1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 127 if (LangOpts.ObjC1) 128 createObjCRuntime(); 129 if (LangOpts.OpenCL) 130 createOpenCLRuntime(); 131 if (LangOpts.OpenMP) 132 createOpenMPRuntime(); 133 if (LangOpts.CUDA) 134 createCUDARuntime(); 135 136 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 137 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 138 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 139 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 140 getCXXABI().getMangleContext())); 141 142 // If debug info or coverage generation is enabled, create the CGDebugInfo 143 // object. 144 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 145 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 146 DebugInfo.reset(new CGDebugInfo(*this)); 147 148 Block.GlobalUniqueCount = 0; 149 150 if (C.getLangOpts().ObjC1) 151 ObjCData.reset(new ObjCEntrypoints()); 152 153 if (CodeGenOpts.hasProfileClangUse()) { 154 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 155 CodeGenOpts.ProfileInstrumentUsePath); 156 if (auto E = ReaderOrErr.takeError()) { 157 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 158 "Could not read profile %0: %1"); 159 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 160 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 161 << EI.message(); 162 }); 163 } else 164 PGOReader = std::move(ReaderOrErr.get()); 165 } 166 167 // If coverage mapping generation is enabled, create the 168 // CoverageMappingModuleGen object. 169 if (CodeGenOpts.CoverageMapping) 170 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 171 } 172 173 CodeGenModule::~CodeGenModule() {} 174 175 void CodeGenModule::createObjCRuntime() { 176 // This is just isGNUFamily(), but we want to force implementors of 177 // new ABIs to decide how best to do this. 178 switch (LangOpts.ObjCRuntime.getKind()) { 179 case ObjCRuntime::GNUstep: 180 case ObjCRuntime::GCC: 181 case ObjCRuntime::ObjFW: 182 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 183 return; 184 185 case ObjCRuntime::FragileMacOSX: 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 case ObjCRuntime::WatchOS: 189 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 190 return; 191 } 192 llvm_unreachable("bad runtime kind"); 193 } 194 195 void CodeGenModule::createOpenCLRuntime() { 196 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 197 } 198 199 void CodeGenModule::createOpenMPRuntime() { 200 // Select a specialized code generation class based on the target, if any. 201 // If it does not exist use the default implementation. 202 switch (getTriple().getArch()) { 203 case llvm::Triple::nvptx: 204 case llvm::Triple::nvptx64: 205 assert(getLangOpts().OpenMPIsDevice && 206 "OpenMP NVPTX is only prepared to deal with device code."); 207 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 208 break; 209 default: 210 if (LangOpts.OpenMPSimd) 211 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 212 else 213 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 214 break; 215 } 216 } 217 218 void CodeGenModule::createCUDARuntime() { 219 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 220 } 221 222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 223 Replacements[Name] = C; 224 } 225 226 void CodeGenModule::applyReplacements() { 227 for (auto &I : Replacements) { 228 StringRef MangledName = I.first(); 229 llvm::Constant *Replacement = I.second; 230 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 231 if (!Entry) 232 continue; 233 auto *OldF = cast<llvm::Function>(Entry); 234 auto *NewF = dyn_cast<llvm::Function>(Replacement); 235 if (!NewF) { 236 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 237 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 238 } else { 239 auto *CE = cast<llvm::ConstantExpr>(Replacement); 240 assert(CE->getOpcode() == llvm::Instruction::BitCast || 241 CE->getOpcode() == llvm::Instruction::GetElementPtr); 242 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 243 } 244 } 245 246 // Replace old with new, but keep the old order. 247 OldF->replaceAllUsesWith(Replacement); 248 if (NewF) { 249 NewF->removeFromParent(); 250 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 251 NewF); 252 } 253 OldF->eraseFromParent(); 254 } 255 } 256 257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 258 GlobalValReplacements.push_back(std::make_pair(GV, C)); 259 } 260 261 void CodeGenModule::applyGlobalValReplacements() { 262 for (auto &I : GlobalValReplacements) { 263 llvm::GlobalValue *GV = I.first; 264 llvm::Constant *C = I.second; 265 266 GV->replaceAllUsesWith(C); 267 GV->eraseFromParent(); 268 } 269 } 270 271 // This is only used in aliases that we created and we know they have a 272 // linear structure. 273 static const llvm::GlobalObject *getAliasedGlobal( 274 const llvm::GlobalIndirectSymbol &GIS) { 275 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 276 const llvm::Constant *C = &GIS; 277 for (;;) { 278 C = C->stripPointerCasts(); 279 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 280 return GO; 281 // stripPointerCasts will not walk over weak aliases. 282 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 283 if (!GIS2) 284 return nullptr; 285 if (!Visited.insert(GIS2).second) 286 return nullptr; 287 C = GIS2->getIndirectSymbol(); 288 } 289 } 290 291 void CodeGenModule::checkAliases() { 292 // Check if the constructed aliases are well formed. It is really unfortunate 293 // that we have to do this in CodeGen, but we only construct mangled names 294 // and aliases during codegen. 295 bool Error = false; 296 DiagnosticsEngine &Diags = getDiags(); 297 for (const GlobalDecl &GD : Aliases) { 298 const auto *D = cast<ValueDecl>(GD.getDecl()); 299 SourceLocation Location; 300 bool IsIFunc = D->hasAttr<IFuncAttr>(); 301 if (const Attr *A = D->getDefiningAttr()) 302 Location = A->getLocation(); 303 else 304 llvm_unreachable("Not an alias or ifunc?"); 305 StringRef MangledName = getMangledName(GD); 306 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 307 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 308 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 309 if (!GV) { 310 Error = true; 311 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 312 } else if (GV->isDeclaration()) { 313 Error = true; 314 Diags.Report(Location, diag::err_alias_to_undefined) 315 << IsIFunc << IsIFunc; 316 } else if (IsIFunc) { 317 // Check resolver function type. 318 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 319 GV->getType()->getPointerElementType()); 320 assert(FTy); 321 if (!FTy->getReturnType()->isPointerTy()) 322 Diags.Report(Location, diag::err_ifunc_resolver_return); 323 if (FTy->getNumParams()) 324 Diags.Report(Location, diag::err_ifunc_resolver_params); 325 } 326 327 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 328 llvm::GlobalValue *AliaseeGV; 329 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 330 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 331 else 332 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 333 334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 335 StringRef AliasSection = SA->getName(); 336 if (AliasSection != AliaseeGV->getSection()) 337 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 338 << AliasSection << IsIFunc << IsIFunc; 339 } 340 341 // We have to handle alias to weak aliases in here. LLVM itself disallows 342 // this since the object semantics would not match the IL one. For 343 // compatibility with gcc we implement it by just pointing the alias 344 // to its aliasee's aliasee. We also warn, since the user is probably 345 // expecting the link to be weak. 346 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 347 if (GA->isInterposable()) { 348 Diags.Report(Location, diag::warn_alias_to_weak_alias) 349 << GV->getName() << GA->getName() << IsIFunc; 350 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 351 GA->getIndirectSymbol(), Alias->getType()); 352 Alias->setIndirectSymbol(Aliasee); 353 } 354 } 355 } 356 if (!Error) 357 return; 358 359 for (const GlobalDecl &GD : Aliases) { 360 StringRef MangledName = getMangledName(GD); 361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 362 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 363 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 364 Alias->eraseFromParent(); 365 } 366 } 367 368 void CodeGenModule::clear() { 369 DeferredDeclsToEmit.clear(); 370 if (OpenMPRuntime) 371 OpenMPRuntime->clear(); 372 } 373 374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 375 StringRef MainFile) { 376 if (!hasDiagnostics()) 377 return; 378 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 379 if (MainFile.empty()) 380 MainFile = "<stdin>"; 381 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 382 } else { 383 if (Mismatched > 0) 384 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 385 386 if (Missing > 0) 387 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 388 } 389 } 390 391 void CodeGenModule::Release() { 392 EmitDeferred(); 393 EmitVTablesOpportunistically(); 394 applyGlobalValReplacements(); 395 applyReplacements(); 396 checkAliases(); 397 emitMultiVersionFunctions(); 398 EmitCXXGlobalInitFunc(); 399 EmitCXXGlobalDtorFunc(); 400 registerGlobalDtorsWithAtExit(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 408 AddGlobalCtor(CudaCtorFunction); 409 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 410 AddGlobalDtor(CudaDtorFunction); 411 } 412 if (OpenMPRuntime) { 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 OpenMPRuntime->clear(); 420 } 421 if (PGOReader) { 422 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 423 if (PGOStats.hasDiagnostics()) 424 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 425 } 426 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 427 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 428 EmitGlobalAnnotations(); 429 EmitStaticExternCAliases(); 430 EmitDeferredUnusedCoverageMappings(); 431 if (CoverageMapping) 432 CoverageMapping->emit(); 433 if (CodeGenOpts.SanitizeCfiCrossDso) { 434 CodeGenFunction(*this).EmitCfiCheckFail(); 435 CodeGenFunction(*this).EmitCfiCheckStub(); 436 } 437 emitAtAvailableLinkGuard(); 438 emitLLVMUsed(); 439 if (SanStats) 440 SanStats->finish(); 441 442 if (CodeGenOpts.Autolink && 443 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 444 EmitModuleLinkOptions(); 445 } 446 447 // Record mregparm value now so it is visible through rest of codegen. 448 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 449 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 450 CodeGenOpts.NumRegisterParameters); 451 452 if (CodeGenOpts.DwarfVersion) { 453 // We actually want the latest version when there are conflicts. 454 // We can change from Warning to Latest if such mode is supported. 455 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 456 CodeGenOpts.DwarfVersion); 457 } 458 if (CodeGenOpts.EmitCodeView) { 459 // Indicate that we want CodeView in the metadata. 460 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 461 } 462 if (CodeGenOpts.ControlFlowGuard) { 463 // We want function ID tables for Control Flow Guard. 464 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 465 } 466 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 467 // We don't support LTO with 2 with different StrictVTablePointers 468 // FIXME: we could support it by stripping all the information introduced 469 // by StrictVTablePointers. 470 471 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 472 473 llvm::Metadata *Ops[2] = { 474 llvm::MDString::get(VMContext, "StrictVTablePointers"), 475 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 476 llvm::Type::getInt32Ty(VMContext), 1))}; 477 478 getModule().addModuleFlag(llvm::Module::Require, 479 "StrictVTablePointersRequirement", 480 llvm::MDNode::get(VMContext, Ops)); 481 } 482 if (DebugInfo) 483 // We support a single version in the linked module. The LLVM 484 // parser will drop debug info with a different version number 485 // (and warn about it, too). 486 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 487 llvm::DEBUG_METADATA_VERSION); 488 489 // We need to record the widths of enums and wchar_t, so that we can generate 490 // the correct build attributes in the ARM backend. wchar_size is also used by 491 // TargetLibraryInfo. 492 uint64_t WCharWidth = 493 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 494 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 495 496 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 497 if ( Arch == llvm::Triple::arm 498 || Arch == llvm::Triple::armeb 499 || Arch == llvm::Triple::thumb 500 || Arch == llvm::Triple::thumbeb) { 501 // The minimum width of an enum in bytes 502 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 503 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 504 } 505 506 if (CodeGenOpts.SanitizeCfiCrossDso) { 507 // Indicate that we want cross-DSO control flow integrity checks. 508 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 509 } 510 511 if (CodeGenOpts.CFProtectionReturn && 512 Target.checkCFProtectionReturnSupported(getDiags())) { 513 // Indicate that we want to instrument return control flow protection. 514 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 515 1); 516 } 517 518 if (CodeGenOpts.CFProtectionBranch && 519 Target.checkCFProtectionBranchSupported(getDiags())) { 520 // Indicate that we want to instrument branch control flow protection. 521 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 522 1); 523 } 524 525 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 526 // Indicate whether __nvvm_reflect should be configured to flush denormal 527 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 528 // property.) 529 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 530 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 531 } 532 533 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 534 if (LangOpts.OpenCL) { 535 EmitOpenCLMetadata(); 536 // Emit SPIR version. 537 if (getTriple().getArch() == llvm::Triple::spir || 538 getTriple().getArch() == llvm::Triple::spir64) { 539 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 540 // opencl.spir.version named metadata. 541 llvm::Metadata *SPIRVerElts[] = { 542 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 543 Int32Ty, LangOpts.OpenCLVersion / 100)), 544 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 545 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 546 llvm::NamedMDNode *SPIRVerMD = 547 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 548 llvm::LLVMContext &Ctx = TheModule.getContext(); 549 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 550 } 551 } 552 553 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 554 assert(PLevel < 3 && "Invalid PIC Level"); 555 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 556 if (Context.getLangOpts().PIE) 557 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 558 } 559 560 if (CodeGenOpts.NoPLT) 561 getModule().setRtLibUseGOT(); 562 563 SimplifyPersonality(); 564 565 if (getCodeGenOpts().EmitDeclMetadata) 566 EmitDeclMetadata(); 567 568 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 569 EmitCoverageFile(); 570 571 if (DebugInfo) 572 DebugInfo->finalize(); 573 574 if (getCodeGenOpts().EmitVersionIdentMetadata) 575 EmitVersionIdentMetadata(); 576 577 EmitTargetMetadata(); 578 } 579 580 void CodeGenModule::EmitOpenCLMetadata() { 581 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 582 // opencl.ocl.version named metadata node. 583 llvm::Metadata *OCLVerElts[] = { 584 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 585 Int32Ty, LangOpts.OpenCLVersion / 100)), 586 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 587 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 588 llvm::NamedMDNode *OCLVerMD = 589 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 590 llvm::LLVMContext &Ctx = TheModule.getContext(); 591 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 592 } 593 594 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 595 // Make sure that this type is translated. 596 Types.UpdateCompletedType(TD); 597 } 598 599 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 600 // Make sure that this type is translated. 601 Types.RefreshTypeCacheForClass(RD); 602 } 603 604 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 605 if (!TBAA) 606 return nullptr; 607 return TBAA->getTypeInfo(QTy); 608 } 609 610 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 611 if (!TBAA) 612 return TBAAAccessInfo(); 613 return TBAA->getAccessInfo(AccessType); 614 } 615 616 TBAAAccessInfo 617 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 618 if (!TBAA) 619 return TBAAAccessInfo(); 620 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 621 } 622 623 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 624 if (!TBAA) 625 return nullptr; 626 return TBAA->getTBAAStructInfo(QTy); 627 } 628 629 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 630 if (!TBAA) 631 return nullptr; 632 return TBAA->getBaseTypeInfo(QTy); 633 } 634 635 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 636 if (!TBAA) 637 return nullptr; 638 return TBAA->getAccessTagInfo(Info); 639 } 640 641 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 642 TBAAAccessInfo TargetInfo) { 643 if (!TBAA) 644 return TBAAAccessInfo(); 645 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 646 } 647 648 TBAAAccessInfo 649 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 650 TBAAAccessInfo InfoB) { 651 if (!TBAA) 652 return TBAAAccessInfo(); 653 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 654 } 655 656 TBAAAccessInfo 657 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 658 TBAAAccessInfo SrcInfo) { 659 if (!TBAA) 660 return TBAAAccessInfo(); 661 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 662 } 663 664 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 665 TBAAAccessInfo TBAAInfo) { 666 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 667 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 668 } 669 670 void CodeGenModule::DecorateInstructionWithInvariantGroup( 671 llvm::Instruction *I, const CXXRecordDecl *RD) { 672 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 673 llvm::MDNode::get(getLLVMContext(), {})); 674 } 675 676 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 677 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 678 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 679 } 680 681 /// ErrorUnsupported - Print out an error that codegen doesn't support the 682 /// specified stmt yet. 683 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 684 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 685 "cannot compile this %0 yet"); 686 std::string Msg = Type; 687 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 688 << Msg << S->getSourceRange(); 689 } 690 691 /// ErrorUnsupported - Print out an error that codegen doesn't support the 692 /// specified decl yet. 693 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 694 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 695 "cannot compile this %0 yet"); 696 std::string Msg = Type; 697 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 698 } 699 700 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 701 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 702 } 703 704 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 705 const NamedDecl *D) const { 706 if (GV->hasDLLImportStorageClass()) 707 return; 708 // Internal definitions always have default visibility. 709 if (GV->hasLocalLinkage()) { 710 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 711 return; 712 } 713 if (!D) 714 return; 715 // Set visibility for definitions. 716 LinkageInfo LV = D->getLinkageAndVisibility(); 717 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 718 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 719 } 720 721 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 722 llvm::GlobalValue *GV) { 723 if (GV->hasLocalLinkage()) 724 return true; 725 726 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 727 return true; 728 729 // DLLImport explicitly marks the GV as external. 730 if (GV->hasDLLImportStorageClass()) 731 return false; 732 733 const llvm::Triple &TT = CGM.getTriple(); 734 // Every other GV is local on COFF. 735 // Make an exception for windows OS in the triple: Some firmware builds use 736 // *-win32-macho triples. This (accidentally?) produced windows relocations 737 // without GOT tables in older clang versions; Keep this behaviour. 738 // FIXME: even thread local variables? 739 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 740 return true; 741 742 // Only handle COFF and ELF for now. 743 if (!TT.isOSBinFormatELF()) 744 return false; 745 746 // If this is not an executable, don't assume anything is local. 747 const auto &CGOpts = CGM.getCodeGenOpts(); 748 llvm::Reloc::Model RM = CGOpts.RelocationModel; 749 const auto &LOpts = CGM.getLangOpts(); 750 if (RM != llvm::Reloc::Static && !LOpts.PIE) 751 return false; 752 753 // A definition cannot be preempted from an executable. 754 if (!GV->isDeclarationForLinker()) 755 return true; 756 757 // Most PIC code sequences that assume that a symbol is local cannot produce a 758 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 759 // depended, it seems worth it to handle it here. 760 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 761 return false; 762 763 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 764 llvm::Triple::ArchType Arch = TT.getArch(); 765 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 766 Arch == llvm::Triple::ppc64le) 767 return false; 768 769 // If we can use copy relocations we can assume it is local. 770 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 771 if (!Var->isThreadLocal() && 772 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 773 return true; 774 775 // If we can use a plt entry as the symbol address we can assume it 776 // is local. 777 // FIXME: This should work for PIE, but the gold linker doesn't support it. 778 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 779 return true; 780 781 // Otherwise don't assue it is local. 782 return false; 783 } 784 785 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 786 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 787 } 788 789 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 790 GlobalDecl GD) const { 791 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 792 // C++ destructors have a few C++ ABI specific special cases. 