1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallSite.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/ConvertUTF.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MD5.h" 61 62 using namespace clang; 63 using namespace CodeGen; 64 65 static llvm::cl::opt<bool> LimitedCoverage( 66 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 67 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 68 llvm::cl::init(false)); 69 70 static const char AnnotationSection[] = "llvm.metadata"; 71 72 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 73 switch (CGM.getTarget().getCXXABI().getKind()) { 74 case TargetCXXABI::GenericAArch64: 75 case TargetCXXABI::GenericARM: 76 case TargetCXXABI::iOS: 77 case TargetCXXABI::iOS64: 78 case TargetCXXABI::WatchOS: 79 case TargetCXXABI::GenericMIPS: 80 case TargetCXXABI::GenericItanium: 81 case TargetCXXABI::WebAssembly: 82 return CreateItaniumCXXABI(CGM); 83 case TargetCXXABI::Microsoft: 84 return CreateMicrosoftCXXABI(CGM); 85 } 86 87 llvm_unreachable("invalid C++ ABI kind"); 88 } 89 90 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 91 const PreprocessorOptions &PPO, 92 const CodeGenOptions &CGO, llvm::Module &M, 93 DiagnosticsEngine &diags, 94 CoverageSourceInfo *CoverageInfo) 95 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 96 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 97 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 98 VMContext(M.getContext()), Types(*this), VTables(*this), 99 SanitizerMD(new SanitizerMetadata(*this)) { 100 101 // Initialize the type cache. 102 llvm::LLVMContext &LLVMContext = M.getContext(); 103 VoidTy = llvm::Type::getVoidTy(LLVMContext); 104 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 105 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 106 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 107 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 108 HalfTy = llvm::Type::getHalfTy(LLVMContext); 109 FloatTy = llvm::Type::getFloatTy(LLVMContext); 110 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 111 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 112 PointerAlignInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 114 SizeSizeInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 116 IntAlignInBytes = 117 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 118 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 119 IntPtrTy = llvm::IntegerType::get(LLVMContext, 120 C.getTargetInfo().getMaxPointerWidth()); 121 Int8PtrTy = Int8Ty->getPointerTo(0); 122 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 123 AllocaInt8PtrTy = Int8Ty->getPointerTo( 124 M.getDataLayout().getAllocaAddrSpace()); 125 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 126 127 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 128 129 if (LangOpts.ObjC1) 130 createObjCRuntime(); 131 if (LangOpts.OpenCL) 132 createOpenCLRuntime(); 133 if (LangOpts.OpenMP) 134 createOpenMPRuntime(); 135 if (LangOpts.CUDA) 136 createCUDARuntime(); 137 138 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 139 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 140 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 141 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 142 getCXXABI().getMangleContext())); 143 144 // If debug info or coverage generation is enabled, create the CGDebugInfo 145 // object. 146 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 147 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 148 DebugInfo.reset(new CGDebugInfo(*this)); 149 150 Block.GlobalUniqueCount = 0; 151 152 if (C.getLangOpts().ObjC1) 153 ObjCData.reset(new ObjCEntrypoints()); 154 155 if (CodeGenOpts.hasProfileClangUse()) { 156 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 157 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 158 if (auto E = ReaderOrErr.takeError()) { 159 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 160 "Could not read profile %0: %1"); 161 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 162 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 163 << EI.message(); 164 }); 165 } else 166 PGOReader = std::move(ReaderOrErr.get()); 167 } 168 169 // If coverage mapping generation is enabled, create the 170 // CoverageMappingModuleGen object. 171 if (CodeGenOpts.CoverageMapping) 172 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 173 } 174 175 CodeGenModule::~CodeGenModule() {} 176 177 void CodeGenModule::createObjCRuntime() { 178 // This is just isGNUFamily(), but we want to force implementors of 179 // new ABIs to decide how best to do this. 180 switch (LangOpts.ObjCRuntime.getKind()) { 181 case ObjCRuntime::GNUstep: 182 case ObjCRuntime::GCC: 183 case ObjCRuntime::ObjFW: 184 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 185 return; 186 187 case ObjCRuntime::FragileMacOSX: 188 case ObjCRuntime::MacOSX: 189 case ObjCRuntime::iOS: 190 case ObjCRuntime::WatchOS: 191 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 192 return; 193 } 194 llvm_unreachable("bad runtime kind"); 195 } 196 197 void CodeGenModule::createOpenCLRuntime() { 198 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 199 } 200 201 void CodeGenModule::createOpenMPRuntime() { 202 // Select a specialized code generation class based on the target, if any. 203 // If it does not exist use the default implementation. 204 switch (getTriple().getArch()) { 205 case llvm::Triple::nvptx: 206 case llvm::Triple::nvptx64: 207 assert(getLangOpts().OpenMPIsDevice && 208 "OpenMP NVPTX is only prepared to deal with device code."); 209 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 210 break; 211 default: 212 if (LangOpts.OpenMPSimd) 213 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 214 else 215 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 216 break; 217 } 218 } 219 220 void CodeGenModule::createCUDARuntime() { 221 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 222 } 223 224 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 225 Replacements[Name] = C; 226 } 227 228 void CodeGenModule::applyReplacements() { 229 for (auto &I : Replacements) { 230 StringRef MangledName = I.first(); 231 llvm::Constant *Replacement = I.second; 232 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 233 if (!Entry) 234 continue; 235 auto *OldF = cast<llvm::Function>(Entry); 236 auto *NewF = dyn_cast<llvm::Function>(Replacement); 237 if (!NewF) { 238 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 239 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 240 } else { 241 auto *CE = cast<llvm::ConstantExpr>(Replacement); 242 assert(CE->getOpcode() == llvm::Instruction::BitCast || 243 CE->getOpcode() == llvm::Instruction::GetElementPtr); 244 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 245 } 246 } 247 248 // Replace old with new, but keep the old order. 249 OldF->replaceAllUsesWith(Replacement); 250 if (NewF) { 251 NewF->removeFromParent(); 252 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 253 NewF); 254 } 255 OldF->eraseFromParent(); 256 } 257 } 258 259 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 260 GlobalValReplacements.push_back(std::make_pair(GV, C)); 261 } 262 263 void CodeGenModule::applyGlobalValReplacements() { 264 for (auto &I : GlobalValReplacements) { 265 llvm::GlobalValue *GV = I.first; 266 llvm::Constant *C = I.second; 267 268 GV->replaceAllUsesWith(C); 269 GV->eraseFromParent(); 270 } 271 } 272 273 // This is only used in aliases that we created and we know they have a 274 // linear structure. 275 static const llvm::GlobalObject *getAliasedGlobal( 276 const llvm::GlobalIndirectSymbol &GIS) { 277 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 278 const llvm::Constant *C = &GIS; 279 for (;;) { 280 C = C->stripPointerCasts(); 281 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 282 return GO; 283 // stripPointerCasts will not walk over weak aliases. 284 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 285 if (!GIS2) 286 return nullptr; 287 if (!Visited.insert(GIS2).second) 288 return nullptr; 289 C = GIS2->getIndirectSymbol(); 290 } 291 } 292 293 void CodeGenModule::checkAliases() { 294 // Check if the constructed aliases are well formed. It is really unfortunate 295 // that we have to do this in CodeGen, but we only construct mangled names 296 // and aliases during codegen. 297 bool Error = false; 298 DiagnosticsEngine &Diags = getDiags(); 299 for (const GlobalDecl &GD : Aliases) { 300 const auto *D = cast<ValueDecl>(GD.getDecl()); 301 SourceLocation Location; 302 bool IsIFunc = D->hasAttr<IFuncAttr>(); 303 if (const Attr *A = D->getDefiningAttr()) 304 Location = A->getLocation(); 305 else 306 llvm_unreachable("Not an alias or ifunc?"); 307 StringRef MangledName = getMangledName(GD); 308 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 309 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 310 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 311 if (!GV) { 312 Error = true; 313 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 314 } else if (GV->isDeclaration()) { 315 Error = true; 316 Diags.Report(Location, diag::err_alias_to_undefined) 317 << IsIFunc << IsIFunc; 318 } else if (IsIFunc) { 319 // Check resolver function type. 320 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 321 GV->getType()->getPointerElementType()); 322 assert(FTy); 323 if (!FTy->getReturnType()->isPointerTy()) 324 Diags.Report(Location, diag::err_ifunc_resolver_return); 325 } 326 327 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 328 llvm::GlobalValue *AliaseeGV; 329 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 330 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 331 else 332 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 333 334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 335 StringRef AliasSection = SA->getName(); 336 if (AliasSection != AliaseeGV->getSection()) 337 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 338 << AliasSection << IsIFunc << IsIFunc; 339 } 340 341 // We have to handle alias to weak aliases in here. LLVM itself disallows 342 // this since the object semantics would not match the IL one. For 343 // compatibility with gcc we implement it by just pointing the alias 344 // to its aliasee's aliasee. We also warn, since the user is probably 345 // expecting the link to be weak. 346 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 347 if (GA->isInterposable()) { 348 Diags.Report(Location, diag::warn_alias_to_weak_alias) 349 << GV->getName() << GA->getName() << IsIFunc; 350 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 351 GA->getIndirectSymbol(), Alias->getType()); 352 Alias->setIndirectSymbol(Aliasee); 353 } 354 } 355 } 356 if (!Error) 357 return; 358 359 for (const GlobalDecl &GD : Aliases) { 360 StringRef MangledName = getMangledName(GD); 361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 362 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 363 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 364 Alias->eraseFromParent(); 365 } 366 } 367 368 void CodeGenModule::clear() { 369 DeferredDeclsToEmit.clear(); 370 if (OpenMPRuntime) 371 OpenMPRuntime->clear(); 372 } 373 374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 375 StringRef MainFile) { 376 if (!hasDiagnostics()) 377 return; 378 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 379 if (MainFile.empty()) 380 MainFile = "<stdin>"; 381 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 382 } else { 383 if (Mismatched > 0) 384 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 385 386 if (Missing > 0) 387 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 388 } 389 } 390 391 void CodeGenModule::Release() { 392 EmitDeferred(); 393 EmitVTablesOpportunistically(); 394 applyGlobalValReplacements(); 395 applyReplacements(); 396 checkAliases(); 397 emitMultiVersionFunctions(); 398 EmitCXXGlobalInitFunc(); 399 EmitCXXGlobalDtorFunc(); 400 registerGlobalDtorsWithAtExit(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = 408 CUDARuntime->makeModuleCtorFunction()) 409 AddGlobalCtor(CudaCtorFunction); 410 } 411 if (OpenMPRuntime) { 412 if (llvm::Function *OpenMPRegistrationFunction = 413 OpenMPRuntime->emitRegistrationFunction()) { 414 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 415 OpenMPRegistrationFunction : nullptr; 416 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 417 } 418 OpenMPRuntime->clear(); 419 } 420 if (PGOReader) { 421 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 422 if (PGOStats.hasDiagnostics()) 423 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 424 } 425 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 426 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 427 EmitGlobalAnnotations(); 428 EmitStaticExternCAliases(); 429 EmitDeferredUnusedCoverageMappings(); 430 if (CoverageMapping) 431 CoverageMapping->emit(); 432 if (CodeGenOpts.SanitizeCfiCrossDso) { 433 CodeGenFunction(*this).EmitCfiCheckFail(); 434 CodeGenFunction(*this).EmitCfiCheckStub(); 435 } 436 emitAtAvailableLinkGuard(); 437 emitLLVMUsed(); 438 if (SanStats) 439 SanStats->finish(); 440 441 if (CodeGenOpts.Autolink && 442 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 443 EmitModuleLinkOptions(); 444 } 445 446 // Record mregparm value now so it is visible through rest of codegen. 447 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 448 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 449 CodeGenOpts.NumRegisterParameters); 450 451 if (CodeGenOpts.DwarfVersion) { 452 // We actually want the latest version when there are conflicts. 453 // We can change from Warning to Latest if such mode is supported. 454 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 455 CodeGenOpts.DwarfVersion); 456 } 457 if (CodeGenOpts.EmitCodeView) { 458 // Indicate that we want CodeView in the metadata. 459 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 460 } 461 if (CodeGenOpts.ControlFlowGuard) { 462 // We want function ID tables for Control Flow Guard. 