1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static const char AnnotationSection[] = "llvm.metadata"; 64 65 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 66 switch (CGM.getTarget().getCXXABI().getKind()) { 67 case TargetCXXABI::GenericAArch64: 68 case TargetCXXABI::GenericARM: 69 case TargetCXXABI::iOS: 70 case TargetCXXABI::iOS64: 71 case TargetCXXABI::WatchOS: 72 case TargetCXXABI::GenericMIPS: 73 case TargetCXXABI::GenericItanium: 74 case TargetCXXABI::WebAssembly: 75 return CreateItaniumCXXABI(CGM); 76 case TargetCXXABI::Microsoft: 77 return CreateMicrosoftCXXABI(CGM); 78 } 79 80 llvm_unreachable("invalid C++ ABI kind"); 81 } 82 83 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 84 const PreprocessorOptions &PPO, 85 const CodeGenOptions &CGO, llvm::Module &M, 86 DiagnosticsEngine &diags, 87 CoverageSourceInfo *CoverageInfo) 88 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 89 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 90 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 91 VMContext(M.getContext()), Types(*this), VTables(*this), 92 SanitizerMD(new SanitizerMetadata(*this)) { 93 94 // Initialize the type cache. 95 llvm::LLVMContext &LLVMContext = M.getContext(); 96 VoidTy = llvm::Type::getVoidTy(LLVMContext); 97 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 98 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 99 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 100 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 101 FloatTy = llvm::Type::getFloatTy(LLVMContext); 102 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 103 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 104 PointerAlignInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 106 SizeSizeInBytes = 107 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 108 IntAlignInBytes = 109 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 110 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 111 IntPtrTy = llvm::IntegerType::get(LLVMContext, 112 C.getTargetInfo().getMaxPointerWidth()); 113 Int8PtrTy = Int8Ty->getPointerTo(0); 114 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 115 AllocaInt8PtrTy = Int8Ty->getPointerTo( 116 M.getDataLayout().getAllocaAddrSpace()); 117 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 118 119 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 120 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 121 122 if (LangOpts.ObjC1) 123 createObjCRuntime(); 124 if (LangOpts.OpenCL) 125 createOpenCLRuntime(); 126 if (LangOpts.OpenMP) 127 createOpenMPRuntime(); 128 if (LangOpts.CUDA) 129 createCUDARuntime(); 130 131 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 132 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 133 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 134 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 135 getCXXABI().getMangleContext())); 136 137 // If debug info or coverage generation is enabled, create the CGDebugInfo 138 // object. 139 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 140 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 141 DebugInfo.reset(new CGDebugInfo(*this)); 142 143 Block.GlobalUniqueCount = 0; 144 145 if (C.getLangOpts().ObjC1) 146 ObjCData.reset(new ObjCEntrypoints()); 147 148 if (CodeGenOpts.hasProfileClangUse()) { 149 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 150 CodeGenOpts.ProfileInstrumentUsePath); 151 if (auto E = ReaderOrErr.takeError()) { 152 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 153 "Could not read profile %0: %1"); 154 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 155 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 156 << EI.message(); 157 }); 158 } else 159 PGOReader = std::move(ReaderOrErr.get()); 160 } 161 162 // If coverage mapping generation is enabled, create the 163 // CoverageMappingModuleGen object. 164 if (CodeGenOpts.CoverageMapping) 165 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 166 } 167 168 CodeGenModule::~CodeGenModule() {} 169 170 void CodeGenModule::createObjCRuntime() { 171 // This is just isGNUFamily(), but we want to force implementors of 172 // new ABIs to decide how best to do this. 173 switch (LangOpts.ObjCRuntime.getKind()) { 174 case ObjCRuntime::GNUstep: 175 case ObjCRuntime::GCC: 176 case ObjCRuntime::ObjFW: 177 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 178 return; 179 180 case ObjCRuntime::FragileMacOSX: 181 case ObjCRuntime::MacOSX: 182 case ObjCRuntime::iOS: 183 case ObjCRuntime::WatchOS: 184 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 185 return; 186 } 187 llvm_unreachable("bad runtime kind"); 188 } 189 190 void CodeGenModule::createOpenCLRuntime() { 191 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 192 } 193 194 void CodeGenModule::createOpenMPRuntime() { 195 // Select a specialized code generation class based on the target, if any. 196 // If it does not exist use the default implementation. 197 switch (getTriple().getArch()) { 198 case llvm::Triple::nvptx: 199 case llvm::Triple::nvptx64: 200 assert(getLangOpts().OpenMPIsDevice && 201 "OpenMP NVPTX is only prepared to deal with device code."); 202 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 203 break; 204 default: 205 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 206 break; 207 } 208 } 209 210 void CodeGenModule::createCUDARuntime() { 211 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 212 } 213 214 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 215 Replacements[Name] = C; 216 } 217 218 void CodeGenModule::applyReplacements() { 219 for (auto &I : Replacements) { 220 StringRef MangledName = I.first(); 221 llvm::Constant *Replacement = I.second; 222 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 223 if (!Entry) 224 continue; 225 auto *OldF = cast<llvm::Function>(Entry); 226 auto *NewF = dyn_cast<llvm::Function>(Replacement); 227 if (!NewF) { 228 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 229 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 230 } else { 231 auto *CE = cast<llvm::ConstantExpr>(Replacement); 232 assert(CE->getOpcode() == llvm::Instruction::BitCast || 233 CE->getOpcode() == llvm::Instruction::GetElementPtr); 234 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 235 } 236 } 237 238 // Replace old with new, but keep the old order. 239 OldF->replaceAllUsesWith(Replacement); 240 if (NewF) { 241 NewF->removeFromParent(); 242 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 243 NewF); 244 } 245 OldF->eraseFromParent(); 246 } 247 } 248 249 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 250 GlobalValReplacements.push_back(std::make_pair(GV, C)); 251 } 252 253 void CodeGenModule::applyGlobalValReplacements() { 254 for (auto &I : GlobalValReplacements) { 255 llvm::GlobalValue *GV = I.first; 256 llvm::Constant *C = I.second; 257 258 GV->replaceAllUsesWith(C); 259 GV->eraseFromParent(); 260 } 261 } 262 263 // This is only used in aliases that we created and we know they have a 264 // linear structure. 265 static const llvm::GlobalObject *getAliasedGlobal( 266 const llvm::GlobalIndirectSymbol &GIS) { 267 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 268 const llvm::Constant *C = &GIS; 269 for (;;) { 270 C = C->stripPointerCasts(); 271 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 272 return GO; 273 // stripPointerCasts will not walk over weak aliases. 274 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 275 if (!GIS2) 276 return nullptr; 277 if (!Visited.insert(GIS2).second) 278 return nullptr; 279 C = GIS2->getIndirectSymbol(); 280 } 281 } 282 283 void CodeGenModule::checkAliases() { 284 // Check if the constructed aliases are well formed. It is really unfortunate 285 // that we have to do this in CodeGen, but we only construct mangled names 286 // and aliases during codegen. 287 bool Error = false; 288 DiagnosticsEngine &Diags = getDiags(); 289 for (const GlobalDecl &GD : Aliases) { 290 const auto *D = cast<ValueDecl>(GD.getDecl()); 291 SourceLocation Location; 292 bool IsIFunc = D->hasAttr<IFuncAttr>(); 293 if (const Attr *A = D->getDefiningAttr()) 294 Location = A->getLocation(); 295 else 296 llvm_unreachable("Not an alias or ifunc?"); 297 StringRef MangledName = getMangledName(GD); 298 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 299 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 300 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 301 if (!GV) { 302 Error = true; 303 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 304 } else if (GV->isDeclaration()) { 305 Error = true; 306 Diags.Report(Location, diag::err_alias_to_undefined) 307 << IsIFunc << IsIFunc; 308 } else if (IsIFunc) { 309 // Check resolver function type. 310 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 311 GV->getType()->getPointerElementType()); 312 assert(FTy); 313 if (!FTy->getReturnType()->isPointerTy()) 314 Diags.Report(Location, diag::err_ifunc_resolver_return); 315 if (FTy->getNumParams()) 316 Diags.Report(Location, diag::err_ifunc_resolver_params); 317 } 318 319 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 320 llvm::GlobalValue *AliaseeGV; 321 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 322 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 323 else 324 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 325 326 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 327 StringRef AliasSection = SA->getName(); 328 if (AliasSection != AliaseeGV->getSection()) 329 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 330 << AliasSection << IsIFunc << IsIFunc; 331 } 332 333 // We have to handle alias to weak aliases in here. LLVM itself disallows 334 // this since the object semantics would not match the IL one. For 335 // compatibility with gcc we implement it by just pointing the alias 336 // to its aliasee's aliasee. We also warn, since the user is probably 337 // expecting the link to be weak. 338 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 339 if (GA->isInterposable()) { 340 Diags.Report(Location, diag::warn_alias_to_weak_alias) 341 << GV->getName() << GA->getName() << IsIFunc; 342 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 343 GA->getIndirectSymbol(), Alias->getType()); 344 Alias->setIndirectSymbol(Aliasee); 345 } 346 } 347 } 348 if (!Error) 349 return; 350 351 for (const GlobalDecl &GD : Aliases) { 352 StringRef MangledName = getMangledName(GD); 353 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 354 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 355 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 356 Alias->eraseFromParent(); 357 } 358 } 359 360 void CodeGenModule::clear() { 361 DeferredDeclsToEmit.clear(); 362 if (OpenMPRuntime) 363 OpenMPRuntime->clear(); 364 } 365 366 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 367 StringRef MainFile) { 368 if (!hasDiagnostics()) 369 return; 370 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 371 if (MainFile.empty()) 372 MainFile = "<stdin>"; 373 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 374 } else { 375 if (Mismatched > 0) 376 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 377 378 if (Missing > 0) 379 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 380 } 381 } 382 383 void CodeGenModule::Release() { 384 EmitDeferred(); 385 EmitVTablesOpportunistically(); 386 applyGlobalValReplacements(); 387 applyReplacements(); 388 checkAliases(); 389 EmitCXXGlobalInitFunc(); 390 EmitCXXGlobalDtorFunc(); 391 EmitCXXThreadLocalInitFunc(); 392 if (ObjCRuntime) 393 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 394 AddGlobalCtor(ObjCInitFunction); 395 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 396 CUDARuntime) { 397 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 398 AddGlobalCtor(CudaCtorFunction); 399 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 400 AddGlobalDtor(CudaDtorFunction); 401 } 402 if (OpenMPRuntime) 403 if (llvm::Function *OpenMPRegistrationFunction = 404 OpenMPRuntime->emitRegistrationFunction()) { 405 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 406 OpenMPRegistrationFunction : nullptr; 407 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 408 } 409 if (PGOReader) { 410 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 411 if (PGOStats.hasDiagnostics()) 412 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 413 } 414 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 415 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 416 EmitGlobalAnnotations(); 417 EmitStaticExternCAliases(); 418 EmitDeferredUnusedCoverageMappings(); 419 if (CoverageMapping) 420 CoverageMapping->emit(); 421 if (CodeGenOpts.SanitizeCfiCrossDso) { 422 CodeGenFunction(*this).EmitCfiCheckFail(); 423 CodeGenFunction(*this).EmitCfiCheckStub(); 424 } 425 emitAtAvailableLinkGuard(); 426 emitLLVMUsed(); 427 if (SanStats) 428 SanStats->finish(); 429 430 if (CodeGenOpts.Autolink && 431 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 432 EmitModuleLinkOptions(); 433 } 434 435 // Record mregparm value now so it is visible through rest of codegen. 436 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 437 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 438 CodeGenOpts.NumRegisterParameters); 439 440 if (CodeGenOpts.DwarfVersion) { 441 // We actually want the latest version when there are conflicts. 442 // We can change from Warning to Latest if such mode is supported. 443 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 444 CodeGenOpts.DwarfVersion); 445 } 446 if (CodeGenOpts.EmitCodeView) { 447 // Indicate that we want CodeView in the metadata. 448 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 449 } 450 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 451 // We don't support LTO with 2 with different StrictVTablePointers 452 // FIXME: we could support it by stripping all the information introduced 453 // by StrictVTablePointers. 454 455 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 456 457 llvm::Metadata *Ops[2] = { 458 llvm::MDString::get(VMContext, "StrictVTablePointers"), 459 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 460 llvm::Type::getInt32Ty(VMContext), 1))}; 461 462 getModule().addModuleFlag(llvm::Module::Require, 463 "StrictVTablePointersRequirement", 464 llvm::MDNode::get(VMContext, Ops)); 465 } 466 if (DebugInfo) 467 // We support a single version in the linked module. The LLVM 468 // parser will drop debug info with a different version number 469 // (and warn about it, too). 470 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 471 llvm::DEBUG_METADATA_VERSION); 472 473 // Width of wchar_t in bytes 474 uint64_t WCharWidth = 475 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 476 assert((LangOpts.ShortWChar || 477 llvm::TargetLibraryInfoImpl::getTargetWCharSize(Target.getTriple()) == 478 Target.getWCharWidth() / 8) && 479 "LLVM wchar_t size out of sync"); 480 481 // We need to record the widths of enums and wchar_t, so that we can generate 482 // the correct build attributes in the ARM backend. wchar_size is also used by 483 // TargetLibraryInfo. 484 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 485 486 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 487 if ( Arch == llvm::Triple::arm 488 || Arch == llvm::Triple::armeb 489 || Arch == llvm::Triple::thumb 490 || Arch == llvm::Triple::thumbeb) { 491 // The minimum width of an enum in bytes 492 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 493 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 494 } 495 496 if (CodeGenOpts.SanitizeCfiCrossDso) { 497 // Indicate that we want cross-DSO control flow integrity checks. 498 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 499 } 500 501 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 502 // Indicate whether __nvvm_reflect should be configured to flush denormal 503 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 504 // property.) 505 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 506 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 507 } 508 509 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 510 if (LangOpts.OpenCL) { 511 EmitOpenCLMetadata(); 512 // Emit SPIR version. 513 if (getTriple().getArch() == llvm::Triple::spir || 514 getTriple().getArch() == llvm::Triple::spir64) { 515 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 516 // opencl.spir.version named metadata. 517 llvm::Metadata *SPIRVerElts[] = { 518 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 519 Int32Ty, LangOpts.OpenCLVersion / 100)), 520 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 521 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 522 llvm::NamedMDNode *SPIRVerMD = 523 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 524 llvm::LLVMContext &Ctx = TheModule.getContext(); 525 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 526 } 527 } 528 529 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 530 assert(PLevel < 3 && "Invalid PIC Level"); 531 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 532 if (Context.getLangOpts().PIE) 533 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 534 } 535 536 SimplifyPersonality(); 537 538 if (getCodeGenOpts().EmitDeclMetadata) 539 EmitDeclMetadata(); 540 541 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 542 EmitCoverageFile(); 543 544 if (DebugInfo) 545 DebugInfo->finalize(); 546 547 EmitVersionIdentMetadata(); 548 549 EmitTargetMetadata(); 550 } 551 552 void CodeGenModule::EmitOpenCLMetadata() { 553 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 554 // opencl.ocl.version named metadata node. 555 llvm::Metadata *OCLVerElts[] = { 556 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 557 Int32Ty, LangOpts.OpenCLVersion / 100)), 558 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 559 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 560 llvm::NamedMDNode *OCLVerMD = 561 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 562 llvm::LLVMContext &Ctx = TheModule.getContext(); 563 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 564 } 565 566 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 567 // Make sure that this type is translated. 568 Types.UpdateCompletedType(TD); 569 } 570 571 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 572 // Make sure that this type is translated. 573 Types.RefreshTypeCacheForClass(RD); 574 } 575 576 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 577 if (!TBAA) 578 return nullptr; 579 return TBAA->getTBAAInfo(QTy); 580 } 581 582 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 583 if (!TBAA) 584 return nullptr; 585 return TBAA->getTBAAInfoForVTablePtr(); 586 } 587 588 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 589 if (!TBAA) 590 return nullptr; 591 return TBAA->getTBAAStructInfo(QTy); 592 } 593 594 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 595 llvm::MDNode *AccessN, 596 uint64_t O) { 597 if (!TBAA) 598 return nullptr; 599 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 600 } 601 602 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 603 /// and struct-path aware TBAA, the tag has the same format: 604 /// base type, access type and offset. 605 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 606 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 607 llvm::MDNode *TBAAInfo, 608 bool ConvertTypeToTag) { 609 if (ConvertTypeToTag && TBAA) 610 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 611 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 612 else 613 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 614 } 615 616 void CodeGenModule::DecorateInstructionWithInvariantGroup( 617 llvm::Instruction *I, const CXXRecordDecl *RD) { 618 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 619 llvm::MDNode::get(getLLVMContext(), {})); 620 } 621 622 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 623 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 624 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 625 } 626 627 /// ErrorUnsupported - Print out an error that codegen doesn't support the 628 /// specified stmt yet. 629 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 630 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 631 "cannot compile this %0 yet"); 632 std::string Msg = Type; 633 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 634 << Msg << S->getSourceRange(); 635 } 636 637 /// ErrorUnsupported - Print out an error that codegen doesn't support the 638 /// specified decl yet. 639 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 640 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 641 "cannot compile this %0 yet"); 642 std::string Msg = Type; 643 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 644 } 645 646 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 647 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 648 } 649 650 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 651 const NamedDecl *D) const { 652 // Internal definitions always have default visibility. 