793 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 794 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 795 return; 796 } 797 setDLLImportDLLExport(GV, D); 798 } 799 800 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 801 const NamedDecl *D) const { 802 if (D && D->isExternallyVisible()) { 803 if (D->hasAttr<DLLImportAttr>()) 804 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 805 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 806 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 807 } 808 } 809 810 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 811 GlobalDecl GD) const { 812 setDLLImportDLLExport(GV, GD); 813 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 814 } 815 816 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 817 const NamedDecl *D) const { 818 setDLLImportDLLExport(GV, D); 819 setGlobalVisibilityAndLocal(GV, D); 820 } 821 822 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 823 const NamedDecl *D) const { 824 setGlobalVisibility(GV, D); 825 setDSOLocal(GV); 826 } 827 828 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 829 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 830 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 831 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 832 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 833 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 834 } 835 836 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 837 CodeGenOptions::TLSModel M) { 838 switch (M) { 839 case CodeGenOptions::GeneralDynamicTLSModel: 840 return llvm::GlobalVariable::GeneralDynamicTLSModel; 841 case CodeGenOptions::LocalDynamicTLSModel: 842 return llvm::GlobalVariable::LocalDynamicTLSModel; 843 case CodeGenOptions::InitialExecTLSModel: 844 return llvm::GlobalVariable::InitialExecTLSModel; 845 case CodeGenOptions::LocalExecTLSModel: 846 return llvm::GlobalVariable::LocalExecTLSModel; 847 } 848 llvm_unreachable("Invalid TLS model!"); 849 } 850 851 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 852 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 853 854 llvm::GlobalValue::ThreadLocalMode TLM; 855 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 856 857 // Override the TLS model if it is explicitly specified. 858 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 859 TLM = GetLLVMTLSModel(Attr->getModel()); 860 } 861 862 GV->setThreadLocalMode(TLM); 863 } 864 865 static void AppendTargetMangling(const CodeGenModule &CGM, 866 const TargetAttr *Attr, raw_ostream &Out) { 867 if (Attr->isDefaultVersion()) 868 return; 869 870 Out << '.'; 871 const auto &Target = CGM.getTarget(); 872 TargetAttr::ParsedTargetAttr Info = 873 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 874 // Multiversioning doesn't allow "no-${feature}", so we can 875 // only have "+" prefixes here. 876 assert(LHS.startswith("+") && RHS.startswith("+") && 877 "Features should always have a prefix."); 878 return Target.multiVersionSortPriority(LHS.substr(1)) > 879 Target.multiVersionSortPriority(RHS.substr(1)); 880 }); 881 882 bool IsFirst = true; 883 884 if (!Info.Architecture.empty()) { 885 IsFirst = false; 886 Out << "arch_" << Info.Architecture; 887 } 888 889 for (StringRef Feat : Info.Features) { 890 if (!IsFirst) 891 Out << '_'; 892 IsFirst = false; 893 Out << Feat.substr(1); 894 } 895 } 896 897 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 898 const NamedDecl *ND, 899 bool OmitTargetMangling = false) { 900 SmallString<256> Buffer; 901 llvm::raw_svector_ostream Out(Buffer); 902 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 903 if (MC.shouldMangleDeclName(ND)) { 904 llvm::raw_svector_ostream Out(Buffer); 905 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 906 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 907 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 908 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 909 else 910 MC.mangleName(ND, Out); 911 } else { 912 IdentifierInfo *II = ND->getIdentifier(); 913 assert(II && "Attempt to mangle unnamed decl."); 914 const auto *FD = dyn_cast<FunctionDecl>(ND); 915 916 if (FD && 917 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 918 llvm::raw_svector_ostream Out(Buffer); 919 Out << "__regcall3__" << II->getName(); 920 } else { 921 Out << II->getName(); 922 } 923 } 924 925 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 926 if (FD->isMultiVersion() && !OmitTargetMangling) 927 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 928 return Out.str(); 929 } 930 931 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 932 const FunctionDecl *FD) { 933 if (!FD->isMultiVersion()) 934 return; 935 936 // Get the name of what this would be without the 'target' attribute. This 937 // allows us to lookup the version that was emitted when this wasn't a 938 // multiversion function. 939 std::string NonTargetName = 940 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true); 941 GlobalDecl OtherGD; 942 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 943 assert(OtherGD.getCanonicalDecl() 944 .getDecl() 945 ->getAsFunction() 946 ->isMultiVersion() && 947 "Other GD should now be a multiversioned function"); 948 // OtherFD is the version of this function that was mangled BEFORE 949 // becoming a MultiVersion function. It potentially needs to be updated. 950 const FunctionDecl *OtherFD = 951 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 952 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 953 // This is so that if the initial version was already the 'default' 954 // version, we don't try to update it. 955 if (OtherName != NonTargetName) { 956 // Remove instead of erase, since others may have stored the StringRef 957 // to this. 958 const auto ExistingRecord = Manglings.find(NonTargetName); 959 if (ExistingRecord != std::end(Manglings)) 960 Manglings.remove(&(*ExistingRecord)); 961 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 962 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 963 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 964 Entry->setName(OtherName); 965 } 966 } 967 } 968 969 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 970 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 971 972 // Some ABIs don't have constructor variants. Make sure that base and 973 // complete constructors get mangled the same. 974 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 975 if (!getTarget().getCXXABI().hasConstructorVariants()) { 976 CXXCtorType OrigCtorType = GD.getCtorType(); 977 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 978 if (OrigCtorType == Ctor_Base) 979 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 980 } 981 } 982 983 auto FoundName = MangledDeclNames.find(CanonicalGD); 984 if (FoundName != MangledDeclNames.end()) 985 return FoundName->second; 986 987 988 // Keep the first result in the case of a mangling collision. 989 const auto *ND = cast<NamedDecl>(GD.getDecl()); 990 auto Result = 991 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 992 return MangledDeclNames[CanonicalGD] = Result.first->first(); 993 } 994 995 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 996 const BlockDecl *BD) { 997 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 998 const Decl *D = GD.getDecl(); 999 1000 SmallString<256> Buffer; 1001 llvm::raw_svector_ostream Out(Buffer); 1002 if (!D) 1003 MangleCtx.mangleGlobalBlock(BD, 1004 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1005 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1006 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1007 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1008 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1009 else 1010 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1011 1012 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1013 return Result.first->first(); 1014 } 1015 1016 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1017 return getModule().getNamedValue(Name); 1018 } 1019 1020 /// AddGlobalCtor - Add a function to the list that will be called before 1021 /// main() runs. 1022 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1023 llvm::Constant *AssociatedData) { 1024 // FIXME: Type coercion of void()* types. 1025 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1026 } 1027 1028 /// AddGlobalDtor - Add a function to the list that will be called 1029 /// when the module is unloaded. 1030 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1031 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1032 DtorsUsingAtExit[Priority].push_back(Dtor); 1033 return; 1034 } 1035 1036 // FIXME: Type coercion of void()* types. 1037 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1038 } 1039 1040 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1041 if (Fns.empty()) return; 1042 1043 // Ctor function type is void()*. 1044 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1045 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 1046 1047 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1048 llvm::StructType *CtorStructTy = llvm::StructType::get( 1049 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 1050 1051 // Construct the constructor and destructor arrays. 1052 ConstantInitBuilder builder(*this); 1053 auto ctors = builder.beginArray(CtorStructTy); 1054 for (const auto &I : Fns) { 1055 auto ctor = ctors.beginStruct(CtorStructTy); 1056 ctor.addInt(Int32Ty, I.Priority); 1057 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1058 if (I.AssociatedData) 1059 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1060 else 1061 ctor.addNullPointer(VoidPtrTy); 1062 ctor.finishAndAddTo(ctors); 1063 } 1064 1065 auto list = 1066 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1067 /*constant*/ false, 1068 llvm::GlobalValue::AppendingLinkage); 1069 1070 // The LTO linker doesn't seem to like it when we set an alignment 1071 // on appending variables. Take it off as a workaround. 1072 list->setAlignment(0); 1073 1074 Fns.clear(); 1075 } 1076 1077 llvm::GlobalValue::LinkageTypes 1078 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1079 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1080 1081 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1082 1083 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1084 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1085 1086 if (isa<CXXConstructorDecl>(D) && 1087 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1088 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1089 // Our approach to inheriting constructors is fundamentally different from 1090 // that used by the MS ABI, so keep our inheriting constructor thunks 1091 // internal rather than trying to pick an unambiguous mangling for them. 1092 return llvm::GlobalValue::InternalLinkage; 1093 } 1094 1095 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1096 } 1097 1098 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1099 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1100 if (!MDS) return nullptr; 1101 1102 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1103 } 1104 1105 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1106 const CGFunctionInfo &Info, 1107 llvm::Function *F) { 1108 unsigned CallingConv; 1109 llvm::AttributeList PAL; 1110 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1111 F->setAttributes(PAL); 1112 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1113 } 1114 1115 /// Determines whether the language options require us to model 1116 /// unwind exceptions. We treat -fexceptions as mandating this 1117 /// except under the fragile ObjC ABI with only ObjC exceptions 1118 /// enabled. This means, for example, that C with -fexceptions 1119 /// enables this. 1120 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1121 // If exceptions are completely disabled, obviously this is false. 1122 if (!LangOpts.Exceptions) return false; 1123 1124 // If C++ exceptions are enabled, this is true. 1125 if (LangOpts.CXXExceptions) return true; 1126 1127 // If ObjC exceptions are enabled, this depends on the ABI. 1128 if (LangOpts.ObjCExceptions) { 1129 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1130 } 1131 1132 return true; 1133 } 1134 1135 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1136 llvm::Function *F) { 1137 llvm::AttrBuilder B; 1138 1139 if (CodeGenOpts.UnwindTables) 1140 B.addAttribute(llvm::Attribute::UWTable); 1141 1142 if (!hasUnwindExceptions(LangOpts)) 1143 B.addAttribute(llvm::Attribute::NoUnwind); 1144 1145 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1146 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1147 B.addAttribute(llvm::Attribute::StackProtect); 1148 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1149 B.addAttribute(llvm::Attribute::StackProtectStrong); 1150 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1151 B.addAttribute(llvm::Attribute::StackProtectReq); 1152 } 1153 1154 if (!D) { 1155 // If we don't have a declaration to control inlining, the function isn't 1156 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1157 // disabled, mark the function as noinline. 1158 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1159 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1160 B.addAttribute(llvm::Attribute::NoInline); 1161 1162 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1163 return; 1164 } 1165 1166 // Track whether we need to add the optnone LLVM attribute, 1167 // starting with the default for this optimization level. 1168 bool ShouldAddOptNone = 1169 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1170 // We can't add optnone in the following cases, it won't pass the verifier. 1171 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1172 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1173 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1174 1175 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1176 B.addAttribute(llvm::Attribute::OptimizeNone); 1177 1178 // OptimizeNone implies noinline; we should not be inlining such functions. 1179 B.addAttribute(llvm::Attribute::NoInline); 1180 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1181 "OptimizeNone and AlwaysInline on same function!"); 1182 1183 // We still need to handle naked functions even though optnone subsumes 1184 // much of their semantics. 1185 if (D->hasAttr<NakedAttr>()) 1186 B.addAttribute(llvm::Attribute::Naked); 1187 1188 // OptimizeNone wins over OptimizeForSize and MinSize. 1189 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1190 F->removeFnAttr(llvm::Attribute::MinSize); 1191 } else if (D->hasAttr<NakedAttr>()) { 1192 // Naked implies noinline: we should not be inlining such functions. 1193 B.addAttribute(llvm::Attribute::Naked); 1194 B.addAttribute(llvm::Attribute::NoInline); 1195 } else if (D->hasAttr<NoDuplicateAttr>()) { 1196 B.addAttribute(llvm::Attribute::NoDuplicate); 1197 } else if (D->hasAttr<NoInlineAttr>()) { 1198 B.addAttribute(llvm::Attribute::NoInline); 1199 } else if (D->hasAttr<AlwaysInlineAttr>() && 1200 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1201 // (noinline wins over always_inline, and we can't specify both in IR) 1202 B.addAttribute(llvm::Attribute::AlwaysInline); 1203 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1204 // If we're not inlining, then force everything that isn't always_inline to 1205 // carry an explicit noinline attribute. 1206 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1207 B.addAttribute(llvm::Attribute::NoInline); 1208 } else { 1209 // Otherwise, propagate the inline hint attribute and potentially use its 1210 // absence to mark things as noinline. 1211 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1212 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1213 return Redecl->isInlineSpecified(); 1214 })) { 1215 B.addAttribute(llvm::Attribute::InlineHint); 1216 } else if (CodeGenOpts.getInlining() == 1217 CodeGenOptions::OnlyHintInlining && 1218 !FD->isInlined() && 1219 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1220 B.addAttribute(llvm::Attribute::NoInline); 1221 } 1222 } 1223 } 1224 1225 // Add other optimization related attributes if we are optimizing this 1226 // function. 1227 if (!D->hasAttr<OptimizeNoneAttr>()) { 1228 if (D->hasAttr<ColdAttr>()) { 1229 if (!ShouldAddOptNone) 1230 B.addAttribute(llvm::Attribute::OptimizeForSize); 1231 B.addAttribute(llvm::Attribute::Cold); 1232 } 1233 1234 if (D->hasAttr<MinSizeAttr>()) 1235 B.addAttribute(llvm::Attribute::MinSize); 1236 } 1237 1238 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1239 1240 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1241 if (alignment) 1242 F->setAlignment(alignment); 1243 1244 if (!D->hasAttr<AlignedAttr>()) 1245 if (LangOpts.FunctionAlignment) 1246 F->setAlignment(1 << LangOpts.FunctionAlignment); 1247 1248 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1249 // reserve a bit for differentiating between virtual and non-virtual member 1250 // functions. If the current target's C++ ABI requires this and this is a 1251 // member function, set its alignment accordingly. 1252 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1253 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1254 F->setAlignment(2); 1255 } 1256 1257 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1258 if (CodeGenOpts.SanitizeCfiCrossDso) 1259 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1260 CreateFunctionTypeMetadata(FD, F); 1261 } 1262 1263 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1264 const Decl *D = GD.getDecl(); 1265 if (dyn_cast_or_null<NamedDecl>(D)) 1266 setGVProperties(GV, GD); 1267 else 1268 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1269 1270 if (D && D->hasAttr<UsedAttr>()) 1271 addUsedGlobal(GV); 1272 } 1273 1274 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1275 llvm::AttrBuilder &Attrs) { 1276 // Add target-cpu and target-features attributes to functions. If 1277 // we have a decl for the function and it has a target attribute then 1278 // parse that and add it to the feature set. 1279 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1280 std::vector<std::string> Features; 1281 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1282 FD = FD ? FD->getMostRecentDecl() : FD; 1283 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1284 bool AddedAttr = false; 1285 if (TD) { 1286 llvm::StringMap<bool> FeatureMap; 1287 getFunctionFeatureMap(FeatureMap, FD); 1288 1289 // Produce the canonical string for this set of features. 1290 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1291 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1292 1293 // Now add the target-cpu and target-features to the function. 1294 // While we populated the feature map above, we still need to 1295 // get and parse the target attribute so we can get the cpu for 1296 // the function. 1297 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1298 if (ParsedAttr.Architecture != "" && 1299 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1300 TargetCPU = ParsedAttr.Architecture; 1301 } else { 1302 // Otherwise just add the existing target cpu and target features to the 1303 // function. 1304 Features = getTarget().getTargetOpts().Features; 1305 } 1306 1307 if (TargetCPU != "") { 1308 Attrs.addAttribute("target-cpu", TargetCPU); 1309 AddedAttr = true; 1310 } 1311 if (!Features.empty()) { 1312 llvm::sort(Features.begin(), Features.end()); 1313 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1314 AddedAttr = true; 1315 } 1316 1317 return AddedAttr; 1318 } 1319 1320 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1321 llvm::GlobalObject *GO) { 1322 const Decl *D = GD.getDecl(); 1323 SetCommonAttributes(GD, GO); 1324 1325 if (D) { 1326 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1327 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1328 GV->addAttribute("bss-section", SA->getName()); 1329 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1330 GV->addAttribute("data-section", SA->getName()); 1331 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1332 GV->addAttribute("rodata-section", SA->getName()); 1333 } 1334 1335 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1336 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1337 if (!D->getAttr<SectionAttr>()) 1338 F->addFnAttr("implicit-section-name", SA->getName()); 1339 1340 llvm::AttrBuilder Attrs; 1341 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1342 // We know that GetCPUAndFeaturesAttributes will always have the 1343 // newest set, since it has the newest possible FunctionDecl, so the 1344 // new ones should replace the old. 1345 F->removeFnAttr("target-cpu"); 1346 F->removeFnAttr("target-features"); 1347 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1348 } 1349 } 1350 1351 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1352 GO->setSection(SA->getName()); 1353 } 1354 1355 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1356 } 1357 1358 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1359 llvm::Function *F, 1360 const CGFunctionInfo &FI) { 1361 const Decl *D = GD.getDecl(); 1362 SetLLVMFunctionAttributes(D, FI, F); 1363 SetLLVMFunctionAttributesForDefinition(D, F); 1364 1365 F->setLinkage(llvm::Function::InternalLinkage); 1366 1367 setNonAliasAttributes(GD, F); 1368 } 1369 1370 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1371 // Set linkage and visibility in case we never see a definition. 1372 LinkageInfo LV = ND->getLinkageAndVisibility(); 1373 // Don't set internal linkage on declarations. 1374 // "extern_weak" is overloaded in LLVM; we probably should have 1375 // separate linkage types for this. 1376 if (isExternallyVisible(LV.getLinkage()) && 1377 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1378 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1379 } 1380 1381 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1382 llvm::Function *F) { 1383 // Only if we are checking indirect calls. 1384 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1385 return; 1386 1387 // Non-static class methods are handled via vtable pointer checks elsewhere. 1388 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1389 return; 1390 1391 // Additionally, if building with cross-DSO support... 1392 if (CodeGenOpts.SanitizeCfiCrossDso) { 1393 // Skip available_externally functions. They won't be codegen'ed in the 1394 // current module anyway. 1395 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1396 return; 1397 } 1398 1399 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1400 F->addTypeMetadata(0, MD); 1401 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1402 1403 // Emit a hash-based bit set entry for cross-DSO calls. 