463 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); 464 } 465 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 466 // We don't support LTO with 2 with different StrictVTablePointers 467 // FIXME: we could support it by stripping all the information introduced 468 // by StrictVTablePointers. 469 470 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 471 472 llvm::Metadata *Ops[2] = { 473 llvm::MDString::get(VMContext, "StrictVTablePointers"), 474 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 475 llvm::Type::getInt32Ty(VMContext), 1))}; 476 477 getModule().addModuleFlag(llvm::Module::Require, 478 "StrictVTablePointersRequirement", 479 llvm::MDNode::get(VMContext, Ops)); 480 } 481 if (DebugInfo) 482 // We support a single version in the linked module. The LLVM 483 // parser will drop debug info with a different version number 484 // (and warn about it, too). 485 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 486 llvm::DEBUG_METADATA_VERSION); 487 488 // We need to record the widths of enums and wchar_t, so that we can generate 489 // the correct build attributes in the ARM backend. wchar_size is also used by 490 // TargetLibraryInfo. 491 uint64_t WCharWidth = 492 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 493 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 494 495 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 496 if ( Arch == llvm::Triple::arm 497 || Arch == llvm::Triple::armeb 498 || Arch == llvm::Triple::thumb 499 || Arch == llvm::Triple::thumbeb) { 500 // The minimum width of an enum in bytes 501 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 502 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 503 } 504 505 if (CodeGenOpts.SanitizeCfiCrossDso) { 506 // Indicate that we want cross-DSO control flow integrity checks. 507 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 508 } 509 510 if (CodeGenOpts.CFProtectionReturn && 511 Target.checkCFProtectionReturnSupported(getDiags())) { 512 // Indicate that we want to instrument return control flow protection. 513 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 514 1); 515 } 516 517 if (CodeGenOpts.CFProtectionBranch && 518 Target.checkCFProtectionBranchSupported(getDiags())) { 519 // Indicate that we want to instrument branch control flow protection. 520 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 521 1); 522 } 523 524 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 525 // Indicate whether __nvvm_reflect should be configured to flush denormal 526 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 527 // property.) 528 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 529 CodeGenOpts.FlushDenorm ? 1 : 0); 530 } 531 532 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 533 if (LangOpts.OpenCL) { 534 EmitOpenCLMetadata(); 535 // Emit SPIR version. 536 if (getTriple().getArch() == llvm::Triple::spir || 537 getTriple().getArch() == llvm::Triple::spir64) { 538 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 539 // opencl.spir.version named metadata. 540 llvm::Metadata *SPIRVerElts[] = { 541 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 542 Int32Ty, LangOpts.OpenCLVersion / 100)), 543 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 544 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 545 llvm::NamedMDNode *SPIRVerMD = 546 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 547 llvm::LLVMContext &Ctx = TheModule.getContext(); 548 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 549 } 550 } 551 552 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 553 assert(PLevel < 3 && "Invalid PIC Level"); 554 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 555 if (Context.getLangOpts().PIE) 556 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 557 } 558 559 if (getCodeGenOpts().CodeModel.size() > 0) { 560 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 561 .Case("tiny", llvm::CodeModel::Tiny) 562 .Case("small", llvm::CodeModel::Small) 563 .Case("kernel", llvm::CodeModel::Kernel) 564 .Case("medium", llvm::CodeModel::Medium) 565 .Case("large", llvm::CodeModel::Large) 566 .Default(~0u); 567 if (CM != ~0u) { 568 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 569 getModule().setCodeModel(codeModel); 570 } 571 } 572 573 if (CodeGenOpts.NoPLT) 574 getModule().setRtLibUseGOT(); 575 576 SimplifyPersonality(); 577 578 if (getCodeGenOpts().EmitDeclMetadata) 579 EmitDeclMetadata(); 580 581 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 582 EmitCoverageFile(); 583 584 if (DebugInfo) 585 DebugInfo->finalize(); 586 587 if (getCodeGenOpts().EmitVersionIdentMetadata) 588 EmitVersionIdentMetadata(); 589 590 EmitTargetMetadata(); 591 } 592 593 void CodeGenModule::EmitOpenCLMetadata() { 594 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 595 // opencl.ocl.version named metadata node. 596 llvm::Metadata *OCLVerElts[] = { 597 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 598 Int32Ty, LangOpts.OpenCLVersion / 100)), 599 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 600 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 601 llvm::NamedMDNode *OCLVerMD = 602 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 603 llvm::LLVMContext &Ctx = TheModule.getContext(); 604 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 605 } 606 607 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 608 // Make sure that this type is translated. 609 Types.UpdateCompletedType(TD); 610 } 611 612 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 613 // Make sure that this type is translated. 614 Types.RefreshTypeCacheForClass(RD); 615 } 616 617 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 618 if (!TBAA) 619 return nullptr; 620 return TBAA->getTypeInfo(QTy); 621 } 622 623 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 624 if (!TBAA) 625 return TBAAAccessInfo(); 626 return TBAA->getAccessInfo(AccessType); 627 } 628 629 TBAAAccessInfo 630 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 631 if (!TBAA) 632 return TBAAAccessInfo(); 633 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 634 } 635 636 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 637 if (!TBAA) 638 return nullptr; 639 return TBAA->getTBAAStructInfo(QTy); 640 } 641 642 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 643 if (!TBAA) 644 return nullptr; 645 return TBAA->getBaseTypeInfo(QTy); 646 } 647 648 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 649 if (!TBAA) 650 return nullptr; 651 return TBAA->getAccessTagInfo(Info); 652 } 653 654 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 655 TBAAAccessInfo TargetInfo) { 656 if (!TBAA) 657 return TBAAAccessInfo(); 658 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 659 } 660 661 TBAAAccessInfo 662 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 663 TBAAAccessInfo InfoB) { 664 if (!TBAA) 665 return TBAAAccessInfo(); 666 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 667 } 668 669 TBAAAccessInfo 670 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 671 TBAAAccessInfo SrcInfo) { 672 if (!TBAA) 673 return TBAAAccessInfo(); 674 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 675 } 676 677 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 678 TBAAAccessInfo TBAAInfo) { 679 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 680 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 681 } 682 683 void CodeGenModule::DecorateInstructionWithInvariantGroup( 684 llvm::Instruction *I, const CXXRecordDecl *RD) { 685 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 686 llvm::MDNode::get(getLLVMContext(), {})); 687 } 688 689 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 690 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 691 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 692 } 693 694 /// ErrorUnsupported - Print out an error that codegen doesn't support the 695 /// specified stmt yet. 696 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 697 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 698 "cannot compile this %0 yet"); 699 std::string Msg = Type; 700 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 701 << Msg << S->getSourceRange(); 702 } 703 704 /// ErrorUnsupported - Print out an error that codegen doesn't support the 705 /// specified decl yet. 706 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 707 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 708 "cannot compile this %0 yet"); 709 std::string Msg = Type; 710 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 711 } 712 713 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 714 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 715 } 716 717 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 718 const NamedDecl *D) const { 719 if (GV->hasDLLImportStorageClass()) 720 return; 721 // Internal definitions always have default visibility. 722 if (GV->hasLocalLinkage()) { 723 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 724 return; 725 } 726 if (!D) 727 return; 728 // Set visibility for definitions. 729 LinkageInfo LV = D->getLinkageAndVisibility(); 730 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 731 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 732 } 733 734 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 735 llvm::GlobalValue *GV) { 736 if (GV->hasLocalLinkage()) 737 return true; 738 739 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 740 return true; 741 742 // DLLImport explicitly marks the GV as external. 743 if (GV->hasDLLImportStorageClass()) 744 return false; 745 746 const llvm::Triple &TT = CGM.getTriple(); 747 if (TT.isWindowsGNUEnvironment()) { 748 // In MinGW, variables without DLLImport can still be automatically 749 // imported from a DLL by the linker; don't mark variables that 750 // potentially could come from another DLL as DSO local. 751 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 752 !GV->isThreadLocal()) 753 return false; 754 } 755 // Every other GV is local on COFF. 756 // Make an exception for windows OS in the triple: Some firmware builds use 757 // *-win32-macho triples. This (accidentally?) produced windows relocations 758 // without GOT tables in older clang versions; Keep this behaviour. 759 // FIXME: even thread local variables? 760 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 761 return true; 762 763 // Only handle COFF and ELF for now. 764 if (!TT.isOSBinFormatELF()) 765 return false; 766 767 // If this is not an executable, don't assume anything is local. 768 const auto &CGOpts = CGM.getCodeGenOpts(); 769 llvm::Reloc::Model RM = CGOpts.RelocationModel; 770 const auto &LOpts = CGM.getLangOpts(); 771 if (RM != llvm::Reloc::Static && !LOpts.PIE) 772 return false; 773 774 // A definition cannot be preempted from an executable. 775 if (!GV->isDeclarationForLinker()) 776 return true; 777 778 // Most PIC code sequences that assume that a symbol is local cannot produce a 779 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 780 // depended, it seems worth it to handle it here. 781 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 782 return false; 783 784 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 785 llvm::Triple::ArchType Arch = TT.getArch(); 786 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 787 Arch == llvm::Triple::ppc64le) 788 return false; 789 790 // If we can use copy relocations we can assume it is local. 791 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 792 if (!Var->isThreadLocal() && 793 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 794 return true; 795 796 // If we can use a plt entry as the symbol address we can assume it 797 // is local. 798 // FIXME: This should work for PIE, but the gold linker doesn't support it. 799 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 800 return true; 801 802 // Otherwise don't assue it is local. 803 return false; 804 } 805 806 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 807 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 808 } 809 810 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 811 GlobalDecl GD) const { 812 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 813 // C++ destructors have a few C++ ABI specific special cases. 814 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 815 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 816 return; 817 } 818 setDLLImportDLLExport(GV, D); 819 } 820 821 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 822 const NamedDecl *D) const { 823 if (D && D->isExternallyVisible()) { 824 if (D->hasAttr<DLLImportAttr>()) 825 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 826 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 827 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 828 } 829 } 830 831 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 832 GlobalDecl GD) const { 833 setDLLImportDLLExport(GV, GD); 834 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 835 } 836 837 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 838 const NamedDecl *D) const { 839 setDLLImportDLLExport(GV, D); 840 setGlobalVisibilityAndLocal(GV, D); 841 } 842 843 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 844 const NamedDecl *D) const { 845 setGlobalVisibility(GV, D); 846 setDSOLocal(GV); 847 } 848 849 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 850 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 851 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 852 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 853 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 854 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 855 } 856 857 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 858 CodeGenOptions::TLSModel M) { 859 switch (M) { 860 case CodeGenOptions::GeneralDynamicTLSModel: 861 return llvm::GlobalVariable::GeneralDynamicTLSModel; 862 case CodeGenOptions::LocalDynamicTLSModel: 863 return llvm::GlobalVariable::LocalDynamicTLSModel; 864 case CodeGenOptions::InitialExecTLSModel: 865 return llvm::GlobalVariable::InitialExecTLSModel; 866 case CodeGenOptions::LocalExecTLSModel: 867 return llvm::GlobalVariable::LocalExecTLSModel; 868 } 869 llvm_unreachable("Invalid TLS model!"); 870 } 871 872 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 873 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 874 875 llvm::GlobalValue::ThreadLocalMode TLM; 876 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 877 878 // Override the TLS model if it is explicitly specified. 