xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 1a5239251ead73ee57f4e2f7fc93433ac7cf18b1)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CharInfo.h"
42 #include "clang/Basic/CodeGenOptions.h"
43 #include "clang/Basic/Diagnostic.h"
44 #include "clang/Basic/FileManager.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/SourceManager.h"
47 #include "clang/Basic/TargetInfo.h"
48 #include "clang/Basic/Version.h"
49 #include "clang/CodeGen/BackendUtil.h"
50 #include "clang/CodeGen/ConstantInitBuilder.h"
51 #include "clang/Frontend/FrontendDiagnostic.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringSwitch.h"
55 #include "llvm/Analysis/TargetLibraryInfo.h"
56 #include "llvm/BinaryFormat/ELF.h"
57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
58 #include "llvm/IR/AttributeMask.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/ProfileSummary.h"
65 #include "llvm/ProfileData/InstrProfReader.h"
66 #include "llvm/ProfileData/SampleProf.h"
67 #include "llvm/Support/CRC.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ConvertUTF.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/Support/xxhash.h"
74 #include "llvm/TargetParser/RISCVISAInfo.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include "llvm/TargetParser/X86TargetParser.h"
77 #include "llvm/Transforms/Utils/BuildLibCalls.h"
78 #include <optional>
79 
80 using namespace clang;
81 using namespace CodeGen;
82 
83 static llvm::cl::opt<bool> LimitedCoverage(
84     "limited-coverage-experimental", llvm::cl::Hidden,
85     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
86 
87 static const char AnnotationSection[] = "llvm.metadata";
88 
89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
90   switch (CGM.getContext().getCXXABIKind()) {
91   case TargetCXXABI::AppleARM64:
92   case TargetCXXABI::Fuchsia:
93   case TargetCXXABI::GenericAArch64:
94   case TargetCXXABI::GenericARM:
95   case TargetCXXABI::iOS:
96   case TargetCXXABI::WatchOS:
97   case TargetCXXABI::GenericMIPS:
98   case TargetCXXABI::GenericItanium:
99   case TargetCXXABI::WebAssembly:
100   case TargetCXXABI::XL:
101     return CreateItaniumCXXABI(CGM);
102   case TargetCXXABI::Microsoft:
103     return CreateMicrosoftCXXABI(CGM);
104   }
105 
106   llvm_unreachable("invalid C++ ABI kind");
107 }
108 
109 static std::unique_ptr<TargetCodeGenInfo>
110 createTargetCodeGenInfo(CodeGenModule &CGM) {
111   const TargetInfo &Target = CGM.getTarget();
112   const llvm::Triple &Triple = Target.getTriple();
113   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
114 
115   switch (Triple.getArch()) {
116   default:
117     return createDefaultTargetCodeGenInfo(CGM);
118 
119   case llvm::Triple::le32:
120     return createPNaClTargetCodeGenInfo(CGM);
121   case llvm::Triple::m68k:
122     return createM68kTargetCodeGenInfo(CGM);
123   case llvm::Triple::mips:
124   case llvm::Triple::mipsel:
125     if (Triple.getOS() == llvm::Triple::NaCl)
126       return createPNaClTargetCodeGenInfo(CGM);
127     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
128 
129   case llvm::Triple::mips64:
130   case llvm::Triple::mips64el:
131     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
132 
133   case llvm::Triple::avr: {
134     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
135     // on avrtiny. For passing return value, R18~R25 are used on avr, and
136     // R22~R25 are used on avrtiny.
137     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
138     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
139     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
140   }
141 
142   case llvm::Triple::aarch64:
143   case llvm::Triple::aarch64_32:
144   case llvm::Triple::aarch64_be: {
145     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
146     if (Target.getABI() == "darwinpcs")
147       Kind = AArch64ABIKind::DarwinPCS;
148     else if (Triple.isOSWindows())
149       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
150     else if (Target.getABI() == "aapcs-soft")
151       Kind = AArch64ABIKind::AAPCSSoft;
152 
153     return createAArch64TargetCodeGenInfo(CGM, Kind);
154   }
155 
156   case llvm::Triple::wasm32:
157   case llvm::Triple::wasm64: {
158     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
159     if (Target.getABI() == "experimental-mv")
160       Kind = WebAssemblyABIKind::ExperimentalMV;
161     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
162   }
163 
164   case llvm::Triple::arm:
165   case llvm::Triple::armeb:
166   case llvm::Triple::thumb:
167   case llvm::Triple::thumbeb: {
168     if (Triple.getOS() == llvm::Triple::Win32)
169       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
170 
171     ARMABIKind Kind = ARMABIKind::AAPCS;
172     StringRef ABIStr = Target.getABI();
173     if (ABIStr == "apcs-gnu")
174       Kind = ARMABIKind::APCS;
175     else if (ABIStr == "aapcs16")
176       Kind = ARMABIKind::AAPCS16_VFP;
177     else if (CodeGenOpts.FloatABI == "hard" ||
178              (CodeGenOpts.FloatABI != "soft" &&
179               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
180                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
181                Triple.getEnvironment() == llvm::Triple::EABIHF)))
182       Kind = ARMABIKind::AAPCS_VFP;
183 
184     return createARMTargetCodeGenInfo(CGM, Kind);
185   }
186 
187   case llvm::Triple::ppc: {
188     if (Triple.isOSAIX())
189       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
190 
191     bool IsSoftFloat =
192         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
193     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
194   }
195   case llvm::Triple::ppcle: {
196     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
197     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
198   }
199   case llvm::Triple::ppc64:
200     if (Triple.isOSAIX())
201       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
202 
203     if (Triple.isOSBinFormatELF()) {
204       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
205       if (Target.getABI() == "elfv2")
206         Kind = PPC64_SVR4_ABIKind::ELFv2;
207       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
208 
209       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
210     }
211     return createPPC64TargetCodeGenInfo(CGM);
212   case llvm::Triple::ppc64le: {
213     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
214     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
215     if (Target.getABI() == "elfv1")
216       Kind = PPC64_SVR4_ABIKind::ELFv1;
217     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
218 
219     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
220   }
221 
222   case llvm::Triple::nvptx:
223   case llvm::Triple::nvptx64:
224     return createNVPTXTargetCodeGenInfo(CGM);
225 
226   case llvm::Triple::msp430:
227     return createMSP430TargetCodeGenInfo(CGM);
228 
229   case llvm::Triple::riscv32:
230   case llvm::Triple::riscv64: {
231     StringRef ABIStr = Target.getABI();
232     unsigned XLen = Target.getPointerWidth(LangAS::Default);
233     unsigned ABIFLen = 0;
234     if (ABIStr.ends_with("f"))
235       ABIFLen = 32;
236     else if (ABIStr.ends_with("d"))
237       ABIFLen = 64;
238     bool EABI = ABIStr.ends_with("e");
239     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
240   }
241 
242   case llvm::Triple::systemz: {
243     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
244     bool HasVector = !SoftFloat && Target.getABI() == "vector";
245     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
246   }
247 
248   case llvm::Triple::tce:
249   case llvm::Triple::tcele:
250     return createTCETargetCodeGenInfo(CGM);
251 
252   case llvm::Triple::x86: {
253     bool IsDarwinVectorABI = Triple.isOSDarwin();
254     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
255 
256     if (Triple.getOS() == llvm::Triple::Win32) {
257       return createWinX86_32TargetCodeGenInfo(
258           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
259           CodeGenOpts.NumRegisterParameters);
260     }
261     return createX86_32TargetCodeGenInfo(
262         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
263         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
264   }
265 
266   case llvm::Triple::x86_64: {
267     StringRef ABI = Target.getABI();
268     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
269                                : ABI == "avx"  ? X86AVXABILevel::AVX
270                                                : X86AVXABILevel::None);
271 
272     switch (Triple.getOS()) {
273     case llvm::Triple::Win32:
274       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
275     default:
276       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
277     }
278   }
279   case llvm::Triple::hexagon:
280     return createHexagonTargetCodeGenInfo(CGM);
281   case llvm::Triple::lanai:
282     return createLanaiTargetCodeGenInfo(CGM);
283   case llvm::Triple::r600:
284     return createAMDGPUTargetCodeGenInfo(CGM);
285   case llvm::Triple::amdgcn:
286     return createAMDGPUTargetCodeGenInfo(CGM);
287   case llvm::Triple::sparc:
288     return createSparcV8TargetCodeGenInfo(CGM);
289   case llvm::Triple::sparcv9:
290     return createSparcV9TargetCodeGenInfo(CGM);
291   case llvm::Triple::xcore:
292     return createXCoreTargetCodeGenInfo(CGM);
293   case llvm::Triple::arc:
294     return createARCTargetCodeGenInfo(CGM);
295   case llvm::Triple::spir:
296   case llvm::Triple::spir64:
297     return createCommonSPIRTargetCodeGenInfo(CGM);
298   case llvm::Triple::spirv32:
299   case llvm::Triple::spirv64:
300     return createSPIRVTargetCodeGenInfo(CGM);
301   case llvm::Triple::ve:
302     return createVETargetCodeGenInfo(CGM);
303   case llvm::Triple::csky: {
304     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
305     bool hasFP64 =
306         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
307     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
308                                             : hasFP64   ? 64
309                                                         : 32);
310   }
311   case llvm::Triple::bpfeb:
312   case llvm::Triple::bpfel:
313     return createBPFTargetCodeGenInfo(CGM);
314   case llvm::Triple::loongarch32:
315   case llvm::Triple::loongarch64: {
316     StringRef ABIStr = Target.getABI();
317     unsigned ABIFRLen = 0;
318     if (ABIStr.ends_with("f"))
319       ABIFRLen = 32;
320     else if (ABIStr.ends_with("d"))
321       ABIFRLen = 64;
322     return createLoongArchTargetCodeGenInfo(
323         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
324   }
325   }
326 }
327 
328 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
329   if (!TheTargetCodeGenInfo)
330     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
331   return *TheTargetCodeGenInfo;
332 }
333 
334 CodeGenModule::CodeGenModule(ASTContext &C,
335                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
336                              const HeaderSearchOptions &HSO,
337                              const PreprocessorOptions &PPO,
338                              const CodeGenOptions &CGO, llvm::Module &M,
339                              DiagnosticsEngine &diags,
340                              CoverageSourceInfo *CoverageInfo)
341     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
342       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
343       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
344       VMContext(M.getContext()), Types(*this), VTables(*this),
345       SanitizerMD(new SanitizerMetadata(*this)) {
346 
347   // Initialize the type cache.
348   llvm::LLVMContext &LLVMContext = M.getContext();
349   VoidTy = llvm::Type::getVoidTy(LLVMContext);
350   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
351   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
352   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
353   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
354   HalfTy = llvm::Type::getHalfTy(LLVMContext);
355   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
356   FloatTy = llvm::Type::getFloatTy(LLVMContext);
357   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
358   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
359   PointerAlignInBytes =
360       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
361           .getQuantity();
362   SizeSizeInBytes =
363     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
364   IntAlignInBytes =
365     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
366   CharTy =
367     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
368   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
369   IntPtrTy = llvm::IntegerType::get(LLVMContext,
370     C.getTargetInfo().getMaxPointerWidth());
371   Int8PtrTy = llvm::PointerType::get(LLVMContext,
372                                      C.getTargetAddressSpace(LangAS::Default));
373   const llvm::DataLayout &DL = M.getDataLayout();
374   AllocaInt8PtrTy =
375       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
376   GlobalsInt8PtrTy =
377       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
378   ConstGlobalsPtrTy = llvm::PointerType::get(
379       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
380   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
381 
382   // Build C++20 Module initializers.
383   // TODO: Add Microsoft here once we know the mangling required for the
384   // initializers.
385   CXX20ModuleInits =
386       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
387                                        ItaniumMangleContext::MK_Itanium;
388 
389   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
390 
391   if (LangOpts.ObjC)
392     createObjCRuntime();
393   if (LangOpts.OpenCL)
394     createOpenCLRuntime();
395   if (LangOpts.OpenMP)
396     createOpenMPRuntime();
397   if (LangOpts.CUDA)
398     createCUDARuntime();
399   if (LangOpts.HLSL)
400     createHLSLRuntime();
401 
402   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
403   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
404       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
405     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
406                                getLangOpts(), getCXXABI().getMangleContext()));
407 
408   // If debug info or coverage generation is enabled, create the CGDebugInfo
409   // object.
410   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
411       CodeGenOpts.CoverageNotesFile.size() ||
412       CodeGenOpts.CoverageDataFile.size())
413     DebugInfo.reset(new CGDebugInfo(*this));
414 
415   Block.GlobalUniqueCount = 0;
416 
417   if (C.getLangOpts().ObjC)
418     ObjCData.reset(new ObjCEntrypoints());
419 
420   if (CodeGenOpts.hasProfileClangUse()) {
421     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
422         CodeGenOpts.ProfileInstrumentUsePath, *FS,
423         CodeGenOpts.ProfileRemappingFile);
424     // We're checking for profile read errors in CompilerInvocation, so if
425     // there was an error it should've already been caught. If it hasn't been
426     // somehow, trip an assertion.
427     assert(ReaderOrErr);
428     PGOReader = std::move(ReaderOrErr.get());
429   }
430 
431   // If coverage mapping generation is enabled, create the
432   // CoverageMappingModuleGen object.
433   if (CodeGenOpts.CoverageMapping)
434     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
435 
436   // Generate the module name hash here if needed.
437   if (CodeGenOpts.UniqueInternalLinkageNames &&
438       !getModule().getSourceFileName().empty()) {
439     std::string Path = getModule().getSourceFileName();
440     // Check if a path substitution is needed from the MacroPrefixMap.
441     for (const auto &Entry : LangOpts.MacroPrefixMap)
442       if (Path.rfind(Entry.first, 0) != std::string::npos) {
443         Path = Entry.second + Path.substr(Entry.first.size());
444         break;
445       }
446     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
447   }
448 
449   // Record mregparm value now so it is visible through all of codegen.
450   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
451     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
452                               CodeGenOpts.NumRegisterParameters);
453 }
454 
455 CodeGenModule::~CodeGenModule() {}
456 
457 void CodeGenModule::createObjCRuntime() {
458   // This is just isGNUFamily(), but we want to force implementors of
459   // new ABIs to decide how best to do this.
460   switch (LangOpts.ObjCRuntime.getKind()) {
461   case ObjCRuntime::GNUstep:
462   case ObjCRuntime::GCC:
463   case ObjCRuntime::ObjFW:
464     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
465     return;
466 
467   case ObjCRuntime::FragileMacOSX:
468   case ObjCRuntime::MacOSX:
469   case ObjCRuntime::iOS:
470   case ObjCRuntime::WatchOS:
471     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
472     return;
473   }
474   llvm_unreachable("bad runtime kind");
475 }
476 
477 void CodeGenModule::createOpenCLRuntime() {
478   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
479 }
480 
481 void CodeGenModule::createOpenMPRuntime() {
482   // Select a specialized code generation class based on the target, if any.
483   // If it does not exist use the default implementation.
484   switch (getTriple().getArch()) {
485   case llvm::Triple::nvptx:
486   case llvm::Triple::nvptx64:
487   case llvm::Triple::amdgcn:
488     assert(getLangOpts().OpenMPIsTargetDevice &&
489            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
490     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
491     break;
492   default:
493     if (LangOpts.OpenMPSimd)
494       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
495     else
496       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
497     break;
498   }
499 }
500 
501 void CodeGenModule::createCUDARuntime() {
502   CUDARuntime.reset(CreateNVCUDARuntime(*this));
503 }
504 
505 void CodeGenModule::createHLSLRuntime() {
506   HLSLRuntime.reset(new CGHLSLRuntime(*this));
507 }
508 
509 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
510   Replacements[Name] = C;
511 }
512 
513 void CodeGenModule::applyReplacements() {
514   for (auto &I : Replacements) {
515     StringRef MangledName = I.first;
516     llvm::Constant *Replacement = I.second;
517     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
518     if (!Entry)
519       continue;
520     auto *OldF = cast<llvm::Function>(Entry);
521     auto *NewF = dyn_cast<llvm::Function>(Replacement);
522     if (!NewF) {
523       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
524         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
525       } else {
526         auto *CE = cast<llvm::ConstantExpr>(Replacement);
527         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
528                CE->getOpcode() == llvm::Instruction::GetElementPtr);
529         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
530       }
531     }
532 
533     // Replace old with new, but keep the old order.
534     OldF->replaceAllUsesWith(Replacement);
535     if (NewF) {
536       NewF->removeFromParent();
537       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
538                                                        NewF);
539     }
540     OldF->eraseFromParent();
541   }
542 }
543 
544 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
545   GlobalValReplacements.push_back(std::make_pair(GV, C));
546 }
547 
548 void CodeGenModule::applyGlobalValReplacements() {
549   for (auto &I : GlobalValReplacements) {
550     llvm::GlobalValue *GV = I.first;
551     llvm::Constant *C = I.second;
552 
553     GV->replaceAllUsesWith(C);
554     GV->eraseFromParent();
555   }
556 }
557 
558 // This is only used in aliases that we created and we know they have a
559 // linear structure.
560 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
561   const llvm::Constant *C;
562   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
563     C = GA->getAliasee();
564   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
565     C = GI->getResolver();
566   else
567     return GV;
568 
569   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
570   if (!AliaseeGV)
571     return nullptr;
572 
573   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
574   if (FinalGV == GV)
575     return nullptr;
576 
577   return FinalGV;
578 }
579 
580 static bool checkAliasedGlobal(
581     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
582     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
583     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
584     SourceRange AliasRange) {
585   GV = getAliasedGlobal(Alias);
586   if (!GV) {
587     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
588     return false;
589   }
590 
591   if (GV->hasCommonLinkage()) {
592     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
593     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
594       Diags.Report(Location, diag::err_alias_to_common);
595       return false;
596     }
597   }
598 
599   if (GV->isDeclaration()) {
600     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
601     Diags.Report(Location, diag::note_alias_requires_mangled_name)
602         << IsIFunc << IsIFunc;
603     // Provide a note if the given function is not found and exists as a
604     // mangled name.
605     for (const auto &[Decl, Name] : MangledDeclNames) {
606       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
607         if (ND->getName() == GV->getName()) {
608           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
609               << Name
610               << FixItHint::CreateReplacement(
611                      AliasRange,
612                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
613                          .str());
614         }
615       }
616     }
617     return false;
618   }
619 
620   if (IsIFunc) {
621     // Check resolver function type.
622     const auto *F = dyn_cast<llvm::Function>(GV);
623     if (!F) {
624       Diags.Report(Location, diag::err_alias_to_undefined)
625           << IsIFunc << IsIFunc;
626       return false;
627     }
628 
629     llvm::FunctionType *FTy = F->getFunctionType();
630     if (!FTy->getReturnType()->isPointerTy()) {
631       Diags.Report(Location, diag::err_ifunc_resolver_return);
632       return false;
633     }
634   }
635 
636   return true;
637 }
638 
639 // Emit a warning if toc-data attribute is requested for global variables that
640 // have aliases and remove the toc-data attribute.
641 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
642                                  const CodeGenOptions &CodeGenOpts,
643                                  DiagnosticsEngine &Diags,
644                                  SourceLocation Location) {
645   if (GVar->hasAttribute("toc-data")) {
646     auto GVId = GVar->getName();
647     // Is this a global variable specified by the user as local?
648     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
649       Diags.Report(Location, diag::warn_toc_unsupported_type)
650           << GVId << "the variable has an alias";
651     }
652     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
653     llvm::AttributeSet NewAttributes =
654         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
655     GVar->setAttributes(NewAttributes);
656   }
657 }
658 
659 void CodeGenModule::checkAliases() {
660   // Check if the constructed aliases are well formed. It is really unfortunate
661   // that we have to do this in CodeGen, but we only construct mangled names
662   // and aliases during codegen.
663   bool Error = false;
664   DiagnosticsEngine &Diags = getDiags();
665   for (const GlobalDecl &GD : Aliases) {
666     const auto *D = cast<ValueDecl>(GD.getDecl());
667     SourceLocation Location;
668     SourceRange Range;
669     bool IsIFunc = D->hasAttr<IFuncAttr>();
670     if (const Attr *A = D->getDefiningAttr()) {
671       Location = A->getLocation();
672       Range = A->getRange();
673     } else
674       llvm_unreachable("Not an alias or ifunc?");
675 
676     StringRef MangledName = getMangledName(GD);
677     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
678     const llvm::GlobalValue *GV = nullptr;
679     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
680                             MangledDeclNames, Range)) {
681       Error = true;
682       continue;
683     }
684 
685     if (getContext().getTargetInfo().getTriple().isOSAIX())
686       if (const llvm::GlobalVariable *GVar =
687               dyn_cast<const llvm::GlobalVariable>(GV))
688         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
689                              getCodeGenOpts(), Diags, Location);
690 
691     llvm::Constant *Aliasee =
692         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
693                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
694 
695     llvm::GlobalValue *AliaseeGV;
696     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
697       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
698     else
699       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
700 
701     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
702       StringRef AliasSection = SA->getName();
703       if (AliasSection != AliaseeGV->getSection())
704         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
705             << AliasSection << IsIFunc << IsIFunc;
706     }
707 
708     // We have to handle alias to weak aliases in here. LLVM itself disallows
709     // this since the object semantics would not match the IL one. For
710     // compatibility with gcc we implement it by just pointing the alias
711     // to its aliasee's aliasee. We also warn, since the user is probably
712     // expecting the link to be weak.
713     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
714       if (GA->isInterposable()) {
715         Diags.Report(Location, diag::warn_alias_to_weak_alias)
716             << GV->getName() << GA->getName() << IsIFunc;
717         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
718             GA->getAliasee(), Alias->getType());
719 
720         if (IsIFunc)
721           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
722         else
723           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
724       }
725     }
726   }
727   if (!Error)
728     return;
729 
730   for (const GlobalDecl &GD : Aliases) {
731     StringRef MangledName = getMangledName(GD);
732     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
733     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
734     Alias->eraseFromParent();
735   }
736 }
737 
738 void CodeGenModule::clear() {
739   DeferredDeclsToEmit.clear();
740   EmittedDeferredDecls.clear();
741   DeferredAnnotations.clear();
742   if (OpenMPRuntime)
743     OpenMPRuntime->clear();
744 }
745 
746 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
747                                        StringRef MainFile) {
748   if (!hasDiagnostics())
749     return;
750   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
751     if (MainFile.empty())
752       MainFile = "<stdin>";
753     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
754   } else {
755     if (Mismatched > 0)
756       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
757 
758     if (Missing > 0)
759       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
760   }
761 }
762 
763 static std::optional<llvm::GlobalValue::VisibilityTypes>
764 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
765   // Map to LLVM visibility.
766   switch (K) {
767   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
768     return std::nullopt;
769   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
770     return llvm::GlobalValue::DefaultVisibility;
771   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
772     return llvm::GlobalValue::HiddenVisibility;
773   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
774     return llvm::GlobalValue::ProtectedVisibility;
775   }
776   llvm_unreachable("unknown option value!");
777 }
778 
779 void setLLVMVisibility(llvm::GlobalValue &GV,
780                        std::optional<llvm::GlobalValue::VisibilityTypes> V) {
781   if (!V)
782     return;
783 
784   // Reset DSO locality before setting the visibility. This removes
785   // any effects that visibility options and annotations may have
786   // had on the DSO locality. Setting the visibility will implicitly set
787   // appropriate globals to DSO Local; however, this will be pessimistic
788   // w.r.t. to the normal compiler IRGen.
789   GV.setDSOLocal(false);
790   GV.setVisibility(*V);
791 }
792 
793 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
794                                              llvm::Module &M) {
795   if (!LO.VisibilityFromDLLStorageClass)
796     return;
797 
798   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
799       getLLVMVisibility(LO.getDLLExportVisibility());
800 
801   std::optional<llvm::GlobalValue::VisibilityTypes>
802       NoDLLStorageClassVisibility =
803           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
804 
805   std::optional<llvm::GlobalValue::VisibilityTypes>
806       ExternDeclDLLImportVisibility =
807           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
808 
809   std::optional<llvm::GlobalValue::VisibilityTypes>
810       ExternDeclNoDLLStorageClassVisibility =
811           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
812 
813   for (llvm::GlobalValue &GV : M.global_values()) {
814     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
815       continue;
816 
817     if (GV.isDeclarationForLinker())
818       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
819                                     llvm::GlobalValue::DLLImportStorageClass
820                                 ? ExternDeclDLLImportVisibility
821                                 : ExternDeclNoDLLStorageClassVisibility);
822     else
823       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
824                                     llvm::GlobalValue::DLLExportStorageClass
825                                 ? DLLExportVisibility
826                                 : NoDLLStorageClassVisibility);
827 
828     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
829   }
830 }
831 
832 static bool isStackProtectorOn(const LangOptions &LangOpts,
833                                const llvm::Triple &Triple,
834                                clang::LangOptions::StackProtectorMode Mode) {
835   if (Triple.isAMDGPU() || Triple.isNVPTX())
836     return false;
837   return LangOpts.getStackProtector() == Mode;
838 }
839 
840 void CodeGenModule::Release() {
841   Module *Primary = getContext().getCurrentNamedModule();
842   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
843     EmitModuleInitializers(Primary);
844   EmitDeferred();
845   DeferredDecls.insert(EmittedDeferredDecls.begin(),
846                        EmittedDeferredDecls.end());
847   EmittedDeferredDecls.clear();
848   EmitVTablesOpportunistically();
849   applyGlobalValReplacements();
850   applyReplacements();
851   emitMultiVersionFunctions();
852 
853   if (Context.getLangOpts().IncrementalExtensions &&
854       GlobalTopLevelStmtBlockInFlight.first) {
855     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
856     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
857     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
858   }
859 
860   // Module implementations are initialized the same way as a regular TU that
861   // imports one or more modules.
862   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
863     EmitCXXModuleInitFunc(Primary);
864   else
865     EmitCXXGlobalInitFunc();
866   EmitCXXGlobalCleanUpFunc();
867   registerGlobalDtorsWithAtExit();
868   EmitCXXThreadLocalInitFunc();
869   if (ObjCRuntime)
870     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
871       AddGlobalCtor(ObjCInitFunction);
872   if (Context.getLangOpts().CUDA && CUDARuntime) {
873     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
874       AddGlobalCtor(CudaCtorFunction);
875   }
876   if (OpenMPRuntime) {
877     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
878     OpenMPRuntime->clear();
879   }
880   if (PGOReader) {
881     getModule().setProfileSummary(
882         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
883         llvm::ProfileSummary::PSK_Instr);
884     if (PGOStats.hasDiagnostics())
885       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
886   }
887   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
888     return L.LexOrder < R.LexOrder;
889   });
890   EmitCtorList(GlobalCtors, "llvm.global_ctors");
891   EmitCtorList(GlobalDtors, "llvm.global_dtors");
892   EmitGlobalAnnotations();
893   EmitStaticExternCAliases();
894   checkAliases();
895   EmitDeferredUnusedCoverageMappings();
896   CodeGenPGO(*this).setValueProfilingFlag(getModule());
897   CodeGenPGO(*this).setProfileVersion(getModule());
898   if (CoverageMapping)
899     CoverageMapping->emit();
900   if (CodeGenOpts.SanitizeCfiCrossDso) {
901     CodeGenFunction(*this).EmitCfiCheckFail();
902     CodeGenFunction(*this).EmitCfiCheckStub();
903   }
904   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
905     finalizeKCFITypes();
906   emitAtAvailableLinkGuard();
907   if (Context.getTargetInfo().getTriple().isWasm())
908     EmitMainVoidAlias();
909 
910   if (getTriple().isAMDGPU()) {
911     // Emit amdhsa_code_object_version module flag, which is code object version
912     // times 100.
913     if (getTarget().getTargetOpts().CodeObjectVersion !=
914         llvm::CodeObjectVersionKind::COV_None) {
915       getModule().addModuleFlag(llvm::Module::Error,
916                                 "amdhsa_code_object_version",
917                                 getTarget().getTargetOpts().CodeObjectVersion);
918     }
919 
920     // Currently, "-mprintf-kind" option is only supported for HIP
921     if (LangOpts.HIP) {
922       auto *MDStr = llvm::MDString::get(
923           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
924                              TargetOptions::AMDGPUPrintfKind::Hostcall)
925                                 ? "hostcall"
926                                 : "buffered");
927       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
928                                 MDStr);
929     }
930   }
931 
932   // Emit a global array containing all external kernels or device variables
933   // used by host functions and mark it as used for CUDA/HIP. This is necessary
934   // to get kernels or device variables in archives linked in even if these
935   // kernels or device variables are only used in host functions.
936   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
937     SmallVector<llvm::Constant *, 8> UsedArray;
938     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
939       GlobalDecl GD;
940       if (auto *FD = dyn_cast<FunctionDecl>(D))
941         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
942       else
943         GD = GlobalDecl(D);
944       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
945           GetAddrOfGlobal(GD), Int8PtrTy));
946     }
947 
948     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
949 
950     auto *GV = new llvm::GlobalVariable(
951         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
952         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
953     addCompilerUsedGlobal(GV);
954   }
955   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
956     // Emit a unique ID so that host and device binaries from the same
957     // compilation unit can be associated.
958     auto *GV = new llvm::GlobalVariable(
959         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
960         llvm::Constant::getNullValue(Int8Ty),
961         "__hip_cuid_" + getContext().getCUIDHash());
962     addCompilerUsedGlobal(GV);
963   }
964   emitLLVMUsed();
965   if (SanStats)
966     SanStats->finish();
967 
968   if (CodeGenOpts.Autolink &&
969       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
970     EmitModuleLinkOptions();
971   }
972 
973   // On ELF we pass the dependent library specifiers directly to the linker
974   // without manipulating them. This is in contrast to other platforms where
975   // they are mapped to a specific linker option by the compiler. This
976   // difference is a result of the greater variety of ELF linkers and the fact
977   // that ELF linkers tend to handle libraries in a more complicated fashion
978   // than on other platforms. This forces us to defer handling the dependent
979   // libs to the linker.
980   //
981   // CUDA/HIP device and host libraries are different. Currently there is no
982   // way to differentiate dependent libraries for host or device. Existing
983   // usage of #pragma comment(lib, *) is intended for host libraries on
984   // Windows. Therefore emit llvm.dependent-libraries only for host.
