xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 1b3aee7ff9c82c337a2cd2b52863b7feaf5a0648)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/Frontend/CodeGenOptions.h"
45 #include "clang/Sema/SemaDiagnostic.h"
46 #include "llvm/ADT/Triple.h"
47 #include "llvm/IR/CallSite.h"
48 #include "llvm/IR/CallingConv.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/ProfileData/InstrProfReader.h"
54 #include "llvm/Support/ConvertUTF.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MD5.h"
57 
58 using namespace clang;
59 using namespace CodeGen;
60 
61 static const char AnnotationSection[] = "llvm.metadata";
62 
63 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
64   switch (CGM.getTarget().getCXXABI().getKind()) {
65   case TargetCXXABI::GenericAArch64:
66   case TargetCXXABI::GenericARM:
67   case TargetCXXABI::iOS:
68   case TargetCXXABI::iOS64:
69   case TargetCXXABI::WatchOS:
70   case TargetCXXABI::GenericMIPS:
71   case TargetCXXABI::GenericItanium:
72   case TargetCXXABI::WebAssembly:
73     return CreateItaniumCXXABI(CGM);
74   case TargetCXXABI::Microsoft:
75     return CreateMicrosoftCXXABI(CGM);
76   }
77 
78   llvm_unreachable("invalid C++ ABI kind");
79 }
80 
81 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
82                              const PreprocessorOptions &PPO,
83                              const CodeGenOptions &CGO, llvm::Module &M,
84                              DiagnosticsEngine &diags,
85                              CoverageSourceInfo *CoverageInfo)
86     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
87       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
88       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
89       VMContext(M.getContext()), Types(*this), VTables(*this),
90       SanitizerMD(new SanitizerMetadata(*this)) {
91 
92   // Initialize the type cache.
93   llvm::LLVMContext &LLVMContext = M.getContext();
94   VoidTy = llvm::Type::getVoidTy(LLVMContext);
95   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
96   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
97   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
98   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
99   FloatTy = llvm::Type::getFloatTy(LLVMContext);
100   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
101   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
102   PointerAlignInBytes =
103     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
104   SizeSizeInBytes =
105     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
106   IntAlignInBytes =
107     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
108   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
109   IntPtrTy = llvm::IntegerType::get(LLVMContext,
110     C.getTargetInfo().getMaxPointerWidth());
111   Int8PtrTy = Int8Ty->getPointerTo(0);
112   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
113 
114   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
115   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
116 
117   if (LangOpts.ObjC1)
118     createObjCRuntime();
119   if (LangOpts.OpenCL)
120     createOpenCLRuntime();
121   if (LangOpts.OpenMP)
122     createOpenMPRuntime();
123   if (LangOpts.CUDA)
124     createCUDARuntime();
125 
126   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
127   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
128       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
129     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
130                                getCXXABI().getMangleContext()));
131 
132   // If debug info or coverage generation is enabled, create the CGDebugInfo
133   // object.
134   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
135       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
136     DebugInfo.reset(new CGDebugInfo(*this));
137 
138   Block.GlobalUniqueCount = 0;
139 
140   if (C.getLangOpts().ObjC1)
141     ObjCData.reset(new ObjCEntrypoints());
142 
143   if (CodeGenOpts.hasProfileClangUse()) {
144     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
145         CodeGenOpts.ProfileInstrumentUsePath);
146     if (auto E = ReaderOrErr.takeError()) {
147       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
148                                               "Could not read profile %0: %1");
149       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
150         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
151                                   << EI.message();
152       });
153     } else
154       PGOReader = std::move(ReaderOrErr.get());
155   }
156 
157   // If coverage mapping generation is enabled, create the
158   // CoverageMappingModuleGen object.
159   if (CodeGenOpts.CoverageMapping)
160     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
161 }
162 
163 CodeGenModule::~CodeGenModule() {}
164 
165 void CodeGenModule::createObjCRuntime() {
166   // This is just isGNUFamily(), but we want to force implementors of
167   // new ABIs to decide how best to do this.
168   switch (LangOpts.ObjCRuntime.getKind()) {
169   case ObjCRuntime::GNUstep:
170   case ObjCRuntime::GCC:
171   case ObjCRuntime::ObjFW:
172     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
173     return;
174 
175   case ObjCRuntime::FragileMacOSX:
176   case ObjCRuntime::MacOSX:
177   case ObjCRuntime::iOS:
178   case ObjCRuntime::WatchOS:
179     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
180     return;
181   }
182   llvm_unreachable("bad runtime kind");
183 }
184 
185 void CodeGenModule::createOpenCLRuntime() {
186   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
187 }
188 
189 void CodeGenModule::createOpenMPRuntime() {
190   // Select a specialized code generation class based on the target, if any.
191   // If it does not exist use the default implementation.
192   switch (getTarget().getTriple().getArch()) {
193 
194   case llvm::Triple::nvptx:
195   case llvm::Triple::nvptx64:
196     assert(getLangOpts().OpenMPIsDevice &&
197            "OpenMP NVPTX is only prepared to deal with device code.");
198     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
199     break;
200   default:
201     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
202     break;
203   }
204 }
205 
206 void CodeGenModule::createCUDARuntime() {
207   CUDARuntime.reset(CreateNVCUDARuntime(*this));
208 }
209 
210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
211   Replacements[Name] = C;
212 }
213 
214 void CodeGenModule::applyReplacements() {
215   for (auto &I : Replacements) {
216     StringRef MangledName = I.first();
217     llvm::Constant *Replacement = I.second;
218     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
219     if (!Entry)
220       continue;
221     auto *OldF = cast<llvm::Function>(Entry);
222     auto *NewF = dyn_cast<llvm::Function>(Replacement);
223     if (!NewF) {
224       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
225         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
226       } else {
227         auto *CE = cast<llvm::ConstantExpr>(Replacement);
228         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
229                CE->getOpcode() == llvm::Instruction::GetElementPtr);
230         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
231       }
232     }
233 
234     // Replace old with new, but keep the old order.
235     OldF->replaceAllUsesWith(Replacement);
236     if (NewF) {
237       NewF->removeFromParent();
238       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
239                                                        NewF);
240     }
241     OldF->eraseFromParent();
242   }
243 }
244 
245 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
246   GlobalValReplacements.push_back(std::make_pair(GV, C));
247 }
248 
249 void CodeGenModule::applyGlobalValReplacements() {
250   for (auto &I : GlobalValReplacements) {
251     llvm::GlobalValue *GV = I.first;
252     llvm::Constant *C = I.second;
253 
254     GV->replaceAllUsesWith(C);
255     GV->eraseFromParent();
256   }
257 }
258 
259 // This is only used in aliases that we created and we know they have a
260 // linear structure.
261 static const llvm::GlobalObject *getAliasedGlobal(
262     const llvm::GlobalIndirectSymbol &GIS) {
263   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
264   const llvm::Constant *C = &GIS;
265   for (;;) {
266     C = C->stripPointerCasts();
267     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
268       return GO;
269     // stripPointerCasts will not walk over weak aliases.
270     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
271     if (!GIS2)
272       return nullptr;
273     if (!Visited.insert(GIS2).second)
274       return nullptr;
275     C = GIS2->getIndirectSymbol();
276   }
277 }
278 
279 void CodeGenModule::checkAliases() {
280   // Check if the constructed aliases are well formed. It is really unfortunate
281   // that we have to do this in CodeGen, but we only construct mangled names
282   // and aliases during codegen.
283   bool Error = false;
284   DiagnosticsEngine &Diags = getDiags();
285   for (const GlobalDecl &GD : Aliases) {
286     const auto *D = cast<ValueDecl>(GD.getDecl());
287     SourceLocation Location;
288     bool IsIFunc = D->hasAttr<IFuncAttr>();
289     if (const Attr *A = D->getDefiningAttr())
290       Location = A->getLocation();
291     else
292       llvm_unreachable("Not an alias or ifunc?");
293     StringRef MangledName = getMangledName(GD);
294     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
295     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
296     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
297     if (!GV) {
298       Error = true;
299       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
300     } else if (GV->isDeclaration()) {
301       Error = true;
302       Diags.Report(Location, diag::err_alias_to_undefined)
303           << IsIFunc << IsIFunc;
304     } else if (IsIFunc) {
305       // Check resolver function type.
306       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
307           GV->getType()->getPointerElementType());
308       assert(FTy);
309       if (!FTy->getReturnType()->isPointerTy())
310         Diags.Report(Location, diag::err_ifunc_resolver_return);
311       if (FTy->getNumParams())
312         Diags.Report(Location, diag::err_ifunc_resolver_params);
313     }
314 
315     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
316     llvm::GlobalValue *AliaseeGV;
317     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
318       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
319     else
320       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
321 
322     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
323       StringRef AliasSection = SA->getName();
324       if (AliasSection != AliaseeGV->getSection())
325         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
326             << AliasSection << IsIFunc << IsIFunc;
327     }
328 
329     // We have to handle alias to weak aliases in here. LLVM itself disallows
330     // this since the object semantics would not match the IL one. For
331     // compatibility with gcc we implement it by just pointing the alias
332     // to its aliasee's aliasee. We also warn, since the user is probably
333     // expecting the link to be weak.
334     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
335       if (GA->isInterposable()) {
336         Diags.Report(Location, diag::warn_alias_to_weak_alias)
337             << GV->getName() << GA->getName() << IsIFunc;
338         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
339             GA->getIndirectSymbol(), Alias->getType());
340         Alias->setIndirectSymbol(Aliasee);
341       }
342     }
343   }
344   if (!Error)
345     return;
346 
347   for (const GlobalDecl &GD : Aliases) {
348     StringRef MangledName = getMangledName(GD);
349     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
350     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
351     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
352     Alias->eraseFromParent();
353   }
354 }
355 
356 void CodeGenModule::clear() {
357   DeferredDeclsToEmit.clear();
358   if (OpenMPRuntime)
359     OpenMPRuntime->clear();
360 }
361 
362 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
363                                        StringRef MainFile) {
364   if (!hasDiagnostics())
365     return;
366   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
367     if (MainFile.empty())
368       MainFile = "<stdin>";
369     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
370   } else
371     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
372                                                       << Mismatched;
373 }
374 
375 void CodeGenModule::Release() {
376   EmitDeferred();
377   applyGlobalValReplacements();
378   applyReplacements();
379   checkAliases();
380   EmitCXXGlobalInitFunc();
381   EmitCXXGlobalDtorFunc();
382   EmitCXXThreadLocalInitFunc();
383   if (ObjCRuntime)
384     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
385       AddGlobalCtor(ObjCInitFunction);
386   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
387       CUDARuntime) {
388     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
389       AddGlobalCtor(CudaCtorFunction);
390     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
391       AddGlobalDtor(CudaDtorFunction);
392   }
393   if (OpenMPRuntime)
394     if (llvm::Function *OpenMPRegistrationFunction =
395             OpenMPRuntime->emitRegistrationFunction())
396       AddGlobalCtor(OpenMPRegistrationFunction, 0);
397   if (PGOReader) {
398     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
399     if (PGOStats.hasDiagnostics())
400       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
401   }
402   EmitCtorList(GlobalCtors, "llvm.global_ctors");
403   EmitCtorList(GlobalDtors, "llvm.global_dtors");
404   EmitGlobalAnnotations();
405   EmitStaticExternCAliases();
406   EmitDeferredUnusedCoverageMappings();
407   if (CoverageMapping)
408     CoverageMapping->emit();
409   if (CodeGenOpts.SanitizeCfiCrossDso)
410     CodeGenFunction(*this).EmitCfiCheckFail();
411   emitLLVMUsed();
412   if (SanStats)
413     SanStats->finish();
414 
415   if (CodeGenOpts.Autolink &&
416       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
417     EmitModuleLinkOptions();
418   }
419   if (CodeGenOpts.DwarfVersion) {
420     // We actually want the latest version when there are conflicts.
421     // We can change from Warning to Latest if such mode is supported.
422     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
423                               CodeGenOpts.DwarfVersion);
424   }
425   if (CodeGenOpts.EmitCodeView) {
426     // Indicate that we want CodeView in the metadata.
427     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
428   }
429   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
430     // We don't support LTO with 2 with different StrictVTablePointers
431     // FIXME: we could support it by stripping all the information introduced
432     // by StrictVTablePointers.
433 
434     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
435 
436     llvm::Metadata *Ops[2] = {
437               llvm::MDString::get(VMContext, "StrictVTablePointers"),
438               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
439                   llvm::Type::getInt32Ty(VMContext), 1))};
440 
441     getModule().addModuleFlag(llvm::Module::Require,
442                               "StrictVTablePointersRequirement",
443                               llvm::MDNode::get(VMContext, Ops));
444   }
445   if (DebugInfo)
446     // We support a single version in the linked module. The LLVM
447     // parser will drop debug info with a different version number
448     // (and warn about it, too).
449     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
450                               llvm::DEBUG_METADATA_VERSION);
451 
452   // We need to record the widths of enums and wchar_t, so that we can generate
453   // the correct build attributes in the ARM backend.
454   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
455   if (   Arch == llvm::Triple::arm
456       || Arch == llvm::Triple::armeb
457       || Arch == llvm::Triple::thumb
458       || Arch == llvm::Triple::thumbeb) {
459     // Width of wchar_t in bytes
460     uint64_t WCharWidth =
461         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
462     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
463 
464     // The minimum width of an enum in bytes
465     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
466     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
467   }
468 
469   if (CodeGenOpts.SanitizeCfiCrossDso) {
470     // Indicate that we want cross-DSO control flow integrity checks.
471     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
472   }
473 
474   if (LangOpts.CUDAIsDevice && getTarget().getTriple().isNVPTX()) {
475     // Indicate whether __nvvm_reflect should be configured to flush denormal
476     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
477     // property.)
478     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
479                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
480   }
481 
482   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
483     assert(PLevel < 3 && "Invalid PIC Level");
484     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
485     if (Context.getLangOpts().PIE)
486       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
487   }
488 
489   SimplifyPersonality();
490 
491   if (getCodeGenOpts().EmitDeclMetadata)
492     EmitDeclMetadata();
493 
494   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
495     EmitCoverageFile();
496 
497   if (DebugInfo)
498     DebugInfo->finalize();
499 
500   EmitVersionIdentMetadata();
501 
502   EmitTargetMetadata();
503 
504   // Emit any deferred diagnostics gathered during codegen.  We didn't emit them
505   // when we first discovered them because that would have halted codegen,
506   // preventing us from gathering other deferred diags.
507   for (const PartialDiagnosticAt &DiagAt : DeferredDiags) {
508     SourceLocation Loc = DiagAt.first;
509     const PartialDiagnostic &PD = DiagAt.second;
510     DiagnosticBuilder Builder(getDiags().Report(Loc, PD.getDiagID()));
511     PD.Emit(Builder);
512   }
513 }
514 
515 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
516   // Make sure that this type is translated.
517   Types.UpdateCompletedType(TD);
518 }
519 
520 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
521   // Make sure that this type is translated.
522   Types.RefreshTypeCacheForClass(RD);
523 }
524 
525 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
526   if (!TBAA)
527     return nullptr;
528   return TBAA->getTBAAInfo(QTy);
529 }
530 
531 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
532   if (!TBAA)
533     return nullptr;
534   return TBAA->getTBAAInfoForVTablePtr();
535 }
536 
537 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
538   if (!TBAA)
539     return nullptr;
540   return TBAA->getTBAAStructInfo(QTy);
541 }
542 
543 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
544                                                   llvm::MDNode *AccessN,
545                                                   uint64_t O) {
546   if (!TBAA)
547     return nullptr;
548   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
549 }
550 
551 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
552 /// and struct-path aware TBAA, the tag has the same format:
553 /// base type, access type and offset.
554 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
555 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
556                                                 llvm::MDNode *TBAAInfo,
557                                                 bool ConvertTypeToTag) {
558   if (ConvertTypeToTag && TBAA)
559     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
560                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
561   else
562     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
563 }
564 
565 void CodeGenModule::DecorateInstructionWithInvariantGroup(
566     llvm::Instruction *I, const CXXRecordDecl *RD) {
567   llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
568   auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
569   // Check if we have to wrap MDString in MDNode.
570   if (!MetaDataNode)
571     MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
572   I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
573 }
574 
575 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
576   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
577   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
578 }
579 
580 /// ErrorUnsupported - Print out an error that codegen doesn't support the
581 /// specified stmt yet.
582 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
583   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
584                                                "cannot compile this %0 yet");
585   std::string Msg = Type;
586   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
587     << Msg << S->getSourceRange();
588 }
589 
590 /// ErrorUnsupported - Print out an error that codegen doesn't support the
591 /// specified decl yet.
592 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
593   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
594                                                "cannot compile this %0 yet");
595   std::string Msg = Type;
596   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
597 }
598 
599 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
600   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
601 }
602 
603 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
604                                         const NamedDecl *D) const {
605   // Internal definitions always have default visibility.
606   if (GV->hasLocalLinkage()) {
607     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
608     return;
609   }
610 
611   // Set visibility for definitions.
