1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 127 if (LangOpts.ObjC1) 128 createObjCRuntime(); 129 if (LangOpts.OpenCL) 130 createOpenCLRuntime(); 131 if (LangOpts.OpenMP) 132 createOpenMPRuntime(); 133 if (LangOpts.CUDA) 134 createCUDARuntime(); 135 136 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 137 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 138 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 139 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 140 getCXXABI().getMangleContext())); 141 142 // If debug info or coverage generation is enabled, create the CGDebugInfo 143 // object. 144 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 145 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 146 DebugInfo.reset(new CGDebugInfo(*this)); 147 148 Block.GlobalUniqueCount = 0; 149 150 if (C.getLangOpts().ObjC1) 151 ObjCData.reset(new ObjCEntrypoints()); 152 153 if (CodeGenOpts.hasProfileClangUse()) { 154 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 155 CodeGenOpts.ProfileInstrumentUsePath); 156 if (auto E = ReaderOrErr.takeError()) { 157 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 158 "Could not read profile %0: %1"); 159 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 160 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 161 << EI.message(); 162 }); 163 } else 164 PGOReader = std::move(ReaderOrErr.get()); 165 } 166 167 // If coverage mapping generation is enabled, create the 168 // CoverageMappingModuleGen object. 169 if (CodeGenOpts.CoverageMapping) 170 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 171 } 172 173 CodeGenModule::~CodeGenModule() {} 174 175 void CodeGenModule::createObjCRuntime() { 176 // This is just isGNUFamily(), but we want to force implementors of 177 // new ABIs to decide how best to do this. 178 switch (LangOpts.ObjCRuntime.getKind()) { 179 case ObjCRuntime::GNUstep: 180 case ObjCRuntime::GCC: 181 case ObjCRuntime::ObjFW: 182 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 183 return; 184 185 case ObjCRuntime::FragileMacOSX: 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 case ObjCRuntime::WatchOS: 189 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 190 return; 191 } 192 llvm_unreachable("bad runtime kind"); 193 } 194 195 void CodeGenModule::createOpenCLRuntime() { 196 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 197 } 198 199 void CodeGenModule::createOpenMPRuntime() { 200 // Select a specialized code generation class based on the target, if any. 201 // If it does not exist use the default implementation. 202 switch (getTriple().getArch()) { 203 case llvm::Triple::nvptx: 204 case llvm::Triple::nvptx64: 205 assert(getLangOpts().OpenMPIsDevice && 206 "OpenMP NVPTX is only prepared to deal with device code."); 207 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 208 break; 209 default: 210 if (LangOpts.OpenMPSimd) 211 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 212 else 213 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 214 break; 215 } 216 } 217 218 void CodeGenModule::createCUDARuntime() { 219 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 220 } 221 222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 223 Replacements[Name] = C; 224 } 225 226 void CodeGenModule::applyReplacements() { 227 for (auto &I : Replacements) { 228 StringRef MangledName = I.first(); 229 llvm::Constant *Replacement = I.second; 230 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 231 if (!Entry) 232 continue; 233 auto *OldF = cast<llvm::Function>(Entry); 234 auto *NewF = dyn_cast<llvm::Function>(Replacement); 235 if (!NewF) { 236 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 237 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 238 } else { 239 auto *CE = cast<llvm::ConstantExpr>(Replacement); 240 assert(CE->getOpcode() == llvm::Instruction::BitCast || 241 CE->getOpcode() == llvm::Instruction::GetElementPtr); 242 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 243 } 244 } 245 246 // Replace old with new, but keep the old order. 247 OldF->replaceAllUsesWith(Replacement); 248 if (NewF) { 249 NewF->removeFromParent(); 250 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 251 NewF); 252 } 253 OldF->eraseFromParent(); 254 } 255 } 256 257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 258 GlobalValReplacements.push_back(std::make_pair(GV, C)); 259 } 260 261 void CodeGenModule::applyGlobalValReplacements() { 262 for (auto &I : GlobalValReplacements) { 263 llvm::GlobalValue *GV = I.first; 264 llvm::Constant *C = I.second; 265 266 GV->replaceAllUsesWith(C); 267 GV->eraseFromParent(); 268 } 269 } 270 271 // This is only used in aliases that we created and we know they have a 272 // linear structure. 273 static const llvm::GlobalObject *getAliasedGlobal( 274 const llvm::GlobalIndirectSymbol &GIS) { 275 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 276 const llvm::Constant *C = &GIS; 277 for (;;) { 278 C = C->stripPointerCasts(); 279 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 280 return GO; 281 // stripPointerCasts will not walk over weak aliases. 282 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 283 if (!GIS2) 284 return nullptr; 285 if (!Visited.insert(GIS2).second) 286 return nullptr; 287 C = GIS2->getIndirectSymbol(); 288 } 289 } 290 291 void CodeGenModule::checkAliases() { 292 // Check if the constructed aliases are well formed. It is really unfortunate 293 // that we have to do this in CodeGen, but we only construct mangled names 294 // and aliases during codegen. 295 bool Error = false; 296 DiagnosticsEngine &Diags = getDiags(); 297 for (const GlobalDecl &GD : Aliases) { 298 const auto *D = cast<ValueDecl>(GD.getDecl()); 299 SourceLocation Location; 300 bool IsIFunc = D->hasAttr<IFuncAttr>(); 301 if (const Attr *A = D->getDefiningAttr()) 302 Location = A->getLocation(); 303 else 304 llvm_unreachable("Not an alias or ifunc?"); 305 StringRef MangledName = getMangledName(GD); 306 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 307 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 308 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 309 if (!GV) { 310 Error = true; 311 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 312 } else if (GV->isDeclaration()) { 313 Error = true; 314 Diags.Report(Location, diag::err_alias_to_undefined) 315 << IsIFunc << IsIFunc; 316 } else if (IsIFunc) { 317 // Check resolver function type. 318 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 319 GV->getType()->getPointerElementType()); 320 assert(FTy); 321 if (!FTy->getReturnType()->isPointerTy()) 322 Diags.Report(Location, diag::err_ifunc_resolver_return); 323 if (FTy->getNumParams()) 324 Diags.Report(Location, diag::err_ifunc_resolver_params); 325 } 326 327 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 328 llvm::GlobalValue *AliaseeGV; 329 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 330 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 331 else 332 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 333 334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 335 StringRef AliasSection = SA->getName(); 336 if (AliasSection != AliaseeGV->getSection()) 337 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 338 << AliasSection << IsIFunc << IsIFunc; 339 } 340 341 // We have to handle alias to weak aliases in here. LLVM itself disallows 342 // this since the object semantics would not match the IL one. For 343 // compatibility with gcc we implement it by just pointing the alias 344 // to its aliasee's aliasee. We also warn, since the user is probably 345 // expecting the link to be weak. 346 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 347 if (GA->isInterposable()) { 348 Diags.Report(Location, diag::warn_alias_to_weak_alias) 349 << GV->getName() << GA->getName() << IsIFunc; 350 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 351 GA->getIndirectSymbol(), Alias->getType()); 352 Alias->setIndirectSymbol(Aliasee); 353 } 354 } 355 } 356 if (!Error) 357 return; 358 359 for (const GlobalDecl &GD : Aliases) { 360 StringRef MangledName = getMangledName(GD); 361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 362 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 363 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 364 Alias->eraseFromParent(); 365 } 366 } 367 368 void CodeGenModule::clear() { 369 DeferredDeclsToEmit.clear(); 370 if (OpenMPRuntime) 371 OpenMPRuntime->clear(); 372 } 373 374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 375 StringRef MainFile) { 376 if (!hasDiagnostics()) 377 return; 378 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 379 if (MainFile.empty()) 380 MainFile = "<stdin>"; 381 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 382 } else { 383 if (Mismatched > 0) 384 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 385 386 if (Missing > 0) 387 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 388 } 389 } 390 391 void CodeGenModule::Release() { 392 EmitDeferred(); 393 EmitVTablesOpportunistically(); 394 applyGlobalValReplacements(); 395 applyReplacements(); 396 checkAliases(); 397 emitMultiVersionFunctions(); 398 EmitCXXGlobalInitFunc(); 399 EmitCXXGlobalDtorFunc(); 400 EmitCXXThreadLocalInitFunc(); 401 if (ObjCRuntime) 402 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 403 AddGlobalCtor(ObjCInitFunction); 404 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 405 CUDARuntime) { 406 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 407 AddGlobalCtor(CudaCtorFunction); 408 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 409 AddGlobalDtor(CudaDtorFunction); 410 } 411 if (OpenMPRuntime) { 412 if (llvm::Function *OpenMPRegistrationFunction = 413 OpenMPRuntime->emitRegistrationFunction()) { 414 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 415 OpenMPRegistrationFunction : nullptr; 416 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 417 } 418 OpenMPRuntime->clear(); 419 } 420 if (PGOReader) { 421 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 422 if (PGOStats.hasDiagnostics()) 423 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 424 } 425 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 426 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 427 EmitGlobalAnnotations(); 428 EmitStaticExternCAliases(); 429 EmitDeferredUnusedCoverageMappings(); 430 if (CoverageMapping) 431 CoverageMapping->emit(); 432 if (CodeGenOpts.SanitizeCfiCrossDso) { 433 CodeGenFunction(*this).EmitCfiCheckFail(); 434 CodeGenFunction(*this).EmitCfiCheckStub(); 435 } 436 emitAtAvailableLinkGuard(); 437 emitLLVMUsed(); 438 if (SanStats) 439 SanStats->finish(); 440 441 if (CodeGenOpts.Autolink && 442 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 443 EmitModuleLinkOptions(); 444 } 445 446 // Record mregparm value now so it is visible through rest of codegen. 447 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 448 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 449 CodeGenOpts.NumRegisterParameters); 450 451 if (CodeGenOpts.DwarfVersion) { 452 // We actually want the latest version when there are conflicts. 453 // We can change from Warning to Latest if such mode is supported. 454 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 455 CodeGenOpts.DwarfVersion); 456 } 457 if (CodeGenOpts.EmitCodeView) { 458 // Indicate that we want CodeView in the metadata. 459 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 460 } 461 if (CodeGenOpts.ControlFlowGuard) { 462 // We want function ID tables for Control Flow Guard. 463 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 464 } 465 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 466 // We don't support LTO with 2 with different StrictVTablePointers 467 // FIXME: we could support it by stripping all the information introduced 468 // by StrictVTablePointers. 469 470 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 471 472 llvm::Metadata *Ops[2] = { 473 llvm::MDString::get(VMContext, "StrictVTablePointers"), 474 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 475 llvm::Type::getInt32Ty(VMContext), 1))}; 476 477 getModule().addModuleFlag(llvm::Module::Require, 478 "StrictVTablePointersRequirement", 479 llvm::MDNode::get(VMContext, Ops)); 480 } 481 if (DebugInfo) 482 // We support a single version in the linked module. The LLVM 483 // parser will drop debug info with a different version number 484 // (and warn about it, too). 485 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 486 llvm::DEBUG_METADATA_VERSION); 487 488 // We need to record the widths of enums and wchar_t, so that we can generate 489 // the correct build attributes in the ARM backend. wchar_size is also used by 490 // TargetLibraryInfo. 491 uint64_t WCharWidth = 492 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 493 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 494 495 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 496 if ( Arch == llvm::Triple::arm 497 || Arch == llvm::Triple::armeb 498 || Arch == llvm::Triple::thumb 499 || Arch == llvm::Triple::thumbeb) { 500 // The minimum width of an enum in bytes 501 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 502 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 503 } 504 505 if (CodeGenOpts.SanitizeCfiCrossDso) { 506 // Indicate that we want cross-DSO control flow integrity checks. 507 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 508 } 509 510 if (CodeGenOpts.CFProtectionReturn && 511 Target.checkCFProtectionReturnSupported(getDiags())) { 512 // Indicate that we want to instrument return control flow protection. 513 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 514 1); 515 } 516 517 if (CodeGenOpts.CFProtectionBranch && 518 Target.checkCFProtectionBranchSupported(getDiags())) { 519 // Indicate that we want to instrument branch control flow protection. 520 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 521 1); 522 } 523 524 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 525 // Indicate whether __nvvm_reflect should be configured to flush denormal 526 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 527 // property.) 528 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 529 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 530 } 531 532 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 533 if (LangOpts.OpenCL) { 534 EmitOpenCLMetadata(); 535 // Emit SPIR version. 536 if (getTriple().getArch() == llvm::Triple::spir || 537 getTriple().getArch() == llvm::Triple::spir64) { 538 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 539 // opencl.spir.version named metadata. 540 llvm::Metadata *SPIRVerElts[] = { 541 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 542 Int32Ty, LangOpts.OpenCLVersion / 100)), 543 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 544 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 545 llvm::NamedMDNode *SPIRVerMD = 546 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 547 llvm::LLVMContext &Ctx = TheModule.getContext(); 548 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 549 } 550 } 551 552 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 553 assert(PLevel < 3 && "Invalid PIC Level"); 554 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 555 if (Context.getLangOpts().PIE) 556 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 557 } 558 559 if (CodeGenOpts.NoPLT) 560 getModule().setRtLibUseGOT(); 561 562 SimplifyPersonality(); 563 564 if (getCodeGenOpts().EmitDeclMetadata) 565 EmitDeclMetadata(); 566 567 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 568 EmitCoverageFile(); 569 570 if (DebugInfo) 571 DebugInfo->finalize(); 572 573 EmitVersionIdentMetadata(); 574 575 EmitTargetMetadata(); 576 } 577 578 void CodeGenModule::EmitOpenCLMetadata() { 579 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 580 // opencl.ocl.version named metadata node. 581 llvm::Metadata *OCLVerElts[] = { 582 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 583 Int32Ty, LangOpts.OpenCLVersion / 100)), 584 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 585 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 586 llvm::NamedMDNode *OCLVerMD = 587 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 588 llvm::LLVMContext &Ctx = TheModule.getContext(); 589 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 590 } 591 592 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 593 // Make sure that this type is translated. 594 Types.UpdateCompletedType(TD); 595 } 596 597 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 598 // Make sure that this type is translated. 599 Types.RefreshTypeCacheForClass(RD); 600 } 601 602 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 603 if (!TBAA) 604 return nullptr; 605 return TBAA->getTypeInfo(QTy); 606 } 607 608 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 609 if (!TBAA) 610 return TBAAAccessInfo(); 611 return TBAA->getAccessInfo(AccessType); 612 } 613 614 TBAAAccessInfo 615 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 616 if (!TBAA) 617 return TBAAAccessInfo(); 618 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 619 } 620 621 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 622 if (!TBAA) 623 return nullptr; 624 return TBAA->getTBAAStructInfo(QTy); 625 } 626 627 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 628 if (!TBAA) 629 return nullptr; 630 return TBAA->getBaseTypeInfo(QTy); 631 } 632 633 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 634 if (!TBAA) 635 return nullptr; 636 return TBAA->getAccessTagInfo(Info); 637 } 638 639 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 640 TBAAAccessInfo TargetInfo) { 641 if (!TBAA) 642 return TBAAAccessInfo(); 643 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 644 } 645 646 TBAAAccessInfo 647 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 648 TBAAAccessInfo InfoB) { 649 if (!TBAA) 650 return TBAAAccessInfo(); 651 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 652 } 653 654 TBAAAccessInfo 655 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 656 TBAAAccessInfo SrcInfo) { 657 if (!TBAA) 658 return TBAAAccessInfo(); 659 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 660 } 661 662 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 663 TBAAAccessInfo TBAAInfo) { 664 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 665 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 666 } 667 668 void CodeGenModule::DecorateInstructionWithInvariantGroup( 669 llvm::Instruction *I, const CXXRecordDecl *RD) { 670 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 671 llvm::MDNode::get(getLLVMContext(), {})); 672 } 673 674 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 675 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 676 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 677 } 678 679 /// ErrorUnsupported - Print out an error that codegen doesn't support the 680 /// specified stmt yet. 681 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 682 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 683 "cannot compile this %0 yet"); 684 std::string Msg = Type; 685 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 686 << Msg << S->getSourceRange(); 687 } 688 689 /// ErrorUnsupported - Print out an error that codegen doesn't support the 690 /// specified decl yet. 691 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 692 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 693 "cannot compile this %0 yet"); 694 std::string Msg = Type; 695 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 696 } 697 698 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 699 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 700 } 701 702 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 703 const NamedDecl *D) const { 704 if (GV->hasDLLImportStorageClass()) 705 return; 706 // Internal definitions always have default visibility. 707 if (GV->hasLocalLinkage()) { 708 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 709 return; 710 } 711 if (!D) 712 return; 713 // Set visibility for definitions. 714 LinkageInfo LV = D->getLinkageAndVisibility(); 715 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 716 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 717 } 718 719 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 720 llvm::GlobalValue *GV) { 721 if (GV->hasLocalLinkage()) 722 return true; 723 724 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 725 return true; 726 727 // DLLImport explicitly marks the GV as external. 728 if (GV->hasDLLImportStorageClass()) 729 return false; 730 731 const llvm::Triple &TT = CGM.getTriple(); 732 // Every other GV is local on COFF. 733 // Make an exception for windows OS in the triple: Some firmware builds use 734 // *-win32-macho triples. This (accidentally?) produced windows relocations 735 // without GOT tables in older clang versions; Keep this behaviour. 736 // FIXME: even thread local variables? 737 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 738 return true; 739 740 // Only handle COFF and ELF for now. 741 if (!TT.isOSBinFormatELF()) 742 return false; 743 744 // If this is not an executable, don't assume anything is local. 745 const auto &CGOpts = CGM.getCodeGenOpts(); 746 llvm::Reloc::Model RM = CGOpts.RelocationModel; 747 const auto &LOpts = CGM.getLangOpts(); 748 if (RM != llvm::Reloc::Static && !LOpts.PIE) 749 return false; 750 751 // A definition cannot be preempted from an executable. 752 if (!GV->isDeclarationForLinker()) 753 return true; 754 755 // Most PIC code sequences that assume that a symbol is local cannot produce a 756 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 757 // depended, it seems worth it to handle it here. 758 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 759 return false; 760 761 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 762 llvm::Triple::ArchType Arch = TT.getArch(); 763 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 764 Arch == llvm::Triple::ppc64le) 765 return false; 766 767 // If we can use copy relocations we can assume it is local. 768 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 769 if (!Var->isThreadLocal() && 770 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 771 return true; 772 773 // If we can use a plt entry as the symbol address we can assume it 774 // is local. 