985   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
986     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
987     for (auto *MD : ELFDependentLibraries)
988       NMD->addOperand(MD);
989   }
990 
991   if (CodeGenOpts.DwarfVersion) {
992     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
993                               CodeGenOpts.DwarfVersion);
994   }
995 
996   if (CodeGenOpts.Dwarf64)
997     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
998 
999   if (Context.getLangOpts().SemanticInterposition)
1000     // Require various optimization to respect semantic interposition.
1001     getModule().setSemanticInterposition(true);
1002 
1003   if (CodeGenOpts.EmitCodeView) {
1004     // Indicate that we want CodeView in the metadata.
1005     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1006   }
1007   if (CodeGenOpts.CodeViewGHash) {
1008     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1009   }
1010   if (CodeGenOpts.ControlFlowGuard) {
1011     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1012     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1013   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1014     // Function ID tables for Control Flow Guard (cfguard=1).
1015     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1016   }
1017   if (CodeGenOpts.EHContGuard) {
1018     // Function ID tables for EH Continuation Guard.
1019     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1020   }
1021   if (Context.getLangOpts().Kernel) {
1022     // Note if we are compiling with /kernel.
1023     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1024   }
1025   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1026     // We don't support LTO with 2 with different StrictVTablePointers
1027     // FIXME: we could support it by stripping all the information introduced
1028     // by StrictVTablePointers.
1029 
1030     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1031 
1032     llvm::Metadata *Ops[2] = {
1033               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1034               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1035                   llvm::Type::getInt32Ty(VMContext), 1))};
1036 
1037     getModule().addModuleFlag(llvm::Module::Require,
1038                               "StrictVTablePointersRequirement",
1039                               llvm::MDNode::get(VMContext, Ops));
1040   }
1041   if (getModuleDebugInfo())
1042     // We support a single version in the linked module. The LLVM
1043     // parser will drop debug info with a different version number
1044     // (and warn about it, too).
1045     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1046                               llvm::DEBUG_METADATA_VERSION);
1047 
1048   // We need to record the widths of enums and wchar_t, so that we can generate
1049   // the correct build attributes in the ARM backend. wchar_size is also used by
1050   // TargetLibraryInfo.
1051   uint64_t WCharWidth =
1052       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1053   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1054 
1055   if (getTriple().isOSzOS()) {
1056     getModule().addModuleFlag(llvm::Module::Warning,
1057                               "zos_product_major_version",
1058                               uint32_t(CLANG_VERSION_MAJOR));
1059     getModule().addModuleFlag(llvm::Module::Warning,
1060                               "zos_product_minor_version",
1061                               uint32_t(CLANG_VERSION_MINOR));
1062     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1063                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1064     std::string ProductId = getClangVendor() + "clang";
1065     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1066                               llvm::MDString::get(VMContext, ProductId));
1067 
1068     // Record the language because we need it for the PPA2.
1069     StringRef lang_str = languageToString(
1070         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1071     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1072                               llvm::MDString::get(VMContext, lang_str));
1073 
1074     time_t TT = PreprocessorOpts.SourceDateEpoch
1075                     ? *PreprocessorOpts.SourceDateEpoch
1076                     : std::time(nullptr);
1077     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1078                               static_cast<uint64_t>(TT));
1079 
1080     // Multiple modes will be supported here.
1081     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1082                               llvm::MDString::get(VMContext, "ascii"));
1083   }
1084 
1085   llvm::Triple T = Context.getTargetInfo().getTriple();
1086   if (T.isARM() || T.isThumb()) {
1087     // The minimum width of an enum in bytes
1088     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1089     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1090   }
1091 
1092   if (T.isRISCV()) {
1093     StringRef ABIStr = Target.getABI();
1094     llvm::LLVMContext &Ctx = TheModule.getContext();
1095     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1096                               llvm::MDString::get(Ctx, ABIStr));
1097 
1098     // Add the canonical ISA string as metadata so the backend can set the ELF
1099     // attributes correctly. We use AppendUnique so LTO will keep all of the
1100     // unique ISA strings that were linked together.
1101     const std::vector<std::string> &Features =
1102         getTarget().getTargetOpts().Features;
1103     auto ParseResult =
1104         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1105     if (!errorToBool(ParseResult.takeError()))
1106       getModule().addModuleFlag(
1107           llvm::Module::AppendUnique, "riscv-isa",
1108           llvm::MDNode::get(
1109               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1110   }
1111 
1112   if (CodeGenOpts.SanitizeCfiCrossDso) {
1113     // Indicate that we want cross-DSO control flow integrity checks.
1114     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1115   }
1116 
1117   if (CodeGenOpts.WholeProgramVTables) {
1118     // Indicate whether VFE was enabled for this module, so that the
1119     // vcall_visibility metadata added under whole program vtables is handled
1120     // appropriately in the optimizer.
1121     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1122                               CodeGenOpts.VirtualFunctionElimination);
1123   }
1124 
1125   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1126     getModule().addModuleFlag(llvm::Module::Override,
1127                               "CFI Canonical Jump Tables",
1128                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1129   }
1130 
1131   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1132     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1133     // KCFI assumes patchable-function-prefix is the same for all indirectly
1134     // called functions. Store the expected offset for code generation.
1135     if (CodeGenOpts.PatchableFunctionEntryOffset)
1136       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1137                                 CodeGenOpts.PatchableFunctionEntryOffset);
1138   }
1139 
1140   if (CodeGenOpts.CFProtectionReturn &&
1141       Target.checkCFProtectionReturnSupported(getDiags())) {
1142     // Indicate that we want to instrument return control flow protection.
1143     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1144                               1);
1145   }
1146 
1147   if (CodeGenOpts.CFProtectionBranch &&
1148       Target.checkCFProtectionBranchSupported(getDiags())) {
1149     // Indicate that we want to instrument branch control flow protection.
1150     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1151                               1);
1152   }
1153 
1154   if (CodeGenOpts.FunctionReturnThunks)
1155     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1156 
1157   if (CodeGenOpts.IndirectBranchCSPrefix)
1158     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1159 
1160   // Add module metadata for return address signing (ignoring
1161   // non-leaf/all) and stack tagging. These are actually turned on by function
1162   // attributes, but we use module metadata to emit build attributes. This is
1163   // needed for LTO, where the function attributes are inside bitcode
1164   // serialised into a global variable by the time build attributes are
1165   // emitted, so we can't access them. LTO objects could be compiled with
1166   // different flags therefore module flags are set to "Min" behavior to achieve
1167   // the same end result of the normal build where e.g BTI is off if any object
1168   // doesn't support it.
1169   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1170       LangOpts.getSignReturnAddressScope() !=
1171           LangOptions::SignReturnAddressScopeKind::None)
1172     getModule().addModuleFlag(llvm::Module::Override,
1173                               "sign-return-address-buildattr", 1);
1174   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1175     getModule().addModuleFlag(llvm::Module::Override,
1176                               "tag-stack-memory-buildattr", 1);
1177 
1178   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1179     if (LangOpts.BranchTargetEnforcement)
1180       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1181                                 1);
1182     if (LangOpts.BranchProtectionPAuthLR)
1183       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1184                                 1);
1185     if (LangOpts.GuardedControlStack)
1186       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1187     if (LangOpts.hasSignReturnAddress())
1188       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1189     if (LangOpts.isSignReturnAddressScopeAll())
1190       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1191                                 1);
1192     if (!LangOpts.isSignReturnAddressWithAKey())
1193       getModule().addModuleFlag(llvm::Module::Min,
1194                                 "sign-return-address-with-bkey", 1);
1195 
1196     if (getTriple().isOSLinux()) {
1197       assert(getTriple().isOSBinFormatELF());
1198       using namespace llvm::ELF;
1199       uint64_t PAuthABIVersion =
1200           (LangOpts.PointerAuthIntrinsics
1201            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1202           (LangOpts.PointerAuthCalls
1203            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1204           (LangOpts.PointerAuthReturns
1205            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1206           (LangOpts.PointerAuthAuthTraps
1207            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1208           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1209            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1210           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1211            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1212           (LangOpts.PointerAuthInitFini
1213            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI);
1214       static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI ==
1215                         AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1216                     "Update when new enum items are defined");
1217       if (PAuthABIVersion != 0) {
1218         getModule().addModuleFlag(llvm::Module::Error,
1219                                   "aarch64-elf-pauthabi-platform",
1220                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1221         getModule().addModuleFlag(llvm::Module::Error,
1222                                   "aarch64-elf-pauthabi-version",
1223                                   PAuthABIVersion);
1224       }
1225     }
1226   }
1227 
1228   if (CodeGenOpts.StackClashProtector)
1229     getModule().addModuleFlag(
1230         llvm::Module::Override, "probe-stack",
1231         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1232 
1233   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1234     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1235                               CodeGenOpts.StackProbeSize);
1236 
1237   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1238     llvm::LLVMContext &Ctx = TheModule.getContext();
1239     getModule().addModuleFlag(
1240         llvm::Module::Error, "MemProfProfileFilename",
1241         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1242   }
1243 
1244   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1245     // Indicate whether __nvvm_reflect should be configured to flush denormal
1246     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1247     // property.)
1248     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1249                               CodeGenOpts.FP32DenormalMode.Output !=
1250                                   llvm::DenormalMode::IEEE);
1251   }
1252 
1253   if (LangOpts.EHAsynch)
1254     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1255 
1256   // Indicate whether this Module was compiled with -fopenmp
1257   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1258     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1259   if (getLangOpts().OpenMPIsTargetDevice)
1260     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1261                               LangOpts.OpenMP);
1262 
1263   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1264   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1265     EmitOpenCLMetadata();
1266     // Emit SPIR version.
1267     if (getTriple().isSPIR()) {
1268       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1269       // opencl.spir.version named metadata.
1270       // C++ for OpenCL has a distinct mapping for version compatibility with
1271       // OpenCL.
1272       auto Version = LangOpts.getOpenCLCompatibleVersion();
1273       llvm::Metadata *SPIRVerElts[] = {
1274           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1275               Int32Ty, Version / 100)),
1276           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1277               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1278       llvm::NamedMDNode *SPIRVerMD =
1279           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1280       llvm::LLVMContext &Ctx = TheModule.getContext();
1281       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1282     }
1283   }
1284 
1285   // HLSL related end of code gen work items.
1286   if (LangOpts.HLSL)
1287     getHLSLRuntime().finishCodeGen();
1288 
1289   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1290     assert(PLevel < 3 && "Invalid PIC Level");
1291     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1292     if (Context.getLangOpts().PIE)
1293       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1294   }
1295 
1296   if (getCodeGenOpts().CodeModel.size() > 0) {
1297     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1298                   .Case("tiny", llvm::CodeModel::Tiny)
1299                   .Case("small", llvm::CodeModel::Small)
1300                   .Case("kernel", llvm::CodeModel::Kernel)
1301                   .Case("medium", llvm::CodeModel::Medium)
1302                   .Case("large", llvm::CodeModel::Large)
1303                   .Default(~0u);
1304     if (CM != ~0u) {
1305       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1306       getModule().setCodeModel(codeModel);
1307 
1308       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1309           Context.getTargetInfo().getTriple().getArch() ==
1310               llvm::Triple::x86_64) {
1311         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1312       }
1313     }
1314   }
1315 
1316   if (CodeGenOpts.NoPLT)
1317     getModule().setRtLibUseGOT();
1318   if (getTriple().isOSBinFormatELF() &&
1319       CodeGenOpts.DirectAccessExternalData !=
1320           getModule().getDirectAccessExternalData()) {
1321     getModule().setDirectAccessExternalData(
1322         CodeGenOpts.DirectAccessExternalData);
1323   }
1324   if (CodeGenOpts.UnwindTables)
1325     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1326 
1327   switch (CodeGenOpts.getFramePointer()) {
1328   case CodeGenOptions::FramePointerKind::None:
1329     // 0 ("none") is the default.
1330     break;
1331   case CodeGenOptions::FramePointerKind::Reserved:
1332     getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1333     break;
1334   case CodeGenOptions::FramePointerKind::NonLeaf:
1335     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1336     break;
1337   case CodeGenOptions::FramePointerKind::All:
1338     getModule().setFramePointer(llvm::FramePointerKind::All);
1339     break;
1340   }
1341 
1342   SimplifyPersonality();
1343 
1344   if (getCodeGenOpts().EmitDeclMetadata)
1345     EmitDeclMetadata();
1346 
1347   if (getCodeGenOpts().CoverageNotesFile.size() ||
1348       getCodeGenOpts().CoverageDataFile.size())
1349     EmitCoverageFile();
1350 
1351   if (CGDebugInfo *DI = getModuleDebugInfo())
1352     DI->finalize();
1353 
1354   if (getCodeGenOpts().EmitVersionIdentMetadata)
1355     EmitVersionIdentMetadata();
1356 
1357   if (!getCodeGenOpts().RecordCommandLine.empty())
1358     EmitCommandLineMetadata();
1359 
1360   if (!getCodeGenOpts().StackProtectorGuard.empty())
1361     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1362   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1363     getModule().setStackProtectorGuardReg(
1364         getCodeGenOpts().StackProtectorGuardReg);
1365   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1366     getModule().setStackProtectorGuardSymbol(
1367         getCodeGenOpts().StackProtectorGuardSymbol);
1368   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1369     getModule().setStackProtectorGuardOffset(
1370         getCodeGenOpts().StackProtectorGuardOffset);
1371   if (getCodeGenOpts().StackAlignment)
1372     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1373   if (getCodeGenOpts().SkipRaxSetup)
1374     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1375   if (getLangOpts().RegCall4)
1376     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1377 
1378   if (getContext().getTargetInfo().getMaxTLSAlign())
1379     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1380                               getContext().getTargetInfo().getMaxTLSAlign());
1381 
1382   getTargetCodeGenInfo().emitTargetGlobals(*this);
1383 
1384   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1385 
1386   EmitBackendOptionsMetadata(getCodeGenOpts());
1387 
1388   // If there is device offloading code embed it in the host now.
1389   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1390 
1391   // Set visibility from DLL storage class
1392   // We do this at the end of LLVM IR generation; after any operation
1393   // that might affect the DLL storage class or the visibility, and
1394   // before anything that might act on these.
1395   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1396 }
1397 
1398 void CodeGenModule::EmitOpenCLMetadata() {
1399   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1400   // opencl.ocl.version named metadata node.
1401   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
1402   auto Version = LangOpts.getOpenCLCompatibleVersion();
1403   llvm::Metadata *OCLVerElts[] = {
1404       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1405           Int32Ty, Version / 100)),
1406       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1407           Int32Ty, (Version % 100) / 10))};
1408   llvm::NamedMDNode *OCLVerMD =
1409       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
1410   llvm::LLVMContext &Ctx = TheModule.getContext();
1411   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1412 }
1413 
1414 void CodeGenModule::EmitBackendOptionsMetadata(
1415     const CodeGenOptions &CodeGenOpts) {
1416   if (getTriple().isRISCV()) {
1417     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1418                               CodeGenOpts.SmallDataLimit);
1419   }
1420 }
1421 
1422 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1423   // Make sure that this type is translated.
1424   Types.UpdateCompletedType(TD);
1425 }
1426 
1427 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1428   // Make sure that this type is translated.
1429   Types.RefreshTypeCacheForClass(RD);
1430 }
1431 
1432 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1433   if (!TBAA)
1434     return nullptr;
1435   return TBAA->getTypeInfo(QTy);
1436 }
1437 
1438 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1439   if (!TBAA)
1440     return TBAAAccessInfo();
1441   if (getLangOpts().CUDAIsDevice) {
1442     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1443     // access info.
1444     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1445       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1446           nullptr)
1447         return TBAAAccessInfo();
1448     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1449       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1450           nullptr)
1451         return TBAAAccessInfo();
1452     }
1453   }
1454   return TBAA->getAccessInfo(AccessType);
1455 }
1456 
1457 TBAAAccessInfo
1458 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1459   if (!TBAA)
1460     return TBAAAccessInfo();
1461   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1462 }
1463 
1464 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1465   if (!TBAA)
1466     return nullptr;
1467   return TBAA->getTBAAStructInfo(QTy);
1468 }
1469 
1470 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1471   if (!TBAA)
1472     return nullptr;
1473   return TBAA->getBaseTypeInfo(QTy);
1474 }
1475 
1476 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1477   if (!TBAA)
1478     return nullptr;
1479   return TBAA->getAccessTagInfo(Info);
1480 }
1481 
1482 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1483                                                    TBAAAccessInfo TargetInfo) {
1484   if (!TBAA)
1485     return TBAAAccessInfo();
1486   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1487 }
1488 
1489 TBAAAccessInfo
1490 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1491                                                    TBAAAccessInfo InfoB) {
1492   if (!TBAA)
1493     return TBAAAccessInfo();
1494   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1495 }
1496 
1497 TBAAAccessInfo
1498 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1499                                               TBAAAccessInfo SrcInfo) {
1500   if (!TBAA)
1501     return TBAAAccessInfo();
1502   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1503 }
1504 
1505 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1506                                                 TBAAAccessInfo TBAAInfo) {
1507   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1508     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1509 }
1510 
1511 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1512     llvm::Instruction *I, const CXXRecordDecl *RD) {
1513   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1514                  llvm::MDNode::get(getLLVMContext(), {}));
1515 }
1516 
1517 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1518   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1519   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1520 }
1521 
1522 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1523 /// specified stmt yet.
1524 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1525   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1526                                                "cannot compile this %0 yet");
1527   std::string Msg = Type;
1528   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1529       << Msg << S->getSourceRange();
1530 }
1531 
1532 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1533 /// specified decl yet.
1534 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1535   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1536                                                "cannot compile this %0 yet");
1537   std::string Msg = Type;
1538   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1539 }
1540 
1541 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1542   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1543 }
1544 
1545 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1546                                         const NamedDecl *D) const {
1547   // Internal definitions always have default visibility.
1548   if (GV->hasLocalLinkage()) {
1549     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1550     return;
1551   }
1552   if (!D)
1553     return;
1554 
1555   // Set visibility for definitions, and for declarations if requested globally
1556   // or set explicitly.
1557   LinkageInfo LV = D->getLinkageAndVisibility();
1558 
1559   // OpenMP declare target variables must be visible to the host so they can
1560   // be registered. We require protected visibility unless the variable has
1561   // the DT_nohost modifier and does not need to be registered.
1562   if (Context.getLangOpts().OpenMP &&
1563       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1564       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1565       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1566           OMPDeclareTargetDeclAttr::DT_NoHost &&
1567       LV.getVisibility() == HiddenVisibility) {
1568     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1569     return;
1570   }
1571 
1572   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1573     // Reject incompatible dlllstorage and visibility annotations.
1574     if (!LV.isVisibilityExplicit())
1575       return;
1576     if (GV->hasDLLExportStorageClass()) {
1577       if (LV.getVisibility() == HiddenVisibility)
1578         getDiags().Report(D->getLocation(),
1579                           diag::err_hidden_visibility_dllexport);
1580     } else if (LV.getVisibility() != DefaultVisibility) {
1581       getDiags().Report(D->getLocation(),
1582                         diag::err_non_default_visibility_dllimport);
1583     }
1584     return;
1585   }
1586 
1587   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1588       !GV->isDeclarationForLinker())
1589     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1590 }
1591 
1592 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1593                                  llvm::GlobalValue *GV) {
1594   if (GV->hasLocalLinkage())
1595     return true;
1596 
1597   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1598     return true;
1599 
1600   // DLLImport explicitly marks the GV as external.
1601   if (GV->hasDLLImportStorageClass())
1602     return false;
1603 
1604   const llvm::Triple &TT = CGM.getTriple();
1605   const auto &CGOpts = CGM.getCodeGenOpts();
1606   if (TT.isWindowsGNUEnvironment()) {
1607     // In MinGW, variables without DLLImport can still be automatically
1608     // imported from a DLL by the linker; don't mark variables that
1609     // potentially could come from another DLL as DSO local.
1610 
1611     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1612     // (and this actually happens in the public interface of libstdc++), so
1613     // such variables can't be marked as DSO local. (Native TLS variables
1614     // can't be dllimported at all, though.)
1615     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1616         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1617         CGOpts.AutoImport)
1618       return false;
1619   }
1620 
1621   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1622   // remain unresolved in the link, they can be resolved to zero, which is
1623   // outside the current DSO.
1624   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1625     return false;
1626 
1627   // Every other GV is local on COFF.
1628   // Make an exception for windows OS in the triple: Some firmware builds use
1629   // *-win32-macho triples. This (accidentally?) produced windows relocations
1630   // without GOT tables in older clang versions; Keep this behaviour.
1631   // FIXME: even thread local variables?
1632   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1633     return true;
1634 
1635   // Only handle COFF and ELF for now.
1636   if (!TT.isOSBinFormatELF())
1637     return false;
1638 
1639   // If this is not an executable, don't assume anything is local.
1640   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1641   const auto &LOpts = CGM.getLangOpts();
1642   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1643     // On ELF, if -fno-semantic-interposition is specified and the target
1644     // supports local aliases, there will be neither CC1
1645     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1646     // dso_local on the function if using a local alias is preferable (can avoid
1647     // PLT indirection).
1648     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1649       return false;
1650     return !(CGM.getLangOpts().SemanticInterposition ||
1651              CGM.getLangOpts().HalfNoSemanticInterposition);
1652   }
1653 
1654   // A definition cannot be preempted from an executable.
1655   if (!GV->isDeclarationForLinker())
1656     return true;
1657 
1658   // Most PIC code sequences that assume that a symbol is local cannot produce a
1659   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1660   // depended, it seems worth it to handle it here.
1661   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1662     return false;
1663 
1664   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1665   if (TT.isPPC64())
1666     return false;
1667 
1668   if (CGOpts.DirectAccessExternalData) {
1669     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1670     // for non-thread-local variables. If the symbol is not defined in the
1671     // executable, a copy relocation will be needed at link time. dso_local is
1672     // excluded for thread-local variables because they generally don't support
1673     // copy relocations.
1674     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1675       if (!Var->isThreadLocal())
1676         return true;
1677 
1678     // -fno-pic sets dso_local on a function declaration to allow direct
1679     // accesses when taking its address (similar to a data symbol). If the
1680     // function is not defined in the executable, a canonical PLT entry will be
1681     // needed at link time. -fno-direct-access-external-data can avoid the
1682     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1683     // it could just cause trouble without providing perceptible benefits.
1684     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1685       return true;
1686   }
1687 
1688   // If we can use copy relocations we can assume it is local.
1689 
1690   // Otherwise don't assume it is local.
1691   return false;
1692 }
1693 
1694 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1695   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1696 }
1697 
1698 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1699                                           GlobalDecl GD) const {
1700   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1701   // C++ destructors have a few C++ ABI specific special cases.
1702   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1703     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1704     return;
1705   }
1706   setDLLImportDLLExport(GV, D);
1707 }
1708 
1709 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1710                                           const NamedDecl *D) const {
1711   if (D && D->isExternallyVisible()) {
1712     if (D->hasAttr<DLLImportAttr>())
1713       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1714     else if ((D->hasAttr<DLLExportAttr>() ||
1715               shouldMapVisibilityToDLLExport(D)) &&
1716              !GV->isDeclarationForLinker())
1717       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1718   }
1719 }
1720 
1721 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1722                                     GlobalDecl GD) const {
1723   setDLLImportDLLExport(GV, GD);
1724   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1725 }
1726 
1727 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1728                                     const NamedDecl *D) const {
1729   setDLLImportDLLExport(GV, D);
1730   setGVPropertiesAux(GV, D);
1731 }
1732 
1733 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1734                                        const NamedDecl *D) const {
1735   setGlobalVisibility(GV, D);
1736   setDSOLocal(GV);
1737   GV->setPartition(CodeGenOpts.SymbolPartition);
1738 }
1739 
1740 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1741   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1742       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1743       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1744       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1745       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1746 }
1747 
1748 llvm::GlobalVariable::ThreadLocalMode
1749 CodeGenModule::GetDefaultLLVMTLSModel() const {
1750   switch (CodeGenOpts.getDefaultTLSModel()) {
1751   case CodeGenOptions::GeneralDynamicTLSModel:
1752     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1753   case CodeGenOptions::LocalDynamicTLSModel:
1754     return llvm::GlobalVariable::LocalDynamicTLSModel;
1755   case CodeGenOptions::InitialExecTLSModel:
1756     return llvm::GlobalVariable::InitialExecTLSModel;
1757   case CodeGenOptions::LocalExecTLSModel:
1758     return llvm::GlobalVariable::LocalExecTLSModel;
1759   }
1760   llvm_unreachable("Invalid TLS model!");
1761 }
1762 
1763 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1764   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1765 
1766   llvm::GlobalValue::ThreadLocalMode TLM;
1767   TLM = GetDefaultLLVMTLSModel();
1768 
1769   // Override the TLS model if it is explicitly specified.
1770   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1771     TLM = GetLLVMTLSModel(Attr->getModel());
1772   }
1773 
1774   GV->setThreadLocalMode(TLM);
1775 }
1776 
1777 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1778                                           StringRef Name) {
1779   const TargetInfo &Target = CGM.getTarget();
1780   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1781 }
1782 
1783 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1784                                                  const CPUSpecificAttr *Attr,
1785                                                  unsigned CPUIndex,
1786                                                  raw_ostream &Out) {
1787   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1788   // supported.
1789   if (Attr)
1790     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1791   else if (CGM.getTarget().supportsIFunc())
1792     Out << ".resolver";
1793 }
1794 
1795 // Returns true if GD is a function decl with internal linkage and
1796 // needs a unique suffix after the mangled name.
1797 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1798                                         CodeGenModule &CGM) {
1799   const Decl *D = GD.getDecl();
1800   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1801          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1802 }
1803 
1804 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1805                                       const NamedDecl *ND,
1806                                       bool OmitMultiVersionMangling = false) {
1807   SmallString<256> Buffer;
1808   llvm::raw_svector_ostream Out(Buffer);
1809   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1810   if (!CGM.getModuleNameHash().empty())
1811     MC.needsUniqueInternalLinkageNames();
1812   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1813   if (ShouldMangle)
1814     MC.mangleName(GD.getWithDecl(ND), Out);
1815   else {
1816     IdentifierInfo *II = ND->getIdentifier();
1817     assert(II && "Attempt to mangle unnamed decl.");
1818     const auto *FD = dyn_cast<FunctionDecl>(ND);
1819 
1820     if (FD &&
1821         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1822       if (CGM.getLangOpts().RegCall4)
1823         Out << "__regcall4__" << II->getName();
1824       else
1825         Out << "__regcall3__" << II->getName();
1826     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1827                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1828       Out << "__device_stub__" << II->getName();
1829     } else {
1830       Out << II->getName();
1831     }
1832   }
1833 
1834   // Check if the module name hash should be appended for internal linkage
1835   // symbols.   This should come before multi-version target suffixes are
1836   // appended. This is to keep the name and module hash suffix of the
1837   // internal linkage function together.  The unique suffix should only be
1838   // added when name mangling is done to make sure that the final name can
1839   // be properly demangled.  For example, for C functions without prototypes,
1840   // name mangling is not done and the unique suffix should not be appeneded
1841   // then.
1842   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1843     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1844            "Hash computed when not explicitly requested");
1845     Out << CGM.getModuleNameHash();
1846   }
1847 
1848   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1849     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1850       switch (FD->getMultiVersionKind()) {
1851       case MultiVersionKind::CPUDispatch:
1852       case MultiVersionKind::CPUSpecific:
1853         AppendCPUSpecificCPUDispatchMangling(CGM,
1854                                              FD->getAttr<CPUSpecificAttr>(),
1855                                              GD.getMultiVersionIndex(), Out);
1856         break;
1857       case MultiVersionKind::Target: {
1858         auto *Attr = FD->getAttr<TargetAttr>();
1859         assert(Attr && "Expected TargetAttr to be present "
1860                        "for attribute mangling");
1861         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1862         Info.appendAttributeMangling(Attr, Out);
1863         break;
1864       }
1865       case MultiVersionKind::TargetVersion: {
1866         auto *Attr = FD->getAttr<TargetVersionAttr>();
1867         assert(Attr && "Expected TargetVersionAttr to be present "
1868                        "for attribute mangling");
1869         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1870         Info.appendAttributeMangling(Attr, Out);
1871         break;
1872       }
1873       case MultiVersionKind::TargetClones: {
1874         auto *Attr = FD->getAttr<TargetClonesAttr>();
1875         assert(Attr && "Expected TargetClonesAttr to be present "
1876                        "for attribute mangling");
1877         unsigned Index = GD.getMultiVersionIndex();
1878         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1879         Info.appendAttributeMangling(Attr, Index, Out);
1880         break;
1881       }
1882       case MultiVersionKind::None:
1883         llvm_unreachable("None multiversion type isn't valid here");
1884       }
1885     }
1886 
1887   // Make unique name for device side static file-scope variable for HIP.
1888   if (CGM.getContext().shouldExternalize(ND) &&
1889       CGM.getLangOpts().GPURelocatableDeviceCode &&
1890       CGM.getLangOpts().CUDAIsDevice)
1891     CGM.printPostfixForExternalizedDecl(Out, ND);
1892 
1893   return std::string(Out.str());
1894 }
1895 
1896 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1897                                             const FunctionDecl *FD,
1898                                             StringRef &CurName) {
1899   if (!FD->isMultiVersion())
1900     return;
1901 
1902   // Get the name of what this would be without the 'target' attribute.  This
1903   // allows us to lookup the version that was emitted when this wasn't a
1904   // multiversion function.
1905   std::string NonTargetName =
1906       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1907   GlobalDecl OtherGD;
1908   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1909     assert(OtherGD.getCanonicalDecl()
1910                .getDecl()
1911                ->getAsFunction()
1912                ->isMultiVersion() &&
1913            "Other GD should now be a multiversioned function");
1914     // OtherFD is the version of this function that was mangled BEFORE
1915     // becoming a MultiVersion function.  It potentially needs to be updated.
1916     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1917                                       .getDecl()
1918                                       ->getAsFunction()
1919                                       ->getMostRecentDecl();
1920     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1921     // This is so that if the initial version was already the 'default'
1922     // version, we don't try to update it.
1923     if (OtherName != NonTargetName) {
1924       // Remove instead of erase, since others may have stored the StringRef
1925       // to this.
1926       const auto ExistingRecord = Manglings.find(NonTargetName);
1927       if (ExistingRecord != std::end(Manglings))
1928         Manglings.remove(&(*ExistingRecord));
1929       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1930       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1931           Result.first->first();
1932       // If this is the current decl is being created, make sure we update the name.
