 5648 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5649 GV->setAlignment(Alignment.getAsAlign()); 5650 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5651 GV->getValueType(), Alignment); 5652 } 5653 } 5654 5655 SmallString<256> MangledNameBuffer; 5656 StringRef GlobalVariableName; 5657 llvm::GlobalValue::LinkageTypes LT; 5658 5659 // Mangle the string literal if that's how the ABI merges duplicate strings. 5660 // Don't do it if they are writable, since we don't want writes in one TU to 5661 // affect strings in another. 5662 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5663 !LangOpts.WritableStrings) { 5664 llvm::raw_svector_ostream Out(MangledNameBuffer); 5665 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5666 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5667 GlobalVariableName = MangledNameBuffer; 5668 } else { 5669 LT = llvm::GlobalValue::PrivateLinkage; 5670 GlobalVariableName = Name; 5671 } 5672 5673 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5674 5675 CGDebugInfo *DI = getModuleDebugInfo(); 5676 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 5677 DI->AddStringLiteralDebugInfo(GV, S); 5678 5679 if (Entry) 5680 *Entry = GV; 5681 5682 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5683 QualType()); 5684 5685 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5686 GV->getValueType(), Alignment); 5687 } 5688 5689 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5690 /// array for the given ObjCEncodeExpr node. 5691 ConstantAddress 5692 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5693 std::string Str; 5694 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5695 5696 return GetAddrOfConstantCString(Str); 5697 } 5698 5699 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5700 /// the literal and a terminating '\0' character. 5701 /// The result has pointer to array type. 5702 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5703 const std::string &Str, const char *GlobalName) { 5704 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5705 CharUnits Alignment = 5706 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5707 5708 llvm::Constant *C = 5709 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5710 5711 // Don't share any string literals if strings aren't constant. 5712 llvm::GlobalVariable **Entry = nullptr; 5713 if (!LangOpts.WritableStrings) { 5714 Entry = &ConstantStringMap[C]; 5715 if (auto GV = *Entry) { 5716 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5717 GV->setAlignment(Alignment.getAsAlign()); 5718 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5719 GV->getValueType(), Alignment); 5720 } 5721 } 5722 5723 // Get the default prefix if a name wasn't specified. 5724 if (!GlobalName) 5725 GlobalName = ".str"; 5726 // Create a global variable for this. 5727 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5728 GlobalName, Alignment); 5729 if (Entry) 5730 *Entry = GV; 5731 5732 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5733 GV->getValueType(), Alignment); 5734 } 5735 5736 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5737 const MaterializeTemporaryExpr *E, const Expr *Init) { 5738 assert((E->getStorageDuration() == SD_Static || 5739 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5740 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5741 5742 // If we're not materializing a subobject of the temporary, keep the 5743 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5744 QualType MaterializedType = Init->getType(); 5745 if (Init == E->getSubExpr()) 5746 MaterializedType = E->getType(); 5747 5748 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5749 5750 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5751 if (!InsertResult.second) { 5752 // We've seen this before: either we already created it or we're in the 5753 // process of doing so. 5754 if (!InsertResult.first->second) { 5755 // We recursively re-entered this function, probably during emission of 5756 // the initializer. Create a placeholder. We'll clean this up in the 5757 // outer call, at the end of this function. 5758 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5759 InsertResult.first->second = new llvm::GlobalVariable( 5760 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5761 nullptr); 5762 } 5763 return ConstantAddress(InsertResult.first->second, 5764 llvm::cast<llvm::GlobalVariable>( 5765 InsertResult.first->second->stripPointerCasts()) 5766 ->getValueType(), 5767 Align); 5768 } 5769 5770 // FIXME: If an externally-visible declaration extends multiple temporaries, 5771 // we need to give each temporary the same name in every translation unit (and 5772 // we also need to make the temporaries externally-visible). 5773 SmallString<256> Name; 5774 llvm::raw_svector_ostream Out(Name); 5775 getCXXABI().getMangleContext().mangleReferenceTemporary( 5776 VD, E->getManglingNumber(), Out); 5777 5778 APValue *Value = nullptr; 5779 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5780 // If the initializer of the extending declaration is a constant 5781 // initializer, we should have a cached constant initializer for this 5782 // temporary. Note that this might have a different value from the value 5783 // computed by evaluating the initializer if the surrounding constant 5784 // expression modifies the temporary. 5785 Value = E->getOrCreateValue(false); 5786 } 5787 5788 // Try evaluating it now, it might have a constant initializer. 