1404 if (CodeGenOpts.SanitizeCfiCrossDso) 1405 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1406 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1407 } 1408 1409 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1410 bool IsIncompleteFunction, 1411 bool IsThunk) { 1412 1413 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1414 // If this is an intrinsic function, set the function's attributes 1415 // to the intrinsic's attributes. 1416 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1417 return; 1418 } 1419 1420 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1421 1422 if (!IsIncompleteFunction) { 1423 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1424 // Setup target-specific attributes. 1425 if (F->isDeclaration()) 1426 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1427 } 1428 1429 // Add the Returned attribute for "this", except for iOS 5 and earlier 1430 // where substantial code, including the libstdc++ dylib, was compiled with 1431 // GCC and does not actually return "this". 1432 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1433 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1434 assert(!F->arg_empty() && 1435 F->arg_begin()->getType() 1436 ->canLosslesslyBitCastTo(F->getReturnType()) && 1437 "unexpected this return"); 1438 F->addAttribute(1, llvm::Attribute::Returned); 1439 } 1440 1441 // Only a few attributes are set on declarations; these may later be 1442 // overridden by a definition. 1443 1444 setLinkageForGV(F, FD); 1445 setGVProperties(F, FD); 1446 1447 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1448 F->addFnAttr("implicit-section-name"); 1449 } 1450 1451 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1452 F->setSection(SA->getName()); 1453 1454 if (FD->isReplaceableGlobalAllocationFunction()) { 1455 // A replaceable global allocation function does not act like a builtin by 1456 // default, only if it is invoked by a new-expression or delete-expression. 1457 F->addAttribute(llvm::AttributeList::FunctionIndex, 1458 llvm::Attribute::NoBuiltin); 1459 1460 // A sane operator new returns a non-aliasing pointer. 1461 // FIXME: Also add NonNull attribute to the return value 1462 // for the non-nothrow forms? 1463 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1464 if (getCodeGenOpts().AssumeSaneOperatorNew && 1465 (Kind == OO_New || Kind == OO_Array_New)) 1466 F->addAttribute(llvm::AttributeList::ReturnIndex, 1467 llvm::Attribute::NoAlias); 1468 } 1469 1470 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1471 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1472 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1473 if (MD->isVirtual()) 1474 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1475 1476 // Don't emit entries for function declarations in the cross-DSO mode. This 1477 // is handled with better precision by the receiving DSO. 1478 if (!CodeGenOpts.SanitizeCfiCrossDso) 1479 CreateFunctionTypeMetadata(FD, F); 1480 1481 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1482 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1483 } 1484 1485 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1486 assert(!GV->isDeclaration() && 1487 "Only globals with definition can force usage."); 1488 LLVMUsed.emplace_back(GV); 1489 } 1490 1491 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1492 assert(!GV->isDeclaration() && 1493 "Only globals with definition can force usage."); 1494 LLVMCompilerUsed.emplace_back(GV); 1495 } 1496 1497 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1498 std::vector<llvm::WeakTrackingVH> &List) { 1499 // Don't create llvm.used if there is no need. 1500 if (List.empty()) 1501 return; 1502 1503 // Convert List to what ConstantArray needs. 1504 SmallVector<llvm::Constant*, 8> UsedArray; 1505 UsedArray.resize(List.size()); 1506 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1507 UsedArray[i] = 1508 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1509 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1510 } 1511 1512 if (UsedArray.empty()) 1513 return; 1514 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1515 1516 auto *GV = new llvm::GlobalVariable( 1517 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1518 llvm::ConstantArray::get(ATy, UsedArray), Name); 1519 1520 GV->setSection("llvm.metadata"); 1521 } 1522 1523 void CodeGenModule::emitLLVMUsed() { 1524 emitUsed(*this, "llvm.used", LLVMUsed); 1525 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1526 } 1527 1528 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1529 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1530 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1531 } 1532 1533 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1534 llvm::SmallString<32> Opt; 1535 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1536 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1537 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1538 } 1539 1540 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1541 auto &C = getLLVMContext(); 1542 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1543 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1544 } 1545 1546 void CodeGenModule::AddDependentLib(StringRef Lib) { 1547 llvm::SmallString<24> Opt; 1548 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1549 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1550 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1551 } 1552 1553 /// Add link options implied by the given module, including modules 1554 /// it depends on, using a postorder walk. 1555 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1556 SmallVectorImpl<llvm::MDNode *> &Metadata, 1557 llvm::SmallPtrSet<Module *, 16> &Visited) { 1558 // Import this module's parent. 1559 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1560 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1561 } 1562 1563 // Import this module's dependencies. 1564 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1565 if (Visited.insert(Mod->Imports[I - 1]).second) 1566 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1567 } 1568 1569 // Add linker options to link against the libraries/frameworks 1570 // described by this module. 1571 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1572 1573 // For modules that use export_as for linking, use that module 1574 // name instead. 1575 if (Mod->UseExportAsModuleLinkName) 1576 return; 1577 1578 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1579 // Link against a framework. Frameworks are currently Darwin only, so we 1580 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1581 if (Mod->LinkLibraries[I-1].IsFramework) { 1582 llvm::Metadata *Args[2] = { 1583 llvm::MDString::get(Context, "-framework"), 1584 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1585 1586 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1587 continue; 1588 } 1589 1590 // Link against a library. 1591 llvm::SmallString<24> Opt; 1592 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1593 Mod->LinkLibraries[I-1].Library, Opt); 1594 auto *OptString = llvm::MDString::get(Context, Opt); 1595 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1596 } 1597 } 1598 1599 void CodeGenModule::EmitModuleLinkOptions() { 1600 // Collect the set of all of the modules we want to visit to emit link 1601 // options, which is essentially the imported modules and all of their 1602 // non-explicit child modules. 1603 llvm::SetVector<clang::Module *> LinkModules; 1604 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1605 SmallVector<clang::Module *, 16> Stack; 1606 1607 // Seed the stack with imported modules. 1608 for (Module *M : ImportedModules) { 1609 // Do not add any link flags when an implementation TU of a module imports 1610 // a header of that same module. 1611 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1612 !getLangOpts().isCompilingModule()) 1613 continue; 1614 if (Visited.insert(M).second) 1615 Stack.push_back(M); 1616 } 1617 1618 // Find all of the modules to import, making a little effort to prune 1619 // non-leaf modules. 1620 while (!Stack.empty()) { 1621 clang::Module *Mod = Stack.pop_back_val(); 1622 1623 bool AnyChildren = false; 1624 1625 // Visit the submodules of this module. 1626 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1627 SubEnd = Mod->submodule_end(); 1628 Sub != SubEnd; ++Sub) { 1629 // Skip explicit children; they need to be explicitly imported to be 1630 // linked against. 1631 if ((*Sub)->IsExplicit) 1632 continue; 1633 1634 if (Visited.insert(*Sub).second) { 1635 Stack.push_back(*Sub); 1636 AnyChildren = true; 1637 } 1638 } 1639 1640 // We didn't find any children, so add this module to the list of 1641 // modules to link against. 1642 if (!AnyChildren) { 1643 LinkModules.insert(Mod); 1644 } 1645 } 1646 1647 // Add link options for all of the imported modules in reverse topological 1648 // order. We don't do anything to try to order import link flags with respect 1649 // to linker options inserted by things like #pragma comment(). 1650 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1651 Visited.clear(); 1652 for (Module *M : LinkModules) 1653 if (Visited.insert(M).second) 1654 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1655 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1656 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1657 1658 // Add the linker options metadata flag. 1659 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1660 for (auto *MD : LinkerOptionsMetadata) 1661 NMD->addOperand(MD); 1662 } 1663 1664 void CodeGenModule::EmitDeferred() { 1665 // Emit code for any potentially referenced deferred decls. Since a 1666 // previously unused static decl may become used during the generation of code 1667 // for a static function, iterate until no changes are made. 1668 1669 if (!DeferredVTables.empty()) { 1670 EmitDeferredVTables(); 1671 1672 // Emitting a vtable doesn't directly cause more vtables to 1673 // become deferred, although it can cause functions to be 1674 // emitted that then need those vtables. 1675 assert(DeferredVTables.empty()); 1676 } 1677 1678 // Stop if we're out of both deferred vtables and deferred declarations. 1679 if (DeferredDeclsToEmit.empty()) 1680 return; 1681 1682 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1683 // work, it will not interfere with this. 1684 std::vector<GlobalDecl> CurDeclsToEmit; 1685 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1686 1687 for (GlobalDecl &D : CurDeclsToEmit) { 1688 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1689 // to get GlobalValue with exactly the type we need, not something that 1690 // might had been created for another decl with the same mangled name but 1691 // different type. 1692 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1693 GetAddrOfGlobal(D, ForDefinition)); 1694 1695 // In case of different address spaces, we may still get a cast, even with 1696 // IsForDefinition equal to true. Query mangled names table to get 1697 // GlobalValue. 1698 if (!GV) 1699 GV = GetGlobalValue(getMangledName(D)); 1700 1701 // Make sure GetGlobalValue returned non-null. 1702 assert(GV); 1703 1704 // Check to see if we've already emitted this. This is necessary 1705 // for a couple of reasons: first, decls can end up in the 1706 // deferred-decls queue multiple times, and second, decls can end 1707 // up with definitions in unusual ways (e.g. by an extern inline 1708 // function acquiring a strong function redefinition). Just 1709 // ignore these cases. 1710 if (!GV->isDeclaration()) 1711 continue; 1712 1713 // Otherwise, emit the definition and move on to the next one. 1714 EmitGlobalDefinition(D, GV); 1715 1716 // If we found out that we need to emit more decls, do that recursively. 1717 // This has the advantage that the decls are emitted in a DFS and related 1718 // ones are close together, which is convenient for testing. 1719 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1720 EmitDeferred(); 1721 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1722 } 1723 } 1724 } 1725 1726 void CodeGenModule::EmitVTablesOpportunistically() { 1727 // Try to emit external vtables as available_externally if they have emitted 1728 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1729 // is not allowed to create new references to things that need to be emitted 1730 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1731 1732 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1733 && "Only emit opportunistic vtables with optimizations"); 1734 1735 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1736 assert(getVTables().isVTableExternal(RD) && 1737 "This queue should only contain external vtables"); 1738 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1739 VTables.GenerateClassData(RD); 1740 } 1741 OpportunisticVTables.clear(); 1742 } 1743 1744 void CodeGenModule::EmitGlobalAnnotations() { 1745 if (Annotations.empty()) 1746 return; 1747 1748 // Create a new global variable for the ConstantStruct in the Module. 1749 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1750 Annotations[0]->getType(), Annotations.size()), Annotations); 1751 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1752 llvm::GlobalValue::AppendingLinkage, 1753 Array, "llvm.global.annotations"); 1754 gv->setSection(AnnotationSection); 1755 } 1756 1757 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1758 llvm::Constant *&AStr = AnnotationStrings[Str]; 1759 if (AStr) 1760 return AStr; 1761 1762 // Not found yet, create a new global. 1763 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1764 auto *gv = 1765 new llvm::GlobalVariable(getModule(), s->getType(), true, 1766 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1767 gv->setSection(AnnotationSection); 1768 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1769 AStr = gv; 1770 return gv; 1771 } 1772 1773 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1774 SourceManager &SM = getContext().getSourceManager(); 1775 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1776 if (PLoc.isValid()) 1777 return EmitAnnotationString(PLoc.getFilename()); 1778 return EmitAnnotationString(SM.getBufferName(Loc)); 1779 } 1780 1781 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1782 SourceManager &SM = getContext().getSourceManager(); 1783 PresumedLoc PLoc = SM.getPresumedLoc(L); 1784 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1785 SM.getExpansionLineNumber(L); 1786 return llvm::ConstantInt::get(Int32Ty, LineNo); 1787 } 1788 1789 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1790 const AnnotateAttr *AA, 1791 SourceLocation L) { 1792 // Get the globals for file name, annotation, and the line number. 1793 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1794 *UnitGV = EmitAnnotationUnit(L), 1795 *LineNoCst = EmitAnnotationLineNo(L); 1796 1797 // Create the ConstantStruct for the global annotation. 1798 llvm::Constant *Fields[4] = { 1799 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1800 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1801 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1802 LineNoCst 1803 }; 1804 return llvm::ConstantStruct::getAnon(Fields); 1805 } 1806 1807 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1808 llvm::GlobalValue *GV) { 1809 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1810 // Get the struct elements for these annotations. 1811 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1812 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1813 } 1814 1815 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1816 llvm::Function *Fn, 1817 SourceLocation Loc) const { 1818 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1819 // Blacklist by function name. 1820 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1821 return true; 1822 // Blacklist by location. 1823 if (Loc.isValid()) 1824 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1825 // If location is unknown, this may be a compiler-generated function. Assume 1826 // it's located in the main file. 1827 auto &SM = Context.getSourceManager(); 1828 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1829 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1830 } 1831 return false; 1832 } 1833 1834 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1835 SourceLocation Loc, QualType Ty, 1836 StringRef Category) const { 1837 // For now globals can be blacklisted only in ASan and KASan. 1838 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1839 (SanitizerKind::Address | SanitizerKind::KernelAddress | 1840 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 1841 if (!EnabledAsanMask) 1842 return false; 1843 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1844 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1845 return true; 1846 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1847 return true; 1848 // Check global type. 1849 if (!Ty.isNull()) { 1850 // Drill down the array types: if global variable of a fixed type is 1851 // blacklisted, we also don't instrument arrays of them. 1852 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1853 Ty = AT->getElementType(); 1854 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1855 // We allow to blacklist only record types (classes, structs etc.) 1856 if (Ty->isRecordType()) { 1857 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1858 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1859 return true; 1860 } 1861 } 1862 return false; 1863 } 1864 1865 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1866 StringRef Category) const { 1867 if (!LangOpts.XRayInstrument) 1868 return false; 1869 1870 const auto &XRayFilter = getContext().getXRayFilter(); 1871 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1872 auto Attr = ImbueAttr::NONE; 1873 if (Loc.isValid()) 1874 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1875 if (Attr == ImbueAttr::NONE) 1876 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1877 switch (Attr) { 1878 case ImbueAttr::NONE: 1879 return false; 1880 case ImbueAttr::ALWAYS: 1881 Fn->addFnAttr("function-instrument", "xray-always"); 1882 break; 1883 case ImbueAttr::ALWAYS_ARG1: 1884 Fn->addFnAttr("function-instrument", "xray-always"); 1885 Fn->addFnAttr("xray-log-args", "1"); 1886 break; 1887 case ImbueAttr::NEVER: 1888 Fn->addFnAttr("function-instrument", "xray-never"); 1889 break; 1890 } 1891 return true; 1892 } 1893 1894 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1895 // Never defer when EmitAllDecls is specified. 1896 if (LangOpts.EmitAllDecls) 1897 return true; 1898 1899 return getContext().DeclMustBeEmitted(Global); 1900 } 1901 1902 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1903 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1904 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1905 // Implicit template instantiations may change linkage if they are later 1906 // explicitly instantiated, so they should not be emitted eagerly. 1907 return false; 1908 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1909 if (Context.getInlineVariableDefinitionKind(VD) == 1910 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1911 // A definition of an inline constexpr static data member may change 1912 // linkage later if it's redeclared outside the class. 1913 return false; 1914 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1915 // codegen for global variables, because they may be marked as threadprivate. 1916 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1917 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1918 return false; 1919 1920 return true; 1921 } 1922 1923 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1924 const CXXUuidofExpr* E) { 1925 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1926 // well-formed. 1927 StringRef Uuid = E->getUuidStr(); 1928 std::string Name = "_GUID_" + Uuid.lower(); 1929 std::replace(Name.begin(), Name.end(), '-', '_'); 1930 1931 // The UUID descriptor should be pointer aligned. 1932 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1933 1934 // Look for an existing global. 1935 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1936 return ConstantAddress(GV, Alignment); 1937 1938 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1939 assert(Init && "failed to initialize as constant"); 1940 1941 auto *GV = new llvm::GlobalVariable( 1942 getModule(), Init->getType(), 1943 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1944 if (supportsCOMDAT()) 1945 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1946 setDSOLocal(GV); 1947 return ConstantAddress(GV, Alignment); 1948 } 1949 1950 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1951 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1952 assert(AA && "No alias?"); 1953 1954 CharUnits Alignment = getContext().getDeclAlign(VD); 1955 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1956 1957 // See if there is already something with the target's name in the module. 1958 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1959 if (Entry) { 1960 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1961 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1962 return ConstantAddress(Ptr, Alignment); 1963 } 1964 1965 llvm::Constant *Aliasee; 1966 if (isa<llvm::FunctionType>(DeclTy)) 1967 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1968 GlobalDecl(cast<FunctionDecl>(VD)), 1969 /*ForVTable=*/false); 1970 else 1971 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1972 llvm::PointerType::getUnqual(DeclTy), 1973 nullptr); 1974 1975 auto *F = cast<llvm::GlobalValue>(Aliasee); 1976 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1977 WeakRefReferences.insert(F); 1978 1979 return ConstantAddress(Aliasee, Alignment); 1980 } 1981 1982 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1983 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1984 1985 // Weak references don't produce any output by themselves. 1986 if (Global->hasAttr<WeakRefAttr>()) 1987 return; 1988 1989 // If this is an alias definition (which otherwise looks like a declaration) 1990 // emit it now. 1991 if (Global->hasAttr<AliasAttr>()) 1992 return EmitAliasDefinition(GD); 1993 1994 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1995 if (Global->hasAttr<IFuncAttr>()) 1996 return emitIFuncDefinition(GD); 1997 1998 // If this is CUDA, be selective about which declarations we emit. 1999 if (LangOpts.CUDA) { 2000 if (LangOpts.CUDAIsDevice) { 2001 if (!Global->hasAttr<CUDADeviceAttr>() && 2002 !Global->hasAttr<CUDAGlobalAttr>() && 2003 !Global->hasAttr<CUDAConstantAttr>() && 2004 !Global->hasAttr<CUDASharedAttr>()) 2005 return; 2006 } else { 2007 // We need to emit host-side 'shadows' for all global 2008 // device-side variables because the CUDA runtime needs their 2009 // size and host-side address in order to provide access to 2010 // their device-side incarnations. 