1933       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1934         CurName = OtherNameRef;
1935       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1936         Entry->setName(OtherName);
1937     }
1938   }
1939 }
1940 
1941 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1942   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1943 
1944   // Some ABIs don't have constructor variants.  Make sure that base and
1945   // complete constructors get mangled the same.
1946   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1947     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1948       CXXCtorType OrigCtorType = GD.getCtorType();
1949       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1950       if (OrigCtorType == Ctor_Base)
1951         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1952     }
1953   }
1954 
1955   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1956   // static device variable depends on whether the variable is referenced by
1957   // a host or device host function. Therefore the mangled name cannot be
1958   // cached.
1959   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1960     auto FoundName = MangledDeclNames.find(CanonicalGD);
1961     if (FoundName != MangledDeclNames.end())
1962       return FoundName->second;
1963   }
1964 
1965   // Keep the first result in the case of a mangling collision.
1966   const auto *ND = cast<NamedDecl>(GD.getDecl());
1967   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1968 
1969   // Ensure either we have different ABIs between host and device compilations,
1970   // says host compilation following MSVC ABI but device compilation follows
1971   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1972   // mangling should be the same after name stubbing. The later checking is
1973   // very important as the device kernel name being mangled in host-compilation
1974   // is used to resolve the device binaries to be executed. Inconsistent naming
1975   // result in undefined behavior. Even though we cannot check that naming
1976   // directly between host- and device-compilations, the host- and
1977   // device-mangling in host compilation could help catching certain ones.
1978   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1979          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1980          (getContext().getAuxTargetInfo() &&
1981           (getContext().getAuxTargetInfo()->getCXXABI() !=
1982            getContext().getTargetInfo().getCXXABI())) ||
1983          getCUDARuntime().getDeviceSideName(ND) ==
1984              getMangledNameImpl(
1985                  *this,
1986                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1987                  ND));
1988 
1989   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1990   return MangledDeclNames[CanonicalGD] = Result.first->first();
1991 }
1992 
1993 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1994                                              const BlockDecl *BD) {
1995   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1996   const Decl *D = GD.getDecl();
1997 
1998   SmallString<256> Buffer;
1999   llvm::raw_svector_ostream Out(Buffer);
2000   if (!D)
2001     MangleCtx.mangleGlobalBlock(BD,
2002       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2003   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2004     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2005   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2006     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2007   else
2008     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2009 
2010   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2011   return Result.first->first();
2012 }
2013 
2014 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2015   auto it = MangledDeclNames.begin();
2016   while (it != MangledDeclNames.end()) {
2017     if (it->second == Name)
2018       return it->first;
2019     it++;
2020   }
2021   return GlobalDecl();
2022 }
2023 
2024 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2025   return getModule().getNamedValue(Name);
2026 }
2027 
2028 /// AddGlobalCtor - Add a function to the list that will be called before
2029 /// main() runs.
2030 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2031                                   unsigned LexOrder,
2032                                   llvm::Constant *AssociatedData) {
2033   // FIXME: Type coercion of void()* types.
2034   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2035 }
2036 
2037 /// AddGlobalDtor - Add a function to the list that will be called
2038 /// when the module is unloaded.
2039 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2040                                   bool IsDtorAttrFunc) {
2041   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2042       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2043     DtorsUsingAtExit[Priority].push_back(Dtor);
2044     return;
2045   }
2046 
2047   // FIXME: Type coercion of void()* types.
2048   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2049 }
2050 
2051 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2052   if (Fns.empty()) return;
2053 
2054   // Ctor function type is void()*.
2055   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
2056   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
2057       TheModule.getDataLayout().getProgramAddressSpace());
2058 
2059   // Get the type of a ctor entry, { i32, void ()*, i8* }.
2060   llvm::StructType *CtorStructTy = llvm::StructType::get(
2061       Int32Ty, CtorPFTy, VoidPtrTy);
2062 
2063   // Construct the constructor and destructor arrays.
2064   ConstantInitBuilder builder(*this);
2065   auto ctors = builder.beginArray(CtorStructTy);
2066   for (const auto &I : Fns) {
2067     auto ctor = ctors.beginStruct(CtorStructTy);
2068     ctor.addInt(Int32Ty, I.Priority);
2069     ctor.add(I.Initializer);
2070     if (I.AssociatedData)
2071       ctor.add(I.AssociatedData);
2072     else
2073       ctor.addNullPointer(VoidPtrTy);
2074     ctor.finishAndAddTo(ctors);
2075   }
2076 
2077   auto list =
2078     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2079                                 /*constant*/ false,
2080                                 llvm::GlobalValue::AppendingLinkage);
2081 
2082   // The LTO linker doesn't seem to like it when we set an alignment
2083   // on appending variables.  Take it off as a workaround.
2084   list->setAlignment(std::nullopt);
2085 
2086   Fns.clear();
2087 }
2088 
2089 llvm::GlobalValue::LinkageTypes
2090 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2091   const auto *D = cast<FunctionDecl>(GD.getDecl());
2092 
2093   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2094 
2095   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2096     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2097 
2098   return getLLVMLinkageForDeclarator(D, Linkage);
2099 }
2100 
2101 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2102   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2103   if (!MDS) return nullptr;
2104 
2105   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2106 }
2107 
2108 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2109   if (auto *FnType = T->getAs<FunctionProtoType>())
2110     T = getContext().getFunctionType(
2111         FnType->getReturnType(), FnType->getParamTypes(),
2112         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2113 
2114   std::string OutName;
2115   llvm::raw_string_ostream Out(OutName);
2116   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2117       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2118 
2119   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2120     Out << ".normalized";
2121 
2122   return llvm::ConstantInt::get(Int32Ty,
2123                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2124 }
2125 
2126 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2127                                               const CGFunctionInfo &Info,
2128                                               llvm::Function *F, bool IsThunk) {
2129   unsigned CallingConv;
2130   llvm::AttributeList PAL;
2131   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2132                          /*AttrOnCallSite=*/false, IsThunk);
2133   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2134       getTarget().getTriple().isWindowsArm64EC()) {
2135     SourceLocation Loc;
2136     if (const Decl *D = GD.getDecl())
2137       Loc = D->getLocation();
2138 
2139     Error(Loc, "__vectorcall calling convention is not currently supported");
2140   }
2141   F->setAttributes(PAL);
2142   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2143 }
2144 
2145 static void removeImageAccessQualifier(std::string& TyName) {
2146   std::string ReadOnlyQual("__read_only");
2147   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2148   if (ReadOnlyPos != std::string::npos)
2149     // "+ 1" for the space after access qualifier.
2150     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2151   else {
2152     std::string WriteOnlyQual("__write_only");
2153     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2154     if (WriteOnlyPos != std::string::npos)
2155       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2156     else {
2157       std::string ReadWriteQual("__read_write");
2158       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2159       if (ReadWritePos != std::string::npos)
2160         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2161     }
2162   }
2163 }
2164 
2165 // Returns the address space id that should be produced to the
2166 // kernel_arg_addr_space metadata. This is always fixed to the ids
2167 // as specified in the SPIR 2.0 specification in order to differentiate
2168 // for example in clGetKernelArgInfo() implementation between the address
2169 // spaces with targets without unique mapping to the OpenCL address spaces
2170 // (basically all single AS CPUs).
2171 static unsigned ArgInfoAddressSpace(LangAS AS) {
2172   switch (AS) {
2173   case LangAS::opencl_global:
2174     return 1;
2175   case LangAS::opencl_constant:
2176     return 2;
2177   case LangAS::opencl_local:
2178     return 3;
2179   case LangAS::opencl_generic:
2180     return 4; // Not in SPIR 2.0 specs.
2181   case LangAS::opencl_global_device:
2182     return 5;
2183   case LangAS::opencl_global_host:
2184     return 6;
2185   default:
2186     return 0; // Assume private.
2187   }
2188 }
2189 
2190 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2191                                          const FunctionDecl *FD,
2192                                          CodeGenFunction *CGF) {
2193   assert(((FD && CGF) || (!FD && !CGF)) &&
2194          "Incorrect use - FD and CGF should either be both null or not!");
2195   // Create MDNodes that represent the kernel arg metadata.
2196   // Each MDNode is a list in the form of "key", N number of values which is
2197   // the same number of values as their are kernel arguments.
2198 
2199   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2200 
2201   // MDNode for the kernel argument address space qualifiers.
2202   SmallVector<llvm::Metadata *, 8> addressQuals;
2203 
2204   // MDNode for the kernel argument access qualifiers (images only).
2205   SmallVector<llvm::Metadata *, 8> accessQuals;
2206 
2207   // MDNode for the kernel argument type names.
2208   SmallVector<llvm::Metadata *, 8> argTypeNames;
2209 
2210   // MDNode for the kernel argument base type names.
2211   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2212 
2213   // MDNode for the kernel argument type qualifiers.
2214   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2215 
2216   // MDNode for the kernel argument names.
2217   SmallVector<llvm::Metadata *, 8> argNames;
2218 
2219   if (FD && CGF)
2220     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2221       const ParmVarDecl *parm = FD->getParamDecl(i);
2222       // Get argument name.
2223       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2224 
2225       if (!getLangOpts().OpenCL)
2226         continue;
2227       QualType ty = parm->getType();
2228       std::string typeQuals;
2229 
2230       // Get image and pipe access qualifier:
2231       if (ty->isImageType() || ty->isPipeType()) {
2232         const Decl *PDecl = parm;
2233         if (const auto *TD = ty->getAs<TypedefType>())
2234           PDecl = TD->getDecl();
2235         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2236         if (A && A->isWriteOnly())
2237           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2238         else if (A && A->isReadWrite())
2239           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2240         else
2241           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2242       } else
2243         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2244 
2245       auto getTypeSpelling = [&](QualType Ty) {
2246         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2247 
2248         if (Ty.isCanonical()) {
2249           StringRef typeNameRef = typeName;
2250           // Turn "unsigned type" to "utype"
2251           if (typeNameRef.consume_front("unsigned "))
2252             return std::string("u") + typeNameRef.str();
2253           if (typeNameRef.consume_front("signed "))
2254             return typeNameRef.str();
2255         }
2256 
2257         return typeName;
2258       };
2259 
2260       if (ty->isPointerType()) {
2261         QualType pointeeTy = ty->getPointeeType();
2262 
2263         // Get address qualifier.
2264         addressQuals.push_back(
2265             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2266                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2267 
2268         // Get argument type name.
2269         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2270         std::string baseTypeName =
2271             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2272         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2273         argBaseTypeNames.push_back(
2274             llvm::MDString::get(VMContext, baseTypeName));
2275 
2276         // Get argument type qualifiers:
2277         if (ty.isRestrictQualified())
2278           typeQuals = "restrict";
2279         if (pointeeTy.isConstQualified() ||
2280             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2281           typeQuals += typeQuals.empty() ? "const" : " const";
2282         if (pointeeTy.isVolatileQualified())
2283           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2284       } else {
2285         uint32_t AddrSpc = 0;
2286         bool isPipe = ty->isPipeType();
2287         if (ty->isImageType() || isPipe)
2288           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2289 
2290         addressQuals.push_back(
2291             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2292 
2293         // Get argument type name.
2294         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2295         std::string typeName = getTypeSpelling(ty);
2296         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2297 
2298         // Remove access qualifiers on images
2299         // (as they are inseparable from type in clang implementation,
2300         // but OpenCL spec provides a special query to get access qualifier
2301         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2302         if (ty->isImageType()) {
2303           removeImageAccessQualifier(typeName);
2304           removeImageAccessQualifier(baseTypeName);
2305         }
2306 
2307         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2308         argBaseTypeNames.push_back(
2309             llvm::MDString::get(VMContext, baseTypeName));
2310 
2311         if (isPipe)
2312           typeQuals = "pipe";
2313       }
2314       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2315     }
2316 
2317   if (getLangOpts().OpenCL) {
2318     Fn->setMetadata("kernel_arg_addr_space",
2319                     llvm::MDNode::get(VMContext, addressQuals));
2320     Fn->setMetadata("kernel_arg_access_qual",
2321                     llvm::MDNode::get(VMContext, accessQuals));
2322     Fn->setMetadata("kernel_arg_type",
2323                     llvm::MDNode::get(VMContext, argTypeNames));
2324     Fn->setMetadata("kernel_arg_base_type",
2325                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2326     Fn->setMetadata("kernel_arg_type_qual",
2327                     llvm::MDNode::get(VMContext, argTypeQuals));
2328   }
2329   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2330       getCodeGenOpts().HIPSaveKernelArgName)
2331     Fn->setMetadata("kernel_arg_name",
2332                     llvm::MDNode::get(VMContext, argNames));
2333 }
2334 
2335 /// Determines whether the language options require us to model
2336 /// unwind exceptions.  We treat -fexceptions as mandating this
2337 /// except under the fragile ObjC ABI with only ObjC exceptions
2338 /// enabled.  This means, for example, that C with -fexceptions
2339 /// enables this.
2340 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2341   // If exceptions are completely disabled, obviously this is false.
2342   if (!LangOpts.Exceptions) return false;
2343 
2344   // If C++ exceptions are enabled, this is true.
2345   if (LangOpts.CXXExceptions) return true;
2346 
2347   // If ObjC exceptions are enabled, this depends on the ABI.
2348   if (LangOpts.ObjCExceptions) {
2349     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2350   }
2351 
2352   return true;
2353 }
2354 
2355 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2356                                                       const CXXMethodDecl *MD) {
2357   // Check that the type metadata can ever actually be used by a call.
2358   if (!CGM.getCodeGenOpts().LTOUnit ||
2359       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2360     return false;
2361 
2362   // Only functions whose address can be taken with a member function pointer
2363   // need this sort of type metadata.
2364   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2365          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2366 }
2367 
2368 SmallVector<const CXXRecordDecl *, 0>
2369 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2370   llvm::SetVector<const CXXRecordDecl *> MostBases;
2371 
2372   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2373   CollectMostBases = [&](const CXXRecordDecl *RD) {
2374     if (RD->getNumBases() == 0)
2375       MostBases.insert(RD);
2376     for (const CXXBaseSpecifier &B : RD->bases())
2377       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2378   };
2379   CollectMostBases(RD);
2380   return MostBases.takeVector();
2381 }
2382 
2383 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2384                                                            llvm::Function *F) {
2385   llvm::AttrBuilder B(F->getContext());
2386 
2387   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2388     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2389 
2390   if (CodeGenOpts.StackClashProtector)
2391     B.addAttribute("probe-stack", "inline-asm");
2392 
2393   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2394     B.addAttribute("stack-probe-size",
2395                    std::to_string(CodeGenOpts.StackProbeSize));
2396 
2397   if (!hasUnwindExceptions(LangOpts))
2398     B.addAttribute(llvm::Attribute::NoUnwind);
2399 
2400   if (D && D->hasAttr<NoStackProtectorAttr>())
2401     ; // Do nothing.
2402   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2403            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2404     B.addAttribute(llvm::Attribute::StackProtectStrong);
2405   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2406     B.addAttribute(llvm::Attribute::StackProtect);
2407   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2408     B.addAttribute(llvm::Attribute::StackProtectStrong);
2409   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2410     B.addAttribute(llvm::Attribute::StackProtectReq);
2411 
2412   if (!D) {
2413     // If we don't have a declaration to control inlining, the function isn't
2414     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2415     // disabled, mark the function as noinline.
2416     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2417         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2418       B.addAttribute(llvm::Attribute::NoInline);
2419 
2420     F->addFnAttrs(B);
2421     return;
2422   }
2423 
2424   // Handle SME attributes that apply to function definitions,
2425   // rather than to function prototypes.
2426   if (D->hasAttr<ArmLocallyStreamingAttr>())
2427     B.addAttribute("aarch64_pstate_sm_body");
2428 
2429   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2430     if (Attr->isNewZA())
2431       B.addAttribute("aarch64_new_za");
2432     if (Attr->isNewZT0())
2433       B.addAttribute("aarch64_new_zt0");
2434   }
2435 
2436   // Track whether we need to add the optnone LLVM attribute,
2437   // starting with the default for this optimization level.
2438   bool ShouldAddOptNone =
2439       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2440   // We can't add optnone in the following cases, it won't pass the verifier.
2441   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2442   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2443 
2444   // Add optnone, but do so only if the function isn't always_inline.
2445   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2446       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2447     B.addAttribute(llvm::Attribute::OptimizeNone);
2448 
2449     // OptimizeNone implies noinline; we should not be inlining such functions.
2450     B.addAttribute(llvm::Attribute::NoInline);
2451 
2452     // We still need to handle naked functions even though optnone subsumes
2453     // much of their semantics.
2454     if (D->hasAttr<NakedAttr>())
2455       B.addAttribute(llvm::Attribute::Naked);
2456 
2457     // OptimizeNone wins over OptimizeForSize and MinSize.
2458     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2459     F->removeFnAttr(llvm::Attribute::MinSize);
2460   } else if (D->hasAttr<NakedAttr>()) {
2461     // Naked implies noinline: we should not be inlining such functions.
2462     B.addAttribute(llvm::Attribute::Naked);
2463     B.addAttribute(llvm::Attribute::NoInline);
2464   } else if (D->hasAttr<NoDuplicateAttr>()) {
2465     B.addAttribute(llvm::Attribute::NoDuplicate);
2466   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2467     // Add noinline if the function isn't always_inline.
2468     B.addAttribute(llvm::Attribute::NoInline);
2469   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2470              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2471     // (noinline wins over always_inline, and we can't specify both in IR)
2472     B.addAttribute(llvm::Attribute::AlwaysInline);
2473   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2474     // If we're not inlining, then force everything that isn't always_inline to
2475     // carry an explicit noinline attribute.
2476     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2477       B.addAttribute(llvm::Attribute::NoInline);
2478   } else {
2479     // Otherwise, propagate the inline hint attribute and potentially use its
2480     // absence to mark things as noinline.
2481     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2482       // Search function and template pattern redeclarations for inline.
2483       auto CheckForInline = [](const FunctionDecl *FD) {
2484         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2485           return Redecl->isInlineSpecified();
2486         };
2487         if (any_of(FD->redecls(), CheckRedeclForInline))
2488           return true;
2489         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2490         if (!Pattern)
2491           return false;
2492         return any_of(Pattern->redecls(), CheckRedeclForInline);
2493       };
2494       if (CheckForInline(FD)) {
2495         B.addAttribute(llvm::Attribute::InlineHint);
2496       } else if (CodeGenOpts.getInlining() ==
2497                      CodeGenOptions::OnlyHintInlining &&
2498                  !FD->isInlined() &&
2499                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2500         B.addAttribute(llvm::Attribute::NoInline);
2501       }
2502     }
2503   }
2504 
2505   // Add other optimization related attributes if we are optimizing this
2506   // function.
2507   if (!D->hasAttr<OptimizeNoneAttr>()) {
2508     if (D->hasAttr<ColdAttr>()) {
2509       if (!ShouldAddOptNone)
2510         B.addAttribute(llvm::Attribute::OptimizeForSize);
2511       B.addAttribute(llvm::Attribute::Cold);
2512     }
2513     if (D->hasAttr<HotAttr>())
2514       B.addAttribute(llvm::Attribute::Hot);
2515     if (D->hasAttr<MinSizeAttr>())
2516       B.addAttribute(llvm::Attribute::MinSize);
2517   }
2518 
2519   F->addFnAttrs(B);
2520 
2521   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2522   if (alignment)
2523     F->setAlignment(llvm::Align(alignment));
2524 
2525   if (!D->hasAttr<AlignedAttr>())
2526     if (LangOpts.FunctionAlignment)
2527       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2528 
2529   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2530   // reserve a bit for differentiating between virtual and non-virtual member
2531   // functions. If the current target's C++ ABI requires this and this is a
2532   // member function, set its alignment accordingly.
2533   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2534     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2535       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2536   }
2537 
2538   // In the cross-dso CFI mode with canonical jump tables, we want !type
2539   // attributes on definitions only.
2540   if (CodeGenOpts.SanitizeCfiCrossDso &&
2541       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2542     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2543       // Skip available_externally functions. They won't be codegen'ed in the
2544       // current module anyway.
2545       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2546         CreateFunctionTypeMetadataForIcall(FD, F);
2547     }
2548   }
2549 
2550   // Emit type metadata on member functions for member function pointer checks.
2551   // These are only ever necessary on definitions; we're guaranteed that the
2552   // definition will be present in the LTO unit as a result of LTO visibility.
2553   auto *MD = dyn_cast<CXXMethodDecl>(D);
2554   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2555     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2556       llvm::Metadata *Id =
2557           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2558               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2559       F->addTypeMetadata(0, Id);
2560     }
2561   }
2562 }
2563 
2564 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2565   const Decl *D = GD.getDecl();
2566   if (isa_and_nonnull<NamedDecl>(D))
2567     setGVProperties(GV, GD);
2568   else
2569     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2570 
2571   if (D && D->hasAttr<UsedAttr>())
2572     addUsedOrCompilerUsedGlobal(GV);
2573 
2574   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2575       VD &&
2576       ((CodeGenOpts.KeepPersistentStorageVariables &&
2577         (VD->getStorageDuration() == SD_Static ||
2578          VD->getStorageDuration() == SD_Thread)) ||
2579        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2580         VD->getType().isConstQualified())))
2581     addUsedOrCompilerUsedGlobal(GV);
2582 }
2583 
2584 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2585                                                 llvm::AttrBuilder &Attrs,
2586                                                 bool SetTargetFeatures) {
2587   // Add target-cpu and target-features attributes to functions. If
2588   // we have a decl for the function and it has a target attribute then
2589   // parse that and add it to the feature set.
2590   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2591   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2592   std::vector<std::string> Features;
2593   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2594   FD = FD ? FD->getMostRecentDecl() : FD;
2595   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2596   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2597   assert((!TD || !TV) && "both target_version and target specified");
2598   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2599   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2600   bool AddedAttr = false;
2601   if (TD || TV || SD || TC) {
2602     llvm::StringMap<bool> FeatureMap;
2603     getContext().getFunctionFeatureMap(FeatureMap, GD);
2604 
2605     // Produce the canonical string for this set of features.
2606     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2607       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2608 
2609     // Now add the target-cpu and target-features to the function.
2610     // While we populated the feature map above, we still need to
2611     // get and parse the target attribute so we can get the cpu for
2612     // the function.
2613     if (TD) {
2614       ParsedTargetAttr ParsedAttr =
2615           Target.parseTargetAttr(TD->getFeaturesStr());
2616       if (!ParsedAttr.CPU.empty() &&
2617           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2618         TargetCPU = ParsedAttr.CPU;
2619         TuneCPU = ""; // Clear the tune CPU.
2620       }
2621       if (!ParsedAttr.Tune.empty() &&
2622           getTarget().isValidCPUName(ParsedAttr.Tune))
2623         TuneCPU = ParsedAttr.Tune;
2624     }
2625 
2626     if (SD) {
2627       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2628       // favor this processor.
2629       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2630     }
2631   } else {
2632     // Otherwise just add the existing target cpu and target features to the
2633     // function.
2634     Features = getTarget().getTargetOpts().Features;
2635   }
2636 
2637   if (!TargetCPU.empty()) {
2638     Attrs.addAttribute("target-cpu", TargetCPU);
2639     AddedAttr = true;
2640   }
2641   if (!TuneCPU.empty()) {
2642     Attrs.addAttribute("tune-cpu", TuneCPU);
2643     AddedAttr = true;
2644   }
2645   if (!Features.empty() && SetTargetFeatures) {
2646     llvm::erase_if(Features, [&](const std::string& F) {
2647        return getTarget().isReadOnlyFeature(F.substr(1));
2648     });
2649     llvm::sort(Features);
2650     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2651     AddedAttr = true;
2652   }
2653 
2654   return AddedAttr;
2655 }
2656 
2657 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2658                                           llvm::GlobalObject *GO) {
2659   const Decl *D = GD.getDecl();
2660   SetCommonAttributes(GD, GO);
2661 
2662   if (D) {
2663     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2664       if (D->hasAttr<RetainAttr>())
2665         addUsedGlobal(GV);
2666       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2667         GV->addAttribute("bss-section", SA->getName());
2668       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2669         GV->addAttribute("data-section", SA->getName());
2670       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2671         GV->addAttribute("rodata-section", SA->getName());
2672       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2673         GV->addAttribute("relro-section", SA->getName());
2674     }
2675 
2676     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2677       if (D->hasAttr<RetainAttr>())
2678         addUsedGlobal(F);
2679       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2680         if (!D->getAttr<SectionAttr>())
2681           F->setSection(SA->getName());
2682 
2683       llvm::AttrBuilder Attrs(F->getContext());
2684       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2685         // We know that GetCPUAndFeaturesAttributes will always have the
2686         // newest set, since it has the newest possible FunctionDecl, so the
2687         // new ones should replace the old.
2688         llvm::AttributeMask RemoveAttrs;
2689         RemoveAttrs.addAttribute("target-cpu");
2690         RemoveAttrs.addAttribute("target-features");
2691         RemoveAttrs.addAttribute("tune-cpu");
2692         F->removeFnAttrs(RemoveAttrs);
2693         F->addFnAttrs(Attrs);
2694       }
2695     }
2696 
2697     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2698       GO->setSection(CSA->getName());
2699     else if (const auto *SA = D->getAttr<SectionAttr>())
2700       GO->setSection(SA->getName());
2701   }
2702 
2703   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2704 }
2705 
2706 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2707                                                   llvm::Function *F,
2708                                                   const CGFunctionInfo &FI) {
2709   const Decl *D = GD.getDecl();
2710   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2711   SetLLVMFunctionAttributesForDefinition(D, F);
2712 
2713   F->setLinkage(llvm::Function::InternalLinkage);
2714 
2715   setNonAliasAttributes(GD, F);
2716 }
2717 
2718 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2719   // Set linkage and visibility in case we never see a definition.
2720   LinkageInfo LV = ND->getLinkageAndVisibility();
2721   // Don't set internal linkage on declarations.
2722   // "extern_weak" is overloaded in LLVM; we probably should have
2723   // separate linkage types for this.
2724   if (isExternallyVisible(LV.getLinkage()) &&
2725       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2726     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2727 }
2728 
2729 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2730                                                        llvm::Function *F) {
2731   // Only if we are checking indirect calls.
2732   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2733     return;
2734 
2735   // Non-static class methods are handled via vtable or member function pointer
2736   // checks elsewhere.
2737   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2738     return;
2739 
2740   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2741   F->addTypeMetadata(0, MD);
2742   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2743 
2744   // Emit a hash-based bit set entry for cross-DSO calls.
2745   if (CodeGenOpts.SanitizeCfiCrossDso)
2746     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2747       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2748 }
2749 
2750 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2751   llvm::LLVMContext &Ctx = F->getContext();
2752   llvm::MDBuilder MDB(Ctx);
2753   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2754                  llvm::MDNode::get(
2755                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2756 }
2757 
2758 static bool allowKCFIIdentifier(StringRef Name) {
2759   // KCFI type identifier constants are only necessary for external assembly
2760   // functions, which means it's safe to skip unusual names. Subset of
2761   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2762   return llvm::all_of(Name, [](const char &C) {
2763     return llvm::isAlnum(C) || C == '_' || C == '.';
2764   });
2765 }
2766 
2767 void CodeGenModule::finalizeKCFITypes() {
2768   llvm::Module &M = getModule();
2769   for (auto &F : M.functions()) {
2770     // Remove KCFI type metadata from non-address-taken local functions.
2771     bool AddressTaken = F.hasAddressTaken();
2772     if (!AddressTaken && F.hasLocalLinkage())
2773       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2774 
2775     // Generate a constant with the expected KCFI type identifier for all
2776     // address-taken function declarations to support annotating indirectly
2777     // called assembly functions.
2778     if (!AddressTaken || !F.isDeclaration())
2779       continue;
2780 
2781     const llvm::ConstantInt *Type;
2782     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2783       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2784     else
2785       continue;
2786 
2787     StringRef Name = F.getName();
2788     if (!allowKCFIIdentifier(Name))
2789       continue;
2790 
2791     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2792                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2793                           .str();
2794     M.appendModuleInlineAsm(Asm);
2795   }
2796 }
2797 
2798 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2799                                           bool IsIncompleteFunction,
2800                                           bool IsThunk) {
2801 
2802   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2803     // If this is an intrinsic function, set the function's attributes
2804     // to the intrinsic's attributes.
2805     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2806     return;
2807   }
2808 
2809   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2810 
2811   if (!IsIncompleteFunction)
2812     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2813                               IsThunk);
2814 
2815   // Add the Returned attribute for "this", except for iOS 5 and earlier
2816   // where substantial code, including the libstdc++ dylib, was compiled with
2817   // GCC and does not actually return "this".
2818   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2819       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2820     assert(!F->arg_empty() &&
2821            F->arg_begin()->getType()
2822              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2823            "unexpected this return");
2824     F->addParamAttr(0, llvm::Attribute::Returned);
2825   }
2826 
2827   // Only a few attributes are set on declarations; these may later be
2828   // overridden by a definition.
2829 
2830   setLinkageForGV(F, FD);
2831   setGVProperties(F, FD);
2832 
2833   // Setup target-specific attributes.
2834   if (!IsIncompleteFunction && F->isDeclaration())
2835     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2836 
2837   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2838     F->setSection(CSA->getName());
2839   else if (const auto *SA = FD->getAttr<SectionAttr>())
2840      F->setSection(SA->getName());
2841 
2842   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2843     if (EA->isError())
2844       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2845     else if (EA->isWarning())
2846       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2847   }
2848 
2849   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2850   if (FD->isInlineBuiltinDeclaration()) {
2851     const FunctionDecl *FDBody;
2852     bool HasBody = FD->hasBody(FDBody);
2853     (void)HasBody;
2854     assert(HasBody && "Inline builtin declarations should always have an "
2855                       "available body!");
2856     if (shouldEmitFunction(FDBody))
2857       F->addFnAttr(llvm::Attribute::NoBuiltin);
2858   }
2859 
2860   if (FD->isReplaceableGlobalAllocationFunction()) {
2861     // A replaceable global allocation function does not act like a builtin by
2862     // default, only if it is invoked by a new-expression or delete-expression.
2863     F->addFnAttr(llvm::Attribute::NoBuiltin);
2864   }
2865 
2866   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2867     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2868   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2869     if (MD->isVirtual())
2870       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2871 
2872   // Don't emit entries for function declarations in the cross-DSO mode. This
2873   // is handled with better precision by the receiving DSO. But if jump tables
2874   // are non-canonical then we need type metadata in order to produce the local
2875   // jump table.