5789 Expr::EvalResult EvalResult; 5790 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5791 !EvalResult.hasSideEffects()) 5792 Value = &EvalResult.Val; 5793 5794 LangAS AddrSpace = 5795 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5796 5797 Optional<ConstantEmitter> emitter; 5798 llvm::Constant *InitialValue = nullptr; 5799 bool Constant = false; 5800 llvm::Type *Type; 5801 if (Value) { 5802 // The temporary has a constant initializer, use it. 5803 emitter.emplace(*this); 5804 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5805 MaterializedType); 5806 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5807 Type = InitialValue->getType(); 5808 } else { 5809 // No initializer, the initialization will be provided when we 5810 // initialize the declaration which performed lifetime extension. 5811 Type = getTypes().ConvertTypeForMem(MaterializedType); 5812 } 5813 5814 // Create a global variable for this lifetime-extended temporary. 5815 llvm::GlobalValue::LinkageTypes Linkage = 5816 getLLVMLinkageVarDefinition(VD, Constant); 5817 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5818 const VarDecl *InitVD; 5819 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5820 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5821 // Temporaries defined inside a class get linkonce_odr linkage because the 5822 // class can be defined in multiple translation units. 5823 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5824 } else { 5825 // There is no need for this temporary to have external linkage if the 5826 // VarDecl has external linkage. 5827 Linkage = llvm::GlobalVariable::InternalLinkage; 5828 } 5829 } 5830 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5831 auto *GV = new llvm::GlobalVariable( 5832 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5833 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5834 if (emitter) emitter->finalize(GV); 5835 setGVProperties(GV, VD); 5836 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 5837 // The reference temporary should never be dllexport. 5838 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5839 GV->setAlignment(Align.getAsAlign()); 5840 if (supportsCOMDAT() && GV->isWeakForLinker()) 5841 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5842 if (VD->getTLSKind()) 5843 setTLSMode(GV, *VD); 5844 llvm::Constant *CV = GV; 5845 if (AddrSpace != LangAS::Default) 5846 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5847 *this, GV, AddrSpace, LangAS::Default, 5848 Type->getPointerTo( 5849 getContext().getTargetAddressSpace(LangAS::Default))); 5850 5851 // Update the map with the new temporary. If we created a placeholder above, 5852 // replace it with the new global now. 5853 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5854 if (Entry) { 5855 Entry->replaceAllUsesWith( 5856 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5857 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5858 } 5859 Entry = CV; 5860 5861 return ConstantAddress(CV, Type, Align); 5862 } 5863 5864 /// EmitObjCPropertyImplementations - Emit information for synthesized 5865 /// properties for an implementation. 5866 void CodeGenModule::EmitObjCPropertyImplementations(const 5867 ObjCImplementationDecl *D) { 5868 for (const auto *PID : D->property_impls()) { 5869 // Dynamic is just for type-checking. 5870 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5871 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5872 5873 // Determine which methods need to be implemented, some may have 5874 // been overridden. Note that ::isPropertyAccessor is not the method 5875 // we want, that just indicates if the decl came from a 5876 // property. What we want to know is if the method is defined in 5877 // this implementation. 5878 auto *Getter = PID->getGetterMethodDecl(); 5879 if (!Getter || Getter->isSynthesizedAccessorStub()) 5880 CodeGenFunction(*this).GenerateObjCGetter( 5881 const_cast<ObjCImplementationDecl *>(D), PID); 5882 auto *Setter = PID->getSetterMethodDecl(); 5883 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5884 CodeGenFunction(*this).GenerateObjCSetter( 5885 const_cast<ObjCImplementationDecl *>(D), PID); 5886 } 5887 } 5888 } 5889 5890 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5891 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5892 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5893 ivar; ivar = ivar->getNextIvar()) 5894 if (ivar->getType().isDestructedType()) 5895 return true; 5896 5897 return false; 5898 } 5899 5900 static bool AllTrivialInitializers(CodeGenModule &CGM, 5901 ObjCImplementationDecl *D) { 5902 CodeGenFunction CGF(CGM); 5903 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5904 E = D->init_end(); B != E; ++B) { 5905 CXXCtorInitializer *CtorInitExp = *B; 5906 Expr *Init = CtorInitExp->getInit(); 5907 if (!CGF.isTrivialInitializer(Init)) 5908 return false; 5909 } 5910 return true; 5911 } 5912 5913 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5914 /// for an implementation. 5915 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5916 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5917 if (needsDestructMethod(D)) { 5918 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5919 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5920 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5921 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5922 getContext().VoidTy, nullptr, D, 5923 /*isInstance=*/true, /*isVariadic=*/false, 5924 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5925 /*isImplicitlyDeclared=*/true, 5926 /*isDefined=*/false, ObjCMethodDecl::Required); 5927 D->addInstanceMethod(DTORMethod); 5928 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5929 D->setHasDestructors(true); 5930 } 5931 5932 // If the implementation doesn't have any ivar initializers, we don't need 5933 // a .cxx_construct. 