879 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 880 TLM = GetLLVMTLSModel(Attr->getModel()); 881 } 882 883 GV->setThreadLocalMode(TLM); 884 } 885 886 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 887 StringRef Name) { 888 const TargetInfo &Target = CGM.getTarget(); 889 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 890 } 891 892 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 893 const CPUSpecificAttr *Attr, 894 raw_ostream &Out) { 895 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 896 // supported. 897 if (Attr) 898 Out << getCPUSpecificMangling(CGM, Attr->getCurCPUName()->getName()); 899 else if (CGM.getTarget().supportsIFunc()) 900 Out << ".resolver"; 901 } 902 903 static void AppendTargetMangling(const CodeGenModule &CGM, 904 const TargetAttr *Attr, raw_ostream &Out) { 905 if (Attr->isDefaultVersion()) 906 return; 907 908 Out << '.'; 909 const TargetInfo &Target = CGM.getTarget(); 910 TargetAttr::ParsedTargetAttr Info = 911 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 912 // Multiversioning doesn't allow "no-${feature}", so we can 913 // only have "+" prefixes here. 914 assert(LHS.startswith("+") && RHS.startswith("+") && 915 "Features should always have a prefix."); 916 return Target.multiVersionSortPriority(LHS.substr(1)) > 917 Target.multiVersionSortPriority(RHS.substr(1)); 918 }); 919 920 bool IsFirst = true; 921 922 if (!Info.Architecture.empty()) { 923 IsFirst = false; 924 Out << "arch_" << Info.Architecture; 925 } 926 927 for (StringRef Feat : Info.Features) { 928 if (!IsFirst) 929 Out << '_'; 930 IsFirst = false; 931 Out << Feat.substr(1); 932 } 933 } 934 935 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 936 const NamedDecl *ND, 937 bool OmitMultiVersionMangling = false) { 938 SmallString<256> Buffer; 939 llvm::raw_svector_ostream Out(Buffer); 940 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 941 if (MC.shouldMangleDeclName(ND)) { 942 llvm::raw_svector_ostream Out(Buffer); 943 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 944 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 945 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 946 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 947 else 948 MC.mangleName(ND, Out); 949 } else { 950 IdentifierInfo *II = ND->getIdentifier(); 951 assert(II && "Attempt to mangle unnamed decl."); 952 const auto *FD = dyn_cast<FunctionDecl>(ND); 953 954 if (FD && 955 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 956 llvm::raw_svector_ostream Out(Buffer); 957 Out << "__regcall3__" << II->getName(); 958 } else { 959 Out << II->getName(); 960 } 961 } 962 963 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 964 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 965 if (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion()) 966 AppendCPUSpecificCPUDispatchMangling( 967 CGM, FD->getAttr<CPUSpecificAttr>(), Out); 968 else 969 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 970 } 971 972 return Out.str(); 973 } 974 975 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 976 const FunctionDecl *FD) { 977 if (!FD->isMultiVersion()) 978 return; 979 980 // Get the name of what this would be without the 'target' attribute. This 981 // allows us to lookup the version that was emitted when this wasn't a 982 // multiversion function. 983 std::string NonTargetName = 984 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 985 GlobalDecl OtherGD; 986 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 987 assert(OtherGD.getCanonicalDecl() 988 .getDecl() 989 ->getAsFunction() 990 ->isMultiVersion() && 991 "Other GD should now be a multiversioned function"); 992 // OtherFD is the version of this function that was mangled BEFORE 993 // becoming a MultiVersion function. It potentially needs to be updated. 994 const FunctionDecl *OtherFD = 995 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 996 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 997 // This is so that if the initial version was already the 'default' 998 // version, we don't try to update it. 999 if (OtherName != NonTargetName) { 1000 // Remove instead of erase, since others may have stored the StringRef 1001 // to this. 1002 const auto ExistingRecord = Manglings.find(NonTargetName); 1003 if (ExistingRecord != std::end(Manglings)) 1004 Manglings.remove(&(*ExistingRecord)); 1005 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1006 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1007 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1008 Entry->setName(OtherName); 1009 } 1010 } 1011 } 1012 1013 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1014 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1015 1016 // Some ABIs don't have constructor variants. Make sure that base and 1017 // complete constructors get mangled the same. 1018 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1019 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1020 CXXCtorType OrigCtorType = GD.getCtorType(); 1021 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1022 if (OrigCtorType == Ctor_Base) 1023 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1024 } 1025 } 1026 1027 const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()); 1028 // Since CPUSpecific can require multiple emits per decl, store the manglings 1029 // separately. 1030 if (FD && 1031 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion())) { 1032 const auto *SD = FD->getAttr<CPUSpecificAttr>(); 1033 1034 std::pair<GlobalDecl, unsigned> SpecCanonicalGD{ 1035 CanonicalGD, 1036 SD ? SD->ActiveArgIndex : std::numeric_limits<unsigned>::max()}; 1037 1038 auto FoundName = CPUSpecificMangledDeclNames.find(SpecCanonicalGD); 1039 if (FoundName != CPUSpecificMangledDeclNames.end()) 1040 return FoundName->second; 1041 1042 auto Result = CPUSpecificManglings.insert( 1043 std::make_pair(getMangledNameImpl(*this, GD, FD), SpecCanonicalGD)); 1044 return CPUSpecificMangledDeclNames[SpecCanonicalGD] = Result.first->first(); 1045 } 1046 1047 auto FoundName = MangledDeclNames.find(CanonicalGD); 1048 if (FoundName != MangledDeclNames.end()) 1049 return FoundName->second; 1050 1051 // Keep the first result in the case of a mangling collision. 1052 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1053 auto Result = 1054 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 1055 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1056 } 1057 1058 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1059 const BlockDecl *BD) { 1060 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1061 const Decl *D = GD.getDecl(); 1062 1063 SmallString<256> Buffer; 1064 llvm::raw_svector_ostream Out(Buffer); 1065 if (!D) 1066 MangleCtx.mangleGlobalBlock(BD, 1067 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1068 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1069 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1070 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1071 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1072 else 1073 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1074 1075 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1076 return Result.first->first(); 1077 } 1078 1079 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1080 return getModule().getNamedValue(Name); 1081 } 1082 1083 /// AddGlobalCtor - Add a function to the list that will be called before 1084 /// main() runs. 1085 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1086 llvm::Constant *AssociatedData) { 1087 // FIXME: Type coercion of void()* types. 1088 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1089 } 1090 1091 /// AddGlobalDtor - Add a function to the list that will be called 1092 /// when the module is unloaded. 1093 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1094 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1095 DtorsUsingAtExit[Priority].push_back(Dtor); 1096 return; 1097 } 1098 1099 // FIXME: Type coercion of void()* types. 1100 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1101 } 1102 1103 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1104 if (Fns.empty()) return; 1105 1106 // Ctor function type is void()*. 1107 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1108 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 1109 1110 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1111 llvm::StructType *CtorStructTy = llvm::StructType::get( 1112 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 1113 1114 // Construct the constructor and destructor arrays. 1115 ConstantInitBuilder builder(*this); 1116 auto ctors = builder.beginArray(CtorStructTy); 1117 for (const auto &I : Fns) { 1118 auto ctor = ctors.beginStruct(CtorStructTy); 1119 ctor.addInt(Int32Ty, I.Priority); 1120 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1121 if (I.AssociatedData) 1122 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1123 else 1124 ctor.addNullPointer(VoidPtrTy); 1125 ctor.finishAndAddTo(ctors); 1126 } 1127 1128 auto list = 1129 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1130 /*constant*/ false, 1131 llvm::GlobalValue::AppendingLinkage); 1132 1133 // The LTO linker doesn't seem to like it when we set an alignment 1134 // on appending variables. Take it off as a workaround. 1135 list->setAlignment(0); 1136 1137 Fns.clear(); 1138 } 1139 1140 llvm::GlobalValue::LinkageTypes 1141 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1142 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1143 1144 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1145 1146 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1147 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1148 1149 if (isa<CXXConstructorDecl>(D) && 1150 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1151 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1152 // Our approach to inheriting constructors is fundamentally different from 1153 // that used by the MS ABI, so keep our inheriting constructor thunks 1154 // internal rather than trying to pick an unambiguous mangling for them. 1155 return llvm::GlobalValue::InternalLinkage; 1156 } 1157 1158 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1159 } 1160 1161 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1162 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1163 if (!MDS) return nullptr; 1164 1165 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1166 } 1167 1168 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1169 const CGFunctionInfo &Info, 1170 llvm::Function *F) { 1171 unsigned CallingConv; 1172 llvm::AttributeList PAL; 1173 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1174 F->setAttributes(PAL); 1175 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1176 } 1177 1178 /// Determines whether the language options require us to model 1179 /// unwind exceptions. We treat -fexceptions as mandating this 1180 /// except under the fragile ObjC ABI with only ObjC exceptions 1181 /// enabled. This means, for example, that C with -fexceptions 1182 /// enables this. 1183 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1184 // If exceptions are completely disabled, obviously this is false. 1185 if (!LangOpts.Exceptions) return false; 1186 1187 // If C++ exceptions are enabled, this is true. 1188 if (LangOpts.CXXExceptions) return true; 1189 1190 // If ObjC exceptions are enabled, this depends on the ABI. 1191 if (LangOpts.ObjCExceptions) { 1192 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1193 } 1194 1195 return true; 1196 } 1197 1198 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1199 const CXXMethodDecl *MD) { 1200 // Check that the type metadata can ever actually be used by a call. 1201 if (!CGM.getCodeGenOpts().LTOUnit || 1202 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1203 return false; 1204 1205 // Only functions whose address can be taken with a member function pointer 1206 // need this sort of type metadata. 1207 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1208 !isa<CXXDestructorDecl>(MD); 1209 } 1210 1211 std::vector<const CXXRecordDecl *> 1212 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1213 llvm::SetVector<const CXXRecordDecl *> MostBases; 1214 1215 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1216 CollectMostBases = [&](const CXXRecordDecl *RD) { 1217 if (RD->getNumBases() == 0) 1218 MostBases.insert(RD); 1219 for (const CXXBaseSpecifier &B : RD->bases()) 1220 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1221 }; 1222 CollectMostBases(RD); 1223 return MostBases.takeVector(); 1224 } 1225 1226 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1227 llvm::Function *F) { 1228 llvm::AttrBuilder B; 1229 1230 if (CodeGenOpts.UnwindTables) 1231 B.addAttribute(llvm::Attribute::UWTable); 1232 1233 if (!hasUnwindExceptions(LangOpts)) 1234 B.addAttribute(llvm::Attribute::NoUnwind); 1235 1236 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1237 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1238 B.addAttribute(llvm::Attribute::StackProtect); 1239 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1240 B.addAttribute(llvm::Attribute::StackProtectStrong); 1241 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1242 B.addAttribute(llvm::Attribute::StackProtectReq); 1243 } 1244 1245 if (!D) { 1246 // If we don't have a declaration to control inlining, the function isn't 1247 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1248 // disabled, mark the function as noinline. 1249 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1250 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1251 B.addAttribute(llvm::Attribute::NoInline); 1252 1253 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1254 return; 1255 } 1256 1257 // Track whether we need to add the optnone LLVM attribute, 1258 // starting with the default for this optimization level. 