775 // FIXME: This should work for PIE, but the gold linker doesn't support it. 776 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 777 return true; 778 779 // Otherwise don't assue it is local. 780 return false; 781 } 782 783 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 784 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 785 } 786 787 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 788 GlobalDecl GD) const { 789 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 790 // C++ destructors have a few C++ ABI specific special cases. 791 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 792 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 793 return; 794 } 795 setDLLImportDLLExport(GV, D); 796 } 797 798 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 799 const NamedDecl *D) const { 800 if (D && D->isExternallyVisible()) { 801 if (D->hasAttr<DLLImportAttr>()) 802 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 803 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 804 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 805 } 806 } 807 808 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 809 GlobalDecl GD) const { 810 setDLLImportDLLExport(GV, GD); 811 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 812 } 813 814 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 815 const NamedDecl *D) const { 816 setDLLImportDLLExport(GV, D); 817 setGlobalVisibilityAndLocal(GV, D); 818 } 819 820 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 821 const NamedDecl *D) const { 822 setGlobalVisibility(GV, D); 823 setDSOLocal(GV); 824 } 825 826 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 827 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 828 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 829 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 830 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 831 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 832 } 833 834 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 835 CodeGenOptions::TLSModel M) { 836 switch (M) { 837 case CodeGenOptions::GeneralDynamicTLSModel: 838 return llvm::GlobalVariable::GeneralDynamicTLSModel; 839 case CodeGenOptions::LocalDynamicTLSModel: 840 return llvm::GlobalVariable::LocalDynamicTLSModel; 841 case CodeGenOptions::InitialExecTLSModel: 842 return llvm::GlobalVariable::InitialExecTLSModel; 843 case CodeGenOptions::LocalExecTLSModel: 844 return llvm::GlobalVariable::LocalExecTLSModel; 845 } 846 llvm_unreachable("Invalid TLS model!"); 847 } 848 849 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 850 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 851 852 llvm::GlobalValue::ThreadLocalMode TLM; 853 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 854 855 // Override the TLS model if it is explicitly specified. 856 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 857 TLM = GetLLVMTLSModel(Attr->getModel()); 858 } 859 860 GV->setThreadLocalMode(TLM); 861 } 862 863 static void AppendTargetMangling(const CodeGenModule &CGM, 864 const TargetAttr *Attr, raw_ostream &Out) { 865 if (Attr->isDefaultVersion()) 866 return; 867 868 Out << '.'; 869 const auto &Target = CGM.getTarget(); 870 TargetAttr::ParsedTargetAttr Info = 871 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 872 // Multiversioning doesn't allow "no-${feature}", so we can 873 // only have "+" prefixes here. 874 assert(LHS.startswith("+") && RHS.startswith("+") && 875 "Features should always have a prefix."); 876 return Target.multiVersionSortPriority(LHS.substr(1)) > 877 Target.multiVersionSortPriority(RHS.substr(1)); 878 }); 879 880 bool IsFirst = true; 881 882 if (!Info.Architecture.empty()) { 883 IsFirst = false; 884 Out << "arch_" << Info.Architecture; 885 } 886 887 for (StringRef Feat : Info.Features) { 888 if (!IsFirst) 889 Out << '_'; 890 IsFirst = false; 891 Out << Feat.substr(1); 892 } 893 } 894 895 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 896 const NamedDecl *ND, 897 bool OmitTargetMangling = false) { 898 SmallString<256> Buffer; 899 llvm::raw_svector_ostream Out(Buffer); 900 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 901 if (MC.shouldMangleDeclName(ND)) { 902 llvm::raw_svector_ostream Out(Buffer); 903 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 904 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 905 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 906 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 907 else 908 MC.mangleName(ND, Out); 909 } else { 910 IdentifierInfo *II = ND->getIdentifier(); 911 assert(II && "Attempt to mangle unnamed decl."); 912 const auto *FD = dyn_cast<FunctionDecl>(ND); 913 914 if (FD && 915 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 916 llvm::raw_svector_ostream Out(Buffer); 917 Out << "__regcall3__" << II->getName(); 918 } else { 919 Out << II->getName(); 920 } 921 } 922 923 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 924 if (FD->isMultiVersion() && !OmitTargetMangling) 925 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 926 return Out.str(); 927 } 928 929 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 930 const FunctionDecl *FD) { 931 if (!FD->isMultiVersion()) 932 return; 933 934 // Get the name of what this would be without the 'target' attribute. This 935 // allows us to lookup the version that was emitted when this wasn't a 936 // multiversion function. 937 std::string NonTargetName = 938 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true); 939 GlobalDecl OtherGD; 940 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 941 assert(OtherGD.getCanonicalDecl() 942 .getDecl() 943 ->getAsFunction() 944 ->isMultiVersion() && 945 "Other GD should now be a multiversioned function"); 946 // OtherFD is the version of this function that was mangled BEFORE 947 // becoming a MultiVersion function. It potentially needs to be updated. 948 const FunctionDecl *OtherFD = 949 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 950 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 951 // This is so that if the initial version was already the 'default' 952 // version, we don't try to update it. 953 if (OtherName != NonTargetName) { 954 // Remove instead of erase, since others may have stored the StringRef 955 // to this. 956 const auto ExistingRecord = Manglings.find(NonTargetName); 957 if (ExistingRecord != std::end(Manglings)) 958 Manglings.remove(&(*ExistingRecord)); 959 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 960 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 961 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 962 Entry->setName(OtherName); 963 } 964 } 965 } 966 967 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 968 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 969 970 // Some ABIs don't have constructor variants. Make sure that base and 971 // complete constructors get mangled the same. 972 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 973 if (!getTarget().getCXXABI().hasConstructorVariants()) { 974 CXXCtorType OrigCtorType = GD.getCtorType(); 975 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 976 if (OrigCtorType == Ctor_Base) 977 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 978 } 979 } 980 981 auto FoundName = MangledDeclNames.find(CanonicalGD); 982 if (FoundName != MangledDeclNames.end()) 983 return FoundName->second; 984 985 986 // Keep the first result in the case of a mangling collision. 987 const auto *ND = cast<NamedDecl>(GD.getDecl()); 988 auto Result = 989 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 990 return MangledDeclNames[CanonicalGD] = Result.first->first(); 991 } 992 993 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 994 const BlockDecl *BD) { 995 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 996 const Decl *D = GD.getDecl(); 997 998 SmallString<256> Buffer; 999 llvm::raw_svector_ostream Out(Buffer); 1000 if (!D) 1001 MangleCtx.mangleGlobalBlock(BD, 1002 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1003 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1004 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1005 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1006 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1007 else 1008 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1009 1010 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1011 return Result.first->first(); 1012 } 1013 1014 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1015 return getModule().getNamedValue(Name); 1016 } 1017 1018 /// AddGlobalCtor - Add a function to the list that will be called before 1019 /// main() runs. 1020 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1021 llvm::Constant *AssociatedData) { 1022 // FIXME: Type coercion of void()* types. 1023 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1024 } 1025 1026 /// AddGlobalDtor - Add a function to the list that will be called 1027 /// when the module is unloaded. 1028 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1029 // FIXME: Type coercion of void()* types. 1030 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1031 } 1032 1033 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1034 if (Fns.empty()) return; 1035 1036 // Ctor function type is void()*. 1037 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1038 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 1039 1040 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1041 llvm::StructType *CtorStructTy = llvm::StructType::get( 1042 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 1043 1044 // Construct the constructor and destructor arrays. 1045 ConstantInitBuilder builder(*this); 1046 auto ctors = builder.beginArray(CtorStructTy); 1047 for (const auto &I : Fns) { 1048 auto ctor = ctors.beginStruct(CtorStructTy); 1049 ctor.addInt(Int32Ty, I.Priority); 1050 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1051 if (I.AssociatedData) 1052 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1053 else 1054 ctor.addNullPointer(VoidPtrTy); 1055 ctor.finishAndAddTo(ctors); 1056 } 1057 1058 auto list = 1059 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1060 /*constant*/ false, 1061 llvm::GlobalValue::AppendingLinkage); 1062 1063 // The LTO linker doesn't seem to like it when we set an alignment 1064 // on appending variables. Take it off as a workaround. 1065 list->setAlignment(0); 1066 1067 Fns.clear(); 1068 } 1069 1070 llvm::GlobalValue::LinkageTypes 1071 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1072 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1073 1074 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1075 1076 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1077 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1078 1079 if (isa<CXXConstructorDecl>(D) && 1080 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1081 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1082 // Our approach to inheriting constructors is fundamentally different from 1083 // that used by the MS ABI, so keep our inheriting constructor thunks 1084 // internal rather than trying to pick an unambiguous mangling for them. 1085 return llvm::GlobalValue::InternalLinkage; 1086 } 1087 1088 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1089 } 1090 1091 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1092 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1093 if (!MDS) return nullptr; 1094 1095 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1096 } 1097 1098 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1099 const CGFunctionInfo &Info, 1100 llvm::Function *F) { 1101 unsigned CallingConv; 1102 llvm::AttributeList PAL; 1103 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1104 F->setAttributes(PAL); 1105 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1106 } 1107 1108 /// Determines whether the language options require us to model 1109 /// unwind exceptions. We treat -fexceptions as mandating this 1110 /// except under the fragile ObjC ABI with only ObjC exceptions 1111 /// enabled. This means, for example, that C with -fexceptions 1112 /// enables this. 1113 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1114 // If exceptions are completely disabled, obviously this is false. 1115 if (!LangOpts.Exceptions) return false; 1116 1117 // If C++ exceptions are enabled, this is true. 1118 if (LangOpts.CXXExceptions) return true; 1119 1120 // If ObjC exceptions are enabled, this depends on the ABI. 1121 if (LangOpts.ObjCExceptions) { 1122 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1123 } 1124 1125 return true; 1126 } 1127 1128 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1129 llvm::Function *F) { 1130 llvm::AttrBuilder B; 1131 1132 if (CodeGenOpts.UnwindTables) 1133 B.addAttribute(llvm::Attribute::UWTable); 1134 1135 if (!hasUnwindExceptions(LangOpts)) 1136 B.addAttribute(llvm::Attribute::NoUnwind); 1137 1138 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1139 B.addAttribute(llvm::Attribute::StackProtect); 1140 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1141 B.addAttribute(llvm::Attribute::StackProtectStrong); 1142 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1143 B.addAttribute(llvm::Attribute::StackProtectReq); 1144 1145 if (!D) { 1146 // If we don't have a declaration to control inlining, the function isn't 1147 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1148 // disabled, mark the function as noinline. 1149 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1150 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1151 B.addAttribute(llvm::Attribute::NoInline); 1152 1153 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1154 return; 1155 } 1156 1157 // Track whether we need to add the optnone LLVM attribute, 1158 // starting with the default for this optimization level. 1159 bool ShouldAddOptNone = 1160 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1161 // We can't add optnone in the following cases, it won't pass the verifier. 1162 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1163 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1164 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1165 1166 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1167 B.addAttribute(llvm::Attribute::OptimizeNone); 1168 1169 // OptimizeNone implies noinline; we should not be inlining such functions. 1170 B.addAttribute(llvm::Attribute::NoInline); 1171 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1172 "OptimizeNone and AlwaysInline on same function!"); 1173 1174 // We still need to handle naked functions even though optnone subsumes 1175 // much of their semantics. 1176 if (D->hasAttr<NakedAttr>()) 1177 B.addAttribute(llvm::Attribute::Naked); 1178 1179 // OptimizeNone wins over OptimizeForSize and MinSize. 1180 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1181 F->removeFnAttr(llvm::Attribute::MinSize); 1182 } else if (D->hasAttr<NakedAttr>()) { 1183 // Naked implies noinline: we should not be inlining such functions. 1184 B.addAttribute(llvm::Attribute::Naked); 1185 B.addAttribute(llvm::Attribute::NoInline); 1186 } else if (D->hasAttr<NoDuplicateAttr>()) { 1187 B.addAttribute(llvm::Attribute::NoDuplicate); 1188 } else if (D->hasAttr<NoInlineAttr>()) { 1189 B.addAttribute(llvm::Attribute::NoInline); 1190 } else if (D->hasAttr<AlwaysInlineAttr>() && 1191 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1192 // (noinline wins over always_inline, and we can't specify both in IR) 1193 B.addAttribute(llvm::Attribute::AlwaysInline); 1194 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1195 // If we're not inlining, then force everything that isn't always_inline to 1196 // carry an explicit noinline attribute. 1197 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1198 B.addAttribute(llvm::Attribute::NoInline); 1199 } else { 1200 // Otherwise, propagate the inline hint attribute and potentially use its 1201 // absence to mark things as noinline. 1202 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1203 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1204 return Redecl->isInlineSpecified(); 1205 })) { 1206 B.addAttribute(llvm::Attribute::InlineHint); 1207 } else if (CodeGenOpts.getInlining() == 1208 CodeGenOptions::OnlyHintInlining && 1209 !FD->isInlined() && 1210 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1211 B.addAttribute(llvm::Attribute::NoInline); 1212 } 1213 } 1214 } 1215 1216 // Add other optimization related attributes if we are optimizing this 1217 // function. 1218 if (!D->hasAttr<OptimizeNoneAttr>()) { 1219 if (D->hasAttr<ColdAttr>()) { 1220 if (!ShouldAddOptNone) 1221 B.addAttribute(llvm::Attribute::OptimizeForSize); 1222 B.addAttribute(llvm::Attribute::Cold); 1223 } 1224 1225 if (D->hasAttr<MinSizeAttr>()) 1226 B.addAttribute(llvm::Attribute::MinSize); 1227 } 1228 1229 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1230 1231 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1232 if (alignment) 1233 F->setAlignment(alignment); 1234 1235 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1236 // reserve a bit for differentiating between virtual and non-virtual member 1237 // functions. If the current target's C++ ABI requires this and this is a 1238 // member function, set its alignment accordingly. 1239 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1240 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1241 F->setAlignment(2); 1242 } 1243 1244 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1245 if (CodeGenOpts.SanitizeCfiCrossDso) 1246 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1247 CreateFunctionTypeMetadata(FD, F); 1248 } 1249 1250 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1251 const Decl *D = GD.getDecl(); 1252 if (dyn_cast_or_null<NamedDecl>(D)) 1253 setGVProperties(GV, GD); 1254 else 1255 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1256 1257 if (D && D->hasAttr<UsedAttr>()) 1258 addUsedGlobal(GV); 1259 } 1260 1261 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1262 llvm::AttrBuilder &Attrs) { 1263 // Add target-cpu and target-features attributes to functions. If 1264 // we have a decl for the function and it has a target attribute then 1265 // parse that and add it to the feature set. 1266 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1267 std::vector<std::string> Features; 1268 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1269 FD = FD ? FD->getMostRecentDecl() : FD; 1270 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1271 bool AddedAttr = false; 1272 if (TD) { 1273 llvm::StringMap<bool> FeatureMap; 1274 getFunctionFeatureMap(FeatureMap, FD); 1275 1276 // Produce the canonical string for this set of features. 1277 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1278 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1279 1280 // Now add the target-cpu and target-features to the function. 1281 // While we populated the feature map above, we still need to 1282 // get and parse the target attribute so we can get the cpu for 1283 // the function. 1284 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1285 if (ParsedAttr.Architecture != "" && 1286 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1287 TargetCPU = ParsedAttr.Architecture; 1288 } else { 1289 // Otherwise just add the existing target cpu and target features to the 1290 // function. 1291 Features = getTarget().getTargetOpts().Features; 1292 } 1293 1294 if (TargetCPU != "") { 1295 Attrs.addAttribute("target-cpu", TargetCPU); 1296 AddedAttr = true; 1297 } 1298 if (!Features.empty()) { 1299 llvm::sort(Features.begin(), Features.end()); 1300 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1301 AddedAttr = true; 1302 } 1303 1304 return AddedAttr; 1305 } 1306 1307 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1308 llvm::GlobalObject *GO) { 1309 const Decl *D = GD.getDecl(); 1310 SetCommonAttributes(GD, GO); 1311 1312 if (D) { 1313 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1314 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1315 GV->addAttribute("bss-section", SA->getName()); 1316 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1317 GV->addAttribute("data-section", SA->getName()); 1318 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1319 GV->addAttribute("rodata-section", SA->getName()); 1320 } 1321 1322 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1323 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1324 if (!D->getAttr<SectionAttr>()) 1325 F->addFnAttr("implicit-section-name", SA->getName()); 1326 1327 llvm::AttrBuilder Attrs; 1328 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1329 // We know that GetCPUAndFeaturesAttributes will always have the 1330 // newest set, since it has the newest possible FunctionDecl, so the 1331 // new ones should replace the old. 1332 F->removeFnAttr("target-cpu"); 1333 F->removeFnAttr("target-features"); 1334 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1335 } 1336 } 1337 1338 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1339 GO->setSection(SA->getName()); 1340 } 1341 1342 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1343 } 1344 1345 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1346 llvm::Function *F, 1347 const CGFunctionInfo &FI) { 1348 const Decl *D = GD.getDecl(); 1349 SetLLVMFunctionAttributes(D, FI, F); 1350 SetLLVMFunctionAttributesForDefinition(D, F); 1351 1352 F->setLinkage(llvm::Function::InternalLinkage); 1353 1354 setNonAliasAttributes(GD, F); 1355 } 1356 1357 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1358 // Set linkage and visibility in case we never see a definition. 1359 LinkageInfo LV = ND->getLinkageAndVisibility(); 1360 // Don't set internal linkage on declarations. 1361 // "extern_weak" is overloaded in LLVM; we probably should have 1362 // separate linkage types for this. 1363 if (isExternallyVisible(LV.getLinkage()) && 1364 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1365 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1366 } 1367 1368 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1369 llvm::Function *F) { 1370 // Only if we are checking indirect calls. 1371 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1372 return; 1373 1374 // Non-static class methods are handled via vtable pointer checks elsewhere. 1375 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1376 return; 1377 1378 // Additionally, if building with cross-DSO support... 