5934 if (D->getNumIvarInitializers() == 0 || 5935 AllTrivialInitializers(*this, D)) 5936 return; 5937 5938 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5939 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5940 // The constructor returns 'self'. 5941 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5942 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5943 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5944 /*isVariadic=*/false, 5945 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5946 /*isImplicitlyDeclared=*/true, 5947 /*isDefined=*/false, ObjCMethodDecl::Required); 5948 D->addInstanceMethod(CTORMethod); 5949 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5950 D->setHasNonZeroConstructors(true); 5951 } 5952 5953 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5954 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5955 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5956 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5957 ErrorUnsupported(LSD, "linkage spec"); 5958 return; 5959 } 5960 5961 EmitDeclContext(LSD); 5962 } 5963 5964 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5965 for (auto *I : DC->decls()) { 5966 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5967 // are themselves considered "top-level", so EmitTopLevelDecl on an 5968 // ObjCImplDecl does not recursively visit them. We need to do that in 5969 // case they're nested inside another construct (LinkageSpecDecl / 5970 // ExportDecl) that does stop them from being considered "top-level". 5971 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5972 for (auto *M : OID->methods()) 5973 EmitTopLevelDecl(M); 5974 } 5975 5976 EmitTopLevelDecl(I); 5977 } 5978 } 5979 5980 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5981 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5982 // Ignore dependent declarations. 5983 if (D->isTemplated()) 5984 return; 5985 5986 // Consteval function shouldn't be emitted. 5987 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5988 if (FD->isConsteval()) 5989 return; 5990 5991 switch (D->getKind()) { 5992 case Decl::CXXConversion: 5993 case Decl::CXXMethod: 5994 case Decl::Function: 5995 EmitGlobal(cast<FunctionDecl>(D)); 5996 // Always provide some coverage mapping 5997 // even for the functions that aren't emitted. 5998 AddDeferredUnusedCoverageMapping(D); 5999 break; 6000 6001 case Decl::CXXDeductionGuide: 6002 // Function-like, but does not result in code emission. 6003 break; 6004 6005 case Decl::Var: 6006 case Decl::Decomposition: 6007 case Decl::VarTemplateSpecialization: 6008 EmitGlobal(cast<VarDecl>(D)); 6009 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6010 for (auto *B : DD->bindings()) 6011 if (auto *HD = B->getHoldingVar()) 6012 EmitGlobal(HD); 6013 break; 6014 6015 // Indirect fields from global anonymous structs and unions can be 6016 // ignored; only the actual variable requires IR gen support. 6017 case Decl::IndirectField: 6018 break; 6019 6020 // C++ Decls 6021 case Decl::Namespace: 6022 EmitDeclContext(cast<NamespaceDecl>(D)); 6023 break; 6024 case Decl::ClassTemplateSpecialization: { 6025 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6026 if (CGDebugInfo *DI = getModuleDebugInfo()) 6027 if (Spec->getSpecializationKind() == 6028 TSK_ExplicitInstantiationDefinition && 6029 Spec->hasDefinition()) 6030 DI->completeTemplateDefinition(*Spec); 6031 } LLVM_FALLTHROUGH; 6032 case Decl::CXXRecord: { 6033 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6034 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6035 if (CRD->hasDefinition()) 6036 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6037 if (auto *ES = D->getASTContext().getExternalSource()) 6038 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6039 DI->completeUnusedClass(*CRD); 6040 } 6041 // Emit any static data members, they may be definitions. 6042 for (auto *I : CRD->decls()) 6043 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6044 EmitTopLevelDecl(I); 6045 break; 6046 } 6047 // No code generation needed. 6048 case Decl::UsingShadow: 6049 case Decl::ClassTemplate: 6050 case Decl::VarTemplate: 6051 case Decl::Concept: 6052 case Decl::VarTemplatePartialSpecialization: 6053 case Decl::FunctionTemplate: 6054 case Decl::TypeAliasTemplate: 6055 case Decl::Block: 6056 case Decl::Empty: 6057 case Decl::Binding: 6058 break; 6059 case Decl::Using: // using X; [C++] 6060 if (CGDebugInfo *DI = getModuleDebugInfo()) 6061 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6062 break; 6063 case Decl::UsingEnum: // using enum X; [C++] 6064 if (CGDebugInfo *DI = getModuleDebugInfo()) 6065 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6066 break; 6067 case Decl::NamespaceAlias: 6068 if (CGDebugInfo *DI = getModuleDebugInfo()) 6069 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6070 break; 6071 case Decl::UsingDirective: // using namespace X; [C++] 6072 if (CGDebugInfo *DI = getModuleDebugInfo()) 6073 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6074 break; 6075 case Decl::CXXConstructor: 6076 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6077 break; 6078 case Decl::CXXDestructor: 6079 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6080 break; 6081 6082 case Decl::StaticAssert: 6083 // Nothing to do. 6084 break; 6085 6086 // Objective-C Decls 6087 6088 // Forward declarations, no (immediate) code generation. 