1259 bool ShouldAddOptNone = 1260 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1261 // We can't add optnone in the following cases, it won't pass the verifier. 1262 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1263 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1264 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1265 1266 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1267 B.addAttribute(llvm::Attribute::OptimizeNone); 1268 1269 // OptimizeNone implies noinline; we should not be inlining such functions. 1270 B.addAttribute(llvm::Attribute::NoInline); 1271 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1272 "OptimizeNone and AlwaysInline on same function!"); 1273 1274 // We still need to handle naked functions even though optnone subsumes 1275 // much of their semantics. 1276 if (D->hasAttr<NakedAttr>()) 1277 B.addAttribute(llvm::Attribute::Naked); 1278 1279 // OptimizeNone wins over OptimizeForSize and MinSize. 1280 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1281 F->removeFnAttr(llvm::Attribute::MinSize); 1282 } else if (D->hasAttr<NakedAttr>()) { 1283 // Naked implies noinline: we should not be inlining such functions. 1284 B.addAttribute(llvm::Attribute::Naked); 1285 B.addAttribute(llvm::Attribute::NoInline); 1286 } else if (D->hasAttr<NoDuplicateAttr>()) { 1287 B.addAttribute(llvm::Attribute::NoDuplicate); 1288 } else if (D->hasAttr<NoInlineAttr>()) { 1289 B.addAttribute(llvm::Attribute::NoInline); 1290 } else if (D->hasAttr<AlwaysInlineAttr>() && 1291 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1292 // (noinline wins over always_inline, and we can't specify both in IR) 1293 B.addAttribute(llvm::Attribute::AlwaysInline); 1294 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1295 // If we're not inlining, then force everything that isn't always_inline to 1296 // carry an explicit noinline attribute. 1297 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1298 B.addAttribute(llvm::Attribute::NoInline); 1299 } else { 1300 // Otherwise, propagate the inline hint attribute and potentially use its 1301 // absence to mark things as noinline. 1302 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1303 // Search function and template pattern redeclarations for inline. 1304 auto CheckForInline = [](const FunctionDecl *FD) { 1305 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1306 return Redecl->isInlineSpecified(); 1307 }; 1308 if (any_of(FD->redecls(), CheckRedeclForInline)) 1309 return true; 1310 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1311 if (!Pattern) 1312 return false; 1313 return any_of(Pattern->redecls(), CheckRedeclForInline); 1314 }; 1315 if (CheckForInline(FD)) { 1316 B.addAttribute(llvm::Attribute::InlineHint); 1317 } else if (CodeGenOpts.getInlining() == 1318 CodeGenOptions::OnlyHintInlining && 1319 !FD->isInlined() && 1320 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1321 B.addAttribute(llvm::Attribute::NoInline); 1322 } 1323 } 1324 } 1325 1326 // Add other optimization related attributes if we are optimizing this 1327 // function. 1328 if (!D->hasAttr<OptimizeNoneAttr>()) { 1329 if (D->hasAttr<ColdAttr>()) { 1330 if (!ShouldAddOptNone) 1331 B.addAttribute(llvm::Attribute::OptimizeForSize); 1332 B.addAttribute(llvm::Attribute::Cold); 1333 } 1334 1335 if (D->hasAttr<MinSizeAttr>()) 1336 B.addAttribute(llvm::Attribute::MinSize); 1337 } 1338 1339 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1340 1341 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1342 if (alignment) 1343 F->setAlignment(alignment); 1344 1345 if (!D->hasAttr<AlignedAttr>()) 1346 if (LangOpts.FunctionAlignment) 1347 F->setAlignment(1 << LangOpts.FunctionAlignment); 1348 1349 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1350 // reserve a bit for differentiating between virtual and non-virtual member 1351 // functions. If the current target's C++ ABI requires this and this is a 1352 // member function, set its alignment accordingly. 1353 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1354 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1355 F->setAlignment(2); 1356 } 1357 1358 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1359 if (CodeGenOpts.SanitizeCfiCrossDso) 1360 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1361 CreateFunctionTypeMetadataForIcall(FD, F); 1362 1363 // Emit type metadata on member functions for member function pointer checks. 1364 // These are only ever necessary on definitions; we're guaranteed that the 1365 // definition will be present in the LTO unit as a result of LTO visibility. 1366 auto *MD = dyn_cast<CXXMethodDecl>(D); 1367 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1368 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1369 llvm::Metadata *Id = 1370 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1371 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1372 F->addTypeMetadata(0, Id); 1373 } 1374 } 1375 } 1376 1377 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1378 const Decl *D = GD.getDecl(); 1379 if (dyn_cast_or_null<NamedDecl>(D)) 1380 setGVProperties(GV, GD); 1381 else 1382 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1383 1384 if (D && D->hasAttr<UsedAttr>()) 1385 addUsedGlobal(GV); 1386 1387 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1388 const auto *VD = cast<VarDecl>(D); 1389 if (VD->getType().isConstQualified() && VD->getStorageClass() == SC_Static) 1390 addUsedGlobal(GV); 1391 } 1392 } 1393 1394 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1395 llvm::AttrBuilder &Attrs) { 1396 // Add target-cpu and target-features attributes to functions. If 1397 // we have a decl for the function and it has a target attribute then 1398 // parse that and add it to the feature set. 1399 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1400 std::vector<std::string> Features; 1401 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1402 FD = FD ? FD->getMostRecentDecl() : FD; 1403 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1404 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1405 bool AddedAttr = false; 1406 if (TD || SD) { 1407 llvm::StringMap<bool> FeatureMap; 1408 getFunctionFeatureMap(FeatureMap, FD); 1409 1410 // Produce the canonical string for this set of features. 1411 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1412 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1413 1414 // Now add the target-cpu and target-features to the function. 1415 // While we populated the feature map above, we still need to 1416 // get and parse the target attribute so we can get the cpu for 1417 // the function. 1418 if (TD) { 1419 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1420 if (ParsedAttr.Architecture != "" && 1421 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1422 TargetCPU = ParsedAttr.Architecture; 1423 } 1424 } else { 1425 // Otherwise just add the existing target cpu and target features to the 1426 // function. 1427 Features = getTarget().getTargetOpts().Features; 1428 } 1429 1430 if (TargetCPU != "") { 1431 Attrs.addAttribute("target-cpu", TargetCPU); 1432 AddedAttr = true; 1433 } 1434 if (!Features.empty()) { 1435 llvm::sort(Features); 1436 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1437 AddedAttr = true; 1438 } 1439 1440 return AddedAttr; 1441 } 1442 1443 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1444 llvm::GlobalObject *GO) { 1445 const Decl *D = GD.getDecl(); 1446 SetCommonAttributes(GD, GO); 1447 1448 if (D) { 1449 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1450 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1451 GV->addAttribute("bss-section", SA->getName()); 1452 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1453 GV->addAttribute("data-section", SA->getName()); 1454 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1455 GV->addAttribute("rodata-section", SA->getName()); 1456 } 1457 1458 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1459 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1460 if (!D->getAttr<SectionAttr>()) 1461 F->addFnAttr("implicit-section-name", SA->getName()); 1462 1463 llvm::AttrBuilder Attrs; 1464 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1465 // We know that GetCPUAndFeaturesAttributes will always have the 1466 // newest set, since it has the newest possible FunctionDecl, so the 1467 // new ones should replace the old. 1468 F->removeFnAttr("target-cpu"); 1469 F->removeFnAttr("target-features"); 1470 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1471 } 1472 } 1473 1474 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1475 GO->setSection(CSA->getName()); 1476 else if (const auto *SA = D->getAttr<SectionAttr>()) 1477 GO->setSection(SA->getName()); 1478 } 1479 1480 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1481 } 1482 1483 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1484 llvm::Function *F, 1485 const CGFunctionInfo &FI) { 1486 const Decl *D = GD.getDecl(); 1487 SetLLVMFunctionAttributes(D, FI, F); 1488 SetLLVMFunctionAttributesForDefinition(D, F); 1489 1490 F->setLinkage(llvm::Function::InternalLinkage); 1491 1492 setNonAliasAttributes(GD, F); 1493 } 1494 1495 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1496 // Set linkage and visibility in case we never see a definition. 1497 LinkageInfo LV = ND->getLinkageAndVisibility(); 1498 // Don't set internal linkage on declarations. 1499 // "extern_weak" is overloaded in LLVM; we probably should have 1500 // separate linkage types for this. 1501 if (isExternallyVisible(LV.getLinkage()) && 1502 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1503 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1504 } 1505 1506 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1507 llvm::Function *F) { 1508 // Only if we are checking indirect calls. 1509 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1510 return; 1511 1512 // Non-static class methods are handled via vtable or member function pointer 1513 // checks elsewhere. 1514 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1515 return; 1516 1517 // Additionally, if building with cross-DSO support... 1518 if (CodeGenOpts.SanitizeCfiCrossDso) { 1519 // Skip available_externally functions. They won't be codegen'ed in the 1520 // current module anyway. 1521 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1522 return; 1523 } 1524 1525 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1526 F->addTypeMetadata(0, MD); 1527 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1528 1529 // Emit a hash-based bit set entry for cross-DSO calls. 1530 if (CodeGenOpts.SanitizeCfiCrossDso) 1531 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1532 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1533 } 1534 1535 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1536 bool IsIncompleteFunction, 1537 bool IsThunk) { 1538 1539 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1540 // If this is an intrinsic function, set the function's attributes 1541 // to the intrinsic's attributes. 1542 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1543 return; 1544 } 1545 1546 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1547 1548 if (!IsIncompleteFunction) { 1549 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1550 // Setup target-specific attributes. 1551 if (F->isDeclaration()) 1552 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1553 } 1554 1555 // Add the Returned attribute for "this", except for iOS 5 and earlier 1556 // where substantial code, including the libstdc++ dylib, was compiled with 1557 // GCC and does not actually return "this". 1558 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1559 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1560 assert(!F->arg_empty() && 1561 F->arg_begin()->getType() 1562 ->canLosslesslyBitCastTo(F->getReturnType()) && 1563 "unexpected this return"); 1564 F->addAttribute(1, llvm::Attribute::Returned); 1565 } 1566 1567 // Only a few attributes are set on declarations; these may later be 1568 // overridden by a definition. 1569 1570 setLinkageForGV(F, FD); 1571 setGVProperties(F, FD); 1572 1573 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1574 F->setSection(CSA->getName()); 1575 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1576 F->setSection(SA->getName()); 1577 1578 if (FD->isReplaceableGlobalAllocationFunction()) { 1579 // A replaceable global allocation function does not act like a builtin by 1580 // default, only if it is invoked by a new-expression or delete-expression. 1581 F->addAttribute(llvm::AttributeList::FunctionIndex, 1582 llvm::Attribute::NoBuiltin); 1583 1584 // A sane operator new returns a non-aliasing pointer. 1585 // FIXME: Also add NonNull attribute to the return value 1586 // for the non-nothrow forms? 1587 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1588 if (getCodeGenOpts().AssumeSaneOperatorNew && 1589 (Kind == OO_New || Kind == OO_Array_New)) 1590 F->addAttribute(llvm::AttributeList::ReturnIndex, 1591 llvm::Attribute::NoAlias); 1592 } 1593 1594 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1595 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1596 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1597 if (MD->isVirtual()) 1598 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1599 1600 // Don't emit entries for function declarations in the cross-DSO mode. This 1601 // is handled with better precision by the receiving DSO. 1602 if (!CodeGenOpts.SanitizeCfiCrossDso) 1603 CreateFunctionTypeMetadataForIcall(FD, F); 1604 1605 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1606 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1607 } 1608 1609 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1610 assert(!GV->isDeclaration() && 1611 "Only globals with definition can force usage."); 1612 LLVMUsed.emplace_back(GV); 1613 } 1614 1615 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1616 assert(!GV->isDeclaration() && 1617 "Only globals with definition can force usage."); 1618 LLVMCompilerUsed.emplace_back(GV); 1619 } 1620 1621 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1622 std::vector<llvm::WeakTrackingVH> &List) { 1623 // Don't create llvm.used if there is no need. 1624 if (List.empty()) 1625 return; 1626 1627 // Convert List to what ConstantArray needs. 