653 if (GV->hasLocalLinkage()) { 654 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 655 return; 656 } 657 658 // Set visibility for definitions. 659 LinkageInfo LV = D->getLinkageAndVisibility(); 660 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 661 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 662 } 663 664 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 665 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 666 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 667 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 668 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 669 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 670 } 671 672 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 673 CodeGenOptions::TLSModel M) { 674 switch (M) { 675 case CodeGenOptions::GeneralDynamicTLSModel: 676 return llvm::GlobalVariable::GeneralDynamicTLSModel; 677 case CodeGenOptions::LocalDynamicTLSModel: 678 return llvm::GlobalVariable::LocalDynamicTLSModel; 679 case CodeGenOptions::InitialExecTLSModel: 680 return llvm::GlobalVariable::InitialExecTLSModel; 681 case CodeGenOptions::LocalExecTLSModel: 682 return llvm::GlobalVariable::LocalExecTLSModel; 683 } 684 llvm_unreachable("Invalid TLS model!"); 685 } 686 687 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 688 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 689 690 llvm::GlobalValue::ThreadLocalMode TLM; 691 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 692 693 // Override the TLS model if it is explicitly specified. 694 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 695 TLM = GetLLVMTLSModel(Attr->getModel()); 696 } 697 698 GV->setThreadLocalMode(TLM); 699 } 700 701 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 702 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 703 704 // Some ABIs don't have constructor variants. Make sure that base and 705 // complete constructors get mangled the same. 706 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 707 if (!getTarget().getCXXABI().hasConstructorVariants()) { 708 CXXCtorType OrigCtorType = GD.getCtorType(); 709 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 710 if (OrigCtorType == Ctor_Base) 711 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 712 } 713 } 714 715 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 716 if (!FoundStr.empty()) 717 return FoundStr; 718 719 const auto *ND = cast<NamedDecl>(GD.getDecl()); 720 SmallString<256> Buffer; 721 StringRef Str; 722 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 723 llvm::raw_svector_ostream Out(Buffer); 724 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 725 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 726 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 727 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 728 else 729 getCXXABI().getMangleContext().mangleName(ND, Out); 730 Str = Out.str(); 731 } else { 732 IdentifierInfo *II = ND->getIdentifier(); 733 assert(II && "Attempt to mangle unnamed decl."); 734 const auto *FD = dyn_cast<FunctionDecl>(ND); 735 736 if (FD && 737 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 738 llvm::raw_svector_ostream Out(Buffer); 739 Out << "__regcall3__" << II->getName(); 740 Str = Out.str(); 741 } else { 742 Str = II->getName(); 743 } 744 } 745 746 // Keep the first result in the case of a mangling collision. 747 auto Result = Manglings.insert(std::make_pair(Str, GD)); 748 return FoundStr = Result.first->first(); 749 } 750 751 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 752 const BlockDecl *BD) { 753 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 754 const Decl *D = GD.getDecl(); 755 756 SmallString<256> Buffer; 757 llvm::raw_svector_ostream Out(Buffer); 758 if (!D) 759 MangleCtx.mangleGlobalBlock(BD, 760 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 761 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 762 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 763 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 764 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 765 else 766 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 767 768 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 769 return Result.first->first(); 770 } 771 772 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 773 return getModule().getNamedValue(Name); 774 } 775 776 /// AddGlobalCtor - Add a function to the list that will be called before 777 /// main() runs. 778 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 779 llvm::Constant *AssociatedData) { 780 // FIXME: Type coercion of void()* types. 781 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 782 } 783 784 /// AddGlobalDtor - Add a function to the list that will be called 785 /// when the module is unloaded. 786 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 787 // FIXME: Type coercion of void()* types. 788 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 789 } 790 791 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 792 if (Fns.empty()) return; 793 794 // Ctor function type is void()*. 795 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 796 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 797 798 // Get the type of a ctor entry, { i32, void ()*, i8* }. 799 llvm::StructType *CtorStructTy = llvm::StructType::get( 800 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 801 802 // Construct the constructor and destructor arrays. 803 ConstantInitBuilder builder(*this); 804 auto ctors = builder.beginArray(CtorStructTy); 805 for (const auto &I : Fns) { 806 auto ctor = ctors.beginStruct(CtorStructTy); 807 ctor.addInt(Int32Ty, I.Priority); 808 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 809 if (I.AssociatedData) 810 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 811 else 812 ctor.addNullPointer(VoidPtrTy); 813 ctor.finishAndAddTo(ctors); 814 } 815 816 auto list = 817 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 818 /*constant*/ false, 819 llvm::GlobalValue::AppendingLinkage); 820 821 // The LTO linker doesn't seem to like it when we set an alignment 822 // on appending variables. Take it off as a workaround. 823 list->setAlignment(0); 824 825 Fns.clear(); 826 } 827 828 llvm::GlobalValue::LinkageTypes 829 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 830 const auto *D = cast<FunctionDecl>(GD.getDecl()); 831 832 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 833 834 if (isa<CXXDestructorDecl>(D) && 835 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 836 GD.getDtorType())) { 837 // Destructor variants in the Microsoft C++ ABI are always internal or 838 // linkonce_odr thunks emitted on an as-needed basis. 839 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 840 : llvm::GlobalValue::LinkOnceODRLinkage; 841 } 842 843 if (isa<CXXConstructorDecl>(D) && 844 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 845 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 846 // Our approach to inheriting constructors is fundamentally different from 847 // that used by the MS ABI, so keep our inheriting constructor thunks 848 // internal rather than trying to pick an unambiguous mangling for them. 849 return llvm::GlobalValue::InternalLinkage; 850 } 851 852 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 853 } 854 855 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 856 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 857 858 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 859 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 860 // Don't dllexport/import destructor thunks. 861 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 862 return; 863 } 864 } 865 866 if (FD->hasAttr<DLLImportAttr>()) 867 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 868 else if (FD->hasAttr<DLLExportAttr>()) 869 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 870 else 871 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 872 } 873 874 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 875 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 876 if (!MDS) return nullptr; 877 878 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 879 } 880 881 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 882 llvm::Function *F) { 883 setNonAliasAttributes(D, F); 884 } 885 886 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 887 const CGFunctionInfo &Info, 888 llvm::Function *F) { 889 unsigned CallingConv; 890 llvm::AttributeList PAL; 891 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 892 F->setAttributes(PAL); 893 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 894 } 895 896 /// Determines whether the language options require us to model 897 /// unwind exceptions. We treat -fexceptions as mandating this 898 /// except under the fragile ObjC ABI with only ObjC exceptions 899 /// enabled. This means, for example, that C with -fexceptions 900 /// enables this. 901 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 902 // If exceptions are completely disabled, obviously this is false. 903 if (!LangOpts.Exceptions) return false; 904 905 // If C++ exceptions are enabled, this is true. 906 if (LangOpts.CXXExceptions) return true; 907 908 // If ObjC exceptions are enabled, this depends on the ABI. 909 if (LangOpts.ObjCExceptions) { 910 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 911 } 912 913 return true; 914 } 915 916 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 917 llvm::Function *F) { 918 llvm::AttrBuilder B; 919 920 if (CodeGenOpts.UnwindTables) 921 B.addAttribute(llvm::Attribute::UWTable); 922 923 if (!hasUnwindExceptions(LangOpts)) 924 B.addAttribute(llvm::Attribute::NoUnwind); 925 926 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 927 B.addAttribute(llvm::Attribute::StackProtect); 928 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 929 B.addAttribute(llvm::Attribute::StackProtectStrong); 930 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 931 B.addAttribute(llvm::Attribute::StackProtectReq); 932 933 if (!D) { 934 // If we don't have a declaration to control inlining, the function isn't 935 // explicitly marked as alwaysinline for semantic reasons, and inlining is 936 // disabled, mark the function as noinline. 937 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 938 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 939 B.addAttribute(llvm::Attribute::NoInline); 940 941 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 942 return; 943 } 944 945 // Track whether we need to add the optnone LLVM attribute, 946 // starting with the default for this optimization level. 947 bool ShouldAddOptNone = 948 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 949 // We can't add optnone in the following cases, it won't pass the verifier. 950 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 951 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 952 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 953 954 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 955 B.addAttribute(llvm::Attribute::OptimizeNone); 956 957 // OptimizeNone implies noinline; we should not be inlining such functions. 958 B.addAttribute(llvm::Attribute::NoInline); 959 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 960 "OptimizeNone and AlwaysInline on same function!"); 961 962 // We still need to handle naked functions even though optnone subsumes 963 // much of their semantics. 964 if (D->hasAttr<NakedAttr>()) 965 B.addAttribute(llvm::Attribute::Naked); 966 967 // OptimizeNone wins over OptimizeForSize and MinSize. 968 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 969 F->removeFnAttr(llvm::Attribute::MinSize); 970 } else if (D->hasAttr<NakedAttr>()) { 971 // Naked implies noinline: we should not be inlining such functions. 972 B.addAttribute(llvm::Attribute::Naked); 973 B.addAttribute(llvm::Attribute::NoInline); 974 } else if (D->hasAttr<NoDuplicateAttr>()) { 975 B.addAttribute(llvm::Attribute::NoDuplicate); 976 } else if (D->hasAttr<NoInlineAttr>()) { 977 B.addAttribute(llvm::Attribute::NoInline); 978 } else if (D->hasAttr<AlwaysInlineAttr>() && 979 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 980 // (noinline wins over always_inline, and we can't specify both in IR) 981 B.addAttribute(llvm::Attribute::AlwaysInline); 982 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 983 // If we're not inlining, then force everything that isn't always_inline to 984 // carry an explicit noinline attribute. 985 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 986 B.addAttribute(llvm::Attribute::NoInline); 987 } else { 988 // Otherwise, propagate the inline hint attribute and potentially use its 989 // absence to mark things as noinline. 990 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 991 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 992 return Redecl->isInlineSpecified(); 993 })) { 994 B.addAttribute(llvm::Attribute::InlineHint); 995 } else if (CodeGenOpts.getInlining() == 996 CodeGenOptions::OnlyHintInlining && 997 !FD->isInlined() && 998 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 999 B.addAttribute(llvm::Attribute::NoInline); 1000 } 1001 } 1002 } 1003 1004 // Add other optimization related attributes if we are optimizing this 1005 // function. 1006 if (!D->hasAttr<OptimizeNoneAttr>()) { 1007 if (D->hasAttr<ColdAttr>()) { 1008 if (!ShouldAddOptNone) 1009 B.addAttribute(llvm::Attribute::OptimizeForSize); 1010 B.addAttribute(llvm::Attribute::Cold); 1011 } 1012 1013 if (D->hasAttr<MinSizeAttr>()) 1014 B.addAttribute(llvm::Attribute::MinSize); 1015 } 1016 1017 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1018 1019 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1020 if (alignment) 1021 F->setAlignment(alignment); 1022 1023 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1024 // reserve a bit for differentiating between virtual and non-virtual member 1025 // functions. If the current target's C++ ABI requires this and this is a 1026 // member function, set its alignment accordingly. 1027 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1028 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1029 F->setAlignment(2); 1030 } 1031 1032 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1033 if (CodeGenOpts.SanitizeCfiCrossDso) 1034 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1035 CreateFunctionTypeMetadata(FD, F); 1036 } 1037 1038 void CodeGenModule::SetCommonAttributes(const Decl *D, 1039 llvm::GlobalValue *GV) { 1040 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1041 setGlobalVisibility(GV, ND); 1042 else 1043 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1044 1045 if (D && D->hasAttr<UsedAttr>()) 1046 addUsedGlobal(GV); 1047 } 1048 1049 void CodeGenModule::setAliasAttributes(const Decl *D, 1050 llvm::GlobalValue *GV) { 1051 SetCommonAttributes(D, GV); 1052 1053 // Process the dllexport attribute based on whether the original definition 1054 // (not necessarily the aliasee) was exported. 1055 if (D->hasAttr<DLLExportAttr>()) 1056 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1057 } 1058 1059 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1060 llvm::GlobalObject *GO) { 1061 SetCommonAttributes(D, GO); 1062 1063 if (D) { 1064 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1065 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1066 GV->addAttribute("bss-section", SA->getName()); 1067 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1068 GV->addAttribute("data-section", SA->getName()); 1069 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1070 GV->addAttribute("rodata-section", SA->getName()); 1071 } 1072 1073 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1074 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1075 if (!D->getAttr<SectionAttr>()) 1076 F->addFnAttr("implicit-section-name", SA->getName()); 1077 } 1078 1079 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1080 GO->setSection(SA->getName()); 1081 } 1082 1083 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition); 1084 } 1085 1086 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1087 llvm::Function *F, 1088 const CGFunctionInfo &FI) { 1089 SetLLVMFunctionAttributes(D, FI, F); 1090 SetLLVMFunctionAttributesForDefinition(D, F); 1091 1092 F->setLinkage(llvm::Function::InternalLinkage); 1093 1094 setNonAliasAttributes(D, F); 1095 } 1096 1097 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 1098 const NamedDecl *ND) { 1099 // Set linkage and visibility in case we never see a definition. 1100 LinkageInfo LV = ND->getLinkageAndVisibility(); 1101 if (!isExternallyVisible(LV.getLinkage())) { 1102 // Don't set internal linkage on declarations. 1103 } else { 1104 if (ND->hasAttr<DLLImportAttr>()) { 1105 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1106 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1107 } else if (ND->hasAttr<DLLExportAttr>()) { 1108 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1109 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1110 // "extern_weak" is overloaded in LLVM; we probably should have 1111 // separate linkage types for this. 1112 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1113 } 1114 1115 // Set visibility on a declaration only if it's explicit. 1116 if (LV.isVisibilityExplicit()) 1117 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1118 } 1119 } 1120 1121 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1122 llvm::Function *F) { 1123 // Only if we are checking indirect calls. 1124 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1125 return; 1126 1127 // Non-static class methods are handled via vtable pointer checks elsewhere. 1128 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1129 return; 1130 1131 // Additionally, if building with cross-DSO support... 1132 if (CodeGenOpts.SanitizeCfiCrossDso) { 1133 // Skip available_externally functions. They won't be codegen'ed in the 1134 // current module anyway. 1135 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1136 return; 1137 } 1138 1139 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1140 F->addTypeMetadata(0, MD); 1141 1142 // Emit a hash-based bit set entry for cross-DSO calls. 1143 if (CodeGenOpts.SanitizeCfiCrossDso) 1144 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1145 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1146 } 1147 1148 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1149 bool IsIncompleteFunction, 1150 bool IsThunk, 1151 ForDefinition_t IsForDefinition) { 1152 1153 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1154 // If this is an intrinsic function, set the function's attributes 1155 // to the intrinsic's attributes. 1156 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1157 return; 1158 } 1159 1160 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1161 1162 if (!IsIncompleteFunction) { 1163 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1164 // Setup target-specific attributes. 1165 if (!IsForDefinition) 1166 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this, 1167 NotForDefinition); 1168 } 1169 1170 // Add the Returned attribute for "this", except for iOS 5 and earlier 1171 // where substantial code, including the libstdc++ dylib, was compiled with 1172 // GCC and does not actually return "this". 1173 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1174 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1175 assert(!F->arg_empty() && 1176 F->arg_begin()->getType() 1177 ->canLosslesslyBitCastTo(F->getReturnType()) && 1178 "unexpected this return"); 1179 F->addAttribute(1, llvm::Attribute::Returned); 1180 } 1181 1182 // Only a few attributes are set on declarations; these may later be 1183 // overridden by a definition. 1184 1185 setLinkageAndVisibilityForGV(F, FD); 1186 1187 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1188 F->addFnAttr("implicit-section-name"); 1189 } 1190 1191 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1192 F->setSection(SA->getName()); 1193 1194 if (FD->isReplaceableGlobalAllocationFunction()) { 1195 // A replaceable global allocation function does not act like a builtin by 1196 // default, only if it is invoked by a new-expression or delete-expression. 