6089 case Decl::ObjCInterface: 6090 case Decl::ObjCCategory: 6091 break; 6092 6093 case Decl::ObjCProtocol: { 6094 auto *Proto = cast<ObjCProtocolDecl>(D); 6095 if (Proto->isThisDeclarationADefinition()) 6096 ObjCRuntime->GenerateProtocol(Proto); 6097 break; 6098 } 6099 6100 case Decl::ObjCCategoryImpl: 6101 // Categories have properties but don't support synthesize so we 6102 // can ignore them here. 6103 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6104 break; 6105 6106 case Decl::ObjCImplementation: { 6107 auto *OMD = cast<ObjCImplementationDecl>(D); 6108 EmitObjCPropertyImplementations(OMD); 6109 EmitObjCIvarInitializations(OMD); 6110 ObjCRuntime->GenerateClass(OMD); 6111 // Emit global variable debug information. 6112 if (CGDebugInfo *DI = getModuleDebugInfo()) 6113 if (getCodeGenOpts().hasReducedDebugInfo()) 6114 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6115 OMD->getClassInterface()), OMD->getLocation()); 6116 break; 6117 } 6118 case Decl::ObjCMethod: { 6119 auto *OMD = cast<ObjCMethodDecl>(D); 6120 // If this is not a prototype, emit the body. 6121 if (OMD->getBody()) 6122 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6123 break; 6124 } 6125 case Decl::ObjCCompatibleAlias: 6126 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6127 break; 6128 6129 case Decl::PragmaComment: { 6130 const auto *PCD = cast<PragmaCommentDecl>(D); 6131 switch (PCD->getCommentKind()) { 6132 case PCK_Unknown: 6133 llvm_unreachable("unexpected pragma comment kind"); 6134 case PCK_Linker: 6135 AppendLinkerOptions(PCD->getArg()); 6136 break; 6137 case PCK_Lib: 6138 AddDependentLib(PCD->getArg()); 6139 break; 6140 case PCK_Compiler: 6141 case PCK_ExeStr: 6142 case PCK_User: 6143 break; // We ignore all of these. 6144 } 6145 break; 6146 } 6147 6148 case Decl::PragmaDetectMismatch: { 6149 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6150 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6151 break; 6152 } 6153 6154 case Decl::LinkageSpec: 6155 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6156 break; 6157 6158 case Decl::FileScopeAsm: { 6159 // File-scope asm is ignored during device-side CUDA compilation. 6160 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6161 break; 6162 // File-scope asm is ignored during device-side OpenMP compilation. 6163 if (LangOpts.OpenMPIsDevice) 6164 break; 6165 // File-scope asm is ignored during device-side SYCL compilation. 6166 if (LangOpts.SYCLIsDevice) 6167 break; 6168 auto *AD = cast<FileScopeAsmDecl>(D); 6169 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6170 break; 6171 } 6172 6173 case Decl::Import: { 6174 auto *Import = cast<ImportDecl>(D); 6175 6176 // If we've already imported this module, we're done. 6177 if (!ImportedModules.insert(Import->getImportedModule())) 6178 break; 6179 6180 // Emit debug information for direct imports. 6181 if (!Import->getImportedOwningModule()) { 6182 if (CGDebugInfo *DI = getModuleDebugInfo()) 6183 DI->EmitImportDecl(*Import); 6184 } 6185 6186 // Find all of the submodules and emit the module initializers. 6187 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6188 SmallVector<clang::Module *, 16> Stack; 6189 Visited.insert(Import->getImportedModule()); 6190 Stack.push_back(Import->getImportedModule()); 6191 6192 while (!Stack.empty()) { 6193 clang::Module *Mod = Stack.pop_back_val(); 6194 if (!EmittedModuleInitializers.insert(Mod).second) 6195 continue; 6196 6197 for (auto *D : Context.getModuleInitializers(Mod)) 6198 EmitTopLevelDecl(D); 6199 6200 // Visit the submodules of this module. 6201 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6202 SubEnd = Mod->submodule_end(); 6203 Sub != SubEnd; ++Sub) { 6204 // Skip explicit children; they need to be explicitly imported to emit 6205 // the initializers. 6206 if ((*Sub)->IsExplicit) 6207 continue; 6208 6209 if (Visited.insert(*Sub).second) 6210 Stack.push_back(*Sub); 6211 } 6212 } 6213 break; 6214 } 6215 6216 case Decl::Export: 6217 EmitDeclContext(cast<ExportDecl>(D)); 6218 break; 6219 6220 case Decl::OMPThreadPrivate: 6221 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6222 break; 6223 6224 case Decl::OMPAllocate: 6225 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6226 break; 6227 6228 case Decl::OMPDeclareReduction: 6229 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6230 break; 6231 6232 case Decl::OMPDeclareMapper: 6233 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6234 break; 6235 6236 case Decl::OMPRequires: 6237 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6238 break; 6239 6240 case Decl::Typedef: 6241 case Decl::TypeAlias: // using foo = bar; [C++11] 6242 if (CGDebugInfo *DI = getModuleDebugInfo()) 6243 DI->EmitAndRetainType( 6244 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6245 break; 6246 6247 case Decl::Record: 6248 if (CGDebugInfo *DI = getModuleDebugInfo()) 6249 if (cast<RecordDecl>(D)->getDefinition()) 6250 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6251 break; 6252 6253 case Decl::Enum: 6254 if (CGDebugInfo *DI = getModuleDebugInfo()) 6255 if (cast<EnumDecl>(D)->getDefinition()) 6256 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6257 break; 6258 6259 default: 6260 // Make sure we handled everything we should, every other kind is a 6261 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6262 // function. Need to recode Decl::Kind to do that easily. 