1379 if (CodeGenOpts.SanitizeCfiCrossDso) { 1380 // Skip available_externally functions. They won't be codegen'ed in the 1381 // current module anyway. 1382 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1383 return; 1384 } 1385 1386 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1387 F->addTypeMetadata(0, MD); 1388 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1389 1390 // Emit a hash-based bit set entry for cross-DSO calls. 1391 if (CodeGenOpts.SanitizeCfiCrossDso) 1392 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1393 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1394 } 1395 1396 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1397 bool IsIncompleteFunction, 1398 bool IsThunk) { 1399 1400 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1401 // If this is an intrinsic function, set the function's attributes 1402 // to the intrinsic's attributes. 1403 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1404 return; 1405 } 1406 1407 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1408 1409 if (!IsIncompleteFunction) { 1410 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1411 // Setup target-specific attributes. 1412 if (F->isDeclaration()) 1413 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1414 } 1415 1416 // Add the Returned attribute for "this", except for iOS 5 and earlier 1417 // where substantial code, including the libstdc++ dylib, was compiled with 1418 // GCC and does not actually return "this". 1419 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1420 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1421 assert(!F->arg_empty() && 1422 F->arg_begin()->getType() 1423 ->canLosslesslyBitCastTo(F->getReturnType()) && 1424 "unexpected this return"); 1425 F->addAttribute(1, llvm::Attribute::Returned); 1426 } 1427 1428 // Only a few attributes are set on declarations; these may later be 1429 // overridden by a definition. 1430 1431 setLinkageForGV(F, FD); 1432 setGVProperties(F, FD); 1433 1434 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1435 F->addFnAttr("implicit-section-name"); 1436 } 1437 1438 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1439 F->setSection(SA->getName()); 1440 1441 if (FD->isReplaceableGlobalAllocationFunction()) { 1442 // A replaceable global allocation function does not act like a builtin by 1443 // default, only if it is invoked by a new-expression or delete-expression. 1444 F->addAttribute(llvm::AttributeList::FunctionIndex, 1445 llvm::Attribute::NoBuiltin); 1446 1447 // A sane operator new returns a non-aliasing pointer. 1448 // FIXME: Also add NonNull attribute to the return value 1449 // for the non-nothrow forms? 1450 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1451 if (getCodeGenOpts().AssumeSaneOperatorNew && 1452 (Kind == OO_New || Kind == OO_Array_New)) 1453 F->addAttribute(llvm::AttributeList::ReturnIndex, 1454 llvm::Attribute::NoAlias); 1455 } 1456 1457 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1458 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1459 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1460 if (MD->isVirtual()) 1461 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1462 1463 // Don't emit entries for function declarations in the cross-DSO mode. This 1464 // is handled with better precision by the receiving DSO. 1465 if (!CodeGenOpts.SanitizeCfiCrossDso) 1466 CreateFunctionTypeMetadata(FD, F); 1467 1468 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1469 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1470 } 1471 1472 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1473 assert(!GV->isDeclaration() && 1474 "Only globals with definition can force usage."); 1475 LLVMUsed.emplace_back(GV); 1476 } 1477 1478 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1479 assert(!GV->isDeclaration() && 1480 "Only globals with definition can force usage."); 1481 LLVMCompilerUsed.emplace_back(GV); 1482 } 1483 1484 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1485 std::vector<llvm::WeakTrackingVH> &List) { 1486 // Don't create llvm.used if there is no need. 1487 if (List.empty()) 1488 return; 1489 1490 // Convert List to what ConstantArray needs. 1491 SmallVector<llvm::Constant*, 8> UsedArray; 1492 UsedArray.resize(List.size()); 1493 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1494 UsedArray[i] = 1495 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1496 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1497 } 1498 1499 if (UsedArray.empty()) 1500 return; 1501 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1502 1503 auto *GV = new llvm::GlobalVariable( 1504 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1505 llvm::ConstantArray::get(ATy, UsedArray), Name); 1506 1507 GV->setSection("llvm.metadata"); 1508 } 1509 1510 void CodeGenModule::emitLLVMUsed() { 1511 emitUsed(*this, "llvm.used", LLVMUsed); 1512 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1513 } 1514 1515 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1516 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1517 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1518 } 1519 1520 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1521 llvm::SmallString<32> Opt; 1522 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1523 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1524 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1525 } 1526 1527 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1528 auto &C = getLLVMContext(); 1529 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1530 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1531 } 1532 1533 void CodeGenModule::AddDependentLib(StringRef Lib) { 1534 llvm::SmallString<24> Opt; 1535 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1536 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1537 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1538 } 1539 1540 /// \brief Add link options implied by the given module, including modules 1541 /// it depends on, using a postorder walk. 1542 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1543 SmallVectorImpl<llvm::MDNode *> &Metadata, 1544 llvm::SmallPtrSet<Module *, 16> &Visited) { 1545 // Import this module's parent. 1546 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1547 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1548 } 1549 1550 // Import this module's dependencies. 1551 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1552 if (Visited.insert(Mod->Imports[I - 1]).second) 1553 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1554 } 1555 1556 // Add linker options to link against the libraries/frameworks 1557 // described by this module. 1558 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1559 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1560 // Link against a framework. Frameworks are currently Darwin only, so we 1561 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1562 if (Mod->LinkLibraries[I-1].IsFramework) { 1563 llvm::Metadata *Args[2] = { 1564 llvm::MDString::get(Context, "-framework"), 1565 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1566 1567 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1568 continue; 1569 } 1570 1571 // Link against a library. 1572 llvm::SmallString<24> Opt; 1573 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1574 Mod->LinkLibraries[I-1].Library, Opt); 1575 auto *OptString = llvm::MDString::get(Context, Opt); 1576 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1577 } 1578 } 1579 1580 void CodeGenModule::EmitModuleLinkOptions() { 1581 // Collect the set of all of the modules we want to visit to emit link 1582 // options, which is essentially the imported modules and all of their 1583 // non-explicit child modules. 1584 llvm::SetVector<clang::Module *> LinkModules; 1585 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1586 SmallVector<clang::Module *, 16> Stack; 1587 1588 // Seed the stack with imported modules. 1589 for (Module *M : ImportedModules) { 1590 // Do not add any link flags when an implementation TU of a module imports 1591 // a header of that same module. 1592 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1593 !getLangOpts().isCompilingModule()) 1594 continue; 1595 if (Visited.insert(M).second) 1596 Stack.push_back(M); 1597 } 1598 1599 // Find all of the modules to import, making a little effort to prune 1600 // non-leaf modules. 1601 while (!Stack.empty()) { 1602 clang::Module *Mod = Stack.pop_back_val(); 1603 1604 bool AnyChildren = false; 1605 1606 // Visit the submodules of this module. 1607 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1608 SubEnd = Mod->submodule_end(); 1609 Sub != SubEnd; ++Sub) { 1610 // Skip explicit children; they need to be explicitly imported to be 1611 // linked against. 1612 if ((*Sub)->IsExplicit) 1613 continue; 1614 1615 if (Visited.insert(*Sub).second) { 1616 Stack.push_back(*Sub); 1617 AnyChildren = true; 1618 } 1619 } 1620 1621 // We didn't find any children, so add this module to the list of 1622 // modules to link against. 1623 if (!AnyChildren) { 1624 LinkModules.insert(Mod); 1625 } 1626 } 1627 1628 // Add link options for all of the imported modules in reverse topological 1629 // order. We don't do anything to try to order import link flags with respect 1630 // to linker options inserted by things like #pragma comment(). 1631 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1632 Visited.clear(); 1633 for (Module *M : LinkModules) 1634 if (Visited.insert(M).second) 1635 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1636 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1637 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1638 1639 // Add the linker options metadata flag. 1640 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1641 for (auto *MD : LinkerOptionsMetadata) 1642 NMD->addOperand(MD); 1643 } 1644 1645 void CodeGenModule::EmitDeferred() { 1646 // Emit code for any potentially referenced deferred decls. Since a 1647 // previously unused static decl may become used during the generation of code 1648 // for a static function, iterate until no changes are made. 1649 1650 if (!DeferredVTables.empty()) { 1651 EmitDeferredVTables(); 1652 1653 // Emitting a vtable doesn't directly cause more vtables to 1654 // become deferred, although it can cause functions to be 1655 // emitted that then need those vtables. 1656 assert(DeferredVTables.empty()); 1657 } 1658 1659 // Stop if we're out of both deferred vtables and deferred declarations. 1660 if (DeferredDeclsToEmit.empty()) 1661 return; 1662 1663 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1664 // work, it will not interfere with this. 1665 std::vector<GlobalDecl> CurDeclsToEmit; 1666 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1667 1668 for (GlobalDecl &D : CurDeclsToEmit) { 1669 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1670 // to get GlobalValue with exactly the type we need, not something that 1671 // might had been created for another decl with the same mangled name but 1672 // different type. 1673 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1674 GetAddrOfGlobal(D, ForDefinition)); 1675 1676 // In case of different address spaces, we may still get a cast, even with 1677 // IsForDefinition equal to true. Query mangled names table to get 1678 // GlobalValue. 1679 if (!GV) 1680 GV = GetGlobalValue(getMangledName(D)); 1681 1682 // Make sure GetGlobalValue returned non-null. 1683 assert(GV); 1684 1685 // Check to see if we've already emitted this. This is necessary 1686 // for a couple of reasons: first, decls can end up in the 1687 // deferred-decls queue multiple times, and second, decls can end 1688 // up with definitions in unusual ways (e.g. by an extern inline 1689 // function acquiring a strong function redefinition). Just 1690 // ignore these cases. 1691 if (!GV->isDeclaration()) 1692 continue; 1693 1694 // Otherwise, emit the definition and move on to the next one. 1695 EmitGlobalDefinition(D, GV); 1696 1697 // If we found out that we need to emit more decls, do that recursively. 1698 // This has the advantage that the decls are emitted in a DFS and related 1699 // ones are close together, which is convenient for testing. 1700 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1701 EmitDeferred(); 1702 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1703 } 1704 } 1705 } 1706 1707 void CodeGenModule::EmitVTablesOpportunistically() { 1708 // Try to emit external vtables as available_externally if they have emitted 1709 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1710 // is not allowed to create new references to things that need to be emitted 1711 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1712 1713 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1714 && "Only emit opportunistic vtables with optimizations"); 1715 1716 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1717 assert(getVTables().isVTableExternal(RD) && 1718 "This queue should only contain external vtables"); 1719 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1720 VTables.GenerateClassData(RD); 1721 } 1722 OpportunisticVTables.clear(); 1723 } 1724 1725 void CodeGenModule::EmitGlobalAnnotations() { 1726 if (Annotations.empty()) 1727 return; 1728 1729 // Create a new global variable for the ConstantStruct in the Module. 1730 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1731 Annotations[0]->getType(), Annotations.size()), Annotations); 1732 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1733 llvm::GlobalValue::AppendingLinkage, 1734 Array, "llvm.global.annotations"); 1735 gv->setSection(AnnotationSection); 1736 } 1737 1738 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1739 llvm::Constant *&AStr = AnnotationStrings[Str]; 1740 if (AStr) 1741 return AStr; 1742 1743 // Not found yet, create a new global. 1744 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1745 auto *gv = 1746 new llvm::GlobalVariable(getModule(), s->getType(), true, 1747 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1748 gv->setSection(AnnotationSection); 1749 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1750 AStr = gv; 1751 return gv; 1752 } 1753 1754 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1755 SourceManager &SM = getContext().getSourceManager(); 1756 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1757 if (PLoc.isValid()) 1758 return EmitAnnotationString(PLoc.getFilename()); 1759 return EmitAnnotationString(SM.getBufferName(Loc)); 1760 } 1761 1762 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1763 SourceManager &SM = getContext().getSourceManager(); 1764 PresumedLoc PLoc = SM.getPresumedLoc(L); 1765 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1766 SM.getExpansionLineNumber(L); 1767 return llvm::ConstantInt::get(Int32Ty, LineNo); 1768 } 1769 1770 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1771 const AnnotateAttr *AA, 1772 SourceLocation L) { 1773 // Get the globals for file name, annotation, and the line number. 1774 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1775 *UnitGV = EmitAnnotationUnit(L), 1776 *LineNoCst = EmitAnnotationLineNo(L); 1777 1778 // Create the ConstantStruct for the global annotation. 1779 llvm::Constant *Fields[4] = { 1780 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1781 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1782 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1783 LineNoCst 1784 }; 1785 return llvm::ConstantStruct::getAnon(Fields); 1786 } 1787 1788 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1789 llvm::GlobalValue *GV) { 1790 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1791 // Get the struct elements for these annotations. 1792 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1793 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1794 } 1795 1796 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1797 llvm::Function *Fn, 1798 SourceLocation Loc) const { 1799 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1800 // Blacklist by function name. 1801 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1802 return true; 1803 // Blacklist by location. 1804 if (Loc.isValid()) 1805 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1806 // If location is unknown, this may be a compiler-generated function. Assume 1807 // it's located in the main file. 1808 auto &SM = Context.getSourceManager(); 1809 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1810 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1811 } 1812 return false; 1813 } 1814 1815 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1816 SourceLocation Loc, QualType Ty, 1817 StringRef Category) const { 1818 // For now globals can be blacklisted only in ASan and KASan. 1819 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1820 (SanitizerKind::Address | SanitizerKind::KernelAddress | 1821 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 1822 if (!EnabledAsanMask) 1823 return false; 1824 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1825 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1826 return true; 1827 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1828 return true; 1829 // Check global type. 1830 if (!Ty.isNull()) { 1831 // Drill down the array types: if global variable of a fixed type is 1832 // blacklisted, we also don't instrument arrays of them. 1833 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1834 Ty = AT->getElementType(); 1835 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1836 // We allow to blacklist only record types (classes, structs etc.) 1837 if (Ty->isRecordType()) { 1838 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1839 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1840 return true; 1841 } 1842 } 1843 return false; 1844 } 1845 1846 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1847 StringRef Category) const { 1848 if (!LangOpts.XRayInstrument) 1849 return false; 1850 1851 const auto &XRayFilter = getContext().getXRayFilter(); 1852 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1853 auto Attr = ImbueAttr::NONE; 1854 if (Loc.isValid()) 1855 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1856 if (Attr == ImbueAttr::NONE) 1857 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1858 switch (Attr) { 1859 case ImbueAttr::NONE: 1860 return false; 1861 case ImbueAttr::ALWAYS: 1862 Fn->addFnAttr("function-instrument", "xray-always"); 1863 break; 1864 case ImbueAttr::ALWAYS_ARG1: 1865 Fn->addFnAttr("function-instrument", "xray-always"); 1866 Fn->addFnAttr("xray-log-args", "1"); 1867 break; 1868 case ImbueAttr::NEVER: 1869 Fn->addFnAttr("function-instrument", "xray-never"); 1870 break; 1871 } 1872 return true; 1873 } 1874 1875 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1876 // Never defer when EmitAllDecls is specified. 1877 if (LangOpts.EmitAllDecls) 1878 return true; 1879 1880 return getContext().DeclMustBeEmitted(Global); 1881 } 1882 1883 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1884 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1885 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1886 // Implicit template instantiations may change linkage if they are later 1887 // explicitly instantiated, so they should not be emitted eagerly. 1888 return false; 1889 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1890 if (Context.getInlineVariableDefinitionKind(VD) == 1891 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1892 // A definition of an inline constexpr static data member may change 1893 // linkage later if it's redeclared outside the class. 1894 return false; 1895 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1896 // codegen for global variables, because they may be marked as threadprivate. 1897 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1898 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1899 return false; 1900 1901 return true; 1902 } 1903 1904 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1905 const CXXUuidofExpr* E) { 1906 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1907 // well-formed. 1908 StringRef Uuid = E->getUuidStr(); 1909 std::string Name = "_GUID_" + Uuid.lower(); 1910 std::replace(Name.begin(), Name.end(), '-', '_'); 1911 1912 // The UUID descriptor should be pointer aligned. 1913 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1914 1915 // Look for an existing global. 1916 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1917 return ConstantAddress(GV, Alignment); 1918 1919 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1920 assert(Init && "failed to initialize as constant"); 1921 1922 auto *GV = new llvm::GlobalVariable( 1923 getModule(), Init->getType(), 1924 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1925 if (supportsCOMDAT()) 1926 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1927 setDSOLocal(GV); 1928 return ConstantAddress(GV, Alignment); 1929 } 1930 1931 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1932 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1933 assert(AA && "No alias?"); 1934 1935 CharUnits Alignment = getContext().getDeclAlign(VD); 1936 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1937 1938 // See if there is already something with the target's name in the module. 1939 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1940 if (Entry) { 1941 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1942 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1943 return ConstantAddress(Ptr, Alignment); 1944 } 1945 1946 llvm::Constant *Aliasee; 1947 if (isa<llvm::FunctionType>(DeclTy)) 1948 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1949 GlobalDecl(cast<FunctionDecl>(VD)), 1950 /*ForVTable=*/false); 1951 else 1952 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1953 llvm::PointerType::getUnqual(DeclTy), 1954 nullptr); 1955 1956 auto *F = cast<llvm::GlobalValue>(Aliasee); 1957 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1958 WeakRefReferences.insert(F); 1959 1960 return ConstantAddress(Aliasee, Alignment); 1961 } 1962 1963 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1964 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1965 1966 // Weak references don't produce any output by themselves. 