1628 SmallVector<llvm::Constant*, 8> UsedArray; 1629 UsedArray.resize(List.size()); 1630 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1631 UsedArray[i] = 1632 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1633 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1634 } 1635 1636 if (UsedArray.empty()) 1637 return; 1638 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1639 1640 auto *GV = new llvm::GlobalVariable( 1641 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1642 llvm::ConstantArray::get(ATy, UsedArray), Name); 1643 1644 GV->setSection("llvm.metadata"); 1645 } 1646 1647 void CodeGenModule::emitLLVMUsed() { 1648 emitUsed(*this, "llvm.used", LLVMUsed); 1649 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1650 } 1651 1652 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1653 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1654 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1655 } 1656 1657 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1658 llvm::SmallString<32> Opt; 1659 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1660 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1661 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1662 } 1663 1664 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1665 auto &C = getLLVMContext(); 1666 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1667 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1668 } 1669 1670 void CodeGenModule::AddDependentLib(StringRef Lib) { 1671 llvm::SmallString<24> Opt; 1672 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1673 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1674 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1675 } 1676 1677 /// Add link options implied by the given module, including modules 1678 /// it depends on, using a postorder walk. 1679 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1680 SmallVectorImpl<llvm::MDNode *> &Metadata, 1681 llvm::SmallPtrSet<Module *, 16> &Visited) { 1682 // Import this module's parent. 1683 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1684 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1685 } 1686 1687 // Import this module's dependencies. 1688 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1689 if (Visited.insert(Mod->Imports[I - 1]).second) 1690 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1691 } 1692 1693 // Add linker options to link against the libraries/frameworks 1694 // described by this module. 1695 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1696 1697 // For modules that use export_as for linking, use that module 1698 // name instead. 1699 if (Mod->UseExportAsModuleLinkName) 1700 return; 1701 1702 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1703 // Link against a framework. Frameworks are currently Darwin only, so we 1704 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1705 if (Mod->LinkLibraries[I-1].IsFramework) { 1706 llvm::Metadata *Args[2] = { 1707 llvm::MDString::get(Context, "-framework"), 1708 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1709 1710 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1711 continue; 1712 } 1713 1714 // Link against a library. 1715 llvm::SmallString<24> Opt; 1716 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1717 Mod->LinkLibraries[I-1].Library, Opt); 1718 auto *OptString = llvm::MDString::get(Context, Opt); 1719 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1720 } 1721 } 1722 1723 void CodeGenModule::EmitModuleLinkOptions() { 1724 // Collect the set of all of the modules we want to visit to emit link 1725 // options, which is essentially the imported modules and all of their 1726 // non-explicit child modules. 1727 llvm::SetVector<clang::Module *> LinkModules; 1728 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1729 SmallVector<clang::Module *, 16> Stack; 1730 1731 // Seed the stack with imported modules. 1732 for (Module *M : ImportedModules) { 1733 // Do not add any link flags when an implementation TU of a module imports 1734 // a header of that same module. 1735 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1736 !getLangOpts().isCompilingModule()) 1737 continue; 1738 if (Visited.insert(M).second) 1739 Stack.push_back(M); 1740 } 1741 1742 // Find all of the modules to import, making a little effort to prune 1743 // non-leaf modules. 1744 while (!Stack.empty()) { 1745 clang::Module *Mod = Stack.pop_back_val(); 1746 1747 bool AnyChildren = false; 1748 1749 // Visit the submodules of this module. 1750 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1751 SubEnd = Mod->submodule_end(); 1752 Sub != SubEnd; ++Sub) { 1753 // Skip explicit children; they need to be explicitly imported to be 1754 // linked against. 1755 if ((*Sub)->IsExplicit) 1756 continue; 1757 1758 if (Visited.insert(*Sub).second) { 1759 Stack.push_back(*Sub); 1760 AnyChildren = true; 1761 } 1762 } 1763 1764 // We didn't find any children, so add this module to the list of 1765 // modules to link against. 1766 if (!AnyChildren) { 1767 LinkModules.insert(Mod); 1768 } 1769 } 1770 1771 // Add link options for all of the imported modules in reverse topological 1772 // order. We don't do anything to try to order import link flags with respect 1773 // to linker options inserted by things like #pragma comment(). 1774 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1775 Visited.clear(); 1776 for (Module *M : LinkModules) 1777 if (Visited.insert(M).second) 1778 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1779 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1780 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1781 1782 // Add the linker options metadata flag. 1783 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1784 for (auto *MD : LinkerOptionsMetadata) 1785 NMD->addOperand(MD); 1786 } 1787 1788 void CodeGenModule::EmitDeferred() { 1789 // Emit deferred declare target declarations. 1790 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1791 getOpenMPRuntime().emitDeferredTargetDecls(); 1792 1793 // Emit code for any potentially referenced deferred decls. Since a 1794 // previously unused static decl may become used during the generation of code 1795 // for a static function, iterate until no changes are made. 1796 1797 if (!DeferredVTables.empty()) { 1798 EmitDeferredVTables(); 1799 1800 // Emitting a vtable doesn't directly cause more vtables to 1801 // become deferred, although it can cause functions to be 1802 // emitted that then need those vtables. 1803 assert(DeferredVTables.empty()); 1804 } 1805 1806 // Stop if we're out of both deferred vtables and deferred declarations. 1807 if (DeferredDeclsToEmit.empty()) 1808 return; 1809 1810 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1811 // work, it will not interfere with this. 1812 std::vector<GlobalDecl> CurDeclsToEmit; 1813 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1814 1815 for (GlobalDecl &D : CurDeclsToEmit) { 1816 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1817 // to get GlobalValue with exactly the type we need, not something that 1818 // might had been created for another decl with the same mangled name but 1819 // different type. 1820 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1821 GetAddrOfGlobal(D, ForDefinition)); 1822 1823 // In case of different address spaces, we may still get a cast, even with 1824 // IsForDefinition equal to true. Query mangled names table to get 1825 // GlobalValue. 1826 if (!GV) 1827 GV = GetGlobalValue(getMangledName(D)); 1828 1829 // Make sure GetGlobalValue returned non-null. 1830 assert(GV); 1831 1832 // Check to see if we've already emitted this. This is necessary 1833 // for a couple of reasons: first, decls can end up in the 1834 // deferred-decls queue multiple times, and second, decls can end 1835 // up with definitions in unusual ways (e.g. by an extern inline 1836 // function acquiring a strong function redefinition). Just 1837 // ignore these cases. 1838 if (!GV->isDeclaration()) 1839 continue; 1840 1841 // Otherwise, emit the definition and move on to the next one. 1842 EmitGlobalDefinition(D, GV); 1843 1844 // If we found out that we need to emit more decls, do that recursively. 1845 // This has the advantage that the decls are emitted in a DFS and related 1846 // ones are close together, which is convenient for testing. 1847 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1848 EmitDeferred(); 1849 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1850 } 1851 } 1852 } 1853 1854 void CodeGenModule::EmitVTablesOpportunistically() { 1855 // Try to emit external vtables as available_externally if they have emitted 1856 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1857 // is not allowed to create new references to things that need to be emitted 1858 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1859 1860 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1861 && "Only emit opportunistic vtables with optimizations"); 1862 1863 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1864 assert(getVTables().isVTableExternal(RD) && 1865 "This queue should only contain external vtables"); 1866 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1867 VTables.GenerateClassData(RD); 1868 } 1869 OpportunisticVTables.clear(); 1870 } 1871 1872 void CodeGenModule::EmitGlobalAnnotations() { 1873 if (Annotations.empty()) 1874 return; 1875 1876 // Create a new global variable for the ConstantStruct in the Module. 1877 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1878 Annotations[0]->getType(), Annotations.size()), Annotations); 1879 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1880 llvm::GlobalValue::AppendingLinkage, 1881 Array, "llvm.global.annotations"); 1882 gv->setSection(AnnotationSection); 1883 } 1884 1885 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1886 llvm::Constant *&AStr = AnnotationStrings[Str]; 1887 if (AStr) 1888 return AStr; 1889 1890 // Not found yet, create a new global. 1891 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1892 auto *gv = 1893 new llvm::GlobalVariable(getModule(), s->getType(), true, 1894 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1895 gv->setSection(AnnotationSection); 1896 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1897 AStr = gv; 1898 return gv; 1899 } 1900 1901 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1902 SourceManager &SM = getContext().getSourceManager(); 1903 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1904 if (PLoc.isValid()) 1905 return EmitAnnotationString(PLoc.getFilename()); 1906 return EmitAnnotationString(SM.getBufferName(Loc)); 1907 } 1908 1909 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1910 SourceManager &SM = getContext().getSourceManager(); 1911 PresumedLoc PLoc = SM.getPresumedLoc(L); 1912 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1913 SM.getExpansionLineNumber(L); 1914 return llvm::ConstantInt::get(Int32Ty, LineNo); 1915 } 1916 1917 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1918 const AnnotateAttr *AA, 1919 SourceLocation L) { 1920 // Get the globals for file name, annotation, and the line number. 1921 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1922 *UnitGV = EmitAnnotationUnit(L), 1923 *LineNoCst = EmitAnnotationLineNo(L); 1924 1925 // Create the ConstantStruct for the global annotation. 1926 llvm::Constant *Fields[4] = { 1927 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1928 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1929 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1930 LineNoCst 1931 }; 1932 return llvm::ConstantStruct::getAnon(Fields); 1933 } 1934 1935 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1936 llvm::GlobalValue *GV) { 1937 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1938 // Get the struct elements for these annotations. 1939 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1940 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1941 } 1942 1943 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1944 llvm::Function *Fn, 1945 SourceLocation Loc) const { 1946 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1947 // Blacklist by function name. 1948 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1949 return true; 1950 // Blacklist by location. 1951 if (Loc.isValid()) 1952 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1953 // If location is unknown, this may be a compiler-generated function. Assume 1954 // it's located in the main file. 1955 auto &SM = Context.getSourceManager(); 1956 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1957 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1958 } 1959 return false; 1960 } 1961 1962 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1963 SourceLocation Loc, QualType Ty, 1964 StringRef Category) const { 1965 // For now globals can be blacklisted only in ASan and KASan. 1966 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1967 (SanitizerKind::Address | SanitizerKind::KernelAddress | 1968 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 1969 if (!EnabledAsanMask) 1970 return false; 1971 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1972 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1973 return true; 1974 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1975 return true; 1976 // Check global type. 1977 if (!Ty.isNull()) { 1978 // Drill down the array types: if global variable of a fixed type is 1979 // blacklisted, we also don't instrument arrays of them. 1980 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1981 Ty = AT->getElementType(); 1982 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1983 // We allow to blacklist only record types (classes, structs etc.) 1984 if (Ty->isRecordType()) { 1985 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1986 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1987 return true; 1988 } 1989 } 1990 return false; 1991 } 1992 1993 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1994 StringRef Category) const { 1995 const auto &XRayFilter = getContext().getXRayFilter(); 1996 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1997 auto Attr = ImbueAttr::NONE; 1998 if (Loc.isValid()) 1999 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2000 if (Attr == ImbueAttr::NONE) 2001 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2002 switch (Attr) { 2003 case ImbueAttr::NONE: 2004 return false; 2005 case ImbueAttr::ALWAYS: 2006 Fn->addFnAttr("function-instrument", "xray-always"); 2007 break; 2008 case ImbueAttr::ALWAYS_ARG1: 2009 Fn->addFnAttr("function-instrument", "xray-always"); 2010 Fn->addFnAttr("xray-log-args", "1"); 2011 break; 2012 case ImbueAttr::NEVER: 2013 Fn->addFnAttr("function-instrument", "xray-never"); 2014 break; 2015 } 2016 return true; 2017 } 2018 2019 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2020 // Never defer when EmitAllDecls is specified. 