2876   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2877       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2878     CreateFunctionTypeMetadataForIcall(FD, F);
2879 
2880   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2881     setKCFIType(FD, F);
2882 
2883   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2884     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2885 
2886   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2887     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2888 
2889   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2890     // Annotate the callback behavior as metadata:
2891     //  - The callback callee (as argument number).
2892     //  - The callback payloads (as argument numbers).
2893     llvm::LLVMContext &Ctx = F->getContext();
2894     llvm::MDBuilder MDB(Ctx);
2895 
2896     // The payload indices are all but the first one in the encoding. The first
2897     // identifies the callback callee.
2898     int CalleeIdx = *CB->encoding_begin();
2899     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2900     F->addMetadata(llvm::LLVMContext::MD_callback,
2901                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2902                                                CalleeIdx, PayloadIndices,
2903                                                /* VarArgsArePassed */ false)}));
2904   }
2905 }
2906 
2907 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2908   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2909          "Only globals with definition can force usage.");
2910   LLVMUsed.emplace_back(GV);
2911 }
2912 
2913 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2914   assert(!GV->isDeclaration() &&
2915          "Only globals with definition can force usage.");
2916   LLVMCompilerUsed.emplace_back(GV);
2917 }
2918 
2919 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2920   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2921          "Only globals with definition can force usage.");
2922   if (getTriple().isOSBinFormatELF())
2923     LLVMCompilerUsed.emplace_back(GV);
2924   else
2925     LLVMUsed.emplace_back(GV);
2926 }
2927 
2928 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2929                      std::vector<llvm::WeakTrackingVH> &List) {
2930   // Don't create llvm.used if there is no need.
2931   if (List.empty())
2932     return;
2933 
2934   // Convert List to what ConstantArray needs.
2935   SmallVector<llvm::Constant*, 8> UsedArray;
2936   UsedArray.resize(List.size());
2937   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2938     UsedArray[i] =
2939         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2940             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2941   }
2942 
2943   if (UsedArray.empty())
2944     return;
2945   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2946 
2947   auto *GV = new llvm::GlobalVariable(
2948       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2949       llvm::ConstantArray::get(ATy, UsedArray), Name);
2950 
2951   GV->setSection("llvm.metadata");
2952 }
2953 
2954 void CodeGenModule::emitLLVMUsed() {
2955   emitUsed(*this, "llvm.used", LLVMUsed);
2956   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2957 }
2958 
2959 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2960   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2961   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2962 }
2963 
2964 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2965   llvm::SmallString<32> Opt;
2966   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2967   if (Opt.empty())
2968     return;
2969   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2970   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2971 }
2972 
2973 void CodeGenModule::AddDependentLib(StringRef Lib) {
2974   auto &C = getLLVMContext();
2975   if (getTarget().getTriple().isOSBinFormatELF()) {
2976       ELFDependentLibraries.push_back(
2977         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2978     return;
2979   }
2980 
2981   llvm::SmallString<24> Opt;
2982   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2983   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2984   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2985 }
2986 
2987 /// Add link options implied by the given module, including modules
2988 /// it depends on, using a postorder walk.
2989 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2990                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2991                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2992   // Import this module's parent.
2993   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2994     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2995   }
2996 
2997   // Import this module's dependencies.
2998   for (Module *Import : llvm::reverse(Mod->Imports)) {
2999     if (Visited.insert(Import).second)
3000       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3001   }
3002 
3003   // Add linker options to link against the libraries/frameworks
3004   // described by this module.
3005   llvm::LLVMContext &Context = CGM.getLLVMContext();
3006   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3007 
3008   // For modules that use export_as for linking, use that module
3009   // name instead.
3010   if (Mod->UseExportAsModuleLinkName)
3011     return;
3012 
3013   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3014     // Link against a framework.  Frameworks are currently Darwin only, so we
3015     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3016     if (LL.IsFramework) {
3017       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3018                                  llvm::MDString::get(Context, LL.Library)};
3019 
3020       Metadata.push_back(llvm::MDNode::get(Context, Args));
3021       continue;
3022     }
3023 
3024     // Link against a library.
3025     if (IsELF) {
3026       llvm::Metadata *Args[2] = {
3027           llvm::MDString::get(Context, "lib"),
3028           llvm::MDString::get(Context, LL.Library),
3029       };
3030       Metadata.push_back(llvm::MDNode::get(Context, Args));
3031     } else {
3032       llvm::SmallString<24> Opt;
3033       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3034       auto *OptString = llvm::MDString::get(Context, Opt);
3035       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3036     }
3037   }
3038 }
3039 
3040 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3041   assert(Primary->isNamedModuleUnit() &&
3042          "We should only emit module initializers for named modules.");
3043 
3044   // Emit the initializers in the order that sub-modules appear in the
3045   // source, first Global Module Fragments, if present.
3046   if (auto GMF = Primary->getGlobalModuleFragment()) {
3047     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3048       if (isa<ImportDecl>(D))
3049         continue;
3050       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3051       EmitTopLevelDecl(D);
3052     }
3053   }
3054   // Second any associated with the module, itself.
3055   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3056     // Skip import decls, the inits for those are called explicitly.
3057     if (isa<ImportDecl>(D))
3058       continue;
3059     EmitTopLevelDecl(D);
3060   }
3061   // Third any associated with the Privat eMOdule Fragment, if present.
3062   if (auto PMF = Primary->getPrivateModuleFragment()) {
3063     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3064       // Skip import decls, the inits for those are called explicitly.
3065       if (isa<ImportDecl>(D))
3066         continue;
3067       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3068       EmitTopLevelDecl(D);
3069     }
3070   }
3071 }
3072 
3073 void CodeGenModule::EmitModuleLinkOptions() {
3074   // Collect the set of all of the modules we want to visit to emit link
3075   // options, which is essentially the imported modules and all of their
3076   // non-explicit child modules.
3077   llvm::SetVector<clang::Module *> LinkModules;
3078   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3079   SmallVector<clang::Module *, 16> Stack;
3080 
3081   // Seed the stack with imported modules.
3082   for (Module *M : ImportedModules) {
3083     // Do not add any link flags when an implementation TU of a module imports
3084     // a header of that same module.
3085     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3086         !getLangOpts().isCompilingModule())
3087       continue;
3088     if (Visited.insert(M).second)
3089       Stack.push_back(M);
3090   }
3091 
3092   // Find all of the modules to import, making a little effort to prune
3093   // non-leaf modules.
3094   while (!Stack.empty()) {
3095     clang::Module *Mod = Stack.pop_back_val();
3096 
3097     bool AnyChildren = false;
3098 
3099     // Visit the submodules of this module.
3100     for (const auto &SM : Mod->submodules()) {
3101       // Skip explicit children; they need to be explicitly imported to be
3102       // linked against.
3103       if (SM->IsExplicit)
3104         continue;
3105 
3106       if (Visited.insert(SM).second) {
3107         Stack.push_back(SM);
3108         AnyChildren = true;
3109       }
3110     }
3111 
3112     // We didn't find any children, so add this module to the list of
3113     // modules to link against.
3114     if (!AnyChildren) {
3115       LinkModules.insert(Mod);
3116     }
3117   }
3118 
3119   // Add link options for all of the imported modules in reverse topological
3120   // order.  We don't do anything to try to order import link flags with respect
3121   // to linker options inserted by things like #pragma comment().
3122   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3123   Visited.clear();
3124   for (Module *M : LinkModules)
3125     if (Visited.insert(M).second)
3126       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3127   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3128   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3129 
3130   // Add the linker options metadata flag.
3131   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3132   for (auto *MD : LinkerOptionsMetadata)
3133     NMD->addOperand(MD);
3134 }
3135 
3136 void CodeGenModule::EmitDeferred() {
3137   // Emit deferred declare target declarations.
3138   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3139     getOpenMPRuntime().emitDeferredTargetDecls();
3140 
3141   // Emit code for any potentially referenced deferred decls.  Since a
3142   // previously unused static decl may become used during the generation of code
3143   // for a static function, iterate until no changes are made.
3144 
3145   if (!DeferredVTables.empty()) {
3146     EmitDeferredVTables();
3147 
3148     // Emitting a vtable doesn't directly cause more vtables to
3149     // become deferred, although it can cause functions to be
3150     // emitted that then need those vtables.
3151     assert(DeferredVTables.empty());
3152   }
3153 
3154   // Emit CUDA/HIP static device variables referenced by host code only.
3155   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3156   // needed for further handling.
3157   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3158     llvm::append_range(DeferredDeclsToEmit,
3159                        getContext().CUDADeviceVarODRUsedByHost);
3160 
3161   // Stop if we're out of both deferred vtables and deferred declarations.
3162   if (DeferredDeclsToEmit.empty())
3163     return;
3164 
3165   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3166   // work, it will not interfere with this.
3167   std::vector<GlobalDecl> CurDeclsToEmit;
3168   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3169 
3170   for (GlobalDecl &D : CurDeclsToEmit) {
3171     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3172     // to get GlobalValue with exactly the type we need, not something that
3173     // might had been created for another decl with the same mangled name but
3174     // different type.
3175     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3176         GetAddrOfGlobal(D, ForDefinition));
3177 
3178     // In case of different address spaces, we may still get a cast, even with
3179     // IsForDefinition equal to true. Query mangled names table to get
3180     // GlobalValue.
3181     if (!GV)
3182       GV = GetGlobalValue(getMangledName(D));
3183 
3184     // Make sure GetGlobalValue returned non-null.
3185     assert(GV);
3186 
3187     // Check to see if we've already emitted this.  This is necessary
3188     // for a couple of reasons: first, decls can end up in the
3189     // deferred-decls queue multiple times, and second, decls can end
3190     // up with definitions in unusual ways (e.g. by an extern inline
3191     // function acquiring a strong function redefinition).  Just
3192     // ignore these cases.
3193     if (!GV->isDeclaration())
3194       continue;
3195 
3196     // If this is OpenMP, check if it is legal to emit this global normally.
3197     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3198       continue;
3199 
3200     // Otherwise, emit the definition and move on to the next one.
3201     EmitGlobalDefinition(D, GV);
3202 
3203     // If we found out that we need to emit more decls, do that recursively.
3204     // This has the advantage that the decls are emitted in a DFS and related
3205     // ones are close together, which is convenient for testing.
3206     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3207       EmitDeferred();
3208       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3209     }
3210   }
3211 }
3212 
3213 void CodeGenModule::EmitVTablesOpportunistically() {
3214   // Try to emit external vtables as available_externally if they have emitted
3215   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3216   // is not allowed to create new references to things that need to be emitted
3217   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3218 
3219   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3220          && "Only emit opportunistic vtables with optimizations");
3221 
3222   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3223     assert(getVTables().isVTableExternal(RD) &&
3224            "This queue should only contain external vtables");
3225     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3226       VTables.GenerateClassData(RD);
3227   }
3228   OpportunisticVTables.clear();
3229 }
3230 
3231 void CodeGenModule::EmitGlobalAnnotations() {
3232   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3233     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3234     if (GV)
3235       AddGlobalAnnotations(VD, GV);
3236   }
3237   DeferredAnnotations.clear();
3238 
3239   if (Annotations.empty())
3240     return;
3241 
3242   // Create a new global variable for the ConstantStruct in the Module.
3243   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3244     Annotations[0]->getType(), Annotations.size()), Annotations);
3245   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3246                                       llvm::GlobalValue::AppendingLinkage,
3247                                       Array, "llvm.global.annotations");
3248   gv->setSection(AnnotationSection);
3249 }
3250 
3251 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3252   llvm::Constant *&AStr = AnnotationStrings[Str];
3253   if (AStr)
3254     return AStr;
3255 
3256   // Not found yet, create a new global.
3257   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3258   auto *gv = new llvm::GlobalVariable(
3259       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3260       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3261       ConstGlobalsPtrTy->getAddressSpace());
3262   gv->setSection(AnnotationSection);
3263   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3264   AStr = gv;
3265   return gv;
3266 }
3267 
3268 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3269   SourceManager &SM = getContext().getSourceManager();
3270   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3271   if (PLoc.isValid())
3272     return EmitAnnotationString(PLoc.getFilename());
3273   return EmitAnnotationString(SM.getBufferName(Loc));
3274 }
3275 
3276 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3277   SourceManager &SM = getContext().getSourceManager();
3278   PresumedLoc PLoc = SM.getPresumedLoc(L);
3279   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3280     SM.getExpansionLineNumber(L);
3281   return llvm::ConstantInt::get(Int32Ty, LineNo);
3282 }
3283 
3284 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3285   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3286   if (Exprs.empty())
3287     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3288 
3289   llvm::FoldingSetNodeID ID;
3290   for (Expr *E : Exprs) {
3291     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3292   }
3293   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3294   if (Lookup)
3295     return Lookup;
3296 
3297   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3298   LLVMArgs.reserve(Exprs.size());
3299   ConstantEmitter ConstEmiter(*this);
3300   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3301     const auto *CE = cast<clang::ConstantExpr>(E);
3302     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3303                                     CE->getType());
3304   });
3305   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3306   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3307                                       llvm::GlobalValue::PrivateLinkage, Struct,
3308                                       ".args");
3309   GV->setSection(AnnotationSection);
3310   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3311 
3312   Lookup = GV;
3313   return GV;
3314 }
3315 
3316 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3317                                                 const AnnotateAttr *AA,
3318                                                 SourceLocation L) {
3319   // Get the globals for file name, annotation, and the line number.
3320   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3321                  *UnitGV = EmitAnnotationUnit(L),
3322                  *LineNoCst = EmitAnnotationLineNo(L),
3323                  *Args = EmitAnnotationArgs(AA);
3324 
3325   llvm::Constant *GVInGlobalsAS = GV;
3326   if (GV->getAddressSpace() !=
3327       getDataLayout().getDefaultGlobalsAddressSpace()) {
3328     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3329         GV,
3330         llvm::PointerType::get(
3331             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3332   }
3333 
3334   // Create the ConstantStruct for the global annotation.
3335   llvm::Constant *Fields[] = {
3336       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3337   };
3338   return llvm::ConstantStruct::getAnon(Fields);
3339 }
3340 
3341 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3342                                          llvm::GlobalValue *GV) {
3343   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3344   // Get the struct elements for these annotations.
3345   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3346     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3347 }
3348 
3349 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3350                                        SourceLocation Loc) const {
3351   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3352   // NoSanitize by function name.
3353   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3354     return true;
3355   // NoSanitize by location. Check "mainfile" prefix.
3356   auto &SM = Context.getSourceManager();
3357   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3358   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3359     return true;
3360 
3361   // Check "src" prefix.
3362   if (Loc.isValid())
3363     return NoSanitizeL.containsLocation(Kind, Loc);
3364   // If location is unknown, this may be a compiler-generated function. Assume
3365   // it's located in the main file.
3366   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3367 }
3368 
3369 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3370                                        llvm::GlobalVariable *GV,
3371                                        SourceLocation Loc, QualType Ty,
3372                                        StringRef Category) const {
3373   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3374   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3375     return true;
3376   auto &SM = Context.getSourceManager();
3377   if (NoSanitizeL.containsMainFile(
3378           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3379           Category))
3380     return true;
3381   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3382     return true;
3383 
3384   // Check global type.
3385   if (!Ty.isNull()) {
3386     // Drill down the array types: if global variable of a fixed type is
3387     // not sanitized, we also don't instrument arrays of them.
3388     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3389       Ty = AT->getElementType();
3390     Ty = Ty.getCanonicalType().getUnqualifiedType();
3391     // Only record types (classes, structs etc.) are ignored.
3392     if (Ty->isRecordType()) {
3393       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3394       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3395         return true;
3396     }
3397   }
3398   return false;
3399 }
3400 
3401 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3402                                    StringRef Category) const {
3403   const auto &XRayFilter = getContext().getXRayFilter();
3404   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3405   auto Attr = ImbueAttr::NONE;
3406   if (Loc.isValid())
3407     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3408   if (Attr == ImbueAttr::NONE)
3409     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3410   switch (Attr) {
3411   case ImbueAttr::NONE:
3412     return false;
3413   case ImbueAttr::ALWAYS:
3414     Fn->addFnAttr("function-instrument", "xray-always");
3415     break;
3416   case ImbueAttr::ALWAYS_ARG1:
3417     Fn->addFnAttr("function-instrument", "xray-always");
3418     Fn->addFnAttr("xray-log-args", "1");
3419     break;
3420   case ImbueAttr::NEVER:
3421     Fn->addFnAttr("function-instrument", "xray-never");
3422     break;
3423   }
3424   return true;
3425 }
3426 
3427 ProfileList::ExclusionType
3428 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3429                                               SourceLocation Loc) const {
3430   const auto &ProfileList = getContext().getProfileList();
3431   // If the profile list is empty, then instrument everything.
3432   if (ProfileList.isEmpty())
3433     return ProfileList::Allow;
3434   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3435   // First, check the function name.
3436   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3437     return *V;
3438   // Next, check the source location.
3439   if (Loc.isValid())
3440     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3441       return *V;
3442   // If location is unknown, this may be a compiler-generated function. Assume
3443   // it's located in the main file.
3444   auto &SM = Context.getSourceManager();
3445   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3446     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3447       return *V;
3448   return ProfileList.getDefault(Kind);
3449 }
3450 
3451 ProfileList::ExclusionType
3452 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3453                                                  SourceLocation Loc) const {
3454   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3455   if (V != ProfileList::Allow)
3456     return V;
3457 
3458   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3459   if (NumGroups > 1) {
3460     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3461     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3462       return ProfileList::Skip;
3463   }
3464   return ProfileList::Allow;
3465 }
3466 
3467 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3468   // Never defer when EmitAllDecls is specified.
3469   if (LangOpts.EmitAllDecls)
3470     return true;
3471 
3472   const auto *VD = dyn_cast<VarDecl>(Global);
3473   if (VD &&
3474       ((CodeGenOpts.KeepPersistentStorageVariables &&
3475         (VD->getStorageDuration() == SD_Static ||
3476          VD->getStorageDuration() == SD_Thread)) ||
3477        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3478         VD->getType().isConstQualified())))
3479     return true;
3480 
3481   return getContext().DeclMustBeEmitted(Global);
3482 }
3483 
3484 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3485   // In OpenMP 5.0 variables and function may be marked as
3486   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3487   // that they must be emitted on the host/device. To be sure we need to have
3488   // seen a declare target with an explicit mentioning of the function, we know
3489   // we have if the level of the declare target attribute is -1. Note that we
3490   // check somewhere else if we should emit this at all.
3491   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3492     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3493         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3494     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3495       return false;
3496   }
3497 
3498   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3499     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3500       // Implicit template instantiations may change linkage if they are later
3501       // explicitly instantiated, so they should not be emitted eagerly.
3502       return false;
3503     // Defer until all versions have been semantically checked.
3504     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3505       return false;
3506   }
3507   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3508     if (Context.getInlineVariableDefinitionKind(VD) ==
3509         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3510       // A definition of an inline constexpr static data member may change
3511       // linkage later if it's redeclared outside the class.
3512       return false;
3513     if (CXX20ModuleInits && VD->getOwningModule() &&
3514         !VD->getOwningModule()->isModuleMapModule()) {
3515       // For CXX20, module-owned initializers need to be deferred, since it is
3516       // not known at this point if they will be run for the current module or
3517       // as part of the initializer for an imported one.
3518       return false;
3519     }
3520   }
3521   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3522   // codegen for global variables, because they may be marked as threadprivate.
3523   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3524       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3525       !Global->getType().isConstantStorage(getContext(), false, false) &&
3526       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3527     return false;
3528 
3529   return true;
3530 }
3531 
3532 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3533   StringRef Name = getMangledName(GD);
3534 
3535   // The UUID descriptor should be pointer aligned.
3536   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3537 
3538   // Look for an existing global.
3539   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3540     return ConstantAddress(GV, GV->getValueType(), Alignment);
3541 
3542   ConstantEmitter Emitter(*this);
3543   llvm::Constant *Init;
3544 
3545   APValue &V = GD->getAsAPValue();
3546   if (!V.isAbsent()) {
3547     // If possible, emit the APValue version of the initializer. In particular,
3548     // this gets the type of the constant right.
3549     Init = Emitter.emitForInitializer(
3550         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3551   } else {
3552     // As a fallback, directly construct the constant.
3553     // FIXME: This may get padding wrong under esoteric struct layout rules.
3554     // MSVC appears to create a complete type 'struct __s_GUID' that it
3555     // presumably uses to represent these constants.
3556     MSGuidDecl::Parts Parts = GD->getParts();
3557     llvm::Constant *Fields[4] = {
3558         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3559         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3560         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3561         llvm::ConstantDataArray::getRaw(
3562             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3563             Int8Ty)};
3564     Init = llvm::ConstantStruct::getAnon(Fields);
3565   }
3566 
3567   auto *GV = new llvm::GlobalVariable(
3568       getModule(), Init->getType(),
3569       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3570   if (supportsCOMDAT())
3571     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3572   setDSOLocal(GV);
3573 
3574   if (!V.isAbsent()) {
3575     Emitter.finalize(GV);
3576     return ConstantAddress(GV, GV->getValueType(), Alignment);
3577   }
3578 
3579   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3580   return ConstantAddress(GV, Ty, Alignment);
3581 }
3582 
3583 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3584     const UnnamedGlobalConstantDecl *GCD) {
3585   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3586 
3587   llvm::GlobalVariable **Entry = nullptr;
3588   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3589   if (*Entry)
3590     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3591 
3592   ConstantEmitter Emitter(*this);
3593   llvm::Constant *Init;
3594 
3595   const APValue &V = GCD->getValue();
3596 
3597   assert(!V.isAbsent());
3598   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3599                                     GCD->getType());
3600 
3601   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3602                                       /*isConstant=*/true,
3603                                       llvm::GlobalValue::PrivateLinkage, Init,
3604                                       ".constant");
3605   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3606   GV->setAlignment(Alignment.getAsAlign());
3607 
3608   Emitter.finalize(GV);
3609 
3610   *Entry = GV;
3611   return ConstantAddress(GV, GV->getValueType(), Alignment);
3612 }
3613 
3614 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3615     const TemplateParamObjectDecl *TPO) {
3616   StringRef Name = getMangledName(TPO);
3617   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3618 
3619   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3620     return ConstantAddress(GV, GV->getValueType(), Alignment);
3621 
3622   ConstantEmitter Emitter(*this);
3623   llvm::Constant *Init = Emitter.emitForInitializer(
3624         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3625 
3626   if (!Init) {
3627     ErrorUnsupported(TPO, "template parameter object");
3628     return ConstantAddress::invalid();
3629   }
3630 
3631   llvm::GlobalValue::LinkageTypes Linkage =
3632       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3633           ? llvm::GlobalValue::LinkOnceODRLinkage
3634           : llvm::GlobalValue::InternalLinkage;
3635   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3636                                       /*isConstant=*/true, Linkage, Init, Name);
3637   setGVProperties(GV, TPO);
3638   if (supportsCOMDAT())
3639     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3640   Emitter.finalize(GV);
3641 
3642     return ConstantAddress(GV, GV->getValueType(), Alignment);
3643 }
3644 
3645 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3646   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3647   assert(AA && "No alias?");
3648 
3649   CharUnits Alignment = getContext().getDeclAlign(VD);
3650   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3651 
3652   // See if there is already something with the target's name in the module.
3653   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3654   if (Entry)
3655     return ConstantAddress(Entry, DeclTy, Alignment);
3656 
3657   llvm::Constant *Aliasee;
3658   if (isa<llvm::FunctionType>(DeclTy))
3659     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3660                                       GlobalDecl(cast<FunctionDecl>(VD)),
3661                                       /*ForVTable=*/false);
3662   else
3663     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3664                                     nullptr);
3665 
3666   auto *F = cast<llvm::GlobalValue>(Aliasee);
3667   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3668   WeakRefReferences.insert(F);
3669 
3670   return ConstantAddress(Aliasee, DeclTy, Alignment);
3671 }
3672 
3673 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3674   if (!D)
3675     return false;
3676   if (auto *A = D->getAttr<AttrT>())
3677     return A->isImplicit();
3678   return D->isImplicit();
3679 }
3680 
3681 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3682   const auto *Global = cast<ValueDecl>(GD.getDecl());
3683 
3684   // Weak references don't produce any output by themselves.
3685   if (Global->hasAttr<WeakRefAttr>())
3686     return;
3687 
3688   // If this is an alias definition (which otherwise looks like a declaration)
3689   // emit it now.
3690   if (Global->hasAttr<AliasAttr>())
3691     return EmitAliasDefinition(GD);
3692 
3693   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3694   if (Global->hasAttr<IFuncAttr>())
3695     return emitIFuncDefinition(GD);
3696 
3697   // If this is a cpu_dispatch multiversion function, emit the resolver.
3698   if (Global->hasAttr<CPUDispatchAttr>())
3699     return emitCPUDispatchDefinition(GD);
3700 
3701   // If this is CUDA, be selective about which declarations we emit.
3702   // Non-constexpr non-lambda implicit host device functions are not emitted
3703   // unless they are used on device side.
3704   if (LangOpts.CUDA) {
3705     if (LangOpts.CUDAIsDevice) {
3706       const auto *FD = dyn_cast<FunctionDecl>(Global);
3707       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3708            (LangOpts.OffloadImplicitHostDeviceTemplates && FD &&
3709             hasImplicitAttr<CUDAHostAttr>(FD) &&
3710             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3711             !isLambdaCallOperator(FD) &&
3712             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3713           !Global->hasAttr<CUDAGlobalAttr>() &&
3714           !Global->hasAttr<CUDAConstantAttr>() &&
3715           !Global->hasAttr<CUDASharedAttr>() &&
3716           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3717           !Global->getType()->isCUDADeviceBuiltinTextureType() &&
3718           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3719             !Global->hasAttr<CUDAHostAttr>()))
3720         return;
3721     } else {
3722       // We need to emit host-side 'shadows' for all global
3723       // device-side variables because the CUDA runtime needs their
3724       // size and host-side address in order to provide access to
3725       // their device-side incarnations.
3726 
3727       // So device-only functions are the only things we skip.
3728       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3729           Global->hasAttr<CUDADeviceAttr>())
3730         return;
3731 
3732       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3733              "Expected Variable or Function");
3734     }
3735   }
3736 
3737   if (LangOpts.OpenMP) {
3738     // If this is OpenMP, check if it is legal to emit this global normally.
3739     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3740       return;
3741     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3742       if (MustBeEmitted(Global))
3743         EmitOMPDeclareReduction(DRD);
3744       return;
3745     }
3746     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3747       if (MustBeEmitted(Global))
3748         EmitOMPDeclareMapper(DMD);
3749       return;
3750     }
3751   }
3752 
3753   // Ignore declarations, they will be emitted on their first use.
3754   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3755     // Update deferred annotations with the latest declaration if the function
3756     // function was already used or defined.
3757     if (FD->hasAttr<AnnotateAttr>()) {
3758       StringRef MangledName = getMangledName(GD);
3759       if (GetGlobalValue(MangledName))
3760         DeferredAnnotations[MangledName] = FD;
3761     }
3762 
3763     // Forward declarations are emitted lazily on first use.
3764     if (!FD->doesThisDeclarationHaveABody()) {
3765       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3766           (!FD->isMultiVersion() ||
3767            !FD->getASTContext().getTargetInfo().getTriple().isAArch64()))
3768         return;
3769 
3770       StringRef MangledName = getMangledName(GD);
3771 
3772       // Compute the function info and LLVM type.
3773       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3774       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3775 
3776       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3777                               /*DontDefer=*/false);
3778       return;
3779     }
3780   } else {
3781     const auto *VD = cast<VarDecl>(Global);
3782     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3783     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3784         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3785       if (LangOpts.OpenMP) {
3786         // Emit declaration of the must-be-emitted declare target variable.
3787         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3788                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3789 
3790           // If this variable has external storage and doesn't require special
3791           // link handling we defer to its canonical definition.
3792           if (VD->hasExternalStorage() &&
3793               Res != OMPDeclareTargetDeclAttr::MT_Link)
3794             return;
3795 
3796           bool UnifiedMemoryEnabled =
3797               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3798           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3799                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3800               !UnifiedMemoryEnabled) {
3801             (void)GetAddrOfGlobalVar(VD);
3802           } else {
3803             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3804                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3805                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3806                      UnifiedMemoryEnabled)) &&
3807                    "Link clause or to clause with unified memory expected.");
3808             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3809           }
3810 
3811           return;
3812         }
3813       }
3814       // If this declaration may have caused an inline variable definition to
3815       // change linkage, make sure that it's emitted.
3816       if (Context.getInlineVariableDefinitionKind(VD) ==
3817           ASTContext::InlineVariableDefinitionKind::Strong)
3818         GetAddrOfGlobalVar(VD);
3819       return;
3820     }
3821   }
3822 
3823   // Defer code generation to first use when possible, e.g. if this is an inline
3824   // function. If the global must always be emitted, do it eagerly if possible
3825   // to benefit from cache locality.
3826   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3827     // Emit the definition if it can't be deferred.
3828     EmitGlobalDefinition(GD);
3829     addEmittedDeferredDecl(GD);
3830     return;
3831   }
3832 
3833   // If we're deferring emission of a C++ variable with an
3834   // initializer, remember the order in which it appeared in the file.
3835   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3836       cast<VarDecl>(Global)->hasInit()) {
3837     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3838     CXXGlobalInits.push_back(nullptr);
3839   }
3840 
3841   StringRef MangledName = getMangledName(GD);
3842   if (GetGlobalValue(MangledName) != nullptr) {
3843     // The value has already been used and should therefore be emitted.
3844     addDeferredDeclToEmit(GD);
3845   } else if (MustBeEmitted(Global)) {
3846     // The value must be emitted, but cannot be emitted eagerly.
3847     assert(!MayBeEmittedEagerly(Global));
3848     addDeferredDeclToEmit(GD);
3849   } else {
3850     // Otherwise, remember that we saw a deferred decl with this name.  The
3851     // first use of the mangled name will cause it to move into
3852     // DeferredDeclsToEmit.
3853     DeferredDecls[MangledName] = GD;
3854   }
3855 }
3856 
3857 // Check if T is a class type with a destructor that's not dllimport.