612   LinkageInfo LV = D->getLinkageAndVisibility();
613   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
614     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
615 }
616 
617 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
618   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
619       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
620       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
621       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
622       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
623 }
624 
625 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
626     CodeGenOptions::TLSModel M) {
627   switch (M) {
628   case CodeGenOptions::GeneralDynamicTLSModel:
629     return llvm::GlobalVariable::GeneralDynamicTLSModel;
630   case CodeGenOptions::LocalDynamicTLSModel:
631     return llvm::GlobalVariable::LocalDynamicTLSModel;
632   case CodeGenOptions::InitialExecTLSModel:
633     return llvm::GlobalVariable::InitialExecTLSModel;
634   case CodeGenOptions::LocalExecTLSModel:
635     return llvm::GlobalVariable::LocalExecTLSModel;
636   }
637   llvm_unreachable("Invalid TLS model!");
638 }
639 
640 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
641   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
642 
643   llvm::GlobalValue::ThreadLocalMode TLM;
644   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
645 
646   // Override the TLS model if it is explicitly specified.
647   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
648     TLM = GetLLVMTLSModel(Attr->getModel());
649   }
650 
651   GV->setThreadLocalMode(TLM);
652 }
653 
654 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
655   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
656 
657   // Some ABIs don't have constructor variants.  Make sure that base and
658   // complete constructors get mangled the same.
659   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
660     if (!getTarget().getCXXABI().hasConstructorVariants()) {
661       CXXCtorType OrigCtorType = GD.getCtorType();
662       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
663       if (OrigCtorType == Ctor_Base)
664         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
665     }
666   }
667 
668   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
669   if (!FoundStr.empty())
670     return FoundStr;
671 
672   const auto *ND = cast<NamedDecl>(GD.getDecl());
673   SmallString<256> Buffer;
674   StringRef Str;
675   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
676     llvm::raw_svector_ostream Out(Buffer);
677     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
678       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
679     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
680       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
681     else
682       getCXXABI().getMangleContext().mangleName(ND, Out);
683     Str = Out.str();
684   } else {
685     IdentifierInfo *II = ND->getIdentifier();
686     assert(II && "Attempt to mangle unnamed decl.");
687     Str = II->getName();
688   }
689 
690   // Keep the first result in the case of a mangling collision.
691   auto Result = Manglings.insert(std::make_pair(Str, GD));
692   return FoundStr = Result.first->first();
693 }
694 
695 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
696                                              const BlockDecl *BD) {
697   MangleContext &MangleCtx = getCXXABI().getMangleContext();
698   const Decl *D = GD.getDecl();
699 
700   SmallString<256> Buffer;
701   llvm::raw_svector_ostream Out(Buffer);
702   if (!D)
703     MangleCtx.mangleGlobalBlock(BD,
704       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
705   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
706     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
707   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
708     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
709   else
710     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
711 
712   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
713   return Result.first->first();
714 }
715 
716 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
717   return getModule().getNamedValue(Name);
718 }
719 
720 /// AddGlobalCtor - Add a function to the list that will be called before
721 /// main() runs.
722 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
723                                   llvm::Constant *AssociatedData) {
724   // FIXME: Type coercion of void()* types.
725   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
726 }
727 
728 /// AddGlobalDtor - Add a function to the list that will be called
729 /// when the module is unloaded.
730 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
731   // FIXME: Type coercion of void()* types.
732   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
733 }
734 
735 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
736   // Ctor function type is void()*.
737   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
738   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
739 
740   // Get the type of a ctor entry, { i32, void ()*, i8* }.
741   llvm::StructType *CtorStructTy = llvm::StructType::get(
742       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
743 
744   // Construct the constructor and destructor arrays.
745   SmallVector<llvm::Constant *, 8> Ctors;
746   for (const auto &I : Fns) {
747     llvm::Constant *S[] = {
748         llvm::ConstantInt::get(Int32Ty, I.Priority, false),
749         llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy),
750         (I.AssociatedData
751              ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)
752              : llvm::Constant::getNullValue(VoidPtrTy))};
753     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
754   }
755 
756   if (!Ctors.empty()) {
757     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
758     new llvm::GlobalVariable(TheModule, AT, false,
759                              llvm::GlobalValue::AppendingLinkage,
760                              llvm::ConstantArray::get(AT, Ctors),
761                              GlobalName);
762   }
763 }
764 
765 llvm::GlobalValue::LinkageTypes
766 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
767   const auto *D = cast<FunctionDecl>(GD.getDecl());
768 
769   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
770 
771   if (isa<CXXDestructorDecl>(D) &&
772       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
773                                          GD.getDtorType())) {
774     // Destructor variants in the Microsoft C++ ABI are always internal or
775     // linkonce_odr thunks emitted on an as-needed basis.
776     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
777                                    : llvm::GlobalValue::LinkOnceODRLinkage;
778   }
779 
780   if (isa<CXXConstructorDecl>(D) &&
781       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
782       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
783     // Our approach to inheriting constructors is fundamentally different from
784     // that used by the MS ABI, so keep our inheriting constructor thunks
785     // internal rather than trying to pick an unambiguous mangling for them.
786     return llvm::GlobalValue::InternalLinkage;
787   }
788 
789   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
790 }
791 
792 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
793   const auto *FD = cast<FunctionDecl>(GD.getDecl());
794 
795   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
796     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
797       // Don't dllexport/import destructor thunks.
798       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
799       return;
800     }
801   }
802 
803   if (FD->hasAttr<DLLImportAttr>())
804     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
805   else if (FD->hasAttr<DLLExportAttr>())
806     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
807   else
808     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
809 }
810 
811 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
812   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
813   if (!MDS) return nullptr;
814 
815   llvm::MD5 md5;
816   llvm::MD5::MD5Result result;
817   md5.update(MDS->getString());
818   md5.final(result);
819   uint64_t id = 0;
820   for (int i = 0; i < 8; ++i)
821     id |= static_cast<uint64_t>(result[i]) << (i * 8);
822   return llvm::ConstantInt::get(Int64Ty, id);
823 }
824 
825 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
826                                                     llvm::Function *F) {
827   setNonAliasAttributes(D, F);
828 }
829 
830 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
831                                               const CGFunctionInfo &Info,
832                                               llvm::Function *F) {
833   unsigned CallingConv;
834   AttributeListType AttributeList;
835   ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
836                          false);
837   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
838   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
839 }
840 
841 /// Determines whether the language options require us to model
842 /// unwind exceptions.  We treat -fexceptions as mandating this
843 /// except under the fragile ObjC ABI with only ObjC exceptions
844 /// enabled.  This means, for example, that C with -fexceptions
845 /// enables this.
846 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
847   // If exceptions are completely disabled, obviously this is false.
848   if (!LangOpts.Exceptions) return false;
849 
850   // If C++ exceptions are enabled, this is true.
851   if (LangOpts.CXXExceptions) return true;
852 
853   // If ObjC exceptions are enabled, this depends on the ABI.
854   if (LangOpts.ObjCExceptions) {
855     return LangOpts.ObjCRuntime.hasUnwindExceptions();
856   }
857 
858   return true;
859 }
860 
861 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
862                                                            llvm::Function *F) {
863   llvm::AttrBuilder B;
864 
865   if (CodeGenOpts.UnwindTables)
866     B.addAttribute(llvm::Attribute::UWTable);
867 
868   if (!hasUnwindExceptions(LangOpts))
869     B.addAttribute(llvm::Attribute::NoUnwind);
870 
871   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
872     B.addAttribute(llvm::Attribute::StackProtect);
873   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
874     B.addAttribute(llvm::Attribute::StackProtectStrong);
875   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
876     B.addAttribute(llvm::Attribute::StackProtectReq);
877 
878   if (!D) {
879     F->addAttributes(llvm::AttributeSet::FunctionIndex,
880                      llvm::AttributeSet::get(
881                          F->getContext(),
882                          llvm::AttributeSet::FunctionIndex, B));
883     return;
884   }
885 
886   if (D->hasAttr<NakedAttr>()) {
887     // Naked implies noinline: we should not be inlining such functions.
888     B.addAttribute(llvm::Attribute::Naked);
889     B.addAttribute(llvm::Attribute::NoInline);
890   } else if (D->hasAttr<NoDuplicateAttr>()) {
891     B.addAttribute(llvm::Attribute::NoDuplicate);
892   } else if (D->hasAttr<NoInlineAttr>()) {
893     B.addAttribute(llvm::Attribute::NoInline);
894   } else if (D->hasAttr<AlwaysInlineAttr>() &&
895              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
896                                               llvm::Attribute::NoInline)) {
897     // (noinline wins over always_inline, and we can't specify both in IR)
898     B.addAttribute(llvm::Attribute::AlwaysInline);
899   }
900 
901   if (D->hasAttr<ColdAttr>()) {
902     if (!D->hasAttr<OptimizeNoneAttr>())
903       B.addAttribute(llvm::Attribute::OptimizeForSize);
904     B.addAttribute(llvm::Attribute::Cold);
905   }
906 
907   if (D->hasAttr<MinSizeAttr>())
908     B.addAttribute(llvm::Attribute::MinSize);
909 
910   F->addAttributes(llvm::AttributeSet::FunctionIndex,
911                    llvm::AttributeSet::get(
912                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
913 
914   if (D->hasAttr<OptimizeNoneAttr>()) {
915     // OptimizeNone implies noinline; we should not be inlining such functions.
916     F->addFnAttr(llvm::Attribute::OptimizeNone);
917     F->addFnAttr(llvm::Attribute::NoInline);
918 
919     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
920     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
921     F->removeFnAttr(llvm::Attribute::MinSize);
922     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
923            "OptimizeNone and AlwaysInline on same function!");
924 
925     // Attribute 'inlinehint' has no effect on 'optnone' functions.
926     // Explicitly remove it from the set of function attributes.
927     F->removeFnAttr(llvm::Attribute::InlineHint);
928   }
929 
930   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
931   if (alignment)
932     F->setAlignment(alignment);
933 
934   // Some C++ ABIs require 2-byte alignment for member functions, in order to
935   // reserve a bit for differentiating between virtual and non-virtual member
936   // functions. If the current target's C++ ABI requires this and this is a
937   // member function, set its alignment accordingly.
938   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
939     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
940       F->setAlignment(2);
941   }
942 }
943 
944 void CodeGenModule::SetCommonAttributes(const Decl *D,
945                                         llvm::GlobalValue *GV) {
946   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
947     setGlobalVisibility(GV, ND);
948   else
949     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
950 
951   if (D && D->hasAttr<UsedAttr>())
952     addUsedGlobal(GV);
953 }
954 
955 void CodeGenModule::setAliasAttributes(const Decl *D,
956                                        llvm::GlobalValue *GV) {
957   SetCommonAttributes(D, GV);
958 
959   // Process the dllexport attribute based on whether the original definition
960   // (not necessarily the aliasee) was exported.
961   if (D->hasAttr<DLLExportAttr>())
962     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
963 }
964 
965 void CodeGenModule::setNonAliasAttributes(const Decl *D,
966                                           llvm::GlobalObject *GO) {
967   SetCommonAttributes(D, GO);
968 
969   if (D)
970     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
971       GO->setSection(SA->getName());
972 
973   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
974 }
975 
976 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
977                                                   llvm::Function *F,
978                                                   const CGFunctionInfo &FI) {
979   SetLLVMFunctionAttributes(D, FI, F);
980   SetLLVMFunctionAttributesForDefinition(D, F);
981 
982   F->setLinkage(llvm::Function::InternalLinkage);
983 
984   setNonAliasAttributes(D, F);
985 }
986 
987 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
988                                          const NamedDecl *ND) {
989   // Set linkage and visibility in case we never see a definition.
990   LinkageInfo LV = ND->getLinkageAndVisibility();
991   if (LV.getLinkage() != ExternalLinkage) {
992     // Don't set internal linkage on declarations.
993   } else {
994     if (ND->hasAttr<DLLImportAttr>()) {
995       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
996       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
997     } else if (ND->hasAttr<DLLExportAttr>()) {
998       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
999       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1000     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1001       // "extern_weak" is overloaded in LLVM; we probably should have
1002       // separate linkage types for this.
1003       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1004     }
1005 
1006     // Set visibility on a declaration only if it's explicit.
1007     if (LV.isVisibilityExplicit())
1008       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
1009   }
1010 }
1011 
1012 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1013                                                llvm::Function *F) {
1014   // Only if we are checking indirect calls.
1015   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1016     return;
1017 
1018   // Non-static class methods are handled via vtable pointer checks elsewhere.
1019   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1020     return;
1021 
1022   // Additionally, if building with cross-DSO support...
1023   if (CodeGenOpts.SanitizeCfiCrossDso) {
1024     // Don't emit entries for function declarations. In cross-DSO mode these are
1025     // handled with better precision at run time.
1026     if (!FD->hasBody())
1027       return;
1028     // Skip available_externally functions. They won't be codegen'ed in the
1029     // current module anyway.
1030     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1031       return;
1032   }
1033 
1034   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1035   F->addTypeMetadata(0, MD);
1036 
1037   // Emit a hash-based bit set entry for cross-DSO calls.
1038   if (CodeGenOpts.SanitizeCfiCrossDso)
1039     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1040       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1041 }
1042 
1043 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1044                                           bool IsIncompleteFunction,
1045                                           bool IsThunk) {
1046   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1047     // If this is an intrinsic function, set the function's attributes
1048     // to the intrinsic's attributes.
1049     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1050     return;
1051   }
1052 
1053   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1054 
1055   if (!IsIncompleteFunction)
1056     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1057 
1058   // Add the Returned attribute for "this", except for iOS 5 and earlier
1059   // where substantial code, including the libstdc++ dylib, was compiled with
1060   // GCC and does not actually return "this".
1061   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1062       !(getTarget().getTriple().isiOS() &&
1063         getTarget().getTriple().isOSVersionLT(6))) {
1064     assert(!F->arg_empty() &&
1065            F->arg_begin()->getType()
1066              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1067            "unexpected this return");
1068     F->addAttribute(1, llvm::Attribute::Returned);
1069   }
1070 
1071   // Only a few attributes are set on declarations; these may later be
1072   // overridden by a definition.
1073 
1074   setLinkageAndVisibilityForGV(F, FD);
1075 
1076   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1077     F->setSection(SA->getName());
1078 
1079   if (FD->isReplaceableGlobalAllocationFunction()) {
1080     // A replaceable global allocation function does not act like a builtin by
1081     // default, only if it is invoked by a new-expression or delete-expression.
1082     F->addAttribute(llvm::AttributeSet::FunctionIndex,
1083                     llvm::Attribute::NoBuiltin);
1084 
1085     // A sane operator new returns a non-aliasing pointer.
1086     // FIXME: Also add NonNull attribute to the return value
1087     // for the non-nothrow forms?
1088     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1089     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1090         (Kind == OO_New || Kind == OO_Array_New))
1091       F->addAttribute(llvm::AttributeSet::ReturnIndex,
1092                       llvm::Attribute::NoAlias);
1093   }
1094 
1095   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1096     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1097   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1098     if (MD->isVirtual())
1099       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1100 
1101   CreateFunctionTypeMetadata(FD, F);
1102 }
1103 
1104 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1105   assert(!GV->isDeclaration() &&
1106          "Only globals with definition can force usage.");
1107   LLVMUsed.emplace_back(GV);
1108 }
1109 
1110 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1111   assert(!GV->isDeclaration() &&
1112          "Only globals with definition can force usage.");
1113   LLVMCompilerUsed.emplace_back(GV);
1114 }
1115 
1116 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1117                      std::vector<llvm::WeakVH> &List) {
1118   // Don't create llvm.used if there is no need.
1119   if (List.empty())
1120     return;
1121 
1122   // Convert List to what ConstantArray needs.
1123   SmallVector<llvm::Constant*, 8> UsedArray;
1124   UsedArray.resize(List.size());
1125   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1126     UsedArray[i] =
1127         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1128             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1129   }
1130 
1131   if (UsedArray.empty())
1132     return;
1133   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1134 
1135   auto *GV = new llvm::GlobalVariable(
1136       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1137       llvm::ConstantArray::get(ATy, UsedArray), Name);
1138 
1139   GV->setSection("llvm.metadata");
1140 }
1141 
1142 void CodeGenModule::emitLLVMUsed() {
1143   emitUsed(*this, "llvm.used", LLVMUsed);
1144   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1145 }
1146 
1147 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1148   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1149   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1150 }
1151 
1152 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1153   llvm::SmallString<32> Opt;
1154   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1155   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1156   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1157 }
1158 
1159 void CodeGenModule::AddDependentLib(StringRef Lib) {
1160   llvm::SmallString<24> Opt;
1161   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1162   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1163   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1164 }
1165 
1166 /// \brief Add link options implied by the given module, including modules
1167 /// it depends on, using a postorder walk.
1168 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1169                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1170                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1171   // Import this module's parent.
1172   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1173     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1174   }
1175 
1176   // Import this module's dependencies.
1177   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1178     if (Visited.insert(Mod->Imports[I - 1]).second)
1179       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1180   }
1181 
1182   // Add linker options to link against the libraries/frameworks
1183   // described by this module.