2021 if (LangOpts.EmitAllDecls) 2022 return true; 2023 2024 if (CodeGenOpts.KeepStaticConsts) { 2025 const auto *VD = dyn_cast<VarDecl>(Global); 2026 if (VD && VD->getType().isConstQualified() && 2027 VD->getStorageClass() == SC_Static) 2028 return true; 2029 } 2030 2031 return getContext().DeclMustBeEmitted(Global); 2032 } 2033 2034 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2035 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 2036 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2037 // Implicit template instantiations may change linkage if they are later 2038 // explicitly instantiated, so they should not be emitted eagerly. 2039 return false; 2040 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2041 if (Context.getInlineVariableDefinitionKind(VD) == 2042 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2043 // A definition of an inline constexpr static data member may change 2044 // linkage later if it's redeclared outside the class. 2045 return false; 2046 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2047 // codegen for global variables, because they may be marked as threadprivate. 2048 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2049 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2050 !isTypeConstant(Global->getType(), false) && 2051 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2052 return false; 2053 2054 return true; 2055 } 2056 2057 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2058 const CXXUuidofExpr* E) { 2059 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2060 // well-formed. 2061 StringRef Uuid = E->getUuidStr(); 2062 std::string Name = "_GUID_" + Uuid.lower(); 2063 std::replace(Name.begin(), Name.end(), '-', '_'); 2064 2065 // The UUID descriptor should be pointer aligned. 2066 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2067 2068 // Look for an existing global. 2069 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2070 return ConstantAddress(GV, Alignment); 2071 2072 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2073 assert(Init && "failed to initialize as constant"); 2074 2075 auto *GV = new llvm::GlobalVariable( 2076 getModule(), Init->getType(), 2077 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2078 if (supportsCOMDAT()) 2079 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2080 setDSOLocal(GV); 2081 return ConstantAddress(GV, Alignment); 2082 } 2083 2084 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2085 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2086 assert(AA && "No alias?"); 2087 2088 CharUnits Alignment = getContext().getDeclAlign(VD); 2089 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2090 2091 // See if there is already something with the target's name in the module. 2092 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2093 if (Entry) { 2094 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2095 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2096 return ConstantAddress(Ptr, Alignment); 2097 } 2098 2099 llvm::Constant *Aliasee; 2100 if (isa<llvm::FunctionType>(DeclTy)) 2101 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2102 GlobalDecl(cast<FunctionDecl>(VD)), 2103 /*ForVTable=*/false); 2104 else 2105 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2106 llvm::PointerType::getUnqual(DeclTy), 2107 nullptr); 2108 2109 auto *F = cast<llvm::GlobalValue>(Aliasee); 2110 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2111 WeakRefReferences.insert(F); 2112 2113 return ConstantAddress(Aliasee, Alignment); 2114 } 2115 2116 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2117 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2118 2119 // Weak references don't produce any output by themselves. 2120 if (Global->hasAttr<WeakRefAttr>()) 2121 return; 2122 2123 // If this is an alias definition (which otherwise looks like a declaration) 2124 // emit it now. 2125 if (Global->hasAttr<AliasAttr>()) 2126 return EmitAliasDefinition(GD); 2127 2128 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2129 if (Global->hasAttr<IFuncAttr>()) 2130 return emitIFuncDefinition(GD); 2131 2132 // If this is a cpu_dispatch multiversion function, emit the resolver. 2133 if (Global->hasAttr<CPUDispatchAttr>()) 2134 return emitCPUDispatchDefinition(GD); 2135 2136 // If this is CUDA, be selective about which declarations we emit. 2137 if (LangOpts.CUDA) { 2138 if (LangOpts.CUDAIsDevice) { 2139 if (!Global->hasAttr<CUDADeviceAttr>() && 2140 !Global->hasAttr<CUDAGlobalAttr>() && 2141 !Global->hasAttr<CUDAConstantAttr>() && 2142 !Global->hasAttr<CUDASharedAttr>()) 2143 return; 2144 } else { 2145 // We need to emit host-side 'shadows' for all global 2146 // device-side variables because the CUDA runtime needs their 2147 // size and host-side address in order to provide access to 2148 // their device-side incarnations. 2149 2150 // So device-only functions are the only things we skip. 2151 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2152 Global->hasAttr<CUDADeviceAttr>()) 2153 return; 2154 2155 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2156 "Expected Variable or Function"); 2157 } 2158 } 2159 2160 if (LangOpts.OpenMP) { 2161 // If this is OpenMP device, check if it is legal to emit this global 2162 // normally. 2163 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2164 return; 2165 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2166 if (MustBeEmitted(Global)) 2167 EmitOMPDeclareReduction(DRD); 2168 return; 2169 } 2170 } 2171 2172 // Ignore declarations, they will be emitted on their first use. 2173 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2174 // Forward declarations are emitted lazily on first use. 2175 if (!FD->doesThisDeclarationHaveABody()) { 2176 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2177 return; 2178 2179 StringRef MangledName = getMangledName(GD); 2180 2181 // Compute the function info and LLVM type. 2182 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2183 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2184 2185 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2186 /*DontDefer=*/false); 2187 return; 2188 } 2189 } else { 2190 const auto *VD = cast<VarDecl>(Global); 2191 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2192 // We need to emit device-side global CUDA variables even if a 2193 // variable does not have a definition -- we still need to define 2194 // host-side shadow for it. 2195 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2196 !VD->hasDefinition() && 2197 (VD->hasAttr<CUDAConstantAttr>() || 2198 VD->hasAttr<CUDADeviceAttr>()); 2199 if (!MustEmitForCuda && 2200 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2201 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2202 if (LangOpts.OpenMP) { 2203 // Emit declaration of the must-be-emitted declare target variable. 2204 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2205 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2206 if (*Res == OMPDeclareTargetDeclAttr::MT_To) { 2207 (void)GetAddrOfGlobalVar(VD); 2208 } else { 2209 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && 2210 "link claue expected."); 2211 (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2212 } 2213 return; 2214 } 2215 } 2216 // If this declaration may have caused an inline variable definition to 2217 // change linkage, make sure that it's emitted. 2218 if (Context.getInlineVariableDefinitionKind(VD) == 2219 ASTContext::InlineVariableDefinitionKind::Strong) 2220 GetAddrOfGlobalVar(VD); 2221 return; 2222 } 2223 } 2224 2225 // Defer code generation to first use when possible, e.g. if this is an inline 2226 // function. If the global must always be emitted, do it eagerly if possible 2227 // to benefit from cache locality. 2228 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2229 // Emit the definition if it can't be deferred. 2230 EmitGlobalDefinition(GD); 2231 return; 2232 } 2233 2234 // If we're deferring emission of a C++ variable with an 2235 // initializer, remember the order in which it appeared in the file. 2236 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2237 cast<VarDecl>(Global)->hasInit()) { 2238 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2239 CXXGlobalInits.push_back(nullptr); 2240 } 2241 2242 StringRef MangledName = getMangledName(GD); 2243 if (GetGlobalValue(MangledName) != nullptr) { 2244 // The value has already been used and should therefore be emitted. 2245 addDeferredDeclToEmit(GD); 2246 } else if (MustBeEmitted(Global)) { 2247 // The value must be emitted, but cannot be emitted eagerly. 2248 assert(!MayBeEmittedEagerly(Global)); 2249 addDeferredDeclToEmit(GD); 2250 } else { 2251 // Otherwise, remember that we saw a deferred decl with this name. The 2252 // first use of the mangled name will cause it to move into 2253 // DeferredDeclsToEmit. 2254 DeferredDecls[MangledName] = GD; 2255 } 2256 } 2257 2258 // Check if T is a class type with a destructor that's not dllimport. 2259 static bool HasNonDllImportDtor(QualType T) { 2260 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2261 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2262 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2263 return true; 2264 2265 return false; 2266 } 2267 2268 namespace { 2269 struct FunctionIsDirectlyRecursive : 2270 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2271 const StringRef Name; 2272 const Builtin::Context &BI; 2273 bool Result; 2274 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2275 Name(N), BI(C), Result(false) { 2276 } 2277 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2278 2279 bool TraverseCallExpr(CallExpr *E) { 2280 const FunctionDecl *FD = E->getDirectCallee(); 2281 if (!FD) 2282 return true; 2283 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2284 if (Attr && Name == Attr->getLabel()) { 2285 Result = true; 2286 return false; 2287 } 2288 unsigned BuiltinID = FD->getBuiltinID(); 2289 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2290 return true; 2291 StringRef BuiltinName = BI.getName(BuiltinID); 2292 if (BuiltinName.startswith("__builtin_") && 2293 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2294 Result = true; 2295 return false; 2296 } 2297 return true; 2298 } 2299 }; 2300 2301 // Make sure we're not referencing non-imported vars or functions. 2302 struct DLLImportFunctionVisitor 2303 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2304 bool SafeToInline = true; 2305 2306 bool shouldVisitImplicitCode() const { return true; } 2307 2308 bool VisitVarDecl(VarDecl *VD) { 2309 if (VD->getTLSKind()) { 2310 // A thread-local variable cannot be imported. 2311 SafeToInline = false; 2312 return SafeToInline; 2313 } 2314 2315 // A variable definition might imply a destructor call. 2316 if (VD->isThisDeclarationADefinition()) 2317 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2318 2319 return SafeToInline; 2320 } 2321 2322 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2323 if (const auto *D = E->getTemporary()->getDestructor()) 2324 SafeToInline = D->hasAttr<DLLImportAttr>(); 2325 return SafeToInline; 2326 } 2327 2328 bool VisitDeclRefExpr(DeclRefExpr *E) { 2329 ValueDecl *VD = E->getDecl(); 2330 if (isa<FunctionDecl>(VD)) 2331 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2332 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2333 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2334 return SafeToInline; 2335 } 2336 2337 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2338 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2339 return SafeToInline; 2340 } 2341 2342 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2343 CXXMethodDecl *M = E->getMethodDecl(); 2344 if (!M) { 2345 // Call through a pointer to member function. This is safe to inline. 2346 SafeToInline = true; 2347 } else { 2348 SafeToInline = M->hasAttr<DLLImportAttr>(); 2349 } 2350 return SafeToInline; 2351 } 2352 2353 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2354 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2355 return SafeToInline; 2356 } 2357 2358 bool VisitCXXNewExpr(CXXNewExpr *E) { 2359 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2360 return SafeToInline; 2361 } 2362 }; 2363 } 2364 2365 // isTriviallyRecursive - Check if this function calls another 2366 // decl that, because of the asm attribute or the other decl being a builtin, 2367 // ends up pointing to itself. 2368 bool 2369 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2370 StringRef Name; 2371 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2372 // asm labels are a special kind of mangling we have to support. 2373 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2374 if (!Attr) 2375 return false; 2376 Name = Attr->getLabel(); 2377 } else { 2378 Name = FD->getName(); 2379 } 2380 2381 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2382 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2383 return Walker.Result; 2384 } 2385 2386 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2387 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2388 return true; 2389 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2390 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2391 return false; 2392 2393 if (F->hasAttr<DLLImportAttr>()) { 2394 // Check whether it would be safe to inline this dllimport function. 