3858 static bool HasNonDllImportDtor(QualType T) {
3859   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3860     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3861       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3862         return true;
3863 
3864   return false;
3865 }
3866 
3867 namespace {
3868   struct FunctionIsDirectlyRecursive
3869       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3870     const StringRef Name;
3871     const Builtin::Context &BI;
3872     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3873         : Name(N), BI(C) {}
3874 
3875     bool VisitCallExpr(const CallExpr *E) {
3876       const FunctionDecl *FD = E->getDirectCallee();
3877       if (!FD)
3878         return false;
3879       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3880       if (Attr && Name == Attr->getLabel())
3881         return true;
3882       unsigned BuiltinID = FD->getBuiltinID();
3883       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3884         return false;
3885       StringRef BuiltinName = BI.getName(BuiltinID);
3886       if (BuiltinName.starts_with("__builtin_") &&
3887           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3888         return true;
3889       }
3890       return false;
3891     }
3892 
3893     bool VisitStmt(const Stmt *S) {
3894       for (const Stmt *Child : S->children())
3895         if (Child && this->Visit(Child))
3896           return true;
3897       return false;
3898     }
3899   };
3900 
3901   // Make sure we're not referencing non-imported vars or functions.
3902   struct DLLImportFunctionVisitor
3903       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3904     bool SafeToInline = true;
3905 
3906     bool shouldVisitImplicitCode() const { return true; }
3907 
3908     bool VisitVarDecl(VarDecl *VD) {
3909       if (VD->getTLSKind()) {
3910         // A thread-local variable cannot be imported.
3911         SafeToInline = false;
3912         return SafeToInline;
3913       }
3914 
3915       // A variable definition might imply a destructor call.
3916       if (VD->isThisDeclarationADefinition())
3917         SafeToInline = !HasNonDllImportDtor(VD->getType());
3918 
3919       return SafeToInline;
3920     }
3921 
3922     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3923       if (const auto *D = E->getTemporary()->getDestructor())
3924         SafeToInline = D->hasAttr<DLLImportAttr>();
3925       return SafeToInline;
3926     }
3927 
3928     bool VisitDeclRefExpr(DeclRefExpr *E) {
3929       ValueDecl *VD = E->getDecl();
3930       if (isa<FunctionDecl>(VD))
3931         SafeToInline = VD->hasAttr<DLLImportAttr>();
3932       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3933         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3934       return SafeToInline;
3935     }
3936 
3937     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3938       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3939       return SafeToInline;
3940     }
3941 
3942     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3943       CXXMethodDecl *M = E->getMethodDecl();
3944       if (!M) {
3945         // Call through a pointer to member function. This is safe to inline.
3946         SafeToInline = true;
3947       } else {
3948         SafeToInline = M->hasAttr<DLLImportAttr>();
3949       }
3950       return SafeToInline;
3951     }
3952 
3953     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3954       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3955       return SafeToInline;
3956     }
3957 
3958     bool VisitCXXNewExpr(CXXNewExpr *E) {
3959       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3960       return SafeToInline;
3961     }
3962   };
3963 }
3964 
3965 // isTriviallyRecursive - Check if this function calls another
3966 // decl that, because of the asm attribute or the other decl being a builtin,
3967 // ends up pointing to itself.
3968 bool
3969 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3970   StringRef Name;
3971   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3972     // asm labels are a special kind of mangling we have to support.
3973     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3974     if (!Attr)
3975       return false;
3976     Name = Attr->getLabel();
3977   } else {
3978     Name = FD->getName();
3979   }
3980 
3981   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3982   const Stmt *Body = FD->getBody();
3983   return Body ? Walker.Visit(Body) : false;
3984 }
3985 
3986 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3987   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3988     return true;
3989 
3990   const auto *F = cast<FunctionDecl>(GD.getDecl());
3991   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3992     return false;
3993 
3994   // We don't import function bodies from other named module units since that
3995   // behavior may break ABI compatibility of the current unit.
3996   if (const Module *M = F->getOwningModule();
3997       M && M->getTopLevelModule()->isNamedModule() &&
3998       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
3999     // There are practices to mark template member function as always-inline
4000     // and mark the template as extern explicit instantiation but not give
4001     // the definition for member function. So we have to emit the function
4002     // from explicitly instantiation with always-inline.
4003     //
4004     // See https://github.com/llvm/llvm-project/issues/86893 for details.
4005     //
4006     // TODO: Maybe it is better to give it a warning if we call a non-inline
4007     // function from other module units which is marked as always-inline.
4008     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4009       return false;
4010     }
4011   }
4012 
4013   if (F->hasAttr<NoInlineAttr>())
4014     return false;
4015 
4016   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4017     // Check whether it would be safe to inline this dllimport function.
4018     DLLImportFunctionVisitor Visitor;
4019     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4020     if (!Visitor.SafeToInline)
4021       return false;
4022 
4023     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4024       // Implicit destructor invocations aren't captured in the AST, so the
4025       // check above can't see them. Check for them manually here.
4026       for (const Decl *Member : Dtor->getParent()->decls())
4027         if (isa<FieldDecl>(Member))
4028           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4029             return false;
4030       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4031         if (HasNonDllImportDtor(B.getType()))
4032           return false;
4033     }
4034   }
4035 
4036   // Inline builtins declaration must be emitted. They often are fortified
4037   // functions.
4038   if (F->isInlineBuiltinDeclaration())
4039     return true;
4040 
4041   // PR9614. Avoid cases where the source code is lying to us. An available
4042   // externally function should have an equivalent function somewhere else,
4043   // but a function that calls itself through asm label/`__builtin_` trickery is
4044   // clearly not equivalent to the real implementation.
4045   // This happens in glibc's btowc and in some configure checks.
4046   return !isTriviallyRecursive(F);
4047 }
4048 
4049 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4050   return CodeGenOpts.OptimizationLevel > 0;
4051 }
4052 
4053 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4054                                                        llvm::GlobalValue *GV) {
4055   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4056 
4057   if (FD->isCPUSpecificMultiVersion()) {
4058     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4059     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4060       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4061   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4062     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4063       // AArch64 favors the default target version over the clone if any.
4064       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4065           TC->isFirstOfVersion(I))
4066         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4067     // Ensure that the resolver function is also emitted.
4068     GetOrCreateMultiVersionResolver(GD);
4069   } else
4070     EmitGlobalFunctionDefinition(GD, GV);
4071 
4072   // Defer the resolver emission until we can reason whether the TU
4073   // contains a default target version implementation.
4074   if (FD->isTargetVersionMultiVersion())
4075     AddDeferredMultiVersionResolverToEmit(GD);
4076 }
4077 
4078 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4079   const auto *D = cast<ValueDecl>(GD.getDecl());
4080 
4081   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4082                                  Context.getSourceManager(),
4083                                  "Generating code for declaration");
4084 
4085   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4086     // At -O0, don't generate IR for functions with available_externally
4087     // linkage.
4088     if (!shouldEmitFunction(GD))
4089       return;
4090 
4091     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4092       std::string Name;
4093       llvm::raw_string_ostream OS(Name);
4094       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4095                                /*Qualified=*/true);
4096       return Name;
4097     });
4098 
4099     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4100       // Make sure to emit the definition(s) before we emit the thunks.
4101       // This is necessary for the generation of certain thunks.
4102       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4103         ABI->emitCXXStructor(GD);
4104       else if (FD->isMultiVersion())
4105         EmitMultiVersionFunctionDefinition(GD, GV);
4106       else
4107         EmitGlobalFunctionDefinition(GD, GV);
4108 
4109       if (Method->isVirtual())
4110         getVTables().EmitThunks(GD);
4111 
4112       return;
4113     }
4114 
4115     if (FD->isMultiVersion())
4116       return EmitMultiVersionFunctionDefinition(GD, GV);
4117     return EmitGlobalFunctionDefinition(GD, GV);
4118   }
4119 
4120   if (const auto *VD = dyn_cast<VarDecl>(D))
4121     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4122 
4123   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4124 }
4125 
4126 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4127                                                       llvm::Function *NewFn);
4128 
4129 static unsigned
4130 TargetMVPriority(const TargetInfo &TI,
4131                  const CodeGenFunction::MultiVersionResolverOption &RO) {
4132   unsigned Priority = 0;
4133   unsigned NumFeatures = 0;
4134   for (StringRef Feat : RO.Conditions.Features) {
4135     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4136     NumFeatures++;
4137   }
4138 
4139   if (!RO.Conditions.Architecture.empty())
4140     Priority = std::max(
4141         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4142 
4143   Priority += TI.multiVersionFeatureCost() * NumFeatures;
4144 
4145   return Priority;
4146 }
4147 
4148 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4149 // TU can forward declare the function without causing problems.  Particularly
4150 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4151 // work with internal linkage functions, so that the same function name can be
4152 // used with internal linkage in multiple TUs.
4153 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
4154                                                        GlobalDecl GD) {
4155   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4156   if (FD->getFormalLinkage() == Linkage::Internal)
4157     return llvm::GlobalValue::InternalLinkage;
4158   return llvm::GlobalValue::WeakODRLinkage;
4159 }
4160 
4161 static FunctionDecl *createDefaultTargetVersionFrom(const FunctionDecl *FD) {
4162   auto *DeclCtx = const_cast<DeclContext *>(FD->getDeclContext());
4163   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
4164   StorageClass SC = FD->getStorageClass();
4165   DeclarationName Name = FD->getNameInfo().getName();
4166 
4167   FunctionDecl *NewDecl =
4168       FunctionDecl::Create(FD->getASTContext(), DeclCtx, FD->getBeginLoc(),
4169                            FD->getEndLoc(), Name, TInfo->getType(), TInfo, SC);
4170 
4171   NewDecl->setIsMultiVersion();
4172   NewDecl->addAttr(TargetVersionAttr::CreateImplicit(
4173       NewDecl->getASTContext(), "default", NewDecl->getSourceRange()));
4174 
4175   return NewDecl;
4176 }
4177 
4178 void CodeGenModule::emitMultiVersionFunctions() {
4179   std::vector<GlobalDecl> MVFuncsToEmit;
4180   MultiVersionFuncs.swap(MVFuncsToEmit);
4181   for (GlobalDecl GD : MVFuncsToEmit) {
4182     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4183     assert(FD && "Expected a FunctionDecl");
4184 
4185     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4186       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4187       StringRef MangledName = getMangledName(CurGD);
4188       llvm::Constant *Func = GetGlobalValue(MangledName);
4189       if (!Func) {
4190         if (Decl->isDefined()) {
4191           EmitGlobalFunctionDefinition(CurGD, nullptr);
4192           Func = GetGlobalValue(MangledName);
4193         } else {
4194           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4195           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4196           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4197                                    /*DontDefer=*/false, ForDefinition);
4198         }
4199         assert(Func && "This should have just been created");
4200       }
4201       return cast<llvm::Function>(Func);
4202     };
4203 
4204     bool HasDefaultDecl = !FD->isTargetVersionMultiVersion();
4205     bool ShouldEmitResolver =
4206         !getContext().getTargetInfo().getTriple().isAArch64();
4207     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4208 
4209     getContext().forEachMultiversionedFunctionVersion(
4210         FD, [&](const FunctionDecl *CurFD) {
4211           llvm::SmallVector<StringRef, 8> Feats;
4212 
4213           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4214             TA->getAddedFeatures(Feats);
4215             llvm::Function *Func = createFunction(CurFD);
4216             Options.emplace_back(Func, TA->getArchitecture(), Feats);
4217           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4218             bool HasDefaultDef = TVA->isDefaultVersion() &&
4219                                  CurFD->doesThisDeclarationHaveABody();
4220             HasDefaultDecl |= TVA->isDefaultVersion();
4221             ShouldEmitResolver |= (CurFD->isUsed() || HasDefaultDef);
4222             TVA->getFeatures(Feats);
4223             llvm::Function *Func = createFunction(CurFD);
4224             Options.emplace_back(Func, /*Architecture*/ "", Feats);
4225           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4226             ShouldEmitResolver |= CurFD->doesThisDeclarationHaveABody();
4227             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4228               if (!TC->isFirstOfVersion(I))
4229                 continue;
4230 
4231               llvm::Function *Func = createFunction(CurFD, I);
4232               StringRef Architecture;
4233               Feats.clear();
4234               if (getTarget().getTriple().isAArch64())
4235                 TC->getFeatures(Feats, I);
4236               else {
4237                 StringRef Version = TC->getFeatureStr(I);
4238                 if (Version.starts_with("arch="))
4239                   Architecture = Version.drop_front(sizeof("arch=") - 1);
4240                 else if (Version != "default")
4241                   Feats.push_back(Version);
4242               }
4243               Options.emplace_back(Func, Architecture, Feats);
4244             }
4245           } else
4246             llvm_unreachable("unexpected MultiVersionKind");
4247         });
4248 
4249     if (!ShouldEmitResolver)
4250       continue;
4251 
4252     if (!HasDefaultDecl) {
4253       FunctionDecl *NewFD = createDefaultTargetVersionFrom(FD);
4254       llvm::Function *Func = createFunction(NewFD);
4255       llvm::SmallVector<StringRef, 1> Feats;
4256       Options.emplace_back(Func, /*Architecture*/ "", Feats);
4257     }
4258 
4259     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4260     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4261       ResolverConstant = IFunc->getResolver();
4262       if (FD->isTargetClonesMultiVersion() ||
4263           FD->isTargetVersionMultiVersion()) {
4264         std::string MangledName = getMangledNameImpl(
4265             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4266         if (!GetGlobalValue(MangledName + ".ifunc")) {
4267           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4268           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4269           // In prior versions of Clang, the mangling for ifuncs incorrectly
4270           // included an .ifunc suffix. This alias is generated for backward
4271           // compatibility. It is deprecated, and may be removed in the future.
4272           auto *Alias = llvm::GlobalAlias::create(
4273               DeclTy, 0, getMultiversionLinkage(*this, GD),
4274               MangledName + ".ifunc", IFunc, &getModule());
4275           SetCommonAttributes(FD, Alias);
4276         }
4277       }
4278     }
4279     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4280 
4281     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4282 
4283     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4284       ResolverFunc->setComdat(
4285           getModule().getOrInsertComdat(ResolverFunc->getName()));
4286 
4287     const TargetInfo &TI = getTarget();
4288     llvm::stable_sort(
4289         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4290                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4291           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4292         });
4293     CodeGenFunction CGF(*this);
4294     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4295   }
4296 
4297   // Ensure that any additions to the deferred decls list caused by emitting a
4298   // variant are emitted.  This can happen when the variant itself is inline and
4299   // calls a function without linkage.
4300   if (!MVFuncsToEmit.empty())
4301     EmitDeferred();
4302 
4303   // Ensure that any additions to the multiversion funcs list from either the
4304   // deferred decls or the multiversion functions themselves are emitted.
4305   if (!MultiVersionFuncs.empty())
4306     emitMultiVersionFunctions();
4307 }
4308 
4309 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4310   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4311   assert(FD && "Not a FunctionDecl?");
4312   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4313   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4314   assert(DD && "Not a cpu_dispatch Function?");
4315 
4316   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4317   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4318 
4319   StringRef ResolverName = getMangledName(GD);
4320   UpdateMultiVersionNames(GD, FD, ResolverName);
4321 
4322   llvm::Type *ResolverType;
4323   GlobalDecl ResolverGD;
4324   if (getTarget().supportsIFunc()) {
4325     ResolverType = llvm::FunctionType::get(
4326         llvm::PointerType::get(DeclTy,
4327                                getTypes().getTargetAddressSpace(FD->getType())),
4328         false);
4329   }
4330   else {
4331     ResolverType = DeclTy;
4332     ResolverGD = GD;
4333   }
4334 
4335   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4336       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4337   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4338   if (supportsCOMDAT())
4339     ResolverFunc->setComdat(
4340         getModule().getOrInsertComdat(ResolverFunc->getName()));
4341 
4342   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4343   const TargetInfo &Target = getTarget();
4344   unsigned Index = 0;
4345   for (const IdentifierInfo *II : DD->cpus()) {
4346     // Get the name of the target function so we can look it up/create it.
4347     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4348                               getCPUSpecificMangling(*this, II->getName());
4349 
4350     llvm::Constant *Func = GetGlobalValue(MangledName);
4351 
4352     if (!Func) {
4353       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4354       if (ExistingDecl.getDecl() &&
4355           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4356         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4357         Func = GetGlobalValue(MangledName);
4358       } else {
4359         if (!ExistingDecl.getDecl())
4360           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4361 
4362       Func = GetOrCreateLLVMFunction(
4363           MangledName, DeclTy, ExistingDecl,
4364           /*ForVTable=*/false, /*DontDefer=*/true,
4365           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4366       }
4367     }
4368 
4369     llvm::SmallVector<StringRef, 32> Features;
4370     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4371     llvm::transform(Features, Features.begin(),
4372                     [](StringRef Str) { return Str.substr(1); });
4373     llvm::erase_if(Features, [&Target](StringRef Feat) {
4374       return !Target.validateCpuSupports(Feat);
4375     });
4376     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4377     ++Index;
4378   }
4379 
4380   llvm::stable_sort(
4381       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4382                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4383         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4384                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4385       });
4386 
4387   // If the list contains multiple 'default' versions, such as when it contains
4388   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4389   // always run on at least a 'pentium'). We do this by deleting the 'least
4390   // advanced' (read, lowest mangling letter).
4391   while (Options.size() > 1 &&
4392          llvm::all_of(llvm::X86::getCpuSupportsMask(
4393                           (Options.end() - 2)->Conditions.Features),
4394                       [](auto X) { return X == 0; })) {
4395     StringRef LHSName = (Options.end() - 2)->Function->getName();
4396     StringRef RHSName = (Options.end() - 1)->Function->getName();
4397     if (LHSName.compare(RHSName) < 0)
4398       Options.erase(Options.end() - 2);
4399     else
4400       Options.erase(Options.end() - 1);
4401   }
4402 
4403   CodeGenFunction CGF(*this);
4404   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4405 
4406   if (getTarget().supportsIFunc()) {
4407     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4408     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4409 
4410     // Fix up function declarations that were created for cpu_specific before
4411     // cpu_dispatch was known
4412     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4413       assert(cast<llvm::Function>(IFunc)->isDeclaration());
4414       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4415                                            &getModule());
4416       GI->takeName(IFunc);
4417       IFunc->replaceAllUsesWith(GI);
4418       IFunc->eraseFromParent();
4419       IFunc = GI;
4420     }
4421 
4422     std::string AliasName = getMangledNameImpl(
4423         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4424     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4425     if (!AliasFunc) {
4426       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4427                                            &getModule());
4428       SetCommonAttributes(GD, GA);
4429     }
4430   }
4431 }
4432 
4433 /// Adds a declaration to the list of multi version functions if not present.
4434 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4435   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4436   assert(FD && "Not a FunctionDecl?");
4437 
4438   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4439     std::string MangledName =
4440         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4441     if (!DeferredResolversToEmit.insert(MangledName).second)
4442       return;
4443   }
4444   MultiVersionFuncs.push_back(GD);
4445 }
4446 
4447 /// If a dispatcher for the specified mangled name is not in the module, create
4448 /// and return an llvm Function with the specified type.
4449 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4450   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4451   assert(FD && "Not a FunctionDecl?");
4452 
4453   std::string MangledName =
4454       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4455 
4456   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4457   // a separate resolver).
4458   std::string ResolverName = MangledName;
4459   if (getTarget().supportsIFunc()) {
4460     switch (FD->getMultiVersionKind()) {
4461     case MultiVersionKind::None:
4462       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4463     case MultiVersionKind::Target:
4464     case MultiVersionKind::CPUSpecific:
4465     case MultiVersionKind::CPUDispatch:
4466       ResolverName += ".ifunc";
4467       break;
4468     case MultiVersionKind::TargetClones:
4469     case MultiVersionKind::TargetVersion:
4470       break;
4471     }
4472   } else if (FD->isTargetMultiVersion()) {
4473     ResolverName += ".resolver";
4474   }
4475 
4476   // If the resolver has already been created, just return it.
4477   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
4478     return ResolverGV;
4479 
4480   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4481   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4482 
4483   // The resolver needs to be created. For target and target_clones, defer
4484   // creation until the end of the TU.
4485   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4486     AddDeferredMultiVersionResolverToEmit(GD);
4487 
4488   // For cpu_specific, don't create an ifunc yet because we don't know if the
4489   // cpu_dispatch will be emitted in this translation unit.
4490   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4491     llvm::Type *ResolverType = llvm::FunctionType::get(
4492         llvm::PointerType::get(DeclTy,
4493                                getTypes().getTargetAddressSpace(FD->getType())),
4494         false);
4495     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4496         MangledName + ".resolver", ResolverType, GlobalDecl{},
4497         /*ForVTable=*/false);
4498     llvm::GlobalIFunc *GIF =
4499         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4500                                   "", Resolver, &getModule());
4501     GIF->setName(ResolverName);
4502     SetCommonAttributes(FD, GIF);
4503 
4504     return GIF;
4505   }
4506 
4507   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4508       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4509   assert(isa<llvm::GlobalValue>(Resolver) &&
4510          "Resolver should be created for the first time");
4511   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4512   return Resolver;
4513 }
4514 
4515 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4516 /// module, create and return an llvm Function with the specified type. If there
4517 /// is something in the module with the specified name, return it potentially
4518 /// bitcasted to the right type.
4519 ///
4520 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4521 /// to set the attributes on the function when it is first created.
4522 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4523     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4524     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4525     ForDefinition_t IsForDefinition) {
4526   const Decl *D = GD.getDecl();
4527 
4528   // Any attempts to use a MultiVersion function should result in retrieving
4529   // the iFunc instead. Name Mangling will handle the rest of the changes.
4530   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4531     // For the device mark the function as one that should be emitted.
4532     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4533         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4534         !DontDefer && !IsForDefinition) {
4535       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4536         GlobalDecl GDDef;
4537         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4538           GDDef = GlobalDecl(CD, GD.getCtorType());
4539         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4540           GDDef = GlobalDecl(DD, GD.getDtorType());
4541         else
4542           GDDef = GlobalDecl(FDDef);
4543         EmitGlobal(GDDef);
4544       }
4545     }
4546 
4547     if (FD->isMultiVersion()) {
4548       UpdateMultiVersionNames(GD, FD, MangledName);
4549       if (FD->getASTContext().getTargetInfo().getTriple().isAArch64() &&
4550           !FD->isUsed())
4551         AddDeferredMultiVersionResolverToEmit(GD);
4552       else if (!IsForDefinition)
4553         return GetOrCreateMultiVersionResolver(GD);
4554     }
4555   }
4556 
4557   // Lookup the entry, lazily creating it if necessary.
4558   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4559   if (Entry) {
4560     if (WeakRefReferences.erase(Entry)) {
4561       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4562       if (FD && !FD->hasAttr<WeakAttr>())
4563         Entry->setLinkage(llvm::Function::ExternalLinkage);
4564     }
4565 
4566     // Handle dropped DLL attributes.
4567     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4568         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4569       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4570       setDSOLocal(Entry);
4571     }
4572 
4573     // If there are two attempts to define the same mangled name, issue an
4574     // error.
4575     if (IsForDefinition && !Entry->isDeclaration()) {
4576       GlobalDecl OtherGD;
4577       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4578       // to make sure that we issue an error only once.
4579       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4580           (GD.getCanonicalDecl().getDecl() !=
4581            OtherGD.getCanonicalDecl().getDecl()) &&
4582           DiagnosedConflictingDefinitions.insert(GD).second) {
4583         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4584             << MangledName;
4585         getDiags().Report(OtherGD.getDecl()->getLocation(),
4586                           diag::note_previous_definition);
4587       }
4588     }
4589 
4590     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4591         (Entry->getValueType() == Ty)) {
4592       return Entry;
4593     }
4594 
4595     // Make sure the result is of the correct type.
4596     // (If function is requested for a definition, we always need to create a new
4597     // function, not just return a bitcast.)
4598     if (!IsForDefinition)
4599       return Entry;
4600   }
4601 
4602   // This function doesn't have a complete type (for example, the return
4603   // type is an incomplete struct). Use a fake type instead, and make
4604   // sure not to try to set attributes.
4605   bool IsIncompleteFunction = false;
4606 
4607   llvm::FunctionType *FTy;
4608   if (isa<llvm::FunctionType>(Ty)) {
4609     FTy = cast<llvm::FunctionType>(Ty);
4610   } else {
4611     FTy = llvm::FunctionType::get(VoidTy, false);
4612     IsIncompleteFunction = true;
4613   }
4614 
4615   llvm::Function *F =
4616       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4617                              Entry ? StringRef() : MangledName, &getModule());
4618 
4619   // Store the declaration associated with this function so it is potentially
4620   // updated by further declarations or definitions and emitted at the end.
4621   if (D && D->hasAttr<AnnotateAttr>())
4622     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4623 
4624   // If we already created a function with the same mangled name (but different
4625   // type) before, take its name and add it to the list of functions to be
4626   // replaced with F at the end of CodeGen.
4627   //
4628   // This happens if there is a prototype for a function (e.g. "int f()") and
4629   // then a definition of a different type (e.g. "int f(int x)").
4630   if (Entry) {
4631     F->takeName(Entry);
4632 
4633     // This might be an implementation of a function without a prototype, in
4634     // which case, try to do special replacement of calls which match the new
4635     // prototype.  The really key thing here is that we also potentially drop
4636     // arguments from the call site so as to make a direct call, which makes the
4637     // inliner happier and suppresses a number of optimizer warnings (!) about
4638     // dropping arguments.
4639     if (!Entry->use_empty()) {
4640       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4641       Entry->removeDeadConstantUsers();
4642     }
4643 
4644     addGlobalValReplacement(Entry, F);
4645   }
4646 
4647   assert(F->getName() == MangledName && "name was uniqued!");
4648   if (D)
4649     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4650   if (ExtraAttrs.hasFnAttrs()) {
4651     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4652     F->addFnAttrs(B);
4653   }
4654 
4655   if (!DontDefer) {
4656     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4657     // each other bottoming out with the base dtor.  Therefore we emit non-base
4658     // dtors on usage, even if there is no dtor definition in the TU.
4659     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4660         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4661                                            GD.getDtorType()))
4662       addDeferredDeclToEmit(GD);
4663 
4664     // This is the first use or definition of a mangled name.  If there is a
4665     // deferred decl with this name, remember that we need to emit it at the end
4666     // of the file.
4667     auto DDI = DeferredDecls.find(MangledName);
4668     if (DDI != DeferredDecls.end()) {
4669       // Move the potentially referenced deferred decl to the
4670       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4671       // don't need it anymore).
4672       addDeferredDeclToEmit(DDI->second);
4673       DeferredDecls.erase(DDI);
4674 
4675       // Otherwise, there are cases we have to worry about where we're
4676       // using a declaration for which we must emit a definition but where
4677       // we might not find a top-level definition:
4678       //   - member functions defined inline in their classes
4679       //   - friend functions defined inline in some class
4680       //   - special member functions with implicit definitions
4681       // If we ever change our AST traversal to walk into class methods,
4682       // this will be unnecessary.
4683       //
4684       // We also don't emit a definition for a function if it's going to be an
4685       // entry in a vtable, unless it's already marked as used.
4686     } else if (getLangOpts().CPlusPlus && D) {
4687       // Look for a declaration that's lexically in a record.
4688       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4689            FD = FD->getPreviousDecl()) {
4690         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4691           if (FD->doesThisDeclarationHaveABody()) {
4692             addDeferredDeclToEmit(GD.getWithDecl(FD));
4693             break;
4694           }
4695         }
4696       }
4697     }
4698   }
4699 
4700   // Make sure the result is of the requested type.
4701   if (!IsIncompleteFunction) {
4702     assert(F->getFunctionType() == Ty);
4703     return F;
4704   }
4705 
4706   return F;
4707 }
4708 
4709 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4710 /// non-null, then this function will use the specified type if it has to
4711 /// create it (this occurs when we see a definition of the function).
4712 llvm::Constant *
4713 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4714                                  bool DontDefer,
4715                                  ForDefinition_t IsForDefinition) {
4716   // If there was no specific requested type, just convert it now.
4717   if (!Ty) {
4718     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4719     Ty = getTypes().ConvertType(FD->getType());
4720   }
4721 
4722   // Devirtualized destructor calls may come through here instead of via
4723   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4724   // of the complete destructor when necessary.
4725   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4726     if (getTarget().getCXXABI().isMicrosoft() &&
4727         GD.getDtorType() == Dtor_Complete &&
4728         DD->getParent()->getNumVBases() == 0)
4729       GD = GlobalDecl(DD, Dtor_Base);
4730   }
4731 
4732   StringRef MangledName = getMangledName(GD);
4733   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4734                                     /*IsThunk=*/false, llvm::AttributeList(),
4735                                     IsForDefinition);
4736   // Returns kernel handle for HIP kernel stub function.
4737   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4738       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4739     auto *Handle = getCUDARuntime().getKernelHandle(
4740         cast<llvm::Function>(F->stripPointerCasts()), GD);
4741     if (IsForDefinition)
4742       return F;
4743     return Handle;
4744   }
4745   return F;
4746 }
4747 
4748 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4749   llvm::GlobalValue *F =
4750       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4751 
4752   return llvm::NoCFIValue::get(F);
4753 }
4754 
4755 static const FunctionDecl *
4756 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4757   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4758   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4759 
4760   IdentifierInfo &CII = C.Idents.get(Name);
4761   for (const auto *Result : DC->lookup(&CII))
4762     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4763       return FD;
4764 
4765   if (!C.getLangOpts().CPlusPlus)
4766     return nullptr;
4767 
4768   // Demangle the premangled name from getTerminateFn()
4769   IdentifierInfo &CXXII =
4770       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4771           ? C.Idents.get("terminate")
4772           : C.Idents.get(Name);
4773 
4774   for (const auto &N : {"__cxxabiv1", "std"}) {
4775     IdentifierInfo &NS = C.Idents.get(N);
4776     for (const auto *Result : DC->lookup(&NS)) {
4777       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4778       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4779         for (const auto *Result : LSD->lookup(&NS))
4780           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4781             break;
4782 
4783       if (ND)
4784         for (const auto *Result : ND->lookup(&CXXII))
4785           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4786             return FD;
4787     }
4788   }
4789 
4790   return nullptr;
4791 }
4792 
4793 /// CreateRuntimeFunction - Create a new runtime function with the specified
4794 /// type and name.