1967 if (Global->hasAttr<WeakRefAttr>()) 1968 return; 1969 1970 // If this is an alias definition (which otherwise looks like a declaration) 1971 // emit it now. 1972 if (Global->hasAttr<AliasAttr>()) 1973 return EmitAliasDefinition(GD); 1974 1975 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1976 if (Global->hasAttr<IFuncAttr>()) 1977 return emitIFuncDefinition(GD); 1978 1979 // If this is CUDA, be selective about which declarations we emit. 1980 if (LangOpts.CUDA) { 1981 if (LangOpts.CUDAIsDevice) { 1982 if (!Global->hasAttr<CUDADeviceAttr>() && 1983 !Global->hasAttr<CUDAGlobalAttr>() && 1984 !Global->hasAttr<CUDAConstantAttr>() && 1985 !Global->hasAttr<CUDASharedAttr>()) 1986 return; 1987 } else { 1988 // We need to emit host-side 'shadows' for all global 1989 // device-side variables because the CUDA runtime needs their 1990 // size and host-side address in order to provide access to 1991 // their device-side incarnations. 1992 1993 // So device-only functions are the only things we skip. 1994 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1995 Global->hasAttr<CUDADeviceAttr>()) 1996 return; 1997 1998 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1999 "Expected Variable or Function"); 2000 } 2001 } 2002 2003 if (LangOpts.OpenMP) { 2004 // If this is OpenMP device, check if it is legal to emit this global 2005 // normally. 2006 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2007 return; 2008 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2009 if (MustBeEmitted(Global)) 2010 EmitOMPDeclareReduction(DRD); 2011 return; 2012 } 2013 } 2014 2015 // Ignore declarations, they will be emitted on their first use. 2016 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2017 // Forward declarations are emitted lazily on first use. 2018 if (!FD->doesThisDeclarationHaveABody()) { 2019 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2020 return; 2021 2022 StringRef MangledName = getMangledName(GD); 2023 2024 // Compute the function info and LLVM type. 2025 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2026 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2027 2028 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2029 /*DontDefer=*/false); 2030 return; 2031 } 2032 } else { 2033 const auto *VD = cast<VarDecl>(Global); 2034 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2035 // We need to emit device-side global CUDA variables even if a 2036 // variable does not have a definition -- we still need to define 2037 // host-side shadow for it. 2038 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2039 !VD->hasDefinition() && 2040 (VD->hasAttr<CUDAConstantAttr>() || 2041 VD->hasAttr<CUDADeviceAttr>()); 2042 if (!MustEmitForCuda && 2043 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2044 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2045 // If this declaration may have caused an inline variable definition to 2046 // change linkage, make sure that it's emitted. 2047 if (Context.getInlineVariableDefinitionKind(VD) == 2048 ASTContext::InlineVariableDefinitionKind::Strong) 2049 GetAddrOfGlobalVar(VD); 2050 return; 2051 } 2052 } 2053 2054 // Defer code generation to first use when possible, e.g. if this is an inline 2055 // function. If the global must always be emitted, do it eagerly if possible 2056 // to benefit from cache locality. 2057 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2058 // Emit the definition if it can't be deferred. 2059 EmitGlobalDefinition(GD); 2060 return; 2061 } 2062 2063 // If we're deferring emission of a C++ variable with an 2064 // initializer, remember the order in which it appeared in the file. 2065 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2066 cast<VarDecl>(Global)->hasInit()) { 2067 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2068 CXXGlobalInits.push_back(nullptr); 2069 } 2070 2071 StringRef MangledName = getMangledName(GD); 2072 if (GetGlobalValue(MangledName) != nullptr) { 2073 // The value has already been used and should therefore be emitted. 2074 addDeferredDeclToEmit(GD); 2075 } else if (MustBeEmitted(Global)) { 2076 // The value must be emitted, but cannot be emitted eagerly. 2077 assert(!MayBeEmittedEagerly(Global)); 2078 addDeferredDeclToEmit(GD); 2079 } else { 2080 // Otherwise, remember that we saw a deferred decl with this name. The 2081 // first use of the mangled name will cause it to move into 2082 // DeferredDeclsToEmit. 2083 DeferredDecls[MangledName] = GD; 2084 } 2085 } 2086 2087 // Check if T is a class type with a destructor that's not dllimport. 2088 static bool HasNonDllImportDtor(QualType T) { 2089 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2090 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2091 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2092 return true; 2093 2094 return false; 2095 } 2096 2097 namespace { 2098 struct FunctionIsDirectlyRecursive : 2099 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2100 const StringRef Name; 2101 const Builtin::Context &BI; 2102 bool Result; 2103 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2104 Name(N), BI(C), Result(false) { 2105 } 2106 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2107 2108 bool TraverseCallExpr(CallExpr *E) { 2109 const FunctionDecl *FD = E->getDirectCallee(); 2110 if (!FD) 2111 return true; 2112 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2113 if (Attr && Name == Attr->getLabel()) { 2114 Result = true; 2115 return false; 2116 } 2117 unsigned BuiltinID = FD->getBuiltinID(); 2118 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2119 return true; 2120 StringRef BuiltinName = BI.getName(BuiltinID); 2121 if (BuiltinName.startswith("__builtin_") && 2122 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2123 Result = true; 2124 return false; 2125 } 2126 return true; 2127 } 2128 }; 2129 2130 // Make sure we're not referencing non-imported vars or functions. 2131 struct DLLImportFunctionVisitor 2132 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2133 bool SafeToInline = true; 2134 2135 bool shouldVisitImplicitCode() const { return true; } 2136 2137 bool VisitVarDecl(VarDecl *VD) { 2138 if (VD->getTLSKind()) { 2139 // A thread-local variable cannot be imported. 2140 SafeToInline = false; 2141 return SafeToInline; 2142 } 2143 2144 // A variable definition might imply a destructor call. 2145 if (VD->isThisDeclarationADefinition()) 2146 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2147 2148 return SafeToInline; 2149 } 2150 2151 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2152 if (const auto *D = E->getTemporary()->getDestructor()) 2153 SafeToInline = D->hasAttr<DLLImportAttr>(); 2154 return SafeToInline; 2155 } 2156 2157 bool VisitDeclRefExpr(DeclRefExpr *E) { 2158 ValueDecl *VD = E->getDecl(); 2159 if (isa<FunctionDecl>(VD)) 2160 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2161 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2162 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2163 return SafeToInline; 2164 } 2165 2166 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2167 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2168 return SafeToInline; 2169 } 2170 2171 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2172 CXXMethodDecl *M = E->getMethodDecl(); 2173 if (!M) { 2174 // Call through a pointer to member function. This is safe to inline. 2175 SafeToInline = true; 2176 } else { 2177 SafeToInline = M->hasAttr<DLLImportAttr>(); 2178 } 2179 return SafeToInline; 2180 } 2181 2182 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2183 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2184 return SafeToInline; 2185 } 2186 2187 bool VisitCXXNewExpr(CXXNewExpr *E) { 2188 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2189 return SafeToInline; 2190 } 2191 }; 2192 } 2193 2194 // isTriviallyRecursive - Check if this function calls another 2195 // decl that, because of the asm attribute or the other decl being a builtin, 2196 // ends up pointing to itself. 2197 bool 2198 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2199 StringRef Name; 2200 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2201 // asm labels are a special kind of mangling we have to support. 2202 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2203 if (!Attr) 2204 return false; 2205 Name = Attr->getLabel(); 2206 } else { 2207 Name = FD->getName(); 2208 } 2209 2210 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2211 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2212 return Walker.Result; 2213 } 2214 2215 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2216 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2217 return true; 2218 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2219 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2220 return false; 2221 2222 if (F->hasAttr<DLLImportAttr>()) { 2223 // Check whether it would be safe to inline this dllimport function. 2224 DLLImportFunctionVisitor Visitor; 2225 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2226 if (!Visitor.SafeToInline) 2227 return false; 2228 2229 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2230 // Implicit destructor invocations aren't captured in the AST, so the 2231 // check above can't see them. Check for them manually here. 2232 for (const Decl *Member : Dtor->getParent()->decls()) 2233 if (isa<FieldDecl>(Member)) 2234 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2235 return false; 2236 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2237 if (HasNonDllImportDtor(B.getType())) 2238 return false; 2239 } 2240 } 2241 2242 // PR9614. Avoid cases where the source code is lying to us. An available 2243 // externally function should have an equivalent function somewhere else, 2244 // but a function that calls itself is clearly not equivalent to the real 2245 // implementation. 2246 // This happens in glibc's btowc and in some configure checks. 2247 return !isTriviallyRecursive(F); 2248 } 2249 2250 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2251 return CodeGenOpts.OptimizationLevel > 0; 2252 } 2253 2254 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2255 const auto *D = cast<ValueDecl>(GD.getDecl()); 2256 2257 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2258 Context.getSourceManager(), 2259 "Generating code for declaration"); 2260 2261 if (isa<FunctionDecl>(D)) { 2262 // At -O0, don't generate IR for functions with available_externally 2263 // linkage. 2264 if (!shouldEmitFunction(GD)) 2265 return; 2266 2267 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2268 // Make sure to emit the definition(s) before we emit the thunks. 2269 // This is necessary for the generation of certain thunks. 2270 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2271 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2272 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2273 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2274 else 2275 EmitGlobalFunctionDefinition(GD, GV); 2276 2277 if (Method->isVirtual()) 2278 getVTables().EmitThunks(GD); 2279 2280 return; 2281 } 2282 2283 return EmitGlobalFunctionDefinition(GD, GV); 2284 } 2285 2286 if (const auto *VD = dyn_cast<VarDecl>(D)) 2287 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2288 2289 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2290 } 2291 2292 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2293 llvm::Function *NewFn); 2294 2295 void CodeGenModule::emitMultiVersionFunctions() { 2296 for (GlobalDecl GD : MultiVersionFuncs) { 2297 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2298 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2299 getContext().forEachMultiversionedFunctionVersion( 2300 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2301 GlobalDecl CurGD{ 2302 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2303 StringRef MangledName = getMangledName(CurGD); 2304 llvm::Constant *Func = GetGlobalValue(MangledName); 2305 if (!Func) { 2306 if (CurFD->isDefined()) { 2307 EmitGlobalFunctionDefinition(CurGD, nullptr); 2308 Func = GetGlobalValue(MangledName); 2309 } else { 2310 const CGFunctionInfo &FI = 2311 getTypes().arrangeGlobalDeclaration(GD); 2312 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2313 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2314 /*DontDefer=*/false, ForDefinition); 2315 } 2316 assert(Func && "This should have just been created"); 2317 } 2318 Options.emplace_back(getTarget(), cast<llvm::Function>(Func), 2319 CurFD->getAttr<TargetAttr>()->parse()); 2320 }); 2321 2322 llvm::Function *ResolverFunc = cast<llvm::Function>( 2323 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2324 if (supportsCOMDAT()) 2325 ResolverFunc->setComdat( 2326 getModule().getOrInsertComdat(ResolverFunc->getName())); 2327 std::stable_sort( 2328 Options.begin(), Options.end(), 2329 std::greater<CodeGenFunction::MultiVersionResolverOption>()); 2330 CodeGenFunction CGF(*this); 2331 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2332 } 2333 } 2334 2335 /// If an ifunc for the specified mangled name is not in the module, create and 2336 /// return an llvm IFunc Function with the specified type. 2337 llvm::Constant * 2338 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2339 StringRef MangledName, 2340 const FunctionDecl *FD) { 2341 std::string IFuncName = (MangledName + ".ifunc").str(); 2342 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2343 return IFuncGV; 2344 2345 // Since this is the first time we've created this IFunc, make sure 2346 // that we put this multiversioned function into the list to be 2347 // replaced later. 2348 MultiVersionFuncs.push_back(GD); 2349 2350 std::string ResolverName = (MangledName + ".resolver").str(); 2351 llvm::Type *ResolverType = llvm::FunctionType::get( 2352 llvm::PointerType::get(DeclTy, 2353 Context.getTargetAddressSpace(FD->getType())), 2354 false); 2355 llvm::Constant *Resolver = 2356 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2357 /*ForVTable=*/false); 2358 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2359 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2360 GIF->setName(IFuncName); 2361 SetCommonAttributes(FD, GIF); 2362 2363 return GIF; 2364 } 2365 2366 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2367 /// module, create and return an llvm Function with the specified type. If there 2368 /// is something in the module with the specified name, return it potentially 2369 /// bitcasted to the right type. 2370 /// 2371 /// If D is non-null, it specifies a decl that correspond to this. This is used 2372 /// to set the attributes on the function when it is first created. 2373 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2374 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2375 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2376 ForDefinition_t IsForDefinition) { 2377 const Decl *D = GD.getDecl(); 2378 2379 // Any attempts to use a MultiVersion function should result in retrieving 2380 // the iFunc instead. Name Mangling will handle the rest of the changes. 2381 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2382 // For the device mark the function as one that should be emitted. 2383 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2384 !OpenMPRuntime->markAsGlobalTarget(FD) && FD->isDefined() && 2385 !DontDefer && !IsForDefinition) 2386 addDeferredDeclToEmit(GD); 2387 2388 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) { 2389 UpdateMultiVersionNames(GD, FD); 2390 if (!IsForDefinition) 2391 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD); 2392 } 2393 } 2394 2395 // Lookup the entry, lazily creating it if necessary. 2396 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2397 if (Entry) { 2398 if (WeakRefReferences.erase(Entry)) { 2399 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2400 if (FD && !FD->hasAttr<WeakAttr>()) 2401 Entry->setLinkage(llvm::Function::ExternalLinkage); 2402 } 2403 2404 // Handle dropped DLL attributes. 2405 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2406 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2407 setDSOLocal(Entry); 2408 } 2409 2410 // If there are two attempts to define the same mangled name, issue an 2411 // error. 2412 if (IsForDefinition && !Entry->isDeclaration()) { 2413 GlobalDecl OtherGD; 2414 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2415 // to make sure that we issue an error only once. 2416 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2417 (GD.getCanonicalDecl().getDecl() != 2418 OtherGD.getCanonicalDecl().getDecl()) && 2419 DiagnosedConflictingDefinitions.insert(GD).second) { 2420 getDiags().Report(D->getLocation(), 2421 diag::err_duplicate_mangled_name); 2422 getDiags().Report(OtherGD.getDecl()->getLocation(), 2423 diag::note_previous_definition); 2424 } 2425 } 2426 2427 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2428 (Entry->getType()->getElementType() == Ty)) { 2429 return Entry; 2430 } 2431 2432 // Make sure the result is of the correct type. 2433 // (If function is requested for a definition, we always need to create a new 2434 // function, not just return a bitcast.) 2435 if (!IsForDefinition) 2436 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2437 } 2438 2439 // This function doesn't have a complete type (for example, the return 2440 // type is an incomplete struct). Use a fake type instead, and make 2441 // sure not to try to set attributes. 2442 bool IsIncompleteFunction = false; 2443 2444 llvm::FunctionType *FTy; 2445 if (isa<llvm::FunctionType>(Ty)) { 2446 FTy = cast<llvm::FunctionType>(Ty); 2447 } else { 2448 FTy = llvm::FunctionType::get(VoidTy, false); 2449 IsIncompleteFunction = true; 2450 } 2451 2452 llvm::Function *F = 2453 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2454 Entry ? StringRef() : MangledName, &getModule()); 2455 2456 // If we already created a function with the same mangled name (but different 2457 // type) before, take its name and add it to the list of functions to be 2458 // replaced with F at the end of CodeGen. 2459 // 2460 // This happens if there is a prototype for a function (e.g. "int f()") and 2461 // then a definition of a different type (e.g. "int f(int x)"). 2462 if (Entry) { 2463 F->takeName(Entry); 2464 2465 // This might be an implementation of a function without a prototype, in 2466 // which case, try to do special replacement of calls which match the new 2467 // prototype. The really key thing here is that we also potentially drop 2468 // arguments from the call site so as to make a direct call, which makes the 2469 // inliner happier and suppresses a number of optimizer warnings (!) about 2470 // dropping arguments. 2471 if (!Entry->use_empty()) { 2472 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2473 Entry->removeDeadConstantUsers(); 2474 } 2475 2476 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2477 F, Entry->getType()->getElementType()->getPointerTo()); 2478 addGlobalValReplacement(Entry, BC); 2479 } 2480 2481 assert(F->getName() == MangledName && "name was uniqued!"); 2482 if (D) 2483 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2484 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2485 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2486 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2487 } 2488 2489 if (!DontDefer) { 2490 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2491 // each other bottoming out with the base dtor. Therefore we emit non-base 2492 // dtors on usage, even if there is no dtor definition in the TU. 2493 if (D && isa<CXXDestructorDecl>(D) && 2494 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2495 GD.getDtorType())) 2496 addDeferredDeclToEmit(GD); 2497 2498 // This is the first use or definition of a mangled name. If there is a 2499 // deferred decl with this name, remember that we need to emit it at the end 2500 // of the file. 2501 auto DDI = DeferredDecls.find(MangledName); 2502 if (DDI != DeferredDecls.end()) { 2503 // Move the potentially referenced deferred decl to the 2504 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2505 // don't need it anymore). 2506 addDeferredDeclToEmit(DDI->second); 2507 DeferredDecls.erase(DDI); 2508 2509 // Otherwise, there are cases we have to worry about where we're 2510 // using a declaration for which we must emit a definition but where 2511 // we might not find a top-level definition: 2512 // - member functions defined inline in their classes 2513 // - friend functions defined inline in some class 2514 // - special member functions with implicit definitions 2515 // If we ever change our AST traversal to walk into class methods, 2516 // this will be unnecessary. 2517 // 2518 // We also don't emit a definition for a function if it's going to be an 2519 // entry in a vtable, unless it's already marked as used. 2520 } else if (getLangOpts().CPlusPlus && D) { 2521 // Look for a declaration that's lexically in a record. 2522 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2523 FD = FD->getPreviousDecl()) { 2524 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2525 if (FD->doesThisDeclarationHaveABody()) { 2526 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2527 break; 2528 } 2529 } 2530 } 2531 } 2532 } 2533 2534 // Make sure the result is of the requested type. 2535 if (!IsIncompleteFunction) { 2536 assert(F->getType()->getElementType() == Ty); 2537 return F; 2538 } 2539 2540 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2541 return llvm::ConstantExpr::getBitCast(F, PTy); 2542 } 2543 2544 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2545 /// non-null, then this function will use the specified type if it has to 2546 /// create it (this occurs when we see a definition of the function). 2547 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2548 llvm::Type *Ty, 2549 bool ForVTable, 2550 bool DontDefer, 2551 ForDefinition_t IsForDefinition) { 2552 // If there was no specific requested type, just convert it now. 2553 if (!Ty) { 2554 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2555 auto CanonTy = Context.getCanonicalType(FD->getType()); 2556 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2557 } 2558 2559 // Devirtualized destructor calls may come through here instead of via 2560 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2561 // of the complete destructor when necessary. 