6263 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6264 break; 6265 } 6266 } 6267 6268 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6269 // Do we need to generate coverage mapping? 6270 if (!CodeGenOpts.CoverageMapping) 6271 return; 6272 switch (D->getKind()) { 6273 case Decl::CXXConversion: 6274 case Decl::CXXMethod: 6275 case Decl::Function: 6276 case Decl::ObjCMethod: 6277 case Decl::CXXConstructor: 6278 case Decl::CXXDestructor: { 6279 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6280 break; 6281 SourceManager &SM = getContext().getSourceManager(); 6282 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6283 break; 6284 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6285 if (I == DeferredEmptyCoverageMappingDecls.end()) 6286 DeferredEmptyCoverageMappingDecls[D] = true; 6287 break; 6288 } 6289 default: 6290 break; 6291 }; 6292 } 6293 6294 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6295 // Do we need to generate coverage mapping? 6296 if (!CodeGenOpts.CoverageMapping) 6297 return; 6298 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6299 if (Fn->isTemplateInstantiation()) 6300 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6301 } 6302 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6303 if (I == DeferredEmptyCoverageMappingDecls.end()) 6304 DeferredEmptyCoverageMappingDecls[D] = false; 6305 else 6306 I->second = false; 6307 } 6308 6309 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6310 // We call takeVector() here to avoid use-after-free. 6311 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6312 // we deserialize function bodies to emit coverage info for them, and that 6313 // deserializes more declarations. How should we handle that case? 6314 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6315 if (!Entry.second) 6316 continue; 6317 const Decl *D = Entry.first; 6318 switch (D->getKind()) { 6319 case Decl::CXXConversion: 6320 case Decl::CXXMethod: 6321 case Decl::Function: 6322 case Decl::ObjCMethod: { 6323 CodeGenPGO PGO(*this); 6324 GlobalDecl GD(cast<FunctionDecl>(D)); 6325 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6326 getFunctionLinkage(GD)); 6327 break; 6328 } 6329 case Decl::CXXConstructor: { 6330 CodeGenPGO PGO(*this); 6331 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6332 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6333 getFunctionLinkage(GD)); 6334 break; 6335 } 6336 case Decl::CXXDestructor: { 6337 CodeGenPGO PGO(*this); 6338 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6339 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6340 getFunctionLinkage(GD)); 6341 break; 6342 } 6343 default: 6344 break; 6345 }; 6346 } 6347 } 6348 6349 void CodeGenModule::EmitMainVoidAlias() { 6350 // In order to transition away from "__original_main" gracefully, emit an 6351 // alias for "main" in the no-argument case so that libc can detect when 6352 // new-style no-argument main is in used. 6353 if (llvm::Function *F = getModule().getFunction("main")) { 6354 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6355 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 6356 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 6357 } 6358 } 6359 6360 /// Turns the given pointer into a constant. 6361 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6362 const void *Ptr) { 6363 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6364 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6365 return llvm::ConstantInt::get(i64, PtrInt); 6366 } 6367 6368 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6369 llvm::NamedMDNode *&GlobalMetadata, 6370 GlobalDecl D, 6371 llvm::GlobalValue *Addr) { 6372 if (!GlobalMetadata) 6373 GlobalMetadata = 6374 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6375 6376 // TODO: should we report variant information for ctors/dtors? 6377 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6378 llvm::ConstantAsMetadata::get(GetPointerConstant( 6379 CGM.getLLVMContext(), D.getDecl()))}; 6380 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6381 } 6382 6383 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6384 llvm::GlobalValue *CppFunc) { 6385 // Store the list of ifuncs we need to replace uses in. 6386 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6387 // List of ConstantExprs that we should be able to delete when we're done 6388 // here. 6389 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6390 6391 // First make sure that all users of this are ifuncs (or ifuncs via a 6392 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6393 // later. 6394 for (llvm::User *User : Elem->users()) { 6395 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6396 // ifunc directly. In any other case, just give up, as we don't know what we 6397 // could break by changing those. 6398 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6399 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6400 return false; 6401 6402 for (llvm::User *CEUser : ConstExpr->users()) { 6403 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6404 IFuncs.push_back(IFunc); 6405 } else { 6406 return false; 6407 } 6408 } 6409 CEs.push_back(ConstExpr); 6410 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6411 IFuncs.push_back(IFunc); 6412 } else { 6413 // This user is one we don't know how to handle, so fail redirection. This 6414 // will result in an ifunc retaining a resolver name that will ultimately 6415 // fail to be resolved to a defined function. 