1184   llvm::LLVMContext &Context = CGM.getLLVMContext();
1185   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1186     // Link against a framework.  Frameworks are currently Darwin only, so we
1187     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1188     if (Mod->LinkLibraries[I-1].IsFramework) {
1189       llvm::Metadata *Args[2] = {
1190           llvm::MDString::get(Context, "-framework"),
1191           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1192 
1193       Metadata.push_back(llvm::MDNode::get(Context, Args));
1194       continue;
1195     }
1196 
1197     // Link against a library.
1198     llvm::SmallString<24> Opt;
1199     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1200       Mod->LinkLibraries[I-1].Library, Opt);
1201     auto *OptString = llvm::MDString::get(Context, Opt);
1202     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1203   }
1204 }
1205 
1206 void CodeGenModule::EmitModuleLinkOptions() {
1207   // Collect the set of all of the modules we want to visit to emit link
1208   // options, which is essentially the imported modules and all of their
1209   // non-explicit child modules.
1210   llvm::SetVector<clang::Module *> LinkModules;
1211   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1212   SmallVector<clang::Module *, 16> Stack;
1213 
1214   // Seed the stack with imported modules.
1215   for (Module *M : ImportedModules)
1216     if (Visited.insert(M).second)
1217       Stack.push_back(M);
1218 
1219   // Find all of the modules to import, making a little effort to prune
1220   // non-leaf modules.
1221   while (!Stack.empty()) {
1222     clang::Module *Mod = Stack.pop_back_val();
1223 
1224     bool AnyChildren = false;
1225 
1226     // Visit the submodules of this module.
1227     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1228                                         SubEnd = Mod->submodule_end();
1229          Sub != SubEnd; ++Sub) {
1230       // Skip explicit children; they need to be explicitly imported to be
1231       // linked against.
1232       if ((*Sub)->IsExplicit)
1233         continue;
1234 
1235       if (Visited.insert(*Sub).second) {
1236         Stack.push_back(*Sub);
1237         AnyChildren = true;
1238       }
1239     }
1240 
1241     // We didn't find any children, so add this module to the list of
1242     // modules to link against.
1243     if (!AnyChildren) {
1244       LinkModules.insert(Mod);
1245     }
1246   }
1247 
1248   // Add link options for all of the imported modules in reverse topological
1249   // order.  We don't do anything to try to order import link flags with respect
1250   // to linker options inserted by things like #pragma comment().
1251   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1252   Visited.clear();
1253   for (Module *M : LinkModules)
1254     if (Visited.insert(M).second)
1255       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1256   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1257   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1258 
1259   // Add the linker options metadata flag.
1260   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1261                             llvm::MDNode::get(getLLVMContext(),
1262                                               LinkerOptionsMetadata));
1263 }
1264 
1265 void CodeGenModule::EmitDeferred() {
1266   // Emit code for any potentially referenced deferred decls.  Since a
1267   // previously unused static decl may become used during the generation of code
1268   // for a static function, iterate until no changes are made.
1269 
1270   if (!DeferredVTables.empty()) {
1271     EmitDeferredVTables();
1272 
1273     // Emitting a vtable doesn't directly cause more vtables to
1274     // become deferred, although it can cause functions to be
1275     // emitted that then need those vtables.
1276     assert(DeferredVTables.empty());
1277   }
1278 
1279   // Stop if we're out of both deferred vtables and deferred declarations.
1280   if (DeferredDeclsToEmit.empty())
1281     return;
1282 
1283   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1284   // work, it will not interfere with this.
1285   std::vector<DeferredGlobal> CurDeclsToEmit;
1286   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1287 
1288   for (DeferredGlobal &G : CurDeclsToEmit) {
1289     GlobalDecl D = G.GD;
1290     G.GV = nullptr;
1291 
1292     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1293     // to get GlobalValue with exactly the type we need, not something that
1294     // might had been created for another decl with the same mangled name but
1295     // different type.
1296     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1297         GetAddrOfGlobal(D, /*IsForDefinition=*/true));
1298 
1299     // In case of different address spaces, we may still get a cast, even with
1300     // IsForDefinition equal to true. Query mangled names table to get
1301     // GlobalValue.
1302     if (!GV)
1303       GV = GetGlobalValue(getMangledName(D));
1304 
1305     // Make sure GetGlobalValue returned non-null.
1306     assert(GV);
1307 
1308     // Check to see if we've already emitted this.  This is necessary
1309     // for a couple of reasons: first, decls can end up in the
1310     // deferred-decls queue multiple times, and second, decls can end
1311     // up with definitions in unusual ways (e.g. by an extern inline
1312     // function acquiring a strong function redefinition).  Just
1313     // ignore these cases.
1314     if (!GV->isDeclaration())
1315       continue;
1316 
1317     // Otherwise, emit the definition and move on to the next one.
1318     EmitGlobalDefinition(D, GV);
1319 
1320     // If we found out that we need to emit more decls, do that recursively.
1321     // This has the advantage that the decls are emitted in a DFS and related
1322     // ones are close together, which is convenient for testing.
1323     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1324       EmitDeferred();
1325       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1326     }
1327   }
1328 }
1329 
1330 void CodeGenModule::EmitGlobalAnnotations() {
1331   if (Annotations.empty())
1332     return;
1333 
1334   // Create a new global variable for the ConstantStruct in the Module.
1335   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1336     Annotations[0]->getType(), Annotations.size()), Annotations);
1337   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1338                                       llvm::GlobalValue::AppendingLinkage,
1339                                       Array, "llvm.global.annotations");
1340   gv->setSection(AnnotationSection);
1341 }
1342 
1343 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1344   llvm::Constant *&AStr = AnnotationStrings[Str];
1345   if (AStr)
1346     return AStr;
1347 
1348   // Not found yet, create a new global.
1349   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1350   auto *gv =
1351       new llvm::GlobalVariable(getModule(), s->getType(), true,
1352                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1353   gv->setSection(AnnotationSection);
1354   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1355   AStr = gv;
1356   return gv;
1357 }
1358 
1359 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1360   SourceManager &SM = getContext().getSourceManager();
1361   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1362   if (PLoc.isValid())
1363     return EmitAnnotationString(PLoc.getFilename());
1364   return EmitAnnotationString(SM.getBufferName(Loc));
1365 }
1366 
1367 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1368   SourceManager &SM = getContext().getSourceManager();
1369   PresumedLoc PLoc = SM.getPresumedLoc(L);
1370   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1371     SM.getExpansionLineNumber(L);
1372   return llvm::ConstantInt::get(Int32Ty, LineNo);
1373 }
1374 
1375 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1376                                                 const AnnotateAttr *AA,
1377                                                 SourceLocation L) {
1378   // Get the globals for file name, annotation, and the line number.
1379   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1380                  *UnitGV = EmitAnnotationUnit(L),
1381                  *LineNoCst = EmitAnnotationLineNo(L);
1382 
1383   // Create the ConstantStruct for the global annotation.
1384   llvm::Constant *Fields[4] = {
1385     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1386     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1387     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1388     LineNoCst
1389   };
1390   return llvm::ConstantStruct::getAnon(Fields);
1391 }
1392 
1393 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1394                                          llvm::GlobalValue *GV) {
1395   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1396   // Get the struct elements for these annotations.
1397   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1398     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1399 }
1400 
1401 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1402                                            SourceLocation Loc) const {
1403   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1404   // Blacklist by function name.
1405   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1406     return true;
1407   // Blacklist by location.
1408   if (Loc.isValid())
1409     return SanitizerBL.isBlacklistedLocation(Loc);
1410   // If location is unknown, this may be a compiler-generated function. Assume
1411   // it's located in the main file.
1412   auto &SM = Context.getSourceManager();
1413   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1414     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1415   }
1416   return false;
1417 }
1418 
1419 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1420                                            SourceLocation Loc, QualType Ty,
1421                                            StringRef Category) const {
1422   // For now globals can be blacklisted only in ASan and KASan.
1423   if (!LangOpts.Sanitize.hasOneOf(
1424           SanitizerKind::Address | SanitizerKind::KernelAddress))
1425     return false;
1426   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1427   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1428     return true;
1429   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1430     return true;
1431   // Check global type.
1432   if (!Ty.isNull()) {
1433     // Drill down the array types: if global variable of a fixed type is
1434     // blacklisted, we also don't instrument arrays of them.
1435     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1436       Ty = AT->getElementType();
1437     Ty = Ty.getCanonicalType().getUnqualifiedType();
1438     // We allow to blacklist only record types (classes, structs etc.)
1439     if (Ty->isRecordType()) {
1440       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1441       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1442         return true;
1443     }
1444   }
1445   return false;
1446 }
1447 
1448 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1449   // Never defer when EmitAllDecls is specified.
1450   if (LangOpts.EmitAllDecls)
1451     return true;
1452 
1453   return getContext().DeclMustBeEmitted(Global);
1454 }
1455 
1456 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1457   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1458     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1459       // Implicit template instantiations may change linkage if they are later
1460       // explicitly instantiated, so they should not be emitted eagerly.
1461       return false;
1462   if (const auto *VD = dyn_cast<VarDecl>(Global))
1463     if (Context.getInlineVariableDefinitionKind(VD) ==
1464         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1465       // A definition of an inline constexpr static data member may change
1466       // linkage later if it's redeclared outside the class.
1467       return false;
1468   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1469   // codegen for global variables, because they may be marked as threadprivate.
1470   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1471       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1472     return false;
1473 
1474   return true;
1475 }
1476 
1477 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1478     const CXXUuidofExpr* E) {
1479   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1480   // well-formed.
1481   StringRef Uuid = E->getUuidStr();
1482   std::string Name = "_GUID_" + Uuid.lower();
1483   std::replace(Name.begin(), Name.end(), '-', '_');
1484 
1485   // The UUID descriptor should be pointer aligned.
1486   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1487 
1488   // Look for an existing global.
1489   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1490     return ConstantAddress(GV, Alignment);
1491 
1492   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1493   assert(Init && "failed to initialize as constant");
1494 
1495   auto *GV = new llvm::GlobalVariable(
1496       getModule(), Init->getType(),
1497       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1498   if (supportsCOMDAT())
1499     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1500   return ConstantAddress(GV, Alignment);
1501 }
1502 
1503 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1504   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1505   assert(AA && "No alias?");
1506 
1507   CharUnits Alignment = getContext().getDeclAlign(VD);
1508   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1509 
1510   // See if there is already something with the target's name in the module.
1511   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1512   if (Entry) {
1513     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1514     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1515     return ConstantAddress(Ptr, Alignment);
1516   }
1517 
1518   llvm::Constant *Aliasee;
1519   if (isa<llvm::FunctionType>(DeclTy))
1520     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1521                                       GlobalDecl(cast<FunctionDecl>(VD)),
1522                                       /*ForVTable=*/false);
1523   else
1524     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1525                                     llvm::PointerType::getUnqual(DeclTy),
1526                                     nullptr);
1527 
1528   auto *F = cast<llvm::GlobalValue>(Aliasee);
1529   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1530   WeakRefReferences.insert(F);
1531 
1532   return ConstantAddress(Aliasee, Alignment);
1533 }
1534 
1535 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1536   const auto *Global = cast<ValueDecl>(GD.getDecl());
1537 
1538   // Weak references don't produce any output by themselves.
1539   if (Global->hasAttr<WeakRefAttr>())
1540     return;
1541 
1542   // If this is an alias definition (which otherwise looks like a declaration)
1543   // emit it now.
1544   if (Global->hasAttr<AliasAttr>())
1545     return EmitAliasDefinition(GD);
1546 
1547   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1548   if (Global->hasAttr<IFuncAttr>())
1549     return emitIFuncDefinition(GD);
1550 
1551   // If this is CUDA, be selective about which declarations we emit.
1552   if (LangOpts.CUDA) {
1553     if (LangOpts.CUDAIsDevice) {
1554       if (!Global->hasAttr<CUDADeviceAttr>() &&
1555           !Global->hasAttr<CUDAGlobalAttr>() &&
1556           !Global->hasAttr<CUDAConstantAttr>() &&
1557           !Global->hasAttr<CUDASharedAttr>())
1558         return;
1559     } else {
1560       // We need to emit host-side 'shadows' for all global
1561       // device-side variables because the CUDA runtime needs their
1562       // size and host-side address in order to provide access to
1563       // their device-side incarnations.
1564 
1565       // So device-only functions are the only things we skip.
1566       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1567           Global->hasAttr<CUDADeviceAttr>())
1568         return;
1569 
1570       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1571              "Expected Variable or Function");
1572     }
1573   }
1574 
1575   if (LangOpts.OpenMP) {
1576     // If this is OpenMP device, check if it is legal to emit this global
1577     // normally.
1578     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1579       return;
1580     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1581       if (MustBeEmitted(Global))
1582         EmitOMPDeclareReduction(DRD);
1583       return;
1584     }
1585   }
1586 
1587   // Ignore declarations, they will be emitted on their first use.
1588   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1589     // Forward declarations are emitted lazily on first use.
1590     if (!FD->doesThisDeclarationHaveABody()) {
1591       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1592         return;
1593 
1594       StringRef MangledName = getMangledName(GD);
1595 
1596       // Compute the function info and LLVM type.
1597       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1598       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1599 
1600       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1601                               /*DontDefer=*/false);
1602       return;
1603     }
1604   } else {
1605     const auto *VD = cast<VarDecl>(Global);
1606     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1607     // We need to emit device-side global CUDA variables even if a
1608     // variable does not have a definition -- we still need to define
1609     // host-side shadow for it.
1610     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1611                            !VD->hasDefinition() &&
1612                            (VD->hasAttr<CUDAConstantAttr>() ||
1613                             VD->hasAttr<CUDADeviceAttr>());
1614     if (!MustEmitForCuda &&
1615         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1616         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1617       // If this declaration may have caused an inline variable definition to
1618       // change linkage, make sure that it's emitted.
1619       if (Context.getInlineVariableDefinitionKind(VD) ==
1620           ASTContext::InlineVariableDefinitionKind::Strong)
1621         GetAddrOfGlobalVar(VD);
1622       return;
1623     }
1624   }
1625 
1626   // Defer code generation to first use when possible, e.g. if this is an inline
1627   // function. If the global must always be emitted, do it eagerly if possible
1628   // to benefit from cache locality.
1629   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1630     // Emit the definition if it can't be deferred.
1631     EmitGlobalDefinition(GD);
1632     return;
1633   }
1634 
1635   // If we're deferring emission of a C++ variable with an
1636   // initializer, remember the order in which it appeared in the file.
1637   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1638       cast<VarDecl>(Global)->hasInit()) {
1639     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1640     CXXGlobalInits.push_back(nullptr);
1641   }
1642 
1643   StringRef MangledName = getMangledName(GD);
1644   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1645     // The value has already been used and should therefore be emitted.
1646     addDeferredDeclToEmit(GV, GD);
1647   } else if (MustBeEmitted(Global)) {
1648     // The value must be emitted, but cannot be emitted eagerly.
1649     assert(!MayBeEmittedEagerly(Global));
1650     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1651   } else {
1652     // Otherwise, remember that we saw a deferred decl with this name.  The
1653     // first use of the mangled name will cause it to move into
1654     // DeferredDeclsToEmit.
1655     DeferredDecls[MangledName] = GD;
1656   }
1657 }
1658 
1659 namespace {
1660   struct FunctionIsDirectlyRecursive :
1661     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1662     const StringRef Name;
1663     const Builtin::Context &BI;
1664     bool Result;
1665     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1666       Name(N), BI(C), Result(false) {
1667     }
1668     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1669 
1670     bool TraverseCallExpr(CallExpr *E) {
1671       const FunctionDecl *FD = E->getDirectCallee();
1672       if (!FD)
1673         return true;
1674       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1675       if (Attr && Name == Attr->getLabel()) {
1676         Result = true;
1677         return false;
1678       }
1679       unsigned BuiltinID = FD->getBuiltinID();
1680       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1681         return true;
1682       StringRef BuiltinName = BI.getName(BuiltinID);
1683       if (BuiltinName.startswith("__builtin_") &&
1684           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1685         Result = true;
1686         return false;
1687       }
1688       return true;
1689     }
1690   };
1691 
1692   struct DLLImportFunctionVisitor
1693       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1694     bool SafeToInline = true;
1695 
1696     bool shouldVisitImplicitCode() const { return true; }
1697 
1698     bool VisitVarDecl(VarDecl *VD) {
1699       // A thread-local variable cannot be imported.
1700       SafeToInline = !VD->getTLSKind();
1701       return SafeToInline;
1702     }
1703 
1704     // Make sure we're not referencing non-imported vars or functions.
1705     bool VisitDeclRefExpr(DeclRefExpr *E) {
1706       ValueDecl *VD = E->getDecl();
1707       if (isa<FunctionDecl>(VD))
1708         SafeToInline = VD->hasAttr<DLLImportAttr>();
1709       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1710         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1711       return SafeToInline;
1712     }
1713     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
1714       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
1715       return SafeToInline;
1716     }
1717     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1718       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1719       return SafeToInline;
1720     }
1721     bool VisitCXXNewExpr(CXXNewExpr *E) {
1722       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1723       return SafeToInline;
1724     }
1725   };
1726 }
1727 
1728 // isTriviallyRecursive - Check if this function calls another
1729 // decl that, because of the asm attribute or the other decl being a builtin,
1730 // ends up pointing to itself.
1731 bool
1732 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1733   StringRef Name;
1734   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1735     // asm labels are a special kind of mangling we have to support.