2562 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2563 if (getTarget().getCXXABI().isMicrosoft() && 2564 GD.getDtorType() == Dtor_Complete && 2565 DD->getParent()->getNumVBases() == 0) 2566 GD = GlobalDecl(DD, Dtor_Base); 2567 } 2568 2569 StringRef MangledName = getMangledName(GD); 2570 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2571 /*IsThunk=*/false, llvm::AttributeList(), 2572 IsForDefinition); 2573 } 2574 2575 static const FunctionDecl * 2576 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2577 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2578 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2579 2580 IdentifierInfo &CII = C.Idents.get(Name); 2581 for (const auto &Result : DC->lookup(&CII)) 2582 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2583 return FD; 2584 2585 if (!C.getLangOpts().CPlusPlus) 2586 return nullptr; 2587 2588 // Demangle the premangled name from getTerminateFn() 2589 IdentifierInfo &CXXII = 2590 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2591 ? C.Idents.get("terminate") 2592 : C.Idents.get(Name); 2593 2594 for (const auto &N : {"__cxxabiv1", "std"}) { 2595 IdentifierInfo &NS = C.Idents.get(N); 2596 for (const auto &Result : DC->lookup(&NS)) { 2597 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2598 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2599 for (const auto &Result : LSD->lookup(&NS)) 2600 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2601 break; 2602 2603 if (ND) 2604 for (const auto &Result : ND->lookup(&CXXII)) 2605 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2606 return FD; 2607 } 2608 } 2609 2610 return nullptr; 2611 } 2612 2613 /// CreateRuntimeFunction - Create a new runtime function with the specified 2614 /// type and name. 2615 llvm::Constant * 2616 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2617 llvm::AttributeList ExtraAttrs, 2618 bool Local) { 2619 llvm::Constant *C = 2620 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2621 /*DontDefer=*/false, /*IsThunk=*/false, 2622 ExtraAttrs); 2623 2624 if (auto *F = dyn_cast<llvm::Function>(C)) { 2625 if (F->empty()) { 2626 F->setCallingConv(getRuntimeCC()); 2627 2628 if (!Local && getTriple().isOSBinFormatCOFF() && 2629 !getCodeGenOpts().LTOVisibilityPublicStd && 2630 !getTriple().isWindowsGNUEnvironment()) { 2631 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2632 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2633 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2634 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2635 } 2636 } 2637 setDSOLocal(F); 2638 } 2639 } 2640 2641 return C; 2642 } 2643 2644 /// CreateBuiltinFunction - Create a new builtin function with the specified 2645 /// type and name. 2646 llvm::Constant * 2647 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2648 llvm::AttributeList ExtraAttrs) { 2649 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true); 2650 } 2651 2652 /// isTypeConstant - Determine whether an object of this type can be emitted 2653 /// as a constant. 2654 /// 2655 /// If ExcludeCtor is true, the duration when the object's constructor runs 2656 /// will not be considered. The caller will need to verify that the object is 2657 /// not written to during its construction. 2658 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2659 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2660 return false; 2661 2662 if (Context.getLangOpts().CPlusPlus) { 2663 if (const CXXRecordDecl *Record 2664 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2665 return ExcludeCtor && !Record->hasMutableFields() && 2666 Record->hasTrivialDestructor(); 2667 } 2668 2669 return true; 2670 } 2671 2672 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2673 /// create and return an llvm GlobalVariable with the specified type. If there 2674 /// is something in the module with the specified name, return it potentially 2675 /// bitcasted to the right type. 2676 /// 2677 /// If D is non-null, it specifies a decl that correspond to this. This is used 2678 /// to set the attributes on the global when it is first created. 2679 /// 2680 /// If IsForDefinition is true, it is guaranteed that an actual global with 2681 /// type Ty will be returned, not conversion of a variable with the same 2682 /// mangled name but some other type. 2683 llvm::Constant * 2684 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2685 llvm::PointerType *Ty, 2686 const VarDecl *D, 2687 ForDefinition_t IsForDefinition) { 2688 // Lookup the entry, lazily creating it if necessary. 2689 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2690 if (Entry) { 2691 if (WeakRefReferences.erase(Entry)) { 2692 if (D && !D->hasAttr<WeakAttr>()) 2693 Entry->setLinkage(llvm::Function::ExternalLinkage); 2694 } 2695 2696 // Handle dropped DLL attributes. 2697 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2698 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2699 2700 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 2701 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 2702 2703 if (Entry->getType() == Ty) 2704 return Entry; 2705 2706 // If there are two attempts to define the same mangled name, issue an 2707 // error. 2708 if (IsForDefinition && !Entry->isDeclaration()) { 2709 GlobalDecl OtherGD; 2710 const VarDecl *OtherD; 2711 2712 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2713 // to make sure that we issue an error only once. 2714 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2715 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2716 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2717 OtherD->hasInit() && 2718 DiagnosedConflictingDefinitions.insert(D).second) { 2719 getDiags().Report(D->getLocation(), 2720 diag::err_duplicate_mangled_name); 2721 getDiags().Report(OtherGD.getDecl()->getLocation(), 2722 diag::note_previous_definition); 2723 } 2724 } 2725 2726 // Make sure the result is of the correct type. 2727 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2728 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2729 2730 // (If global is requested for a definition, we always need to create a new 2731 // global, not just return a bitcast.) 2732 if (!IsForDefinition) 2733 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2734 } 2735 2736 auto AddrSpace = GetGlobalVarAddressSpace(D); 2737 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2738 2739 auto *GV = new llvm::GlobalVariable( 2740 getModule(), Ty->getElementType(), false, 2741 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2742 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2743 2744 // If we already created a global with the same mangled name (but different 2745 // type) before, take its name and remove it from its parent. 2746 if (Entry) { 2747 GV->takeName(Entry); 2748 2749 if (!Entry->use_empty()) { 2750 llvm::Constant *NewPtrForOldDecl = 2751 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2752 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2753 } 2754 2755 Entry->eraseFromParent(); 2756 } 2757 2758 // This is the first use or definition of a mangled name. If there is a 2759 // deferred decl with this name, remember that we need to emit it at the end 2760 // of the file. 2761 auto DDI = DeferredDecls.find(MangledName); 2762 if (DDI != DeferredDecls.end()) { 2763 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2764 // list, and remove it from DeferredDecls (since we don't need it anymore). 2765 addDeferredDeclToEmit(DDI->second); 2766 DeferredDecls.erase(DDI); 2767 } 2768 2769 // Handle things which are present even on external declarations. 2770 if (D) { 2771 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 2772 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 2773 2774 // FIXME: This code is overly simple and should be merged with other global 2775 // handling. 2776 GV->setConstant(isTypeConstant(D->getType(), false)); 2777 2778 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2779 2780 setLinkageForGV(GV, D); 2781 2782 if (D->getTLSKind()) { 2783 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2784 CXXThreadLocals.push_back(D); 2785 setTLSMode(GV, *D); 2786 } 2787 2788 setGVProperties(GV, D); 2789 2790 // If required by the ABI, treat declarations of static data members with 2791 // inline initializers as definitions. 2792 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2793 EmitGlobalVarDefinition(D); 2794 } 2795 2796 // Emit section information for extern variables. 2797 if (D->hasExternalStorage()) { 2798 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2799 GV->setSection(SA->getName()); 2800 } 2801 2802 // Handle XCore specific ABI requirements. 2803 if (getTriple().getArch() == llvm::Triple::xcore && 2804 D->getLanguageLinkage() == CLanguageLinkage && 2805 D->getType().isConstant(Context) && 2806 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2807 GV->setSection(".cp.rodata"); 2808 2809 // Check if we a have a const declaration with an initializer, we may be 2810 // able to emit it as available_externally to expose it's value to the 2811 // optimizer. 2812 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2813 D->getType().isConstQualified() && !GV->hasInitializer() && 2814 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2815 const auto *Record = 2816 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2817 bool HasMutableFields = Record && Record->hasMutableFields(); 2818 if (!HasMutableFields) { 2819 const VarDecl *InitDecl; 2820 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2821 if (InitExpr) { 2822 ConstantEmitter emitter(*this); 2823 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2824 if (Init) { 2825 auto *InitType = Init->getType(); 2826 if (GV->getType()->getElementType() != InitType) { 2827 // The type of the initializer does not match the definition. 2828 // This happens when an initializer has a different type from 2829 // the type of the global (because of padding at the end of a 2830 // structure for instance). 2831 GV->setName(StringRef()); 2832 // Make a new global with the correct type, this is now guaranteed 2833 // to work. 2834 auto *NewGV = cast<llvm::GlobalVariable>( 2835 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2836 2837 // Erase the old global, since it is no longer used. 2838 GV->eraseFromParent(); 2839 GV = NewGV; 2840 } else { 2841 GV->setInitializer(Init); 2842 GV->setConstant(true); 2843 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2844 } 2845 emitter.finalize(GV); 2846 } 2847 } 2848 } 2849 } 2850 } 2851 2852 LangAS ExpectedAS = 2853 D ? D->getType().getAddressSpace() 2854 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2855 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2856 Ty->getPointerAddressSpace()); 2857 if (AddrSpace != ExpectedAS) 2858 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2859 ExpectedAS, Ty); 2860 2861 return GV; 2862 } 2863 2864 llvm::Constant * 2865 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2866 ForDefinition_t IsForDefinition) { 2867 const Decl *D = GD.getDecl(); 2868 if (isa<CXXConstructorDecl>(D)) 2869 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2870 getFromCtorType(GD.getCtorType()), 2871 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2872 /*DontDefer=*/false, IsForDefinition); 2873 else if (isa<CXXDestructorDecl>(D)) 2874 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2875 getFromDtorType(GD.getDtorType()), 2876 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2877 /*DontDefer=*/false, IsForDefinition); 2878 else if (isa<CXXMethodDecl>(D)) { 2879 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2880 cast<CXXMethodDecl>(D)); 2881 auto Ty = getTypes().GetFunctionType(*FInfo); 2882 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2883 IsForDefinition); 2884 } else if (isa<FunctionDecl>(D)) { 2885 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2886 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2887 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2888 IsForDefinition); 2889 } else 2890 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2891 IsForDefinition); 2892 } 2893 2894 llvm::GlobalVariable * 2895 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2896 llvm::Type *Ty, 2897 llvm::GlobalValue::LinkageTypes Linkage) { 2898 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2899 llvm::GlobalVariable *OldGV = nullptr; 2900 2901 if (GV) { 2902 // Check if the variable has the right type. 2903 if (GV->getType()->getElementType() == Ty) 2904 return GV; 2905 2906 // Because C++ name mangling, the only way we can end up with an already 2907 // existing global with the same name is if it has been declared extern "C". 2908 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2909 OldGV = GV; 2910 } 2911 2912 // Create a new variable. 2913 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2914 Linkage, nullptr, Name); 2915 2916 if (OldGV) { 2917 // Replace occurrences of the old variable if needed. 2918 GV->takeName(OldGV); 2919 2920 if (!OldGV->use_empty()) { 2921 llvm::Constant *NewPtrForOldDecl = 2922 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2923 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2924 } 2925 2926 OldGV->eraseFromParent(); 2927 } 2928 2929 if (supportsCOMDAT() && GV->isWeakForLinker() && 2930 !GV->hasAvailableExternallyLinkage()) 2931 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2932 2933 return GV; 2934 } 2935 2936 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2937 /// given global variable. If Ty is non-null and if the global doesn't exist, 2938 /// then it will be created with the specified type instead of whatever the 2939 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 2940 /// that an actual global with type Ty will be returned, not conversion of a 2941 /// variable with the same mangled name but some other type. 2942 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2943 llvm::Type *Ty, 2944 ForDefinition_t IsForDefinition) { 2945 assert(D->hasGlobalStorage() && "Not a global variable"); 2946 QualType ASTTy = D->getType(); 2947 if (!Ty) 2948 Ty = getTypes().ConvertTypeForMem(ASTTy); 2949 2950 llvm::PointerType *PTy = 2951 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2952 2953 StringRef MangledName = getMangledName(D); 2954 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2955 } 2956 2957 /// CreateRuntimeVariable - Create a new runtime global variable with the 2958 /// specified type and name. 2959 llvm::Constant * 2960 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2961 StringRef Name) { 2962 auto *Ret = 2963 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2964 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 2965 return Ret; 2966 } 2967 2968 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2969 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2970 2971 StringRef MangledName = getMangledName(D); 2972 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2973 2974 // We already have a definition, not declaration, with the same mangled name. 2975 // Emitting of declaration is not required (and actually overwrites emitted 2976 // definition). 2977 if (GV && !GV->isDeclaration()) 2978 return; 2979 2980 // If we have not seen a reference to this variable yet, place it into the 2981 // deferred declarations table to be emitted if needed later. 2982 if (!MustBeEmitted(D) && !GV) { 2983 DeferredDecls[MangledName] = D; 2984 return; 2985 } 2986 2987 // The tentative definition is the only definition. 2988 EmitGlobalVarDefinition(D); 2989 } 2990 2991 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2992 return Context.toCharUnitsFromBits( 2993 getDataLayout().getTypeStoreSizeInBits(Ty)); 2994 } 2995 2996 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2997 LangAS AddrSpace = LangAS::Default; 2998 if (LangOpts.OpenCL) { 2999 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3000 assert(AddrSpace == LangAS::opencl_global || 3001 AddrSpace == LangAS::opencl_constant || 3002 AddrSpace == LangAS::opencl_local || 3003 AddrSpace >= LangAS::FirstTargetAddressSpace); 3004 return AddrSpace; 3005 } 3006 3007 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3008 if (D && D->hasAttr<CUDAConstantAttr>()) 3009 return LangAS::cuda_constant; 3010 else if (D && D->hasAttr<CUDASharedAttr>()) 3011 return LangAS::cuda_shared; 3012 else 3013 return LangAS::cuda_device; 3014 } 3015 3016 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3017 } 3018 3019 template<typename SomeDecl> 3020 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3021 llvm::GlobalValue *GV) { 3022 if (!getLangOpts().CPlusPlus) 3023 return; 3024 3025 // Must have 'used' attribute, or else inline assembly can't rely on 3026 // the name existing. 3027 if (!D->template hasAttr<UsedAttr>()) 3028 return; 3029 3030 // Must have internal linkage and an ordinary name. 3031 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3032 return; 3033 3034 // Must be in an extern "C" context. Entities declared directly within 3035 // a record are not extern "C" even if the record is in such a context. 3036 const SomeDecl *First = D->getFirstDecl(); 3037 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3038 return; 3039 3040 // OK, this is an internal linkage entity inside an extern "C" linkage 3041 // specification. Make a note of that so we can give it the "expected" 3042 // mangled name if nothing else is using that name. 3043 std::pair<StaticExternCMap::iterator, bool> R = 3044 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3045 3046 // If we have multiple internal linkage entities with the same name 3047 // in extern "C" regions, none of them gets that name. 3048 if (!R.second) 3049 R.first->second = nullptr; 3050 } 3051 3052 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3053 if (!CGM.supportsCOMDAT()) 3054 return false; 3055 3056 if (D.hasAttr<SelectAnyAttr>()) 3057 return true; 3058 3059 GVALinkage Linkage; 3060 if (auto *VD = dyn_cast<VarDecl>(&D)) 3061 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3062 else 3063 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3064 3065 switch (Linkage) { 3066 case GVA_Internal: 3067 case GVA_AvailableExternally: 3068 case GVA_StrongExternal: 3069 return false; 3070 case GVA_DiscardableODR: 3071 case GVA_StrongODR: 3072 return true; 3073 } 3074 llvm_unreachable("No such linkage"); 3075 } 3076 3077 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3078 llvm::GlobalObject &GO) { 3079 if (!shouldBeInCOMDAT(*this, D)) 3080 return; 3081 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3082 } 3083 3084 /// Pass IsTentative as true if you want to create a tentative definition. 3085 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3086 bool IsTentative) { 3087 // OpenCL global variables of sampler type are translated to function calls, 3088 // therefore no need to be translated. 3089 QualType ASTTy = D->getType(); 3090 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3091 return; 3092 3093 // If this is OpenMP device, check if it is legal to emit this global 3094 // normally. 3095 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3096 OpenMPRuntime->emitTargetGlobalVariable(D)) 3097 return; 3098 3099 llvm::Constant *Init = nullptr; 3100 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3101 bool NeedsGlobalCtor = false; 3102 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3103 3104 const VarDecl *InitDecl; 3105 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3106 3107 Optional<ConstantEmitter> emitter; 3108 3109 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3110 // as part of their declaration." Sema has already checked for 3111 // error cases, so we just need to set Init to UndefValue. 3112 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3113 D->hasAttr<CUDASharedAttr>()) 3114 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3115 else if (!InitExpr) { 3116 // This is a tentative definition; tentative definitions are 3117 // implicitly initialized with { 0 }. 3118 // 3119 // Note that tentative definitions are only emitted at the end of 3120 // a translation unit, so they should never have incomplete 3121 // type. In addition, EmitTentativeDefinition makes sure that we 3122 // never attempt to emit a tentative definition if a real one 3123 // exists. A use may still exists, however, so we still may need 3124 // to do a RAUW. 3125 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3126 Init = EmitNullConstant(D->getType()); 3127 } else { 3128 initializedGlobalDecl = GlobalDecl(D); 3129 emitter.emplace(*this); 3130 Init = emitter->tryEmitForInitializer(*InitDecl); 3131 3132 if (!Init) { 3133 QualType T = InitExpr->getType(); 3134 if (D->getType()->isReferenceType()) 3135 T = D->getType(); 3136 3137 if (getLangOpts().CPlusPlus) { 3138 Init = EmitNullConstant(T); 3139 NeedsGlobalCtor = true; 3140 } else { 3141 ErrorUnsupported(D, "static initializer"); 3142 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3143 } 3144 } else { 3145 // We don't need an initializer, so remove the entry for the delayed 3146 // initializer position (just in case this entry was delayed) if we 3147 // also don't need to register a destructor. 3148 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3149 DelayedCXXInitPosition.erase(D); 3150 } 3151 } 3152 3153 llvm::Type* InitType = Init->getType(); 3154 llvm::Constant *Entry = 3155 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3156 3157 // Strip off a bitcast if we got one back. 3158 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3159 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3160 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3161 // All zero index gep. 3162 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3163 Entry = CE->getOperand(0); 3164 } 3165 3166 // Entry is now either a Function or GlobalVariable. 3167 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3168 3169 // We have a definition after a declaration with the wrong type. 3170 // We must make a new GlobalVariable* and update everything that used OldGV 3171 // (a declaration or tentative definition) with the new GlobalVariable* 3172 // (which will be a definition). 3173 // 3174 // This happens if there is a prototype for a global (e.g. 3175 // "extern int x[];") and then a definition of a different type (e.g. 3176 // "int x[10];"). This also happens when an initializer has a different type 3177 // from the type of the global (this happens with unions). 