1197 F->addAttribute(llvm::AttributeList::FunctionIndex, 1198 llvm::Attribute::NoBuiltin); 1199 1200 // A sane operator new returns a non-aliasing pointer. 1201 // FIXME: Also add NonNull attribute to the return value 1202 // for the non-nothrow forms? 1203 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1204 if (getCodeGenOpts().AssumeSaneOperatorNew && 1205 (Kind == OO_New || Kind == OO_Array_New)) 1206 F->addAttribute(llvm::AttributeList::ReturnIndex, 1207 llvm::Attribute::NoAlias); 1208 } 1209 1210 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1211 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1212 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1213 if (MD->isVirtual()) 1214 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1215 1216 // Don't emit entries for function declarations in the cross-DSO mode. This 1217 // is handled with better precision by the receiving DSO. 1218 if (!CodeGenOpts.SanitizeCfiCrossDso) 1219 CreateFunctionTypeMetadata(FD, F); 1220 } 1221 1222 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1223 assert(!GV->isDeclaration() && 1224 "Only globals with definition can force usage."); 1225 LLVMUsed.emplace_back(GV); 1226 } 1227 1228 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1229 assert(!GV->isDeclaration() && 1230 "Only globals with definition can force usage."); 1231 LLVMCompilerUsed.emplace_back(GV); 1232 } 1233 1234 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1235 std::vector<llvm::WeakTrackingVH> &List) { 1236 // Don't create llvm.used if there is no need. 1237 if (List.empty()) 1238 return; 1239 1240 // Convert List to what ConstantArray needs. 1241 SmallVector<llvm::Constant*, 8> UsedArray; 1242 UsedArray.resize(List.size()); 1243 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1244 UsedArray[i] = 1245 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1246 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1247 } 1248 1249 if (UsedArray.empty()) 1250 return; 1251 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1252 1253 auto *GV = new llvm::GlobalVariable( 1254 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1255 llvm::ConstantArray::get(ATy, UsedArray), Name); 1256 1257 GV->setSection("llvm.metadata"); 1258 } 1259 1260 void CodeGenModule::emitLLVMUsed() { 1261 emitUsed(*this, "llvm.used", LLVMUsed); 1262 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1263 } 1264 1265 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1266 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1267 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1268 } 1269 1270 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1271 llvm::SmallString<32> Opt; 1272 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1273 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1274 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1275 } 1276 1277 void CodeGenModule::AddDependentLib(StringRef Lib) { 1278 llvm::SmallString<24> Opt; 1279 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1280 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1281 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1282 } 1283 1284 /// \brief Add link options implied by the given module, including modules 1285 /// it depends on, using a postorder walk. 1286 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1287 SmallVectorImpl<llvm::MDNode *> &Metadata, 1288 llvm::SmallPtrSet<Module *, 16> &Visited) { 1289 // Import this module's parent. 1290 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1291 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1292 } 1293 1294 // Import this module's dependencies. 1295 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1296 if (Visited.insert(Mod->Imports[I - 1]).second) 1297 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1298 } 1299 1300 // Add linker options to link against the libraries/frameworks 1301 // described by this module. 1302 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1303 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1304 // Link against a framework. Frameworks are currently Darwin only, so we 1305 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1306 if (Mod->LinkLibraries[I-1].IsFramework) { 1307 llvm::Metadata *Args[2] = { 1308 llvm::MDString::get(Context, "-framework"), 1309 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1310 1311 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1312 continue; 1313 } 1314 1315 // Link against a library. 1316 llvm::SmallString<24> Opt; 1317 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1318 Mod->LinkLibraries[I-1].Library, Opt); 1319 auto *OptString = llvm::MDString::get(Context, Opt); 1320 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1321 } 1322 } 1323 1324 void CodeGenModule::EmitModuleLinkOptions() { 1325 // Collect the set of all of the modules we want to visit to emit link 1326 // options, which is essentially the imported modules and all of their 1327 // non-explicit child modules. 1328 llvm::SetVector<clang::Module *> LinkModules; 1329 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1330 SmallVector<clang::Module *, 16> Stack; 1331 1332 // Seed the stack with imported modules. 1333 for (Module *M : ImportedModules) { 1334 // Do not add any link flags when an implementation TU of a module imports 1335 // a header of that same module. 1336 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1337 !getLangOpts().isCompilingModule()) 1338 continue; 1339 if (Visited.insert(M).second) 1340 Stack.push_back(M); 1341 } 1342 1343 // Find all of the modules to import, making a little effort to prune 1344 // non-leaf modules. 1345 while (!Stack.empty()) { 1346 clang::Module *Mod = Stack.pop_back_val(); 1347 1348 bool AnyChildren = false; 1349 1350 // Visit the submodules of this module. 1351 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1352 SubEnd = Mod->submodule_end(); 1353 Sub != SubEnd; ++Sub) { 1354 // Skip explicit children; they need to be explicitly imported to be 1355 // linked against. 1356 if ((*Sub)->IsExplicit) 1357 continue; 1358 1359 if (Visited.insert(*Sub).second) { 1360 Stack.push_back(*Sub); 1361 AnyChildren = true; 1362 } 1363 } 1364 1365 // We didn't find any children, so add this module to the list of 1366 // modules to link against. 1367 if (!AnyChildren) { 1368 LinkModules.insert(Mod); 1369 } 1370 } 1371 1372 // Add link options for all of the imported modules in reverse topological 1373 // order. We don't do anything to try to order import link flags with respect 1374 // to linker options inserted by things like #pragma comment(). 1375 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1376 Visited.clear(); 1377 for (Module *M : LinkModules) 1378 if (Visited.insert(M).second) 1379 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1380 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1381 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1382 1383 // Add the linker options metadata flag. 1384 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1385 for (auto *MD : LinkerOptionsMetadata) 1386 NMD->addOperand(MD); 1387 } 1388 1389 void CodeGenModule::EmitDeferred() { 1390 // Emit code for any potentially referenced deferred decls. Since a 1391 // previously unused static decl may become used during the generation of code 1392 // for a static function, iterate until no changes are made. 1393 1394 if (!DeferredVTables.empty()) { 1395 EmitDeferredVTables(); 1396 1397 // Emitting a vtable doesn't directly cause more vtables to 1398 // become deferred, although it can cause functions to be 1399 // emitted that then need those vtables. 1400 assert(DeferredVTables.empty()); 1401 } 1402 1403 // Stop if we're out of both deferred vtables and deferred declarations. 1404 if (DeferredDeclsToEmit.empty()) 1405 return; 1406 1407 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1408 // work, it will not interfere with this. 1409 std::vector<GlobalDecl> CurDeclsToEmit; 1410 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1411 1412 for (GlobalDecl &D : CurDeclsToEmit) { 1413 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1414 // to get GlobalValue with exactly the type we need, not something that 1415 // might had been created for another decl with the same mangled name but 1416 // different type. 1417 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1418 GetAddrOfGlobal(D, ForDefinition)); 1419 1420 // In case of different address spaces, we may still get a cast, even with 1421 // IsForDefinition equal to true. Query mangled names table to get 1422 // GlobalValue. 1423 if (!GV) 1424 GV = GetGlobalValue(getMangledName(D)); 1425 1426 // Make sure GetGlobalValue returned non-null. 1427 assert(GV); 1428 1429 // Check to see if we've already emitted this. This is necessary 1430 // for a couple of reasons: first, decls can end up in the 1431 // deferred-decls queue multiple times, and second, decls can end 1432 // up with definitions in unusual ways (e.g. by an extern inline 1433 // function acquiring a strong function redefinition). Just 1434 // ignore these cases. 1435 if (!GV->isDeclaration()) 1436 continue; 1437 1438 // Otherwise, emit the definition and move on to the next one. 1439 EmitGlobalDefinition(D, GV); 1440 1441 // If we found out that we need to emit more decls, do that recursively. 1442 // This has the advantage that the decls are emitted in a DFS and related 1443 // ones are close together, which is convenient for testing. 1444 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1445 EmitDeferred(); 1446 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1447 } 1448 } 1449 } 1450 1451 void CodeGenModule::EmitVTablesOpportunistically() { 1452 // Try to emit external vtables as available_externally if they have emitted 1453 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1454 // is not allowed to create new references to things that need to be emitted 1455 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1456 1457 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1458 && "Only emit opportunistic vtables with optimizations"); 1459 1460 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1461 assert(getVTables().isVTableExternal(RD) && 1462 "This queue should only contain external vtables"); 1463 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1464 VTables.GenerateClassData(RD); 1465 } 1466 OpportunisticVTables.clear(); 1467 } 1468 1469 void CodeGenModule::EmitGlobalAnnotations() { 1470 if (Annotations.empty()) 1471 return; 1472 1473 // Create a new global variable for the ConstantStruct in the Module. 1474 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1475 Annotations[0]->getType(), Annotations.size()), Annotations); 1476 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1477 llvm::GlobalValue::AppendingLinkage, 1478 Array, "llvm.global.annotations"); 1479 gv->setSection(AnnotationSection); 1480 } 1481 1482 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1483 llvm::Constant *&AStr = AnnotationStrings[Str]; 1484 if (AStr) 1485 return AStr; 1486 1487 // Not found yet, create a new global. 1488 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1489 auto *gv = 1490 new llvm::GlobalVariable(getModule(), s->getType(), true, 1491 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1492 gv->setSection(AnnotationSection); 1493 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1494 AStr = gv; 1495 return gv; 1496 } 1497 1498 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1499 SourceManager &SM = getContext().getSourceManager(); 1500 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1501 if (PLoc.isValid()) 1502 return EmitAnnotationString(PLoc.getFilename()); 1503 return EmitAnnotationString(SM.getBufferName(Loc)); 1504 } 1505 1506 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1507 SourceManager &SM = getContext().getSourceManager(); 1508 PresumedLoc PLoc = SM.getPresumedLoc(L); 1509 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1510 SM.getExpansionLineNumber(L); 1511 return llvm::ConstantInt::get(Int32Ty, LineNo); 1512 } 1513 1514 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1515 const AnnotateAttr *AA, 1516 SourceLocation L) { 1517 // Get the globals for file name, annotation, and the line number. 1518 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1519 *UnitGV = EmitAnnotationUnit(L), 1520 *LineNoCst = EmitAnnotationLineNo(L); 1521 1522 // Create the ConstantStruct for the global annotation. 1523 llvm::Constant *Fields[4] = { 1524 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1525 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1526 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1527 LineNoCst 1528 }; 1529 return llvm::ConstantStruct::getAnon(Fields); 1530 } 1531 1532 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1533 llvm::GlobalValue *GV) { 1534 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1535 // Get the struct elements for these annotations. 1536 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1537 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1538 } 1539 1540 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1541 SourceLocation Loc) const { 1542 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1543 // Blacklist by function name. 1544 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1545 return true; 1546 // Blacklist by location. 1547 if (Loc.isValid()) 1548 return SanitizerBL.isBlacklistedLocation(Loc); 1549 // If location is unknown, this may be a compiler-generated function. Assume 1550 // it's located in the main file. 1551 auto &SM = Context.getSourceManager(); 1552 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1553 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1554 } 1555 return false; 1556 } 1557 1558 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1559 SourceLocation Loc, QualType Ty, 1560 StringRef Category) const { 1561 // For now globals can be blacklisted only in ASan and KASan. 1562 if (!LangOpts.Sanitize.hasOneOf( 1563 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1564 return false; 1565 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1566 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1567 return true; 1568 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1569 return true; 1570 // Check global type. 1571 if (!Ty.isNull()) { 1572 // Drill down the array types: if global variable of a fixed type is 1573 // blacklisted, we also don't instrument arrays of them. 1574 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1575 Ty = AT->getElementType(); 1576 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1577 // We allow to blacklist only record types (classes, structs etc.) 1578 if (Ty->isRecordType()) { 1579 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1580 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1581 return true; 1582 } 1583 } 1584 return false; 1585 } 1586 1587 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1588 StringRef Category) const { 1589 if (!LangOpts.XRayInstrument) 1590 return false; 1591 const auto &XRayFilter = getContext().getXRayFilter(); 1592 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1593 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1594 if (Loc.isValid()) 1595 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1596 if (Attr == ImbueAttr::NONE) 1597 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1598 switch (Attr) { 1599 case ImbueAttr::NONE: 1600 return false; 1601 case ImbueAttr::ALWAYS: 1602 Fn->addFnAttr("function-instrument", "xray-always"); 1603 break; 1604 case ImbueAttr::ALWAYS_ARG1: 1605 Fn->addFnAttr("function-instrument", "xray-always"); 1606 Fn->addFnAttr("xray-log-args", "1"); 1607 break; 1608 case ImbueAttr::NEVER: 1609 Fn->addFnAttr("function-instrument", "xray-never"); 1610 break; 1611 } 1612 return true; 1613 } 1614 1615 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1616 // Never defer when EmitAllDecls is specified. 1617 if (LangOpts.EmitAllDecls) 1618 return true; 1619 1620 return getContext().DeclMustBeEmitted(Global); 1621 } 1622 1623 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1624 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1625 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1626 // Implicit template instantiations may change linkage if they are later 1627 // explicitly instantiated, so they should not be emitted eagerly. 1628 return false; 1629 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1630 if (Context.getInlineVariableDefinitionKind(VD) == 1631 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1632 // A definition of an inline constexpr static data member may change 1633 // linkage later if it's redeclared outside the class. 1634 return false; 1635 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1636 // codegen for global variables, because they may be marked as threadprivate. 1637 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1638 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1639 return false; 1640 1641 return true; 1642 } 1643 1644 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1645 const CXXUuidofExpr* E) { 1646 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1647 // well-formed. 1648 StringRef Uuid = E->getUuidStr(); 1649 std::string Name = "_GUID_" + Uuid.lower(); 1650 std::replace(Name.begin(), Name.end(), '-', '_'); 1651 1652 // The UUID descriptor should be pointer aligned. 1653 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1654 1655 // Look for an existing global. 1656 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1657 return ConstantAddress(GV, Alignment); 1658 1659 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1660 assert(Init && "failed to initialize as constant"); 1661 1662 auto *GV = new llvm::GlobalVariable( 1663 getModule(), Init->getType(), 1664 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1665 if (supportsCOMDAT()) 1666 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1667 return ConstantAddress(GV, Alignment); 1668 } 1669 1670 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1671 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1672 assert(AA && "No alias?"); 1673 1674 CharUnits Alignment = getContext().getDeclAlign(VD); 1675 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1676 1677 // See if there is already something with the target's name in the module. 1678 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1679 if (Entry) { 1680 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1681 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1682 return ConstantAddress(Ptr, Alignment); 1683 } 1684 1685 llvm::Constant *Aliasee; 1686 if (isa<llvm::FunctionType>(DeclTy)) 1687 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1688 GlobalDecl(cast<FunctionDecl>(VD)), 1689 /*ForVTable=*/false); 1690 else 1691 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1692 llvm::PointerType::getUnqual(DeclTy), 1693 nullptr); 1694 1695 auto *F = cast<llvm::GlobalValue>(Aliasee); 1696 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1697 WeakRefReferences.insert(F); 1698 1699 return ConstantAddress(Aliasee, Alignment); 1700 } 1701 1702 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1703 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1704 1705 // Weak references don't produce any output by themselves. 1706 if (Global->hasAttr<WeakRefAttr>()) 1707 return; 1708 1709 // If this is an alias definition (which otherwise looks like a declaration) 1710 // emit it now. 1711 if (Global->hasAttr<AliasAttr>()) 1712 return EmitAliasDefinition(GD); 1713 1714 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1715 if (Global->hasAttr<IFuncAttr>()) 1716 return emitIFuncDefinition(GD); 1717 1718 // If this is CUDA, be selective about which declarations we emit. 1719 if (LangOpts.CUDA) { 1720 if (LangOpts.CUDAIsDevice) { 1721 if (!Global->hasAttr<CUDADeviceAttr>() && 1722 !Global->hasAttr<CUDAGlobalAttr>() && 1723 !Global->hasAttr<CUDAConstantAttr>() && 1724 !Global->hasAttr<CUDASharedAttr>()) 1725 return; 1726 } else { 1727 // We need to emit host-side 'shadows' for all global 1728 // device-side variables because the CUDA runtime needs their 1729 // size and host-side address in order to provide access to 1730 // their device-side incarnations. 