2395 DLLImportFunctionVisitor Visitor; 2396 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2397 if (!Visitor.SafeToInline) 2398 return false; 2399 2400 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2401 // Implicit destructor invocations aren't captured in the AST, so the 2402 // check above can't see them. Check for them manually here. 2403 for (const Decl *Member : Dtor->getParent()->decls()) 2404 if (isa<FieldDecl>(Member)) 2405 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2406 return false; 2407 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2408 if (HasNonDllImportDtor(B.getType())) 2409 return false; 2410 } 2411 } 2412 2413 // PR9614. Avoid cases where the source code is lying to us. An available 2414 // externally function should have an equivalent function somewhere else, 2415 // but a function that calls itself is clearly not equivalent to the real 2416 // implementation. 2417 // This happens in glibc's btowc and in some configure checks. 2418 return !isTriviallyRecursive(F); 2419 } 2420 2421 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2422 return CodeGenOpts.OptimizationLevel > 0; 2423 } 2424 2425 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2426 const auto *D = cast<ValueDecl>(GD.getDecl()); 2427 2428 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2429 Context.getSourceManager(), 2430 "Generating code for declaration"); 2431 2432 if (isa<FunctionDecl>(D)) { 2433 // At -O0, don't generate IR for functions with available_externally 2434 // linkage. 2435 if (!shouldEmitFunction(GD)) 2436 return; 2437 2438 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2439 // Make sure to emit the definition(s) before we emit the thunks. 2440 // This is necessary for the generation of certain thunks. 2441 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2442 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2443 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2444 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2445 else 2446 EmitGlobalFunctionDefinition(GD, GV); 2447 2448 if (Method->isVirtual()) 2449 getVTables().EmitThunks(GD); 2450 2451 return; 2452 } 2453 2454 return EmitGlobalFunctionDefinition(GD, GV); 2455 } 2456 2457 if (const auto *VD = dyn_cast<VarDecl>(D)) 2458 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2459 2460 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2461 } 2462 2463 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2464 llvm::Function *NewFn); 2465 2466 static unsigned 2467 TargetMVPriority(const TargetInfo &TI, 2468 const CodeGenFunction::MultiVersionResolverOption &RO) { 2469 unsigned Priority = 0; 2470 for (StringRef Feat : RO.Conditions.Features) 2471 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2472 2473 if (!RO.Conditions.Architecture.empty()) 2474 Priority = std::max( 2475 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2476 return Priority; 2477 } 2478 2479 void CodeGenModule::emitMultiVersionFunctions() { 2480 for (GlobalDecl GD : MultiVersionFuncs) { 2481 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2482 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2483 getContext().forEachMultiversionedFunctionVersion( 2484 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2485 GlobalDecl CurGD{ 2486 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2487 StringRef MangledName = getMangledName(CurGD); 2488 llvm::Constant *Func = GetGlobalValue(MangledName); 2489 if (!Func) { 2490 if (CurFD->isDefined()) { 2491 EmitGlobalFunctionDefinition(CurGD, nullptr); 2492 Func = GetGlobalValue(MangledName); 2493 } else { 2494 const CGFunctionInfo &FI = 2495 getTypes().arrangeGlobalDeclaration(GD); 2496 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2497 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2498 /*DontDefer=*/false, ForDefinition); 2499 } 2500 assert(Func && "This should have just been created"); 2501 } 2502 2503 const auto *TA = CurFD->getAttr<TargetAttr>(); 2504 llvm::SmallVector<StringRef, 8> Feats; 2505 TA->getAddedFeatures(Feats); 2506 2507 Options.emplace_back(cast<llvm::Function>(Func), 2508 TA->getArchitecture(), Feats); 2509 }); 2510 2511 llvm::Function *ResolverFunc; 2512 const TargetInfo &TI = getTarget(); 2513 2514 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) 2515 ResolverFunc = cast<llvm::Function>( 2516 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2517 else 2518 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2519 2520 if (supportsCOMDAT()) 2521 ResolverFunc->setComdat( 2522 getModule().getOrInsertComdat(ResolverFunc->getName())); 2523 2524 std::stable_sort( 2525 Options.begin(), Options.end(), 2526 [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2527 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2528 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2529 }); 2530 CodeGenFunction CGF(*this); 2531 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2532 } 2533 } 2534 2535 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2536 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2537 assert(FD && "Not a FunctionDecl?"); 2538 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2539 assert(DD && "Not a cpu_dispatch Function?"); 2540 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(FD->getType()); 2541 2542 StringRef ResolverName = getMangledName(GD); 2543 2544 llvm::Type *ResolverType; 2545 GlobalDecl ResolverGD; 2546 if (getTarget().supportsIFunc()) 2547 ResolverType = llvm::FunctionType::get( 2548 llvm::PointerType::get(DeclTy, 2549 Context.getTargetAddressSpace(FD->getType())), 2550 false); 2551 else { 2552 ResolverType = DeclTy; 2553 ResolverGD = GD; 2554 } 2555 2556 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2557 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2558 2559 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2560 const TargetInfo &Target = getTarget(); 2561 for (const IdentifierInfo *II : DD->cpus()) { 2562 // Get the name of the target function so we can look it up/create it. 2563 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2564 getCPUSpecificMangling(*this, II->getName()); 2565 llvm::Constant *Func = GetOrCreateLLVMFunction( 2566 MangledName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/false, 2567 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2568 llvm::SmallVector<StringRef, 32> Features; 2569 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2570 llvm::transform(Features, Features.begin(), 2571 [](StringRef Str) { return Str.substr(1); }); 2572 Features.erase(std::remove_if( 2573 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2574 return !Target.validateCpuSupports(Feat); 2575 }), Features.end()); 2576 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2577 } 2578 2579 llvm::sort( 2580 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2581 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2582 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2583 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2584 }); 2585 CodeGenFunction CGF(*this); 2586 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2587 } 2588 2589 /// If a dispatcher for the specified mangled name is not in the module, create 2590 /// and return an llvm Function with the specified type. 2591 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 2592 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 2593 std::string MangledName = 2594 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2595 2596 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 2597 // a separate resolver). 2598 std::string ResolverName = MangledName; 2599 if (getTarget().supportsIFunc()) 2600 ResolverName += ".ifunc"; 2601 else if (FD->isTargetMultiVersion()) 2602 ResolverName += ".resolver"; 2603 2604 // If this already exists, just return that one. 2605 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 2606 return ResolverGV; 2607 2608 // Since this is the first time we've created this IFunc, make sure 2609 // that we put this multiversioned function into the list to be 2610 // replaced later if necessary (target multiversioning only). 2611 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2612 MultiVersionFuncs.push_back(GD); 2613 2614 if (getTarget().supportsIFunc()) { 2615 llvm::Type *ResolverType = llvm::FunctionType::get( 2616 llvm::PointerType::get( 2617 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 2618 false); 2619 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2620 MangledName + ".resolver", ResolverType, GlobalDecl{}, 2621 /*ForVTable=*/false); 2622 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2623 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2624 GIF->setName(ResolverName); 2625 SetCommonAttributes(FD, GIF); 2626 2627 return GIF; 2628 } 2629 2630 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2631 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 2632 assert(isa<llvm::GlobalValue>(Resolver) && 2633 "Resolver should be created for the first time"); 2634 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 2635 return Resolver; 2636 } 2637 2638 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2639 /// module, create and return an llvm Function with the specified type. If there 2640 /// is something in the module with the specified name, return it potentially 2641 /// bitcasted to the right type. 2642 /// 2643 /// If D is non-null, it specifies a decl that correspond to this. This is used 2644 /// to set the attributes on the function when it is first created. 2645 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2646 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2647 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2648 ForDefinition_t IsForDefinition) { 2649 const Decl *D = GD.getDecl(); 2650 2651 // Any attempts to use a MultiVersion function should result in retrieving 2652 // the iFunc instead. Name Mangling will handle the rest of the changes. 2653 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2654 // For the device mark the function as one that should be emitted. 2655 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2656 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2657 !DontDefer && !IsForDefinition) { 2658 if (const FunctionDecl *FDDef = FD->getDefinition()) { 2659 GlobalDecl GDDef; 2660 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2661 GDDef = GlobalDecl(CD, GD.getCtorType()); 2662 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2663 GDDef = GlobalDecl(DD, GD.getDtorType()); 2664 else 2665 GDDef = GlobalDecl(FDDef); 2666 EmitGlobal(GDDef); 2667 } 2668 } 2669 2670 if (FD->isMultiVersion()) { 2671 const auto *TA = FD->getAttr<TargetAttr>(); 2672 if (TA && TA->isDefaultVersion()) 2673 UpdateMultiVersionNames(GD, FD); 2674 if (!IsForDefinition) 2675 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 2676 } 2677 } 2678 2679 // Lookup the entry, lazily creating it if necessary. 2680 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2681 if (Entry) { 2682 if (WeakRefReferences.erase(Entry)) { 2683 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2684 if (FD && !FD->hasAttr<WeakAttr>()) 2685 Entry->setLinkage(llvm::Function::ExternalLinkage); 2686 } 2687 2688 // Handle dropped DLL attributes. 2689 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2690 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2691 setDSOLocal(Entry); 2692 } 2693 2694 // If there are two attempts to define the same mangled name, issue an 2695 // error. 2696 if (IsForDefinition && !Entry->isDeclaration()) { 2697 GlobalDecl OtherGD; 2698 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2699 // to make sure that we issue an error only once. 2700 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2701 (GD.getCanonicalDecl().getDecl() != 2702 OtherGD.getCanonicalDecl().getDecl()) && 2703 DiagnosedConflictingDefinitions.insert(GD).second) { 2704 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2705 << MangledName; 2706 getDiags().Report(OtherGD.getDecl()->getLocation(), 2707 diag::note_previous_definition); 2708 } 2709 } 2710 2711 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2712 (Entry->getType()->getElementType() == Ty)) { 2713 return Entry; 2714 } 2715 2716 // Make sure the result is of the correct type. 2717 // (If function is requested for a definition, we always need to create a new 2718 // function, not just return a bitcast.) 2719 if (!IsForDefinition) 2720 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2721 } 2722 2723 // This function doesn't have a complete type (for example, the return 2724 // type is an incomplete struct). Use a fake type instead, and make 2725 // sure not to try to set attributes. 2726 bool IsIncompleteFunction = false; 2727 2728 llvm::FunctionType *FTy; 2729 if (isa<llvm::FunctionType>(Ty)) { 2730 FTy = cast<llvm::FunctionType>(Ty); 2731 } else { 2732 FTy = llvm::FunctionType::get(VoidTy, false); 2733 IsIncompleteFunction = true; 2734 } 2735 2736 llvm::Function *F = 2737 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2738 Entry ? StringRef() : MangledName, &getModule()); 2739 2740 // If we already created a function with the same mangled name (but different 2741 // type) before, take its name and add it to the list of functions to be 2742 // replaced with F at the end of CodeGen. 2743 // 2744 // This happens if there is a prototype for a function (e.g. "int f()") and 2745 // then a definition of a different type (e.g. "int f(int x)"). 2746 if (Entry) { 2747 F->takeName(Entry); 2748 2749 // This might be an implementation of a function without a prototype, in 2750 // which case, try to do special replacement of calls which match the new 2751 // prototype. The really key thing here is that we also potentially drop 2752 // arguments from the call site so as to make a direct call, which makes the 2753 // inliner happier and suppresses a number of optimizer warnings (!) about 2754 // dropping arguments. 