1736     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1737     if (!Attr)
1738       return false;
1739     Name = Attr->getLabel();
1740   } else {
1741     Name = FD->getName();
1742   }
1743 
1744   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1745   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1746   return Walker.Result;
1747 }
1748 
1749 // Check if T is a class type with a destructor that's not dllimport.
1750 static bool HasNonDllImportDtor(QualType T) {
1751   if (const RecordType *RT = dyn_cast<RecordType>(T))
1752     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1753       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1754         return true;
1755 
1756   return false;
1757 }
1758 
1759 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1760   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1761     return true;
1762   const auto *F = cast<FunctionDecl>(GD.getDecl());
1763   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1764     return false;
1765 
1766   if (F->hasAttr<DLLImportAttr>()) {
1767     // Check whether it would be safe to inline this dllimport function.
1768     DLLImportFunctionVisitor Visitor;
1769     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1770     if (!Visitor.SafeToInline)
1771       return false;
1772 
1773     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
1774       // Implicit destructor invocations aren't captured in the AST, so the
1775       // check above can't see them. Check for them manually here.
1776       for (const Decl *Member : Dtor->getParent()->decls())
1777         if (isa<FieldDecl>(Member))
1778           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
1779             return false;
1780       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
1781         if (HasNonDllImportDtor(B.getType()))
1782           return false;
1783     }
1784   }
1785 
1786   // PR9614. Avoid cases where the source code is lying to us. An available
1787   // externally function should have an equivalent function somewhere else,
1788   // but a function that calls itself is clearly not equivalent to the real
1789   // implementation.
1790   // This happens in glibc's btowc and in some configure checks.
1791   return !isTriviallyRecursive(F);
1792 }
1793 
1794 /// If the type for the method's class was generated by
1795 /// CGDebugInfo::createContextChain(), the cache contains only a
1796 /// limited DIType without any declarations. Since EmitFunctionStart()
1797 /// needs to find the canonical declaration for each method, we need
1798 /// to construct the complete type prior to emitting the method.
1799 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1800   if (!D->isInstance())
1801     return;
1802 
1803   if (CGDebugInfo *DI = getModuleDebugInfo())
1804     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
1805       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1806       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1807     }
1808 }
1809 
1810 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1811   const auto *D = cast<ValueDecl>(GD.getDecl());
1812 
1813   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1814                                  Context.getSourceManager(),
1815                                  "Generating code for declaration");
1816 
1817   if (isa<FunctionDecl>(D)) {
1818     // At -O0, don't generate IR for functions with available_externally
1819     // linkage.
1820     if (!shouldEmitFunction(GD))
1821       return;
1822 
1823     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1824       CompleteDIClassType(Method);
1825       // Make sure to emit the definition(s) before we emit the thunks.
1826       // This is necessary for the generation of certain thunks.
1827       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1828         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1829       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1830         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1831       else
1832         EmitGlobalFunctionDefinition(GD, GV);
1833 
1834       if (Method->isVirtual())
1835         getVTables().EmitThunks(GD);
1836 
1837       return;
1838     }
1839 
1840     return EmitGlobalFunctionDefinition(GD, GV);
1841   }
1842 
1843   if (const auto *VD = dyn_cast<VarDecl>(D))
1844     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1845 
1846   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1847 }
1848 
1849 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1850                                                       llvm::Function *NewFn);
1851 
1852 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1853 /// module, create and return an llvm Function with the specified type. If there
1854 /// is something in the module with the specified name, return it potentially
1855 /// bitcasted to the right type.
1856 ///
1857 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1858 /// to set the attributes on the function when it is first created.
1859 llvm::Constant *
1860 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1861                                        llvm::Type *Ty,
1862                                        GlobalDecl GD, bool ForVTable,
1863                                        bool DontDefer, bool IsThunk,
1864                                        llvm::AttributeSet ExtraAttrs,
1865                                        bool IsForDefinition) {
1866   const Decl *D = GD.getDecl();
1867 
1868   // Lookup the entry, lazily creating it if necessary.
1869   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1870   if (Entry) {
1871     if (WeakRefReferences.erase(Entry)) {
1872       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1873       if (FD && !FD->hasAttr<WeakAttr>())
1874         Entry->setLinkage(llvm::Function::ExternalLinkage);
1875     }
1876 
1877     // Handle dropped DLL attributes.
1878     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1879       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1880 
1881     // If there are two attempts to define the same mangled name, issue an
1882     // error.
1883     if (IsForDefinition && !Entry->isDeclaration()) {
1884       GlobalDecl OtherGD;
1885       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1886       // to make sure that we issue an error only once.
1887       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1888           (GD.getCanonicalDecl().getDecl() !=
1889            OtherGD.getCanonicalDecl().getDecl()) &&
1890           DiagnosedConflictingDefinitions.insert(GD).second) {
1891         getDiags().Report(D->getLocation(),
1892                           diag::err_duplicate_mangled_name);
1893         getDiags().Report(OtherGD.getDecl()->getLocation(),
1894                           diag::note_previous_definition);
1895       }
1896     }
1897 
1898     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1899         (Entry->getType()->getElementType() == Ty)) {
1900       return Entry;
1901     }
1902 
1903     // Make sure the result is of the correct type.
1904     // (If function is requested for a definition, we always need to create a new
1905     // function, not just return a bitcast.)
1906     if (!IsForDefinition)
1907       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1908   }
1909 
1910   // This function doesn't have a complete type (for example, the return
1911   // type is an incomplete struct). Use a fake type instead, and make
1912   // sure not to try to set attributes.
1913   bool IsIncompleteFunction = false;
1914 
1915   llvm::FunctionType *FTy;
1916   if (isa<llvm::FunctionType>(Ty)) {
1917     FTy = cast<llvm::FunctionType>(Ty);
1918   } else {
1919     FTy = llvm::FunctionType::get(VoidTy, false);
1920     IsIncompleteFunction = true;
1921   }
1922 
1923   llvm::Function *F =
1924       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1925                              Entry ? StringRef() : MangledName, &getModule());
1926 
1927   // If we already created a function with the same mangled name (but different
1928   // type) before, take its name and add it to the list of functions to be
1929   // replaced with F at the end of CodeGen.
1930   //
1931   // This happens if there is a prototype for a function (e.g. "int f()") and
1932   // then a definition of a different type (e.g. "int f(int x)").
1933   if (Entry) {
1934     F->takeName(Entry);
1935 
1936     // This might be an implementation of a function without a prototype, in
1937     // which case, try to do special replacement of calls which match the new
1938     // prototype.  The really key thing here is that we also potentially drop
1939     // arguments from the call site so as to make a direct call, which makes the
1940     // inliner happier and suppresses a number of optimizer warnings (!) about
1941     // dropping arguments.
1942     if (!Entry->use_empty()) {
1943       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
1944       Entry->removeDeadConstantUsers();
1945     }
1946 
1947     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
1948         F, Entry->getType()->getElementType()->getPointerTo());
1949     addGlobalValReplacement(Entry, BC);
1950   }
1951 
1952   assert(F->getName() == MangledName && "name was uniqued!");
1953   if (D)
1954     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1955   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1956     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1957     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1958                      llvm::AttributeSet::get(VMContext,
1959                                              llvm::AttributeSet::FunctionIndex,
1960                                              B));
1961   }
1962 
1963   if (!DontDefer) {
1964     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1965     // each other bottoming out with the base dtor.  Therefore we emit non-base
1966     // dtors on usage, even if there is no dtor definition in the TU.
1967     if (D && isa<CXXDestructorDecl>(D) &&
1968         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1969                                            GD.getDtorType()))
1970       addDeferredDeclToEmit(F, GD);
1971 
1972     // This is the first use or definition of a mangled name.  If there is a
1973     // deferred decl with this name, remember that we need to emit it at the end
1974     // of the file.
1975     auto DDI = DeferredDecls.find(MangledName);
1976     if (DDI != DeferredDecls.end()) {
1977       // Move the potentially referenced deferred decl to the
1978       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1979       // don't need it anymore).
1980       addDeferredDeclToEmit(F, DDI->second);
1981       DeferredDecls.erase(DDI);
1982 
1983       // Otherwise, there are cases we have to worry about where we're
1984       // using a declaration for which we must emit a definition but where
1985       // we might not find a top-level definition:
1986       //   - member functions defined inline in their classes
1987       //   - friend functions defined inline in some class
1988       //   - special member functions with implicit definitions
1989       // If we ever change our AST traversal to walk into class methods,
1990       // this will be unnecessary.
1991       //
1992       // We also don't emit a definition for a function if it's going to be an
1993       // entry in a vtable, unless it's already marked as used.
1994     } else if (getLangOpts().CPlusPlus && D) {
1995       // Look for a declaration that's lexically in a record.
1996       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1997            FD = FD->getPreviousDecl()) {
1998         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1999           if (FD->doesThisDeclarationHaveABody()) {
2000             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
2001             break;
2002           }
2003         }
2004       }
2005     }
2006   }
2007 
2008   // Make sure the result is of the requested type.
2009   if (!IsIncompleteFunction) {
2010     assert(F->getType()->getElementType() == Ty);
2011     return F;
2012   }
2013 
2014   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2015   return llvm::ConstantExpr::getBitCast(F, PTy);
2016 }
2017 
2018 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2019 /// non-null, then this function will use the specified type if it has to
2020 /// create it (this occurs when we see a definition of the function).
2021 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2022                                                  llvm::Type *Ty,
2023                                                  bool ForVTable,
2024                                                  bool DontDefer,
2025                                                  bool IsForDefinition) {
2026   // If there was no specific requested type, just convert it now.
2027   if (!Ty) {
2028     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2029     auto CanonTy = Context.getCanonicalType(FD->getType());
2030     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2031   }
2032 
2033   StringRef MangledName = getMangledName(GD);
2034   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2035                                  /*IsThunk=*/false, llvm::AttributeSet(),
2036                                  IsForDefinition);
2037 }
2038 
2039 /// CreateRuntimeFunction - Create a new runtime function with the specified
2040 /// type and name.
2041 llvm::Constant *
2042 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
2043                                      StringRef Name,
2044                                      llvm::AttributeSet ExtraAttrs) {
2045   llvm::Constant *C =
2046       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2047                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2048   if (auto *F = dyn_cast<llvm::Function>(C))
2049     if (F->empty())
2050       F->setCallingConv(getRuntimeCC());
2051   return C;
2052 }
2053 
2054 /// CreateBuiltinFunction - Create a new builtin function with the specified
2055 /// type and name.
2056 llvm::Constant *
2057 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
2058                                      StringRef Name,
2059                                      llvm::AttributeSet ExtraAttrs) {
2060   llvm::Constant *C =
2061       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2062                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2063   if (auto *F = dyn_cast<llvm::Function>(C))
2064     if (F->empty())
2065       F->setCallingConv(getBuiltinCC());
2066   return C;
2067 }
2068 
2069 /// isTypeConstant - Determine whether an object of this type can be emitted
2070 /// as a constant.
2071 ///
2072 /// If ExcludeCtor is true, the duration when the object's constructor runs
2073 /// will not be considered. The caller will need to verify that the object is
2074 /// not written to during its construction.
2075 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2076   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2077     return false;
2078 
2079   if (Context.getLangOpts().CPlusPlus) {
2080     if (const CXXRecordDecl *Record
2081           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2082       return ExcludeCtor && !Record->hasMutableFields() &&
2083              Record->hasTrivialDestructor();
2084   }
2085 
2086   return true;
2087 }
2088 
2089 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2090 /// create and return an llvm GlobalVariable with the specified type.  If there
2091 /// is something in the module with the specified name, return it potentially
2092 /// bitcasted to the right type.
2093 ///
2094 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2095 /// to set the attributes on the global when it is first created.
2096 ///
2097 /// If IsForDefinition is true, it is guranteed that an actual global with
2098 /// type Ty will be returned, not conversion of a variable with the same
2099 /// mangled name but some other type.
2100 llvm::Constant *
2101 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2102                                      llvm::PointerType *Ty,
2103                                      const VarDecl *D,
2104                                      bool IsForDefinition) {
2105   // Lookup the entry, lazily creating it if necessary.
2106   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2107   if (Entry) {
2108     if (WeakRefReferences.erase(Entry)) {
2109       if (D && !D->hasAttr<WeakAttr>())
2110         Entry->setLinkage(llvm::Function::ExternalLinkage);
2111     }
2112 
2113     // Handle dropped DLL attributes.
2114     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2115       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2116 
2117     if (Entry->getType() == Ty)
2118       return Entry;
2119 
2120     // If there are two attempts to define the same mangled name, issue an
2121     // error.
2122     if (IsForDefinition && !Entry->isDeclaration()) {
2123       GlobalDecl OtherGD;
2124       const VarDecl *OtherD;
2125 
2126       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2127       // to make sure that we issue an error only once.
2128       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2129           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2130           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2131           OtherD->hasInit() &&
2132           DiagnosedConflictingDefinitions.insert(D).second) {
2133         getDiags().Report(D->getLocation(),
2134                           diag::err_duplicate_mangled_name);
2135         getDiags().Report(OtherGD.getDecl()->getLocation(),
2136                           diag::note_previous_definition);
2137       }
2138     }
2139 
2140     // Make sure the result is of the correct type.
2141     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2142       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2143 
2144     // (If global is requested for a definition, we always need to create a new
2145     // global, not just return a bitcast.)
2146     if (!IsForDefinition)
2147       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2148   }
2149 
2150   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2151   auto *GV = new llvm::GlobalVariable(
2152       getModule(), Ty->getElementType(), false,
2153       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2154       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2155 
2156   // If we already created a global with the same mangled name (but different
2157   // type) before, take its name and remove it from its parent.
2158   if (Entry) {
2159     GV->takeName(Entry);
2160 
2161     if (!Entry->use_empty()) {
2162       llvm::Constant *NewPtrForOldDecl =
2163           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2164       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2165     }
2166 
2167     Entry->eraseFromParent();
2168   }
2169 
2170   // This is the first use or definition of a mangled name.  If there is a
2171   // deferred decl with this name, remember that we need to emit it at the end
2172   // of the file.
2173   auto DDI = DeferredDecls.find(MangledName);
2174   if (DDI != DeferredDecls.end()) {
2175     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2176     // list, and remove it from DeferredDecls (since we don't need it anymore).
2177     addDeferredDeclToEmit(GV, DDI->second);
2178     DeferredDecls.erase(DDI);
2179   }
2180 
2181   // Handle things which are present even on external declarations.
2182   if (D) {
2183     // FIXME: This code is overly simple and should be merged with other global
2184     // handling.
2185     GV->setConstant(isTypeConstant(D->getType(), false));
2186 
2187     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2188 
2189     setLinkageAndVisibilityForGV(GV, D);
2190 
2191     if (D->getTLSKind()) {
2192       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2193         CXXThreadLocals.push_back(D);
2194       setTLSMode(GV, *D);
2195     }
2196 
2197     // If required by the ABI, treat declarations of static data members with
2198     // inline initializers as definitions.
2199     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2200       EmitGlobalVarDefinition(D);
2201     }
2202 
2203     // Handle XCore specific ABI requirements.
2204     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
2205         D->getLanguageLinkage() == CLanguageLinkage &&
2206         D->getType().isConstant(Context) &&
2207         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2208       GV->setSection(".cp.rodata");
2209   }
2210 
2211   if (AddrSpace != Ty->getAddressSpace())
2212     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2213 
2214   return GV;
2215 }
2216 
2217 llvm::Constant *
2218 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2219                                bool IsForDefinition) {
2220   if (isa<CXXConstructorDecl>(GD.getDecl()))
2221     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()),
2222                                 getFromCtorType(GD.getCtorType()),
2223                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2224                                 /*DontDefer=*/false, IsForDefinition);
2225   else if (isa<CXXDestructorDecl>(GD.getDecl()))
2226     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()),
2227                                 getFromDtorType(GD.getDtorType()),
2228                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2229                                 /*DontDefer=*/false, IsForDefinition);
2230   else if (isa<CXXMethodDecl>(GD.getDecl())) {
2231     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2232         cast<CXXMethodDecl>(GD.getDecl()));
2233     auto Ty = getTypes().GetFunctionType(*FInfo);
2234     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2235                              IsForDefinition);
2236   } else if (isa<FunctionDecl>(GD.getDecl())) {
2237     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2238     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2239     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2240                              IsForDefinition);
2241   } else
2242     return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr,
2243                               IsForDefinition);
2244 }
2245 
2246 llvm::GlobalVariable *
2247 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2248                                       llvm::Type *Ty,
2249                                       llvm::GlobalValue::LinkageTypes Linkage) {
2250   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2251   llvm::GlobalVariable *OldGV = nullptr;
2252 
2253   if (GV) {
2254     // Check if the variable has the right type.
2255     if (GV->getType()->getElementType() == Ty)
2256       return GV;
2257 
2258     // Because C++ name mangling, the only way we can end up with an already
2259     // existing global with the same name is if it has been declared extern "C".
2260     assert(GV->isDeclaration() && "Declaration has wrong type!");
2261     OldGV = GV;
2262   }
2263 
2264   // Create a new variable.