2011 2012 // So device-only functions are the only things we skip. 2013 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2014 Global->hasAttr<CUDADeviceAttr>()) 2015 return; 2016 2017 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2018 "Expected Variable or Function"); 2019 } 2020 } 2021 2022 if (LangOpts.OpenMP) { 2023 // If this is OpenMP device, check if it is legal to emit this global 2024 // normally. 2025 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2026 return; 2027 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2028 if (MustBeEmitted(Global)) 2029 EmitOMPDeclareReduction(DRD); 2030 return; 2031 } 2032 } 2033 2034 // Ignore declarations, they will be emitted on their first use. 2035 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2036 // Forward declarations are emitted lazily on first use. 2037 if (!FD->doesThisDeclarationHaveABody()) { 2038 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2039 return; 2040 2041 StringRef MangledName = getMangledName(GD); 2042 2043 // Compute the function info and LLVM type. 2044 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2045 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2046 2047 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2048 /*DontDefer=*/false); 2049 return; 2050 } 2051 } else { 2052 const auto *VD = cast<VarDecl>(Global); 2053 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2054 // We need to emit device-side global CUDA variables even if a 2055 // variable does not have a definition -- we still need to define 2056 // host-side shadow for it. 2057 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2058 !VD->hasDefinition() && 2059 (VD->hasAttr<CUDAConstantAttr>() || 2060 VD->hasAttr<CUDADeviceAttr>()); 2061 if (!MustEmitForCuda && 2062 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2063 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2064 // If this declaration may have caused an inline variable definition to 2065 // change linkage, make sure that it's emitted. 2066 if (Context.getInlineVariableDefinitionKind(VD) == 2067 ASTContext::InlineVariableDefinitionKind::Strong) 2068 GetAddrOfGlobalVar(VD); 2069 return; 2070 } 2071 } 2072 2073 // Defer code generation to first use when possible, e.g. if this is an inline 2074 // function. If the global must always be emitted, do it eagerly if possible 2075 // to benefit from cache locality. 2076 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2077 // Emit the definition if it can't be deferred. 2078 EmitGlobalDefinition(GD); 2079 return; 2080 } 2081 2082 // If we're deferring emission of a C++ variable with an 2083 // initializer, remember the order in which it appeared in the file. 2084 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2085 cast<VarDecl>(Global)->hasInit()) { 2086 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2087 CXXGlobalInits.push_back(nullptr); 2088 } 2089 2090 StringRef MangledName = getMangledName(GD); 2091 if (GetGlobalValue(MangledName) != nullptr) { 2092 // The value has already been used and should therefore be emitted. 2093 addDeferredDeclToEmit(GD); 2094 } else if (MustBeEmitted(Global)) { 2095 // The value must be emitted, but cannot be emitted eagerly. 2096 assert(!MayBeEmittedEagerly(Global)); 2097 addDeferredDeclToEmit(GD); 2098 } else { 2099 // Otherwise, remember that we saw a deferred decl with this name. The 2100 // first use of the mangled name will cause it to move into 2101 // DeferredDeclsToEmit. 2102 DeferredDecls[MangledName] = GD; 2103 } 2104 } 2105 2106 // Check if T is a class type with a destructor that's not dllimport. 2107 static bool HasNonDllImportDtor(QualType T) { 2108 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2109 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2110 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2111 return true; 2112 2113 return false; 2114 } 2115 2116 namespace { 2117 struct FunctionIsDirectlyRecursive : 2118 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2119 const StringRef Name; 2120 const Builtin::Context &BI; 2121 bool Result; 2122 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2123 Name(N), BI(C), Result(false) { 2124 } 2125 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2126 2127 bool TraverseCallExpr(CallExpr *E) { 2128 const FunctionDecl *FD = E->getDirectCallee(); 2129 if (!FD) 2130 return true; 2131 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2132 if (Attr && Name == Attr->getLabel()) { 2133 Result = true; 2134 return false; 2135 } 2136 unsigned BuiltinID = FD->getBuiltinID(); 2137 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2138 return true; 2139 StringRef BuiltinName = BI.getName(BuiltinID); 2140 if (BuiltinName.startswith("__builtin_") && 2141 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2142 Result = true; 2143 return false; 2144 } 2145 return true; 2146 } 2147 }; 2148 2149 // Make sure we're not referencing non-imported vars or functions. 2150 struct DLLImportFunctionVisitor 2151 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2152 bool SafeToInline = true; 2153 2154 bool shouldVisitImplicitCode() const { return true; } 2155 2156 bool VisitVarDecl(VarDecl *VD) { 2157 if (VD->getTLSKind()) { 2158 // A thread-local variable cannot be imported. 2159 SafeToInline = false; 2160 return SafeToInline; 2161 } 2162 2163 // A variable definition might imply a destructor call. 2164 if (VD->isThisDeclarationADefinition()) 2165 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2166 2167 return SafeToInline; 2168 } 2169 2170 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2171 if (const auto *D = E->getTemporary()->getDestructor()) 2172 SafeToInline = D->hasAttr<DLLImportAttr>(); 2173 return SafeToInline; 2174 } 2175 2176 bool VisitDeclRefExpr(DeclRefExpr *E) { 2177 ValueDecl *VD = E->getDecl(); 2178 if (isa<FunctionDecl>(VD)) 2179 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2180 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2181 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2182 return SafeToInline; 2183 } 2184 2185 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2186 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2187 return SafeToInline; 2188 } 2189 2190 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2191 CXXMethodDecl *M = E->getMethodDecl(); 2192 if (!M) { 2193 // Call through a pointer to member function. This is safe to inline. 2194 SafeToInline = true; 2195 } else { 2196 SafeToInline = M->hasAttr<DLLImportAttr>(); 2197 } 2198 return SafeToInline; 2199 } 2200 2201 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2202 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2203 return SafeToInline; 2204 } 2205 2206 bool VisitCXXNewExpr(CXXNewExpr *E) { 2207 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2208 return SafeToInline; 2209 } 2210 }; 2211 } 2212 2213 // isTriviallyRecursive - Check if this function calls another 2214 // decl that, because of the asm attribute or the other decl being a builtin, 2215 // ends up pointing to itself. 2216 bool 2217 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2218 StringRef Name; 2219 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2220 // asm labels are a special kind of mangling we have to support. 2221 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2222 if (!Attr) 2223 return false; 2224 Name = Attr->getLabel(); 2225 } else { 2226 Name = FD->getName(); 2227 } 2228 2229 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2230 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2231 return Walker.Result; 2232 } 2233 2234 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2235 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2236 return true; 2237 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2238 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2239 return false; 2240 2241 if (F->hasAttr<DLLImportAttr>()) { 2242 // Check whether it would be safe to inline this dllimport function. 2243 DLLImportFunctionVisitor Visitor; 2244 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2245 if (!Visitor.SafeToInline) 2246 return false; 2247 2248 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2249 // Implicit destructor invocations aren't captured in the AST, so the 2250 // check above can't see them. Check for them manually here. 2251 for (const Decl *Member : Dtor->getParent()->decls()) 2252 if (isa<FieldDecl>(Member)) 2253 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2254 return false; 2255 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2256 if (HasNonDllImportDtor(B.getType())) 2257 return false; 2258 } 2259 } 2260 2261 // PR9614. Avoid cases where the source code is lying to us. An available 2262 // externally function should have an equivalent function somewhere else, 2263 // but a function that calls itself is clearly not equivalent to the real 2264 // implementation. 2265 // This happens in glibc's btowc and in some configure checks. 2266 return !isTriviallyRecursive(F); 2267 } 2268 2269 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2270 return CodeGenOpts.OptimizationLevel > 0; 2271 } 2272 2273 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2274 const auto *D = cast<ValueDecl>(GD.getDecl()); 2275 2276 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2277 Context.getSourceManager(), 2278 "Generating code for declaration"); 2279 2280 if (isa<FunctionDecl>(D)) { 2281 // At -O0, don't generate IR for functions with available_externally 2282 // linkage. 2283 if (!shouldEmitFunction(GD)) 2284 return; 2285 2286 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2287 // Make sure to emit the definition(s) before we emit the thunks. 2288 // This is necessary for the generation of certain thunks. 2289 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2290 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2291 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2292 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2293 else 2294 EmitGlobalFunctionDefinition(GD, GV); 2295 2296 if (Method->isVirtual()) 2297 getVTables().EmitThunks(GD); 2298 2299 return; 2300 } 2301 2302 return EmitGlobalFunctionDefinition(GD, GV); 2303 } 2304 2305 if (const auto *VD = dyn_cast<VarDecl>(D)) 2306 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2307 2308 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2309 } 2310 2311 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2312 llvm::Function *NewFn); 2313 2314 void CodeGenModule::emitMultiVersionFunctions() { 2315 for (GlobalDecl GD : MultiVersionFuncs) { 2316 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2317 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2318 getContext().forEachMultiversionedFunctionVersion( 2319 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2320 GlobalDecl CurGD{ 2321 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2322 StringRef MangledName = getMangledName(CurGD); 2323 llvm::Constant *Func = GetGlobalValue(MangledName); 2324 if (!Func) { 2325 if (CurFD->isDefined()) { 2326 EmitGlobalFunctionDefinition(CurGD, nullptr); 2327 Func = GetGlobalValue(MangledName); 2328 } else { 2329 const CGFunctionInfo &FI = 2330 getTypes().arrangeGlobalDeclaration(GD); 2331 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2332 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2333 /*DontDefer=*/false, ForDefinition); 2334 } 2335 assert(Func && "This should have just been created"); 2336 } 2337 Options.emplace_back(getTarget(), cast<llvm::Function>(Func), 2338 CurFD->getAttr<TargetAttr>()->parse()); 2339 }); 2340 2341 llvm::Function *ResolverFunc = cast<llvm::Function>( 2342 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2343 if (supportsCOMDAT()) 2344 ResolverFunc->setComdat( 2345 getModule().getOrInsertComdat(ResolverFunc->getName())); 2346 std::stable_sort( 2347 Options.begin(), Options.end(), 2348 std::greater<CodeGenFunction::MultiVersionResolverOption>()); 2349 CodeGenFunction CGF(*this); 2350 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2351 } 2352 } 2353 2354 /// If an ifunc for the specified mangled name is not in the module, create and 2355 /// return an llvm IFunc Function with the specified type. 2356 llvm::Constant * 2357 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2358 StringRef MangledName, 2359 const FunctionDecl *FD) { 2360 std::string IFuncName = (MangledName + ".ifunc").str(); 2361 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2362 return IFuncGV; 2363 2364 // Since this is the first time we've created this IFunc, make sure 2365 // that we put this multiversioned function into the list to be 2366 // replaced later. 2367 MultiVersionFuncs.push_back(GD); 2368 2369 std::string ResolverName = (MangledName + ".resolver").str(); 2370 llvm::Type *ResolverType = llvm::FunctionType::get( 2371 llvm::PointerType::get(DeclTy, 2372 Context.getTargetAddressSpace(FD->getType())), 2373 false); 2374 llvm::Constant *Resolver = 2375 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2376 /*ForVTable=*/false); 2377 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2378 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2379 GIF->setName(IFuncName); 2380 SetCommonAttributes(FD, GIF); 2381 2382 return GIF; 2383 } 2384 2385 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2386 /// module, create and return an llvm Function with the specified type. If there 2387 /// is something in the module with the specified name, return it potentially 2388 /// bitcasted to the right type. 2389 /// 2390 /// If D is non-null, it specifies a decl that correspond to this. This is used 2391 /// to set the attributes on the function when it is first created. 2392 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2393 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2394 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2395 ForDefinition_t IsForDefinition) { 2396 const Decl *D = GD.getDecl(); 2397 2398 // Any attempts to use a MultiVersion function should result in retrieving 2399 // the iFunc instead. Name Mangling will handle the rest of the changes. 2400 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2401 // For the device mark the function as one that should be emitted. 2402 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2403 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2404 !DontDefer && !IsForDefinition) { 2405 const FunctionDecl *FDDef = FD->getDefinition(); 2406 GlobalDecl GDDef; 2407 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2408 GDDef = GlobalDecl(CD, GD.getCtorType()); 2409 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2410 GDDef = GlobalDecl(DD, GD.getDtorType()); 2411 else 2412 GDDef = GlobalDecl(FDDef); 2413 addDeferredDeclToEmit(GDDef); 2414 } 2415 2416 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) { 2417 UpdateMultiVersionNames(GD, FD); 2418 if (!IsForDefinition) 2419 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD); 2420 } 2421 } 2422 2423 // Lookup the entry, lazily creating it if necessary. 2424 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2425 if (Entry) { 2426 if (WeakRefReferences.erase(Entry)) { 2427 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2428 if (FD && !FD->hasAttr<WeakAttr>()) 2429 Entry->setLinkage(llvm::Function::ExternalLinkage); 2430 } 2431 2432 // Handle dropped DLL attributes. 2433 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2434 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2435 setDSOLocal(Entry); 2436 } 2437 2438 // If there are two attempts to define the same mangled name, issue an 2439 // error. 2440 if (IsForDefinition && !Entry->isDeclaration()) { 2441 GlobalDecl OtherGD; 2442 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2443 // to make sure that we issue an error only once. 2444 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2445 (GD.getCanonicalDecl().getDecl() != 2446 OtherGD.getCanonicalDecl().getDecl()) && 2447 DiagnosedConflictingDefinitions.insert(GD).second) { 2448 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2449 << MangledName; 2450 getDiags().Report(OtherGD.getDecl()->getLocation(), 2451 diag::note_previous_definition); 2452 } 2453 } 2454 2455 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2456 (Entry->getType()->getElementType() == Ty)) { 2457 return Entry; 2458 } 2459 2460 // Make sure the result is of the correct type. 2461 // (If function is requested for a definition, we always need to create a new 2462 // function, not just return a bitcast.) 2463 if (!IsForDefinition) 2464 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2465 } 2466 2467 // This function doesn't have a complete type (for example, the return 2468 // type is an incomplete struct). Use a fake type instead, and make 2469 // sure not to try to set attributes. 2470 bool IsIncompleteFunction = false; 2471 2472 llvm::FunctionType *FTy; 2473 if (isa<llvm::FunctionType>(Ty)) { 2474 FTy = cast<llvm::FunctionType>(Ty); 2475 } else { 2476 FTy = llvm::FunctionType::get(VoidTy, false); 2477 IsIncompleteFunction = true; 2478 } 2479 2480 llvm::Function *F = 2481 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2482 Entry ? StringRef() : MangledName, &getModule()); 2483 2484 // If we already created a function with the same mangled name (but different 2485 // type) before, take its name and add it to the list of functions to be 2486 // replaced with F at the end of CodeGen. 2487 // 2488 // This happens if there is a prototype for a function (e.g. "int f()") and 2489 // then a definition of a different type (e.g. "int f(int x)"). 2490 if (Entry) { 2491 F->takeName(Entry); 2492 2493 // This might be an implementation of a function without a prototype, in 2494 // which case, try to do special replacement of calls which match the new 2495 // prototype. The really key thing here is that we also potentially drop 2496 // arguments from the call site so as to make a direct call, which makes the 2497 // inliner happier and suppresses a number of optimizer warnings (!) about 2498 // dropping arguments. 2499 if (!Entry->use_empty()) { 2500 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2501 Entry->removeDeadConstantUsers(); 2502 } 2503 2504 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2505 F, Entry->getType()->getElementType()->getPointerTo()); 2506 addGlobalValReplacement(Entry, BC); 2507 } 2508 2509 assert(F->getName() == MangledName && "name was uniqued!"); 2510 if (D) 2511 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2512 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2513 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2514 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2515 } 2516 2517 if (!DontDefer) { 2518 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2519 // each other bottoming out with the base dtor. Therefore we emit non-base 2520 // dtors on usage, even if there is no dtor definition in the TU. 2521 if (D && isa<CXXDestructorDecl>(D) && 2522 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2523 GD.getDtorType())) 2524 addDeferredDeclToEmit(GD); 2525 2526 // This is the first use or definition of a mangled name. If there is a 2527 // deferred decl with this name, remember that we need to emit it at the end 2528 // of the file. 2529 auto DDI = DeferredDecls.find(MangledName); 2530 if (DDI != DeferredDecls.end()) { 2531 // Move the potentially referenced deferred decl to the 2532 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2533 // don't need it anymore). 2534 addDeferredDeclToEmit(DDI->second); 2535 DeferredDecls.erase(DDI); 2536 2537 // Otherwise, there are cases we have to worry about where we're 2538 // using a declaration for which we must emit a definition but where 2539 // we might not find a top-level definition: 2540 // - member functions defined inline in their classes 2541 // - friend functions defined inline in some class 2542 // - special member functions with implicit definitions 2543 // If we ever change our AST traversal to walk into class methods, 2544 // this will be unnecessary. 2545 // 2546 // We also don't emit a definition for a function if it's going to be an 2547 // entry in a vtable, unless it's already marked as used. 2548 } else if (getLangOpts().CPlusPlus && D) { 2549 // Look for a declaration that's lexically in a record. 2550 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2551 FD = FD->getPreviousDecl()) { 2552 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2553 if (FD->doesThisDeclarationHaveABody()) { 2554 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2555 break; 2556 } 2557 } 2558 } 2559 } 2560 } 2561 2562 // Make sure the result is of the requested type. 2563 if (!IsIncompleteFunction) { 2564 assert(F->getType()->getElementType() == Ty); 2565 return F; 2566 } 2567 2568 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2569 return llvm::ConstantExpr::getBitCast(F, PTy); 2570 } 2571 2572 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2573 /// non-null, then this function will use the specified type if it has to 2574 /// create it (this occurs when we see a definition of the function). 2575 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2576 llvm::Type *Ty, 2577 bool ForVTable, 2578 bool DontDefer, 2579 ForDefinition_t IsForDefinition) { 2580 // If there was no specific requested type, just convert it now. 2581 if (!Ty) { 2582 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2583 auto CanonTy = Context.getCanonicalType(FD->getType()); 2584 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2585 } 2586 2587 // Devirtualized destructor calls may come through here instead of via 2588 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2589 // of the complete destructor when necessary. 