6416 return false; 6417 } 6418 } 6419 6420 // Now we know this is a valid case where we can do this alias replacement, we 6421 // need to remove all of the references to Elem (and the bitcasts!) so we can 6422 // delete it. 6423 for (llvm::GlobalIFunc *IFunc : IFuncs) 6424 IFunc->setResolver(nullptr); 6425 for (llvm::ConstantExpr *ConstExpr : CEs) 6426 ConstExpr->destroyConstant(); 6427 6428 // We should now be out of uses for the 'old' version of this function, so we 6429 // can erase it as well. 6430 Elem->eraseFromParent(); 6431 6432 for (llvm::GlobalIFunc *IFunc : IFuncs) { 6433 // The type of the resolver is always just a function-type that returns the 6434 // type of the IFunc, so create that here. If the type of the actual 6435 // resolver doesn't match, it just gets bitcast to the right thing. 6436 auto *ResolverTy = 6437 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 6438 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 6439 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 6440 IFunc->setResolver(Resolver); 6441 } 6442 return true; 6443 } 6444 6445 /// For each function which is declared within an extern "C" region and marked 6446 /// as 'used', but has internal linkage, create an alias from the unmangled 6447 /// name to the mangled name if possible. People expect to be able to refer 6448 /// to such functions with an unmangled name from inline assembly within the 6449 /// same translation unit. 6450 void CodeGenModule::EmitStaticExternCAliases() { 6451 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6452 return; 6453 for (auto &I : StaticExternCValues) { 6454 IdentifierInfo *Name = I.first; 6455 llvm::GlobalValue *Val = I.second; 6456 6457 // If Val is null, that implies there were multiple declarations that each 6458 // had a claim to the unmangled name. In this case, generation of the alias 6459 // is suppressed. See CodeGenModule::MaybeHandleStaticInExterC. 6460 if (!Val) 6461 break; 6462 6463 llvm::GlobalValue *ExistingElem = 6464 getModule().getNamedValue(Name->getName()); 6465 6466 // If there is either not something already by this name, or we were able to 6467 // replace all uses from IFuncs, create the alias. 6468 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 6469 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6470 } 6471 } 6472 6473 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6474 GlobalDecl &Result) const { 6475 auto Res = Manglings.find(MangledName); 6476 if (Res == Manglings.end()) 6477 return false; 6478 Result = Res->getValue(); 6479 return true; 6480 } 6481 6482 /// Emits metadata nodes associating all the global values in the 6483 /// current module with the Decls they came from. This is useful for 6484 /// projects using IR gen as a subroutine. 6485 /// 6486 /// Since there's currently no way to associate an MDNode directly 6487 /// with an llvm::GlobalValue, we create a global named metadata 6488 /// with the name 'clang.global.decl.ptrs'. 6489 void CodeGenModule::EmitDeclMetadata() { 6490 llvm::NamedMDNode *GlobalMetadata = nullptr; 6491 6492 for (auto &I : MangledDeclNames) { 6493 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6494 // Some mangled names don't necessarily have an associated GlobalValue 6495 // in this module, e.g. if we mangled it for DebugInfo. 6496 if (Addr) 6497 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6498 } 6499 } 6500 6501 /// Emits metadata nodes for all the local variables in the current 6502 /// function. 6503 void CodeGenFunction::EmitDeclMetadata() { 6504 if (LocalDeclMap.empty()) return; 6505 6506 llvm::LLVMContext &Context = getLLVMContext(); 6507 6508 // Find the unique metadata ID for this name. 6509 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6510 6511 llvm::NamedMDNode *GlobalMetadata = nullptr; 6512 6513 for (auto &I : LocalDeclMap) { 6514 const Decl *D = I.first; 6515 llvm::Value *Addr = I.second.getPointer(); 6516 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6517 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6518 Alloca->setMetadata( 6519 DeclPtrKind, llvm::MDNode::get( 6520 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6521 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6522 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6523 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6524 } 6525 } 6526 } 6527 6528 void CodeGenModule::EmitVersionIdentMetadata() { 6529 llvm::NamedMDNode *IdentMetadata = 6530 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6531 std::string Version = getClangFullVersion(); 6532 llvm::LLVMContext &Ctx = TheModule.getContext(); 6533 6534 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6535 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6536 } 6537 6538 void CodeGenModule::EmitCommandLineMetadata() { 6539 llvm::NamedMDNode *CommandLineMetadata = 6540 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6541 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6542 llvm::LLVMContext &Ctx = TheModule.getContext(); 6543 6544 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6545 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6546 } 6547 6548 void CodeGenModule::EmitCoverageFile() { 6549 if (getCodeGenOpts().CoverageDataFile.empty() && 6550 getCodeGenOpts().CoverageNotesFile.empty()) 6551 return; 6552 6553 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6554 if (!CUNode) 6555 return; 6556 6557 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6558 llvm::LLVMContext &Ctx = TheModule.getContext(); 6559 auto *CoverageDataFile = 6560 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6561 auto *CoverageNotesFile = 6562 