4795 llvm::FunctionCallee
4796 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4797                                      llvm::AttributeList ExtraAttrs, bool Local,
4798                                      bool AssumeConvergent) {
4799   if (AssumeConvergent) {
4800     ExtraAttrs =
4801         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4802   }
4803 
4804   llvm::Constant *C =
4805       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4806                               /*DontDefer=*/false, /*IsThunk=*/false,
4807                               ExtraAttrs);
4808 
4809   if (auto *F = dyn_cast<llvm::Function>(C)) {
4810     if (F->empty()) {
4811       F->setCallingConv(getRuntimeCC());
4812 
4813       // In Windows Itanium environments, try to mark runtime functions
4814       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4815       // will link their standard library statically or dynamically. Marking
4816       // functions imported when they are not imported can cause linker errors
4817       // and warnings.
4818       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4819           !getCodeGenOpts().LTOVisibilityPublicStd) {
4820         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4821         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4822           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4823           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4824         }
4825       }
4826       setDSOLocal(F);
4827       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4828       // of trying to approximate the attributes using the LLVM function
4829       // signature. This requires revising the API of CreateRuntimeFunction().
4830       markRegisterParameterAttributes(F);
4831     }
4832   }
4833 
4834   return {FTy, C};
4835 }
4836 
4837 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4838 /// create and return an llvm GlobalVariable with the specified type and address
4839 /// space. If there is something in the module with the specified name, return
4840 /// it potentially bitcasted to the right type.
4841 ///
4842 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4843 /// to set the attributes on the global when it is first created.
4844 ///
4845 /// If IsForDefinition is true, it is guaranteed that an actual global with
4846 /// type Ty will be returned, not conversion of a variable with the same
4847 /// mangled name but some other type.
4848 llvm::Constant *
4849 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4850                                      LangAS AddrSpace, const VarDecl *D,
4851                                      ForDefinition_t IsForDefinition) {
4852   // Lookup the entry, lazily creating it if necessary.
4853   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4854   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4855   if (Entry) {
4856     if (WeakRefReferences.erase(Entry)) {
4857       if (D && !D->hasAttr<WeakAttr>())
4858         Entry->setLinkage(llvm::Function::ExternalLinkage);
4859     }
4860 
4861     // Handle dropped DLL attributes.
4862     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4863         !shouldMapVisibilityToDLLExport(D))
4864       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4865 
4866     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4867       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4868 
4869     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4870       return Entry;
4871 
4872     // If there are two attempts to define the same mangled name, issue an
4873     // error.
4874     if (IsForDefinition && !Entry->isDeclaration()) {
4875       GlobalDecl OtherGD;
4876       const VarDecl *OtherD;
4877 
4878       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4879       // to make sure that we issue an error only once.
4880       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4881           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4882           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4883           OtherD->hasInit() &&
4884           DiagnosedConflictingDefinitions.insert(D).second) {
4885         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4886             << MangledName;
4887         getDiags().Report(OtherGD.getDecl()->getLocation(),
4888                           diag::note_previous_definition);
4889       }
4890     }
4891 
4892     // Make sure the result is of the correct type.
4893     if (Entry->getType()->getAddressSpace() != TargetAS)
4894       return llvm::ConstantExpr::getAddrSpaceCast(
4895           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
4896 
4897     // (If global is requested for a definition, we always need to create a new
4898     // global, not just return a bitcast.)
4899     if (!IsForDefinition)
4900       return Entry;
4901   }
4902 
4903   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4904 
4905   auto *GV = new llvm::GlobalVariable(
4906       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4907       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4908       getContext().getTargetAddressSpace(DAddrSpace));
4909 
4910   // If we already created a global with the same mangled name (but different
4911   // type) before, take its name and remove it from its parent.
4912   if (Entry) {
4913     GV->takeName(Entry);
4914 
4915     if (!Entry->use_empty()) {
4916       Entry->replaceAllUsesWith(GV);
4917     }
4918 
4919     Entry->eraseFromParent();
4920   }
4921 
4922   // This is the first use or definition of a mangled name.  If there is a
4923   // deferred decl with this name, remember that we need to emit it at the end
4924   // of the file.
4925   auto DDI = DeferredDecls.find(MangledName);
4926   if (DDI != DeferredDecls.end()) {
4927     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4928     // list, and remove it from DeferredDecls (since we don't need it anymore).
4929     addDeferredDeclToEmit(DDI->second);
4930     DeferredDecls.erase(DDI);
4931   }
4932 
4933   // Handle things which are present even on external declarations.
4934   if (D) {
4935     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4936       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4937 
4938     // FIXME: This code is overly simple and should be merged with other global
4939     // handling.
4940     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
4941 
4942     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4943 
4944     setLinkageForGV(GV, D);
4945 
4946     if (D->getTLSKind()) {
4947       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4948         CXXThreadLocals.push_back(D);
4949       setTLSMode(GV, *D);
4950     }
4951 
4952     setGVProperties(GV, D);
4953 
4954     // If required by the ABI, treat declarations of static data members with
4955     // inline initializers as definitions.
4956     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4957       EmitGlobalVarDefinition(D);
4958     }
4959 
4960     // Emit section information for extern variables.
4961     if (D->hasExternalStorage()) {
4962       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4963         GV->setSection(SA->getName());
4964     }
4965 
4966     // Handle XCore specific ABI requirements.
4967     if (getTriple().getArch() == llvm::Triple::xcore &&
4968         D->getLanguageLinkage() == CLanguageLinkage &&
4969         D->getType().isConstant(Context) &&
4970         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4971       GV->setSection(".cp.rodata");
4972 
4973     // Handle code model attribute
4974     if (const auto *CMA = D->getAttr<CodeModelAttr>())
4975       GV->setCodeModel(CMA->getModel());
4976 
4977     // Check if we a have a const declaration with an initializer, we may be
4978     // able to emit it as available_externally to expose it's value to the
4979     // optimizer.
4980     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4981         D->getType().isConstQualified() && !GV->hasInitializer() &&
4982         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4983       const auto *Record =
4984           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4985       bool HasMutableFields = Record && Record->hasMutableFields();
4986       if (!HasMutableFields) {
4987         const VarDecl *InitDecl;
4988         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4989         if (InitExpr) {
4990           ConstantEmitter emitter(*this);
4991           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4992           if (Init) {
4993             auto *InitType = Init->getType();
4994             if (GV->getValueType() != InitType) {
4995               // The type of the initializer does not match the definition.
4996               // This happens when an initializer has a different type from
4997               // the type of the global (because of padding at the end of a
4998               // structure for instance).
4999               GV->setName(StringRef());
5000               // Make a new global with the correct type, this is now guaranteed
5001               // to work.
5002               auto *NewGV = cast<llvm::GlobalVariable>(
5003                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5004                       ->stripPointerCasts());
5005 
5006               // Erase the old global, since it is no longer used.
5007               GV->eraseFromParent();
5008               GV = NewGV;
5009             } else {
5010               GV->setInitializer(Init);
5011               GV->setConstant(true);
5012               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5013             }
5014             emitter.finalize(GV);
5015           }
5016         }
5017       }
5018     }
5019   }
5020 
5021   if (D &&
5022       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5023     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5024     // External HIP managed variables needed to be recorded for transformation
5025     // in both device and host compilations.
5026     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5027         D->hasExternalStorage())
5028       getCUDARuntime().handleVarRegistration(D, *GV);
5029   }
5030 
5031   if (D)
5032     SanitizerMD->reportGlobal(GV, *D);
5033 
5034   LangAS ExpectedAS =
5035       D ? D->getType().getAddressSpace()
5036         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5037   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5038   if (DAddrSpace != ExpectedAS) {
5039     return getTargetCodeGenInfo().performAddrSpaceCast(
5040         *this, GV, DAddrSpace, ExpectedAS,
5041         llvm::PointerType::get(getLLVMContext(), TargetAS));
5042   }
5043 
5044   return GV;
5045 }
5046 
5047 llvm::Constant *
5048 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5049   const Decl *D = GD.getDecl();
5050 
5051   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5052     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5053                                 /*DontDefer=*/false, IsForDefinition);
5054 
5055   if (isa<CXXMethodDecl>(D)) {
5056     auto FInfo =
5057         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5058     auto Ty = getTypes().GetFunctionType(*FInfo);
5059     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5060                              IsForDefinition);
5061   }
5062 
5063   if (isa<FunctionDecl>(D)) {
5064     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5065     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5066     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5067                              IsForDefinition);
5068   }
5069 
5070   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5071 }
5072 
5073 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5074     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5075     llvm::Align Alignment) {
5076   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5077   llvm::GlobalVariable *OldGV = nullptr;
5078 
5079   if (GV) {
5080     // Check if the variable has the right type.
5081     if (GV->getValueType() == Ty)
5082       return GV;
5083 
5084     // Because C++ name mangling, the only way we can end up with an already
5085     // existing global with the same name is if it has been declared extern "C".
5086     assert(GV->isDeclaration() && "Declaration has wrong type!");
5087     OldGV = GV;
5088   }
5089 
5090   // Create a new variable.
5091   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5092                                 Linkage, nullptr, Name);
5093 
5094   if (OldGV) {
5095     // Replace occurrences of the old variable if needed.
5096     GV->takeName(OldGV);
5097 
5098     if (!OldGV->use_empty()) {
5099       OldGV->replaceAllUsesWith(GV);
5100     }
5101 
5102     OldGV->eraseFromParent();
5103   }
5104 
5105   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5106       !GV->hasAvailableExternallyLinkage())
5107     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5108 
5109   GV->setAlignment(Alignment);
5110 
5111   return GV;
5112 }
5113 
5114 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5115 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5116 /// then it will be created with the specified type instead of whatever the
5117 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5118 /// that an actual global with type Ty will be returned, not conversion of a
5119 /// variable with the same mangled name but some other type.
5120 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5121                                                   llvm::Type *Ty,
5122                                            ForDefinition_t IsForDefinition) {
5123   assert(D->hasGlobalStorage() && "Not a global variable");
5124   QualType ASTTy = D->getType();
5125   if (!Ty)
5126     Ty = getTypes().ConvertTypeForMem(ASTTy);
5127 
5128   StringRef MangledName = getMangledName(D);
5129   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5130                                IsForDefinition);
5131 }
5132 
5133 /// CreateRuntimeVariable - Create a new runtime global variable with the
5134 /// specified type and name.
5135 llvm::Constant *
5136 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5137                                      StringRef Name) {
5138   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5139                                                        : LangAS::Default;
5140   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5141   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5142   return Ret;
5143 }
5144 
5145 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5146   assert(!D->getInit() && "Cannot emit definite definitions here!");
5147 
5148   StringRef MangledName = getMangledName(D);
5149   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5150 
5151   // We already have a definition, not declaration, with the same mangled name.
5152   // Emitting of declaration is not required (and actually overwrites emitted
5153   // definition).
5154   if (GV && !GV->isDeclaration())
5155     return;
5156 
5157   // If we have not seen a reference to this variable yet, place it into the
5158   // deferred declarations table to be emitted if needed later.
5159   if (!MustBeEmitted(D) && !GV) {
5160       DeferredDecls[MangledName] = D;
5161       return;
5162   }
5163 
5164   // The tentative definition is the only definition.
5165   EmitGlobalVarDefinition(D);
5166 }
5167 
5168 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
5169   EmitExternalVarDeclaration(D);
5170 }
5171 
5172 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5173   return Context.toCharUnitsFromBits(
5174       getDataLayout().getTypeStoreSizeInBits(Ty));
5175 }
5176 
5177 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5178   if (LangOpts.OpenCL) {
5179     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5180     assert(AS == LangAS::opencl_global ||
5181            AS == LangAS::opencl_global_device ||
5182            AS == LangAS::opencl_global_host ||
5183            AS == LangAS::opencl_constant ||
5184            AS == LangAS::opencl_local ||
5185            AS >= LangAS::FirstTargetAddressSpace);
5186     return AS;
5187   }
5188 
5189   if (LangOpts.SYCLIsDevice &&
5190       (!D || D->getType().getAddressSpace() == LangAS::Default))
5191     return LangAS::sycl_global;
5192 
5193   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5194     if (D) {
5195       if (D->hasAttr<CUDAConstantAttr>())
5196         return LangAS::cuda_constant;
5197       if (D->hasAttr<CUDASharedAttr>())
5198         return LangAS::cuda_shared;
5199       if (D->hasAttr<CUDADeviceAttr>())
5200         return LangAS::cuda_device;
5201       if (D->getType().isConstQualified())
5202         return LangAS::cuda_constant;
5203     }
5204     return LangAS::cuda_device;
5205   }
5206 
5207   if (LangOpts.OpenMP) {
5208     LangAS AS;
5209     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5210       return AS;
5211   }
5212   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5213 }
5214 
5215 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5216   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5217   if (LangOpts.OpenCL)
5218     return LangAS::opencl_constant;
5219   if (LangOpts.SYCLIsDevice)
5220     return LangAS::sycl_global;
5221   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5222     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5223     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5224     // with OpVariable instructions with Generic storage class which is not
5225     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5226     // UniformConstant storage class is not viable as pointers to it may not be
5227     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5228     return LangAS::cuda_device;
5229   if (auto AS = getTarget().getConstantAddressSpace())
5230     return *AS;
5231   return LangAS::Default;
5232 }
5233 
5234 // In address space agnostic languages, string literals are in default address
5235 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5236 // emitted in constant address space in LLVM IR. To be consistent with other
5237 // parts of AST, string literal global variables in constant address space
5238 // need to be casted to default address space before being put into address
5239 // map and referenced by other part of CodeGen.
5240 // In OpenCL, string literals are in constant address space in AST, therefore
5241 // they should not be casted to default address space.
5242 static llvm::Constant *
5243 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5244                                        llvm::GlobalVariable *GV) {
5245   llvm::Constant *Cast = GV;
5246   if (!CGM.getLangOpts().OpenCL) {
5247     auto AS = CGM.GetGlobalConstantAddressSpace();
5248     if (AS != LangAS::Default)
5249       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5250           CGM, GV, AS, LangAS::Default,
5251           llvm::PointerType::get(
5252               CGM.getLLVMContext(),
5253               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5254   }
5255   return Cast;
5256 }
5257 
5258 template<typename SomeDecl>
5259 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5260                                                llvm::GlobalValue *GV) {
5261   if (!getLangOpts().CPlusPlus)
5262     return;
5263 
5264   // Must have 'used' attribute, or else inline assembly can't rely on
5265   // the name existing.
5266   if (!D->template hasAttr<UsedAttr>())
5267     return;
5268 
5269   // Must have internal linkage and an ordinary name.
5270   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5271     return;
5272 
5273   // Must be in an extern "C" context. Entities declared directly within
5274   // a record are not extern "C" even if the record is in such a context.
5275   const SomeDecl *First = D->getFirstDecl();
5276   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5277     return;
5278 
5279   // OK, this is an internal linkage entity inside an extern "C" linkage
5280   // specification. Make a note of that so we can give it the "expected"
5281   // mangled name if nothing else is using that name.
5282   std::pair<StaticExternCMap::iterator, bool> R =
5283       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5284 
5285   // If we have multiple internal linkage entities with the same name
5286   // in extern "C" regions, none of them gets that name.
5287   if (!R.second)
5288     R.first->second = nullptr;
5289 }
5290 
5291 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5292   if (!CGM.supportsCOMDAT())
5293     return false;
5294 
5295   if (D.hasAttr<SelectAnyAttr>())
5296     return true;
5297 
5298   GVALinkage Linkage;
5299   if (auto *VD = dyn_cast<VarDecl>(&D))
5300     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5301   else
5302     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5303 
5304   switch (Linkage) {
5305   case GVA_Internal:
5306   case GVA_AvailableExternally:
5307   case GVA_StrongExternal:
5308     return false;
5309   case GVA_DiscardableODR:
5310   case GVA_StrongODR:
5311     return true;
5312   }
5313   llvm_unreachable("No such linkage");
5314 }
5315 
5316 bool CodeGenModule::supportsCOMDAT() const {
5317   return getTriple().supportsCOMDAT();
5318 }
5319 
5320 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5321                                           llvm::GlobalObject &GO) {
5322   if (!shouldBeInCOMDAT(*this, D))
5323     return;
5324   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5325 }
5326 
5327 /// Pass IsTentative as true if you want to create a tentative definition.
5328 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5329                                             bool IsTentative) {
5330   // OpenCL global variables of sampler type are translated to function calls,
5331   // therefore no need to be translated.
5332   QualType ASTTy = D->getType();
5333   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5334     return;
5335 
5336   // If this is OpenMP device, check if it is legal to emit this global
5337   // normally.
5338   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5339       OpenMPRuntime->emitTargetGlobalVariable(D))
5340     return;
5341 
5342   llvm::TrackingVH<llvm::Constant> Init;
5343   bool NeedsGlobalCtor = false;
5344   // Whether the definition of the variable is available externally.
5345   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5346   // since this is the job for its original source.
5347   bool IsDefinitionAvailableExternally =
5348       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5349   bool NeedsGlobalDtor =
5350       !IsDefinitionAvailableExternally &&
5351       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5352 
5353   // It is helpless to emit the definition for an available_externally variable
5354   // which can't be marked as const.
5355   // We don't need to check if it needs global ctor or dtor. See the above
5356   // comment for ideas.
5357   if (IsDefinitionAvailableExternally &&
5358       (!D->hasConstantInitialization() ||
5359        // TODO: Update this when we have interface to check constexpr
5360        // destructor.
5361        D->needsDestruction(getContext()) ||
5362        !D->getType().isConstantStorage(getContext(), true, true)))
5363     return;
5364 
5365   const VarDecl *InitDecl;
5366   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5367 
5368   std::optional<ConstantEmitter> emitter;
5369 
5370   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5371   // as part of their declaration."  Sema has already checked for
5372   // error cases, so we just need to set Init to UndefValue.
5373   bool IsCUDASharedVar =
5374       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5375   // Shadows of initialized device-side global variables are also left
5376   // undefined.
5377   // Managed Variables should be initialized on both host side and device side.
5378   bool IsCUDAShadowVar =
5379       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5380       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5381        D->hasAttr<CUDASharedAttr>());
5382   bool IsCUDADeviceShadowVar =
5383       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5384       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5385        D->getType()->isCUDADeviceBuiltinTextureType());
5386   if (getLangOpts().CUDA &&
5387       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5388     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5389   else if (D->hasAttr<LoaderUninitializedAttr>())
5390     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5391   else if (!InitExpr) {
5392     // This is a tentative definition; tentative definitions are
5393     // implicitly initialized with { 0 }.
5394     //
5395     // Note that tentative definitions are only emitted at the end of
5396     // a translation unit, so they should never have incomplete
5397     // type. In addition, EmitTentativeDefinition makes sure that we
5398     // never attempt to emit a tentative definition if a real one
5399     // exists. A use may still exists, however, so we still may need
5400     // to do a RAUW.
5401     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5402     Init = EmitNullConstant(D->getType());
5403   } else {
5404     initializedGlobalDecl = GlobalDecl(D);
5405     emitter.emplace(*this);
5406     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5407     if (!Initializer) {
5408       QualType T = InitExpr->getType();
5409       if (D->getType()->isReferenceType())
5410         T = D->getType();
5411 
5412       if (getLangOpts().CPlusPlus) {
5413         if (InitDecl->hasFlexibleArrayInit(getContext()))
5414           ErrorUnsupported(D, "flexible array initializer");
5415         Init = EmitNullConstant(T);
5416 
5417         if (!IsDefinitionAvailableExternally)
5418           NeedsGlobalCtor = true;
5419       } else {
5420         ErrorUnsupported(D, "static initializer");
5421         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5422       }
5423     } else {
5424       Init = Initializer;
5425       // We don't need an initializer, so remove the entry for the delayed
5426       // initializer position (just in case this entry was delayed) if we
5427       // also don't need to register a destructor.
5428       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5429         DelayedCXXInitPosition.erase(D);
5430 
5431 #ifndef NDEBUG
5432       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5433                           InitDecl->getFlexibleArrayInitChars(getContext());
5434       CharUnits CstSize = CharUnits::fromQuantity(
5435           getDataLayout().getTypeAllocSize(Init->getType()));
5436       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5437 #endif
5438     }
5439   }
5440 
5441   llvm::Type* InitType = Init->getType();
5442   llvm::Constant *Entry =
5443       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5444 
5445   // Strip off pointer casts if we got them.
5446   Entry = Entry->stripPointerCasts();
5447 
5448   // Entry is now either a Function or GlobalVariable.
5449   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5450 
5451   // We have a definition after a declaration with the wrong type.
5452   // We must make a new GlobalVariable* and update everything that used OldGV
5453   // (a declaration or tentative definition) with the new GlobalVariable*
5454   // (which will be a definition).
5455   //
5456   // This happens if there is a prototype for a global (e.g.
5457   // "extern int x[];") and then a definition of a different type (e.g.
5458   // "int x[10];"). This also happens when an initializer has a different type
5459   // from the type of the global (this happens with unions).
5460   if (!GV || GV->getValueType() != InitType ||
5461       GV->getType()->getAddressSpace() !=
5462           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5463 
5464     // Move the old entry aside so that we'll create a new one.
5465     Entry->setName(StringRef());
5466 
5467     // Make a new global with the correct type, this is now guaranteed to work.
5468     GV = cast<llvm::GlobalVariable>(
5469         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5470             ->stripPointerCasts());
5471 
5472     // Replace all uses of the old global with the new global
5473     llvm::Constant *NewPtrForOldDecl =
5474         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5475                                                              Entry->getType());
5476     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5477 
5478     // Erase the old global, since it is no longer used.
5479     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5480   }
5481 
5482   MaybeHandleStaticInExternC(D, GV);
5483 
5484   if (D->hasAttr<AnnotateAttr>())
5485     AddGlobalAnnotations(D, GV);
5486 
5487   // Set the llvm linkage type as appropriate.
5488   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5489 
5490   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5491   // the device. [...]"
5492   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5493   // __device__, declares a variable that: [...]
5494   // Is accessible from all the threads within the grid and from the host
5495   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5496   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5497   if (LangOpts.CUDA) {
5498     if (LangOpts.CUDAIsDevice) {
5499       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5500           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5501            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5502            D->getType()->isCUDADeviceBuiltinTextureType()))
5503         GV->setExternallyInitialized(true);
5504     } else {
5505       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5506     }
5507     getCUDARuntime().handleVarRegistration(D, *GV);
5508   }
5509 
5510   GV->setInitializer(Init);
5511   if (emitter)
5512     emitter->finalize(GV);
5513 
5514   // If it is safe to mark the global 'constant', do so now.
5515   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5516                   D->getType().isConstantStorage(getContext(), true, true));
5517 
5518   // If it is in a read-only section, mark it 'constant'.
5519   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5520     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5521     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5522       GV->setConstant(true);
5523   }
5524 
5525   CharUnits AlignVal = getContext().getDeclAlign(D);
5526   // Check for alignment specifed in an 'omp allocate' directive.
5527   if (std::optional<CharUnits> AlignValFromAllocate =
5528           getOMPAllocateAlignment(D))
5529     AlignVal = *AlignValFromAllocate;
5530   GV->setAlignment(AlignVal.getAsAlign());
5531 
5532   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5533   // function is only defined alongside the variable, not also alongside
5534   // callers. Normally, all accesses to a thread_local go through the
5535   // thread-wrapper in order to ensure initialization has occurred, underlying
5536   // variable will never be used other than the thread-wrapper, so it can be
5537   // converted to internal linkage.
5538   //
5539   // However, if the variable has the 'constinit' attribute, it _can_ be
5540   // referenced directly, without calling the thread-wrapper, so the linkage
5541   // must not be changed.
5542   //
5543   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5544   // weak or linkonce, the de-duplication semantics are important to preserve,
5545   // so we don't change the linkage.
5546   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5547       Linkage == llvm::GlobalValue::ExternalLinkage &&
5548       Context.getTargetInfo().getTriple().isOSDarwin() &&
5549       !D->hasAttr<ConstInitAttr>())
5550     Linkage = llvm::GlobalValue::InternalLinkage;
5551 
5552   GV->setLinkage(Linkage);
5553   if (D->hasAttr<DLLImportAttr>())
5554     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5555   else if (D->hasAttr<DLLExportAttr>())
5556     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5557   else
5558     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5559 
5560   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5561     // common vars aren't constant even if declared const.
5562     GV->setConstant(false);
5563     // Tentative definition of global variables may be initialized with
5564     // non-zero null pointers. In this case they should have weak linkage
5565     // since common linkage must have zero initializer and must not have
5566     // explicit section therefore cannot have non-zero initial value.
5567     if (!GV->getInitializer()->isNullValue())
5568       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5569   }
5570 
5571   setNonAliasAttributes(D, GV);
5572 
5573   if (D->getTLSKind() && !GV->isThreadLocal()) {
5574     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5575       CXXThreadLocals.push_back(D);
5576     setTLSMode(GV, *D);
5577   }
5578 
5579   maybeSetTrivialComdat(*D, *GV);
5580 
5581   // Emit the initializer function if necessary.
5582   if (NeedsGlobalCtor || NeedsGlobalDtor)
5583     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5584 
5585   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5586 
5587   // Emit global variable debug information.
5588   if (CGDebugInfo *DI = getModuleDebugInfo())
5589     if (getCodeGenOpts().hasReducedDebugInfo())
5590       DI->EmitGlobalVariable(GV, D);
5591 }
5592 
5593 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5594   if (CGDebugInfo *DI = getModuleDebugInfo())
5595     if (getCodeGenOpts().hasReducedDebugInfo()) {
5596       QualType ASTTy = D->getType();
5597       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5598       llvm::Constant *GV =
5599           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5600       DI->EmitExternalVariable(
5601           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5602     }
5603 }
5604 
5605 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5606                                       CodeGenModule &CGM, const VarDecl *D,
5607                                       bool NoCommon) {
5608   // Don't give variables common linkage if -fno-common was specified unless it
5609   // was overridden by a NoCommon attribute.
5610   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5611     return true;
5612 
5613   // C11 6.9.2/2:
5614   //   A declaration of an identifier for an object that has file scope without
5615   //   an initializer, and without a storage-class specifier or with the
5616   //   storage-class specifier static, constitutes a tentative definition.
5617   if (D->getInit() || D->hasExternalStorage())
5618     return true;
5619 
5620   // A variable cannot be both common and exist in a section.
5621   if (D->hasAttr<SectionAttr>())
5622     return true;
5623 
5624   // A variable cannot be both common and exist in a section.
5625   // We don't try to determine which is the right section in the front-end.
5626   // If no specialized section name is applicable, it will resort to default.
5627   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5628       D->hasAttr<PragmaClangDataSectionAttr>() ||
5629       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5630       D->hasAttr<PragmaClangRodataSectionAttr>())
5631     return true;
5632 
5633   // Thread local vars aren't considered common linkage.
5634   if (D->getTLSKind())
5635     return true;
5636 
5637   // Tentative definitions marked with WeakImportAttr are true definitions.
5638   if (D->hasAttr<WeakImportAttr>())
5639     return true;
5640 
5641   // A variable cannot be both common and exist in a comdat.
5642   if (shouldBeInCOMDAT(CGM, *D))
5643     return true;
5644 
5645   // Declarations with a required alignment do not have common linkage in MSVC
5646   // mode.
5647   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5648     if (D->hasAttr<AlignedAttr>())
5649       return true;
5650     QualType VarType = D->getType();
5651     if (Context.isAlignmentRequired(VarType))
5652       return true;
5653 
5654     if (const auto *RT = VarType->getAs<RecordType>()) {
5655       const RecordDecl *RD = RT->getDecl();
5656       for (const FieldDecl *FD : RD->fields()) {
5657         if (FD->isBitField())
5658           continue;
5659         if (FD->hasAttr<AlignedAttr>())
5660           return true;
5661         if (Context.isAlignmentRequired(FD->getType()))
5662           return true;
5663       }
5664     }
5665   }
5666 
5667   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5668   // common symbols, so symbols with greater alignment requirements cannot be
5669   // common.
5670   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5671   // alignments for common symbols via the aligncomm directive, so this
5672   // restriction only applies to MSVC environments.
5673   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5674       Context.getTypeAlignIfKnown(D->getType()) >
5675           Context.toBits(CharUnits::fromQuantity(32)))
5676     return true;
5677 
5678   return false;
5679 }
5680 
5681 llvm::GlobalValue::LinkageTypes
5682 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5683                                            GVALinkage Linkage) {
5684   if (Linkage == GVA_Internal)
5685     return llvm::Function::InternalLinkage;
5686 
5687   if (D->hasAttr<WeakAttr>())
5688     return llvm::GlobalVariable::WeakAnyLinkage;
5689 
5690   if (const auto *FD = D->getAsFunction())
5691     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5692       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5693 
5694   // We are guaranteed to have a strong definition somewhere else,
5695   // so we can use available_externally linkage.
5696   if (Linkage == GVA_AvailableExternally)
5697     return llvm::GlobalValue::AvailableExternallyLinkage;
5698 
5699   // Note that Apple's kernel linker doesn't support symbol
5700   // coalescing, so we need to avoid linkonce and weak linkages there.
5701   // Normally, this means we just map to internal, but for explicit
5702   // instantiations we'll map to external.
5703 
5704   // In C++, the compiler has to emit a definition in every translation unit
5705   // that references the function.  We should use linkonce_odr because
5706   // a) if all references in this translation unit are optimized away, we
5707   // don't need to codegen it.  b) if the function persists, it needs to be
5708   // merged with other definitions. c) C++ has the ODR, so we know the
5709   // definition is dependable.
5710   if (Linkage == GVA_DiscardableODR)
5711     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5712                                             : llvm::Function::InternalLinkage;
5713 
5714   // An explicit instantiation of a template has weak linkage, since
5715   // explicit instantiations can occur in multiple translation units
5716   // and must all be equivalent. However, we are not allowed to
5717   // throw away these explicit instantiations.
5718   //
5719   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5720   // so say that CUDA templates are either external (for kernels) or internal.
5721   // This lets llvm perform aggressive inter-procedural optimizations. For
5722   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5723   // therefore we need to follow the normal linkage paradigm.
5724   if (Linkage == GVA_StrongODR) {
5725     if (getLangOpts().AppleKext)
5726       return llvm::Function::ExternalLinkage;
5727     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5728         !getLangOpts().GPURelocatableDeviceCode)
5729       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5730                                           : llvm::Function::InternalLinkage;
5731     return llvm::Function::WeakODRLinkage;
5732   }
5733 
5734   // C++ doesn't have tentative definitions and thus cannot have common
5735   // linkage.