1731 1732 // So device-only functions are the only things we skip. 1733 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1734 Global->hasAttr<CUDADeviceAttr>()) 1735 return; 1736 1737 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1738 "Expected Variable or Function"); 1739 } 1740 } 1741 1742 if (LangOpts.OpenMP) { 1743 // If this is OpenMP device, check if it is legal to emit this global 1744 // normally. 1745 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1746 return; 1747 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1748 if (MustBeEmitted(Global)) 1749 EmitOMPDeclareReduction(DRD); 1750 return; 1751 } 1752 } 1753 1754 // Ignore declarations, they will be emitted on their first use. 1755 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1756 // Forward declarations are emitted lazily on first use. 1757 if (!FD->doesThisDeclarationHaveABody()) { 1758 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1759 return; 1760 1761 StringRef MangledName = getMangledName(GD); 1762 1763 // Compute the function info and LLVM type. 1764 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1765 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1766 1767 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1768 /*DontDefer=*/false); 1769 return; 1770 } 1771 } else { 1772 const auto *VD = cast<VarDecl>(Global); 1773 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1774 // We need to emit device-side global CUDA variables even if a 1775 // variable does not have a definition -- we still need to define 1776 // host-side shadow for it. 1777 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1778 !VD->hasDefinition() && 1779 (VD->hasAttr<CUDAConstantAttr>() || 1780 VD->hasAttr<CUDADeviceAttr>()); 1781 if (!MustEmitForCuda && 1782 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1783 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1784 // If this declaration may have caused an inline variable definition to 1785 // change linkage, make sure that it's emitted. 1786 if (Context.getInlineVariableDefinitionKind(VD) == 1787 ASTContext::InlineVariableDefinitionKind::Strong) 1788 GetAddrOfGlobalVar(VD); 1789 return; 1790 } 1791 } 1792 1793 // Defer code generation to first use when possible, e.g. if this is an inline 1794 // function. If the global must always be emitted, do it eagerly if possible 1795 // to benefit from cache locality. 1796 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1797 // Emit the definition if it can't be deferred. 1798 EmitGlobalDefinition(GD); 1799 return; 1800 } 1801 1802 // If we're deferring emission of a C++ variable with an 1803 // initializer, remember the order in which it appeared in the file. 1804 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1805 cast<VarDecl>(Global)->hasInit()) { 1806 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1807 CXXGlobalInits.push_back(nullptr); 1808 } 1809 1810 StringRef MangledName = getMangledName(GD); 1811 if (GetGlobalValue(MangledName) != nullptr) { 1812 // The value has already been used and should therefore be emitted. 1813 addDeferredDeclToEmit(GD); 1814 } else if (MustBeEmitted(Global)) { 1815 // The value must be emitted, but cannot be emitted eagerly. 1816 assert(!MayBeEmittedEagerly(Global)); 1817 addDeferredDeclToEmit(GD); 1818 } else { 1819 // Otherwise, remember that we saw a deferred decl with this name. The 1820 // first use of the mangled name will cause it to move into 1821 // DeferredDeclsToEmit. 1822 DeferredDecls[MangledName] = GD; 1823 } 1824 } 1825 1826 // Check if T is a class type with a destructor that's not dllimport. 1827 static bool HasNonDllImportDtor(QualType T) { 1828 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1829 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1830 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1831 return true; 1832 1833 return false; 1834 } 1835 1836 namespace { 1837 struct FunctionIsDirectlyRecursive : 1838 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1839 const StringRef Name; 1840 const Builtin::Context &BI; 1841 bool Result; 1842 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1843 Name(N), BI(C), Result(false) { 1844 } 1845 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1846 1847 bool TraverseCallExpr(CallExpr *E) { 1848 const FunctionDecl *FD = E->getDirectCallee(); 1849 if (!FD) 1850 return true; 1851 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1852 if (Attr && Name == Attr->getLabel()) { 1853 Result = true; 1854 return false; 1855 } 1856 unsigned BuiltinID = FD->getBuiltinID(); 1857 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1858 return true; 1859 StringRef BuiltinName = BI.getName(BuiltinID); 1860 if (BuiltinName.startswith("__builtin_") && 1861 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1862 Result = true; 1863 return false; 1864 } 1865 return true; 1866 } 1867 }; 1868 1869 // Make sure we're not referencing non-imported vars or functions. 1870 struct DLLImportFunctionVisitor 1871 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1872 bool SafeToInline = true; 1873 1874 bool shouldVisitImplicitCode() const { return true; } 1875 1876 bool VisitVarDecl(VarDecl *VD) { 1877 if (VD->getTLSKind()) { 1878 // A thread-local variable cannot be imported. 1879 SafeToInline = false; 1880 return SafeToInline; 1881 } 1882 1883 // A variable definition might imply a destructor call. 1884 if (VD->isThisDeclarationADefinition()) 1885 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1886 1887 return SafeToInline; 1888 } 1889 1890 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1891 if (const auto *D = E->getTemporary()->getDestructor()) 1892 SafeToInline = D->hasAttr<DLLImportAttr>(); 1893 return SafeToInline; 1894 } 1895 1896 bool VisitDeclRefExpr(DeclRefExpr *E) { 1897 ValueDecl *VD = E->getDecl(); 1898 if (isa<FunctionDecl>(VD)) 1899 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1900 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1901 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1902 return SafeToInline; 1903 } 1904 1905 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1906 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1907 return SafeToInline; 1908 } 1909 1910 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1911 CXXMethodDecl *M = E->getMethodDecl(); 1912 if (!M) { 1913 // Call through a pointer to member function. This is safe to inline. 1914 SafeToInline = true; 1915 } else { 1916 SafeToInline = M->hasAttr<DLLImportAttr>(); 1917 } 1918 return SafeToInline; 1919 } 1920 1921 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1922 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1923 return SafeToInline; 1924 } 1925 1926 bool VisitCXXNewExpr(CXXNewExpr *E) { 1927 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1928 return SafeToInline; 1929 } 1930 }; 1931 } 1932 1933 // isTriviallyRecursive - Check if this function calls another 1934 // decl that, because of the asm attribute or the other decl being a builtin, 1935 // ends up pointing to itself. 1936 bool 1937 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1938 StringRef Name; 1939 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1940 // asm labels are a special kind of mangling we have to support. 1941 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1942 if (!Attr) 1943 return false; 1944 Name = Attr->getLabel(); 1945 } else { 1946 Name = FD->getName(); 1947 } 1948 1949 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1950 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1951 return Walker.Result; 1952 } 1953 1954 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1955 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1956 return true; 1957 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1958 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1959 return false; 1960 1961 if (F->hasAttr<DLLImportAttr>()) { 1962 // Check whether it would be safe to inline this dllimport function. 1963 DLLImportFunctionVisitor Visitor; 1964 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1965 if (!Visitor.SafeToInline) 1966 return false; 1967 1968 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1969 // Implicit destructor invocations aren't captured in the AST, so the 1970 // check above can't see them. Check for them manually here. 1971 for (const Decl *Member : Dtor->getParent()->decls()) 1972 if (isa<FieldDecl>(Member)) 1973 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1974 return false; 1975 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1976 if (HasNonDllImportDtor(B.getType())) 1977 return false; 1978 } 1979 } 1980 1981 // PR9614. Avoid cases where the source code is lying to us. An available 1982 // externally function should have an equivalent function somewhere else, 1983 // but a function that calls itself is clearly not equivalent to the real 1984 // implementation. 1985 // This happens in glibc's btowc and in some configure checks. 1986 return !isTriviallyRecursive(F); 1987 } 1988 1989 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 1990 return CodeGenOpts.OptimizationLevel > 0; 1991 } 1992 1993 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1994 const auto *D = cast<ValueDecl>(GD.getDecl()); 1995 1996 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1997 Context.getSourceManager(), 1998 "Generating code for declaration"); 1999 2000 if (isa<FunctionDecl>(D)) { 2001 // At -O0, don't generate IR for functions with available_externally 2002 // linkage. 2003 if (!shouldEmitFunction(GD)) 2004 return; 2005 2006 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2007 // Make sure to emit the definition(s) before we emit the thunks. 2008 // This is necessary for the generation of certain thunks. 2009 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2010 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2011 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2012 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2013 else 2014 EmitGlobalFunctionDefinition(GD, GV); 2015 2016 if (Method->isVirtual()) 2017 getVTables().EmitThunks(GD); 2018 2019 return; 2020 } 2021 2022 return EmitGlobalFunctionDefinition(GD, GV); 2023 } 2024 2025 if (const auto *VD = dyn_cast<VarDecl>(D)) 2026 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2027 2028 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2029 } 2030 2031 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2032 llvm::Function *NewFn); 2033 2034 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2035 /// module, create and return an llvm Function with the specified type. If there 2036 /// is something in the module with the specified name, return it potentially 2037 /// bitcasted to the right type. 2038 /// 2039 /// If D is non-null, it specifies a decl that correspond to this. This is used 2040 /// to set the attributes on the function when it is first created. 2041 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2042 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2043 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2044 ForDefinition_t IsForDefinition) { 2045 const Decl *D = GD.getDecl(); 2046 2047 // Lookup the entry, lazily creating it if necessary. 2048 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2049 if (Entry) { 2050 if (WeakRefReferences.erase(Entry)) { 2051 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2052 if (FD && !FD->hasAttr<WeakAttr>()) 2053 Entry->setLinkage(llvm::Function::ExternalLinkage); 2054 } 2055 2056 // Handle dropped DLL attributes. 2057 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2058 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2059 2060 // If there are two attempts to define the same mangled name, issue an 2061 // error. 2062 if (IsForDefinition && !Entry->isDeclaration()) { 2063 GlobalDecl OtherGD; 2064 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2065 // to make sure that we issue an error only once. 2066 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2067 (GD.getCanonicalDecl().getDecl() != 2068 OtherGD.getCanonicalDecl().getDecl()) && 2069 DiagnosedConflictingDefinitions.insert(GD).second) { 2070 getDiags().Report(D->getLocation(), 2071 diag::err_duplicate_mangled_name); 2072 getDiags().Report(OtherGD.getDecl()->getLocation(), 2073 diag::note_previous_definition); 2074 } 2075 } 2076 2077 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2078 (Entry->getType()->getElementType() == Ty)) { 2079 return Entry; 2080 } 2081 2082 // Make sure the result is of the correct type. 2083 // (If function is requested for a definition, we always need to create a new 2084 // function, not just return a bitcast.) 2085 if (!IsForDefinition) 2086 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2087 } 2088 2089 // This function doesn't have a complete type (for example, the return 2090 // type is an incomplete struct). Use a fake type instead, and make 2091 // sure not to try to set attributes. 2092 bool IsIncompleteFunction = false; 2093 2094 llvm::FunctionType *FTy; 2095 if (isa<llvm::FunctionType>(Ty)) { 2096 FTy = cast<llvm::FunctionType>(Ty); 2097 } else { 2098 FTy = llvm::FunctionType::get(VoidTy, false); 2099 IsIncompleteFunction = true; 2100 } 2101 2102 llvm::Function *F = 2103 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2104 Entry ? StringRef() : MangledName, &getModule()); 2105 2106 // If we already created a function with the same mangled name (but different 2107 // type) before, take its name and add it to the list of functions to be 2108 // replaced with F at the end of CodeGen. 2109 // 2110 // This happens if there is a prototype for a function (e.g. "int f()") and 2111 // then a definition of a different type (e.g. "int f(int x)"). 2112 if (Entry) { 2113 F->takeName(Entry); 2114 2115 // This might be an implementation of a function without a prototype, in 2116 // which case, try to do special replacement of calls which match the new 2117 // prototype. The really key thing here is that we also potentially drop 2118 // arguments from the call site so as to make a direct call, which makes the 2119 // inliner happier and suppresses a number of optimizer warnings (!) about 2120 // dropping arguments. 2121 if (!Entry->use_empty()) { 2122 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2123 Entry->removeDeadConstantUsers(); 2124 } 2125 2126 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2127 F, Entry->getType()->getElementType()->getPointerTo()); 2128 addGlobalValReplacement(Entry, BC); 2129 } 2130 2131 assert(F->getName() == MangledName && "name was uniqued!"); 2132 if (D) 2133 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk, 2134 IsForDefinition); 2135 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2136 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2137 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2138 } 2139 2140 if (!DontDefer) { 2141 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2142 // each other bottoming out with the base dtor. Therefore we emit non-base 2143 // dtors on usage, even if there is no dtor definition in the TU. 2144 if (D && isa<CXXDestructorDecl>(D) && 2145 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2146 GD.getDtorType())) 2147 addDeferredDeclToEmit(GD); 2148 2149 // This is the first use or definition of a mangled name. If there is a 2150 // deferred decl with this name, remember that we need to emit it at the end 2151 // of the file. 2152 auto DDI = DeferredDecls.find(MangledName); 2153 if (DDI != DeferredDecls.end()) { 2154 // Move the potentially referenced deferred decl to the 2155 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2156 // don't need it anymore). 2157 addDeferredDeclToEmit(DDI->second); 2158 DeferredDecls.erase(DDI); 2159 2160 // Otherwise, there are cases we have to worry about where we're 2161 // using a declaration for which we must emit a definition but where 2162 // we might not find a top-level definition: 2163 // - member functions defined inline in their classes 2164 // - friend functions defined inline in some class 2165 // - special member functions with implicit definitions 2166 // If we ever change our AST traversal to walk into class methods, 2167 // this will be unnecessary. 2168 // 2169 // We also don't emit a definition for a function if it's going to be an 2170 // entry in a vtable, unless it's already marked as used. 2171 } else if (getLangOpts().CPlusPlus && D) { 2172 // Look for a declaration that's lexically in a record. 2173 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2174 FD = FD->getPreviousDecl()) { 2175 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2176 if (FD->doesThisDeclarationHaveABody()) { 2177 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2178 break; 2179 } 2180 } 2181 } 2182 } 2183 } 2184 2185 // Make sure the result is of the requested type. 2186 if (!IsIncompleteFunction) { 2187 assert(F->getType()->getElementType() == Ty); 2188 return F; 2189 } 2190 2191 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2192 return llvm::ConstantExpr::getBitCast(F, PTy); 2193 } 2194 2195 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2196 /// non-null, then this function will use the specified type if it has to 2197 /// create it (this occurs when we see a definition of the function). 2198 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2199 llvm::Type *Ty, 2200 bool ForVTable, 2201 bool DontDefer, 2202 ForDefinition_t IsForDefinition) { 2203 // If there was no specific requested type, just convert it now. 2204 if (!Ty) { 2205 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2206 auto CanonTy = Context.getCanonicalType(FD->getType()); 2207 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2208 } 2209 2210 StringRef MangledName = getMangledName(GD); 2211 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2212 /*IsThunk=*/false, llvm::AttributeList(), 2213 IsForDefinition); 2214 } 2215 2216 static const FunctionDecl * 2217 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2218 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2219 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2220 2221 IdentifierInfo &CII = C.Idents.get(Name); 2222 for (const auto &Result : DC->lookup(&CII)) 2223 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2224 return FD; 2225 2226 if (!C.getLangOpts().CPlusPlus) 2227 return nullptr; 2228 2229 // Demangle the premangled name from getTerminateFn() 2230 IdentifierInfo &CXXII = 2231 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2232 ? C.Idents.get("terminate") 2233 : C.Idents.get(Name); 2234 2235 for (const auto &N : {"__cxxabiv1", "std"}) { 2236 IdentifierInfo &NS = C.Idents.get(N); 2237 for (const auto &Result : DC->lookup(&NS)) { 2238 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2239 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2240 for (const auto &Result : LSD->lookup(&NS)) 2241 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2242 break; 2243 2244 if (ND) 2245 for (const auto &Result : ND->lookup(&CXXII)) 2246 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2247 return FD; 2248 } 2249 } 2250 2251 return nullptr; 2252 } 2253 2254 /// CreateRuntimeFunction - Create a new runtime function with the specified 2255 /// type and name. 2256 llvm::Constant * 2257 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2258 llvm::AttributeList ExtraAttrs, 2259 bool Local) { 2260 llvm::Constant *C = 2261 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2262 /*DontDefer=*/false, /*IsThunk=*/false, 2263 ExtraAttrs); 2264 2265 if (auto *F = dyn_cast<llvm::Function>(C)) { 2266 if (F->empty()) { 2267 F->setCallingConv(getRuntimeCC()); 2268 2269 if (!Local && getTriple().isOSBinFormatCOFF() && 2270 !getCodeGenOpts().LTOVisibilityPublicStd) { 2271 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2272 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2273 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2274 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2275 } 2276 } 2277 } 2278 } 2279 2280 return C; 2281 } 2282 2283 /// CreateBuiltinFunction - Create a new builtin function with the specified 2284 /// type and name. 2285 llvm::Constant * 2286 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2287 llvm::AttributeList ExtraAttrs) { 2288 llvm::Constant *C = 2289 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2290 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2291 if (auto *F = dyn_cast<llvm::Function>(C)) 2292 if (F->empty()) 2293 F->setCallingConv(getBuiltinCC()); 2294 return C; 2295 } 2296 2297 /// isTypeConstant - Determine whether an object of this type can be emitted 2298 /// as a constant. 