2265   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2266                                 Linkage, nullptr, Name);
2267 
2268   if (OldGV) {
2269     // Replace occurrences of the old variable if needed.
2270     GV->takeName(OldGV);
2271 
2272     if (!OldGV->use_empty()) {
2273       llvm::Constant *NewPtrForOldDecl =
2274       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2275       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2276     }
2277 
2278     OldGV->eraseFromParent();
2279   }
2280 
2281   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2282       !GV->hasAvailableExternallyLinkage())
2283     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2284 
2285   return GV;
2286 }
2287 
2288 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2289 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2290 /// then it will be created with the specified type instead of whatever the
2291 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2292 /// that an actual global with type Ty will be returned, not conversion of a
2293 /// variable with the same mangled name but some other type.
2294 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2295                                                   llvm::Type *Ty,
2296                                                   bool IsForDefinition) {
2297   assert(D->hasGlobalStorage() && "Not a global variable");
2298   QualType ASTTy = D->getType();
2299   if (!Ty)
2300     Ty = getTypes().ConvertTypeForMem(ASTTy);
2301 
2302   llvm::PointerType *PTy =
2303     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2304 
2305   StringRef MangledName = getMangledName(D);
2306   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2307 }
2308 
2309 /// CreateRuntimeVariable - Create a new runtime global variable with the
2310 /// specified type and name.
2311 llvm::Constant *
2312 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2313                                      StringRef Name) {
2314   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2315 }
2316 
2317 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2318   assert(!D->getInit() && "Cannot emit definite definitions here!");
2319 
2320   StringRef MangledName = getMangledName(D);
2321   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2322 
2323   // We already have a definition, not declaration, with the same mangled name.
2324   // Emitting of declaration is not required (and actually overwrites emitted
2325   // definition).
2326   if (GV && !GV->isDeclaration())
2327     return;
2328 
2329   // If we have not seen a reference to this variable yet, place it into the
2330   // deferred declarations table to be emitted if needed later.
2331   if (!MustBeEmitted(D) && !GV) {
2332       DeferredDecls[MangledName] = D;
2333       return;
2334   }
2335 
2336   // The tentative definition is the only definition.
2337   EmitGlobalVarDefinition(D);
2338 }
2339 
2340 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2341   return Context.toCharUnitsFromBits(
2342       getDataLayout().getTypeStoreSizeInBits(Ty));
2343 }
2344 
2345 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2346                                                  unsigned AddrSpace) {
2347   if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2348     if (D->hasAttr<CUDAConstantAttr>())
2349       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2350     else if (D->hasAttr<CUDASharedAttr>())
2351       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2352     else
2353       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2354   }
2355 
2356   return AddrSpace;
2357 }
2358 
2359 template<typename SomeDecl>
2360 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2361                                                llvm::GlobalValue *GV) {
2362   if (!getLangOpts().CPlusPlus)
2363     return;
2364 
2365   // Must have 'used' attribute, or else inline assembly can't rely on
2366   // the name existing.
2367   if (!D->template hasAttr<UsedAttr>())
2368     return;
2369 
2370   // Must have internal linkage and an ordinary name.
2371   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2372     return;
2373 
2374   // Must be in an extern "C" context. Entities declared directly within
2375   // a record are not extern "C" even if the record is in such a context.
2376   const SomeDecl *First = D->getFirstDecl();
2377   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2378     return;
2379 
2380   // OK, this is an internal linkage entity inside an extern "C" linkage
2381   // specification. Make a note of that so we can give it the "expected"
2382   // mangled name if nothing else is using that name.
2383   std::pair<StaticExternCMap::iterator, bool> R =
2384       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2385 
2386   // If we have multiple internal linkage entities with the same name
2387   // in extern "C" regions, none of them gets that name.
2388   if (!R.second)
2389     R.first->second = nullptr;
2390 }
2391 
2392 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2393   if (!CGM.supportsCOMDAT())
2394     return false;
2395 
2396   if (D.hasAttr<SelectAnyAttr>())
2397     return true;
2398 
2399   GVALinkage Linkage;
2400   if (auto *VD = dyn_cast<VarDecl>(&D))
2401     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2402   else
2403     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2404 
2405   switch (Linkage) {
2406   case GVA_Internal:
2407   case GVA_AvailableExternally:
2408   case GVA_StrongExternal:
2409     return false;
2410   case GVA_DiscardableODR:
2411   case GVA_StrongODR:
2412     return true;
2413   }
2414   llvm_unreachable("No such linkage");
2415 }
2416 
2417 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2418                                           llvm::GlobalObject &GO) {
2419   if (!shouldBeInCOMDAT(*this, D))
2420     return;
2421   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2422 }
2423 
2424 /// Pass IsTentative as true if you want to create a tentative definition.
2425 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2426                                             bool IsTentative) {
2427   // OpenCL global variables of sampler type are translated to function calls,
2428   // therefore no need to be translated.
2429   QualType ASTTy = D->getType();
2430   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2431     return;
2432 
2433   llvm::Constant *Init = nullptr;
2434   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2435   bool NeedsGlobalCtor = false;
2436   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2437 
2438   const VarDecl *InitDecl;
2439   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2440 
2441   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2442   // as part of their declaration."  Sema has already checked for
2443   // error cases, so we just need to set Init to UndefValue.
2444   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2445       D->hasAttr<CUDASharedAttr>())
2446     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2447   else if (!InitExpr) {
2448     // This is a tentative definition; tentative definitions are
2449     // implicitly initialized with { 0 }.
2450     //
2451     // Note that tentative definitions are only emitted at the end of
2452     // a translation unit, so they should never have incomplete
2453     // type. In addition, EmitTentativeDefinition makes sure that we
2454     // never attempt to emit a tentative definition if a real one
2455     // exists. A use may still exists, however, so we still may need
2456     // to do a RAUW.
2457     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2458     Init = EmitNullConstant(D->getType());
2459   } else {
2460     initializedGlobalDecl = GlobalDecl(D);
2461     Init = EmitConstantInit(*InitDecl);
2462 
2463     if (!Init) {
2464       QualType T = InitExpr->getType();
2465       if (D->getType()->isReferenceType())
2466         T = D->getType();
2467 
2468       if (getLangOpts().CPlusPlus) {
2469         Init = EmitNullConstant(T);
2470         NeedsGlobalCtor = true;
2471       } else {
2472         ErrorUnsupported(D, "static initializer");
2473         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2474       }
2475     } else {
2476       // We don't need an initializer, so remove the entry for the delayed
2477       // initializer position (just in case this entry was delayed) if we
2478       // also don't need to register a destructor.
2479       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2480         DelayedCXXInitPosition.erase(D);
2481     }
2482   }
2483 
2484   llvm::Type* InitType = Init->getType();
2485   llvm::Constant *Entry =
2486       GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative);
2487 
2488   // Strip off a bitcast if we got one back.
2489   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2490     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2491            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2492            // All zero index gep.
2493            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2494     Entry = CE->getOperand(0);
2495   }
2496 
2497   // Entry is now either a Function or GlobalVariable.
2498   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2499 
2500   // We have a definition after a declaration with the wrong type.
2501   // We must make a new GlobalVariable* and update everything that used OldGV
2502   // (a declaration or tentative definition) with the new GlobalVariable*
2503   // (which will be a definition).
2504   //
2505   // This happens if there is a prototype for a global (e.g.
2506   // "extern int x[];") and then a definition of a different type (e.g.
2507   // "int x[10];"). This also happens when an initializer has a different type
2508   // from the type of the global (this happens with unions).
2509   if (!GV ||
2510       GV->getType()->getElementType() != InitType ||
2511       GV->getType()->getAddressSpace() !=
2512        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2513 
2514     // Move the old entry aside so that we'll create a new one.
2515     Entry->setName(StringRef());
2516 
2517     // Make a new global with the correct type, this is now guaranteed to work.
2518     GV = cast<llvm::GlobalVariable>(
2519         GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative));
2520 
2521     // Replace all uses of the old global with the new global
2522     llvm::Constant *NewPtrForOldDecl =
2523         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2524     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2525 
2526     // Erase the old global, since it is no longer used.
2527     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2528   }
2529 
2530   MaybeHandleStaticInExternC(D, GV);
2531 
2532   if (D->hasAttr<AnnotateAttr>())
2533     AddGlobalAnnotations(D, GV);
2534 
2535   // Set the llvm linkage type as appropriate.
2536   llvm::GlobalValue::LinkageTypes Linkage =
2537       getLLVMLinkageVarDefinition(D, GV->isConstant());
2538 
2539   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2540   // the device. [...]"
2541   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2542   // __device__, declares a variable that: [...]
2543   // Is accessible from all the threads within the grid and from the host
2544   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2545   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2546   if (GV && LangOpts.CUDA) {
2547     if (LangOpts.CUDAIsDevice) {
2548       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2549         GV->setExternallyInitialized(true);
2550     } else {
2551       // Host-side shadows of external declarations of device-side
2552       // global variables become internal definitions. These have to
2553       // be internal in order to prevent name conflicts with global
2554       // host variables with the same name in a different TUs.
2555       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2556         Linkage = llvm::GlobalValue::InternalLinkage;
2557 
2558         // Shadow variables and their properties must be registered
2559         // with CUDA runtime.
2560         unsigned Flags = 0;
2561         if (!D->hasDefinition())
2562           Flags |= CGCUDARuntime::ExternDeviceVar;
2563         if (D->hasAttr<CUDAConstantAttr>())
2564           Flags |= CGCUDARuntime::ConstantDeviceVar;
2565         getCUDARuntime().registerDeviceVar(*GV, Flags);
2566       } else if (D->hasAttr<CUDASharedAttr>())
2567         // __shared__ variables are odd. Shadows do get created, but
2568         // they are not registered with the CUDA runtime, so they
2569         // can't really be used to access their device-side
2570         // counterparts. It's not clear yet whether it's nvcc's bug or
2571         // a feature, but we've got to do the same for compatibility.
2572         Linkage = llvm::GlobalValue::InternalLinkage;
2573     }
2574   }
2575   GV->setInitializer(Init);
2576 
2577   // If it is safe to mark the global 'constant', do so now.
2578   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2579                   isTypeConstant(D->getType(), true));
2580 
2581   // If it is in a read-only section, mark it 'constant'.
2582   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2583     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2584     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2585       GV->setConstant(true);
2586   }
2587 
2588   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2589 
2590 
2591   // On Darwin, if the normal linkage of a C++ thread_local variable is
2592   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2593   // copies within a linkage unit; otherwise, the backing variable has
2594   // internal linkage and all accesses should just be calls to the
2595   // Itanium-specified entry point, which has the normal linkage of the
2596   // variable. This is to preserve the ability to change the implementation
2597   // behind the scenes.
2598   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2599       Context.getTargetInfo().getTriple().isOSDarwin() &&
2600       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2601       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2602     Linkage = llvm::GlobalValue::InternalLinkage;
2603 
2604   GV->setLinkage(Linkage);
2605   if (D->hasAttr<DLLImportAttr>())
2606     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2607   else if (D->hasAttr<DLLExportAttr>())
2608     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2609   else
2610     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2611 
2612   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2613     // common vars aren't constant even if declared const.
2614     GV->setConstant(false);
2615 
2616   setNonAliasAttributes(D, GV);
2617 
2618   if (D->getTLSKind() && !GV->isThreadLocal()) {
2619     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2620       CXXThreadLocals.push_back(D);
2621     setTLSMode(GV, *D);
2622   }
2623 
2624   maybeSetTrivialComdat(*D, *GV);
2625 
2626   // Emit the initializer function if necessary.
2627   if (NeedsGlobalCtor || NeedsGlobalDtor)
2628     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2629 
2630   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2631 
2632   // Emit global variable debug information.
2633   if (CGDebugInfo *DI = getModuleDebugInfo())
2634     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2635       DI->EmitGlobalVariable(GV, D);
2636 }
2637 
2638 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2639                                       CodeGenModule &CGM, const VarDecl *D,
2640                                       bool NoCommon) {
2641   // Don't give variables common linkage if -fno-common was specified unless it
2642   // was overridden by a NoCommon attribute.
2643   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2644     return true;
2645 
2646   // C11 6.9.2/2:
2647   //   A declaration of an identifier for an object that has file scope without
2648   //   an initializer, and without a storage-class specifier or with the
2649   //   storage-class specifier static, constitutes a tentative definition.
2650   if (D->getInit() || D->hasExternalStorage())
2651     return true;
2652 
2653   // A variable cannot be both common and exist in a section.
2654   if (D->hasAttr<SectionAttr>())
2655     return true;
2656 
2657   // Thread local vars aren't considered common linkage.
2658   if (D->getTLSKind())
2659     return true;
2660 
2661   // Tentative definitions marked with WeakImportAttr are true definitions.
2662   if (D->hasAttr<WeakImportAttr>())
2663     return true;
2664 
2665   // A variable cannot be both common and exist in a comdat.
2666   if (shouldBeInCOMDAT(CGM, *D))
2667     return true;
2668 
2669   // Declarations with a required alignment do not have common linkage in MSVC
2670   // mode.
2671   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2672     if (D->hasAttr<AlignedAttr>())
2673       return true;
2674     QualType VarType = D->getType();
2675     if (Context.isAlignmentRequired(VarType))
2676       return true;
2677 
2678     if (const auto *RT = VarType->getAs<RecordType>()) {
2679       const RecordDecl *RD = RT->getDecl();
2680       for (const FieldDecl *FD : RD->fields()) {
2681         if (FD->isBitField())
2682           continue;
2683         if (FD->hasAttr<AlignedAttr>())
2684           return true;
2685         if (Context.isAlignmentRequired(FD->getType()))
2686           return true;
2687       }
2688     }
2689   }
2690 
2691   return false;
2692 }
2693 
2694 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2695     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2696   if (Linkage == GVA_Internal)
2697     return llvm::Function::InternalLinkage;
2698 
2699   if (D->hasAttr<WeakAttr>()) {
2700     if (IsConstantVariable)
2701       return llvm::GlobalVariable::WeakODRLinkage;
2702     else
2703       return llvm::GlobalVariable::WeakAnyLinkage;
2704   }
2705 
2706   // We are guaranteed to have a strong definition somewhere else,
2707   // so we can use available_externally linkage.
2708   if (Linkage == GVA_AvailableExternally)
2709     return llvm::Function::AvailableExternallyLinkage;
2710 
2711   // Note that Apple's kernel linker doesn't support symbol
2712   // coalescing, so we need to avoid linkonce and weak linkages there.
2713   // Normally, this means we just map to internal, but for explicit
2714   // instantiations we'll map to external.
2715 
2716   // In C++, the compiler has to emit a definition in every translation unit
2717   // that references the function.  We should use linkonce_odr because
2718   // a) if all references in this translation unit are optimized away, we
2719   // don't need to codegen it.  b) if the function persists, it needs to be
2720   // merged with other definitions. c) C++ has the ODR, so we know the
2721   // definition is dependable.
2722   if (Linkage == GVA_DiscardableODR)
2723     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2724                                             : llvm::Function::InternalLinkage;
2725 
2726   // An explicit instantiation of a template has weak linkage, since
2727   // explicit instantiations can occur in multiple translation units
2728   // and must all be equivalent. However, we are not allowed to
2729   // throw away these explicit instantiations.
2730   //
2731   // We don't currently support CUDA device code spread out across multiple TUs,
2732   // so say that CUDA templates are either external (for kernels) or internal.
2733   // This lets llvm perform aggressive inter-procedural optimizations.
2734   if (Linkage == GVA_StrongODR) {
2735     if (Context.getLangOpts().AppleKext)
2736       return llvm::Function::ExternalLinkage;
2737     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
2738       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
2739                                           : llvm::Function::InternalLinkage;
2740     return llvm::Function::WeakODRLinkage;
2741   }
2742 
2743   // C++ doesn't have tentative definitions and thus cannot have common
2744   // linkage.
2745   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2746       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2747                                  CodeGenOpts.NoCommon))
2748     return llvm::GlobalVariable::CommonLinkage;
2749 
2750   // selectany symbols are externally visible, so use weak instead of
2751   // linkonce.  MSVC optimizes away references to const selectany globals, so
2752   // all definitions should be the same and ODR linkage should be used.
2753   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2754   if (D->hasAttr<SelectAnyAttr>())
2755     return llvm::GlobalVariable::WeakODRLinkage;
2756 
2757   // Otherwise, we have strong external linkage.
2758   assert(Linkage == GVA_StrongExternal);
2759   return llvm::GlobalVariable::ExternalLinkage;
2760 }
2761 
2762 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2763     const VarDecl *VD, bool IsConstant) {
2764   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2765   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2766 }
2767 
2768 /// Replace the uses of a function that was declared with a non-proto type.
2769 /// We want to silently drop extra arguments from call sites
2770 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2771                                           llvm::Function *newFn) {
2772   // Fast path.
2773   if (old->use_empty()) return;
2774 
2775   llvm::Type *newRetTy = newFn->getReturnType();
2776   SmallVector<llvm::Value*, 4> newArgs;
2777   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2778 
2779   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2780          ui != ue; ) {
2781     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2782     llvm::User *user = use->getUser();
2783 
2784     // Recognize and replace uses of bitcasts.  Most calls to
2785     // unprototyped functions will use bitcasts.