2590 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2591 if (getTarget().getCXXABI().isMicrosoft() && 2592 GD.getDtorType() == Dtor_Complete && 2593 DD->getParent()->getNumVBases() == 0) 2594 GD = GlobalDecl(DD, Dtor_Base); 2595 } 2596 2597 StringRef MangledName = getMangledName(GD); 2598 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2599 /*IsThunk=*/false, llvm::AttributeList(), 2600 IsForDefinition); 2601 } 2602 2603 static const FunctionDecl * 2604 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2605 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2606 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2607 2608 IdentifierInfo &CII = C.Idents.get(Name); 2609 for (const auto &Result : DC->lookup(&CII)) 2610 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2611 return FD; 2612 2613 if (!C.getLangOpts().CPlusPlus) 2614 return nullptr; 2615 2616 // Demangle the premangled name from getTerminateFn() 2617 IdentifierInfo &CXXII = 2618 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2619 ? C.Idents.get("terminate") 2620 : C.Idents.get(Name); 2621 2622 for (const auto &N : {"__cxxabiv1", "std"}) { 2623 IdentifierInfo &NS = C.Idents.get(N); 2624 for (const auto &Result : DC->lookup(&NS)) { 2625 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2626 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2627 for (const auto &Result : LSD->lookup(&NS)) 2628 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2629 break; 2630 2631 if (ND) 2632 for (const auto &Result : ND->lookup(&CXXII)) 2633 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2634 return FD; 2635 } 2636 } 2637 2638 return nullptr; 2639 } 2640 2641 /// CreateRuntimeFunction - Create a new runtime function with the specified 2642 /// type and name. 2643 llvm::Constant * 2644 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2645 llvm::AttributeList ExtraAttrs, 2646 bool Local) { 2647 llvm::Constant *C = 2648 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2649 /*DontDefer=*/false, /*IsThunk=*/false, 2650 ExtraAttrs); 2651 2652 if (auto *F = dyn_cast<llvm::Function>(C)) { 2653 if (F->empty()) { 2654 F->setCallingConv(getRuntimeCC()); 2655 2656 if (!Local && getTriple().isOSBinFormatCOFF() && 2657 !getCodeGenOpts().LTOVisibilityPublicStd && 2658 !getTriple().isWindowsGNUEnvironment()) { 2659 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2660 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2661 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2662 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2663 } 2664 } 2665 setDSOLocal(F); 2666 } 2667 } 2668 2669 return C; 2670 } 2671 2672 /// CreateBuiltinFunction - Create a new builtin function with the specified 2673 /// type and name. 2674 llvm::Constant * 2675 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2676 llvm::AttributeList ExtraAttrs) { 2677 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true); 2678 } 2679 2680 /// isTypeConstant - Determine whether an object of this type can be emitted 2681 /// as a constant. 2682 /// 2683 /// If ExcludeCtor is true, the duration when the object's constructor runs 2684 /// will not be considered. The caller will need to verify that the object is 2685 /// not written to during its construction. 2686 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2687 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2688 return false; 2689 2690 if (Context.getLangOpts().CPlusPlus) { 2691 if (const CXXRecordDecl *Record 2692 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2693 return ExcludeCtor && !Record->hasMutableFields() && 2694 Record->hasTrivialDestructor(); 2695 } 2696 2697 return true; 2698 } 2699 2700 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2701 /// create and return an llvm GlobalVariable with the specified type. If there 2702 /// is something in the module with the specified name, return it potentially 2703 /// bitcasted to the right type. 2704 /// 2705 /// If D is non-null, it specifies a decl that correspond to this. This is used 2706 /// to set the attributes on the global when it is first created. 2707 /// 2708 /// If IsForDefinition is true, it is guaranteed that an actual global with 2709 /// type Ty will be returned, not conversion of a variable with the same 2710 /// mangled name but some other type. 2711 llvm::Constant * 2712 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2713 llvm::PointerType *Ty, 2714 const VarDecl *D, 2715 ForDefinition_t IsForDefinition) { 2716 // Lookup the entry, lazily creating it if necessary. 2717 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2718 if (Entry) { 2719 if (WeakRefReferences.erase(Entry)) { 2720 if (D && !D->hasAttr<WeakAttr>()) 2721 Entry->setLinkage(llvm::Function::ExternalLinkage); 2722 } 2723 2724 // Handle dropped DLL attributes. 2725 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2726 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2727 2728 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 2729 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 2730 2731 if (Entry->getType() == Ty) 2732 return Entry; 2733 2734 // If there are two attempts to define the same mangled name, issue an 2735 // error. 2736 if (IsForDefinition && !Entry->isDeclaration()) { 2737 GlobalDecl OtherGD; 2738 const VarDecl *OtherD; 2739 2740 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2741 // to make sure that we issue an error only once. 2742 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2743 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2744 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2745 OtherD->hasInit() && 2746 DiagnosedConflictingDefinitions.insert(D).second) { 2747 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2748 << MangledName; 2749 getDiags().Report(OtherGD.getDecl()->getLocation(), 2750 diag::note_previous_definition); 2751 } 2752 } 2753 2754 // Make sure the result is of the correct type. 2755 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2756 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2757 2758 // (If global is requested for a definition, we always need to create a new 2759 // global, not just return a bitcast.) 2760 if (!IsForDefinition) 2761 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2762 } 2763 2764 auto AddrSpace = GetGlobalVarAddressSpace(D); 2765 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2766 2767 auto *GV = new llvm::GlobalVariable( 2768 getModule(), Ty->getElementType(), false, 2769 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2770 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2771 2772 // If we already created a global with the same mangled name (but different 2773 // type) before, take its name and remove it from its parent. 2774 if (Entry) { 2775 GV->takeName(Entry); 2776 2777 if (!Entry->use_empty()) { 2778 llvm::Constant *NewPtrForOldDecl = 2779 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2780 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2781 } 2782 2783 Entry->eraseFromParent(); 2784 } 2785 2786 // This is the first use or definition of a mangled name. If there is a 2787 // deferred decl with this name, remember that we need to emit it at the end 2788 // of the file. 2789 auto DDI = DeferredDecls.find(MangledName); 2790 if (DDI != DeferredDecls.end()) { 2791 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2792 // list, and remove it from DeferredDecls (since we don't need it anymore). 2793 addDeferredDeclToEmit(DDI->second); 2794 DeferredDecls.erase(DDI); 2795 } 2796 2797 // Handle things which are present even on external declarations. 2798 if (D) { 2799 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 2800 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 2801 2802 // FIXME: This code is overly simple and should be merged with other global 2803 // handling. 2804 GV->setConstant(isTypeConstant(D->getType(), false)); 2805 2806 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2807 2808 setLinkageForGV(GV, D); 2809 2810 if (D->getTLSKind()) { 2811 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2812 CXXThreadLocals.push_back(D); 2813 setTLSMode(GV, *D); 2814 } 2815 2816 setGVProperties(GV, D); 2817 2818 // If required by the ABI, treat declarations of static data members with 2819 // inline initializers as definitions. 2820 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2821 EmitGlobalVarDefinition(D); 2822 } 2823 2824 // Emit section information for extern variables. 2825 if (D->hasExternalStorage()) { 2826 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2827 GV->setSection(SA->getName()); 2828 } 2829 2830 // Handle XCore specific ABI requirements. 2831 if (getTriple().getArch() == llvm::Triple::xcore && 2832 D->getLanguageLinkage() == CLanguageLinkage && 2833 D->getType().isConstant(Context) && 2834 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2835 GV->setSection(".cp.rodata"); 2836 2837 // Check if we a have a const declaration with an initializer, we may be 2838 // able to emit it as available_externally to expose it's value to the 2839 // optimizer. 2840 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2841 D->getType().isConstQualified() && !GV->hasInitializer() && 2842 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2843 const auto *Record = 2844 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2845 bool HasMutableFields = Record && Record->hasMutableFields(); 2846 if (!HasMutableFields) { 2847 const VarDecl *InitDecl; 2848 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2849 if (InitExpr) { 2850 ConstantEmitter emitter(*this); 2851 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2852 if (Init) { 2853 auto *InitType = Init->getType(); 2854 if (GV->getType()->getElementType() != InitType) { 2855 // The type of the initializer does not match the definition. 2856 // This happens when an initializer has a different type from 2857 // the type of the global (because of padding at the end of a 2858 // structure for instance). 2859 GV->setName(StringRef()); 2860 // Make a new global with the correct type, this is now guaranteed 2861 // to work. 2862 auto *NewGV = cast<llvm::GlobalVariable>( 2863 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2864 2865 // Erase the old global, since it is no longer used. 2866 GV->eraseFromParent(); 2867 GV = NewGV; 2868 } else { 2869 GV->setInitializer(Init); 2870 GV->setConstant(true); 2871 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2872 } 2873 emitter.finalize(GV); 2874 } 2875 } 2876 } 2877 } 2878 } 2879 2880 LangAS ExpectedAS = 2881 D ? D->getType().getAddressSpace() 2882 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2883 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2884 Ty->getPointerAddressSpace()); 2885 if (AddrSpace != ExpectedAS) 2886 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2887 ExpectedAS, Ty); 2888 2889 return GV; 2890 } 2891 2892 llvm::Constant * 2893 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2894 ForDefinition_t IsForDefinition) { 2895 const Decl *D = GD.getDecl(); 2896 if (isa<CXXConstructorDecl>(D)) 2897 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2898 getFromCtorType(GD.getCtorType()), 2899 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2900 /*DontDefer=*/false, IsForDefinition); 2901 else if (isa<CXXDestructorDecl>(D)) 2902 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2903 getFromDtorType(GD.getDtorType()), 2904 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2905 /*DontDefer=*/false, IsForDefinition); 2906 else if (isa<CXXMethodDecl>(D)) { 2907 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2908 cast<CXXMethodDecl>(D)); 2909 auto Ty = getTypes().GetFunctionType(*FInfo); 2910 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2911 IsForDefinition); 2912 } else if (isa<FunctionDecl>(D)) { 2913 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2914 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2915 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2916 IsForDefinition); 2917 } else 2918 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2919 IsForDefinition); 2920 } 2921 2922 llvm::GlobalVariable * 2923 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2924 llvm::Type *Ty, 2925 llvm::GlobalValue::LinkageTypes Linkage) { 2926 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2927 llvm::GlobalVariable *OldGV = nullptr; 2928 2929 if (GV) { 2930 // Check if the variable has the right type. 2931 if (GV->getType()->getElementType() == Ty) 2932 return GV; 2933 2934 // Because C++ name mangling, the only way we can end up with an already 2935 // existing global with the same name is if it has been declared extern "C". 2936 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2937 OldGV = GV; 2938 } 2939 2940 // Create a new variable. 2941 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2942 Linkage, nullptr, Name); 2943 2944 if (OldGV) { 2945 // Replace occurrences of the old variable if needed. 2946 GV->takeName(OldGV); 2947 2948 if (!OldGV->use_empty()) { 2949 llvm::Constant *NewPtrForOldDecl = 2950 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2951 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2952 } 2953 2954 OldGV->eraseFromParent(); 2955 } 2956 2957 if (supportsCOMDAT() && GV->isWeakForLinker() && 2958 !GV->hasAvailableExternallyLinkage()) 2959 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2960 2961 return GV; 2962 } 2963 2964 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2965 /// given global variable. If Ty is non-null and if the global doesn't exist, 2966 /// then it will be created with the specified type instead of whatever the 2967 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 2968 /// that an actual global with type Ty will be returned, not conversion of a 2969 /// variable with the same mangled name but some other type. 2970 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2971 llvm::Type *Ty, 2972 ForDefinition_t IsForDefinition) { 2973 assert(D->hasGlobalStorage() && "Not a global variable"); 2974 QualType ASTTy = D->getType(); 2975 if (!Ty) 2976 Ty = getTypes().ConvertTypeForMem(ASTTy); 2977 2978 llvm::PointerType *PTy = 2979 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2980 2981 StringRef MangledName = getMangledName(D); 2982 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2983 } 2984 2985 /// CreateRuntimeVariable - Create a new runtime global variable with the 2986 /// specified type and name. 2987 llvm::Constant * 2988 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2989 StringRef Name) { 2990 auto *Ret = 2991 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2992 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 2993 return Ret; 2994 } 2995 2996 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2997 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2998 2999 StringRef MangledName = getMangledName(D); 3000 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3001 3002 // We already have a definition, not declaration, with the same mangled name. 3003 // Emitting of declaration is not required (and actually overwrites emitted 3004 // definition). 3005 if (GV && !GV->isDeclaration()) 3006 return; 3007 3008 // If we have not seen a reference to this variable yet, place it into the 3009 // deferred declarations table to be emitted if needed later. 3010 if (!MustBeEmitted(D) && !GV) { 3011 DeferredDecls[MangledName] = D; 3012 return; 3013 } 3014 3015 // The tentative definition is the only definition. 3016 EmitGlobalVarDefinition(D); 3017 } 3018 3019 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3020 return Context.toCharUnitsFromBits( 3021 getDataLayout().getTypeStoreSizeInBits(Ty)); 3022 } 3023 3024 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3025 LangAS AddrSpace = LangAS::Default; 3026 if (LangOpts.OpenCL) { 3027 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3028 assert(AddrSpace == LangAS::opencl_global || 3029 AddrSpace == LangAS::opencl_constant || 3030 AddrSpace == LangAS::opencl_local || 3031 AddrSpace >= LangAS::FirstTargetAddressSpace); 3032 return AddrSpace; 3033 } 3034 3035 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3036 if (D && D->hasAttr<CUDAConstantAttr>()) 3037 return LangAS::cuda_constant; 3038 else if (D && D->hasAttr<CUDASharedAttr>()) 3039 return LangAS::cuda_shared; 3040 else 3041 return LangAS::cuda_device; 3042 } 3043 3044 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3045 } 3046 3047 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3048 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3049 if (LangOpts.OpenCL) 3050 return LangAS::opencl_constant; 3051 if (auto AS = getTarget().getConstantAddressSpace()) 3052 return AS.getValue(); 3053 return LangAS::Default; 3054 } 3055 3056 // In address space agnostic languages, string literals are in default address 3057 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3058 // emitted in constant address space in LLVM IR. To be consistent with other 3059 // parts of AST, string literal global variables in constant address space 3060 // need to be casted to default address space before being put into address 3061 // map and referenced by other part of CodeGen. 3062 // In OpenCL, string literals are in constant address space in AST, therefore 3063 // they should not be casted to default address space. 3064 static llvm::Constant * 3065 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3066 llvm::GlobalVariable *GV) { 3067 llvm::Constant *Cast = GV; 3068 if (!CGM.getLangOpts().OpenCL) { 3069 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3070 if (AS != LangAS::Default) 3071 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3072 CGM, GV, AS.getValue(), LangAS::Default, 3073 GV->getValueType()->getPointerTo( 3074 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3075 } 3076 } 3077 return Cast; 3078 } 3079 3080 template<typename SomeDecl> 3081 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3082 llvm::GlobalValue *GV) { 3083 if (!getLangOpts().CPlusPlus) 3084 return; 3085 3086 // Must have 'used' attribute, or else inline assembly can't rely on 3087 // the name existing. 3088 if (!D->template hasAttr<UsedAttr>()) 3089 return; 3090 3091 // Must have internal linkage and an ordinary name. 3092 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3093 return; 3094 3095 // Must be in an extern "C" context. Entities declared directly within 3096 // a record are not extern "C" even if the record is in such a context. 3097 const SomeDecl *First = D->getFirstDecl(); 3098 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3099 return; 3100 3101 // OK, this is an internal linkage entity inside an extern "C" linkage 3102 // specification. Make a note of that so we can give it the "expected" 3103 // mangled name if nothing else is using that name. 3104 std::pair<StaticExternCMap::iterator, bool> R = 3105 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3106 3107 // If we have multiple internal linkage entities with the same name 3108 // in extern "C" regions, none of them gets that name. 3109 if (!R.second) 3110 R.first->second = nullptr; 3111 } 3112 3113 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3114 if (!CGM.supportsCOMDAT()) 3115 return false; 3116 3117 if (D.hasAttr<SelectAnyAttr>()) 3118 return true; 3119 3120 GVALinkage Linkage; 3121 if (auto *VD = dyn_cast<VarDecl>(&D)) 3122 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3123 else 3124 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3125 3126 switch (Linkage) { 3127 case GVA_Internal: 3128 case GVA_AvailableExternally: 3129 case GVA_StrongExternal: 3130 return false; 3131 case GVA_DiscardableODR: 3132 case GVA_StrongODR: 3133 return true; 3134 } 3135 llvm_unreachable("No such linkage"); 3136 } 3137 3138 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3139 llvm::GlobalObject &GO) { 3140 if (!shouldBeInCOMDAT(*this, D)) 3141 return; 3142 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3143 } 3144 3145 /// Pass IsTentative as true if you want to create a tentative definition. 3146 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3147 bool IsTentative) { 3148 // OpenCL global variables of sampler type are translated to function calls, 3149 // therefore no need to be translated. 3150 QualType ASTTy = D->getType(); 3151 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3152 return; 3153 3154 // If this is OpenMP device, check if it is legal to emit this global 3155 // normally. 3156 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3157 OpenMPRuntime->emitTargetGlobalVariable(D)) 3158 return; 3159 3160 llvm::Constant *Init = nullptr; 3161 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3162 bool NeedsGlobalCtor = false; 3163 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3164 3165 const VarDecl *InitDecl; 3166 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3167 3168 Optional<ConstantEmitter> emitter; 3169 3170 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3171 // as part of their declaration." Sema has already checked for 3172 // error cases, so we just need to set Init to UndefValue. 3173 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3174 D->hasAttr<CUDASharedAttr>()) 3175 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3176 else if (!InitExpr) { 3177 // This is a tentative definition; tentative definitions are 3178 // implicitly initialized with { 0 }. 3179 // 3180 // Note that tentative definitions are only emitted at the end of 3181 // a translation unit, so they should never have incomplete 3182 // type. In addition, EmitTentativeDefinition makes sure that we 3183 // never attempt to emit a tentative definition if a real one 3184 // exists. A use may still exists, however, so we still may need 3185 // to do a RAUW. 3186 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3187 Init = EmitNullConstant(D->getType()); 3188 } else { 3189 initializedGlobalDecl = GlobalDecl(D); 3190 emitter.emplace(*this); 3191 Init = emitter->tryEmitForInitializer(*InitDecl); 3192 3193 if (!Init) { 3194 QualType T = InitExpr->getType(); 3195 if (D->getType()->isReferenceType()) 3196 T = D->getType(); 3197 3198 if (getLangOpts().CPlusPlus) { 3199 Init = EmitNullConstant(T); 3200 NeedsGlobalCtor = true; 3201 } else { 3202 ErrorUnsupported(D, "static initializer"); 3203 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3204 } 3205 } else { 3206 // We don't need an initializer, so remove the entry for the delayed 3207 // initializer position (just in case this entry was delayed) if we 3208 // also don't need to register a destructor. 3209 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3210 DelayedCXXInitPosition.erase(D); 3211 } 3212 } 3213 3214 llvm::Type* InitType = Init->getType(); 3215 llvm::Constant *Entry = 3216 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3217 3218 // Strip off a bitcast if we got one back. 3219 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3220 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3221 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3222 // All zero index gep. 3223 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3224 Entry = CE->getOperand(0); 3225 } 3226 3227 // Entry is now either a Function or GlobalVariable. 