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6563 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6564 llvm::MDNode *CU = CUNode->getOperand(i); 6565 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6566 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6567 } 6568 } 6569 6570 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6571 bool ForEH) { 6572 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6573 // FIXME: should we even be calling this method if RTTI is disabled 6574 // and it's not for EH? 6575 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6576 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6577 getTriple().isNVPTX())) 6578 return llvm::Constant::getNullValue(Int8PtrTy); 6579 6580 if (ForEH && Ty->isObjCObjectPointerType() && 6581 LangOpts.ObjCRuntime.isGNUFamily()) 6582 return ObjCRuntime->GetEHType(Ty); 6583 6584 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6585 } 6586 6587 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6588 // Do not emit threadprivates in simd-only mode. 6589 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6590 return; 6591 for (auto RefExpr : D->varlists()) { 6592 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6593 bool PerformInit = 6594 VD->getAnyInitializer() && 6595 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6596 /*ForRef=*/false); 6597 6598 Address Addr(GetAddrOfGlobalVar(VD), 6599 getTypes().ConvertTypeForMem(VD->getType()), 6600 getContext().getDeclAlign(VD)); 6601 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6602 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6603 CXXGlobalInits.push_back(InitFunction); 6604 } 6605 } 6606 6607 llvm::Metadata * 6608 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6609 StringRef Suffix) { 6610 if (auto *FnType = T->getAs<FunctionProtoType>()) 6611 T = getContext().getFunctionType( 6612 FnType->getReturnType(), FnType->getParamTypes(), 6613 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6614 6615 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6616 if (InternalId) 6617 return InternalId; 6618 6619 if (isExternallyVisible(T->getLinkage())) { 6620 std::string OutName; 6621 llvm::raw_string_ostream Out(OutName); 6622 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6623 Out << Suffix; 6624 6625 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6626 } else { 6627 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6628 llvm::ArrayRef<llvm::Metadata *>()); 6629 } 6630 6631 return InternalId; 6632 } 6633 6634 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6635 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6636 } 6637 6638 llvm::Metadata * 6639 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6640 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6641 } 6642 6643 // Generalize pointer types to a void pointer with the qualifiers of the 6644 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6645 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6646 // 'void *'. 6647 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6648 if (!Ty->isPointerType()) 6649 return Ty; 6650 6651 return Ctx.getPointerType( 6652 QualType(Ctx.VoidTy).withCVRQualifiers( 6653 Ty->getPointeeType().getCVRQualifiers())); 6654 } 6655 6656 // Apply type generalization to a FunctionType's return and argument types 6657 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6658 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6659 SmallVector<QualType, 8> GeneralizedParams; 6660 for (auto &Param : FnType->param_types()) 6661 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6662 6663 return Ctx.getFunctionType( 6664 GeneralizeType(Ctx, FnType->getReturnType()), 6665 GeneralizedParams, FnType->getExtProtoInfo()); 6666 } 6667 6668 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6669 return Ctx.getFunctionNoProtoType( 6670 GeneralizeType(Ctx, FnType->getReturnType())); 6671 6672 llvm_unreachable("Encountered unknown FunctionType"); 6673 } 6674 6675 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6676 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6677 GeneralizedMetadataIdMap, ".generalized"); 6678 } 6679 6680 /// Returns whether this module needs the "all-vtables" type identifier. 6681 bool CodeGenModule::NeedAllVtablesTypeId() const { 6682 // Returns true if at least one of vtable-based CFI checkers is enabled and 6683 // is not in the trapping mode. 6684 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6685 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6686 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6687 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6688 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6689 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6690 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6691 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6692 } 6693 6694 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6695 CharUnits Offset, 6696 const CXXRecordDecl *RD) { 6697 llvm::Metadata *MD = 6698 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6699 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6700 6701 if (CodeGenOpts.SanitizeCfiCrossDso) 6702 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6703 VTable->addTypeMetadata(Offset.getQuantity(), 6704 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6705 6706 if (NeedAllVtablesTypeId()) { 6707 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6708 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6709 } 6710 } 6711 6712 