2786     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2787       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2788         replaceUsesOfNonProtoConstant(bitcast, newFn);
2789       continue;
2790     }
2791 
2792     // Recognize calls to the function.
2793     llvm::CallSite callSite(user);
2794     if (!callSite) continue;
2795     if (!callSite.isCallee(&*use)) continue;
2796 
2797     // If the return types don't match exactly, then we can't
2798     // transform this call unless it's dead.
2799     if (callSite->getType() != newRetTy && !callSite->use_empty())
2800       continue;
2801 
2802     // Get the call site's attribute list.
2803     SmallVector<llvm::AttributeSet, 8> newAttrs;
2804     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2805 
2806     // Collect any return attributes from the call.
2807     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2808       newAttrs.push_back(
2809         llvm::AttributeSet::get(newFn->getContext(),
2810                                 oldAttrs.getRetAttributes()));
2811 
2812     // If the function was passed too few arguments, don't transform.
2813     unsigned newNumArgs = newFn->arg_size();
2814     if (callSite.arg_size() < newNumArgs) continue;
2815 
2816     // If extra arguments were passed, we silently drop them.
2817     // If any of the types mismatch, we don't transform.
2818     unsigned argNo = 0;
2819     bool dontTransform = false;
2820     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2821            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2822       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2823         dontTransform = true;
2824         break;
2825       }
2826 
2827       // Add any parameter attributes.
2828       if (oldAttrs.hasAttributes(argNo + 1))
2829         newAttrs.
2830           push_back(llvm::
2831                     AttributeSet::get(newFn->getContext(),
2832                                       oldAttrs.getParamAttributes(argNo + 1)));
2833     }
2834     if (dontTransform)
2835       continue;
2836 
2837     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2838       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2839                                                  oldAttrs.getFnAttributes()));
2840 
2841     // Okay, we can transform this.  Create the new call instruction and copy
2842     // over the required information.
2843     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2844 
2845     // Copy over any operand bundles.
2846     callSite.getOperandBundlesAsDefs(newBundles);
2847 
2848     llvm::CallSite newCall;
2849     if (callSite.isCall()) {
2850       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2851                                        callSite.getInstruction());
2852     } else {
2853       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2854       newCall = llvm::InvokeInst::Create(newFn,
2855                                          oldInvoke->getNormalDest(),
2856                                          oldInvoke->getUnwindDest(),
2857                                          newArgs, newBundles, "",
2858                                          callSite.getInstruction());
2859     }
2860     newArgs.clear(); // for the next iteration
2861 
2862     if (!newCall->getType()->isVoidTy())
2863       newCall->takeName(callSite.getInstruction());
2864     newCall.setAttributes(
2865                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2866     newCall.setCallingConv(callSite.getCallingConv());
2867 
2868     // Finally, remove the old call, replacing any uses with the new one.
2869     if (!callSite->use_empty())
2870       callSite->replaceAllUsesWith(newCall.getInstruction());
2871 
2872     // Copy debug location attached to CI.
2873     if (callSite->getDebugLoc())
2874       newCall->setDebugLoc(callSite->getDebugLoc());
2875 
2876     callSite->eraseFromParent();
2877   }
2878 }
2879 
2880 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2881 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2882 /// existing call uses of the old function in the module, this adjusts them to
2883 /// call the new function directly.
2884 ///
2885 /// This is not just a cleanup: the always_inline pass requires direct calls to
2886 /// functions to be able to inline them.  If there is a bitcast in the way, it
2887 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2888 /// run at -O0.
2889 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2890                                                       llvm::Function *NewFn) {
2891   // If we're redefining a global as a function, don't transform it.
2892   if (!isa<llvm::Function>(Old)) return;
2893 
2894   replaceUsesOfNonProtoConstant(Old, NewFn);
2895 }
2896 
2897 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2898   auto DK = VD->isThisDeclarationADefinition();
2899   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
2900     return;
2901 
2902   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2903   // If we have a definition, this might be a deferred decl. If the
2904   // instantiation is explicit, make sure we emit it at the end.
2905   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2906     GetAddrOfGlobalVar(VD);
2907 
2908   EmitTopLevelDecl(VD);
2909 }
2910 
2911 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2912                                                  llvm::GlobalValue *GV) {
2913   const auto *D = cast<FunctionDecl>(GD.getDecl());
2914 
2915   // Emit this function's deferred diagnostics, if none of them are errors.  If
2916   // any of them are errors, don't codegen the function, but also don't emit any
2917   // of the diagnostics just yet.  Emitting an error during codegen stops
2918   // further codegen, and we want to display as many deferred diags as possible.
2919   // We'll emit the now twice-deferred diags at the very end of codegen.
2920   //
2921   // (If a function has both error and non-error diags, we don't emit the
2922   // non-error diags here, because order can be significant, e.g. with notes
2923   // that follow errors.)
2924   auto Diags = D->takeDeferredDiags();
2925   bool HasError = llvm::any_of(Diags, [this](const PartialDiagnosticAt &PDAt) {
2926     return getDiags().getDiagnosticLevel(PDAt.second.getDiagID(), PDAt.first) >=
2927            DiagnosticsEngine::Error;
2928   });
2929   if (HasError) {
2930     DeferredDiags.insert(DeferredDiags.end(),
2931                          std::make_move_iterator(Diags.begin()),
2932                          std::make_move_iterator(Diags.end()));
2933     return;
2934   }
2935   for (PartialDiagnosticAt &PDAt : Diags) {
2936     const SourceLocation &Loc = PDAt.first;
2937     const PartialDiagnostic &PD = PDAt.second;
2938     DiagnosticBuilder Builder(getDiags().Report(Loc, PD.getDiagID()));
2939     PD.Emit(Builder);
2940   }
2941 
2942   // Compute the function info and LLVM type.
2943   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2944   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2945 
2946   // Get or create the prototype for the function.
2947   if (!GV || (GV->getType()->getElementType() != Ty))
2948     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
2949                                                    /*DontDefer=*/true,
2950                                                    /*IsForDefinition=*/true));
2951 
2952   // Already emitted.
2953   if (!GV->isDeclaration())
2954     return;
2955 
2956   // We need to set linkage and visibility on the function before
2957   // generating code for it because various parts of IR generation
2958   // want to propagate this information down (e.g. to local static
2959   // declarations).
2960   auto *Fn = cast<llvm::Function>(GV);
2961   setFunctionLinkage(GD, Fn);
2962   setFunctionDLLStorageClass(GD, Fn);
2963 
2964   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2965   setGlobalVisibility(Fn, D);
2966 
2967   MaybeHandleStaticInExternC(D, Fn);
2968 
2969   maybeSetTrivialComdat(*D, *Fn);
2970 
2971   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2972 
2973   setFunctionDefinitionAttributes(D, Fn);
2974   SetLLVMFunctionAttributesForDefinition(D, Fn);
2975 
2976   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2977     AddGlobalCtor(Fn, CA->getPriority());
2978   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2979     AddGlobalDtor(Fn, DA->getPriority());
2980   if (D->hasAttr<AnnotateAttr>())
2981     AddGlobalAnnotations(D, Fn);
2982 }
2983 
2984 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2985   const auto *D = cast<ValueDecl>(GD.getDecl());
2986   const AliasAttr *AA = D->getAttr<AliasAttr>();
2987   assert(AA && "Not an alias?");
2988 
2989   StringRef MangledName = getMangledName(GD);
2990 
2991   if (AA->getAliasee() == MangledName) {
2992     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
2993     return;
2994   }
2995 
2996   // If there is a definition in the module, then it wins over the alias.
2997   // This is dubious, but allow it to be safe.  Just ignore the alias.
2998   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2999   if (Entry && !Entry->isDeclaration())
3000     return;
3001 
3002   Aliases.push_back(GD);
3003 
3004   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3005 
3006   // Create a reference to the named value.  This ensures that it is emitted
3007   // if a deferred decl.
3008   llvm::Constant *Aliasee;
3009   if (isa<llvm::FunctionType>(DeclTy))
3010     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3011                                       /*ForVTable=*/false);
3012   else
3013     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3014                                     llvm::PointerType::getUnqual(DeclTy),
3015                                     /*D=*/nullptr);
3016 
3017   // Create the new alias itself, but don't set a name yet.
3018   auto *GA = llvm::GlobalAlias::create(
3019       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3020 
3021   if (Entry) {
3022     if (GA->getAliasee() == Entry) {
3023       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3024       return;
3025     }
3026 
3027     assert(Entry->isDeclaration());
3028 
3029     // If there is a declaration in the module, then we had an extern followed
3030     // by the alias, as in:
3031     //   extern int test6();
3032     //   ...
3033     //   int test6() __attribute__((alias("test7")));
3034     //
3035     // Remove it and replace uses of it with the alias.
3036     GA->takeName(Entry);
3037 
3038     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3039                                                           Entry->getType()));
3040     Entry->eraseFromParent();
3041   } else {
3042     GA->setName(MangledName);
3043   }
3044 
3045   // Set attributes which are particular to an alias; this is a
3046   // specialization of the attributes which may be set on a global
3047   // variable/function.
3048   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3049       D->isWeakImported()) {
3050     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3051   }
3052 
3053   if (const auto *VD = dyn_cast<VarDecl>(D))
3054     if (VD->getTLSKind())
3055       setTLSMode(GA, *VD);
3056 
3057   setAliasAttributes(D, GA);
3058 }
3059 
3060 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3061   const auto *D = cast<ValueDecl>(GD.getDecl());
3062   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3063   assert(IFA && "Not an ifunc?");
3064 
3065   StringRef MangledName = getMangledName(GD);
3066 
3067   if (IFA->getResolver() == MangledName) {
3068     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3069     return;
3070   }
3071 
3072   // Report an error if some definition overrides ifunc.
3073   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3074   if (Entry && !Entry->isDeclaration()) {
3075     GlobalDecl OtherGD;
3076     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3077         DiagnosedConflictingDefinitions.insert(GD).second) {
3078       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3079       Diags.Report(OtherGD.getDecl()->getLocation(),
3080                    diag::note_previous_definition);
3081     }
3082     return;
3083   }
3084 
3085   Aliases.push_back(GD);
3086 
3087   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3088   llvm::Constant *Resolver =
3089       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3090                               /*ForVTable=*/false);
3091   llvm::GlobalIFunc *GIF =
3092       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3093                                 "", Resolver, &getModule());
3094   if (Entry) {
3095     if (GIF->getResolver() == Entry) {
3096       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3097       return;
3098     }
3099     assert(Entry->isDeclaration());
3100 
3101     // If there is a declaration in the module, then we had an extern followed
3102     // by the ifunc, as in:
3103     //   extern int test();
3104     //   ...
3105     //   int test() __attribute__((ifunc("resolver")));
3106     //
3107     // Remove it and replace uses of it with the ifunc.
3108     GIF->takeName(Entry);
3109 
3110     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3111                                                           Entry->getType()));
3112     Entry->eraseFromParent();
3113   } else
3114     GIF->setName(MangledName);
3115 
3116   SetCommonAttributes(D, GIF);
3117 }
3118 
3119 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3120                                             ArrayRef<llvm::Type*> Tys) {
3121   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3122                                          Tys);
3123 }
3124 
3125 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3126 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3127                          const StringLiteral *Literal, bool TargetIsLSB,
3128                          bool &IsUTF16, unsigned &StringLength) {
3129   StringRef String = Literal->getString();
3130   unsigned NumBytes = String.size();
3131 
3132   // Check for simple case.
3133   if (!Literal->containsNonAsciiOrNull()) {
3134     StringLength = NumBytes;
3135     return *Map.insert(std::make_pair(String, nullptr)).first;
3136   }
3137 
3138   // Otherwise, convert the UTF8 literals into a string of shorts.
3139   IsUTF16 = true;
3140 
3141   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3142   const UTF8 *FromPtr = (const UTF8 *)String.data();
3143   UTF16 *ToPtr = &ToBuf[0];
3144 
3145   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
3146                            &ToPtr, ToPtr + NumBytes,
3147                            strictConversion);
3148 
3149   // ConvertUTF8toUTF16 returns the length in ToPtr.
3150   StringLength = ToPtr - &ToBuf[0];
3151 
3152   // Add an explicit null.
3153   *ToPtr = 0;
3154   return *Map.insert(std::make_pair(
3155                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3156                                    (StringLength + 1) * 2),
3157                          nullptr)).first;
3158 }
3159 
3160 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3161 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3162                        const StringLiteral *Literal, unsigned &StringLength) {
3163   StringRef String = Literal->getString();
3164   StringLength = String.size();
3165   return *Map.insert(std::make_pair(String, nullptr)).first;
3166 }
3167 
3168 ConstantAddress
3169 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3170   unsigned StringLength = 0;
3171   bool isUTF16 = false;
3172   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3173       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3174                                getDataLayout().isLittleEndian(), isUTF16,
3175                                StringLength);
3176 
3177   if (auto *C = Entry.second)
3178     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3179 
3180   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3181   llvm::Constant *Zeros[] = { Zero, Zero };
3182 
3183   // If we don't already have it, get __CFConstantStringClassReference.
3184   if (!CFConstantStringClassRef) {
3185     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3186     Ty = llvm::ArrayType::get(Ty, 0);
3187     llvm::Constant *GV =
3188         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3189 
3190     if (getTarget().getTriple().isOSBinFormatCOFF()) {
3191       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3192       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3193       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3194       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3195 
3196       const VarDecl *VD = nullptr;
3197       for (const auto &Result : DC->lookup(&II))
3198         if ((VD = dyn_cast<VarDecl>(Result)))
3199           break;
3200 
3201       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3202         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3203         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3204       } else {
3205         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3206         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3207       }
3208     }
3209 
3210     // Decay array -> ptr
3211     CFConstantStringClassRef =
3212         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3213   }
3214 
3215   QualType CFTy = getContext().getCFConstantStringType();
3216 
3217   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3218 
3219   llvm::Constant *Fields[4];
3220 
3221   // Class pointer.
3222   Fields[0] = cast<llvm::ConstantExpr>(CFConstantStringClassRef);
3223 
3224   // Flags.
3225   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3226   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
3227                       : llvm::ConstantInt::get(Ty, 0x07C8);
3228 
3229   // String pointer.
3230   llvm::Constant *C = nullptr;
3231   if (isUTF16) {
3232     auto Arr = llvm::makeArrayRef(
3233         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3234         Entry.first().size() / 2);
3235     C = llvm::ConstantDataArray::get(VMContext, Arr);
3236   } else {
3237     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3238   }
3239 
3240   // Note: -fwritable-strings doesn't make the backing store strings of
3241   // CFStrings writable. (See <rdar://problem/10657500>)
3242   auto *GV =
3243       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3244                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3245   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3246   // Don't enforce the target's minimum global alignment, since the only use
3247   // of the string is via this class initializer.
3248   CharUnits Align = isUTF16
3249                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3250                         : getContext().getTypeAlignInChars(getContext().CharTy);
3251   GV->setAlignment(Align.getQuantity());
3252 
3253   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3254   // Without it LLVM can merge the string with a non unnamed_addr one during
3255   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3256   if (getTarget().getTriple().isOSBinFormatMachO())
3257     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3258                            : "__TEXT,__cstring,cstring_literals");
3259 
3260   // String.
3261   Fields[2] =
3262       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3263 
3264   if (isUTF16)
3265     // Cast the UTF16 string to the correct type.
3266     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
3267 
3268   // String length.
3269   Ty = getTypes().ConvertType(getContext().LongTy);
3270   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
3271 
3272   CharUnits Alignment = getPointerAlign();
3273 
3274   // The struct.
3275   C = llvm::ConstantStruct::get(STy, Fields);
3276   GV = new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/false,
3277                                 llvm::GlobalVariable::PrivateLinkage, C,
3278                                 "_unnamed_cfstring_");
3279   GV->setAlignment(Alignment.getQuantity());
3280   switch (getTarget().getTriple().getObjectFormat()) {
3281   case llvm::Triple::UnknownObjectFormat:
3282     llvm_unreachable("unknown file format");
3283   case llvm::Triple::COFF:
3284   case llvm::Triple::ELF:
3285     GV->setSection("cfstring");
3286     break;
3287   case llvm::Triple::MachO:
3288     GV->setSection("__DATA,__cfstring");
3289     break;
3290   }
3291   Entry.second = GV;
3292 
3293   return ConstantAddress(GV, Alignment);
3294 }
3295 
3296 ConstantAddress
3297 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
3298   unsigned StringLength = 0;
3299   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3300       GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
3301 
3302   if (auto *C = Entry.second)
3303     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3304 
3305   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3306   llvm::Constant *Zeros[] = { Zero, Zero };
3307   llvm::Value *V;
3308   // If we don't already have it, get _NSConstantStringClassReference.
3309   if (!ConstantStringClassRef) {
3310     std::string StringClass(getLangOpts().ObjCConstantStringClass);
3311     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3312     llvm::Constant *GV;
3313     if (LangOpts.ObjCRuntime.isNonFragile()) {
3314       std::string str =
3315         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
3316                             : "OBJC_CLASS_$_" + StringClass;
3317       GV = getObjCRuntime().GetClassGlobal(str);
3318       // Make sure the result is of the correct type.