3228 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3229 3230 // We have a definition after a declaration with the wrong type. 3231 // We must make a new GlobalVariable* and update everything that used OldGV 3232 // (a declaration or tentative definition) with the new GlobalVariable* 3233 // (which will be a definition). 3234 // 3235 // This happens if there is a prototype for a global (e.g. 3236 // "extern int x[];") and then a definition of a different type (e.g. 3237 // "int x[10];"). This also happens when an initializer has a different type 3238 // from the type of the global (this happens with unions). 3239 if (!GV || GV->getType()->getElementType() != InitType || 3240 GV->getType()->getAddressSpace() != 3241 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3242 3243 // Move the old entry aside so that we'll create a new one. 3244 Entry->setName(StringRef()); 3245 3246 // Make a new global with the correct type, this is now guaranteed to work. 3247 GV = cast<llvm::GlobalVariable>( 3248 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3249 3250 // Replace all uses of the old global with the new global 3251 llvm::Constant *NewPtrForOldDecl = 3252 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3253 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3254 3255 // Erase the old global, since it is no longer used. 3256 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3257 } 3258 3259 MaybeHandleStaticInExternC(D, GV); 3260 3261 if (D->hasAttr<AnnotateAttr>()) 3262 AddGlobalAnnotations(D, GV); 3263 3264 // Set the llvm linkage type as appropriate. 3265 llvm::GlobalValue::LinkageTypes Linkage = 3266 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3267 3268 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3269 // the device. [...]" 3270 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3271 // __device__, declares a variable that: [...] 3272 // Is accessible from all the threads within the grid and from the host 3273 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3274 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3275 if (GV && LangOpts.CUDA) { 3276 if (LangOpts.CUDAIsDevice) { 3277 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3278 GV->setExternallyInitialized(true); 3279 } else { 3280 // Host-side shadows of external declarations of device-side 3281 // global variables become internal definitions. These have to 3282 // be internal in order to prevent name conflicts with global 3283 // host variables with the same name in a different TUs. 3284 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3285 Linkage = llvm::GlobalValue::InternalLinkage; 3286 3287 // Shadow variables and their properties must be registered 3288 // with CUDA runtime. 3289 unsigned Flags = 0; 3290 if (!D->hasDefinition()) 3291 Flags |= CGCUDARuntime::ExternDeviceVar; 3292 if (D->hasAttr<CUDAConstantAttr>()) 3293 Flags |= CGCUDARuntime::ConstantDeviceVar; 3294 getCUDARuntime().registerDeviceVar(*GV, Flags); 3295 } else if (D->hasAttr<CUDASharedAttr>()) 3296 // __shared__ variables are odd. Shadows do get created, but 3297 // they are not registered with the CUDA runtime, so they 3298 // can't really be used to access their device-side 3299 // counterparts. It's not clear yet whether it's nvcc's bug or 3300 // a feature, but we've got to do the same for compatibility. 3301 Linkage = llvm::GlobalValue::InternalLinkage; 3302 } 3303 } 3304 3305 GV->setInitializer(Init); 3306 if (emitter) emitter->finalize(GV); 3307 3308 // If it is safe to mark the global 'constant', do so now. 3309 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3310 isTypeConstant(D->getType(), true)); 3311 3312 // If it is in a read-only section, mark it 'constant'. 3313 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3314 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3315 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3316 GV->setConstant(true); 3317 } 3318 3319 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3320 3321 3322 // On Darwin, if the normal linkage of a C++ thread_local variable is 3323 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3324 // copies within a linkage unit; otherwise, the backing variable has 3325 // internal linkage and all accesses should just be calls to the 3326 // Itanium-specified entry point, which has the normal linkage of the 3327 // variable. This is to preserve the ability to change the implementation 3328 // behind the scenes. 3329 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3330 Context.getTargetInfo().getTriple().isOSDarwin() && 3331 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3332 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3333 Linkage = llvm::GlobalValue::InternalLinkage; 3334 3335 GV->setLinkage(Linkage); 3336 if (D->hasAttr<DLLImportAttr>()) 3337 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3338 else if (D->hasAttr<DLLExportAttr>()) 3339 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3340 else 3341 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3342 3343 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3344 // common vars aren't constant even if declared const. 3345 GV->setConstant(false); 3346 // Tentative definition of global variables may be initialized with 3347 // non-zero null pointers. In this case they should have weak linkage 3348 // since common linkage must have zero initializer and must not have 3349 // explicit section therefore cannot have non-zero initial value. 3350 if (!GV->getInitializer()->isNullValue()) 3351 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3352 } 3353 3354 setNonAliasAttributes(D, GV); 3355 3356 if (D->getTLSKind() && !GV->isThreadLocal()) { 3357 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3358 CXXThreadLocals.push_back(D); 3359 setTLSMode(GV, *D); 3360 } 3361 3362 maybeSetTrivialComdat(*D, *GV); 3363 3364 // Emit the initializer function if necessary. 3365 if (NeedsGlobalCtor || NeedsGlobalDtor) 3366 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3367 3368 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3369 3370 // Emit global variable debug information. 3371 if (CGDebugInfo *DI = getModuleDebugInfo()) 3372 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3373 DI->EmitGlobalVariable(GV, D); 3374 } 3375 3376 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3377 CodeGenModule &CGM, const VarDecl *D, 3378 bool NoCommon) { 3379 // Don't give variables common linkage if -fno-common was specified unless it 3380 // was overridden by a NoCommon attribute. 3381 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3382 return true; 3383 3384 // C11 6.9.2/2: 3385 // A declaration of an identifier for an object that has file scope without 3386 // an initializer, and without a storage-class specifier or with the 3387 // storage-class specifier static, constitutes a tentative definition. 3388 if (D->getInit() || D->hasExternalStorage()) 3389 return true; 3390 3391 // A variable cannot be both common and exist in a section. 3392 if (D->hasAttr<SectionAttr>()) 3393 return true; 3394 3395 // A variable cannot be both common and exist in a section. 3396 // We don't try to determine which is the right section in the front-end. 3397 // If no specialized section name is applicable, it will resort to default. 3398 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3399 D->hasAttr<PragmaClangDataSectionAttr>() || 3400 D->hasAttr<PragmaClangRodataSectionAttr>()) 3401 return true; 3402 3403 // Thread local vars aren't considered common linkage. 3404 if (D->getTLSKind()) 3405 return true; 3406 3407 // Tentative definitions marked with WeakImportAttr are true definitions. 3408 if (D->hasAttr<WeakImportAttr>()) 3409 return true; 3410 3411 // A variable cannot be both common and exist in a comdat. 3412 if (shouldBeInCOMDAT(CGM, *D)) 3413 return true; 3414 3415 // Declarations with a required alignment do not have common linkage in MSVC 3416 // mode. 3417 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3418 if (D->hasAttr<AlignedAttr>()) 3419 return true; 3420 QualType VarType = D->getType(); 3421 if (Context.isAlignmentRequired(VarType)) 3422 return true; 3423 3424 if (const auto *RT = VarType->getAs<RecordType>()) { 3425 const RecordDecl *RD = RT->getDecl(); 3426 for (const FieldDecl *FD : RD->fields()) { 3427 if (FD->isBitField()) 3428 continue; 3429 if (FD->hasAttr<AlignedAttr>()) 3430 return true; 3431 if (Context.isAlignmentRequired(FD->getType())) 3432 return true; 3433 } 3434 } 3435 } 3436 3437 return false; 3438 } 3439 3440 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3441 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3442 if (Linkage == GVA_Internal) 3443 return llvm::Function::InternalLinkage; 3444 3445 if (D->hasAttr<WeakAttr>()) { 3446 if (IsConstantVariable) 3447 return llvm::GlobalVariable::WeakODRLinkage; 3448 else 3449 return llvm::GlobalVariable::WeakAnyLinkage; 3450 } 3451 3452 // We are guaranteed to have a strong definition somewhere else, 3453 // so we can use available_externally linkage. 3454 if (Linkage == GVA_AvailableExternally) 3455 return llvm::GlobalValue::AvailableExternallyLinkage; 3456 3457 // Note that Apple's kernel linker doesn't support symbol 3458 // coalescing, so we need to avoid linkonce and weak linkages there. 3459 // Normally, this means we just map to internal, but for explicit 3460 // instantiations we'll map to external. 3461 3462 // In C++, the compiler has to emit a definition in every translation unit 3463 // that references the function. We should use linkonce_odr because 3464 // a) if all references in this translation unit are optimized away, we 3465 // don't need to codegen it. b) if the function persists, it needs to be 3466 // merged with other definitions. c) C++ has the ODR, so we know the 3467 // definition is dependable. 3468 if (Linkage == GVA_DiscardableODR) 3469 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3470 : llvm::Function::InternalLinkage; 3471 3472 // An explicit instantiation of a template has weak linkage, since 3473 // explicit instantiations can occur in multiple translation units 3474 // and must all be equivalent. However, we are not allowed to 3475 // throw away these explicit instantiations. 3476 // 3477 // We don't currently support CUDA device code spread out across multiple TUs, 3478 // so say that CUDA templates are either external (for kernels) or internal. 3479 // This lets llvm perform aggressive inter-procedural optimizations. 3480 if (Linkage == GVA_StrongODR) { 3481 if (Context.getLangOpts().AppleKext) 3482 return llvm::Function::ExternalLinkage; 3483 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3484 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3485 : llvm::Function::InternalLinkage; 3486 return llvm::Function::WeakODRLinkage; 3487 } 3488 3489 // C++ doesn't have tentative definitions and thus cannot have common 3490 // linkage. 3491 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3492 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3493 CodeGenOpts.NoCommon)) 3494 return llvm::GlobalVariable::CommonLinkage; 3495 3496 // selectany symbols are externally visible, so use weak instead of 3497 // linkonce. MSVC optimizes away references to const selectany globals, so 3498 // all definitions should be the same and ODR linkage should be used. 3499 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3500 if (D->hasAttr<SelectAnyAttr>()) 3501 return llvm::GlobalVariable::WeakODRLinkage; 3502 3503 // Otherwise, we have strong external linkage. 3504 assert(Linkage == GVA_StrongExternal); 3505 return llvm::GlobalVariable::ExternalLinkage; 3506 } 3507 3508 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3509 const VarDecl *VD, bool IsConstant) { 3510 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3511 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3512 } 3513 3514 /// Replace the uses of a function that was declared with a non-proto type. 3515 /// We want to silently drop extra arguments from call sites 3516 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3517 llvm::Function *newFn) { 3518 // Fast path. 3519 if (old->use_empty()) return; 3520 3521 llvm::Type *newRetTy = newFn->getReturnType(); 3522 SmallVector<llvm::Value*, 4> newArgs; 3523 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3524 3525 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3526 ui != ue; ) { 3527 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3528 llvm::User *user = use->getUser(); 3529 3530 // Recognize and replace uses of bitcasts. Most calls to 3531 // unprototyped functions will use bitcasts. 3532 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3533 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3534 replaceUsesOfNonProtoConstant(bitcast, newFn); 3535 continue; 3536 } 3537 3538 // Recognize calls to the function. 3539 llvm::CallSite callSite(user); 3540 if (!callSite) continue; 3541 if (!callSite.isCallee(&*use)) continue; 3542 3543 // If the return types don't match exactly, then we can't 3544 // transform this call unless it's dead. 3545 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3546 continue; 3547 3548 // Get the call site's attribute list. 3549 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3550 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3551 3552 // If the function was passed too few arguments, don't transform. 3553 unsigned newNumArgs = newFn->arg_size(); 3554 if (callSite.arg_size() < newNumArgs) continue; 3555 3556 // If extra arguments were passed, we silently drop them. 3557 // If any of the types mismatch, we don't transform. 3558 unsigned argNo = 0; 3559 bool dontTransform = false; 3560 for (llvm::Argument &A : newFn->args()) { 3561 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3562 dontTransform = true; 3563 break; 3564 } 3565 3566 // Add any parameter attributes. 3567 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3568 argNo++; 3569 } 3570 if (dontTransform) 3571 continue; 3572 3573 // Okay, we can transform this. Create the new call instruction and copy 3574 // over the required information. 3575 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3576 3577 // Copy over any operand bundles. 3578 callSite.getOperandBundlesAsDefs(newBundles); 3579 3580 llvm::CallSite newCall; 3581 if (callSite.isCall()) { 3582 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3583 callSite.getInstruction()); 3584 } else { 3585 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3586 newCall = llvm::InvokeInst::Create(newFn, 3587 oldInvoke->getNormalDest(), 3588 oldInvoke->getUnwindDest(), 3589 newArgs, newBundles, "", 3590 callSite.getInstruction()); 3591 } 3592 newArgs.clear(); // for the next iteration 3593 3594 if (!newCall->getType()->isVoidTy()) 3595 newCall->takeName(callSite.getInstruction()); 3596 newCall.setAttributes(llvm::AttributeList::get( 3597 newFn->getContext(), oldAttrs.getFnAttributes(), 3598 oldAttrs.getRetAttributes(), newArgAttrs)); 3599 newCall.setCallingConv(callSite.getCallingConv()); 3600 3601 // Finally, remove the old call, replacing any uses with the new one. 3602 if (!callSite->use_empty()) 3603 callSite->replaceAllUsesWith(newCall.getInstruction()); 3604 3605 // Copy debug location attached to CI. 3606 if (callSite->getDebugLoc()) 3607 newCall->setDebugLoc(callSite->getDebugLoc()); 3608 3609 callSite->eraseFromParent(); 3610 } 3611 } 3612 3613 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3614 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3615 /// existing call uses of the old function in the module, this adjusts them to 3616 /// call the new function directly. 3617 /// 3618 /// This is not just a cleanup: the always_inline pass requires direct calls to 3619 /// functions to be able to inline them. If there is a bitcast in the way, it 3620 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3621 /// run at -O0. 3622 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3623 llvm::Function *NewFn) { 3624 // If we're redefining a global as a function, don't transform it. 3625 if (!isa<llvm::Function>(Old)) return; 3626 3627 replaceUsesOfNonProtoConstant(Old, NewFn); 3628 } 3629 3630 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3631 auto DK = VD->isThisDeclarationADefinition(); 3632 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3633 return; 3634 3635 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3636 // If we have a definition, this might be a deferred decl. If the 3637 // instantiation is explicit, make sure we emit it at the end. 3638 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3639 GetAddrOfGlobalVar(VD); 3640 3641 EmitTopLevelDecl(VD); 3642 } 3643 3644 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3645 llvm::GlobalValue *GV) { 3646 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3647 3648 // Compute the function info and LLVM type. 3649 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3650 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3651 3652 // Get or create the prototype for the function. 3653 if (!GV || (GV->getType()->getElementType() != Ty)) 3654 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3655 /*DontDefer=*/true, 3656 ForDefinition)); 3657 3658 // Already emitted. 3659 if (!GV->isDeclaration()) 3660 return; 3661 3662 // We need to set linkage and visibility on the function before 3663 // generating code for it because various parts of IR generation 3664 // want to propagate this information down (e.g. to local static 3665 // declarations). 3666 auto *Fn = cast<llvm::Function>(GV); 3667 setFunctionLinkage(GD, Fn); 3668 3669 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3670 setGVProperties(Fn, GD); 3671 3672 MaybeHandleStaticInExternC(D, Fn); 3673 3674 if (D->hasAttr<CUDAGlobalAttr>()) 3675 getTargetCodeGenInfo().setCUDAKernelCallingConvention(Fn); 3676 3677 maybeSetTrivialComdat(*D, *Fn); 3678 3679 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3680 3681 setNonAliasAttributes(GD, Fn); 3682 SetLLVMFunctionAttributesForDefinition(D, Fn); 3683 3684 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3685 AddGlobalCtor(Fn, CA->getPriority()); 3686 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3687 AddGlobalDtor(Fn, DA->getPriority()); 3688 if (D->hasAttr<AnnotateAttr>()) 3689 AddGlobalAnnotations(D, Fn); 3690 } 3691 3692 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3693 const auto *D = cast<ValueDecl>(GD.getDecl()); 3694 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3695 assert(AA && "Not an alias?"); 3696 3697 StringRef MangledName = getMangledName(GD); 3698 3699 if (AA->getAliasee() == MangledName) { 3700 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3701 return; 3702 } 3703 3704 // If there is a definition in the module, then it wins over the alias. 3705 // This is dubious, but allow it to be safe. Just ignore the alias. 3706 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3707 if (Entry && !Entry->isDeclaration()) 3708 return; 3709 3710 Aliases.push_back(GD); 3711 3712 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3713 3714 // Create a reference to the named value. This ensures that it is emitted 3715 // if a deferred decl. 3716 llvm::Constant *Aliasee; 3717 if (isa<llvm::FunctionType>(DeclTy)) 3718 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3719 /*ForVTable=*/false); 3720 else 3721 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3722 llvm::PointerType::getUnqual(DeclTy), 3723 /*D=*/nullptr); 3724 3725 // Create the new alias itself, but don't set a name yet. 3726 auto *GA = llvm::GlobalAlias::create( 3727 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3728 3729 if (Entry) { 3730 if (GA->getAliasee() == Entry) { 3731 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3732 return; 3733 } 3734 3735 assert(Entry->isDeclaration()); 3736 3737 // If there is a declaration in the module, then we had an extern followed 3738 // by the alias, as in: 3739 // extern int test6(); 3740 // ... 3741 // int test6() __attribute__((alias("test7"))); 3742 // 3743 // Remove it and replace uses of it with the alias. 3744 GA->takeName(Entry); 3745 3746 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3747 Entry->getType())); 3748 Entry->eraseFromParent(); 3749 } else { 3750 GA->setName(MangledName); 3751 } 3752 3753 // Set attributes which are particular to an alias; this is a 3754 // specialization of the attributes which may be set on a global 3755 // variable/function. 3756 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3757 D->isWeakImported()) { 3758 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3759 } 3760 3761 if (const auto *VD = dyn_cast<VarDecl>(D)) 3762 if (VD->getTLSKind()) 3763 setTLSMode(GA, *VD); 3764 3765 SetCommonAttributes(GD, GA); 3766 } 3767 3768 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3769 const auto *D = cast<ValueDecl>(GD.getDecl()); 3770 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3771 assert(IFA && "Not an ifunc?"); 3772 3773 StringRef MangledName = getMangledName(GD); 3774 3775 if (IFA->getResolver() == MangledName) { 3776 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3777 return; 3778 } 3779 3780 // Report an error if some definition overrides ifunc. 3781 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3782 if (Entry && !Entry->isDeclaration()) { 3783 GlobalDecl OtherGD; 3784 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3785 DiagnosedConflictingDefinitions.insert(GD).second) { 3786 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 3787 << MangledName; 3788 Diags.Report(OtherGD.getDecl()->getLocation(), 3789 diag::note_previous_definition); 3790 } 3791 return; 3792 } 3793 3794 Aliases.push_back(GD); 3795 3796 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3797 llvm::Constant *Resolver = 3798 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3799 /*ForVTable=*/false); 3800 llvm::GlobalIFunc *GIF = 3801 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3802 "", Resolver, &getModule()); 3803 if (Entry) { 3804 if (GIF->getResolver() == Entry) { 3805 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3806 return; 3807 } 3808 assert(Entry->isDeclaration()); 3809 3810 // If there is a declaration in the module, then we had an extern followed 3811 // by the ifunc, as in: 3812 // extern int test(); 3813 // ... 3814 // int test() __attribute__((ifunc("resolver"))); 3815 // 3816 // Remove it and replace uses of it with the ifunc. 