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6713 if (!SanStats) 6714 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6715 6716 return *SanStats; 6717 } 6718 6719 llvm::Value * 6720 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6721 CodeGenFunction &CGF) { 6722 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6723 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6724 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6725 auto *Call = CGF.EmitRuntimeCall( 6726 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6727 return Call; 6728 } 6729 6730 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6731 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6732 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6733 /* forPointeeType= */ true); 6734 } 6735 6736 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6737 LValueBaseInfo *BaseInfo, 6738 TBAAAccessInfo *TBAAInfo, 6739 bool forPointeeType) { 6740 if (TBAAInfo) 6741 *TBAAInfo = getTBAAAccessInfo(T); 6742 6743 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6744 // that doesn't return the information we need to compute BaseInfo. 6745 6746 // Honor alignment typedef attributes even on incomplete types. 6747 // We also honor them straight for C++ class types, even as pointees; 6748 // there's an expressivity gap here. 6749 if (auto TT = T->getAs<TypedefType>()) { 6750 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6751 if (BaseInfo) 6752 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6753 return getContext().toCharUnitsFromBits(Align); 6754 } 6755 } 6756 6757 bool AlignForArray = T->isArrayType(); 6758 6759 // Analyze the base element type, so we don't get confused by incomplete 6760 // array types. 6761 T = getContext().getBaseElementType(T); 6762 6763 if (T->isIncompleteType()) { 6764 // We could try to replicate the logic from 6765 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6766 // type is incomplete, so it's impossible to test. We could try to reuse 6767 // getTypeAlignIfKnown, but that doesn't return the information we need 6768 // to set BaseInfo. So just ignore the possibility that the alignment is 6769 // greater than one. 6770 if (BaseInfo) 6771 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6772 return CharUnits::One(); 6773 } 6774 6775 if (BaseInfo) 6776 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6777 6778 CharUnits Alignment; 6779 const CXXRecordDecl *RD; 6780 if (T.getQualifiers().hasUnaligned()) { 6781 Alignment = CharUnits::One(); 6782 } else if (forPointeeType && !AlignForArray && 6783 (RD = T->getAsCXXRecordDecl())) { 6784 // For C++ class pointees, we don't know whether we're pointing at a 6785 // base or a complete object, so we generally need to use the 6786 // non-virtual alignment. 6787 Alignment = getClassPointerAlignment(RD); 6788 } else { 6789 Alignment = getContext().getTypeAlignInChars(T); 6790 } 6791 6792 // Cap to the global maximum type alignment unless the alignment 6793 // was somehow explicit on the type. 6794 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6795 if (Alignment.getQuantity() > MaxAlign && 6796 !getContext().isAlignmentRequired(T)) 6797 Alignment = CharUnits::fromQuantity(MaxAlign); 6798 } 6799 return Alignment; 6800 } 6801 6802 bool CodeGenModule::stopAutoInit() { 6803 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6804 if (StopAfter) { 6805 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6806 // used 6807 if (NumAutoVarInit >= StopAfter) { 6808 return true; 6809 } 6810 if (!NumAutoVarInit) { 6811 unsigned DiagID = getDiags().getCustomDiagID( 6812 DiagnosticsEngine::Warning, 6813 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6814 "number of times ftrivial-auto-var-init=%1 gets applied."); 6815 getDiags().Report(DiagID) 6816 << StopAfter 6817 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6818 LangOptions::TrivialAutoVarInitKind::Zero 6819 ? "zero" 6820 : "pattern"); 6821 } 6822 ++NumAutoVarInit; 6823 } 6824 return false; 6825 } 6826 6827 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 6828 const Decl *D) const { 6829 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 6830 // postfix beginning with '.' since the symbol name can be demangled. 6831 if (LangOpts.HIP) 6832 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 6833 else 6834 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 6835 6836 // If the CUID is not specified we try to generate a unique postfix. 6837 if (getLangOpts().CUID.empty()) { 6838 SourceManager &SM = getContext().getSourceManager(); 6839 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 6840 assert(PLoc.isValid() && "Source location is expected to be valid."); 6841 6842 // Get the hash of the user defined macros. 6843 llvm::MD5 Hash; 6844 llvm::MD5::MD5Result Result; 6845 for (const auto &Arg : PreprocessorOpts.Macros) 6846 Hash.update(Arg.first); 6847 Hash.final(Result); 6848 6849 // Get the UniqueID for the file containing the decl. 6850 llvm::sys::fs::UniqueID ID; 6851 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 6852 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 6853 assert(PLoc.isValid() && "Source location is expected to be valid."); 6854 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 6855 SM.getDiagnostics().Report(diag::err_cannot_open_file) 6856 << PLoc.getFilename() << EC.message(); 6857 } 6858 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 6859 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 6860 } else { 6861 OS << getContext().getCUIDHash(); 6862 } 6863 } 6864