3178 if (!GV || GV->getType()->getElementType() != InitType || 3179 GV->getType()->getAddressSpace() != 3180 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3181 3182 // Move the old entry aside so that we'll create a new one. 3183 Entry->setName(StringRef()); 3184 3185 // Make a new global with the correct type, this is now guaranteed to work. 3186 GV = cast<llvm::GlobalVariable>( 3187 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3188 3189 // Replace all uses of the old global with the new global 3190 llvm::Constant *NewPtrForOldDecl = 3191 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3192 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3193 3194 // Erase the old global, since it is no longer used. 3195 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3196 } 3197 3198 MaybeHandleStaticInExternC(D, GV); 3199 3200 if (D->hasAttr<AnnotateAttr>()) 3201 AddGlobalAnnotations(D, GV); 3202 3203 // Set the llvm linkage type as appropriate. 3204 llvm::GlobalValue::LinkageTypes Linkage = 3205 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3206 3207 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3208 // the device. [...]" 3209 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3210 // __device__, declares a variable that: [...] 3211 // Is accessible from all the threads within the grid and from the host 3212 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3213 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3214 if (GV && LangOpts.CUDA) { 3215 if (LangOpts.CUDAIsDevice) { 3216 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3217 GV->setExternallyInitialized(true); 3218 } else { 3219 // Host-side shadows of external declarations of device-side 3220 // global variables become internal definitions. These have to 3221 // be internal in order to prevent name conflicts with global 3222 // host variables with the same name in a different TUs. 3223 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3224 Linkage = llvm::GlobalValue::InternalLinkage; 3225 3226 // Shadow variables and their properties must be registered 3227 // with CUDA runtime. 3228 unsigned Flags = 0; 3229 if (!D->hasDefinition()) 3230 Flags |= CGCUDARuntime::ExternDeviceVar; 3231 if (D->hasAttr<CUDAConstantAttr>()) 3232 Flags |= CGCUDARuntime::ConstantDeviceVar; 3233 getCUDARuntime().registerDeviceVar(*GV, Flags); 3234 } else if (D->hasAttr<CUDASharedAttr>()) 3235 // __shared__ variables are odd. Shadows do get created, but 3236 // they are not registered with the CUDA runtime, so they 3237 // can't really be used to access their device-side 3238 // counterparts. It's not clear yet whether it's nvcc's bug or 3239 // a feature, but we've got to do the same for compatibility. 3240 Linkage = llvm::GlobalValue::InternalLinkage; 3241 } 3242 } 3243 3244 GV->setInitializer(Init); 3245 if (emitter) emitter->finalize(GV); 3246 3247 // If it is safe to mark the global 'constant', do so now. 3248 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3249 isTypeConstant(D->getType(), true)); 3250 3251 // If it is in a read-only section, mark it 'constant'. 3252 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3253 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3254 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3255 GV->setConstant(true); 3256 } 3257 3258 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3259 3260 3261 // On Darwin, if the normal linkage of a C++ thread_local variable is 3262 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3263 // copies within a linkage unit; otherwise, the backing variable has 3264 // internal linkage and all accesses should just be calls to the 3265 // Itanium-specified entry point, which has the normal linkage of the 3266 // variable. This is to preserve the ability to change the implementation 3267 // behind the scenes. 3268 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3269 Context.getTargetInfo().getTriple().isOSDarwin() && 3270 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3271 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3272 Linkage = llvm::GlobalValue::InternalLinkage; 3273 3274 GV->setLinkage(Linkage); 3275 if (D->hasAttr<DLLImportAttr>()) 3276 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3277 else if (D->hasAttr<DLLExportAttr>()) 3278 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3279 else 3280 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3281 3282 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3283 // common vars aren't constant even if declared const. 3284 GV->setConstant(false); 3285 // Tentative definition of global variables may be initialized with 3286 // non-zero null pointers. In this case they should have weak linkage 3287 // since common linkage must have zero initializer and must not have 3288 // explicit section therefore cannot have non-zero initial value. 3289 if (!GV->getInitializer()->isNullValue()) 3290 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3291 } 3292 3293 setNonAliasAttributes(D, GV); 3294 3295 if (D->getTLSKind() && !GV->isThreadLocal()) { 3296 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3297 CXXThreadLocals.push_back(D); 3298 setTLSMode(GV, *D); 3299 } 3300 3301 maybeSetTrivialComdat(*D, *GV); 3302 3303 // Emit the initializer function if necessary. 3304 if (NeedsGlobalCtor || NeedsGlobalDtor) 3305 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3306 3307 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3308 3309 // Emit global variable debug information. 3310 if (CGDebugInfo *DI = getModuleDebugInfo()) 3311 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3312 DI->EmitGlobalVariable(GV, D); 3313 } 3314 3315 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3316 CodeGenModule &CGM, const VarDecl *D, 3317 bool NoCommon) { 3318 // Don't give variables common linkage if -fno-common was specified unless it 3319 // was overridden by a NoCommon attribute. 3320 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3321 return true; 3322 3323 // C11 6.9.2/2: 3324 // A declaration of an identifier for an object that has file scope without 3325 // an initializer, and without a storage-class specifier or with the 3326 // storage-class specifier static, constitutes a tentative definition. 3327 if (D->getInit() || D->hasExternalStorage()) 3328 return true; 3329 3330 // A variable cannot be both common and exist in a section. 3331 if (D->hasAttr<SectionAttr>()) 3332 return true; 3333 3334 // A variable cannot be both common and exist in a section. 3335 // We don't try to determine which is the right section in the front-end. 3336 // If no specialized section name is applicable, it will resort to default. 3337 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3338 D->hasAttr<PragmaClangDataSectionAttr>() || 3339 D->hasAttr<PragmaClangRodataSectionAttr>()) 3340 return true; 3341 3342 // Thread local vars aren't considered common linkage. 3343 if (D->getTLSKind()) 3344 return true; 3345 3346 // Tentative definitions marked with WeakImportAttr are true definitions. 3347 if (D->hasAttr<WeakImportAttr>()) 3348 return true; 3349 3350 // A variable cannot be both common and exist in a comdat. 3351 if (shouldBeInCOMDAT(CGM, *D)) 3352 return true; 3353 3354 // Declarations with a required alignment do not have common linkage in MSVC 3355 // mode. 3356 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3357 if (D->hasAttr<AlignedAttr>()) 3358 return true; 3359 QualType VarType = D->getType(); 3360 if (Context.isAlignmentRequired(VarType)) 3361 return true; 3362 3363 if (const auto *RT = VarType->getAs<RecordType>()) { 3364 const RecordDecl *RD = RT->getDecl(); 3365 for (const FieldDecl *FD : RD->fields()) { 3366 if (FD->isBitField()) 3367 continue; 3368 if (FD->hasAttr<AlignedAttr>()) 3369 return true; 3370 if (Context.isAlignmentRequired(FD->getType())) 3371 return true; 3372 } 3373 } 3374 } 3375 3376 return false; 3377 } 3378 3379 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3380 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3381 if (Linkage == GVA_Internal) 3382 return llvm::Function::InternalLinkage; 3383 3384 if (D->hasAttr<WeakAttr>()) { 3385 if (IsConstantVariable) 3386 return llvm::GlobalVariable::WeakODRLinkage; 3387 else 3388 return llvm::GlobalVariable::WeakAnyLinkage; 3389 } 3390 3391 // We are guaranteed to have a strong definition somewhere else, 3392 // so we can use available_externally linkage. 3393 if (Linkage == GVA_AvailableExternally) 3394 return llvm::GlobalValue::AvailableExternallyLinkage; 3395 3396 // Note that Apple's kernel linker doesn't support symbol 3397 // coalescing, so we need to avoid linkonce and weak linkages there. 3398 // Normally, this means we just map to internal, but for explicit 3399 // instantiations we'll map to external. 3400 3401 // In C++, the compiler has to emit a definition in every translation unit 3402 // that references the function. We should use linkonce_odr because 3403 // a) if all references in this translation unit are optimized away, we 3404 // don't need to codegen it. b) if the function persists, it needs to be 3405 // merged with other definitions. c) C++ has the ODR, so we know the 3406 // definition is dependable. 3407 if (Linkage == GVA_DiscardableODR) 3408 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3409 : llvm::Function::InternalLinkage; 3410 3411 // An explicit instantiation of a template has weak linkage, since 3412 // explicit instantiations can occur in multiple translation units 3413 // and must all be equivalent. However, we are not allowed to 3414 // throw away these explicit instantiations. 3415 // 3416 // We don't currently support CUDA device code spread out across multiple TUs, 3417 // so say that CUDA templates are either external (for kernels) or internal. 3418 // This lets llvm perform aggressive inter-procedural optimizations. 3419 if (Linkage == GVA_StrongODR) { 3420 if (Context.getLangOpts().AppleKext) 3421 return llvm::Function::ExternalLinkage; 3422 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3423 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3424 : llvm::Function::InternalLinkage; 3425 return llvm::Function::WeakODRLinkage; 3426 } 3427 3428 // C++ doesn't have tentative definitions and thus cannot have common 3429 // linkage. 3430 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3431 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3432 CodeGenOpts.NoCommon)) 3433 return llvm::GlobalVariable::CommonLinkage; 3434 3435 // selectany symbols are externally visible, so use weak instead of 3436 // linkonce. MSVC optimizes away references to const selectany globals, so 3437 // all definitions should be the same and ODR linkage should be used. 3438 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3439 if (D->hasAttr<SelectAnyAttr>()) 3440 return llvm::GlobalVariable::WeakODRLinkage; 3441 3442 // Otherwise, we have strong external linkage. 3443 assert(Linkage == GVA_StrongExternal); 3444 return llvm::GlobalVariable::ExternalLinkage; 3445 } 3446 3447 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3448 const VarDecl *VD, bool IsConstant) { 3449 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3450 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3451 } 3452 3453 /// Replace the uses of a function that was declared with a non-proto type. 3454 /// We want to silently drop extra arguments from call sites 3455 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3456 llvm::Function *newFn) { 3457 // Fast path. 3458 if (old->use_empty()) return; 3459 3460 llvm::Type *newRetTy = newFn->getReturnType(); 3461 SmallVector<llvm::Value*, 4> newArgs; 3462 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3463 3464 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3465 ui != ue; ) { 3466 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3467 llvm::User *user = use->getUser(); 3468 3469 // Recognize and replace uses of bitcasts. Most calls to 3470 // unprototyped functions will use bitcasts. 3471 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3472 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3473 replaceUsesOfNonProtoConstant(bitcast, newFn); 3474 continue; 3475 } 3476 3477 // Recognize calls to the function. 3478 llvm::CallSite callSite(user); 3479 if (!callSite) continue; 3480 if (!callSite.isCallee(&*use)) continue; 3481 3482 // If the return types don't match exactly, then we can't 3483 // transform this call unless it's dead. 3484 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3485 continue; 3486 3487 // Get the call site's attribute list. 3488 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3489 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3490 3491 // If the function was passed too few arguments, don't transform. 3492 unsigned newNumArgs = newFn->arg_size(); 3493 if (callSite.arg_size() < newNumArgs) continue; 3494 3495 // If extra arguments were passed, we silently drop them. 3496 // If any of the types mismatch, we don't transform. 3497 unsigned argNo = 0; 3498 bool dontTransform = false; 3499 for (llvm::Argument &A : newFn->args()) { 3500 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3501 dontTransform = true; 3502 break; 3503 } 3504 3505 // Add any parameter attributes. 3506 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3507 argNo++; 3508 } 3509 if (dontTransform) 3510 continue; 3511 3512 // Okay, we can transform this. Create the new call instruction and copy 3513 // over the required information. 3514 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3515 3516 // Copy over any operand bundles. 3517 callSite.getOperandBundlesAsDefs(newBundles); 3518 3519 llvm::CallSite newCall; 3520 if (callSite.isCall()) { 3521 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3522 callSite.getInstruction()); 3523 } else { 3524 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3525 newCall = llvm::InvokeInst::Create(newFn, 3526 oldInvoke->getNormalDest(), 3527 oldInvoke->getUnwindDest(), 3528 newArgs, newBundles, "", 3529 callSite.getInstruction()); 3530 } 3531 newArgs.clear(); // for the next iteration 3532 3533 if (!newCall->getType()->isVoidTy()) 3534 newCall->takeName(callSite.getInstruction()); 3535 newCall.setAttributes(llvm::AttributeList::get( 3536 newFn->getContext(), oldAttrs.getFnAttributes(), 3537 oldAttrs.getRetAttributes(), newArgAttrs)); 3538 newCall.setCallingConv(callSite.getCallingConv()); 3539 3540 // Finally, remove the old call, replacing any uses with the new one. 3541 if (!callSite->use_empty()) 3542 callSite->replaceAllUsesWith(newCall.getInstruction()); 3543 3544 // Copy debug location attached to CI. 3545 if (callSite->getDebugLoc()) 3546 newCall->setDebugLoc(callSite->getDebugLoc()); 3547 3548 callSite->eraseFromParent(); 3549 } 3550 } 3551 3552 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3553 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3554 /// existing call uses of the old function in the module, this adjusts them to 3555 /// call the new function directly. 3556 /// 3557 /// This is not just a cleanup: the always_inline pass requires direct calls to 3558 /// functions to be able to inline them. If there is a bitcast in the way, it 3559 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3560 /// run at -O0. 3561 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3562 llvm::Function *NewFn) { 3563 // If we're redefining a global as a function, don't transform it. 3564 if (!isa<llvm::Function>(Old)) return; 3565 3566 replaceUsesOfNonProtoConstant(Old, NewFn); 3567 } 3568 3569 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3570 auto DK = VD->isThisDeclarationADefinition(); 3571 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3572 return; 3573 3574 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3575 // If we have a definition, this might be a deferred decl. If the 3576 // instantiation is explicit, make sure we emit it at the end. 3577 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3578 GetAddrOfGlobalVar(VD); 3579 3580 EmitTopLevelDecl(VD); 3581 } 3582 3583 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3584 llvm::GlobalValue *GV) { 3585 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3586 3587 // Compute the function info and LLVM type. 3588 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3589 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3590 3591 // Get or create the prototype for the function. 3592 if (!GV || (GV->getType()->getElementType() != Ty)) 3593 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3594 /*DontDefer=*/true, 3595 ForDefinition)); 3596 3597 // Already emitted. 3598 if (!GV->isDeclaration()) 3599 return; 3600 3601 // We need to set linkage and visibility on the function before 3602 // generating code for it because various parts of IR generation 3603 // want to propagate this information down (e.g. to local static 3604 // declarations). 3605 auto *Fn = cast<llvm::Function>(GV); 3606 setFunctionLinkage(GD, Fn); 3607 3608 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3609 setGVProperties(Fn, GD); 3610 3611 MaybeHandleStaticInExternC(D, Fn); 3612 3613 maybeSetTrivialComdat(*D, *Fn); 3614 3615 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3616 3617 setNonAliasAttributes(GD, Fn); 3618 SetLLVMFunctionAttributesForDefinition(D, Fn); 3619 3620 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3621 AddGlobalCtor(Fn, CA->getPriority()); 3622 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3623 AddGlobalDtor(Fn, DA->getPriority()); 3624 if (D->hasAttr<AnnotateAttr>()) 3625 AddGlobalAnnotations(D, Fn); 3626 } 3627 3628 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3629 const auto *D = cast<ValueDecl>(GD.getDecl()); 3630 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3631 assert(AA && "Not an alias?"); 3632 3633 StringRef MangledName = getMangledName(GD); 3634 3635 if (AA->getAliasee() == MangledName) { 3636 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3637 return; 3638 } 3639 3640 // If there is a definition in the module, then it wins over the alias. 3641 // This is dubious, but allow it to be safe. Just ignore the alias. 3642 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3643 if (Entry && !Entry->isDeclaration()) 3644 return; 3645 3646 Aliases.push_back(GD); 3647 3648 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3649 3650 // Create a reference to the named value. This ensures that it is emitted 3651 // if a deferred decl. 3652 llvm::Constant *Aliasee; 3653 if (isa<llvm::FunctionType>(DeclTy)) 3654 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3655 /*ForVTable=*/false); 3656 else 3657 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3658 llvm::PointerType::getUnqual(DeclTy), 3659 /*D=*/nullptr); 3660 3661 // Create the new alias itself, but don't set a name yet. 3662 auto *GA = llvm::GlobalAlias::create( 3663 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3664 3665 if (Entry) { 3666 if (GA->getAliasee() == Entry) { 3667 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3668 return; 3669 } 3670 3671 assert(Entry->isDeclaration()); 3672 3673 // If there is a declaration in the module, then we had an extern followed 3674 // by the alias, as in: 3675 // extern int test6(); 3676 // ... 3677 // int test6() __attribute__((alias("test7"))); 3678 // 3679 // Remove it and replace uses of it with the alias. 3680 GA->takeName(Entry); 3681 3682 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3683 Entry->getType())); 3684 Entry->eraseFromParent(); 3685 } else { 3686 GA->setName(MangledName); 3687 } 3688 3689 // Set attributes which are particular to an alias; this is a 3690 // specialization of the attributes which may be set on a global 3691 // variable/function. 3692 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3693 D->isWeakImported()) { 3694 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3695 } 3696 3697 if (const auto *VD = dyn_cast<VarDecl>(D)) 3698 if (VD->getTLSKind()) 3699 setTLSMode(GA, *VD); 3700 3701 SetCommonAttributes(GD, GA); 3702 } 3703 3704 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3705 const auto *D = cast<ValueDecl>(GD.getDecl()); 3706 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3707 assert(IFA && "Not an ifunc?"); 3708 3709 StringRef MangledName = getMangledName(GD); 3710 3711 if (IFA->getResolver() == MangledName) { 3712 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3713 return; 3714 } 3715 3716 // Report an error if some definition overrides ifunc. 3717 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3718 if (Entry && !Entry->isDeclaration()) { 3719 GlobalDecl OtherGD; 3720 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3721 DiagnosedConflictingDefinitions.insert(GD).second) { 3722 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3723 Diags.Report(OtherGD.getDecl()->getLocation(), 3724 diag::note_previous_definition); 3725 } 3726 return; 3727 } 3728 3729 Aliases.push_back(GD); 3730 3731 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3732 llvm::Constant *Resolver = 3733 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3734 /*ForVTable=*/false); 3735 llvm::GlobalIFunc *GIF = 3736 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3737 "", Resolver, &getModule()); 3738 if (Entry) { 3739 if (GIF->getResolver() == Entry) { 3740 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3741 return; 3742 } 3743 assert(Entry->isDeclaration()); 3744 3745 // If there is a declaration in the module, then we had an extern followed 3746 // by the ifunc, as in: 3747 // extern int test(); 3748 // ... 3749 // int test() __attribute__((ifunc("resolver"))); 3750 // 3751 // Remove it and replace uses of it with the ifunc. 3752 GIF->takeName(Entry); 3753 3754 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3755 Entry->getType())); 3756 Entry->eraseFromParent(); 3757 } else 3758 GIF->setName(MangledName); 3759 3760 SetCommonAttributes(GD, GIF); 3761 } 3762 3763 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3764 ArrayRef<llvm::Type*> Tys) { 3765 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3766 Tys); 3767 } 3768 3769 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3770 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3771 const StringLiteral *Literal, bool TargetIsLSB, 3772 bool &IsUTF16, unsigned &StringLength) { 3773 StringRef String = Literal->getString(); 3774 unsigned NumBytes = String.size(); 3775 3776 // Check for simple case. 3777 if (!Literal->containsNonAsciiOrNull()) { 3778 StringLength = NumBytes; 3779 return *Map.insert(std::make_pair(String, nullptr)).first; 3780 } 3781 3782 // Otherwise, convert the UTF8 literals into a string of shorts. 