3817 GIF->takeName(Entry); 3818 3819 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3820 Entry->getType())); 3821 Entry->eraseFromParent(); 3822 } else 3823 GIF->setName(MangledName); 3824 3825 SetCommonAttributes(GD, GIF); 3826 } 3827 3828 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3829 ArrayRef<llvm::Type*> Tys) { 3830 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3831 Tys); 3832 } 3833 3834 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3835 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3836 const StringLiteral *Literal, bool TargetIsLSB, 3837 bool &IsUTF16, unsigned &StringLength) { 3838 StringRef String = Literal->getString(); 3839 unsigned NumBytes = String.size(); 3840 3841 // Check for simple case. 3842 if (!Literal->containsNonAsciiOrNull()) { 3843 StringLength = NumBytes; 3844 return *Map.insert(std::make_pair(String, nullptr)).first; 3845 } 3846 3847 // Otherwise, convert the UTF8 literals into a string of shorts. 3848 IsUTF16 = true; 3849 3850 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3851 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3852 llvm::UTF16 *ToPtr = &ToBuf[0]; 3853 3854 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3855 ToPtr + NumBytes, llvm::strictConversion); 3856 3857 // ConvertUTF8toUTF16 returns the length in ToPtr. 3858 StringLength = ToPtr - &ToBuf[0]; 3859 3860 // Add an explicit null. 3861 *ToPtr = 0; 3862 return *Map.insert(std::make_pair( 3863 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3864 (StringLength + 1) * 2), 3865 nullptr)).first; 3866 } 3867 3868 ConstantAddress 3869 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3870 unsigned StringLength = 0; 3871 bool isUTF16 = false; 3872 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3873 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3874 getDataLayout().isLittleEndian(), isUTF16, 3875 StringLength); 3876 3877 if (auto *C = Entry.second) 3878 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3879 3880 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3881 llvm::Constant *Zeros[] = { Zero, Zero }; 3882 3883 // If we don't already have it, get __CFConstantStringClassReference. 3884 if (!CFConstantStringClassRef) { 3885 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3886 Ty = llvm::ArrayType::get(Ty, 0); 3887 llvm::GlobalValue *GV = cast<llvm::GlobalValue>( 3888 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference")); 3889 3890 if (getTriple().isOSBinFormatCOFF()) { 3891 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3892 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3893 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3894 3895 const VarDecl *VD = nullptr; 3896 for (const auto &Result : DC->lookup(&II)) 3897 if ((VD = dyn_cast<VarDecl>(Result))) 3898 break; 3899 3900 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3901 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3902 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3903 } else { 3904 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3905 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3906 } 3907 } 3908 setDSOLocal(GV); 3909 3910 // Decay array -> ptr 3911 CFConstantStringClassRef = 3912 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3913 } 3914 3915 QualType CFTy = getContext().getCFConstantStringType(); 3916 3917 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3918 3919 ConstantInitBuilder Builder(*this); 3920 auto Fields = Builder.beginStruct(STy); 3921 3922 // Class pointer. 3923 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3924 3925 // Flags. 3926 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3927 3928 // String pointer. 3929 llvm::Constant *C = nullptr; 3930 if (isUTF16) { 3931 auto Arr = llvm::makeArrayRef( 3932 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3933 Entry.first().size() / 2); 3934 C = llvm::ConstantDataArray::get(VMContext, Arr); 3935 } else { 3936 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3937 } 3938 3939 // Note: -fwritable-strings doesn't make the backing store strings of 3940 // CFStrings writable. (See <rdar://problem/10657500>) 3941 auto *GV = 3942 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3943 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3944 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3945 // Don't enforce the target's minimum global alignment, since the only use 3946 // of the string is via this class initializer. 3947 CharUnits Align = isUTF16 3948 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3949 : getContext().getTypeAlignInChars(getContext().CharTy); 3950 GV->setAlignment(Align.getQuantity()); 3951 3952 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3953 // Without it LLVM can merge the string with a non unnamed_addr one during 3954 // LTO. Doing that changes the section it ends in, which surprises ld64. 3955 if (getTriple().isOSBinFormatMachO()) 3956 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3957 : "__TEXT,__cstring,cstring_literals"); 3958 3959 // String. 3960 llvm::Constant *Str = 3961 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3962 3963 if (isUTF16) 3964 // Cast the UTF16 string to the correct type. 3965 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3966 Fields.add(Str); 3967 3968 // String length. 3969 auto Ty = getTypes().ConvertType(getContext().LongTy); 3970 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3971 3972 CharUnits Alignment = getPointerAlign(); 3973 3974 // The struct. 3975 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3976 /*isConstant=*/false, 3977 llvm::GlobalVariable::PrivateLinkage); 3978 switch (getTriple().getObjectFormat()) { 3979 case llvm::Triple::UnknownObjectFormat: 3980 llvm_unreachable("unknown file format"); 3981 case llvm::Triple::COFF: 3982 case llvm::Triple::ELF: 3983 case llvm::Triple::Wasm: 3984 GV->setSection("cfstring"); 3985 break; 3986 case llvm::Triple::MachO: 3987 GV->setSection("__DATA,__cfstring"); 3988 break; 3989 } 3990 Entry.second = GV; 3991 3992 return ConstantAddress(GV, Alignment); 3993 } 3994 3995 bool CodeGenModule::getExpressionLocationsEnabled() const { 3996 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3997 } 3998 3999 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4000 if (ObjCFastEnumerationStateType.isNull()) { 4001 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4002 D->startDefinition(); 4003 4004 QualType FieldTypes[] = { 4005 Context.UnsignedLongTy, 4006 Context.getPointerType(Context.getObjCIdType()), 4007 Context.getPointerType(Context.UnsignedLongTy), 4008 Context.getConstantArrayType(Context.UnsignedLongTy, 4009 llvm::APInt(32, 5), ArrayType::Normal, 0) 4010 }; 4011 4012 for (size_t i = 0; i < 4; ++i) { 4013 FieldDecl *Field = FieldDecl::Create(Context, 4014 D, 4015 SourceLocation(), 4016 SourceLocation(), nullptr, 4017 FieldTypes[i], /*TInfo=*/nullptr, 4018 /*BitWidth=*/nullptr, 4019 /*Mutable=*/false, 4020 ICIS_NoInit); 4021 Field->setAccess(AS_public); 4022 D->addDecl(Field); 4023 } 4024 4025 D->completeDefinition(); 4026 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4027 } 4028 4029 return ObjCFastEnumerationStateType; 4030 } 4031 4032 llvm::Constant * 4033 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4034 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4035 4036 // Don't emit it as the address of the string, emit the string data itself 4037 // as an inline array. 4038 if (E->getCharByteWidth() == 1) { 4039 SmallString<64> Str(E->getString()); 4040 4041 // Resize the string to the right size, which is indicated by its type. 4042 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4043 Str.resize(CAT->getSize().getZExtValue()); 4044 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4045 } 4046 4047 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4048 llvm::Type *ElemTy = AType->getElementType(); 4049 unsigned NumElements = AType->getNumElements(); 4050 4051 // Wide strings have either 2-byte or 4-byte elements. 4052 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4053 SmallVector<uint16_t, 32> Elements; 4054 Elements.reserve(NumElements); 4055 4056 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4057 Elements.push_back(E->getCodeUnit(i)); 4058 Elements.resize(NumElements); 4059 return llvm::ConstantDataArray::get(VMContext, Elements); 4060 } 4061 4062 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4063 SmallVector<uint32_t, 32> Elements; 4064 Elements.reserve(NumElements); 4065 4066 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4067 Elements.push_back(E->getCodeUnit(i)); 4068 Elements.resize(NumElements); 4069 return llvm::ConstantDataArray::get(VMContext, Elements); 4070 } 4071 4072 static llvm::GlobalVariable * 4073 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4074 CodeGenModule &CGM, StringRef GlobalName, 4075 CharUnits Alignment) { 4076 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4077 CGM.getStringLiteralAddressSpace()); 4078 4079 llvm::Module &M = CGM.getModule(); 4080 // Create a global variable for this string 4081 auto *GV = new llvm::GlobalVariable( 4082 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4083 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4084 GV->setAlignment(Alignment.getQuantity()); 4085 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4086 if (GV->isWeakForLinker()) { 4087 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4088 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4089 } 4090 CGM.setDSOLocal(GV); 4091 4092 return GV; 4093 } 4094 4095 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4096 /// constant array for the given string literal. 4097 ConstantAddress 4098 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4099 StringRef Name) { 4100 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4101 4102 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4103 llvm::GlobalVariable **Entry = nullptr; 4104 if (!LangOpts.WritableStrings) { 4105 Entry = &ConstantStringMap[C]; 4106 if (auto GV = *Entry) { 4107 if (Alignment.getQuantity() > GV->getAlignment()) 4108 GV->setAlignment(Alignment.getQuantity()); 4109 return ConstantAddress(GV, Alignment); 4110 } 4111 } 4112 4113 SmallString<256> MangledNameBuffer; 4114 StringRef GlobalVariableName; 4115 llvm::GlobalValue::LinkageTypes LT; 4116 4117 // Mangle the string literal if the ABI allows for it. However, we cannot 4118 // do this if we are compiling with ASan or -fwritable-strings because they 4119 // rely on strings having normal linkage. 4120 if (!LangOpts.WritableStrings && 4121 !LangOpts.Sanitize.has(SanitizerKind::Address) && 4122 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 4123 llvm::raw_svector_ostream Out(MangledNameBuffer); 4124 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4125 4126 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4127 GlobalVariableName = MangledNameBuffer; 4128 } else { 4129 LT = llvm::GlobalValue::PrivateLinkage; 4130 GlobalVariableName = Name; 4131 } 4132 4133 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4134 if (Entry) 4135 *Entry = GV; 4136 4137 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4138 QualType()); 4139 4140 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4141 Alignment); 4142 } 4143 4144 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4145 /// array for the given ObjCEncodeExpr node. 4146 ConstantAddress 4147 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4148 std::string Str; 4149 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4150 4151 return GetAddrOfConstantCString(Str); 4152 } 4153 4154 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4155 /// the literal and a terminating '\0' character. 4156 /// The result has pointer to array type. 4157 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4158 const std::string &Str, const char *GlobalName) { 4159 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4160 CharUnits Alignment = 4161 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4162 4163 llvm::Constant *C = 4164 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4165 4166 // Don't share any string literals if strings aren't constant. 4167 llvm::GlobalVariable **Entry = nullptr; 4168 if (!LangOpts.WritableStrings) { 4169 Entry = &ConstantStringMap[C]; 4170 if (auto GV = *Entry) { 4171 if (Alignment.getQuantity() > GV->getAlignment()) 4172 GV->setAlignment(Alignment.getQuantity()); 4173 return ConstantAddress(GV, Alignment); 4174 } 4175 } 4176 4177 // Get the default prefix if a name wasn't specified. 4178 if (!GlobalName) 4179 GlobalName = ".str"; 4180 // Create a global variable for this. 4181 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4182 GlobalName, Alignment); 4183 if (Entry) 4184 *Entry = GV; 4185 4186 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4187 Alignment); 4188 } 4189 4190 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4191 const MaterializeTemporaryExpr *E, const Expr *Init) { 4192 assert((E->getStorageDuration() == SD_Static || 4193 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4194 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4195 4196 // If we're not materializing a subobject of the temporary, keep the 4197 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4198 QualType MaterializedType = Init->getType(); 4199 if (Init == E->GetTemporaryExpr()) 4200 MaterializedType = E->getType(); 4201 4202 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4203 4204 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4205 return ConstantAddress(Slot, Align); 4206 4207 // FIXME: If an externally-visible declaration extends multiple temporaries, 4208 // we need to give each temporary the same name in every translation unit (and 4209 // we also need to make the temporaries externally-visible). 4210 SmallString<256> Name; 4211 llvm::raw_svector_ostream Out(Name); 4212 getCXXABI().getMangleContext().mangleReferenceTemporary( 4213 VD, E->getManglingNumber(), Out); 4214 4215 APValue *Value = nullptr; 4216 if (E->getStorageDuration() == SD_Static) { 4217 // We might have a cached constant initializer for this temporary. Note 4218 // that this might have a different value from the value computed by 4219 // evaluating the initializer if the surrounding constant expression 4220 // modifies the temporary. 4221 Value = getContext().getMaterializedTemporaryValue(E, false); 4222 if (Value && Value->isUninit()) 4223 Value = nullptr; 4224 } 4225 4226 // Try evaluating it now, it might have a constant initializer. 4227 Expr::EvalResult EvalResult; 4228 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4229 !EvalResult.hasSideEffects()) 4230 Value = &EvalResult.Val; 4231 4232 LangAS AddrSpace = 4233 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4234 4235 Optional<ConstantEmitter> emitter; 4236 llvm::Constant *InitialValue = nullptr; 4237 bool Constant = false; 4238 llvm::Type *Type; 4239 if (Value) { 4240 // The temporary has a constant initializer, use it. 4241 emitter.emplace(*this); 4242 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4243 MaterializedType); 4244 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4245 Type = InitialValue->getType(); 4246 } else { 4247 // No initializer, the initialization will be provided when we 4248 // initialize the declaration which performed lifetime extension. 4249 Type = getTypes().ConvertTypeForMem(MaterializedType); 4250 } 4251 4252 // Create a global variable for this lifetime-extended temporary. 4253 llvm::GlobalValue::LinkageTypes Linkage = 4254 getLLVMLinkageVarDefinition(VD, Constant); 4255 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4256 const VarDecl *InitVD; 4257 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4258 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4259 // Temporaries defined inside a class get linkonce_odr linkage because the 4260 // class can be defined in multiple translation units. 4261 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4262 } else { 4263 // There is no need for this temporary to have external linkage if the 4264 // VarDecl has external linkage. 4265 Linkage = llvm::GlobalVariable::InternalLinkage; 4266 } 4267 } 4268 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4269 auto *GV = new llvm::GlobalVariable( 4270 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4271 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4272 if (emitter) emitter->finalize(GV); 4273 setGVProperties(GV, VD); 4274 GV->setAlignment(Align.getQuantity()); 4275 if (supportsCOMDAT() && GV->isWeakForLinker()) 4276 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4277 if (VD->getTLSKind()) 4278 setTLSMode(GV, *VD); 4279 llvm::Constant *CV = GV; 4280 if (AddrSpace != LangAS::Default) 4281 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4282 *this, GV, AddrSpace, LangAS::Default, 4283 Type->getPointerTo( 4284 getContext().getTargetAddressSpace(LangAS::Default))); 4285 MaterializedGlobalTemporaryMap[E] = CV; 4286 return ConstantAddress(CV, Align); 4287 } 4288 4289 /// EmitObjCPropertyImplementations - Emit information for synthesized 4290 /// properties for an implementation. 4291 void CodeGenModule::EmitObjCPropertyImplementations(const 4292 ObjCImplementationDecl *D) { 4293 for (const auto *PID : D->property_impls()) { 4294 // Dynamic is just for type-checking. 4295 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4296 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4297 4298 // Determine which methods need to be implemented, some may have 4299 // been overridden. Note that ::isPropertyAccessor is not the method 4300 // we want, that just indicates if the decl came from a 4301 // property. What we want to know is if the method is defined in 4302 // this implementation. 4303 if (!D->getInstanceMethod(PD->getGetterName())) 4304 CodeGenFunction(*this).GenerateObjCGetter( 4305 const_cast<ObjCImplementationDecl *>(D), PID); 4306 if (!PD->isReadOnly() && 4307 !D->getInstanceMethod(PD->getSetterName())) 4308 CodeGenFunction(*this).GenerateObjCSetter( 4309 const_cast<ObjCImplementationDecl *>(D), PID); 4310 } 4311 } 4312 } 4313 4314 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4315 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4316 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4317 ivar; ivar = ivar->getNextIvar()) 4318 if (ivar->getType().isDestructedType()) 4319 return true; 4320 4321 return false; 4322 } 4323 4324 static bool AllTrivialInitializers(CodeGenModule &CGM, 4325 ObjCImplementationDecl *D) { 4326 CodeGenFunction CGF(CGM); 4327 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4328 E = D->init_end(); B != E; ++B) { 4329 CXXCtorInitializer *CtorInitExp = *B; 4330 Expr *Init = CtorInitExp->getInit(); 4331 if (!CGF.isTrivialInitializer(Init)) 4332 return false; 4333 } 4334 return true; 4335 } 4336 4337 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4338 /// for an implementation. 4339 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4340 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4341 if (needsDestructMethod(D)) { 4342 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4343 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4344 ObjCMethodDecl *DTORMethod = 4345 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4346 cxxSelector, getContext().VoidTy, nullptr, D, 4347 /*isInstance=*/true, /*isVariadic=*/false, 4348 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4349 /*isDefined=*/false, ObjCMethodDecl::Required); 4350 D->addInstanceMethod(DTORMethod); 4351 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4352 D->setHasDestructors(true); 4353 } 4354 4355 // If the implementation doesn't have any ivar initializers, we don't need 4356 // a .cxx_construct. 4357 if (D->getNumIvarInitializers() == 0 || 4358 AllTrivialInitializers(*this, D)) 4359 return; 4360 4361 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4362 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4363 // The constructor returns 'self'. 4364 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4365 D->getLocation(), 4366 D->getLocation(), 4367 cxxSelector, 4368 getContext().getObjCIdType(), 4369 nullptr, D, /*isInstance=*/true, 4370 /*isVariadic=*/false, 4371 /*isPropertyAccessor=*/true, 4372 /*isImplicitlyDeclared=*/true, 4373 /*isDefined=*/false, 4374 ObjCMethodDecl::Required); 4375 D->addInstanceMethod(CTORMethod); 4376 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4377 D->setHasNonZeroConstructors(true); 4378 } 4379 4380 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4381 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4382 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4383 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4384 ErrorUnsupported(LSD, "linkage spec"); 4385 return; 4386 } 4387 4388 EmitDeclContext(LSD); 4389 } 4390 4391 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4392 for (auto *I : DC->decls()) { 4393 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4394 // are themselves considered "top-level", so EmitTopLevelDecl on an 4395 // ObjCImplDecl does not recursively visit them. We need to do that in 4396 // case they're nested inside another construct (LinkageSpecDecl / 4397 // ExportDecl) that does stop them from being considered "top-level". 4398 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4399 for (auto *M : OID->methods()) 4400 EmitTopLevelDecl(M); 4401 } 4402 4403 EmitTopLevelDecl(I); 4404 } 4405 } 4406 4407 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4408 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4409 // Ignore dependent declarations. 4410 if (D->isTemplated()) 4411 return; 4412 4413 switch (D->getKind()) { 4414 case Decl::CXXConversion: 4415 case Decl::CXXMethod: 4416 case Decl::Function: 4417 EmitGlobal(cast<FunctionDecl>(D)); 4418 // Always provide some coverage mapping 4419 // even for the functions that aren't emitted. 4420 AddDeferredUnusedCoverageMapping(D); 4421 break; 4422 4423 case Decl::CXXDeductionGuide: 4424 // Function-like, but does not result in code emission. 4425 break; 4426 4427 case Decl::Var: 4428 case Decl::Decomposition: 4429 case Decl::VarTemplateSpecialization: 4430 EmitGlobal(cast<VarDecl>(D)); 4431 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4432 for (auto *B : DD->bindings()) 4433 if (auto *HD = B->getHoldingVar()) 4434 EmitGlobal(HD); 4435 break; 4436 4437 // Indirect fields from global anonymous structs and unions can be 4438 // ignored; only the actual variable requires IR gen support. 4439 case Decl::IndirectField: 4440 break; 4441 4442 // C++ Decls 4443 case Decl::Namespace: 4444 EmitDeclContext(cast<NamespaceDecl>(D)); 4445 break; 4446 case Decl::ClassTemplateSpecialization: { 4447 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4448 if (DebugInfo && 4449 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4450 Spec->hasDefinition()) 4451 DebugInfo->completeTemplateDefinition(*Spec); 4452 } LLVM_FALLTHROUGH; 4453 case Decl::CXXRecord: 4454 if (DebugInfo) { 4455 if (auto *ES = D->getASTContext().getExternalSource()) 4456 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4457 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4458 } 4459 // Emit any static data members, they may be definitions. 