5736   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5737       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5738                                  CodeGenOpts.NoCommon))
5739     return llvm::GlobalVariable::CommonLinkage;
5740 
5741   // selectany symbols are externally visible, so use weak instead of
5742   // linkonce.  MSVC optimizes away references to const selectany globals, so
5743   // all definitions should be the same and ODR linkage should be used.
5744   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5745   if (D->hasAttr<SelectAnyAttr>())
5746     return llvm::GlobalVariable::WeakODRLinkage;
5747 
5748   // Otherwise, we have strong external linkage.
5749   assert(Linkage == GVA_StrongExternal);
5750   return llvm::GlobalVariable::ExternalLinkage;
5751 }
5752 
5753 llvm::GlobalValue::LinkageTypes
5754 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5755   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5756   return getLLVMLinkageForDeclarator(VD, Linkage);
5757 }
5758 
5759 /// Replace the uses of a function that was declared with a non-proto type.
5760 /// We want to silently drop extra arguments from call sites
5761 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5762                                           llvm::Function *newFn) {
5763   // Fast path.
5764   if (old->use_empty())
5765     return;
5766 
5767   llvm::Type *newRetTy = newFn->getReturnType();
5768   SmallVector<llvm::Value *, 4> newArgs;
5769 
5770   SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5771 
5772   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5773        ui != ue; ui++) {
5774     llvm::User *user = ui->getUser();
5775 
5776     // Recognize and replace uses of bitcasts.  Most calls to
5777     // unprototyped functions will use bitcasts.
5778     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5779       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5780         replaceUsesOfNonProtoConstant(bitcast, newFn);
5781       continue;
5782     }
5783 
5784     // Recognize calls to the function.
5785     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5786     if (!callSite)
5787       continue;
5788     if (!callSite->isCallee(&*ui))
5789       continue;
5790 
5791     // If the return types don't match exactly, then we can't
5792     // transform this call unless it's dead.
5793     if (callSite->getType() != newRetTy && !callSite->use_empty())
5794       continue;
5795 
5796     // Get the call site's attribute list.
5797     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5798     llvm::AttributeList oldAttrs = callSite->getAttributes();
5799 
5800     // If the function was passed too few arguments, don't transform.
5801     unsigned newNumArgs = newFn->arg_size();
5802     if (callSite->arg_size() < newNumArgs)
5803       continue;
5804 
5805     // If extra arguments were passed, we silently drop them.
5806     // If any of the types mismatch, we don't transform.
5807     unsigned argNo = 0;
5808     bool dontTransform = false;
5809     for (llvm::Argument &A : newFn->args()) {
5810       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5811         dontTransform = true;
5812         break;
5813       }
5814 
5815       // Add any parameter attributes.
5816       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5817       argNo++;
5818     }
5819     if (dontTransform)
5820       continue;
5821 
5822     // Okay, we can transform this.  Create the new call instruction and copy
5823     // over the required information.
5824     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5825 
5826     // Copy over any operand bundles.
5827     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5828     callSite->getOperandBundlesAsDefs(newBundles);
5829 
5830     llvm::CallBase *newCall;
5831     if (isa<llvm::CallInst>(callSite)) {
5832       newCall =
5833           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5834     } else {
5835       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5836       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5837                                          oldInvoke->getUnwindDest(), newArgs,
5838                                          newBundles, "", callSite);
5839     }
5840     newArgs.clear(); // for the next iteration
5841 
5842     if (!newCall->getType()->isVoidTy())
5843       newCall->takeName(callSite);
5844     newCall->setAttributes(
5845         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5846                                  oldAttrs.getRetAttrs(), newArgAttrs));
5847     newCall->setCallingConv(callSite->getCallingConv());
5848 
5849     // Finally, remove the old call, replacing any uses with the new one.
5850     if (!callSite->use_empty())
5851       callSite->replaceAllUsesWith(newCall);
5852 
5853     // Copy debug location attached to CI.
5854     if (callSite->getDebugLoc())
5855       newCall->setDebugLoc(callSite->getDebugLoc());
5856 
5857     callSitesToBeRemovedFromParent.push_back(callSite);
5858   }
5859 
5860   for (auto *callSite : callSitesToBeRemovedFromParent) {
5861     callSite->eraseFromParent();
5862   }
5863 }
5864 
5865 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5866 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5867 /// existing call uses of the old function in the module, this adjusts them to
5868 /// call the new function directly.
5869 ///
5870 /// This is not just a cleanup: the always_inline pass requires direct calls to
5871 /// functions to be able to inline them.  If there is a bitcast in the way, it
5872 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5873 /// run at -O0.
5874 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5875                                                       llvm::Function *NewFn) {
5876   // If we're redefining a global as a function, don't transform it.
5877   if (!isa<llvm::Function>(Old)) return;
5878 
5879   replaceUsesOfNonProtoConstant(Old, NewFn);
5880 }
5881 
5882 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5883   auto DK = VD->isThisDeclarationADefinition();
5884   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5885     return;
5886 
5887   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5888   // If we have a definition, this might be a deferred decl. If the
5889   // instantiation is explicit, make sure we emit it at the end.
5890   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5891     GetAddrOfGlobalVar(VD);
5892 
5893   EmitTopLevelDecl(VD);
5894 }
5895 
5896 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5897                                                  llvm::GlobalValue *GV) {
5898   const auto *D = cast<FunctionDecl>(GD.getDecl());
5899 
5900   // Compute the function info and LLVM type.
5901   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5902   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5903 
5904   // Get or create the prototype for the function.
5905   if (!GV || (GV->getValueType() != Ty))
5906     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5907                                                    /*DontDefer=*/true,
5908                                                    ForDefinition));
5909 
5910   // Already emitted.
5911   if (!GV->isDeclaration())
5912     return;
5913 
5914   // We need to set linkage and visibility on the function before
5915   // generating code for it because various parts of IR generation
5916   // want to propagate this information down (e.g. to local static
5917   // declarations).
5918   auto *Fn = cast<llvm::Function>(GV);
5919   setFunctionLinkage(GD, Fn);
5920 
5921   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5922   setGVProperties(Fn, GD);
5923 
5924   MaybeHandleStaticInExternC(D, Fn);
5925 
5926   maybeSetTrivialComdat(*D, *Fn);
5927 
5928   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5929 
5930   setNonAliasAttributes(GD, Fn);
5931   SetLLVMFunctionAttributesForDefinition(D, Fn);
5932 
5933   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5934     AddGlobalCtor(Fn, CA->getPriority());
5935   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5936     AddGlobalDtor(Fn, DA->getPriority(), true);
5937   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
5938     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
5939 }
5940 
5941 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5942   const auto *D = cast<ValueDecl>(GD.getDecl());
5943   const AliasAttr *AA = D->getAttr<AliasAttr>();
5944   assert(AA && "Not an alias?");
5945 
5946   StringRef MangledName = getMangledName(GD);
5947 
5948   if (AA->getAliasee() == MangledName) {
5949     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5950     return;
5951   }
5952 
5953   // If there is a definition in the module, then it wins over the alias.
5954   // This is dubious, but allow it to be safe.  Just ignore the alias.
5955   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5956   if (Entry && !Entry->isDeclaration())
5957     return;
5958 
5959   Aliases.push_back(GD);
5960 
5961   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5962 
5963   // Create a reference to the named value.  This ensures that it is emitted
5964   // if a deferred decl.
5965   llvm::Constant *Aliasee;
5966   llvm::GlobalValue::LinkageTypes LT;
5967   if (isa<llvm::FunctionType>(DeclTy)) {
5968     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5969                                       /*ForVTable=*/false);
5970     LT = getFunctionLinkage(GD);
5971   } else {
5972     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5973                                     /*D=*/nullptr);
5974     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5975       LT = getLLVMLinkageVarDefinition(VD);
5976     else
5977       LT = getFunctionLinkage(GD);
5978   }
5979 
5980   // Create the new alias itself, but don't set a name yet.
5981   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5982   auto *GA =
5983       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5984 
5985   if (Entry) {
5986     if (GA->getAliasee() == Entry) {
5987       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5988       return;
5989     }
5990 
5991     assert(Entry->isDeclaration());
5992 
5993     // If there is a declaration in the module, then we had an extern followed
5994     // by the alias, as in:
5995     //   extern int test6();
5996     //   ...
5997     //   int test6() __attribute__((alias("test7")));
5998     //
5999     // Remove it and replace uses of it with the alias.
6000     GA->takeName(Entry);
6001 
6002     Entry->replaceAllUsesWith(GA);
6003     Entry->eraseFromParent();
6004   } else {
6005     GA->setName(MangledName);
6006   }
6007 
6008   // Set attributes which are particular to an alias; this is a
6009   // specialization of the attributes which may be set on a global
6010   // variable/function.
6011   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6012       D->isWeakImported()) {
6013     GA->setLinkage(llvm::Function::WeakAnyLinkage);
6014   }
6015 
6016   if (const auto *VD = dyn_cast<VarDecl>(D))
6017     if (VD->getTLSKind())
6018       setTLSMode(GA, *VD);
6019 
6020   SetCommonAttributes(GD, GA);
6021 
6022   // Emit global alias debug information.
6023   if (isa<VarDecl>(D))
6024     if (CGDebugInfo *DI = getModuleDebugInfo())
6025       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6026 }
6027 
6028 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6029   const auto *D = cast<ValueDecl>(GD.getDecl());
6030   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6031   assert(IFA && "Not an ifunc?");
6032 
6033   StringRef MangledName = getMangledName(GD);
6034 
6035   if (IFA->getResolver() == MangledName) {
6036     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6037     return;
6038   }
6039 
6040   // Report an error if some definition overrides ifunc.
6041   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6042   if (Entry && !Entry->isDeclaration()) {
6043     GlobalDecl OtherGD;
6044     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6045         DiagnosedConflictingDefinitions.insert(GD).second) {
6046       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6047           << MangledName;
6048       Diags.Report(OtherGD.getDecl()->getLocation(),
6049                    diag::note_previous_definition);
6050     }
6051     return;
6052   }
6053 
6054   Aliases.push_back(GD);
6055 
6056   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6057   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
6058   llvm::Constant *Resolver =
6059       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
6060                               /*ForVTable=*/false);
6061   llvm::GlobalIFunc *GIF =
6062       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
6063                                 "", Resolver, &getModule());
6064   if (Entry) {
6065     if (GIF->getResolver() == Entry) {
6066       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6067       return;
6068     }
6069     assert(Entry->isDeclaration());
6070 
6071     // If there is a declaration in the module, then we had an extern followed
6072     // by the ifunc, as in:
6073     //   extern int test();
6074     //   ...
6075     //   int test() __attribute__((ifunc("resolver")));
6076     //
6077     // Remove it and replace uses of it with the ifunc.
6078     GIF->takeName(Entry);
6079 
6080     Entry->replaceAllUsesWith(GIF);
6081     Entry->eraseFromParent();
6082   } else
6083     GIF->setName(MangledName);
6084   if (auto *F = dyn_cast<llvm::Function>(Resolver)) {
6085     F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
6086   }
6087   SetCommonAttributes(GD, GIF);
6088 }
6089 
6090 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6091                                             ArrayRef<llvm::Type*> Tys) {
6092   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
6093                                          Tys);
6094 }
6095 
6096 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6097 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6098                          const StringLiteral *Literal, bool TargetIsLSB,
6099                          bool &IsUTF16, unsigned &StringLength) {
6100   StringRef String = Literal->getString();
6101   unsigned NumBytes = String.size();
6102 
6103   // Check for simple case.
6104   if (!Literal->containsNonAsciiOrNull()) {
6105     StringLength = NumBytes;
6106     return *Map.insert(std::make_pair(String, nullptr)).first;
6107   }
6108 
6109   // Otherwise, convert the UTF8 literals into a string of shorts.
6110   IsUTF16 = true;
6111 
6112   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6113   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6114   llvm::UTF16 *ToPtr = &ToBuf[0];
6115 
6116   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6117                                  ToPtr + NumBytes, llvm::strictConversion);
6118 
6119   // ConvertUTF8toUTF16 returns the length in ToPtr.
6120   StringLength = ToPtr - &ToBuf[0];
6121 
6122   // Add an explicit null.
6123   *ToPtr = 0;
6124   return *Map.insert(std::make_pair(
6125                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6126                                    (StringLength + 1) * 2),
6127                          nullptr)).first;
6128 }
6129 
6130 ConstantAddress
6131 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6132   unsigned StringLength = 0;
6133   bool isUTF16 = false;
6134   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6135       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6136                                getDataLayout().isLittleEndian(), isUTF16,
6137                                StringLength);
6138 
6139   if (auto *C = Entry.second)
6140     return ConstantAddress(
6141         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6142 
6143   const ASTContext &Context = getContext();
6144   const llvm::Triple &Triple = getTriple();
6145 
6146   const auto CFRuntime = getLangOpts().CFRuntime;
6147   const bool IsSwiftABI =
6148       static_cast<unsigned>(CFRuntime) >=
6149       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6150   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6151 
6152   // If we don't already have it, get __CFConstantStringClassReference.
6153   if (!CFConstantStringClassRef) {
6154     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6155     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6156     Ty = llvm::ArrayType::get(Ty, 0);
6157 
6158     switch (CFRuntime) {
6159     default: break;
6160     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6161     case LangOptions::CoreFoundationABI::Swift5_0:
6162       CFConstantStringClassName =
6163           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6164                               : "$s10Foundation19_NSCFConstantStringCN";
6165       Ty = IntPtrTy;
6166       break;
6167     case LangOptions::CoreFoundationABI::Swift4_2:
6168       CFConstantStringClassName =
6169           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6170                               : "$S10Foundation19_NSCFConstantStringCN";
6171       Ty = IntPtrTy;
6172       break;
6173     case LangOptions::CoreFoundationABI::Swift4_1:
6174       CFConstantStringClassName =
6175           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6176                               : "__T010Foundation19_NSCFConstantStringCN";
6177       Ty = IntPtrTy;
6178       break;
6179     }
6180 
6181     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6182 
6183     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6184       llvm::GlobalValue *GV = nullptr;
6185 
6186       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6187         IdentifierInfo &II = Context.Idents.get(GV->getName());
6188         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6189         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6190 
6191         const VarDecl *VD = nullptr;
6192         for (const auto *Result : DC->lookup(&II))
6193           if ((VD = dyn_cast<VarDecl>(Result)))
6194             break;
6195 
6196         if (Triple.isOSBinFormatELF()) {
6197           if (!VD)
6198             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6199         } else {
6200           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6201           if (!VD || !VD->hasAttr<DLLExportAttr>())
6202             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6203           else
6204             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6205         }
6206 
6207         setDSOLocal(GV);
6208       }
6209     }
6210 
6211     // Decay array -> ptr
6212     CFConstantStringClassRef =
6213         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6214   }
6215 
6216   QualType CFTy = Context.getCFConstantStringType();
6217 
6218   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6219 
6220   ConstantInitBuilder Builder(*this);
6221   auto Fields = Builder.beginStruct(STy);
6222 
6223   // Class pointer.
6224   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6225 
6226   // Flags.
6227   if (IsSwiftABI) {
6228     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6229     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6230   } else {
6231     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6232   }
6233 
6234   // String pointer.
6235   llvm::Constant *C = nullptr;
6236   if (isUTF16) {
6237     auto Arr = llvm::ArrayRef(
6238         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6239         Entry.first().size() / 2);
6240     C = llvm::ConstantDataArray::get(VMContext, Arr);
6241   } else {
6242     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6243   }
6244 
6245   // Note: -fwritable-strings doesn't make the backing store strings of
6246   // CFStrings writable.
6247   auto *GV =
6248       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6249                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6250   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6251   // Don't enforce the target's minimum global alignment, since the only use
6252   // of the string is via this class initializer.
6253   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6254                             : Context.getTypeAlignInChars(Context.CharTy);
6255   GV->setAlignment(Align.getAsAlign());
6256 
6257   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6258   // Without it LLVM can merge the string with a non unnamed_addr one during
6259   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6260   if (Triple.isOSBinFormatMachO())
6261     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6262                            : "__TEXT,__cstring,cstring_literals");
6263   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6264   // the static linker to adjust permissions to read-only later on.
6265   else if (Triple.isOSBinFormatELF())
6266     GV->setSection(".rodata");
6267 
6268   // String.
6269   Fields.add(GV);
6270 
6271   // String length.
6272   llvm::IntegerType *LengthTy =
6273       llvm::IntegerType::get(getModule().getContext(),
6274                              Context.getTargetInfo().getLongWidth());
6275   if (IsSwiftABI) {
6276     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6277         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6278       LengthTy = Int32Ty;
6279     else
6280       LengthTy = IntPtrTy;
6281   }
6282   Fields.addInt(LengthTy, StringLength);
6283 
6284   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6285   // properly aligned on 32-bit platforms.
6286   CharUnits Alignment =
6287       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6288 
6289   // The struct.
6290   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6291                                     /*isConstant=*/false,
6292                                     llvm::GlobalVariable::PrivateLinkage);
6293   GV->addAttribute("objc_arc_inert");
6294   switch (Triple.getObjectFormat()) {
6295   case llvm::Triple::UnknownObjectFormat:
6296     llvm_unreachable("unknown file format");
6297   case llvm::Triple::DXContainer:
6298   case llvm::Triple::GOFF:
6299   case llvm::Triple::SPIRV:
6300   case llvm::Triple::XCOFF:
6301     llvm_unreachable("unimplemented");
6302   case llvm::Triple::COFF:
6303   case llvm::Triple::ELF:
6304   case llvm::Triple::Wasm:
6305     GV->setSection("cfstring");
6306     break;
6307   case llvm::Triple::MachO:
6308     GV->setSection("__DATA,__cfstring");
6309     break;
6310   }
6311   Entry.second = GV;
6312 
6313   return ConstantAddress(GV, GV->getValueType(), Alignment);
6314 }
6315 
6316 bool CodeGenModule::getExpressionLocationsEnabled() const {
6317   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6318 }
6319 
6320 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6321   if (ObjCFastEnumerationStateType.isNull()) {
6322     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6323     D->startDefinition();
6324 
6325     QualType FieldTypes[] = {
6326         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6327         Context.getPointerType(Context.UnsignedLongTy),
6328         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6329                                      nullptr, ArraySizeModifier::Normal, 0)};
6330 
6331     for (size_t i = 0; i < 4; ++i) {
6332       FieldDecl *Field = FieldDecl::Create(Context,
6333                                            D,
6334                                            SourceLocation(),
6335                                            SourceLocation(), nullptr,
6336                                            FieldTypes[i], /*TInfo=*/nullptr,
6337                                            /*BitWidth=*/nullptr,
6338                                            /*Mutable=*/false,
6339                                            ICIS_NoInit);
6340       Field->setAccess(AS_public);
6341       D->addDecl(Field);
6342     }
6343 
6344     D->completeDefinition();
6345     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6346   }
6347 
6348   return ObjCFastEnumerationStateType;
6349 }
6350 
6351 llvm::Constant *
6352 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6353   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6354 
6355   // Don't emit it as the address of the string, emit the string data itself
6356   // as an inline array.
6357   if (E->getCharByteWidth() == 1) {
6358     SmallString<64> Str(E->getString());
6359 
6360     // Resize the string to the right size, which is indicated by its type.
6361     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6362     assert(CAT && "String literal not of constant array type!");
6363     Str.resize(CAT->getZExtSize());
6364     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6365   }
6366 
6367   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6368   llvm::Type *ElemTy = AType->getElementType();
6369   unsigned NumElements = AType->getNumElements();
6370 
6371   // Wide strings have either 2-byte or 4-byte elements.
6372   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6373     SmallVector<uint16_t, 32> Elements;
6374     Elements.reserve(NumElements);
6375 
6376     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6377       Elements.push_back(E->getCodeUnit(i));
6378     Elements.resize(NumElements);
6379     return llvm::ConstantDataArray::get(VMContext, Elements);
6380   }
6381 
6382   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6383   SmallVector<uint32_t, 32> Elements;
6384   Elements.reserve(NumElements);
6385 
6386   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6387     Elements.push_back(E->getCodeUnit(i));
6388   Elements.resize(NumElements);
6389   return llvm::ConstantDataArray::get(VMContext, Elements);
6390 }
6391 
6392 static llvm::GlobalVariable *
6393 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6394                       CodeGenModule &CGM, StringRef GlobalName,
6395                       CharUnits Alignment) {
6396   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6397       CGM.GetGlobalConstantAddressSpace());
6398 
6399   llvm::Module &M = CGM.getModule();
6400   // Create a global variable for this string
6401   auto *GV = new llvm::GlobalVariable(
6402       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6403       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6404   GV->setAlignment(Alignment.getAsAlign());
6405   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6406   if (GV->isWeakForLinker()) {
6407     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6408     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6409   }
6410   CGM.setDSOLocal(GV);
6411 
6412   return GV;
6413 }
6414 
6415 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6416 /// constant array for the given string literal.
6417 ConstantAddress
6418 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6419                                                   StringRef Name) {
6420   CharUnits Alignment =
6421       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6422 
6423   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6424   llvm::GlobalVariable **Entry = nullptr;
6425   if (!LangOpts.WritableStrings) {
6426     Entry = &ConstantStringMap[C];
6427     if (auto GV = *Entry) {
6428       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6429         GV->setAlignment(Alignment.getAsAlign());
6430       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6431                              GV->getValueType(), Alignment);
6432     }
6433   }
6434 
6435   SmallString<256> MangledNameBuffer;
6436   StringRef GlobalVariableName;
6437   llvm::GlobalValue::LinkageTypes LT;
6438 
6439   // Mangle the string literal if that's how the ABI merges duplicate strings.
6440   // Don't do it if they are writable, since we don't want writes in one TU to
6441   // affect strings in another.
6442   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6443       !LangOpts.WritableStrings) {
6444     llvm::raw_svector_ostream Out(MangledNameBuffer);
6445     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6446     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6447     GlobalVariableName = MangledNameBuffer;
6448   } else {
6449     LT = llvm::GlobalValue::PrivateLinkage;
6450     GlobalVariableName = Name;
6451   }
6452 
6453   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6454 
6455   CGDebugInfo *DI = getModuleDebugInfo();
6456   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6457     DI->AddStringLiteralDebugInfo(GV, S);
6458 
6459   if (Entry)
6460     *Entry = GV;
6461 
6462   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6463 
6464   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6465                          GV->getValueType(), Alignment);
6466 }
6467 
6468 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6469 /// array for the given ObjCEncodeExpr node.
6470 ConstantAddress
6471 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6472   std::string Str;
6473   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6474 
6475   return GetAddrOfConstantCString(Str);
6476 }
6477 
6478 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6479 /// the literal and a terminating '\0' character.
6480 /// The result has pointer to array type.
6481 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6482     const std::string &Str, const char *GlobalName) {
6483   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6484   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6485       getContext().CharTy, /*VD=*/nullptr);
6486 
6487   llvm::Constant *C =
6488       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6489 
6490   // Don't share any string literals if strings aren't constant.
6491   llvm::GlobalVariable **Entry = nullptr;
6492   if (!LangOpts.WritableStrings) {
6493     Entry = &ConstantStringMap[C];
6494     if (auto GV = *Entry) {
6495       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6496         GV->setAlignment(Alignment.getAsAlign());
6497       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6498                              GV->getValueType(), Alignment);
6499     }
6500   }
6501 
6502   // Get the default prefix if a name wasn't specified.
6503   if (!GlobalName)
6504     GlobalName = ".str";
6505   // Create a global variable for this.
6506   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6507                                   GlobalName, Alignment);
6508   if (Entry)
6509     *Entry = GV;
6510 
6511   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6512                          GV->getValueType(), Alignment);
6513 }
6514 
6515 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6516     const MaterializeTemporaryExpr *E, const Expr *Init) {
6517   assert((E->getStorageDuration() == SD_Static ||
6518           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6519   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6520 
6521   // If we're not materializing a subobject of the temporary, keep the
6522   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6523   QualType MaterializedType = Init->getType();
6524   if (Init == E->getSubExpr())
6525     MaterializedType = E->getType();
6526 
6527   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6528 
6529   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6530   if (!InsertResult.second) {
6531     // We've seen this before: either we already created it or we're in the
6532     // process of doing so.
6533     if (!InsertResult.first->second) {
6534       // We recursively re-entered this function, probably during emission of
6535       // the initializer. Create a placeholder. We'll clean this up in the
6536       // outer call, at the end of this function.
6537       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6538       InsertResult.first->second = new llvm::GlobalVariable(
6539           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6540           nullptr);
6541     }
6542     return ConstantAddress(InsertResult.first->second,
6543                            llvm::cast<llvm::GlobalVariable>(
6544                                InsertResult.first->second->stripPointerCasts())
6545                                ->getValueType(),
6546                            Align);
6547   }
6548 
6549   // FIXME: If an externally-visible declaration extends multiple temporaries,
6550   // we need to give each temporary the same name in every translation unit (and
6551   // we also need to make the temporaries externally-visible).
6552   SmallString<256> Name;
6553   llvm::raw_svector_ostream Out(Name);
6554   getCXXABI().getMangleContext().mangleReferenceTemporary(
6555       VD, E->getManglingNumber(), Out);
6556 
6557   APValue *Value = nullptr;
6558   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6559     // If the initializer of the extending declaration is a constant
6560     // initializer, we should have a cached constant initializer for this
6561     // temporary. Note that this might have a different value from the value
6562     // computed by evaluating the initializer if the surrounding constant
6563     // expression modifies the temporary.
6564     Value = E->getOrCreateValue(false);
6565   }
6566 
6567   // Try evaluating it now, it might have a constant initializer.
6568   Expr::EvalResult EvalResult;
6569   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6570       !EvalResult.hasSideEffects())
6571     Value = &EvalResult.Val;
6572 
6573   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6574 
6575   std::optional<ConstantEmitter> emitter;
6576   llvm::Constant *InitialValue = nullptr;
6577   bool Constant = false;
6578   llvm::Type *Type;
6579   if (Value) {
6580     // The temporary has a constant initializer, use it.
6581     emitter.emplace(*this);
6582     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6583                                                MaterializedType);
6584     Constant =
6585         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6586                                            /*ExcludeDtor*/ false);
6587     Type = InitialValue->getType();
6588   } else {
6589     // No initializer, the initialization will be provided when we
6590     // initialize the declaration which performed lifetime extension.
6591     Type = getTypes().ConvertTypeForMem(MaterializedType);
6592   }
6593 
6594   // Create a global variable for this lifetime-extended temporary.
6595   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6596   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6597     const VarDecl *InitVD;
6598     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6599         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6600       // Temporaries defined inside a class get linkonce_odr linkage because the
6601       // class can be defined in multiple translation units.
6602       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6603     } else {
6604       // There is no need for this temporary to have external linkage if the
6605       // VarDecl has external linkage.
6606       Linkage = llvm::GlobalVariable::InternalLinkage;
6607     }
6608   }
6609   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6610   auto *GV = new llvm::GlobalVariable(
6611       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6612       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6613   if (emitter) emitter->finalize(GV);
6614   // Don't assign dllimport or dllexport to local linkage globals.
6615   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6616     setGVProperties(GV, VD);
6617     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6618       // The reference temporary should never be dllexport.
6619       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6620   }
6621   GV->setAlignment(Align.getAsAlign());
6622   if (supportsCOMDAT() && GV->isWeakForLinker())
6623     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6624   if (VD->getTLSKind())
6625     setTLSMode(GV, *VD);
6626   llvm::Constant *CV = GV;
6627   if (AddrSpace != LangAS::Default)
6628     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6629         *this, GV, AddrSpace, LangAS::Default,
6630         llvm::PointerType::get(
6631             getLLVMContext(),
6632             getContext().getTargetAddressSpace(LangAS::Default)));
6633 
6634   // Update the map with the new temporary. If we created a placeholder above,
6635   // replace it with the new global now.
6636   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6637   if (Entry) {
6638     Entry->replaceAllUsesWith(CV);
6639     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6640   }
6641   Entry = CV;
6642 
6643   return ConstantAddress(CV, Type, Align);
6644 }
6645 
6646 /// EmitObjCPropertyImplementations - Emit information for synthesized
6647 /// properties for an implementation.
6648 void CodeGenModule::EmitObjCPropertyImplementations(const
6649                                                     ObjCImplementationDecl *D) {
6650   for (const auto *PID : D->property_impls()) {
6651     // Dynamic is just for type-checking.
6652     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6653       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6654 
6655       // Determine which methods need to be implemented, some may have
6656       // been overridden. Note that ::isPropertyAccessor is not the method
6657       // we want, that just indicates if the decl came from a
6658       // property. What we want to know is if the method is defined in
6659       // this implementation.
6660       auto *Getter = PID->getGetterMethodDecl();
6661       if (!Getter || Getter->isSynthesizedAccessorStub())
6662         CodeGenFunction(*this).GenerateObjCGetter(
6663             const_cast<ObjCImplementationDecl *>(D), PID);
6664       auto *Setter = PID->getSetterMethodDecl();
6665       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6666         CodeGenFunction(*this).GenerateObjCSetter(
6667                                  const_cast<ObjCImplementationDecl *>(D), PID);
6668     }
6669   }
6670 }
6671 
6672 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6673   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6674   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6675        ivar; ivar = ivar->getNextIvar())
6676     if (ivar->getType().isDestructedType())
6677       return true;
6678 
6679   return false;
6680 }
6681 
6682 static bool AllTrivialInitializers(CodeGenModule &CGM,
6683                                    ObjCImplementationDecl *D) {
6684   CodeGenFunction CGF(CGM);
6685   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6686        E = D->init_end(); B != E; ++B) {
6687     CXXCtorInitializer *CtorInitExp = *B;
6688     Expr *Init = CtorInitExp->getInit();
6689     if (!CGF.isTrivialInitializer(Init))
6690       return false;
6691   }
6692   return true;
6693 }
6694 
6695 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6696 /// for an implementation.
6697 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6698   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6699   if (needsDestructMethod(D)) {
6700     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6701     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6702     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6703         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6704         getContext().VoidTy, nullptr, D,
6705         /*isInstance=*/true, /*isVariadic=*/false,
6706         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6707         /*isImplicitlyDeclared=*/true,
6708         /*isDefined=*/false, ObjCImplementationControl::Required);
6709     D->addInstanceMethod(DTORMethod);
6710     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6711     D->setHasDestructors(true);
6712   }
6713 
6714   // If the implementation doesn't have any ivar initializers, we don't need
6715   // a .cxx_construct.