2299 /// 2300 /// If ExcludeCtor is true, the duration when the object's constructor runs 2301 /// will not be considered. The caller will need to verify that the object is 2302 /// not written to during its construction. 2303 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2304 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2305 return false; 2306 2307 if (Context.getLangOpts().CPlusPlus) { 2308 if (const CXXRecordDecl *Record 2309 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2310 return ExcludeCtor && !Record->hasMutableFields() && 2311 Record->hasTrivialDestructor(); 2312 } 2313 2314 return true; 2315 } 2316 2317 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2318 /// create and return an llvm GlobalVariable with the specified type. If there 2319 /// is something in the module with the specified name, return it potentially 2320 /// bitcasted to the right type. 2321 /// 2322 /// If D is non-null, it specifies a decl that correspond to this. This is used 2323 /// to set the attributes on the global when it is first created. 2324 /// 2325 /// If IsForDefinition is true, it is guranteed that an actual global with 2326 /// type Ty will be returned, not conversion of a variable with the same 2327 /// mangled name but some other type. 2328 llvm::Constant * 2329 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2330 llvm::PointerType *Ty, 2331 const VarDecl *D, 2332 ForDefinition_t IsForDefinition) { 2333 // Lookup the entry, lazily creating it if necessary. 2334 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2335 if (Entry) { 2336 if (WeakRefReferences.erase(Entry)) { 2337 if (D && !D->hasAttr<WeakAttr>()) 2338 Entry->setLinkage(llvm::Function::ExternalLinkage); 2339 } 2340 2341 // Handle dropped DLL attributes. 2342 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2343 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2344 2345 if (Entry->getType() == Ty) 2346 return Entry; 2347 2348 // If there are two attempts to define the same mangled name, issue an 2349 // error. 2350 if (IsForDefinition && !Entry->isDeclaration()) { 2351 GlobalDecl OtherGD; 2352 const VarDecl *OtherD; 2353 2354 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2355 // to make sure that we issue an error only once. 2356 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2357 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2358 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2359 OtherD->hasInit() && 2360 DiagnosedConflictingDefinitions.insert(D).second) { 2361 getDiags().Report(D->getLocation(), 2362 diag::err_duplicate_mangled_name); 2363 getDiags().Report(OtherGD.getDecl()->getLocation(), 2364 diag::note_previous_definition); 2365 } 2366 } 2367 2368 // Make sure the result is of the correct type. 2369 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2370 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2371 2372 // (If global is requested for a definition, we always need to create a new 2373 // global, not just return a bitcast.) 2374 if (!IsForDefinition) 2375 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2376 } 2377 2378 auto AddrSpace = GetGlobalVarAddressSpace(D); 2379 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2380 2381 auto *GV = new llvm::GlobalVariable( 2382 getModule(), Ty->getElementType(), false, 2383 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2384 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2385 2386 // If we already created a global with the same mangled name (but different 2387 // type) before, take its name and remove it from its parent. 2388 if (Entry) { 2389 GV->takeName(Entry); 2390 2391 if (!Entry->use_empty()) { 2392 llvm::Constant *NewPtrForOldDecl = 2393 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2394 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2395 } 2396 2397 Entry->eraseFromParent(); 2398 } 2399 2400 // This is the first use or definition of a mangled name. If there is a 2401 // deferred decl with this name, remember that we need to emit it at the end 2402 // of the file. 2403 auto DDI = DeferredDecls.find(MangledName); 2404 if (DDI != DeferredDecls.end()) { 2405 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2406 // list, and remove it from DeferredDecls (since we don't need it anymore). 2407 addDeferredDeclToEmit(DDI->second); 2408 DeferredDecls.erase(DDI); 2409 } 2410 2411 // Handle things which are present even on external declarations. 2412 if (D) { 2413 // FIXME: This code is overly simple and should be merged with other global 2414 // handling. 2415 GV->setConstant(isTypeConstant(D->getType(), false)); 2416 2417 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2418 2419 setLinkageAndVisibilityForGV(GV, D); 2420 2421 if (D->getTLSKind()) { 2422 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2423 CXXThreadLocals.push_back(D); 2424 setTLSMode(GV, *D); 2425 } 2426 2427 // If required by the ABI, treat declarations of static data members with 2428 // inline initializers as definitions. 2429 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2430 EmitGlobalVarDefinition(D); 2431 } 2432 2433 // Handle XCore specific ABI requirements. 2434 if (getTriple().getArch() == llvm::Triple::xcore && 2435 D->getLanguageLinkage() == CLanguageLinkage && 2436 D->getType().isConstant(Context) && 2437 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2438 GV->setSection(".cp.rodata"); 2439 } 2440 2441 auto ExpectedAS = 2442 D ? D->getType().getAddressSpace() 2443 : static_cast<unsigned>(LangOpts.OpenCL ? LangAS::opencl_global 2444 : LangAS::Default); 2445 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2446 Ty->getPointerAddressSpace()); 2447 if (AddrSpace != ExpectedAS) 2448 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2449 ExpectedAS, Ty); 2450 2451 return GV; 2452 } 2453 2454 llvm::Constant * 2455 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2456 ForDefinition_t IsForDefinition) { 2457 const Decl *D = GD.getDecl(); 2458 if (isa<CXXConstructorDecl>(D)) 2459 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2460 getFromCtorType(GD.getCtorType()), 2461 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2462 /*DontDefer=*/false, IsForDefinition); 2463 else if (isa<CXXDestructorDecl>(D)) 2464 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2465 getFromDtorType(GD.getDtorType()), 2466 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2467 /*DontDefer=*/false, IsForDefinition); 2468 else if (isa<CXXMethodDecl>(D)) { 2469 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2470 cast<CXXMethodDecl>(D)); 2471 auto Ty = getTypes().GetFunctionType(*FInfo); 2472 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2473 IsForDefinition); 2474 } else if (isa<FunctionDecl>(D)) { 2475 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2476 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2477 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2478 IsForDefinition); 2479 } else 2480 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2481 IsForDefinition); 2482 } 2483 2484 llvm::GlobalVariable * 2485 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2486 llvm::Type *Ty, 2487 llvm::GlobalValue::LinkageTypes Linkage) { 2488 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2489 llvm::GlobalVariable *OldGV = nullptr; 2490 2491 if (GV) { 2492 // Check if the variable has the right type. 2493 if (GV->getType()->getElementType() == Ty) 2494 return GV; 2495 2496 // Because C++ name mangling, the only way we can end up with an already 2497 // existing global with the same name is if it has been declared extern "C". 2498 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2499 OldGV = GV; 2500 } 2501 2502 // Create a new variable. 2503 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2504 Linkage, nullptr, Name); 2505 2506 if (OldGV) { 2507 // Replace occurrences of the old variable if needed. 2508 GV->takeName(OldGV); 2509 2510 if (!OldGV->use_empty()) { 2511 llvm::Constant *NewPtrForOldDecl = 2512 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2513 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2514 } 2515 2516 OldGV->eraseFromParent(); 2517 } 2518 2519 if (supportsCOMDAT() && GV->isWeakForLinker() && 2520 !GV->hasAvailableExternallyLinkage()) 2521 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2522 2523 return GV; 2524 } 2525 2526 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2527 /// given global variable. If Ty is non-null and if the global doesn't exist, 2528 /// then it will be created with the specified type instead of whatever the 2529 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2530 /// that an actual global with type Ty will be returned, not conversion of a 2531 /// variable with the same mangled name but some other type. 2532 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2533 llvm::Type *Ty, 2534 ForDefinition_t IsForDefinition) { 2535 assert(D->hasGlobalStorage() && "Not a global variable"); 2536 QualType ASTTy = D->getType(); 2537 if (!Ty) 2538 Ty = getTypes().ConvertTypeForMem(ASTTy); 2539 2540 llvm::PointerType *PTy = 2541 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2542 2543 StringRef MangledName = getMangledName(D); 2544 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2545 } 2546 2547 /// CreateRuntimeVariable - Create a new runtime global variable with the 2548 /// specified type and name. 2549 llvm::Constant * 2550 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2551 StringRef Name) { 2552 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2553 } 2554 2555 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2556 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2557 2558 StringRef MangledName = getMangledName(D); 2559 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2560 2561 // We already have a definition, not declaration, with the same mangled name. 2562 // Emitting of declaration is not required (and actually overwrites emitted 2563 // definition). 2564 if (GV && !GV->isDeclaration()) 2565 return; 2566 2567 // If we have not seen a reference to this variable yet, place it into the 2568 // deferred declarations table to be emitted if needed later. 2569 if (!MustBeEmitted(D) && !GV) { 2570 DeferredDecls[MangledName] = D; 2571 return; 2572 } 2573 2574 // The tentative definition is the only definition. 2575 EmitGlobalVarDefinition(D); 2576 } 2577 2578 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2579 return Context.toCharUnitsFromBits( 2580 getDataLayout().getTypeStoreSizeInBits(Ty)); 2581 } 2582 2583 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2584 unsigned AddrSpace; 2585 if (LangOpts.OpenCL) { 2586 AddrSpace = D ? D->getType().getAddressSpace() 2587 : static_cast<unsigned>(LangAS::opencl_global); 2588 assert(AddrSpace == LangAS::opencl_global || 2589 AddrSpace == LangAS::opencl_constant || 2590 AddrSpace == LangAS::opencl_local || 2591 AddrSpace >= LangAS::FirstTargetAddressSpace); 2592 return AddrSpace; 2593 } 2594 2595 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2596 if (D && D->hasAttr<CUDAConstantAttr>()) 2597 return LangAS::cuda_constant; 2598 else if (D && D->hasAttr<CUDASharedAttr>()) 2599 return LangAS::cuda_shared; 2600 else 2601 return LangAS::cuda_device; 2602 } 2603 2604 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2605 } 2606 2607 template<typename SomeDecl> 2608 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2609 llvm::GlobalValue *GV) { 2610 if (!getLangOpts().CPlusPlus) 2611 return; 2612 2613 // Must have 'used' attribute, or else inline assembly can't rely on 2614 // the name existing. 2615 if (!D->template hasAttr<UsedAttr>()) 2616 return; 2617 2618 // Must have internal linkage and an ordinary name. 2619 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2620 return; 2621 2622 // Must be in an extern "C" context. Entities declared directly within 2623 // a record are not extern "C" even if the record is in such a context. 2624 const SomeDecl *First = D->getFirstDecl(); 2625 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2626 return; 2627 2628 // OK, this is an internal linkage entity inside an extern "C" linkage 2629 // specification. Make a note of that so we can give it the "expected" 2630 // mangled name if nothing else is using that name. 2631 std::pair<StaticExternCMap::iterator, bool> R = 2632 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2633 2634 // If we have multiple internal linkage entities with the same name 2635 // in extern "C" regions, none of them gets that name. 2636 if (!R.second) 2637 R.first->second = nullptr; 2638 } 2639 2640 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2641 if (!CGM.supportsCOMDAT()) 2642 return false; 2643 2644 if (D.hasAttr<SelectAnyAttr>()) 2645 return true; 2646 2647 GVALinkage Linkage; 2648 if (auto *VD = dyn_cast<VarDecl>(&D)) 2649 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2650 else 2651 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2652 2653 switch (Linkage) { 2654 case GVA_Internal: 2655 case GVA_AvailableExternally: 2656 case GVA_StrongExternal: 2657 return false; 2658 case GVA_DiscardableODR: 2659 case GVA_StrongODR: 2660 return true; 2661 } 2662 llvm_unreachable("No such linkage"); 2663 } 2664 2665 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2666 llvm::GlobalObject &GO) { 2667 if (!shouldBeInCOMDAT(*this, D)) 2668 return; 2669 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2670 } 2671 2672 /// Pass IsTentative as true if you want to create a tentative definition. 2673 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2674 bool IsTentative) { 2675 // OpenCL global variables of sampler type are translated to function calls, 2676 // therefore no need to be translated. 2677 QualType ASTTy = D->getType(); 2678 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2679 return; 2680 2681 llvm::Constant *Init = nullptr; 2682 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2683 bool NeedsGlobalCtor = false; 2684 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2685 2686 const VarDecl *InitDecl; 2687 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2688 2689 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2690 // as part of their declaration." Sema has already checked for 2691 // error cases, so we just need to set Init to UndefValue. 2692 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2693 D->hasAttr<CUDASharedAttr>()) 2694 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2695 else if (!InitExpr) { 2696 // This is a tentative definition; tentative definitions are 2697 // implicitly initialized with { 0 }. 2698 // 2699 // Note that tentative definitions are only emitted at the end of 2700 // a translation unit, so they should never have incomplete 2701 // type. In addition, EmitTentativeDefinition makes sure that we 2702 // never attempt to emit a tentative definition if a real one 2703 // exists. A use may still exists, however, so we still may need 2704 // to do a RAUW. 2705 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2706 Init = EmitNullConstant(D->getType()); 2707 } else { 2708 initializedGlobalDecl = GlobalDecl(D); 2709 Init = EmitConstantInit(*InitDecl); 2710 2711 if (!Init) { 2712 QualType T = InitExpr->getType(); 2713 if (D->getType()->isReferenceType()) 2714 T = D->getType(); 2715 2716 if (getLangOpts().CPlusPlus) { 2717 Init = EmitNullConstant(T); 2718 NeedsGlobalCtor = true; 2719 } else { 2720 ErrorUnsupported(D, "static initializer"); 2721 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2722 } 2723 } else { 2724 // We don't need an initializer, so remove the entry for the delayed 2725 // initializer position (just in case this entry was delayed) if we 2726 // also don't need to register a destructor. 2727 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2728 DelayedCXXInitPosition.erase(D); 2729 } 2730 } 2731 2732 llvm::Type* InitType = Init->getType(); 2733 llvm::Constant *Entry = 2734 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2735 2736 // Strip off a bitcast if we got one back. 2737 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2738 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2739 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2740 // All zero index gep. 2741 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2742 Entry = CE->getOperand(0); 2743 } 2744 2745 // Entry is now either a Function or GlobalVariable. 2746 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2747 2748 // We have a definition after a declaration with the wrong type. 2749 // We must make a new GlobalVariable* and update everything that used OldGV 2750 // (a declaration or tentative definition) with the new GlobalVariable* 2751 // (which will be a definition). 2752 // 2753 // This happens if there is a prototype for a global (e.g. 2754 // "extern int x[];") and then a definition of a different type (e.g. 2755 // "int x[10];"). This also happens when an initializer has a different type 2756 // from the type of the global (this happens with unions). 2757 if (!GV || GV->getType()->getElementType() != InitType || 2758 GV->getType()->getAddressSpace() != 2759 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 2760 2761 // Move the old entry aside so that we'll create a new one. 2762 Entry->setName(StringRef()); 2763 2764 // Make a new global with the correct type, this is now guaranteed to work. 2765 GV = cast<llvm::GlobalVariable>( 2766 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2767 2768 // Replace all uses of the old global with the new global 2769 llvm::Constant *NewPtrForOldDecl = 2770 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2771 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2772 2773 // Erase the old global, since it is no longer used. 2774 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2775 } 2776 2777 MaybeHandleStaticInExternC(D, GV); 2778 2779 if (D->hasAttr<AnnotateAttr>()) 2780 AddGlobalAnnotations(D, GV); 2781 2782 // Set the llvm linkage type as appropriate. 2783 llvm::GlobalValue::LinkageTypes Linkage = 2784 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2785 2786 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2787 // the device. [...]" 2788 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2789 // __device__, declares a variable that: [...] 2790 // Is accessible from all the threads within the grid and from the host 2791 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2792 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2793 if (GV && LangOpts.CUDA) { 2794 if (LangOpts.CUDAIsDevice) { 2795 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2796 GV->setExternallyInitialized(true); 2797 } else { 2798 // Host-side shadows of external declarations of device-side 2799 // global variables become internal definitions. These have to 2800 // be internal in order to prevent name conflicts with global 2801 // host variables with the same name in a different TUs. 2802 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2803 Linkage = llvm::GlobalValue::InternalLinkage; 2804 2805 // Shadow variables and their properties must be registered 2806 // with CUDA runtime. 2807 unsigned Flags = 0; 2808 if (!D->hasDefinition()) 2809 Flags |= CGCUDARuntime::ExternDeviceVar; 2810 if (D->hasAttr<CUDAConstantAttr>()) 2811 Flags |= CGCUDARuntime::ConstantDeviceVar; 2812 getCUDARuntime().registerDeviceVar(*GV, Flags); 2813 } else if (D->hasAttr<CUDASharedAttr>()) 2814 // __shared__ variables are odd. Shadows do get created, but 2815 // they are not registered with the CUDA runtime, so they 2816 // can't really be used to access their device-side 2817 // counterparts. It's not clear yet whether it's nvcc's bug or 2818 // a feature, but we've got to do the same for compatibility. 2819 Linkage = llvm::GlobalValue::InternalLinkage; 2820 } 2821 } 2822 GV->setInitializer(Init); 2823 2824 // If it is safe to mark the global 'constant', do so now. 2825 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2826 isTypeConstant(D->getType(), true)); 2827 2828 // If it is in a read-only section, mark it 'constant'. 2829 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2830 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2831 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2832 GV->setConstant(true); 2833 } 2834 2835 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2836 2837 2838 // On Darwin, if the normal linkage of a C++ thread_local variable is 2839 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2840 // copies within a linkage unit; otherwise, the backing variable has 2841 // internal linkage and all accesses should just be calls to the 2842 // Itanium-specified entry point, which has the normal linkage of the 2843 // variable. This is to preserve the ability to change the implementation 2844 // behind the scenes. 