3783 IsUTF16 = true; 3784 3785 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3786 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3787 llvm::UTF16 *ToPtr = &ToBuf[0]; 3788 3789 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3790 ToPtr + NumBytes, llvm::strictConversion); 3791 3792 // ConvertUTF8toUTF16 returns the length in ToPtr. 3793 StringLength = ToPtr - &ToBuf[0]; 3794 3795 // Add an explicit null. 3796 *ToPtr = 0; 3797 return *Map.insert(std::make_pair( 3798 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3799 (StringLength + 1) * 2), 3800 nullptr)).first; 3801 } 3802 3803 ConstantAddress 3804 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3805 unsigned StringLength = 0; 3806 bool isUTF16 = false; 3807 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3808 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3809 getDataLayout().isLittleEndian(), isUTF16, 3810 StringLength); 3811 3812 if (auto *C = Entry.second) 3813 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3814 3815 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3816 llvm::Constant *Zeros[] = { Zero, Zero }; 3817 3818 // If we don't already have it, get __CFConstantStringClassReference. 3819 if (!CFConstantStringClassRef) { 3820 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3821 Ty = llvm::ArrayType::get(Ty, 0); 3822 llvm::GlobalValue *GV = cast<llvm::GlobalValue>( 3823 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference")); 3824 3825 if (getTriple().isOSBinFormatCOFF()) { 3826 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3827 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3828 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3829 3830 const VarDecl *VD = nullptr; 3831 for (const auto &Result : DC->lookup(&II)) 3832 if ((VD = dyn_cast<VarDecl>(Result))) 3833 break; 3834 3835 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3836 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3837 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3838 } else { 3839 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3840 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3841 } 3842 } 3843 setDSOLocal(GV); 3844 3845 // Decay array -> ptr 3846 CFConstantStringClassRef = 3847 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3848 } 3849 3850 QualType CFTy = getContext().getCFConstantStringType(); 3851 3852 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3853 3854 ConstantInitBuilder Builder(*this); 3855 auto Fields = Builder.beginStruct(STy); 3856 3857 // Class pointer. 3858 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3859 3860 // Flags. 3861 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3862 3863 // String pointer. 3864 llvm::Constant *C = nullptr; 3865 if (isUTF16) { 3866 auto Arr = llvm::makeArrayRef( 3867 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3868 Entry.first().size() / 2); 3869 C = llvm::ConstantDataArray::get(VMContext, Arr); 3870 } else { 3871 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3872 } 3873 3874 // Note: -fwritable-strings doesn't make the backing store strings of 3875 // CFStrings writable. (See <rdar://problem/10657500>) 3876 auto *GV = 3877 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3878 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3879 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3880 // Don't enforce the target's minimum global alignment, since the only use 3881 // of the string is via this class initializer. 3882 CharUnits Align = isUTF16 3883 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3884 : getContext().getTypeAlignInChars(getContext().CharTy); 3885 GV->setAlignment(Align.getQuantity()); 3886 3887 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3888 // Without it LLVM can merge the string with a non unnamed_addr one during 3889 // LTO. Doing that changes the section it ends in, which surprises ld64. 3890 if (getTriple().isOSBinFormatMachO()) 3891 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3892 : "__TEXT,__cstring,cstring_literals"); 3893 3894 // String. 3895 llvm::Constant *Str = 3896 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3897 3898 if (isUTF16) 3899 // Cast the UTF16 string to the correct type. 3900 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3901 Fields.add(Str); 3902 3903 // String length. 3904 auto Ty = getTypes().ConvertType(getContext().LongTy); 3905 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3906 3907 CharUnits Alignment = getPointerAlign(); 3908 3909 // The struct. 3910 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3911 /*isConstant=*/false, 3912 llvm::GlobalVariable::PrivateLinkage); 3913 switch (getTriple().getObjectFormat()) { 3914 case llvm::Triple::UnknownObjectFormat: 3915 llvm_unreachable("unknown file format"); 3916 case llvm::Triple::COFF: 3917 case llvm::Triple::ELF: 3918 case llvm::Triple::Wasm: 3919 GV->setSection("cfstring"); 3920 break; 3921 case llvm::Triple::MachO: 3922 GV->setSection("__DATA,__cfstring"); 3923 break; 3924 } 3925 Entry.second = GV; 3926 3927 return ConstantAddress(GV, Alignment); 3928 } 3929 3930 bool CodeGenModule::getExpressionLocationsEnabled() const { 3931 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3932 } 3933 3934 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3935 if (ObjCFastEnumerationStateType.isNull()) { 3936 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3937 D->startDefinition(); 3938 3939 QualType FieldTypes[] = { 3940 Context.UnsignedLongTy, 3941 Context.getPointerType(Context.getObjCIdType()), 3942 Context.getPointerType(Context.UnsignedLongTy), 3943 Context.getConstantArrayType(Context.UnsignedLongTy, 3944 llvm::APInt(32, 5), ArrayType::Normal, 0) 3945 }; 3946 3947 for (size_t i = 0; i < 4; ++i) { 3948 FieldDecl *Field = FieldDecl::Create(Context, 3949 D, 3950 SourceLocation(), 3951 SourceLocation(), nullptr, 3952 FieldTypes[i], /*TInfo=*/nullptr, 3953 /*BitWidth=*/nullptr, 3954 /*Mutable=*/false, 3955 ICIS_NoInit); 3956 Field->setAccess(AS_public); 3957 D->addDecl(Field); 3958 } 3959 3960 D->completeDefinition(); 3961 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3962 } 3963 3964 return ObjCFastEnumerationStateType; 3965 } 3966 3967 llvm::Constant * 3968 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3969 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3970 3971 // Don't emit it as the address of the string, emit the string data itself 3972 // as an inline array. 3973 if (E->getCharByteWidth() == 1) { 3974 SmallString<64> Str(E->getString()); 3975 3976 // Resize the string to the right size, which is indicated by its type. 3977 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3978 Str.resize(CAT->getSize().getZExtValue()); 3979 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3980 } 3981 3982 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3983 llvm::Type *ElemTy = AType->getElementType(); 3984 unsigned NumElements = AType->getNumElements(); 3985 3986 // Wide strings have either 2-byte or 4-byte elements. 3987 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3988 SmallVector<uint16_t, 32> Elements; 3989 Elements.reserve(NumElements); 3990 3991 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3992 Elements.push_back(E->getCodeUnit(i)); 3993 Elements.resize(NumElements); 3994 return llvm::ConstantDataArray::get(VMContext, Elements); 3995 } 3996 3997 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3998 SmallVector<uint32_t, 32> Elements; 3999 Elements.reserve(NumElements); 4000 4001 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4002 Elements.push_back(E->getCodeUnit(i)); 4003 Elements.resize(NumElements); 4004 return llvm::ConstantDataArray::get(VMContext, Elements); 4005 } 4006 4007 static llvm::GlobalVariable * 4008 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4009 CodeGenModule &CGM, StringRef GlobalName, 4010 CharUnits Alignment) { 4011 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4012 unsigned AddrSpace = 0; 4013 if (CGM.getLangOpts().OpenCL) 4014 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 4015 4016 llvm::Module &M = CGM.getModule(); 4017 // Create a global variable for this string 4018 auto *GV = new llvm::GlobalVariable( 4019 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4020 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4021 GV->setAlignment(Alignment.getQuantity()); 4022 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4023 if (GV->isWeakForLinker()) { 4024 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4025 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4026 } 4027 CGM.setDSOLocal(GV); 4028 4029 return GV; 4030 } 4031 4032 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4033 /// constant array for the given string literal. 4034 ConstantAddress 4035 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4036 StringRef Name) { 4037 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4038 4039 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4040 llvm::GlobalVariable **Entry = nullptr; 4041 if (!LangOpts.WritableStrings) { 4042 Entry = &ConstantStringMap[C]; 4043 if (auto GV = *Entry) { 4044 if (Alignment.getQuantity() > GV->getAlignment()) 4045 GV->setAlignment(Alignment.getQuantity()); 4046 return ConstantAddress(GV, Alignment); 4047 } 4048 } 4049 4050 SmallString<256> MangledNameBuffer; 4051 StringRef GlobalVariableName; 4052 llvm::GlobalValue::LinkageTypes LT; 4053 4054 // Mangle the string literal if the ABI allows for it. However, we cannot 4055 // do this if we are compiling with ASan or -fwritable-strings because they 4056 // rely on strings having normal linkage. 4057 if (!LangOpts.WritableStrings && 4058 !LangOpts.Sanitize.has(SanitizerKind::Address) && 4059 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 4060 llvm::raw_svector_ostream Out(MangledNameBuffer); 4061 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4062 4063 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4064 GlobalVariableName = MangledNameBuffer; 4065 } else { 4066 LT = llvm::GlobalValue::PrivateLinkage; 4067 GlobalVariableName = Name; 4068 } 4069 4070 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4071 if (Entry) 4072 *Entry = GV; 4073 4074 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4075 QualType()); 4076 return ConstantAddress(GV, Alignment); 4077 } 4078 4079 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4080 /// array for the given ObjCEncodeExpr node. 4081 ConstantAddress 4082 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4083 std::string Str; 4084 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4085 4086 return GetAddrOfConstantCString(Str); 4087 } 4088 4089 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4090 /// the literal and a terminating '\0' character. 4091 /// The result has pointer to array type. 4092 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4093 const std::string &Str, const char *GlobalName) { 4094 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4095 CharUnits Alignment = 4096 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4097 4098 llvm::Constant *C = 4099 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4100 4101 // Don't share any string literals if strings aren't constant. 4102 llvm::GlobalVariable **Entry = nullptr; 4103 if (!LangOpts.WritableStrings) { 4104 Entry = &ConstantStringMap[C]; 4105 if (auto GV = *Entry) { 4106 if (Alignment.getQuantity() > GV->getAlignment()) 4107 GV->setAlignment(Alignment.getQuantity()); 4108 return ConstantAddress(GV, Alignment); 4109 } 4110 } 4111 4112 // Get the default prefix if a name wasn't specified. 4113 if (!GlobalName) 4114 GlobalName = ".str"; 4115 // Create a global variable for this. 4116 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4117 GlobalName, Alignment); 4118 if (Entry) 4119 *Entry = GV; 4120 return ConstantAddress(GV, Alignment); 4121 } 4122 4123 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4124 const MaterializeTemporaryExpr *E, const Expr *Init) { 4125 assert((E->getStorageDuration() == SD_Static || 4126 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4127 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4128 4129 // If we're not materializing a subobject of the temporary, keep the 4130 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4131 QualType MaterializedType = Init->getType(); 4132 if (Init == E->GetTemporaryExpr()) 4133 MaterializedType = E->getType(); 4134 4135 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4136 4137 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4138 return ConstantAddress(Slot, Align); 4139 4140 // FIXME: If an externally-visible declaration extends multiple temporaries, 4141 // we need to give each temporary the same name in every translation unit (and 4142 // we also need to make the temporaries externally-visible). 4143 SmallString<256> Name; 4144 llvm::raw_svector_ostream Out(Name); 4145 getCXXABI().getMangleContext().mangleReferenceTemporary( 4146 VD, E->getManglingNumber(), Out); 4147 4148 APValue *Value = nullptr; 4149 if (E->getStorageDuration() == SD_Static) { 4150 // We might have a cached constant initializer for this temporary. Note 4151 // that this might have a different value from the value computed by 4152 // evaluating the initializer if the surrounding constant expression 4153 // modifies the temporary. 4154 Value = getContext().getMaterializedTemporaryValue(E, false); 4155 if (Value && Value->isUninit()) 4156 Value = nullptr; 4157 } 4158 4159 // Try evaluating it now, it might have a constant initializer. 4160 Expr::EvalResult EvalResult; 4161 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4162 !EvalResult.hasSideEffects()) 4163 Value = &EvalResult.Val; 4164 4165 LangAS AddrSpace = 4166 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4167 4168 Optional<ConstantEmitter> emitter; 4169 llvm::Constant *InitialValue = nullptr; 4170 bool Constant = false; 4171 llvm::Type *Type; 4172 if (Value) { 4173 // The temporary has a constant initializer, use it. 4174 emitter.emplace(*this); 4175 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4176 MaterializedType); 4177 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4178 Type = InitialValue->getType(); 4179 } else { 4180 // No initializer, the initialization will be provided when we 4181 // initialize the declaration which performed lifetime extension. 4182 Type = getTypes().ConvertTypeForMem(MaterializedType); 4183 } 4184 4185 // Create a global variable for this lifetime-extended temporary. 4186 llvm::GlobalValue::LinkageTypes Linkage = 4187 getLLVMLinkageVarDefinition(VD, Constant); 4188 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4189 const VarDecl *InitVD; 4190 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4191 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4192 // Temporaries defined inside a class get linkonce_odr linkage because the 4193 // class can be defined in multiple translation units. 4194 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4195 } else { 4196 // There is no need for this temporary to have external linkage if the 4197 // VarDecl has external linkage. 4198 Linkage = llvm::GlobalVariable::InternalLinkage; 4199 } 4200 } 4201 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4202 auto *GV = new llvm::GlobalVariable( 4203 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4204 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4205 if (emitter) emitter->finalize(GV); 4206 setGVProperties(GV, VD); 4207 GV->setAlignment(Align.getQuantity()); 4208 if (supportsCOMDAT() && GV->isWeakForLinker()) 4209 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4210 if (VD->getTLSKind()) 4211 setTLSMode(GV, *VD); 4212 llvm::Constant *CV = GV; 4213 if (AddrSpace != LangAS::Default) 4214 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4215 *this, GV, AddrSpace, LangAS::Default, 4216 Type->getPointerTo( 4217 getContext().getTargetAddressSpace(LangAS::Default))); 4218 MaterializedGlobalTemporaryMap[E] = CV; 4219 return ConstantAddress(CV, Align); 4220 } 4221 4222 /// EmitObjCPropertyImplementations - Emit information for synthesized 4223 /// properties for an implementation. 4224 void CodeGenModule::EmitObjCPropertyImplementations(const 4225 ObjCImplementationDecl *D) { 4226 for (const auto *PID : D->property_impls()) { 4227 // Dynamic is just for type-checking. 4228 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4229 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4230 4231 // Determine which methods need to be implemented, some may have 4232 // been overridden. Note that ::isPropertyAccessor is not the method 4233 // we want, that just indicates if the decl came from a 4234 // property. What we want to know is if the method is defined in 4235 // this implementation. 4236 if (!D->getInstanceMethod(PD->getGetterName())) 4237 CodeGenFunction(*this).GenerateObjCGetter( 4238 const_cast<ObjCImplementationDecl *>(D), PID); 4239 if (!PD->isReadOnly() && 4240 !D->getInstanceMethod(PD->getSetterName())) 4241 CodeGenFunction(*this).GenerateObjCSetter( 4242 const_cast<ObjCImplementationDecl *>(D), PID); 4243 } 4244 } 4245 } 4246 4247 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4248 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4249 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4250 ivar; ivar = ivar->getNextIvar()) 4251 if (ivar->getType().isDestructedType()) 4252 return true; 4253 4254 return false; 4255 } 4256 4257 static bool AllTrivialInitializers(CodeGenModule &CGM, 4258 ObjCImplementationDecl *D) { 4259 CodeGenFunction CGF(CGM); 4260 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4261 E = D->init_end(); B != E; ++B) { 4262 CXXCtorInitializer *CtorInitExp = *B; 4263 Expr *Init = CtorInitExp->getInit(); 4264 if (!CGF.isTrivialInitializer(Init)) 4265 return false; 4266 } 4267 return true; 4268 } 4269 4270 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4271 /// for an implementation. 4272 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4273 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4274 if (needsDestructMethod(D)) { 4275 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4276 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4277 ObjCMethodDecl *DTORMethod = 4278 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4279 cxxSelector, getContext().VoidTy, nullptr, D, 4280 /*isInstance=*/true, /*isVariadic=*/false, 4281 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4282 /*isDefined=*/false, ObjCMethodDecl::Required); 4283 D->addInstanceMethod(DTORMethod); 4284 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4285 D->setHasDestructors(true); 4286 } 4287 4288 // If the implementation doesn't have any ivar initializers, we don't need 4289 // a .cxx_construct. 4290 if (D->getNumIvarInitializers() == 0 || 4291 AllTrivialInitializers(*this, D)) 4292 return; 4293 4294 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4295 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4296 // The constructor returns 'self'. 4297 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4298 D->getLocation(), 4299 D->getLocation(), 4300 cxxSelector, 4301 getContext().getObjCIdType(), 4302 nullptr, D, /*isInstance=*/true, 4303 /*isVariadic=*/false, 4304 /*isPropertyAccessor=*/true, 4305 /*isImplicitlyDeclared=*/true, 4306 /*isDefined=*/false, 4307 ObjCMethodDecl::Required); 4308 D->addInstanceMethod(CTORMethod); 4309 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4310 D->setHasNonZeroConstructors(true); 4311 } 4312 4313 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4314 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4315 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4316 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4317 ErrorUnsupported(LSD, "linkage spec"); 4318 return; 4319 } 4320 4321 EmitDeclContext(LSD); 4322 } 4323 4324 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4325 for (auto *I : DC->decls()) { 4326 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4327 // are themselves considered "top-level", so EmitTopLevelDecl on an 4328 // ObjCImplDecl does not recursively visit them. We need to do that in 4329 // case they're nested inside another construct (LinkageSpecDecl / 4330 // ExportDecl) that does stop them from being considered "top-level". 4331 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4332 for (auto *M : OID->methods()) 4333 EmitTopLevelDecl(M); 4334 } 4335 4336 EmitTopLevelDecl(I); 4337 } 4338 } 4339 4340 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4341 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4342 // Ignore dependent declarations. 4343 if (D->isTemplated()) 4344 return; 4345 4346 switch (D->getKind()) { 4347 case Decl::CXXConversion: 4348 case Decl::CXXMethod: 4349 case Decl::Function: 4350 EmitGlobal(cast<FunctionDecl>(D)); 4351 // Always provide some coverage mapping 4352 // even for the functions that aren't emitted. 4353 AddDeferredUnusedCoverageMapping(D); 4354 break; 4355 4356 case Decl::CXXDeductionGuide: 4357 // Function-like, but does not result in code emission. 4358 break; 4359 4360 case Decl::Var: 4361 case Decl::Decomposition: 4362 case Decl::VarTemplateSpecialization: 4363 EmitGlobal(cast<VarDecl>(D)); 4364 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4365 for (auto *B : DD->bindings()) 4366 if (auto *HD = B->getHoldingVar()) 4367 EmitGlobal(HD); 4368 break; 4369 4370 // Indirect fields from global anonymous structs and unions can be 4371 // ignored; only the actual variable requires IR gen support. 4372 case Decl::IndirectField: 4373 break; 4374 4375 // C++ Decls 4376 case Decl::Namespace: 4377 EmitDeclContext(cast<NamespaceDecl>(D)); 4378 break; 4379 case Decl::ClassTemplateSpecialization: { 4380 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4381 if (DebugInfo && 4382 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4383 Spec->hasDefinition()) 4384 DebugInfo->completeTemplateDefinition(*Spec); 4385 } LLVM_FALLTHROUGH; 4386 case Decl::CXXRecord: 4387 if (DebugInfo) { 4388 if (auto *ES = D->getASTContext().getExternalSource()) 4389 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4390 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4391 } 4392 // Emit any static data members, they may be definitions. 