6716   if (D->getNumIvarInitializers() == 0 ||
6717       AllTrivialInitializers(*this, D))
6718     return;
6719 
6720   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6721   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6722   // The constructor returns 'self'.
6723   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6724       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6725       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6726       /*isVariadic=*/false,
6727       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6728       /*isImplicitlyDeclared=*/true,
6729       /*isDefined=*/false, ObjCImplementationControl::Required);
6730   D->addInstanceMethod(CTORMethod);
6731   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6732   D->setHasNonZeroConstructors(true);
6733 }
6734 
6735 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6736 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6737   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6738       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6739     ErrorUnsupported(LSD, "linkage spec");
6740     return;
6741   }
6742 
6743   EmitDeclContext(LSD);
6744 }
6745 
6746 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6747   // Device code should not be at top level.
6748   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6749     return;
6750 
6751   std::unique_ptr<CodeGenFunction> &CurCGF =
6752       GlobalTopLevelStmtBlockInFlight.first;
6753 
6754   // We emitted a top-level stmt but after it there is initialization.
6755   // Stop squashing the top-level stmts into a single function.
6756   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6757     CurCGF->FinishFunction(D->getEndLoc());
6758     CurCGF = nullptr;
6759   }
6760 
6761   if (!CurCGF) {
6762     // void __stmts__N(void)
6763     // FIXME: Ask the ABI name mangler to pick a name.
6764     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6765     FunctionArgList Args;
6766     QualType RetTy = getContext().VoidTy;
6767     const CGFunctionInfo &FnInfo =
6768         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6769     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6770     llvm::Function *Fn = llvm::Function::Create(
6771         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6772 
6773     CurCGF.reset(new CodeGenFunction(*this));
6774     GlobalTopLevelStmtBlockInFlight.second = D;
6775     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6776                           D->getBeginLoc(), D->getBeginLoc());
6777     CXXGlobalInits.push_back(Fn);
6778   }
6779 
6780   CurCGF->EmitStmt(D->getStmt());
6781 }
6782 
6783 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6784   for (auto *I : DC->decls()) {
6785     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6786     // are themselves considered "top-level", so EmitTopLevelDecl on an
6787     // ObjCImplDecl does not recursively visit them. We need to do that in
6788     // case they're nested inside another construct (LinkageSpecDecl /
6789     // ExportDecl) that does stop them from being considered "top-level".
6790     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6791       for (auto *M : OID->methods())
6792         EmitTopLevelDecl(M);
6793     }
6794 
6795     EmitTopLevelDecl(I);
6796   }
6797 }
6798 
6799 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6800 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6801   // Ignore dependent declarations.
6802   if (D->isTemplated())
6803     return;
6804 
6805   // Consteval function shouldn't be emitted.
6806   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6807     return;
6808 
6809   switch (D->getKind()) {
6810   case Decl::CXXConversion:
6811   case Decl::CXXMethod:
6812   case Decl::Function:
6813     EmitGlobal(cast<FunctionDecl>(D));
6814     // Always provide some coverage mapping
6815     // even for the functions that aren't emitted.
6816     AddDeferredUnusedCoverageMapping(D);
6817     break;
6818 
6819   case Decl::CXXDeductionGuide:
6820     // Function-like, but does not result in code emission.
6821     break;
6822 
6823   case Decl::Var:
6824   case Decl::Decomposition:
6825   case Decl::VarTemplateSpecialization:
6826     EmitGlobal(cast<VarDecl>(D));
6827     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6828       for (auto *B : DD->bindings())
6829         if (auto *HD = B->getHoldingVar())
6830           EmitGlobal(HD);
6831     break;
6832 
6833   // Indirect fields from global anonymous structs and unions can be
6834   // ignored; only the actual variable requires IR gen support.
6835   case Decl::IndirectField:
6836     break;
6837 
6838   // C++ Decls
6839   case Decl::Namespace:
6840     EmitDeclContext(cast<NamespaceDecl>(D));
6841     break;
6842   case Decl::ClassTemplateSpecialization: {
6843     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6844     if (CGDebugInfo *DI = getModuleDebugInfo())
6845       if (Spec->getSpecializationKind() ==
6846               TSK_ExplicitInstantiationDefinition &&
6847           Spec->hasDefinition())
6848         DI->completeTemplateDefinition(*Spec);
6849   } [[fallthrough]];
6850   case Decl::CXXRecord: {
6851     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6852     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6853       if (CRD->hasDefinition())
6854         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6855       if (auto *ES = D->getASTContext().getExternalSource())
6856         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6857           DI->completeUnusedClass(*CRD);
6858     }
6859     // Emit any static data members, they may be definitions.
6860     for (auto *I : CRD->decls())
6861       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6862         EmitTopLevelDecl(I);
6863     break;
6864   }
6865     // No code generation needed.
6866   case Decl::UsingShadow:
6867   case Decl::ClassTemplate:
6868   case Decl::VarTemplate:
6869   case Decl::Concept:
6870   case Decl::VarTemplatePartialSpecialization:
6871   case Decl::FunctionTemplate:
6872   case Decl::TypeAliasTemplate:
6873   case Decl::Block:
6874   case Decl::Empty:
6875   case Decl::Binding:
6876     break;
6877   case Decl::Using:          // using X; [C++]
6878     if (CGDebugInfo *DI = getModuleDebugInfo())
6879         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6880     break;
6881   case Decl::UsingEnum: // using enum X; [C++]
6882     if (CGDebugInfo *DI = getModuleDebugInfo())
6883       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6884     break;
6885   case Decl::NamespaceAlias:
6886     if (CGDebugInfo *DI = getModuleDebugInfo())
6887         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6888     break;
6889   case Decl::UsingDirective: // using namespace X; [C++]
6890     if (CGDebugInfo *DI = getModuleDebugInfo())
6891       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6892     break;
6893   case Decl::CXXConstructor:
6894     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6895     break;
6896   case Decl::CXXDestructor:
6897     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6898     break;
6899 
6900   case Decl::StaticAssert:
6901     // Nothing to do.
6902     break;
6903 
6904   // Objective-C Decls
6905 
6906   // Forward declarations, no (immediate) code generation.
6907   case Decl::ObjCInterface:
6908   case Decl::ObjCCategory:
6909     break;
6910 
6911   case Decl::ObjCProtocol: {
6912     auto *Proto = cast<ObjCProtocolDecl>(D);
6913     if (Proto->isThisDeclarationADefinition())
6914       ObjCRuntime->GenerateProtocol(Proto);
6915     break;
6916   }
6917 
6918   case Decl::ObjCCategoryImpl:
6919     // Categories have properties but don't support synthesize so we
6920     // can ignore them here.
6921     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6922     break;
6923 
6924   case Decl::ObjCImplementation: {
6925     auto *OMD = cast<ObjCImplementationDecl>(D);
6926     EmitObjCPropertyImplementations(OMD);
6927     EmitObjCIvarInitializations(OMD);
6928     ObjCRuntime->GenerateClass(OMD);
6929     // Emit global variable debug information.
6930     if (CGDebugInfo *DI = getModuleDebugInfo())
6931       if (getCodeGenOpts().hasReducedDebugInfo())
6932         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6933             OMD->getClassInterface()), OMD->getLocation());
6934     break;
6935   }
6936   case Decl::ObjCMethod: {
6937     auto *OMD = cast<ObjCMethodDecl>(D);
6938     // If this is not a prototype, emit the body.
6939     if (OMD->getBody())
6940       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6941     break;
6942   }
6943   case Decl::ObjCCompatibleAlias:
6944     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6945     break;
6946 
6947   case Decl::PragmaComment: {
6948     const auto *PCD = cast<PragmaCommentDecl>(D);
6949     switch (PCD->getCommentKind()) {
6950     case PCK_Unknown:
6951       llvm_unreachable("unexpected pragma comment kind");
6952     case PCK_Linker:
6953       AppendLinkerOptions(PCD->getArg());
6954       break;
6955     case PCK_Lib:
6956         AddDependentLib(PCD->getArg());
6957       break;
6958     case PCK_Compiler:
6959     case PCK_ExeStr:
6960     case PCK_User:
6961       break; // We ignore all of these.
6962     }
6963     break;
6964   }
6965 
6966   case Decl::PragmaDetectMismatch: {
6967     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6968     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6969     break;
6970   }
6971 
6972   case Decl::LinkageSpec:
6973     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6974     break;
6975 
6976   case Decl::FileScopeAsm: {
6977     // File-scope asm is ignored during device-side CUDA compilation.
6978     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6979       break;
6980     // File-scope asm is ignored during device-side OpenMP compilation.
6981     if (LangOpts.OpenMPIsTargetDevice)
6982       break;
6983     // File-scope asm is ignored during device-side SYCL compilation.
6984     if (LangOpts.SYCLIsDevice)
6985       break;
6986     auto *AD = cast<FileScopeAsmDecl>(D);
6987     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6988     break;
6989   }
6990 
6991   case Decl::TopLevelStmt:
6992     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
6993     break;
6994 
6995   case Decl::Import: {
6996     auto *Import = cast<ImportDecl>(D);
6997 
6998     // If we've already imported this module, we're done.
6999     if (!ImportedModules.insert(Import->getImportedModule()))
7000       break;
7001 
7002     // Emit debug information for direct imports.
7003     if (!Import->getImportedOwningModule()) {
7004       if (CGDebugInfo *DI = getModuleDebugInfo())
7005         DI->EmitImportDecl(*Import);
7006     }
7007 
7008     // For C++ standard modules we are done - we will call the module
7009     // initializer for imported modules, and that will likewise call those for
7010     // any imports it has.
7011     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
7012         !Import->getImportedOwningModule()->isModuleMapModule())
7013       break;
7014 
7015     // For clang C++ module map modules the initializers for sub-modules are
7016     // emitted here.
7017 
7018     // Find all of the submodules and emit the module initializers.
7019     llvm::SmallPtrSet<clang::Module *, 16> Visited;
7020     SmallVector<clang::Module *, 16> Stack;
7021     Visited.insert(Import->getImportedModule());
7022     Stack.push_back(Import->getImportedModule());
7023 
7024     while (!Stack.empty()) {
7025       clang::Module *Mod = Stack.pop_back_val();
7026       if (!EmittedModuleInitializers.insert(Mod).second)
7027         continue;
7028 
7029       for (auto *D : Context.getModuleInitializers(Mod))
7030         EmitTopLevelDecl(D);
7031 
7032       // Visit the submodules of this module.
7033       for (auto *Submodule : Mod->submodules()) {
7034         // Skip explicit children; they need to be explicitly imported to emit
7035         // the initializers.
7036         if (Submodule->IsExplicit)
7037           continue;
7038 
7039         if (Visited.insert(Submodule).second)
7040           Stack.push_back(Submodule);
7041       }
7042     }
7043     break;
7044   }
7045 
7046   case Decl::Export:
7047     EmitDeclContext(cast<ExportDecl>(D));
7048     break;
7049 
7050   case Decl::OMPThreadPrivate:
7051     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7052     break;
7053 
7054   case Decl::OMPAllocate:
7055     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7056     break;
7057 
7058   case Decl::OMPDeclareReduction:
7059     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7060     break;
7061 
7062   case Decl::OMPDeclareMapper:
7063     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7064     break;
7065 
7066   case Decl::OMPRequires:
7067     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7068     break;
7069 
7070   case Decl::Typedef:
7071   case Decl::TypeAlias: // using foo = bar; [C++11]
7072     if (CGDebugInfo *DI = getModuleDebugInfo())
7073       DI->EmitAndRetainType(
7074           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7075     break;
7076 
7077   case Decl::Record:
7078     if (CGDebugInfo *DI = getModuleDebugInfo())
7079       if (cast<RecordDecl>(D)->getDefinition())
7080         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7081     break;
7082 
7083   case Decl::Enum:
7084     if (CGDebugInfo *DI = getModuleDebugInfo())
7085       if (cast<EnumDecl>(D)->getDefinition())
7086         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7087     break;
7088 
7089   case Decl::HLSLBuffer:
7090     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7091     break;
7092 
7093   default:
7094     // Make sure we handled everything we should, every other kind is a
7095     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7096     // function. Need to recode Decl::Kind to do that easily.
7097     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7098     break;
7099   }
7100 }
7101 
7102 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7103   // Do we need to generate coverage mapping?
7104   if (!CodeGenOpts.CoverageMapping)
7105     return;
7106   switch (D->getKind()) {
7107   case Decl::CXXConversion:
7108   case Decl::CXXMethod:
7109   case Decl::Function:
7110   case Decl::ObjCMethod:
7111   case Decl::CXXConstructor:
7112   case Decl::CXXDestructor: {
7113     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7114       break;
7115     SourceManager &SM = getContext().getSourceManager();
7116     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7117       break;
7118     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7119     break;
7120   }
7121   default:
7122     break;
7123   };
7124 }
7125 
7126 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7127   // Do we need to generate coverage mapping?
7128   if (!CodeGenOpts.CoverageMapping)
7129     return;
7130   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7131     if (Fn->isTemplateInstantiation())
7132       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7133   }
7134   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7135 }
7136 
7137 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7138   // We call takeVector() here to avoid use-after-free.
7139   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7140   // we deserialize function bodies to emit coverage info for them, and that
7141   // deserializes more declarations. How should we handle that case?
7142   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7143     if (!Entry.second)
7144       continue;
7145     const Decl *D = Entry.first;
7146     switch (D->getKind()) {
7147     case Decl::CXXConversion:
7148     case Decl::CXXMethod:
7149     case Decl::Function:
7150     case Decl::ObjCMethod: {
7151       CodeGenPGO PGO(*this);
7152       GlobalDecl GD(cast<FunctionDecl>(D));
7153       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7154                                   getFunctionLinkage(GD));
7155       break;
7156     }
7157     case Decl::CXXConstructor: {
7158       CodeGenPGO PGO(*this);
7159       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7160       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7161                                   getFunctionLinkage(GD));
7162       break;
7163     }
7164     case Decl::CXXDestructor: {
7165       CodeGenPGO PGO(*this);
7166       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7167       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7168                                   getFunctionLinkage(GD));
7169       break;
7170     }
7171     default:
7172       break;
7173     };
7174   }
7175 }
7176 
7177 void CodeGenModule::EmitMainVoidAlias() {
7178   // In order to transition away from "__original_main" gracefully, emit an
7179   // alias for "main" in the no-argument case so that libc can detect when
7180   // new-style no-argument main is in used.
7181   if (llvm::Function *F = getModule().getFunction("main")) {
7182     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7183         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7184       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7185       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7186     }
7187   }
7188 }
7189 
7190 /// Turns the given pointer into a constant.
7191 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7192                                           const void *Ptr) {
7193   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7194   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7195   return llvm::ConstantInt::get(i64, PtrInt);
7196 }
7197 
7198 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7199                                    llvm::NamedMDNode *&GlobalMetadata,
7200                                    GlobalDecl D,
7201                                    llvm::GlobalValue *Addr) {
7202   if (!GlobalMetadata)
7203     GlobalMetadata =
7204       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7205 
7206   // TODO: should we report variant information for ctors/dtors?
7207   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7208                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7209                                CGM.getLLVMContext(), D.getDecl()))};
7210   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7211 }
7212 
7213 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7214                                                  llvm::GlobalValue *CppFunc) {
7215   // Store the list of ifuncs we need to replace uses in.
7216   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7217   // List of ConstantExprs that we should be able to delete when we're done
7218   // here.
7219   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7220 
7221   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7222   if (Elem == CppFunc)
7223     return false;
7224 
7225   // First make sure that all users of this are ifuncs (or ifuncs via a
7226   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7227   // later.
7228   for (llvm::User *User : Elem->users()) {
7229     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7230     // ifunc directly. In any other case, just give up, as we don't know what we
7231     // could break by changing those.
7232     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7233       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7234         return false;
7235 
7236       for (llvm::User *CEUser : ConstExpr->users()) {
7237         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7238           IFuncs.push_back(IFunc);
7239         } else {
7240           return false;
7241         }
7242       }
7243       CEs.push_back(ConstExpr);
7244     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7245       IFuncs.push_back(IFunc);
7246     } else {
7247       // This user is one we don't know how to handle, so fail redirection. This
7248       // will result in an ifunc retaining a resolver name that will ultimately
7249       // fail to be resolved to a defined function.
7250       return false;
7251     }
7252   }
7253 
7254   // Now we know this is a valid case where we can do this alias replacement, we
7255   // need to remove all of the references to Elem (and the bitcasts!) so we can
7256   // delete it.
7257   for (llvm::GlobalIFunc *IFunc : IFuncs)
7258     IFunc->setResolver(nullptr);
7259   for (llvm::ConstantExpr *ConstExpr : CEs)
7260     ConstExpr->destroyConstant();
7261 
7262   // We should now be out of uses for the 'old' version of this function, so we
7263   // can erase it as well.
7264   Elem->eraseFromParent();
7265 
7266   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7267     // The type of the resolver is always just a function-type that returns the
7268     // type of the IFunc, so create that here. If the type of the actual
7269     // resolver doesn't match, it just gets bitcast to the right thing.
7270     auto *ResolverTy =
7271         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7272     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7273         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7274     IFunc->setResolver(Resolver);
7275   }
7276   return true;
7277 }
7278 
7279 /// For each function which is declared within an extern "C" region and marked
7280 /// as 'used', but has internal linkage, create an alias from the unmangled
7281 /// name to the mangled name if possible. People expect to be able to refer
7282 /// to such functions with an unmangled name from inline assembly within the
7283 /// same translation unit.
7284 void CodeGenModule::EmitStaticExternCAliases() {
7285   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7286     return;
7287   for (auto &I : StaticExternCValues) {
7288     const IdentifierInfo *Name = I.first;
7289     llvm::GlobalValue *Val = I.second;
7290 
7291     // If Val is null, that implies there were multiple declarations that each
7292     // had a claim to the unmangled name. In this case, generation of the alias
7293     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7294     if (!Val)
7295       break;
7296 
7297     llvm::GlobalValue *ExistingElem =
7298         getModule().getNamedValue(Name->getName());
7299 
7300     // If there is either not something already by this name, or we were able to
7301     // replace all uses from IFuncs, create the alias.
7302     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7303       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7304   }
7305 }
7306 
7307 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7308                                              GlobalDecl &Result) const {
7309   auto Res = Manglings.find(MangledName);
7310   if (Res == Manglings.end())
7311     return false;
7312   Result = Res->getValue();
7313   return true;
7314 }
7315 
7316 /// Emits metadata nodes associating all the global values in the
7317 /// current module with the Decls they came from.  This is useful for
7318 /// projects using IR gen as a subroutine.
7319 ///
7320 /// Since there's currently no way to associate an MDNode directly
7321 /// with an llvm::GlobalValue, we create a global named metadata
7322 /// with the name 'clang.global.decl.ptrs'.
7323 void CodeGenModule::EmitDeclMetadata() {
7324   llvm::NamedMDNode *GlobalMetadata = nullptr;
7325 
7326   for (auto &I : MangledDeclNames) {
7327     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7328     // Some mangled names don't necessarily have an associated GlobalValue
7329     // in this module, e.g. if we mangled it for DebugInfo.
7330     if (Addr)
7331       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7332   }
7333 }
7334 
7335 /// Emits metadata nodes for all the local variables in the current
7336 /// function.
7337 void CodeGenFunction::EmitDeclMetadata() {
7338   if (LocalDeclMap.empty()) return;
7339 
7340   llvm::LLVMContext &Context = getLLVMContext();
7341 
7342   // Find the unique metadata ID for this name.
7343   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7344 
7345   llvm::NamedMDNode *GlobalMetadata = nullptr;
7346 
7347   for (auto &I : LocalDeclMap) {
7348     const Decl *D = I.first;
7349     llvm::Value *Addr = I.second.emitRawPointer(*this);
7350     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7351       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7352       Alloca->setMetadata(
7353           DeclPtrKind, llvm::MDNode::get(
7354                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7355     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7356       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7357       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7358     }
7359   }
7360 }
7361 
7362 void CodeGenModule::EmitVersionIdentMetadata() {
7363   llvm::NamedMDNode *IdentMetadata =
7364     TheModule.getOrInsertNamedMetadata("llvm.ident");
7365   std::string Version = getClangFullVersion();
7366   llvm::LLVMContext &Ctx = TheModule.getContext();
7367 
7368   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7369   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7370 }
7371 
7372 void CodeGenModule::EmitCommandLineMetadata() {
7373   llvm::NamedMDNode *CommandLineMetadata =
7374     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7375   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7376   llvm::LLVMContext &Ctx = TheModule.getContext();
7377 
7378   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7379   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7380 }
7381 
7382 void CodeGenModule::EmitCoverageFile() {
7383   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7384   if (!CUNode)
7385     return;
7386 
7387   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7388   llvm::LLVMContext &Ctx = TheModule.getContext();
7389   auto *CoverageDataFile =
7390       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7391   auto *CoverageNotesFile =
7392       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7393   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7394     llvm::MDNode *CU = CUNode->getOperand(i);
7395     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7396     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7397   }
7398 }
7399 
7400 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7401                                                        bool ForEH) {
7402   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7403   // FIXME: should we even be calling this method if RTTI is disabled
7404   // and it's not for EH?
7405   if (!shouldEmitRTTI(ForEH))
7406     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7407 
7408   if (ForEH && Ty->isObjCObjectPointerType() &&
7409       LangOpts.ObjCRuntime.isGNUFamily())
7410     return ObjCRuntime->GetEHType(Ty);
7411 
7412   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7413 }
7414 
7415 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7416   // Do not emit threadprivates in simd-only mode.
7417   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7418     return;
7419   for (auto RefExpr : D->varlists()) {
7420     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7421     bool PerformInit =
7422         VD->getAnyInitializer() &&
7423         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7424                                                         /*ForRef=*/false);
7425 
7426     Address Addr(GetAddrOfGlobalVar(VD),
7427                  getTypes().ConvertTypeForMem(VD->getType()),
7428                  getContext().getDeclAlign(VD));
7429     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7430             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7431       CXXGlobalInits.push_back(InitFunction);
7432   }
7433 }
7434 
7435 llvm::Metadata *
7436 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7437                                             StringRef Suffix) {
7438   if (auto *FnType = T->getAs<FunctionProtoType>())
7439     T = getContext().getFunctionType(
7440         FnType->getReturnType(), FnType->getParamTypes(),
7441         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7442 
7443   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7444   if (InternalId)
7445     return InternalId;
7446 
7447   if (isExternallyVisible(T->getLinkage())) {
7448     std::string OutName;
7449     llvm::raw_string_ostream Out(OutName);
7450     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7451         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7452 
7453     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7454       Out << ".normalized";
7455 
7456     Out << Suffix;
7457 
7458     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7459   } else {
7460     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7461                                            llvm::ArrayRef<llvm::Metadata *>());
7462   }
7463 
7464   return InternalId;
7465 }
7466 
7467 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7468   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7469 }
7470 
7471 llvm::Metadata *
7472 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7473   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7474 }
7475 
7476 // Generalize pointer types to a void pointer with the qualifiers of the
7477 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7478 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7479 // 'void *'.
7480 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7481   if (!Ty->isPointerType())
7482     return Ty;
7483 
7484   return Ctx.getPointerType(
7485       QualType(Ctx.VoidTy).withCVRQualifiers(
7486           Ty->getPointeeType().getCVRQualifiers()));
7487 }
7488 
7489 // Apply type generalization to a FunctionType's return and argument types
7490 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7491   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7492     SmallVector<QualType, 8> GeneralizedParams;
7493     for (auto &Param : FnType->param_types())
7494       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7495 
7496     return Ctx.getFunctionType(
7497         GeneralizeType(Ctx, FnType->getReturnType()),
7498         GeneralizedParams, FnType->getExtProtoInfo());
7499   }
7500 
7501   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7502     return Ctx.getFunctionNoProtoType(
7503         GeneralizeType(Ctx, FnType->getReturnType()));
7504 
7505   llvm_unreachable("Encountered unknown FunctionType");
7506 }
7507 
7508 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7509   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7510                                       GeneralizedMetadataIdMap, ".generalized");
7511 }
7512 
7513 /// Returns whether this module needs the "all-vtables" type identifier.
7514 bool CodeGenModule::NeedAllVtablesTypeId() const {
7515   // Returns true if at least one of vtable-based CFI checkers is enabled and
7516   // is not in the trapping mode.
7517   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7518            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7519           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7520            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7521           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7522            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7523           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7524            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7525 }
7526 
7527 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7528                                           CharUnits Offset,
7529                                           const CXXRecordDecl *RD) {
7530   llvm::Metadata *MD =
7531       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7532   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7533 
7534   if (CodeGenOpts.SanitizeCfiCrossDso)
7535     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7536       VTable->addTypeMetadata(Offset.getQuantity(),
7537                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7538 
7539   if (NeedAllVtablesTypeId()) {
7540     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7541     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7542   }
7543 }
7544 
7545 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7546   if (!SanStats)
7547     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7548 
7549   return *SanStats;
7550 }
7551 
7552 llvm::Value *
7553 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7554                                                   CodeGenFunction &CGF) {
7555   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7556   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7557   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7558   auto *Call = CGF.EmitRuntimeCall(
7559       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7560   return Call;
7561 }
7562 
7563 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7564     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7565   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7566                                  /* forPointeeType= */ true);
7567 }
7568 
7569 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7570                                                  LValueBaseInfo *BaseInfo,
7571                                                  TBAAAccessInfo *TBAAInfo,
7572                                                  bool forPointeeType) {
7573   if (TBAAInfo)
7574     *TBAAInfo = getTBAAAccessInfo(T);
7575 
7576   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7577   // that doesn't return the information we need to compute BaseInfo.
7578 
7579   // Honor alignment typedef attributes even on incomplete types.
7580   // We also honor them straight for C++ class types, even as pointees;
7581   // there's an expressivity gap here.
7582   if (auto TT = T->getAs<TypedefType>()) {
7583     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7584       if (BaseInfo)
7585         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7586       return getContext().toCharUnitsFromBits(Align);
7587     }
7588   }
7589 
7590   bool AlignForArray = T->isArrayType();
7591 
7592   // Analyze the base element type, so we don't get confused by incomplete
7593   // array types.
7594   T = getContext().getBaseElementType(T);
7595 
7596   if (T->isIncompleteType()) {
7597     // We could try to replicate the logic from
7598     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7599     // type is incomplete, so it's impossible to test. We could try to reuse
7600     // getTypeAlignIfKnown, but that doesn't return the information we need
7601     // to set BaseInfo.  So just ignore the possibility that the alignment is
7602     // greater than one.
7603     if (BaseInfo)
7604       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7605     return CharUnits::One();
7606   }
7607 
7608   if (BaseInfo)
7609     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7610 
7611   CharUnits Alignment;
7612   const CXXRecordDecl *RD;
7613   if (T.getQualifiers().hasUnaligned()) {
7614     Alignment = CharUnits::One();
7615   } else if (forPointeeType && !AlignForArray &&
7616              (RD = T->getAsCXXRecordDecl())) {
7617     // For C++ class pointees, we don't know whether we're pointing at a
7618     // base or a complete object, so we generally need to use the
7619     // non-virtual alignment.
7620     Alignment = getClassPointerAlignment(RD);
7621   } else {
7622     Alignment = getContext().getTypeAlignInChars(T);
7623   }
7624 
7625   // Cap to the global maximum type alignment unless the alignment
7626   // was somehow explicit on the type.
7627   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7628     if (Alignment.getQuantity() > MaxAlign &&
7629         !getContext().isAlignmentRequired(T))
7630       Alignment = CharUnits::fromQuantity(MaxAlign);
7631   }
7632   return Alignment;
7633 }
7634 
7635 bool CodeGenModule::stopAutoInit() {
7636   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7637   if (StopAfter) {
7638     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7639     // used
7640     if (NumAutoVarInit >= StopAfter) {
7641       return true;
7642     }
7643     if (!NumAutoVarInit) {
7644       unsigned DiagID = getDiags().getCustomDiagID(
7645           DiagnosticsEngine::Warning,
7646           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7647           "number of times ftrivial-auto-var-init=%1 gets applied.");
7648       getDiags().Report(DiagID)
7649           << StopAfter
7650           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7651                       LangOptions::TrivialAutoVarInitKind::Zero
7652                   ? "zero"
7653                   : "pattern");
7654     }
7655     ++NumAutoVarInit;
7656   }
7657   return false;
7658 }
7659 
7660 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7661                                                     const Decl *D) const {
7662   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7663   // postfix beginning with '.' since the symbol name can be demangled.
7664   if (LangOpts.HIP)
7665     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7666   else
7667     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7668 
7669   // If the CUID is not specified we try to generate a unique postfix.
7670   if (getLangOpts().CUID.empty()) {
7671     SourceManager &SM = getContext().getSourceManager();
7672     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7673     assert(PLoc.isValid() && "Source location is expected to be valid.");
7674 
7675     // Get the hash of the user defined macros.
7676     llvm::MD5 Hash;
7677     llvm::MD5::MD5Result Result;
7678     for (const auto &Arg : PreprocessorOpts.Macros)
7679       Hash.update(Arg.first);
7680     Hash.final(Result);
7681 
7682     // Get the UniqueID for the file containing the decl.
7683     llvm::sys::fs::UniqueID ID;
7684     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7685       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7686       assert(PLoc.isValid() && "Source location is expected to be valid.");
7687       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7688         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7689             << PLoc.getFilename() << EC.message();
7690     }
7691     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7692        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7693   } else {
7694     OS << getContext().getCUIDHash();
7695   }
7696 }
7697 
7698 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7699   assert(DeferredDeclsToEmit.empty() &&
7700          "Should have emitted all decls deferred to emit.");
7701   assert(NewBuilder->DeferredDecls.empty() &&
7702          "Newly created module should not have deferred decls");
7703   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7704   assert(EmittedDeferredDecls.empty() &&
7705          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7706 
7707   assert(NewBuilder->DeferredVTables.empty() &&
7708          "Newly created module should not have deferred vtables");
7709   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7710 
7711   assert(NewBuilder->MangledDeclNames.empty() &&
7712          "Newly created module should not have mangled decl names");
7713   assert(NewBuilder->Manglings.empty() &&
7714          "Newly created module should not have manglings");
7715   NewBuilder->Manglings = std::move(Manglings);
7716 
7717   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7718 
7719   NewBuilder->TBAA = std::move(TBAA);
7720 
7721   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7722 }
7723