2845 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2846 Context.getTargetInfo().getTriple().isOSDarwin() && 2847 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2848 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2849 Linkage = llvm::GlobalValue::InternalLinkage; 2850 2851 GV->setLinkage(Linkage); 2852 if (D->hasAttr<DLLImportAttr>()) 2853 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2854 else if (D->hasAttr<DLLExportAttr>()) 2855 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2856 else 2857 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2858 2859 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2860 // common vars aren't constant even if declared const. 2861 GV->setConstant(false); 2862 // Tentative definition of global variables may be initialized with 2863 // non-zero null pointers. In this case they should have weak linkage 2864 // since common linkage must have zero initializer and must not have 2865 // explicit section therefore cannot have non-zero initial value. 2866 if (!GV->getInitializer()->isNullValue()) 2867 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2868 } 2869 2870 setNonAliasAttributes(D, GV); 2871 2872 if (D->getTLSKind() && !GV->isThreadLocal()) { 2873 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2874 CXXThreadLocals.push_back(D); 2875 setTLSMode(GV, *D); 2876 } 2877 2878 maybeSetTrivialComdat(*D, *GV); 2879 2880 // Emit the initializer function if necessary. 2881 if (NeedsGlobalCtor || NeedsGlobalDtor) 2882 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2883 2884 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2885 2886 // Emit global variable debug information. 2887 if (CGDebugInfo *DI = getModuleDebugInfo()) 2888 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2889 DI->EmitGlobalVariable(GV, D); 2890 } 2891 2892 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2893 CodeGenModule &CGM, const VarDecl *D, 2894 bool NoCommon) { 2895 // Don't give variables common linkage if -fno-common was specified unless it 2896 // was overridden by a NoCommon attribute. 2897 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2898 return true; 2899 2900 // C11 6.9.2/2: 2901 // A declaration of an identifier for an object that has file scope without 2902 // an initializer, and without a storage-class specifier or with the 2903 // storage-class specifier static, constitutes a tentative definition. 2904 if (D->getInit() || D->hasExternalStorage()) 2905 return true; 2906 2907 // A variable cannot be both common and exist in a section. 2908 if (D->hasAttr<SectionAttr>()) 2909 return true; 2910 2911 // A variable cannot be both common and exist in a section. 2912 // We dont try to determine which is the right section in the front-end. 2913 // If no specialized section name is applicable, it will resort to default. 2914 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 2915 D->hasAttr<PragmaClangDataSectionAttr>() || 2916 D->hasAttr<PragmaClangRodataSectionAttr>()) 2917 return true; 2918 2919 // Thread local vars aren't considered common linkage. 2920 if (D->getTLSKind()) 2921 return true; 2922 2923 // Tentative definitions marked with WeakImportAttr are true definitions. 2924 if (D->hasAttr<WeakImportAttr>()) 2925 return true; 2926 2927 // A variable cannot be both common and exist in a comdat. 2928 if (shouldBeInCOMDAT(CGM, *D)) 2929 return true; 2930 2931 // Declarations with a required alignment do not have common linkage in MSVC 2932 // mode. 2933 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2934 if (D->hasAttr<AlignedAttr>()) 2935 return true; 2936 QualType VarType = D->getType(); 2937 if (Context.isAlignmentRequired(VarType)) 2938 return true; 2939 2940 if (const auto *RT = VarType->getAs<RecordType>()) { 2941 const RecordDecl *RD = RT->getDecl(); 2942 for (const FieldDecl *FD : RD->fields()) { 2943 if (FD->isBitField()) 2944 continue; 2945 if (FD->hasAttr<AlignedAttr>()) 2946 return true; 2947 if (Context.isAlignmentRequired(FD->getType())) 2948 return true; 2949 } 2950 } 2951 } 2952 2953 return false; 2954 } 2955 2956 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2957 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2958 if (Linkage == GVA_Internal) 2959 return llvm::Function::InternalLinkage; 2960 2961 if (D->hasAttr<WeakAttr>()) { 2962 if (IsConstantVariable) 2963 return llvm::GlobalVariable::WeakODRLinkage; 2964 else 2965 return llvm::GlobalVariable::WeakAnyLinkage; 2966 } 2967 2968 // We are guaranteed to have a strong definition somewhere else, 2969 // so we can use available_externally linkage. 2970 if (Linkage == GVA_AvailableExternally) 2971 return llvm::GlobalValue::AvailableExternallyLinkage; 2972 2973 // Note that Apple's kernel linker doesn't support symbol 2974 // coalescing, so we need to avoid linkonce and weak linkages there. 2975 // Normally, this means we just map to internal, but for explicit 2976 // instantiations we'll map to external. 2977 2978 // In C++, the compiler has to emit a definition in every translation unit 2979 // that references the function. We should use linkonce_odr because 2980 // a) if all references in this translation unit are optimized away, we 2981 // don't need to codegen it. b) if the function persists, it needs to be 2982 // merged with other definitions. c) C++ has the ODR, so we know the 2983 // definition is dependable. 2984 if (Linkage == GVA_DiscardableODR) 2985 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2986 : llvm::Function::InternalLinkage; 2987 2988 // An explicit instantiation of a template has weak linkage, since 2989 // explicit instantiations can occur in multiple translation units 2990 // and must all be equivalent. However, we are not allowed to 2991 // throw away these explicit instantiations. 2992 // 2993 // We don't currently support CUDA device code spread out across multiple TUs, 2994 // so say that CUDA templates are either external (for kernels) or internal. 2995 // This lets llvm perform aggressive inter-procedural optimizations. 2996 if (Linkage == GVA_StrongODR) { 2997 if (Context.getLangOpts().AppleKext) 2998 return llvm::Function::ExternalLinkage; 2999 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3000 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3001 : llvm::Function::InternalLinkage; 3002 return llvm::Function::WeakODRLinkage; 3003 } 3004 3005 // C++ doesn't have tentative definitions and thus cannot have common 3006 // linkage. 3007 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3008 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3009 CodeGenOpts.NoCommon)) 3010 return llvm::GlobalVariable::CommonLinkage; 3011 3012 // selectany symbols are externally visible, so use weak instead of 3013 // linkonce. MSVC optimizes away references to const selectany globals, so 3014 // all definitions should be the same and ODR linkage should be used. 3015 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3016 if (D->hasAttr<SelectAnyAttr>()) 3017 return llvm::GlobalVariable::WeakODRLinkage; 3018 3019 // Otherwise, we have strong external linkage. 3020 assert(Linkage == GVA_StrongExternal); 3021 return llvm::GlobalVariable::ExternalLinkage; 3022 } 3023 3024 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3025 const VarDecl *VD, bool IsConstant) { 3026 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3027 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3028 } 3029 3030 /// Replace the uses of a function that was declared with a non-proto type. 3031 /// We want to silently drop extra arguments from call sites 3032 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3033 llvm::Function *newFn) { 3034 // Fast path. 3035 if (old->use_empty()) return; 3036 3037 llvm::Type *newRetTy = newFn->getReturnType(); 3038 SmallVector<llvm::Value*, 4> newArgs; 3039 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3040 3041 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3042 ui != ue; ) { 3043 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3044 llvm::User *user = use->getUser(); 3045 3046 // Recognize and replace uses of bitcasts. Most calls to 3047 // unprototyped functions will use bitcasts. 3048 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3049 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3050 replaceUsesOfNonProtoConstant(bitcast, newFn); 3051 continue; 3052 } 3053 3054 // Recognize calls to the function. 3055 llvm::CallSite callSite(user); 3056 if (!callSite) continue; 3057 if (!callSite.isCallee(&*use)) continue; 3058 3059 // If the return types don't match exactly, then we can't 3060 // transform this call unless it's dead. 3061 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3062 continue; 3063 3064 // Get the call site's attribute list. 3065 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3066 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3067 3068 // If the function was passed too few arguments, don't transform. 3069 unsigned newNumArgs = newFn->arg_size(); 3070 if (callSite.arg_size() < newNumArgs) continue; 3071 3072 // If extra arguments were passed, we silently drop them. 3073 // If any of the types mismatch, we don't transform. 3074 unsigned argNo = 0; 3075 bool dontTransform = false; 3076 for (llvm::Argument &A : newFn->args()) { 3077 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3078 dontTransform = true; 3079 break; 3080 } 3081 3082 // Add any parameter attributes. 3083 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3084 argNo++; 3085 } 3086 if (dontTransform) 3087 continue; 3088 3089 // Okay, we can transform this. Create the new call instruction and copy 3090 // over the required information. 3091 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3092 3093 // Copy over any operand bundles. 3094 callSite.getOperandBundlesAsDefs(newBundles); 3095 3096 llvm::CallSite newCall; 3097 if (callSite.isCall()) { 3098 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3099 callSite.getInstruction()); 3100 } else { 3101 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3102 newCall = llvm::InvokeInst::Create(newFn, 3103 oldInvoke->getNormalDest(), 3104 oldInvoke->getUnwindDest(), 3105 newArgs, newBundles, "", 3106 callSite.getInstruction()); 3107 } 3108 newArgs.clear(); // for the next iteration 3109 3110 if (!newCall->getType()->isVoidTy()) 3111 newCall->takeName(callSite.getInstruction()); 3112 newCall.setAttributes(llvm::AttributeList::get( 3113 newFn->getContext(), oldAttrs.getFnAttributes(), 3114 oldAttrs.getRetAttributes(), newArgAttrs)); 3115 newCall.setCallingConv(callSite.getCallingConv()); 3116 3117 // Finally, remove the old call, replacing any uses with the new one. 3118 if (!callSite->use_empty()) 3119 callSite->replaceAllUsesWith(newCall.getInstruction()); 3120 3121 // Copy debug location attached to CI. 3122 if (callSite->getDebugLoc()) 3123 newCall->setDebugLoc(callSite->getDebugLoc()); 3124 3125 callSite->eraseFromParent(); 3126 } 3127 } 3128 3129 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3130 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3131 /// existing call uses of the old function in the module, this adjusts them to 3132 /// call the new function directly. 3133 /// 3134 /// This is not just a cleanup: the always_inline pass requires direct calls to 3135 /// functions to be able to inline them. If there is a bitcast in the way, it 3136 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3137 /// run at -O0. 3138 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3139 llvm::Function *NewFn) { 3140 // If we're redefining a global as a function, don't transform it. 3141 if (!isa<llvm::Function>(Old)) return; 3142 3143 replaceUsesOfNonProtoConstant(Old, NewFn); 3144 } 3145 3146 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3147 auto DK = VD->isThisDeclarationADefinition(); 3148 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3149 return; 3150 3151 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3152 // If we have a definition, this might be a deferred decl. If the 3153 // instantiation is explicit, make sure we emit it at the end. 3154 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3155 GetAddrOfGlobalVar(VD); 3156 3157 EmitTopLevelDecl(VD); 3158 } 3159 3160 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3161 llvm::GlobalValue *GV) { 3162 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3163 3164 // Compute the function info and LLVM type. 3165 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3166 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3167 3168 // Get or create the prototype for the function. 3169 if (!GV || (GV->getType()->getElementType() != Ty)) 3170 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3171 /*DontDefer=*/true, 3172 ForDefinition)); 3173 3174 // Already emitted. 3175 if (!GV->isDeclaration()) 3176 return; 3177 3178 // We need to set linkage and visibility on the function before 3179 // generating code for it because various parts of IR generation 3180 // want to propagate this information down (e.g. to local static 3181 // declarations). 3182 auto *Fn = cast<llvm::Function>(GV); 3183 setFunctionLinkage(GD, Fn); 3184 setFunctionDLLStorageClass(GD, Fn); 3185 3186 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3187 setGlobalVisibility(Fn, D); 3188 3189 MaybeHandleStaticInExternC(D, Fn); 3190 3191 maybeSetTrivialComdat(*D, *Fn); 3192 3193 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3194 3195 setFunctionDefinitionAttributes(D, Fn); 3196 SetLLVMFunctionAttributesForDefinition(D, Fn); 3197 3198 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3199 AddGlobalCtor(Fn, CA->getPriority()); 3200 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3201 AddGlobalDtor(Fn, DA->getPriority()); 3202 if (D->hasAttr<AnnotateAttr>()) 3203 AddGlobalAnnotations(D, Fn); 3204 } 3205 3206 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3207 const auto *D = cast<ValueDecl>(GD.getDecl()); 3208 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3209 assert(AA && "Not an alias?"); 3210 3211 StringRef MangledName = getMangledName(GD); 3212 3213 if (AA->getAliasee() == MangledName) { 3214 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3215 return; 3216 } 3217 3218 // If there is a definition in the module, then it wins over the alias. 3219 // This is dubious, but allow it to be safe. Just ignore the alias. 3220 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3221 if (Entry && !Entry->isDeclaration()) 3222 return; 3223 3224 Aliases.push_back(GD); 3225 3226 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3227 3228 // Create a reference to the named value. This ensures that it is emitted 3229 // if a deferred decl. 3230 llvm::Constant *Aliasee; 3231 if (isa<llvm::FunctionType>(DeclTy)) 3232 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3233 /*ForVTable=*/false); 3234 else 3235 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3236 llvm::PointerType::getUnqual(DeclTy), 3237 /*D=*/nullptr); 3238 3239 // Create the new alias itself, but don't set a name yet. 3240 auto *GA = llvm::GlobalAlias::create( 3241 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3242 3243 if (Entry) { 3244 if (GA->getAliasee() == Entry) { 3245 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3246 return; 3247 } 3248 3249 assert(Entry->isDeclaration()); 3250 3251 // If there is a declaration in the module, then we had an extern followed 3252 // by the alias, as in: 3253 // extern int test6(); 3254 // ... 3255 // int test6() __attribute__((alias("test7"))); 3256 // 3257 // Remove it and replace uses of it with the alias. 3258 GA->takeName(Entry); 3259 3260 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3261 Entry->getType())); 3262 Entry->eraseFromParent(); 3263 } else { 3264 GA->setName(MangledName); 3265 } 3266 3267 // Set attributes which are particular to an alias; this is a 3268 // specialization of the attributes which may be set on a global 3269 // variable/function. 3270 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3271 D->isWeakImported()) { 3272 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3273 } 3274 3275 if (const auto *VD = dyn_cast<VarDecl>(D)) 3276 if (VD->getTLSKind()) 3277 setTLSMode(GA, *VD); 3278 3279 setAliasAttributes(D, GA); 3280 } 3281 3282 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3283 const auto *D = cast<ValueDecl>(GD.getDecl()); 3284 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3285 assert(IFA && "Not an ifunc?"); 3286 3287 StringRef MangledName = getMangledName(GD); 3288 3289 if (IFA->getResolver() == MangledName) { 3290 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3291 return; 3292 } 3293 3294 // Report an error if some definition overrides ifunc. 3295 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3296 if (Entry && !Entry->isDeclaration()) { 3297 GlobalDecl OtherGD; 3298 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3299 DiagnosedConflictingDefinitions.insert(GD).second) { 3300 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3301 Diags.Report(OtherGD.getDecl()->getLocation(), 3302 diag::note_previous_definition); 3303 } 3304 return; 3305 } 3306 3307 Aliases.push_back(GD); 3308 3309 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3310 llvm::Constant *Resolver = 3311 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3312 /*ForVTable=*/false); 3313 llvm::GlobalIFunc *GIF = 3314 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3315 "", Resolver, &getModule()); 3316 if (Entry) { 3317 if (GIF->getResolver() == Entry) { 3318 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3319 return; 3320 } 3321 assert(Entry->isDeclaration()); 3322 3323 // If there is a declaration in the module, then we had an extern followed 3324 // by the ifunc, as in: 3325 // extern int test(); 3326 // ... 3327 // int test() __attribute__((ifunc("resolver"))); 3328 // 3329 // Remove it and replace uses of it with the ifunc. 3330 GIF->takeName(Entry); 3331 3332 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3333 Entry->getType())); 3334 Entry->eraseFromParent(); 3335 } else 3336 GIF->setName(MangledName); 3337 3338 SetCommonAttributes(D, GIF); 3339 } 3340 3341 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3342 ArrayRef<llvm::Type*> Tys) { 3343 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3344 Tys); 3345 } 3346 3347 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3348 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3349 const StringLiteral *Literal, bool TargetIsLSB, 3350 bool &IsUTF16, unsigned &StringLength) { 3351 StringRef String = Literal->getString(); 3352 unsigned NumBytes = String.size(); 3353 3354 // Check for simple case. 3355 if (!Literal->containsNonAsciiOrNull()) { 3356 StringLength = NumBytes; 3357 return *Map.insert(std::make_pair(String, nullptr)).first; 3358 } 3359 3360 // Otherwise, convert the UTF8 literals into a string of shorts. 3361 IsUTF16 = true; 3362 3363 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3364 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3365 llvm::UTF16 *ToPtr = &ToBuf[0]; 3366 3367 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3368 ToPtr + NumBytes, llvm::strictConversion); 3369 3370 // ConvertUTF8toUTF16 returns the length in ToPtr. 3371 StringLength = ToPtr - &ToBuf[0]; 3372 3373 // Add an explicit null. 3374 *ToPtr = 0; 3375 return *Map.insert(std::make_pair( 3376 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3377 (StringLength + 1) * 2), 3378 nullptr)).first; 3379 } 3380 3381 ConstantAddress 3382 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3383 unsigned StringLength = 0; 3384 bool isUTF16 = false; 3385 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3386 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3387 getDataLayout().isLittleEndian(), isUTF16, 3388 StringLength); 3389 3390 if (auto *C = Entry.second) 3391 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3392 3393 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3394 llvm::Constant *Zeros[] = { Zero, Zero }; 3395 3396 // If we don't already have it, get __CFConstantStringClassReference. 