3319       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3320       V = llvm::ConstantExpr::getBitCast(GV, PTy);
3321       ConstantStringClassRef = V;
3322     } else {
3323       std::string str =
3324         StringClass.empty() ? "_NSConstantStringClassReference"
3325                             : "_" + StringClass + "ClassReference";
3326       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
3327       GV = CreateRuntimeVariable(PTy, str);
3328       // Decay array -> ptr
3329       V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
3330       ConstantStringClassRef = V;
3331     }
3332   } else
3333     V = ConstantStringClassRef;
3334 
3335   if (!NSConstantStringType) {
3336     // Construct the type for a constant NSString.
3337     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
3338     D->startDefinition();
3339 
3340     QualType FieldTypes[3];
3341 
3342     // const int *isa;
3343     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
3344     // const char *str;
3345     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
3346     // unsigned int length;
3347     FieldTypes[2] = Context.UnsignedIntTy;
3348 
3349     // Create fields
3350     for (unsigned i = 0; i < 3; ++i) {
3351       FieldDecl *Field = FieldDecl::Create(Context, D,
3352                                            SourceLocation(),
3353                                            SourceLocation(), nullptr,
3354                                            FieldTypes[i], /*TInfo=*/nullptr,
3355                                            /*BitWidth=*/nullptr,
3356                                            /*Mutable=*/false,
3357                                            ICIS_NoInit);
3358       Field->setAccess(AS_public);
3359       D->addDecl(Field);
3360     }
3361 
3362     D->completeDefinition();
3363     QualType NSTy = Context.getTagDeclType(D);
3364     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
3365   }
3366 
3367   llvm::Constant *Fields[3];
3368 
3369   // Class pointer.
3370   Fields[0] = cast<llvm::ConstantExpr>(V);
3371 
3372   // String pointer.
3373   llvm::Constant *C =
3374       llvm::ConstantDataArray::getString(VMContext, Entry.first());
3375 
3376   llvm::GlobalValue::LinkageTypes Linkage;
3377   bool isConstant;
3378   Linkage = llvm::GlobalValue::PrivateLinkage;
3379   isConstant = !LangOpts.WritableStrings;
3380 
3381   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
3382                                       Linkage, C, ".str");
3383   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3384   // Don't enforce the target's minimum global alignment, since the only use
3385   // of the string is via this class initializer.
3386   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3387   GV->setAlignment(Align.getQuantity());
3388   Fields[1] =
3389       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3390 
3391   // String length.
3392   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3393   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
3394 
3395   // The struct.
3396   CharUnits Alignment = getPointerAlign();
3397   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
3398   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3399                                 llvm::GlobalVariable::PrivateLinkage, C,
3400                                 "_unnamed_nsstring_");
3401   GV->setAlignment(Alignment.getQuantity());
3402   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
3403   const char *NSStringNonFragileABISection =
3404       "__DATA,__objc_stringobj,regular,no_dead_strip";
3405   // FIXME. Fix section.
3406   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
3407                      ? NSStringNonFragileABISection
3408                      : NSStringSection);
3409   Entry.second = GV;
3410 
3411   return ConstantAddress(GV, Alignment);
3412 }
3413 
3414 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3415   if (ObjCFastEnumerationStateType.isNull()) {
3416     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3417     D->startDefinition();
3418 
3419     QualType FieldTypes[] = {
3420       Context.UnsignedLongTy,
3421       Context.getPointerType(Context.getObjCIdType()),
3422       Context.getPointerType(Context.UnsignedLongTy),
3423       Context.getConstantArrayType(Context.UnsignedLongTy,
3424                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3425     };
3426 
3427     for (size_t i = 0; i < 4; ++i) {
3428       FieldDecl *Field = FieldDecl::Create(Context,
3429                                            D,
3430                                            SourceLocation(),
3431                                            SourceLocation(), nullptr,
3432                                            FieldTypes[i], /*TInfo=*/nullptr,
3433                                            /*BitWidth=*/nullptr,
3434                                            /*Mutable=*/false,
3435                                            ICIS_NoInit);
3436       Field->setAccess(AS_public);
3437       D->addDecl(Field);
3438     }
3439 
3440     D->completeDefinition();
3441     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3442   }
3443 
3444   return ObjCFastEnumerationStateType;
3445 }
3446 
3447 llvm::Constant *
3448 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3449   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3450 
3451   // Don't emit it as the address of the string, emit the string data itself
3452   // as an inline array.
3453   if (E->getCharByteWidth() == 1) {
3454     SmallString<64> Str(E->getString());
3455 
3456     // Resize the string to the right size, which is indicated by its type.
3457     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3458     Str.resize(CAT->getSize().getZExtValue());
3459     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3460   }
3461 
3462   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3463   llvm::Type *ElemTy = AType->getElementType();
3464   unsigned NumElements = AType->getNumElements();
3465 
3466   // Wide strings have either 2-byte or 4-byte elements.
3467   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3468     SmallVector<uint16_t, 32> Elements;
3469     Elements.reserve(NumElements);
3470 
3471     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3472       Elements.push_back(E->getCodeUnit(i));
3473     Elements.resize(NumElements);
3474     return llvm::ConstantDataArray::get(VMContext, Elements);
3475   }
3476 
3477   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3478   SmallVector<uint32_t, 32> Elements;
3479   Elements.reserve(NumElements);
3480 
3481   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3482     Elements.push_back(E->getCodeUnit(i));
3483   Elements.resize(NumElements);
3484   return llvm::ConstantDataArray::get(VMContext, Elements);
3485 }
3486 
3487 static llvm::GlobalVariable *
3488 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3489                       CodeGenModule &CGM, StringRef GlobalName,
3490                       CharUnits Alignment) {
3491   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3492   unsigned AddrSpace = 0;
3493   if (CGM.getLangOpts().OpenCL)
3494     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3495 
3496   llvm::Module &M = CGM.getModule();
3497   // Create a global variable for this string
3498   auto *GV = new llvm::GlobalVariable(
3499       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3500       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3501   GV->setAlignment(Alignment.getQuantity());
3502   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3503   if (GV->isWeakForLinker()) {
3504     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3505     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3506   }
3507 
3508   return GV;
3509 }
3510 
3511 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3512 /// constant array for the given string literal.
3513 ConstantAddress
3514 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3515                                                   StringRef Name) {
3516   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3517 
3518   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3519   llvm::GlobalVariable **Entry = nullptr;
3520   if (!LangOpts.WritableStrings) {
3521     Entry = &ConstantStringMap[C];
3522     if (auto GV = *Entry) {
3523       if (Alignment.getQuantity() > GV->getAlignment())
3524         GV->setAlignment(Alignment.getQuantity());
3525       return ConstantAddress(GV, Alignment);
3526     }
3527   }
3528 
3529   SmallString<256> MangledNameBuffer;
3530   StringRef GlobalVariableName;
3531   llvm::GlobalValue::LinkageTypes LT;
3532 
3533   // Mangle the string literal if the ABI allows for it.  However, we cannot
3534   // do this if  we are compiling with ASan or -fwritable-strings because they
3535   // rely on strings having normal linkage.
3536   if (!LangOpts.WritableStrings &&
3537       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3538       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3539     llvm::raw_svector_ostream Out(MangledNameBuffer);
3540     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3541 
3542     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3543     GlobalVariableName = MangledNameBuffer;
3544   } else {
3545     LT = llvm::GlobalValue::PrivateLinkage;
3546     GlobalVariableName = Name;
3547   }
3548 
3549   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3550   if (Entry)
3551     *Entry = GV;
3552 
3553   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3554                                   QualType());
3555   return ConstantAddress(GV, Alignment);
3556 }
3557 
3558 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3559 /// array for the given ObjCEncodeExpr node.
3560 ConstantAddress
3561 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3562   std::string Str;
3563   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3564 
3565   return GetAddrOfConstantCString(Str);
3566 }
3567 
3568 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3569 /// the literal and a terminating '\0' character.
3570 /// The result has pointer to array type.
3571 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3572     const std::string &Str, const char *GlobalName) {
3573   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3574   CharUnits Alignment =
3575     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3576 
3577   llvm::Constant *C =
3578       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3579 
3580   // Don't share any string literals if strings aren't constant.
3581   llvm::GlobalVariable **Entry = nullptr;
3582   if (!LangOpts.WritableStrings) {
3583     Entry = &ConstantStringMap[C];
3584     if (auto GV = *Entry) {
3585       if (Alignment.getQuantity() > GV->getAlignment())
3586         GV->setAlignment(Alignment.getQuantity());
3587       return ConstantAddress(GV, Alignment);
3588     }
3589   }
3590 
3591   // Get the default prefix if a name wasn't specified.
3592   if (!GlobalName)
3593     GlobalName = ".str";
3594   // Create a global variable for this.
3595   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3596                                   GlobalName, Alignment);
3597   if (Entry)
3598     *Entry = GV;
3599   return ConstantAddress(GV, Alignment);
3600 }
3601 
3602 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3603     const MaterializeTemporaryExpr *E, const Expr *Init) {
3604   assert((E->getStorageDuration() == SD_Static ||
3605           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3606   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3607 
3608   // If we're not materializing a subobject of the temporary, keep the
3609   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3610   QualType MaterializedType = Init->getType();
3611   if (Init == E->GetTemporaryExpr())
3612     MaterializedType = E->getType();
3613 
3614   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3615 
3616   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3617     return ConstantAddress(Slot, Align);
3618 
3619   // FIXME: If an externally-visible declaration extends multiple temporaries,
3620   // we need to give each temporary the same name in every translation unit (and
3621   // we also need to make the temporaries externally-visible).
3622   SmallString<256> Name;
3623   llvm::raw_svector_ostream Out(Name);
3624   getCXXABI().getMangleContext().mangleReferenceTemporary(
3625       VD, E->getManglingNumber(), Out);
3626 
3627   APValue *Value = nullptr;
3628   if (E->getStorageDuration() == SD_Static) {
3629     // We might have a cached constant initializer for this temporary. Note
3630     // that this might have a different value from the value computed by
3631     // evaluating the initializer if the surrounding constant expression
3632     // modifies the temporary.
3633     Value = getContext().getMaterializedTemporaryValue(E, false);
3634     if (Value && Value->isUninit())
3635       Value = nullptr;
3636   }
3637 
3638   // Try evaluating it now, it might have a constant initializer.
3639   Expr::EvalResult EvalResult;
3640   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3641       !EvalResult.hasSideEffects())
3642     Value = &EvalResult.Val;
3643 
3644   llvm::Constant *InitialValue = nullptr;
3645   bool Constant = false;
3646   llvm::Type *Type;
3647   if (Value) {
3648     // The temporary has a constant initializer, use it.
3649     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3650     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3651     Type = InitialValue->getType();
3652   } else {
3653     // No initializer, the initialization will be provided when we
3654     // initialize the declaration which performed lifetime extension.
3655     Type = getTypes().ConvertTypeForMem(MaterializedType);
3656   }
3657 
3658   // Create a global variable for this lifetime-extended temporary.
3659   llvm::GlobalValue::LinkageTypes Linkage =
3660       getLLVMLinkageVarDefinition(VD, Constant);
3661   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3662     const VarDecl *InitVD;
3663     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3664         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3665       // Temporaries defined inside a class get linkonce_odr linkage because the
3666       // class can be defined in multipe translation units.
3667       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3668     } else {
3669       // There is no need for this temporary to have external linkage if the
3670       // VarDecl has external linkage.
3671       Linkage = llvm::GlobalVariable::InternalLinkage;
3672     }
3673   }
3674   unsigned AddrSpace = GetGlobalVarAddressSpace(
3675       VD, getContext().getTargetAddressSpace(MaterializedType));
3676   auto *GV = new llvm::GlobalVariable(
3677       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3678       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3679       AddrSpace);
3680   setGlobalVisibility(GV, VD);
3681   GV->setAlignment(Align.getQuantity());
3682   if (supportsCOMDAT() && GV->isWeakForLinker())
3683     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3684   if (VD->getTLSKind())
3685     setTLSMode(GV, *VD);
3686   MaterializedGlobalTemporaryMap[E] = GV;
3687   return ConstantAddress(GV, Align);
3688 }
3689 
3690 /// EmitObjCPropertyImplementations - Emit information for synthesized
3691 /// properties for an implementation.
3692 void CodeGenModule::EmitObjCPropertyImplementations(const
3693                                                     ObjCImplementationDecl *D) {
3694   for (const auto *PID : D->property_impls()) {
3695     // Dynamic is just for type-checking.
3696     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3697       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3698 
3699       // Determine which methods need to be implemented, some may have
3700       // been overridden. Note that ::isPropertyAccessor is not the method
3701       // we want, that just indicates if the decl came from a
3702       // property. What we want to know is if the method is defined in
3703       // this implementation.
3704       if (!D->getInstanceMethod(PD->getGetterName()))
3705         CodeGenFunction(*this).GenerateObjCGetter(
3706                                  const_cast<ObjCImplementationDecl *>(D), PID);
3707       if (!PD->isReadOnly() &&
3708           !D->getInstanceMethod(PD->getSetterName()))
3709         CodeGenFunction(*this).GenerateObjCSetter(
3710                                  const_cast<ObjCImplementationDecl *>(D), PID);
3711     }
3712   }
3713 }
3714 
3715 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3716   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3717   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3718        ivar; ivar = ivar->getNextIvar())
3719     if (ivar->getType().isDestructedType())
3720       return true;
3721 
3722   return false;
3723 }
3724 
3725 static bool AllTrivialInitializers(CodeGenModule &CGM,
3726                                    ObjCImplementationDecl *D) {
3727   CodeGenFunction CGF(CGM);
3728   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3729        E = D->init_end(); B != E; ++B) {
3730     CXXCtorInitializer *CtorInitExp = *B;
3731     Expr *Init = CtorInitExp->getInit();
3732     if (!CGF.isTrivialInitializer(Init))
3733       return false;
3734   }
3735   return true;
3736 }
3737 
3738 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3739 /// for an implementation.
3740 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3741   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3742   if (needsDestructMethod(D)) {
3743     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3744     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3745     ObjCMethodDecl *DTORMethod =
3746       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3747                              cxxSelector, getContext().VoidTy, nullptr, D,
3748                              /*isInstance=*/true, /*isVariadic=*/false,
3749                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3750                              /*isDefined=*/false, ObjCMethodDecl::Required);
3751     D->addInstanceMethod(DTORMethod);
3752     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3753     D->setHasDestructors(true);
3754   }
3755 
3756   // If the implementation doesn't have any ivar initializers, we don't need
3757   // a .cxx_construct.
3758   if (D->getNumIvarInitializers() == 0 ||
3759       AllTrivialInitializers(*this, D))
3760     return;
3761 
3762   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3763   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3764   // The constructor returns 'self'.
3765   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3766                                                 D->getLocation(),
3767                                                 D->getLocation(),
3768                                                 cxxSelector,
3769                                                 getContext().getObjCIdType(),
3770                                                 nullptr, D, /*isInstance=*/true,
3771                                                 /*isVariadic=*/false,
3772                                                 /*isPropertyAccessor=*/true,
3773                                                 /*isImplicitlyDeclared=*/true,
3774                                                 /*isDefined=*/false,
3775                                                 ObjCMethodDecl::Required);
3776   D->addInstanceMethod(CTORMethod);
3777   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3778   D->setHasNonZeroConstructors(true);
3779 }
3780 
3781 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3782 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3783   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3784       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3785     ErrorUnsupported(LSD, "linkage spec");
3786     return;
3787   }
3788 
3789   EmitDeclContext(LSD);
3790 }
3791 
3792 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
3793   for (auto *I : DC->decls()) {
3794     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
3795     // are themselves considered "top-level", so EmitTopLevelDecl on an
3796     // ObjCImplDecl does not recursively visit them. We need to do that in
3797     // case they're nested inside another construct (LinkageSpecDecl /
3798     // ExportDecl) that does stop them from being considered "top-level".
3799     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3800       for (auto *M : OID->methods())
3801         EmitTopLevelDecl(M);
3802     }
3803 
3804     EmitTopLevelDecl(I);
3805   }
3806 }
3807 
3808 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3809 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3810   // Ignore dependent declarations.
3811   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3812     return;
3813 
3814   switch (D->getKind()) {
3815   case Decl::CXXConversion:
3816   case Decl::CXXMethod:
3817   case Decl::Function:
3818     // Skip function templates
3819     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3820         cast<FunctionDecl>(D)->isLateTemplateParsed())
3821       return;
3822 
3823     EmitGlobal(cast<FunctionDecl>(D));
3824     // Always provide some coverage mapping
3825     // even for the functions that aren't emitted.
3826     AddDeferredUnusedCoverageMapping(D);
3827     break;
3828 
3829   case Decl::Var:
3830   case Decl::Decomposition:
3831     // Skip variable templates
3832     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3833       return;
3834   case Decl::VarTemplateSpecialization:
3835     EmitGlobal(cast<VarDecl>(D));
3836     if (auto *DD = dyn_cast<DecompositionDecl>(D))
3837       for (auto *B : DD->bindings())
3838         if (auto *HD = B->getHoldingVar())
3839           EmitGlobal(HD);
3840     break;
3841 
3842   // Indirect fields from global anonymous structs and unions can be
3843   // ignored; only the actual variable requires IR gen support.