4460 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4461 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4462 EmitTopLevelDecl(I); 4463 break; 4464 // No code generation needed. 4465 case Decl::UsingShadow: 4466 case Decl::ClassTemplate: 4467 case Decl::VarTemplate: 4468 case Decl::VarTemplatePartialSpecialization: 4469 case Decl::FunctionTemplate: 4470 case Decl::TypeAliasTemplate: 4471 case Decl::Block: 4472 case Decl::Empty: 4473 break; 4474 case Decl::Using: // using X; [C++] 4475 if (CGDebugInfo *DI = getModuleDebugInfo()) 4476 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4477 return; 4478 case Decl::NamespaceAlias: 4479 if (CGDebugInfo *DI = getModuleDebugInfo()) 4480 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4481 return; 4482 case Decl::UsingDirective: // using namespace X; [C++] 4483 if (CGDebugInfo *DI = getModuleDebugInfo()) 4484 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4485 return; 4486 case Decl::CXXConstructor: 4487 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4488 break; 4489 case Decl::CXXDestructor: 4490 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4491 break; 4492 4493 case Decl::StaticAssert: 4494 // Nothing to do. 4495 break; 4496 4497 // Objective-C Decls 4498 4499 // Forward declarations, no (immediate) code generation. 4500 case Decl::ObjCInterface: 4501 case Decl::ObjCCategory: 4502 break; 4503 4504 case Decl::ObjCProtocol: { 4505 auto *Proto = cast<ObjCProtocolDecl>(D); 4506 if (Proto->isThisDeclarationADefinition()) 4507 ObjCRuntime->GenerateProtocol(Proto); 4508 break; 4509 } 4510 4511 case Decl::ObjCCategoryImpl: 4512 // Categories have properties but don't support synthesize so we 4513 // can ignore them here. 4514 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4515 break; 4516 4517 case Decl::ObjCImplementation: { 4518 auto *OMD = cast<ObjCImplementationDecl>(D); 4519 EmitObjCPropertyImplementations(OMD); 4520 EmitObjCIvarInitializations(OMD); 4521 ObjCRuntime->GenerateClass(OMD); 4522 // Emit global variable debug information. 4523 if (CGDebugInfo *DI = getModuleDebugInfo()) 4524 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4525 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4526 OMD->getClassInterface()), OMD->getLocation()); 4527 break; 4528 } 4529 case Decl::ObjCMethod: { 4530 auto *OMD = cast<ObjCMethodDecl>(D); 4531 // If this is not a prototype, emit the body. 4532 if (OMD->getBody()) 4533 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4534 break; 4535 } 4536 case Decl::ObjCCompatibleAlias: 4537 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4538 break; 4539 4540 case Decl::PragmaComment: { 4541 const auto *PCD = cast<PragmaCommentDecl>(D); 4542 switch (PCD->getCommentKind()) { 4543 case PCK_Unknown: 4544 llvm_unreachable("unexpected pragma comment kind"); 4545 case PCK_Linker: 4546 AppendLinkerOptions(PCD->getArg()); 4547 break; 4548 case PCK_Lib: 4549 if (getTarget().getTriple().isOSBinFormatELF() && 4550 !getTarget().getTriple().isPS4()) 4551 AddELFLibDirective(PCD->getArg()); 4552 else 4553 AddDependentLib(PCD->getArg()); 4554 break; 4555 case PCK_Compiler: 4556 case PCK_ExeStr: 4557 case PCK_User: 4558 break; // We ignore all of these. 4559 } 4560 break; 4561 } 4562 4563 case Decl::PragmaDetectMismatch: { 4564 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4565 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4566 break; 4567 } 4568 4569 case Decl::LinkageSpec: 4570 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4571 break; 4572 4573 case Decl::FileScopeAsm: { 4574 // File-scope asm is ignored during device-side CUDA compilation. 4575 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4576 break; 4577 // File-scope asm is ignored during device-side OpenMP compilation. 4578 if (LangOpts.OpenMPIsDevice) 4579 break; 4580 auto *AD = cast<FileScopeAsmDecl>(D); 4581 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4582 break; 4583 } 4584 4585 case Decl::Import: { 4586 auto *Import = cast<ImportDecl>(D); 4587 4588 // If we've already imported this module, we're done. 4589 if (!ImportedModules.insert(Import->getImportedModule())) 4590 break; 4591 4592 // Emit debug information for direct imports. 4593 if (!Import->getImportedOwningModule()) { 4594 if (CGDebugInfo *DI = getModuleDebugInfo()) 4595 DI->EmitImportDecl(*Import); 4596 } 4597 4598 // Find all of the submodules and emit the module initializers. 4599 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4600 SmallVector<clang::Module *, 16> Stack; 4601 Visited.insert(Import->getImportedModule()); 4602 Stack.push_back(Import->getImportedModule()); 4603 4604 while (!Stack.empty()) { 4605 clang::Module *Mod = Stack.pop_back_val(); 4606 if (!EmittedModuleInitializers.insert(Mod).second) 4607 continue; 4608 4609 for (auto *D : Context.getModuleInitializers(Mod)) 4610 EmitTopLevelDecl(D); 4611 4612 // Visit the submodules of this module. 4613 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4614 SubEnd = Mod->submodule_end(); 4615 Sub != SubEnd; ++Sub) { 4616 // Skip explicit children; they need to be explicitly imported to emit 4617 // the initializers. 4618 if ((*Sub)->IsExplicit) 4619 continue; 4620 4621 if (Visited.insert(*Sub).second) 4622 Stack.push_back(*Sub); 4623 } 4624 } 4625 break; 4626 } 4627 4628 case Decl::Export: 4629 EmitDeclContext(cast<ExportDecl>(D)); 4630 break; 4631 4632 case Decl::OMPThreadPrivate: 4633 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4634 break; 4635 4636 case Decl::OMPDeclareReduction: 4637 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4638 break; 4639 4640 default: 4641 // Make sure we handled everything we should, every other kind is a 4642 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4643 // function. Need to recode Decl::Kind to do that easily. 4644 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4645 break; 4646 } 4647 } 4648 4649 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4650 // Do we need to generate coverage mapping? 4651 if (!CodeGenOpts.CoverageMapping) 4652 return; 4653 switch (D->getKind()) { 4654 case Decl::CXXConversion: 4655 case Decl::CXXMethod: 4656 case Decl::Function: 4657 case Decl::ObjCMethod: 4658 case Decl::CXXConstructor: 4659 case Decl::CXXDestructor: { 4660 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4661 return; 4662 SourceManager &SM = getContext().getSourceManager(); 4663 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4664 return; 4665 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4666 if (I == DeferredEmptyCoverageMappingDecls.end()) 4667 DeferredEmptyCoverageMappingDecls[D] = true; 4668 break; 4669 } 4670 default: 4671 break; 4672 }; 4673 } 4674 4675 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4676 // Do we need to generate coverage mapping? 4677 if (!CodeGenOpts.CoverageMapping) 4678 return; 4679 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4680 if (Fn->isTemplateInstantiation()) 4681 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4682 } 4683 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4684 if (I == DeferredEmptyCoverageMappingDecls.end()) 4685 DeferredEmptyCoverageMappingDecls[D] = false; 4686 else 4687 I->second = false; 4688 } 4689 4690 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4691 // We call takeVector() here to avoid use-after-free. 4692 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4693 // we deserialize function bodies to emit coverage info for them, and that 4694 // deserializes more declarations. How should we handle that case? 4695 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4696 if (!Entry.second) 4697 continue; 4698 const Decl *D = Entry.first; 4699 switch (D->getKind()) { 4700 case Decl::CXXConversion: 4701 case Decl::CXXMethod: 4702 case Decl::Function: 4703 case Decl::ObjCMethod: { 4704 CodeGenPGO PGO(*this); 4705 GlobalDecl GD(cast<FunctionDecl>(D)); 4706 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4707 getFunctionLinkage(GD)); 4708 break; 4709 } 4710 case Decl::CXXConstructor: { 4711 CodeGenPGO PGO(*this); 4712 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4713 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4714 getFunctionLinkage(GD)); 4715 break; 4716 } 4717 case Decl::CXXDestructor: { 4718 CodeGenPGO PGO(*this); 4719 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4720 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4721 getFunctionLinkage(GD)); 4722 break; 4723 } 4724 default: 4725 break; 4726 }; 4727 } 4728 } 4729 4730 /// Turns the given pointer into a constant. 4731 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4732 const void *Ptr) { 4733 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4734 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4735 return llvm::ConstantInt::get(i64, PtrInt); 4736 } 4737 4738 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4739 llvm::NamedMDNode *&GlobalMetadata, 4740 GlobalDecl D, 4741 llvm::GlobalValue *Addr) { 4742 if (!GlobalMetadata) 4743 GlobalMetadata = 4744 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4745 4746 // TODO: should we report variant information for ctors/dtors? 4747 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4748 llvm::ConstantAsMetadata::get(GetPointerConstant( 4749 CGM.getLLVMContext(), D.getDecl()))}; 4750 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4751 } 4752 4753 /// For each function which is declared within an extern "C" region and marked 4754 /// as 'used', but has internal linkage, create an alias from the unmangled 4755 /// name to the mangled name if possible. People expect to be able to refer 4756 /// to such functions with an unmangled name from inline assembly within the 4757 /// same translation unit. 4758 void CodeGenModule::EmitStaticExternCAliases() { 4759 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 4760 return; 4761 for (auto &I : StaticExternCValues) { 4762 IdentifierInfo *Name = I.first; 4763 llvm::GlobalValue *Val = I.second; 4764 if (Val && !getModule().getNamedValue(Name->getName())) 4765 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4766 } 4767 } 4768 4769 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4770 GlobalDecl &Result) const { 4771 auto Res = Manglings.find(MangledName); 4772 if (Res == Manglings.end()) 4773 return false; 4774 Result = Res->getValue(); 4775 return true; 4776 } 4777 4778 /// Emits metadata nodes associating all the global values in the 4779 /// current module with the Decls they came from. This is useful for 4780 /// projects using IR gen as a subroutine. 4781 /// 4782 /// Since there's currently no way to associate an MDNode directly 4783 /// with an llvm::GlobalValue, we create a global named metadata 4784 /// with the name 'clang.global.decl.ptrs'. 4785 void CodeGenModule::EmitDeclMetadata() { 4786 llvm::NamedMDNode *GlobalMetadata = nullptr; 4787 4788 for (auto &I : MangledDeclNames) { 4789 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4790 // Some mangled names don't necessarily have an associated GlobalValue 4791 // in this module, e.g. if we mangled it for DebugInfo. 4792 if (Addr) 4793 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4794 } 4795 } 4796 4797 /// Emits metadata nodes for all the local variables in the current 4798 /// function. 4799 void CodeGenFunction::EmitDeclMetadata() { 4800 if (LocalDeclMap.empty()) return; 4801 4802 llvm::LLVMContext &Context = getLLVMContext(); 4803 4804 // Find the unique metadata ID for this name. 4805 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4806 4807 llvm::NamedMDNode *GlobalMetadata = nullptr; 4808 4809 for (auto &I : LocalDeclMap) { 4810 const Decl *D = I.first; 4811 llvm::Value *Addr = I.second.getPointer(); 4812 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4813 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4814 Alloca->setMetadata( 4815 DeclPtrKind, llvm::MDNode::get( 4816 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4817 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4818 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4819 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4820 } 4821 } 4822 } 4823 4824 void CodeGenModule::EmitVersionIdentMetadata() { 4825 llvm::NamedMDNode *IdentMetadata = 4826 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4827 std::string Version = getClangFullVersion(); 4828 llvm::LLVMContext &Ctx = TheModule.getContext(); 4829 4830 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4831 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4832 } 4833 4834 void CodeGenModule::EmitTargetMetadata() { 4835 // Warning, new MangledDeclNames may be appended within this loop. 4836 // We rely on MapVector insertions adding new elements to the end 4837 // of the container. 4838 // FIXME: Move this loop into the one target that needs it, and only 4839 // loop over those declarations for which we couldn't emit the target 4840 // metadata when we emitted the declaration. 4841 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4842 auto Val = *(MangledDeclNames.begin() + I); 4843 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4844 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4845 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4846 } 4847 } 4848 4849 void CodeGenModule::EmitCoverageFile() { 4850 if (getCodeGenOpts().CoverageDataFile.empty() && 4851 getCodeGenOpts().CoverageNotesFile.empty()) 4852 return; 4853 4854 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4855 if (!CUNode) 4856 return; 4857 4858 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4859 llvm::LLVMContext &Ctx = TheModule.getContext(); 4860 auto *CoverageDataFile = 4861 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4862 auto *CoverageNotesFile = 4863 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4864 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4865 llvm::MDNode *CU = CUNode->getOperand(i); 4866 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4867 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4868 } 4869 } 4870 4871 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4872 // Sema has checked that all uuid strings are of the form 4873 // "12345678-1234-1234-1234-1234567890ab". 4874 assert(Uuid.size() == 36); 4875 for (unsigned i = 0; i < 36; ++i) { 4876 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4877 else assert(isHexDigit(Uuid[i])); 4878 } 4879 4880 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4881 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4882 4883 llvm::Constant *Field3[8]; 4884 for (unsigned Idx = 0; Idx < 8; ++Idx) 4885 Field3[Idx] = llvm::ConstantInt::get( 4886 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4887 4888 llvm::Constant *Fields[4] = { 4889 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4890 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4891 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4892 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4893 }; 4894 4895 return llvm::ConstantStruct::getAnon(Fields); 4896 } 4897 4898 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4899 bool ForEH) { 4900 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4901 // FIXME: should we even be calling this method if RTTI is disabled 4902 // and it's not for EH? 4903 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 4904 return llvm::Constant::getNullValue(Int8PtrTy); 4905 4906 if (ForEH && Ty->isObjCObjectPointerType() && 4907 LangOpts.ObjCRuntime.isGNUFamily()) 4908 return ObjCRuntime->GetEHType(Ty); 4909 4910 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4911 } 4912 4913 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4914 // Do not emit threadprivates in simd-only mode. 4915 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4916 return; 4917 for (auto RefExpr : D->varlists()) { 4918 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4919 bool PerformInit = 4920 VD->getAnyInitializer() && 4921 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4922 /*ForRef=*/false); 4923 4924 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4925 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4926 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4927 CXXGlobalInits.push_back(InitFunction); 4928 } 4929 } 4930 4931 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4932 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4933 if (InternalId) 4934 return InternalId; 4935 4936 if (isExternallyVisible(T->getLinkage())) { 4937 std::string OutName; 4938 llvm::raw_string_ostream Out(OutName); 4939 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4940 4941 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4942 } else { 4943 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4944 llvm::ArrayRef<llvm::Metadata *>()); 4945 } 4946 4947 return InternalId; 4948 } 4949 4950 // Generalize pointer types to a void pointer with the qualifiers of the 4951 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4952 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4953 // 'void *'. 4954 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4955 if (!Ty->isPointerType()) 4956 return Ty; 4957 4958 return Ctx.getPointerType( 4959 QualType(Ctx.VoidTy).withCVRQualifiers( 4960 Ty->getPointeeType().getCVRQualifiers())); 4961 } 4962 4963 // Apply type generalization to a FunctionType's return and argument types 4964 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4965 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4966 SmallVector<QualType, 8> GeneralizedParams; 4967 for (auto &Param : FnType->param_types()) 4968 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4969 4970 return Ctx.getFunctionType( 4971 GeneralizeType(Ctx, FnType->getReturnType()), 4972 GeneralizedParams, FnType->getExtProtoInfo()); 4973 } 4974 4975 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4976 return Ctx.getFunctionNoProtoType( 4977 GeneralizeType(Ctx, FnType->getReturnType())); 4978 4979 llvm_unreachable("Encountered unknown FunctionType"); 4980 } 4981 4982 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4983 T = GeneralizeFunctionType(getContext(), T); 4984 4985 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4986 if (InternalId) 4987 return InternalId; 4988 4989 if (isExternallyVisible(T->getLinkage())) { 4990 std::string OutName; 4991 llvm::raw_string_ostream Out(OutName); 4992 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4993 Out << ".generalized"; 4994 4995 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4996 } else { 4997 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4998 llvm::ArrayRef<llvm::Metadata *>()); 4999 } 5000 5001 return InternalId; 5002 } 5003 5004 /// Returns whether this module needs the "all-vtables" type identifier. 5005 bool CodeGenModule::NeedAllVtablesTypeId() const { 5006 // Returns true if at least one of vtable-based CFI checkers is enabled and 5007 // is not in the trapping mode. 5008 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5009 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5010 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5011 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5012 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5013 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5014 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5015 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5016 } 5017 5018 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5019 CharUnits Offset, 5020 const CXXRecordDecl *RD) { 5021 llvm::Metadata *MD = 5022 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5023 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5024 5025 if (CodeGenOpts.SanitizeCfiCrossDso) 5026 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5027 VTable->addTypeMetadata(Offset.getQuantity(), 5028 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5029 5030 if (NeedAllVtablesTypeId()) { 5031 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5032 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5033 } 5034 } 5035 5036 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5037 assert(TD != nullptr); 5038 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5039 5040 ParsedAttr.Features.erase( 5041 llvm::remove_if(ParsedAttr.Features, 5042 [&](const std::string &Feat) { 5043 return !Target.isValidFeatureName( 5044 StringRef{Feat}.substr(1)); 5045 }), 5046 ParsedAttr.Features.end()); 5047 return ParsedAttr; 5048 } 5049 5050 5051 // Fills in the supplied string map with the set of target features for the 5052 // passed in function. 5053 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5054 const FunctionDecl *FD) { 5055 StringRef TargetCPU = Target.getTargetOpts().CPU; 5056 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5057 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5058 5059 // Make a copy of the features as passed on the command line into the 5060 // beginning of the additional features from the function to override. 5061 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5062 Target.getTargetOpts().FeaturesAsWritten.begin(), 5063 Target.getTargetOpts().FeaturesAsWritten.end()); 5064 5065 if (ParsedAttr.Architecture != "" && 5066 Target.isValidCPUName(ParsedAttr.Architecture)) 5067 TargetCPU = ParsedAttr.Architecture; 5068 5069 // Now populate the feature map, first with the TargetCPU which is either 5070 // the default or a new one from the target attribute string. Then we'll use 5071 // the passed in features (FeaturesAsWritten) along with the new ones from 5072 // the attribute. 5073 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5074 ParsedAttr.Features); 5075 } else { 5076 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5077 Target.getTargetOpts().Features); 5078 } 5079 } 5080 5081 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5082 if (!SanStats) 5083 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5084 5085 return *SanStats; 5086 } 5087 llvm::Value * 5088 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5089 CodeGenFunction &CGF) { 5090 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5091 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5092 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5093 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5094 "__translate_sampler_initializer"), 5095 {C}); 5096 } 5097