3397 if (!CFConstantStringClassRef) { 3398 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3399 Ty = llvm::ArrayType::get(Ty, 0); 3400 llvm::Constant *GV = 3401 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3402 3403 if (getTriple().isOSBinFormatCOFF()) { 3404 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3405 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3406 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3407 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3408 3409 const VarDecl *VD = nullptr; 3410 for (const auto &Result : DC->lookup(&II)) 3411 if ((VD = dyn_cast<VarDecl>(Result))) 3412 break; 3413 3414 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3415 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3416 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3417 } else { 3418 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3419 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3420 } 3421 } 3422 3423 // Decay array -> ptr 3424 CFConstantStringClassRef = 3425 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3426 } 3427 3428 QualType CFTy = getContext().getCFConstantStringType(); 3429 3430 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3431 3432 ConstantInitBuilder Builder(*this); 3433 auto Fields = Builder.beginStruct(STy); 3434 3435 // Class pointer. 3436 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3437 3438 // Flags. 3439 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3440 3441 // String pointer. 3442 llvm::Constant *C = nullptr; 3443 if (isUTF16) { 3444 auto Arr = llvm::makeArrayRef( 3445 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3446 Entry.first().size() / 2); 3447 C = llvm::ConstantDataArray::get(VMContext, Arr); 3448 } else { 3449 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3450 } 3451 3452 // Note: -fwritable-strings doesn't make the backing store strings of 3453 // CFStrings writable. (See <rdar://problem/10657500>) 3454 auto *GV = 3455 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3456 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3457 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3458 // Don't enforce the target's minimum global alignment, since the only use 3459 // of the string is via this class initializer. 3460 CharUnits Align = isUTF16 3461 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3462 : getContext().getTypeAlignInChars(getContext().CharTy); 3463 GV->setAlignment(Align.getQuantity()); 3464 3465 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3466 // Without it LLVM can merge the string with a non unnamed_addr one during 3467 // LTO. Doing that changes the section it ends in, which surprises ld64. 3468 if (getTriple().isOSBinFormatMachO()) 3469 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3470 : "__TEXT,__cstring,cstring_literals"); 3471 3472 // String. 3473 llvm::Constant *Str = 3474 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3475 3476 if (isUTF16) 3477 // Cast the UTF16 string to the correct type. 3478 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3479 Fields.add(Str); 3480 3481 // String length. 3482 auto Ty = getTypes().ConvertType(getContext().LongTy); 3483 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3484 3485 CharUnits Alignment = getPointerAlign(); 3486 3487 // The struct. 3488 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3489 /*isConstant=*/false, 3490 llvm::GlobalVariable::PrivateLinkage); 3491 switch (getTriple().getObjectFormat()) { 3492 case llvm::Triple::UnknownObjectFormat: 3493 llvm_unreachable("unknown file format"); 3494 case llvm::Triple::COFF: 3495 case llvm::Triple::ELF: 3496 case llvm::Triple::Wasm: 3497 GV->setSection("cfstring"); 3498 break; 3499 case llvm::Triple::MachO: 3500 GV->setSection("__DATA,__cfstring"); 3501 break; 3502 } 3503 Entry.second = GV; 3504 3505 return ConstantAddress(GV, Alignment); 3506 } 3507 3508 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3509 if (ObjCFastEnumerationStateType.isNull()) { 3510 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3511 D->startDefinition(); 3512 3513 QualType FieldTypes[] = { 3514 Context.UnsignedLongTy, 3515 Context.getPointerType(Context.getObjCIdType()), 3516 Context.getPointerType(Context.UnsignedLongTy), 3517 Context.getConstantArrayType(Context.UnsignedLongTy, 3518 llvm::APInt(32, 5), ArrayType::Normal, 0) 3519 }; 3520 3521 for (size_t i = 0; i < 4; ++i) { 3522 FieldDecl *Field = FieldDecl::Create(Context, 3523 D, 3524 SourceLocation(), 3525 SourceLocation(), nullptr, 3526 FieldTypes[i], /*TInfo=*/nullptr, 3527 /*BitWidth=*/nullptr, 3528 /*Mutable=*/false, 3529 ICIS_NoInit); 3530 Field->setAccess(AS_public); 3531 D->addDecl(Field); 3532 } 3533 3534 D->completeDefinition(); 3535 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3536 } 3537 3538 return ObjCFastEnumerationStateType; 3539 } 3540 3541 llvm::Constant * 3542 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3543 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3544 3545 // Don't emit it as the address of the string, emit the string data itself 3546 // as an inline array. 3547 if (E->getCharByteWidth() == 1) { 3548 SmallString<64> Str(E->getString()); 3549 3550 // Resize the string to the right size, which is indicated by its type. 3551 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3552 Str.resize(CAT->getSize().getZExtValue()); 3553 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3554 } 3555 3556 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3557 llvm::Type *ElemTy = AType->getElementType(); 3558 unsigned NumElements = AType->getNumElements(); 3559 3560 // Wide strings have either 2-byte or 4-byte elements. 3561 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3562 SmallVector<uint16_t, 32> Elements; 3563 Elements.reserve(NumElements); 3564 3565 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3566 Elements.push_back(E->getCodeUnit(i)); 3567 Elements.resize(NumElements); 3568 return llvm::ConstantDataArray::get(VMContext, Elements); 3569 } 3570 3571 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3572 SmallVector<uint32_t, 32> Elements; 3573 Elements.reserve(NumElements); 3574 3575 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3576 Elements.push_back(E->getCodeUnit(i)); 3577 Elements.resize(NumElements); 3578 return llvm::ConstantDataArray::get(VMContext, Elements); 3579 } 3580 3581 static llvm::GlobalVariable * 3582 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3583 CodeGenModule &CGM, StringRef GlobalName, 3584 CharUnits Alignment) { 3585 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3586 unsigned AddrSpace = 0; 3587 if (CGM.getLangOpts().OpenCL) 3588 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3589 3590 llvm::Module &M = CGM.getModule(); 3591 // Create a global variable for this string 3592 auto *GV = new llvm::GlobalVariable( 3593 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3594 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3595 GV->setAlignment(Alignment.getQuantity()); 3596 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3597 if (GV->isWeakForLinker()) { 3598 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3599 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3600 } 3601 3602 return GV; 3603 } 3604 3605 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3606 /// constant array for the given string literal. 3607 ConstantAddress 3608 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3609 StringRef Name) { 3610 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3611 3612 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3613 llvm::GlobalVariable **Entry = nullptr; 3614 if (!LangOpts.WritableStrings) { 3615 Entry = &ConstantStringMap[C]; 3616 if (auto GV = *Entry) { 3617 if (Alignment.getQuantity() > GV->getAlignment()) 3618 GV->setAlignment(Alignment.getQuantity()); 3619 return ConstantAddress(GV, Alignment); 3620 } 3621 } 3622 3623 SmallString<256> MangledNameBuffer; 3624 StringRef GlobalVariableName; 3625 llvm::GlobalValue::LinkageTypes LT; 3626 3627 // Mangle the string literal if the ABI allows for it. However, we cannot 3628 // do this if we are compiling with ASan or -fwritable-strings because they 3629 // rely on strings having normal linkage. 3630 if (!LangOpts.WritableStrings && 3631 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3632 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3633 llvm::raw_svector_ostream Out(MangledNameBuffer); 3634 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3635 3636 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3637 GlobalVariableName = MangledNameBuffer; 3638 } else { 3639 LT = llvm::GlobalValue::PrivateLinkage; 3640 GlobalVariableName = Name; 3641 } 3642 3643 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3644 if (Entry) 3645 *Entry = GV; 3646 3647 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3648 QualType()); 3649 return ConstantAddress(GV, Alignment); 3650 } 3651 3652 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3653 /// array for the given ObjCEncodeExpr node. 3654 ConstantAddress 3655 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3656 std::string Str; 3657 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3658 3659 return GetAddrOfConstantCString(Str); 3660 } 3661 3662 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3663 /// the literal and a terminating '\0' character. 3664 /// The result has pointer to array type. 3665 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3666 const std::string &Str, const char *GlobalName) { 3667 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3668 CharUnits Alignment = 3669 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3670 3671 llvm::Constant *C = 3672 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3673 3674 // Don't share any string literals if strings aren't constant. 3675 llvm::GlobalVariable **Entry = nullptr; 3676 if (!LangOpts.WritableStrings) { 3677 Entry = &ConstantStringMap[C]; 3678 if (auto GV = *Entry) { 3679 if (Alignment.getQuantity() > GV->getAlignment()) 3680 GV->setAlignment(Alignment.getQuantity()); 3681 return ConstantAddress(GV, Alignment); 3682 } 3683 } 3684 3685 // Get the default prefix if a name wasn't specified. 3686 if (!GlobalName) 3687 GlobalName = ".str"; 3688 // Create a global variable for this. 3689 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3690 GlobalName, Alignment); 3691 if (Entry) 3692 *Entry = GV; 3693 return ConstantAddress(GV, Alignment); 3694 } 3695 3696 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3697 const MaterializeTemporaryExpr *E, const Expr *Init) { 3698 assert((E->getStorageDuration() == SD_Static || 3699 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3700 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3701 3702 // If we're not materializing a subobject of the temporary, keep the 3703 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3704 QualType MaterializedType = Init->getType(); 3705 if (Init == E->GetTemporaryExpr()) 3706 MaterializedType = E->getType(); 3707 3708 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3709 3710 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3711 return ConstantAddress(Slot, Align); 3712 3713 // FIXME: If an externally-visible declaration extends multiple temporaries, 3714 // we need to give each temporary the same name in every translation unit (and 3715 // we also need to make the temporaries externally-visible). 3716 SmallString<256> Name; 3717 llvm::raw_svector_ostream Out(Name); 3718 getCXXABI().getMangleContext().mangleReferenceTemporary( 3719 VD, E->getManglingNumber(), Out); 3720 3721 APValue *Value = nullptr; 3722 if (E->getStorageDuration() == SD_Static) { 3723 // We might have a cached constant initializer for this temporary. Note 3724 // that this might have a different value from the value computed by 3725 // evaluating the initializer if the surrounding constant expression 3726 // modifies the temporary. 3727 Value = getContext().getMaterializedTemporaryValue(E, false); 3728 if (Value && Value->isUninit()) 3729 Value = nullptr; 3730 } 3731 3732 // Try evaluating it now, it might have a constant initializer. 3733 Expr::EvalResult EvalResult; 3734 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3735 !EvalResult.hasSideEffects()) 3736 Value = &EvalResult.Val; 3737 3738 llvm::Constant *InitialValue = nullptr; 3739 bool Constant = false; 3740 llvm::Type *Type; 3741 if (Value) { 3742 // The temporary has a constant initializer, use it. 3743 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3744 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3745 Type = InitialValue->getType(); 3746 } else { 3747 // No initializer, the initialization will be provided when we 3748 // initialize the declaration which performed lifetime extension. 3749 Type = getTypes().ConvertTypeForMem(MaterializedType); 3750 } 3751 3752 // Create a global variable for this lifetime-extended temporary. 3753 llvm::GlobalValue::LinkageTypes Linkage = 3754 getLLVMLinkageVarDefinition(VD, Constant); 3755 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3756 const VarDecl *InitVD; 3757 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3758 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3759 // Temporaries defined inside a class get linkonce_odr linkage because the 3760 // class can be defined in multipe translation units. 3761 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3762 } else { 3763 // There is no need for this temporary to have external linkage if the 3764 // VarDecl has external linkage. 3765 Linkage = llvm::GlobalVariable::InternalLinkage; 3766 } 3767 } 3768 unsigned AddrSpace = 3769 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 3770 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 3771 auto *GV = new llvm::GlobalVariable( 3772 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3773 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 3774 setGlobalVisibility(GV, VD); 3775 GV->setAlignment(Align.getQuantity()); 3776 if (supportsCOMDAT() && GV->isWeakForLinker()) 3777 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3778 if (VD->getTLSKind()) 3779 setTLSMode(GV, *VD); 3780 llvm::Constant *CV = GV; 3781 if (AddrSpace != LangAS::Default) 3782 CV = getTargetCodeGenInfo().performAddrSpaceCast( 3783 *this, GV, AddrSpace, LangAS::Default, 3784 Type->getPointerTo( 3785 getContext().getTargetAddressSpace(LangAS::Default))); 3786 MaterializedGlobalTemporaryMap[E] = CV; 3787 return ConstantAddress(CV, Align); 3788 } 3789 3790 /// EmitObjCPropertyImplementations - Emit information for synthesized 3791 /// properties for an implementation. 3792 void CodeGenModule::EmitObjCPropertyImplementations(const 3793 ObjCImplementationDecl *D) { 3794 for (const auto *PID : D->property_impls()) { 3795 // Dynamic is just for type-checking. 3796 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3797 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3798 3799 // Determine which methods need to be implemented, some may have 3800 // been overridden. Note that ::isPropertyAccessor is not the method 3801 // we want, that just indicates if the decl came from a 3802 // property. What we want to know is if the method is defined in 3803 // this implementation. 3804 if (!D->getInstanceMethod(PD->getGetterName())) 3805 CodeGenFunction(*this).GenerateObjCGetter( 3806 const_cast<ObjCImplementationDecl *>(D), PID); 3807 if (!PD->isReadOnly() && 3808 !D->getInstanceMethod(PD->getSetterName())) 3809 CodeGenFunction(*this).GenerateObjCSetter( 3810 const_cast<ObjCImplementationDecl *>(D), PID); 3811 } 3812 } 3813 } 3814 3815 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3816 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3817 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3818 ivar; ivar = ivar->getNextIvar()) 3819 if (ivar->getType().isDestructedType()) 3820 return true; 3821 3822 return false; 3823 } 3824 3825 static bool AllTrivialInitializers(CodeGenModule &CGM, 3826 ObjCImplementationDecl *D) { 3827 CodeGenFunction CGF(CGM); 3828 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3829 E = D->init_end(); B != E; ++B) { 3830 CXXCtorInitializer *CtorInitExp = *B; 3831 Expr *Init = CtorInitExp->getInit(); 3832 if (!CGF.isTrivialInitializer(Init)) 3833 return false; 3834 } 3835 return true; 3836 } 3837 3838 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3839 /// for an implementation. 3840 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3841 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3842 if (needsDestructMethod(D)) { 3843 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3844 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3845 ObjCMethodDecl *DTORMethod = 3846 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3847 cxxSelector, getContext().VoidTy, nullptr, D, 3848 /*isInstance=*/true, /*isVariadic=*/false, 3849 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3850 /*isDefined=*/false, ObjCMethodDecl::Required); 3851 D->addInstanceMethod(DTORMethod); 3852 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3853 D->setHasDestructors(true); 3854 } 3855 3856 // If the implementation doesn't have any ivar initializers, we don't need 3857 // a .cxx_construct. 3858 if (D->getNumIvarInitializers() == 0 || 3859 AllTrivialInitializers(*this, D)) 3860 return; 3861 3862 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3863 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3864 // The constructor returns 'self'. 3865 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3866 D->getLocation(), 3867 D->getLocation(), 3868 cxxSelector, 3869 getContext().getObjCIdType(), 3870 nullptr, D, /*isInstance=*/true, 3871 /*isVariadic=*/false, 3872 /*isPropertyAccessor=*/true, 3873 /*isImplicitlyDeclared=*/true, 3874 /*isDefined=*/false, 3875 ObjCMethodDecl::Required); 3876 D->addInstanceMethod(CTORMethod); 3877 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3878 D->setHasNonZeroConstructors(true); 3879 } 3880 3881 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3882 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3883 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3884 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3885 ErrorUnsupported(LSD, "linkage spec"); 3886 return; 3887 } 3888 3889 EmitDeclContext(LSD); 3890 } 3891 3892 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3893 for (auto *I : DC->decls()) { 3894 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3895 // are themselves considered "top-level", so EmitTopLevelDecl on an 3896 // ObjCImplDecl does not recursively visit them. We need to do that in 3897 // case they're nested inside another construct (LinkageSpecDecl / 3898 // ExportDecl) that does stop them from being considered "top-level". 3899 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3900 for (auto *M : OID->methods()) 3901 EmitTopLevelDecl(M); 3902 } 3903 3904 EmitTopLevelDecl(I); 3905 } 3906 } 3907 3908 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3909 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3910 // Ignore dependent declarations. 3911 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3912 return; 3913 3914 switch (D->getKind()) { 3915 case Decl::CXXConversion: 3916 case Decl::CXXMethod: 3917 case Decl::Function: 3918 // Skip function templates 3919 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3920 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3921 return; 3922 3923 EmitGlobal(cast<FunctionDecl>(D)); 3924 // Always provide some coverage mapping 3925 // even for the functions that aren't emitted. 3926 AddDeferredUnusedCoverageMapping(D); 3927 break; 3928 3929 case Decl::CXXDeductionGuide: 3930 // Function-like, but does not result in code emission. 3931 break; 3932 3933 case Decl::Var: 3934 case Decl::Decomposition: 3935 // Skip variable templates 3936 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3937 return; 3938 LLVM_FALLTHROUGH; 3939 case Decl::VarTemplateSpecialization: 3940 EmitGlobal(cast<VarDecl>(D)); 3941 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3942 for (auto *B : DD->bindings()) 3943 if (auto *HD = B->getHoldingVar()) 3944 EmitGlobal(HD); 3945 break; 3946 3947 // Indirect fields from global anonymous structs and unions can be 3948 // ignored; only the actual variable requires IR gen support. 3949 case Decl::IndirectField: 3950 break; 3951 3952 // C++ Decls 3953 case Decl::Namespace: 3954 EmitDeclContext(cast<NamespaceDecl>(D)); 3955 break; 3956 case Decl::CXXRecord: 3957 if (DebugInfo) { 3958 if (auto *ES = D->getASTContext().getExternalSource()) 3959 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 3960 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 3961 } 3962 // Emit any static data members, they may be definitions. 