4393 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4394 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4395 EmitTopLevelDecl(I); 4396 break; 4397 // No code generation needed. 4398 case Decl::UsingShadow: 4399 case Decl::ClassTemplate: 4400 case Decl::VarTemplate: 4401 case Decl::VarTemplatePartialSpecialization: 4402 case Decl::FunctionTemplate: 4403 case Decl::TypeAliasTemplate: 4404 case Decl::Block: 4405 case Decl::Empty: 4406 break; 4407 case Decl::Using: // using X; [C++] 4408 if (CGDebugInfo *DI = getModuleDebugInfo()) 4409 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4410 return; 4411 case Decl::NamespaceAlias: 4412 if (CGDebugInfo *DI = getModuleDebugInfo()) 4413 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4414 return; 4415 case Decl::UsingDirective: // using namespace X; [C++] 4416 if (CGDebugInfo *DI = getModuleDebugInfo()) 4417 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4418 return; 4419 case Decl::CXXConstructor: 4420 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4421 break; 4422 case Decl::CXXDestructor: 4423 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4424 break; 4425 4426 case Decl::StaticAssert: 4427 // Nothing to do. 4428 break; 4429 4430 // Objective-C Decls 4431 4432 // Forward declarations, no (immediate) code generation. 4433 case Decl::ObjCInterface: 4434 case Decl::ObjCCategory: 4435 break; 4436 4437 case Decl::ObjCProtocol: { 4438 auto *Proto = cast<ObjCProtocolDecl>(D); 4439 if (Proto->isThisDeclarationADefinition()) 4440 ObjCRuntime->GenerateProtocol(Proto); 4441 break; 4442 } 4443 4444 case Decl::ObjCCategoryImpl: 4445 // Categories have properties but don't support synthesize so we 4446 // can ignore them here. 4447 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4448 break; 4449 4450 case Decl::ObjCImplementation: { 4451 auto *OMD = cast<ObjCImplementationDecl>(D); 4452 EmitObjCPropertyImplementations(OMD); 4453 EmitObjCIvarInitializations(OMD); 4454 ObjCRuntime->GenerateClass(OMD); 4455 // Emit global variable debug information. 4456 if (CGDebugInfo *DI = getModuleDebugInfo()) 4457 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4458 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4459 OMD->getClassInterface()), OMD->getLocation()); 4460 break; 4461 } 4462 case Decl::ObjCMethod: { 4463 auto *OMD = cast<ObjCMethodDecl>(D); 4464 // If this is not a prototype, emit the body. 4465 if (OMD->getBody()) 4466 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4467 break; 4468 } 4469 case Decl::ObjCCompatibleAlias: 4470 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4471 break; 4472 4473 case Decl::PragmaComment: { 4474 const auto *PCD = cast<PragmaCommentDecl>(D); 4475 switch (PCD->getCommentKind()) { 4476 case PCK_Unknown: 4477 llvm_unreachable("unexpected pragma comment kind"); 4478 case PCK_Linker: 4479 AppendLinkerOptions(PCD->getArg()); 4480 break; 4481 case PCK_Lib: 4482 if (getTarget().getTriple().isOSBinFormatELF() && 4483 !getTarget().getTriple().isPS4()) 4484 AddELFLibDirective(PCD->getArg()); 4485 else 4486 AddDependentLib(PCD->getArg()); 4487 break; 4488 case PCK_Compiler: 4489 case PCK_ExeStr: 4490 case PCK_User: 4491 break; // We ignore all of these. 4492 } 4493 break; 4494 } 4495 4496 case Decl::PragmaDetectMismatch: { 4497 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4498 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4499 break; 4500 } 4501 4502 case Decl::LinkageSpec: 4503 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4504 break; 4505 4506 case Decl::FileScopeAsm: { 4507 // File-scope asm is ignored during device-side CUDA compilation. 4508 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4509 break; 4510 // File-scope asm is ignored during device-side OpenMP compilation. 4511 if (LangOpts.OpenMPIsDevice) 4512 break; 4513 auto *AD = cast<FileScopeAsmDecl>(D); 4514 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4515 break; 4516 } 4517 4518 case Decl::Import: { 4519 auto *Import = cast<ImportDecl>(D); 4520 4521 // If we've already imported this module, we're done. 4522 if (!ImportedModules.insert(Import->getImportedModule())) 4523 break; 4524 4525 // Emit debug information for direct imports. 4526 if (!Import->getImportedOwningModule()) { 4527 if (CGDebugInfo *DI = getModuleDebugInfo()) 4528 DI->EmitImportDecl(*Import); 4529 } 4530 4531 // Find all of the submodules and emit the module initializers. 4532 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4533 SmallVector<clang::Module *, 16> Stack; 4534 Visited.insert(Import->getImportedModule()); 4535 Stack.push_back(Import->getImportedModule()); 4536 4537 while (!Stack.empty()) { 4538 clang::Module *Mod = Stack.pop_back_val(); 4539 if (!EmittedModuleInitializers.insert(Mod).second) 4540 continue; 4541 4542 for (auto *D : Context.getModuleInitializers(Mod)) 4543 EmitTopLevelDecl(D); 4544 4545 // Visit the submodules of this module. 4546 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4547 SubEnd = Mod->submodule_end(); 4548 Sub != SubEnd; ++Sub) { 4549 // Skip explicit children; they need to be explicitly imported to emit 4550 // the initializers. 4551 if ((*Sub)->IsExplicit) 4552 continue; 4553 4554 if (Visited.insert(*Sub).second) 4555 Stack.push_back(*Sub); 4556 } 4557 } 4558 break; 4559 } 4560 4561 case Decl::Export: 4562 EmitDeclContext(cast<ExportDecl>(D)); 4563 break; 4564 4565 case Decl::OMPThreadPrivate: 4566 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4567 break; 4568 4569 case Decl::OMPDeclareReduction: 4570 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4571 break; 4572 4573 default: 4574 // Make sure we handled everything we should, every other kind is a 4575 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4576 // function. Need to recode Decl::Kind to do that easily. 4577 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4578 break; 4579 } 4580 } 4581 4582 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4583 // Do we need to generate coverage mapping? 4584 if (!CodeGenOpts.CoverageMapping) 4585 return; 4586 switch (D->getKind()) { 4587 case Decl::CXXConversion: 4588 case Decl::CXXMethod: 4589 case Decl::Function: 4590 case Decl::ObjCMethod: 4591 case Decl::CXXConstructor: 4592 case Decl::CXXDestructor: { 4593 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4594 return; 4595 SourceManager &SM = getContext().getSourceManager(); 4596 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4597 return; 4598 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4599 if (I == DeferredEmptyCoverageMappingDecls.end()) 4600 DeferredEmptyCoverageMappingDecls[D] = true; 4601 break; 4602 } 4603 default: 4604 break; 4605 }; 4606 } 4607 4608 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4609 // Do we need to generate coverage mapping? 4610 if (!CodeGenOpts.CoverageMapping) 4611 return; 4612 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4613 if (Fn->isTemplateInstantiation()) 4614 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4615 } 4616 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4617 if (I == DeferredEmptyCoverageMappingDecls.end()) 4618 DeferredEmptyCoverageMappingDecls[D] = false; 4619 else 4620 I->second = false; 4621 } 4622 4623 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4624 // We call takeVector() here to avoid use-after-free. 4625 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4626 // we deserialize function bodies to emit coverage info for them, and that 4627 // deserializes more declarations. How should we handle that case? 4628 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4629 if (!Entry.second) 4630 continue; 4631 const Decl *D = Entry.first; 4632 switch (D->getKind()) { 4633 case Decl::CXXConversion: 4634 case Decl::CXXMethod: 4635 case Decl::Function: 4636 case Decl::ObjCMethod: { 4637 CodeGenPGO PGO(*this); 4638 GlobalDecl GD(cast<FunctionDecl>(D)); 4639 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4640 getFunctionLinkage(GD)); 4641 break; 4642 } 4643 case Decl::CXXConstructor: { 4644 CodeGenPGO PGO(*this); 4645 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4646 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4647 getFunctionLinkage(GD)); 4648 break; 4649 } 4650 case Decl::CXXDestructor: { 4651 CodeGenPGO PGO(*this); 4652 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4653 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4654 getFunctionLinkage(GD)); 4655 break; 4656 } 4657 default: 4658 break; 4659 }; 4660 } 4661 } 4662 4663 /// Turns the given pointer into a constant. 4664 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4665 const void *Ptr) { 4666 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4667 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4668 return llvm::ConstantInt::get(i64, PtrInt); 4669 } 4670 4671 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4672 llvm::NamedMDNode *&GlobalMetadata, 4673 GlobalDecl D, 4674 llvm::GlobalValue *Addr) { 4675 if (!GlobalMetadata) 4676 GlobalMetadata = 4677 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4678 4679 // TODO: should we report variant information for ctors/dtors? 4680 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4681 llvm::ConstantAsMetadata::get(GetPointerConstant( 4682 CGM.getLLVMContext(), D.getDecl()))}; 4683 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4684 } 4685 4686 /// For each function which is declared within an extern "C" region and marked 4687 /// as 'used', but has internal linkage, create an alias from the unmangled 4688 /// name to the mangled name if possible. People expect to be able to refer 4689 /// to such functions with an unmangled name from inline assembly within the 4690 /// same translation unit. 4691 void CodeGenModule::EmitStaticExternCAliases() { 4692 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 4693 return; 4694 for (auto &I : StaticExternCValues) { 4695 IdentifierInfo *Name = I.first; 4696 llvm::GlobalValue *Val = I.second; 4697 if (Val && !getModule().getNamedValue(Name->getName())) 4698 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4699 } 4700 } 4701 4702 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4703 GlobalDecl &Result) const { 4704 auto Res = Manglings.find(MangledName); 4705 if (Res == Manglings.end()) 4706 return false; 4707 Result = Res->getValue(); 4708 return true; 4709 } 4710 4711 /// Emits metadata nodes associating all the global values in the 4712 /// current module with the Decls they came from. This is useful for 4713 /// projects using IR gen as a subroutine. 4714 /// 4715 /// Since there's currently no way to associate an MDNode directly 4716 /// with an llvm::GlobalValue, we create a global named metadata 4717 /// with the name 'clang.global.decl.ptrs'. 4718 void CodeGenModule::EmitDeclMetadata() { 4719 llvm::NamedMDNode *GlobalMetadata = nullptr; 4720 4721 for (auto &I : MangledDeclNames) { 4722 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4723 // Some mangled names don't necessarily have an associated GlobalValue 4724 // in this module, e.g. if we mangled it for DebugInfo. 4725 if (Addr) 4726 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4727 } 4728 } 4729 4730 /// Emits metadata nodes for all the local variables in the current 4731 /// function. 4732 void CodeGenFunction::EmitDeclMetadata() { 4733 if (LocalDeclMap.empty()) return; 4734 4735 llvm::LLVMContext &Context = getLLVMContext(); 4736 4737 // Find the unique metadata ID for this name. 4738 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4739 4740 llvm::NamedMDNode *GlobalMetadata = nullptr; 4741 4742 for (auto &I : LocalDeclMap) { 4743 const Decl *D = I.first; 4744 llvm::Value *Addr = I.second.getPointer(); 4745 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4746 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4747 Alloca->setMetadata( 4748 DeclPtrKind, llvm::MDNode::get( 4749 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4750 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4751 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4752 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4753 } 4754 } 4755 } 4756 4757 void CodeGenModule::EmitVersionIdentMetadata() { 4758 llvm::NamedMDNode *IdentMetadata = 4759 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4760 std::string Version = getClangFullVersion(); 4761 llvm::LLVMContext &Ctx = TheModule.getContext(); 4762 4763 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4764 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4765 } 4766 4767 void CodeGenModule::EmitTargetMetadata() { 4768 // Warning, new MangledDeclNames may be appended within this loop. 4769 // We rely on MapVector insertions adding new elements to the end 4770 // of the container. 4771 // FIXME: Move this loop into the one target that needs it, and only 4772 // loop over those declarations for which we couldn't emit the target 4773 // metadata when we emitted the declaration. 4774 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4775 auto Val = *(MangledDeclNames.begin() + I); 4776 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4777 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4778 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4779 } 4780 } 4781 4782 void CodeGenModule::EmitCoverageFile() { 4783 if (getCodeGenOpts().CoverageDataFile.empty() && 4784 getCodeGenOpts().CoverageNotesFile.empty()) 4785 return; 4786 4787 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4788 if (!CUNode) 4789 return; 4790 4791 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4792 llvm::LLVMContext &Ctx = TheModule.getContext(); 4793 auto *CoverageDataFile = 4794 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4795 auto *CoverageNotesFile = 4796 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4797 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4798 llvm::MDNode *CU = CUNode->getOperand(i); 4799 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4800 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4801 } 4802 } 4803 4804 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4805 // Sema has checked that all uuid strings are of the form 4806 // "12345678-1234-1234-1234-1234567890ab". 4807 assert(Uuid.size() == 36); 4808 for (unsigned i = 0; i < 36; ++i) { 4809 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4810 else assert(isHexDigit(Uuid[i])); 4811 } 4812 4813 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4814 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4815 4816 llvm::Constant *Field3[8]; 4817 for (unsigned Idx = 0; Idx < 8; ++Idx) 4818 Field3[Idx] = llvm::ConstantInt::get( 4819 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4820 4821 llvm::Constant *Fields[4] = { 4822 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4823 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4824 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4825 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4826 }; 4827 4828 return llvm::ConstantStruct::getAnon(Fields); 4829 } 4830 4831 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4832 bool ForEH) { 4833 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4834 // FIXME: should we even be calling this method if RTTI is disabled 4835 // and it's not for EH? 4836 if (!ForEH && !getLangOpts().RTTI) 4837 return llvm::Constant::getNullValue(Int8PtrTy); 4838 4839 if (ForEH && Ty->isObjCObjectPointerType() && 4840 LangOpts.ObjCRuntime.isGNUFamily()) 4841 return ObjCRuntime->GetEHType(Ty); 4842 4843 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4844 } 4845 4846 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4847 // Do not emit threadprivates in simd-only mode. 4848 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4849 return; 4850 for (auto RefExpr : D->varlists()) { 4851 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4852 bool PerformInit = 4853 VD->getAnyInitializer() && 4854 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4855 /*ForRef=*/false); 4856 4857 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4858 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4859 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4860 CXXGlobalInits.push_back(InitFunction); 4861 } 4862 } 4863 4864 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4865 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4866 if (InternalId) 4867 return InternalId; 4868 4869 if (isExternallyVisible(T->getLinkage())) { 4870 std::string OutName; 4871 llvm::raw_string_ostream Out(OutName); 4872 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4873 4874 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4875 } else { 4876 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4877 llvm::ArrayRef<llvm::Metadata *>()); 4878 } 4879 4880 return InternalId; 4881 } 4882 4883 // Generalize pointer types to a void pointer with the qualifiers of the 4884 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4885 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4886 // 'void *'. 4887 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4888 if (!Ty->isPointerType()) 4889 return Ty; 4890 4891 return Ctx.getPointerType( 4892 QualType(Ctx.VoidTy).withCVRQualifiers( 4893 Ty->getPointeeType().getCVRQualifiers())); 4894 } 4895 4896 // Apply type generalization to a FunctionType's return and argument types 4897 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4898 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4899 SmallVector<QualType, 8> GeneralizedParams; 4900 for (auto &Param : FnType->param_types()) 4901 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4902 4903 return Ctx.getFunctionType( 4904 GeneralizeType(Ctx, FnType->getReturnType()), 4905 GeneralizedParams, FnType->getExtProtoInfo()); 4906 } 4907 4908 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4909 return Ctx.getFunctionNoProtoType( 4910 GeneralizeType(Ctx, FnType->getReturnType())); 4911 4912 llvm_unreachable("Encountered unknown FunctionType"); 4913 } 4914 4915 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4916 T = GeneralizeFunctionType(getContext(), T); 4917 4918 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4919 if (InternalId) 4920 return InternalId; 4921 4922 if (isExternallyVisible(T->getLinkage())) { 4923 std::string OutName; 4924 llvm::raw_string_ostream Out(OutName); 4925 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4926 Out << ".generalized"; 4927 4928 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4929 } else { 4930 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4931 llvm::ArrayRef<llvm::Metadata *>()); 4932 } 4933 4934 return InternalId; 4935 } 4936 4937 /// Returns whether this module needs the "all-vtables" type identifier. 4938 bool CodeGenModule::NeedAllVtablesTypeId() const { 4939 // Returns true if at least one of vtable-based CFI checkers is enabled and 4940 // is not in the trapping mode. 4941 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4942 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4943 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4944 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4945 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4946 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4947 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4948 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4949 } 4950 4951 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4952 CharUnits Offset, 4953 const CXXRecordDecl *RD) { 4954 llvm::Metadata *MD = 4955 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4956 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4957 4958 if (CodeGenOpts.SanitizeCfiCrossDso) 4959 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4960 VTable->addTypeMetadata(Offset.getQuantity(), 4961 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4962 4963 if (NeedAllVtablesTypeId()) { 4964 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4965 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4966 } 4967 } 4968 4969 // Fills in the supplied string map with the set of target features for the 4970 // passed in function. 4971 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4972 const FunctionDecl *FD) { 4973 StringRef TargetCPU = Target.getTargetOpts().CPU; 4974 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4975 // If we have a TargetAttr build up the feature map based on that. 4976 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4977 4978 ParsedAttr.Features.erase( 4979 llvm::remove_if(ParsedAttr.Features, 4980 [&](const std::string &Feat) { 4981 return !Target.isValidFeatureName( 4982 StringRef{Feat}.substr(1)); 4983 }), 4984 ParsedAttr.Features.end()); 4985 4986 // Make a copy of the features as passed on the command line into the 4987 // beginning of the additional features from the function to override. 4988 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4989 Target.getTargetOpts().FeaturesAsWritten.begin(), 4990 Target.getTargetOpts().FeaturesAsWritten.end()); 4991 4992 if (ParsedAttr.Architecture != "" && 4993 Target.isValidCPUName(ParsedAttr.Architecture)) 4994 TargetCPU = ParsedAttr.Architecture; 4995 4996 // Now populate the feature map, first with the TargetCPU which is either 4997 // the default or a new one from the target attribute string. Then we'll use 4998 // the passed in features (FeaturesAsWritten) along with the new ones from 4999 // the attribute. 5000 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5001 ParsedAttr.Features); 5002 } else { 5003 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5004 Target.getTargetOpts().Features); 5005 } 5006 } 5007 5008 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5009 if (!SanStats) 5010 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5011 5012 return *SanStats; 5013 } 5014 llvm::Value * 5015 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5016 CodeGenFunction &CGF) { 5017 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5018 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5019 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5020 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5021 "__translate_sampler_initializer"), 5022 {C}); 5023 } 5024