3844   case Decl::IndirectField:
3845     break;
3846 
3847   // C++ Decls
3848   case Decl::Namespace:
3849     EmitDeclContext(cast<NamespaceDecl>(D));
3850     break;
3851   case Decl::CXXRecord:
3852     // Emit any static data members, they may be definitions.
3853     for (auto *I : cast<CXXRecordDecl>(D)->decls())
3854       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
3855         EmitTopLevelDecl(I);
3856     break;
3857     // No code generation needed.
3858   case Decl::UsingShadow:
3859   case Decl::ClassTemplate:
3860   case Decl::VarTemplate:
3861   case Decl::VarTemplatePartialSpecialization:
3862   case Decl::FunctionTemplate:
3863   case Decl::TypeAliasTemplate:
3864   case Decl::Block:
3865   case Decl::Empty:
3866     break;
3867   case Decl::Using:          // using X; [C++]
3868     if (CGDebugInfo *DI = getModuleDebugInfo())
3869         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3870     return;
3871   case Decl::NamespaceAlias:
3872     if (CGDebugInfo *DI = getModuleDebugInfo())
3873         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3874     return;
3875   case Decl::UsingDirective: // using namespace X; [C++]
3876     if (CGDebugInfo *DI = getModuleDebugInfo())
3877       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3878     return;
3879   case Decl::CXXConstructor:
3880     // Skip function templates
3881     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3882         cast<FunctionDecl>(D)->isLateTemplateParsed())
3883       return;
3884 
3885     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3886     break;
3887   case Decl::CXXDestructor:
3888     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3889       return;
3890     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3891     break;
3892 
3893   case Decl::StaticAssert:
3894     // Nothing to do.
3895     break;
3896 
3897   // Objective-C Decls
3898 
3899   // Forward declarations, no (immediate) code generation.
3900   case Decl::ObjCInterface:
3901   case Decl::ObjCCategory:
3902     break;
3903 
3904   case Decl::ObjCProtocol: {
3905     auto *Proto = cast<ObjCProtocolDecl>(D);
3906     if (Proto->isThisDeclarationADefinition())
3907       ObjCRuntime->GenerateProtocol(Proto);
3908     break;
3909   }
3910 
3911   case Decl::ObjCCategoryImpl:
3912     // Categories have properties but don't support synthesize so we
3913     // can ignore them here.
3914     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3915     break;
3916 
3917   case Decl::ObjCImplementation: {
3918     auto *OMD = cast<ObjCImplementationDecl>(D);
3919     EmitObjCPropertyImplementations(OMD);
3920     EmitObjCIvarInitializations(OMD);
3921     ObjCRuntime->GenerateClass(OMD);
3922     // Emit global variable debug information.
3923     if (CGDebugInfo *DI = getModuleDebugInfo())
3924       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3925         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3926             OMD->getClassInterface()), OMD->getLocation());
3927     break;
3928   }
3929   case Decl::ObjCMethod: {
3930     auto *OMD = cast<ObjCMethodDecl>(D);
3931     // If this is not a prototype, emit the body.
3932     if (OMD->getBody())
3933       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3934     break;
3935   }
3936   case Decl::ObjCCompatibleAlias:
3937     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3938     break;
3939 
3940   case Decl::PragmaComment: {
3941     const auto *PCD = cast<PragmaCommentDecl>(D);
3942     switch (PCD->getCommentKind()) {
3943     case PCK_Unknown:
3944       llvm_unreachable("unexpected pragma comment kind");
3945     case PCK_Linker:
3946       AppendLinkerOptions(PCD->getArg());
3947       break;
3948     case PCK_Lib:
3949       AddDependentLib(PCD->getArg());
3950       break;
3951     case PCK_Compiler:
3952     case PCK_ExeStr:
3953     case PCK_User:
3954       break; // We ignore all of these.
3955     }
3956     break;
3957   }
3958 
3959   case Decl::PragmaDetectMismatch: {
3960     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3961     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3962     break;
3963   }
3964 
3965   case Decl::LinkageSpec:
3966     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3967     break;
3968 
3969   case Decl::FileScopeAsm: {
3970     // File-scope asm is ignored during device-side CUDA compilation.
3971     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3972       break;
3973     // File-scope asm is ignored during device-side OpenMP compilation.
3974     if (LangOpts.OpenMPIsDevice)
3975       break;
3976     auto *AD = cast<FileScopeAsmDecl>(D);
3977     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3978     break;
3979   }
3980 
3981   case Decl::Import: {
3982     auto *Import = cast<ImportDecl>(D);
3983 
3984     // If we've already imported this module, we're done.
3985     if (!ImportedModules.insert(Import->getImportedModule()))
3986       break;
3987 
3988     // Emit debug information for direct imports.
3989     if (!Import->getImportedOwningModule()) {
3990       if (CGDebugInfo *DI = getModuleDebugInfo())
3991         DI->EmitImportDecl(*Import);
3992     }
3993 
3994     // Emit the module initializers.
3995     for (auto *D : Context.getModuleInitializers(Import->getImportedModule()))
3996       EmitTopLevelDecl(D);
3997     break;
3998   }
3999 
4000   case Decl::Export:
4001     EmitDeclContext(cast<ExportDecl>(D));
4002     break;
4003 
4004   case Decl::OMPThreadPrivate:
4005     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4006     break;
4007 
4008   case Decl::ClassTemplateSpecialization: {
4009     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4010     if (DebugInfo &&
4011         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4012         Spec->hasDefinition())
4013       DebugInfo->completeTemplateDefinition(*Spec);
4014     break;
4015   }
4016 
4017   case Decl::OMPDeclareReduction:
4018     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4019     break;
4020 
4021   default:
4022     // Make sure we handled everything we should, every other kind is a
4023     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4024     // function. Need to recode Decl::Kind to do that easily.
4025     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4026     break;
4027   }
4028 }
4029 
4030 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4031   // Do we need to generate coverage mapping?
4032   if (!CodeGenOpts.CoverageMapping)
4033     return;
4034   switch (D->getKind()) {
4035   case Decl::CXXConversion:
4036   case Decl::CXXMethod:
4037   case Decl::Function:
4038   case Decl::ObjCMethod:
4039   case Decl::CXXConstructor:
4040   case Decl::CXXDestructor: {
4041     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4042       return;
4043     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4044     if (I == DeferredEmptyCoverageMappingDecls.end())
4045       DeferredEmptyCoverageMappingDecls[D] = true;
4046     break;
4047   }
4048   default:
4049     break;
4050   };
4051 }
4052 
4053 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4054   // Do we need to generate coverage mapping?
4055   if (!CodeGenOpts.CoverageMapping)
4056     return;
4057   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4058     if (Fn->isTemplateInstantiation())
4059       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4060   }
4061   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4062   if (I == DeferredEmptyCoverageMappingDecls.end())
4063     DeferredEmptyCoverageMappingDecls[D] = false;
4064   else
4065     I->second = false;
4066 }
4067 
4068 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4069   std::vector<const Decl *> DeferredDecls;
4070   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
4071     if (!I.second)
4072       continue;
4073     DeferredDecls.push_back(I.first);
4074   }
4075   // Sort the declarations by their location to make sure that the tests get a
4076   // predictable order for the coverage mapping for the unused declarations.
4077   if (CodeGenOpts.DumpCoverageMapping)
4078     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
4079               [] (const Decl *LHS, const Decl *RHS) {
4080       return LHS->getLocStart() < RHS->getLocStart();
4081     });
4082   for (const auto *D : DeferredDecls) {
4083     switch (D->getKind()) {
4084     case Decl::CXXConversion:
4085     case Decl::CXXMethod:
4086     case Decl::Function:
4087     case Decl::ObjCMethod: {
4088       CodeGenPGO PGO(*this);
4089       GlobalDecl GD(cast<FunctionDecl>(D));
4090       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4091                                   getFunctionLinkage(GD));
4092       break;
4093     }
4094     case Decl::CXXConstructor: {
4095       CodeGenPGO PGO(*this);
4096       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4097       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4098                                   getFunctionLinkage(GD));
4099       break;
4100     }
4101     case Decl::CXXDestructor: {
4102       CodeGenPGO PGO(*this);
4103       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4104       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4105                                   getFunctionLinkage(GD));
4106       break;
4107     }
4108     default:
4109       break;
4110     };
4111   }
4112 }
4113 
4114 /// Turns the given pointer into a constant.
4115 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4116                                           const void *Ptr) {
4117   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4118   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4119   return llvm::ConstantInt::get(i64, PtrInt);
4120 }
4121 
4122 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4123                                    llvm::NamedMDNode *&GlobalMetadata,
4124                                    GlobalDecl D,
4125                                    llvm::GlobalValue *Addr) {
4126   if (!GlobalMetadata)
4127     GlobalMetadata =
4128       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4129 
4130   // TODO: should we report variant information for ctors/dtors?
4131   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4132                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4133                                CGM.getLLVMContext(), D.getDecl()))};
4134   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4135 }
4136 
4137 /// For each function which is declared within an extern "C" region and marked
4138 /// as 'used', but has internal linkage, create an alias from the unmangled
4139 /// name to the mangled name if possible. People expect to be able to refer
4140 /// to such functions with an unmangled name from inline assembly within the
4141 /// same translation unit.
4142 void CodeGenModule::EmitStaticExternCAliases() {
4143   // Don't do anything if we're generating CUDA device code -- the NVPTX
4144   // assembly target doesn't support aliases.
4145   if (Context.getTargetInfo().getTriple().isNVPTX())
4146     return;
4147   for (auto &I : StaticExternCValues) {
4148     IdentifierInfo *Name = I.first;
4149     llvm::GlobalValue *Val = I.second;
4150     if (Val && !getModule().getNamedValue(Name->getName()))
4151       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4152   }
4153 }
4154 
4155 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4156                                              GlobalDecl &Result) const {
4157   auto Res = Manglings.find(MangledName);
4158   if (Res == Manglings.end())
4159     return false;
4160   Result = Res->getValue();
4161   return true;
4162 }
4163 
4164 /// Emits metadata nodes associating all the global values in the
4165 /// current module with the Decls they came from.  This is useful for
4166 /// projects using IR gen as a subroutine.
4167 ///
4168 /// Since there's currently no way to associate an MDNode directly
4169 /// with an llvm::GlobalValue, we create a global named metadata
4170 /// with the name 'clang.global.decl.ptrs'.
4171 void CodeGenModule::EmitDeclMetadata() {
4172   llvm::NamedMDNode *GlobalMetadata = nullptr;
4173 
4174   for (auto &I : MangledDeclNames) {
4175     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4176     // Some mangled names don't necessarily have an associated GlobalValue
4177     // in this module, e.g. if we mangled it for DebugInfo.
4178     if (Addr)
4179       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4180   }
4181 }
4182 
4183 /// Emits metadata nodes for all the local variables in the current
4184 /// function.
4185 void CodeGenFunction::EmitDeclMetadata() {
4186   if (LocalDeclMap.empty()) return;
4187 
4188   llvm::LLVMContext &Context = getLLVMContext();
4189 
4190   // Find the unique metadata ID for this name.
4191   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4192 
4193   llvm::NamedMDNode *GlobalMetadata = nullptr;
4194 
4195   for (auto &I : LocalDeclMap) {
4196     const Decl *D = I.first;
4197     llvm::Value *Addr = I.second.getPointer();
4198     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4199       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4200       Alloca->setMetadata(
4201           DeclPtrKind, llvm::MDNode::get(
4202                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4203     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4204       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4205       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4206     }
4207   }
4208 }
4209 
4210 void CodeGenModule::EmitVersionIdentMetadata() {
4211   llvm::NamedMDNode *IdentMetadata =
4212     TheModule.getOrInsertNamedMetadata("llvm.ident");
4213   std::string Version = getClangFullVersion();
4214   llvm::LLVMContext &Ctx = TheModule.getContext();
4215 
4216   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4217   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4218 }
4219 
4220 void CodeGenModule::EmitTargetMetadata() {
4221   // Warning, new MangledDeclNames may be appended within this loop.
4222   // We rely on MapVector insertions adding new elements to the end
4223   // of the container.
4224   // FIXME: Move this loop into the one target that needs it, and only
4225   // loop over those declarations for which we couldn't emit the target
4226   // metadata when we emitted the declaration.
4227   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4228     auto Val = *(MangledDeclNames.begin() + I);
4229     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4230     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4231     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4232   }
4233 }
4234 
4235 void CodeGenModule::EmitCoverageFile() {
4236   if (getCodeGenOpts().CoverageDataFile.empty() &&
4237       getCodeGenOpts().CoverageNotesFile.empty())
4238     return;
4239 
4240   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4241   if (!CUNode)
4242     return;
4243 
4244   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4245   llvm::LLVMContext &Ctx = TheModule.getContext();
4246   auto *CoverageDataFile =
4247       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4248   auto *CoverageNotesFile =
4249       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4250   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4251     llvm::MDNode *CU = CUNode->getOperand(i);
4252     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4253     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4254   }
4255 }
4256 
4257 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4258   // Sema has checked that all uuid strings are of the form
4259   // "12345678-1234-1234-1234-1234567890ab".
4260   assert(Uuid.size() == 36);
4261   for (unsigned i = 0; i < 36; ++i) {
4262     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4263     else                                         assert(isHexDigit(Uuid[i]));
4264   }
4265 
4266   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4267   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4268 
4269   llvm::Constant *Field3[8];
4270   for (unsigned Idx = 0; Idx < 8; ++Idx)
4271     Field3[Idx] = llvm::ConstantInt::get(
4272         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4273 
4274   llvm::Constant *Fields[4] = {
4275     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4276     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4277     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4278     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4279   };
4280 
4281   return llvm::ConstantStruct::getAnon(Fields);
4282 }
4283 
4284 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4285                                                        bool ForEH) {
4286   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4287   // FIXME: should we even be calling this method if RTTI is disabled
4288   // and it's not for EH?
4289   if (!ForEH && !getLangOpts().RTTI)
4290     return llvm::Constant::getNullValue(Int8PtrTy);
4291 
4292   if (ForEH && Ty->isObjCObjectPointerType() &&
4293       LangOpts.ObjCRuntime.isGNUFamily())
4294     return ObjCRuntime->GetEHType(Ty);
4295 
4296   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4297 }
4298 
4299 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4300   for (auto RefExpr : D->varlists()) {
4301     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4302     bool PerformInit =
4303         VD->getAnyInitializer() &&
4304         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4305                                                         /*ForRef=*/false);
4306 
4307     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4308     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4309             VD, Addr, RefExpr->getLocStart(), PerformInit))
4310       CXXGlobalInits.push_back(InitFunction);
4311   }
4312 }
4313 
4314 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4315   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4316   if (InternalId)
4317     return InternalId;
4318 
4319   if (isExternallyVisible(T->getLinkage())) {
4320     std::string OutName;
4321     llvm::raw_string_ostream Out(OutName);
4322     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4323 
4324     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4325   } else {
4326     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4327                                            llvm::ArrayRef<llvm::Metadata *>());
4328   }
4329 
4330   return InternalId;
4331 }
4332 
4333 /// Returns whether this module needs the "all-vtables" type identifier.
4334 bool CodeGenModule::NeedAllVtablesTypeId() const {
4335   // Returns true if at least one of vtable-based CFI checkers is enabled and
4336   // is not in the trapping mode.
4337   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4338            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4339           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4340            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4341           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4342            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4343           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4344            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4345 }
4346 
4347 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4348                                           CharUnits Offset,
4349                                           const CXXRecordDecl *RD) {
4350   llvm::Metadata *MD =
4351       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4352   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4353 
4354   if (CodeGenOpts.SanitizeCfiCrossDso)
4355     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4356       VTable->addTypeMetadata(Offset.getQuantity(),
4357                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4358 
4359   if (NeedAllVtablesTypeId()) {
4360     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4361     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4362   }
4363 }
4364 
4365 // Fills in the supplied string map with the set of target features for the
4366 // passed in function.
4367 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4368                                           const FunctionDecl *FD) {
4369   StringRef TargetCPU = Target.getTargetOpts().CPU;
4370   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4371     // If we have a TargetAttr build up the feature map based on that.
4372     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4373 
4374     // Make a copy of the features as passed on the command line into the
4375     // beginning of the additional features from the function to override.
4376     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4377                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4378                             Target.getTargetOpts().FeaturesAsWritten.end());
4379 
4380     if (ParsedAttr.second != "")
4381       TargetCPU = ParsedAttr.second;
4382 
4383     // Now populate the feature map, first with the TargetCPU which is either
4384     // the default or a new one from the target attribute string. Then we'll use
4385     // the passed in features (FeaturesAsWritten) along with the new ones from
4386     // the attribute.
4387     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4388   } else {
4389     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4390                           Target.getTargetOpts().Features);
4391   }
4392 }
4393 
4394 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4395   if (!SanStats)
4396     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4397 
4398   return *SanStats;
4399 }
4400 llvm::Value *
4401 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4402                                                   CodeGenFunction &CGF) {
4403   llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF);
4404   auto SamplerT = getOpenCLRuntime().getSamplerType();
4405   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4406   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4407                                 "__translate_sampler_initializer"),
4408                                 {C});
4409 }
4410