3963 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3964 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3965 EmitTopLevelDecl(I); 3966 break; 3967 // No code generation needed. 3968 case Decl::UsingShadow: 3969 case Decl::ClassTemplate: 3970 case Decl::VarTemplate: 3971 case Decl::VarTemplatePartialSpecialization: 3972 case Decl::FunctionTemplate: 3973 case Decl::TypeAliasTemplate: 3974 case Decl::Block: 3975 case Decl::Empty: 3976 break; 3977 case Decl::Using: // using X; [C++] 3978 if (CGDebugInfo *DI = getModuleDebugInfo()) 3979 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3980 return; 3981 case Decl::NamespaceAlias: 3982 if (CGDebugInfo *DI = getModuleDebugInfo()) 3983 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3984 return; 3985 case Decl::UsingDirective: // using namespace X; [C++] 3986 if (CGDebugInfo *DI = getModuleDebugInfo()) 3987 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3988 return; 3989 case Decl::CXXConstructor: 3990 // Skip function templates 3991 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3992 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3993 return; 3994 3995 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3996 break; 3997 case Decl::CXXDestructor: 3998 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3999 return; 4000 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4001 break; 4002 4003 case Decl::StaticAssert: 4004 // Nothing to do. 4005 break; 4006 4007 // Objective-C Decls 4008 4009 // Forward declarations, no (immediate) code generation. 4010 case Decl::ObjCInterface: 4011 case Decl::ObjCCategory: 4012 break; 4013 4014 case Decl::ObjCProtocol: { 4015 auto *Proto = cast<ObjCProtocolDecl>(D); 4016 if (Proto->isThisDeclarationADefinition()) 4017 ObjCRuntime->GenerateProtocol(Proto); 4018 break; 4019 } 4020 4021 case Decl::ObjCCategoryImpl: 4022 // Categories have properties but don't support synthesize so we 4023 // can ignore them here. 4024 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4025 break; 4026 4027 case Decl::ObjCImplementation: { 4028 auto *OMD = cast<ObjCImplementationDecl>(D); 4029 EmitObjCPropertyImplementations(OMD); 4030 EmitObjCIvarInitializations(OMD); 4031 ObjCRuntime->GenerateClass(OMD); 4032 // Emit global variable debug information. 4033 if (CGDebugInfo *DI = getModuleDebugInfo()) 4034 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4035 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4036 OMD->getClassInterface()), OMD->getLocation()); 4037 break; 4038 } 4039 case Decl::ObjCMethod: { 4040 auto *OMD = cast<ObjCMethodDecl>(D); 4041 // If this is not a prototype, emit the body. 4042 if (OMD->getBody()) 4043 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4044 break; 4045 } 4046 case Decl::ObjCCompatibleAlias: 4047 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4048 break; 4049 4050 case Decl::PragmaComment: { 4051 const auto *PCD = cast<PragmaCommentDecl>(D); 4052 switch (PCD->getCommentKind()) { 4053 case PCK_Unknown: 4054 llvm_unreachable("unexpected pragma comment kind"); 4055 case PCK_Linker: 4056 AppendLinkerOptions(PCD->getArg()); 4057 break; 4058 case PCK_Lib: 4059 AddDependentLib(PCD->getArg()); 4060 break; 4061 case PCK_Compiler: 4062 case PCK_ExeStr: 4063 case PCK_User: 4064 break; // We ignore all of these. 4065 } 4066 break; 4067 } 4068 4069 case Decl::PragmaDetectMismatch: { 4070 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4071 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4072 break; 4073 } 4074 4075 case Decl::LinkageSpec: 4076 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4077 break; 4078 4079 case Decl::FileScopeAsm: { 4080 // File-scope asm is ignored during device-side CUDA compilation. 4081 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4082 break; 4083 // File-scope asm is ignored during device-side OpenMP compilation. 4084 if (LangOpts.OpenMPIsDevice) 4085 break; 4086 auto *AD = cast<FileScopeAsmDecl>(D); 4087 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4088 break; 4089 } 4090 4091 case Decl::Import: { 4092 auto *Import = cast<ImportDecl>(D); 4093 4094 // If we've already imported this module, we're done. 4095 if (!ImportedModules.insert(Import->getImportedModule())) 4096 break; 4097 4098 // Emit debug information for direct imports. 4099 if (!Import->getImportedOwningModule()) { 4100 if (CGDebugInfo *DI = getModuleDebugInfo()) 4101 DI->EmitImportDecl(*Import); 4102 } 4103 4104 // Find all of the submodules and emit the module initializers. 4105 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4106 SmallVector<clang::Module *, 16> Stack; 4107 Visited.insert(Import->getImportedModule()); 4108 Stack.push_back(Import->getImportedModule()); 4109 4110 while (!Stack.empty()) { 4111 clang::Module *Mod = Stack.pop_back_val(); 4112 if (!EmittedModuleInitializers.insert(Mod).second) 4113 continue; 4114 4115 for (auto *D : Context.getModuleInitializers(Mod)) 4116 EmitTopLevelDecl(D); 4117 4118 // Visit the submodules of this module. 4119 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4120 SubEnd = Mod->submodule_end(); 4121 Sub != SubEnd; ++Sub) { 4122 // Skip explicit children; they need to be explicitly imported to emit 4123 // the initializers. 4124 if ((*Sub)->IsExplicit) 4125 continue; 4126 4127 if (Visited.insert(*Sub).second) 4128 Stack.push_back(*Sub); 4129 } 4130 } 4131 break; 4132 } 4133 4134 case Decl::Export: 4135 EmitDeclContext(cast<ExportDecl>(D)); 4136 break; 4137 4138 case Decl::OMPThreadPrivate: 4139 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4140 break; 4141 4142 case Decl::ClassTemplateSpecialization: { 4143 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4144 if (DebugInfo && 4145 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4146 Spec->hasDefinition()) 4147 DebugInfo->completeTemplateDefinition(*Spec); 4148 break; 4149 } 4150 4151 case Decl::OMPDeclareReduction: 4152 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4153 break; 4154 4155 default: 4156 // Make sure we handled everything we should, every other kind is a 4157 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4158 // function. Need to recode Decl::Kind to do that easily. 4159 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4160 break; 4161 } 4162 } 4163 4164 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4165 // Do we need to generate coverage mapping? 4166 if (!CodeGenOpts.CoverageMapping) 4167 return; 4168 switch (D->getKind()) { 4169 case Decl::CXXConversion: 4170 case Decl::CXXMethod: 4171 case Decl::Function: 4172 case Decl::ObjCMethod: 4173 case Decl::CXXConstructor: 4174 case Decl::CXXDestructor: { 4175 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4176 return; 4177 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4178 if (I == DeferredEmptyCoverageMappingDecls.end()) 4179 DeferredEmptyCoverageMappingDecls[D] = true; 4180 break; 4181 } 4182 default: 4183 break; 4184 }; 4185 } 4186 4187 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4188 // Do we need to generate coverage mapping? 4189 if (!CodeGenOpts.CoverageMapping) 4190 return; 4191 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4192 if (Fn->isTemplateInstantiation()) 4193 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4194 } 4195 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4196 if (I == DeferredEmptyCoverageMappingDecls.end()) 4197 DeferredEmptyCoverageMappingDecls[D] = false; 4198 else 4199 I->second = false; 4200 } 4201 4202 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4203 std::vector<const Decl *> DeferredDecls; 4204 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4205 if (!I.second) 4206 continue; 4207 DeferredDecls.push_back(I.first); 4208 } 4209 // Sort the declarations by their location to make sure that the tests get a 4210 // predictable order for the coverage mapping for the unused declarations. 4211 if (CodeGenOpts.DumpCoverageMapping) 4212 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4213 [] (const Decl *LHS, const Decl *RHS) { 4214 return LHS->getLocStart() < RHS->getLocStart(); 4215 }); 4216 for (const auto *D : DeferredDecls) { 4217 switch (D->getKind()) { 4218 case Decl::CXXConversion: 4219 case Decl::CXXMethod: 4220 case Decl::Function: 4221 case Decl::ObjCMethod: { 4222 CodeGenPGO PGO(*this); 4223 GlobalDecl GD(cast<FunctionDecl>(D)); 4224 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4225 getFunctionLinkage(GD)); 4226 break; 4227 } 4228 case Decl::CXXConstructor: { 4229 CodeGenPGO PGO(*this); 4230 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4231 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4232 getFunctionLinkage(GD)); 4233 break; 4234 } 4235 case Decl::CXXDestructor: { 4236 CodeGenPGO PGO(*this); 4237 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4238 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4239 getFunctionLinkage(GD)); 4240 break; 4241 } 4242 default: 4243 break; 4244 }; 4245 } 4246 } 4247 4248 /// Turns the given pointer into a constant. 4249 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4250 const void *Ptr) { 4251 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4252 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4253 return llvm::ConstantInt::get(i64, PtrInt); 4254 } 4255 4256 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4257 llvm::NamedMDNode *&GlobalMetadata, 4258 GlobalDecl D, 4259 llvm::GlobalValue *Addr) { 4260 if (!GlobalMetadata) 4261 GlobalMetadata = 4262 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4263 4264 // TODO: should we report variant information for ctors/dtors? 4265 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4266 llvm::ConstantAsMetadata::get(GetPointerConstant( 4267 CGM.getLLVMContext(), D.getDecl()))}; 4268 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4269 } 4270 4271 /// For each function which is declared within an extern "C" region and marked 4272 /// as 'used', but has internal linkage, create an alias from the unmangled 4273 /// name to the mangled name if possible. People expect to be able to refer 4274 /// to such functions with an unmangled name from inline assembly within the 4275 /// same translation unit. 4276 void CodeGenModule::EmitStaticExternCAliases() { 4277 // Don't do anything if we're generating CUDA device code -- the NVPTX 4278 // assembly target doesn't support aliases. 4279 if (Context.getTargetInfo().getTriple().isNVPTX()) 4280 return; 4281 for (auto &I : StaticExternCValues) { 4282 IdentifierInfo *Name = I.first; 4283 llvm::GlobalValue *Val = I.second; 4284 if (Val && !getModule().getNamedValue(Name->getName())) 4285 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4286 } 4287 } 4288 4289 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4290 GlobalDecl &Result) const { 4291 auto Res = Manglings.find(MangledName); 4292 if (Res == Manglings.end()) 4293 return false; 4294 Result = Res->getValue(); 4295 return true; 4296 } 4297 4298 /// Emits metadata nodes associating all the global values in the 4299 /// current module with the Decls they came from. This is useful for 4300 /// projects using IR gen as a subroutine. 4301 /// 4302 /// Since there's currently no way to associate an MDNode directly 4303 /// with an llvm::GlobalValue, we create a global named metadata 4304 /// with the name 'clang.global.decl.ptrs'. 4305 void CodeGenModule::EmitDeclMetadata() { 4306 llvm::NamedMDNode *GlobalMetadata = nullptr; 4307 4308 for (auto &I : MangledDeclNames) { 4309 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4310 // Some mangled names don't necessarily have an associated GlobalValue 4311 // in this module, e.g. if we mangled it for DebugInfo. 4312 if (Addr) 4313 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4314 } 4315 } 4316 4317 /// Emits metadata nodes for all the local variables in the current 4318 /// function. 4319 void CodeGenFunction::EmitDeclMetadata() { 4320 if (LocalDeclMap.empty()) return; 4321 4322 llvm::LLVMContext &Context = getLLVMContext(); 4323 4324 // Find the unique metadata ID for this name. 4325 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4326 4327 llvm::NamedMDNode *GlobalMetadata = nullptr; 4328 4329 for (auto &I : LocalDeclMap) { 4330 const Decl *D = I.first; 4331 llvm::Value *Addr = I.second.getPointer(); 4332 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4333 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4334 Alloca->setMetadata( 4335 DeclPtrKind, llvm::MDNode::get( 4336 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4337 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4338 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4339 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4340 } 4341 } 4342 } 4343 4344 void CodeGenModule::EmitVersionIdentMetadata() { 4345 llvm::NamedMDNode *IdentMetadata = 4346 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4347 std::string Version = getClangFullVersion(); 4348 llvm::LLVMContext &Ctx = TheModule.getContext(); 4349 4350 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4351 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4352 } 4353 4354 void CodeGenModule::EmitTargetMetadata() { 4355 // Warning, new MangledDeclNames may be appended within this loop. 4356 // We rely on MapVector insertions adding new elements to the end 4357 // of the container. 4358 // FIXME: Move this loop into the one target that needs it, and only 4359 // loop over those declarations for which we couldn't emit the target 4360 // metadata when we emitted the declaration. 4361 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4362 auto Val = *(MangledDeclNames.begin() + I); 4363 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4364 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4365 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4366 } 4367 } 4368 4369 void CodeGenModule::EmitCoverageFile() { 4370 if (getCodeGenOpts().CoverageDataFile.empty() && 4371 getCodeGenOpts().CoverageNotesFile.empty()) 4372 return; 4373 4374 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4375 if (!CUNode) 4376 return; 4377 4378 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4379 llvm::LLVMContext &Ctx = TheModule.getContext(); 4380 auto *CoverageDataFile = 4381 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4382 auto *CoverageNotesFile = 4383 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4384 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4385 llvm::MDNode *CU = CUNode->getOperand(i); 4386 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4387 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4388 } 4389 } 4390 4391 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4392 // Sema has checked that all uuid strings are of the form 4393 // "12345678-1234-1234-1234-1234567890ab". 4394 assert(Uuid.size() == 36); 4395 for (unsigned i = 0; i < 36; ++i) { 4396 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4397 else assert(isHexDigit(Uuid[i])); 4398 } 4399 4400 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4401 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4402 4403 llvm::Constant *Field3[8]; 4404 for (unsigned Idx = 0; Idx < 8; ++Idx) 4405 Field3[Idx] = llvm::ConstantInt::get( 4406 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4407 4408 llvm::Constant *Fields[4] = { 4409 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4410 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4411 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4412 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4413 }; 4414 4415 return llvm::ConstantStruct::getAnon(Fields); 4416 } 4417 4418 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4419 bool ForEH) { 4420 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4421 // FIXME: should we even be calling this method if RTTI is disabled 4422 // and it's not for EH? 4423 if (!ForEH && !getLangOpts().RTTI) 4424 return llvm::Constant::getNullValue(Int8PtrTy); 4425 4426 if (ForEH && Ty->isObjCObjectPointerType() && 4427 LangOpts.ObjCRuntime.isGNUFamily()) 4428 return ObjCRuntime->GetEHType(Ty); 4429 4430 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4431 } 4432 4433 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4434 for (auto RefExpr : D->varlists()) { 4435 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4436 bool PerformInit = 4437 VD->getAnyInitializer() && 4438 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4439 /*ForRef=*/false); 4440 4441 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4442 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4443 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4444 CXXGlobalInits.push_back(InitFunction); 4445 } 4446 } 4447 4448 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4449 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4450 if (InternalId) 4451 return InternalId; 4452 4453 if (isExternallyVisible(T->getLinkage())) { 4454 std::string OutName; 4455 llvm::raw_string_ostream Out(OutName); 4456 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4457 4458 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4459 } else { 4460 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4461 llvm::ArrayRef<llvm::Metadata *>()); 4462 } 4463 4464 return InternalId; 4465 } 4466 4467 /// Returns whether this module needs the "all-vtables" type identifier. 4468 bool CodeGenModule::NeedAllVtablesTypeId() const { 4469 // Returns true if at least one of vtable-based CFI checkers is enabled and 4470 // is not in the trapping mode. 4471 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4472 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4473 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4474 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4475 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4476 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4477 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4478 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4479 } 4480 4481 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4482 CharUnits Offset, 4483 const CXXRecordDecl *RD) { 4484 llvm::Metadata *MD = 4485 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4486 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4487 4488 if (CodeGenOpts.SanitizeCfiCrossDso) 4489 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4490 VTable->addTypeMetadata(Offset.getQuantity(), 4491 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4492 4493 if (NeedAllVtablesTypeId()) { 4494 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4495 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4496 } 4497 } 4498 4499 // Fills in the supplied string map with the set of target features for the 4500 // passed in function. 4501 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4502 const FunctionDecl *FD) { 4503 StringRef TargetCPU = Target.getTargetOpts().CPU; 4504 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4505 // If we have a TargetAttr build up the feature map based on that. 4506 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4507 4508 // Make a copy of the features as passed on the command line into the 4509 // beginning of the additional features from the function to override. 4510 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4511 Target.getTargetOpts().FeaturesAsWritten.begin(), 4512 Target.getTargetOpts().FeaturesAsWritten.end()); 4513 4514 if (ParsedAttr.Architecture != "") 4515 TargetCPU = ParsedAttr.Architecture ; 4516 4517 // Now populate the feature map, first with the TargetCPU which is either 4518 // the default or a new one from the target attribute string. Then we'll use 4519 // the passed in features (FeaturesAsWritten) along with the new ones from 4520 // the attribute. 4521 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4522 ParsedAttr.Features); 4523 } else { 4524 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4525 Target.getTargetOpts().Features); 4526 } 4527 } 4528 4529 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4530 if (!SanStats) 4531 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4532 4533 return *SanStats; 4534 } 4535 llvm::Value * 4536 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4537 CodeGenFunction &CGF) { 4538 llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF); 4539 auto SamplerT = getOpenCLRuntime().getSamplerType(); 4540 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4541 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4542 "__translate_sampler_initializer"), 4543 {C}); 4544 } 4545