2755 if (!Entry->use_empty()) { 2756 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2757 Entry->removeDeadConstantUsers(); 2758 } 2759 2760 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2761 F, Entry->getType()->getElementType()->getPointerTo()); 2762 addGlobalValReplacement(Entry, BC); 2763 } 2764 2765 assert(F->getName() == MangledName && "name was uniqued!"); 2766 if (D) 2767 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2768 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2769 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2770 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2771 } 2772 2773 if (!DontDefer) { 2774 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2775 // each other bottoming out with the base dtor. Therefore we emit non-base 2776 // dtors on usage, even if there is no dtor definition in the TU. 2777 if (D && isa<CXXDestructorDecl>(D) && 2778 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2779 GD.getDtorType())) 2780 addDeferredDeclToEmit(GD); 2781 2782 // This is the first use or definition of a mangled name. If there is a 2783 // deferred decl with this name, remember that we need to emit it at the end 2784 // of the file. 2785 auto DDI = DeferredDecls.find(MangledName); 2786 if (DDI != DeferredDecls.end()) { 2787 // Move the potentially referenced deferred decl to the 2788 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2789 // don't need it anymore). 2790 addDeferredDeclToEmit(DDI->second); 2791 DeferredDecls.erase(DDI); 2792 2793 // Otherwise, there are cases we have to worry about where we're 2794 // using a declaration for which we must emit a definition but where 2795 // we might not find a top-level definition: 2796 // - member functions defined inline in their classes 2797 // - friend functions defined inline in some class 2798 // - special member functions with implicit definitions 2799 // If we ever change our AST traversal to walk into class methods, 2800 // this will be unnecessary. 2801 // 2802 // We also don't emit a definition for a function if it's going to be an 2803 // entry in a vtable, unless it's already marked as used. 2804 } else if (getLangOpts().CPlusPlus && D) { 2805 // Look for a declaration that's lexically in a record. 2806 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2807 FD = FD->getPreviousDecl()) { 2808 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2809 if (FD->doesThisDeclarationHaveABody()) { 2810 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2811 break; 2812 } 2813 } 2814 } 2815 } 2816 } 2817 2818 // Make sure the result is of the requested type. 2819 if (!IsIncompleteFunction) { 2820 assert(F->getType()->getElementType() == Ty); 2821 return F; 2822 } 2823 2824 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2825 return llvm::ConstantExpr::getBitCast(F, PTy); 2826 } 2827 2828 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2829 /// non-null, then this function will use the specified type if it has to 2830 /// create it (this occurs when we see a definition of the function). 2831 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2832 llvm::Type *Ty, 2833 bool ForVTable, 2834 bool DontDefer, 2835 ForDefinition_t IsForDefinition) { 2836 // If there was no specific requested type, just convert it now. 2837 if (!Ty) { 2838 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2839 auto CanonTy = Context.getCanonicalType(FD->getType()); 2840 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2841 } 2842 2843 // Devirtualized destructor calls may come through here instead of via 2844 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2845 // of the complete destructor when necessary. 2846 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2847 if (getTarget().getCXXABI().isMicrosoft() && 2848 GD.getDtorType() == Dtor_Complete && 2849 DD->getParent()->getNumVBases() == 0) 2850 GD = GlobalDecl(DD, Dtor_Base); 2851 } 2852 2853 StringRef MangledName = getMangledName(GD); 2854 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2855 /*IsThunk=*/false, llvm::AttributeList(), 2856 IsForDefinition); 2857 } 2858 2859 static const FunctionDecl * 2860 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2861 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2862 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2863 2864 IdentifierInfo &CII = C.Idents.get(Name); 2865 for (const auto &Result : DC->lookup(&CII)) 2866 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2867 return FD; 2868 2869 if (!C.getLangOpts().CPlusPlus) 2870 return nullptr; 2871 2872 // Demangle the premangled name from getTerminateFn() 2873 IdentifierInfo &CXXII = 2874 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2875 ? C.Idents.get("terminate") 2876 : C.Idents.get(Name); 2877 2878 for (const auto &N : {"__cxxabiv1", "std"}) { 2879 IdentifierInfo &NS = C.Idents.get(N); 2880 for (const auto &Result : DC->lookup(&NS)) { 2881 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2882 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2883 for (const auto &Result : LSD->lookup(&NS)) 2884 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2885 break; 2886 2887 if (ND) 2888 for (const auto &Result : ND->lookup(&CXXII)) 2889 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2890 return FD; 2891 } 2892 } 2893 2894 return nullptr; 2895 } 2896 2897 /// CreateRuntimeFunction - Create a new runtime function with the specified 2898 /// type and name. 2899 llvm::Constant * 2900 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2901 llvm::AttributeList ExtraAttrs, 2902 bool Local) { 2903 llvm::Constant *C = 2904 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2905 /*DontDefer=*/false, /*IsThunk=*/false, 2906 ExtraAttrs); 2907 2908 if (auto *F = dyn_cast<llvm::Function>(C)) { 2909 if (F->empty()) { 2910 F->setCallingConv(getRuntimeCC()); 2911 2912 if (!Local && getTriple().isOSBinFormatCOFF() && 2913 !getCodeGenOpts().LTOVisibilityPublicStd && 2914 !getTriple().isWindowsGNUEnvironment()) { 2915 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2916 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2917 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2918 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2919 } 2920 } 2921 setDSOLocal(F); 2922 } 2923 } 2924 2925 return C; 2926 } 2927 2928 /// CreateBuiltinFunction - Create a new builtin function with the specified 2929 /// type and name. 2930 llvm::Constant * 2931 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2932 llvm::AttributeList ExtraAttrs) { 2933 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true); 2934 } 2935 2936 /// isTypeConstant - Determine whether an object of this type can be emitted 2937 /// as a constant. 2938 /// 2939 /// If ExcludeCtor is true, the duration when the object's constructor runs 2940 /// will not be considered. The caller will need to verify that the object is 2941 /// not written to during its construction. 2942 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2943 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2944 return false; 2945 2946 if (Context.getLangOpts().CPlusPlus) { 2947 if (const CXXRecordDecl *Record 2948 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2949 return ExcludeCtor && !Record->hasMutableFields() && 2950 Record->hasTrivialDestructor(); 2951 } 2952 2953 return true; 2954 } 2955 2956 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2957 /// create and return an llvm GlobalVariable with the specified type. If there 2958 /// is something in the module with the specified name, return it potentially 2959 /// bitcasted to the right type. 2960 /// 2961 /// If D is non-null, it specifies a decl that correspond to this. This is used 2962 /// to set the attributes on the global when it is first created. 2963 /// 2964 /// If IsForDefinition is true, it is guaranteed that an actual global with 2965 /// type Ty will be returned, not conversion of a variable with the same 2966 /// mangled name but some other type. 2967 llvm::Constant * 2968 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2969 llvm::PointerType *Ty, 2970 const VarDecl *D, 2971 ForDefinition_t IsForDefinition) { 2972 // Lookup the entry, lazily creating it if necessary. 2973 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2974 if (Entry) { 2975 if (WeakRefReferences.erase(Entry)) { 2976 if (D && !D->hasAttr<WeakAttr>()) 2977 Entry->setLinkage(llvm::Function::ExternalLinkage); 2978 } 2979 2980 // Handle dropped DLL attributes. 2981 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2982 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2983 2984 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 2985 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 2986 2987 if (Entry->getType() == Ty) 2988 return Entry; 2989 2990 // If there are two attempts to define the same mangled name, issue an 2991 // error. 2992 if (IsForDefinition && !Entry->isDeclaration()) { 2993 GlobalDecl OtherGD; 2994 const VarDecl *OtherD; 2995 2996 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2997 // to make sure that we issue an error only once. 2998 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2999 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3000 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3001 OtherD->hasInit() && 3002 DiagnosedConflictingDefinitions.insert(D).second) { 3003 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3004 << MangledName; 3005 getDiags().Report(OtherGD.getDecl()->getLocation(), 3006 diag::note_previous_definition); 3007 } 3008 } 3009 3010 // Make sure the result is of the correct type. 3011 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3012 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3013 3014 // (If global is requested for a definition, we always need to create a new 3015 // global, not just return a bitcast.) 3016 if (!IsForDefinition) 3017 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3018 } 3019 3020 auto AddrSpace = GetGlobalVarAddressSpace(D); 3021 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3022 3023 auto *GV = new llvm::GlobalVariable( 3024 getModule(), Ty->getElementType(), false, 3025 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3026 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3027 3028 // If we already created a global with the same mangled name (but different 3029 // type) before, take its name and remove it from its parent. 3030 if (Entry) { 3031 GV->takeName(Entry); 3032 3033 if (!Entry->use_empty()) { 3034 llvm::Constant *NewPtrForOldDecl = 3035 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3036 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3037 } 3038 3039 Entry->eraseFromParent(); 3040 } 3041 3042 // This is the first use or definition of a mangled name. If there is a 3043 // deferred decl with this name, remember that we need to emit it at the end 3044 // of the file. 3045 auto DDI = DeferredDecls.find(MangledName); 3046 if (DDI != DeferredDecls.end()) { 3047 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3048 // list, and remove it from DeferredDecls (since we don't need it anymore). 3049 addDeferredDeclToEmit(DDI->second); 3050 DeferredDecls.erase(DDI); 3051 } 3052 3053 // Handle things which are present even on external declarations. 3054 if (D) { 3055 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3056 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3057 3058 // FIXME: This code is overly simple and should be merged with other global 3059 // handling. 3060 GV->setConstant(isTypeConstant(D->getType(), false)); 3061 3062 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3063 3064 setLinkageForGV(GV, D); 3065 3066 if (D->getTLSKind()) { 3067 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3068 CXXThreadLocals.push_back(D); 3069 setTLSMode(GV, *D); 3070 } 3071 3072 setGVProperties(GV, D); 3073 3074 // If required by the ABI, treat declarations of static data members with 3075 // inline initializers as definitions. 3076 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3077 EmitGlobalVarDefinition(D); 3078 } 3079 3080 // Emit section information for extern variables. 3081 if (D->hasExternalStorage()) { 3082 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3083 GV->setSection(SA->getName()); 3084 } 3085 3086 // Handle XCore specific ABI requirements. 3087 if (getTriple().getArch() == llvm::Triple::xcore && 3088 D->getLanguageLinkage() == CLanguageLinkage && 3089 D->getType().isConstant(Context) && 3090 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3091 GV->setSection(".cp.rodata"); 3092 3093 // Check if we a have a const declaration with an initializer, we may be 3094 // able to emit it as available_externally to expose it's value to the 3095 // optimizer. 3096 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3097 D->getType().isConstQualified() && !GV->hasInitializer() && 3098 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3099 const auto *Record = 3100 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3101 bool HasMutableFields = Record && Record->hasMutableFields(); 3102 if (!HasMutableFields) { 3103 const VarDecl *InitDecl; 3104 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3105 if (InitExpr) { 3106 ConstantEmitter emitter(*this); 3107 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3108 if (Init) { 3109 auto *InitType = Init->getType(); 3110 if (GV->getType()->getElementType() != InitType) { 3111 // The type of the initializer does not match the definition. 3112 // This happens when an initializer has a different type from 3113 // the type of the global (because of padding at the end of a 3114 // structure for instance). 3115 GV->setName(StringRef()); 3116 // Make a new global with the correct type, this is now guaranteed 3117 // to work. 3118 auto *NewGV = cast<llvm::GlobalVariable>( 3119 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3120 3121 // Erase the old global, since it is no longer used. 3122 GV->eraseFromParent(); 3123 GV = NewGV; 3124 } else { 3125 GV->setInitializer(Init); 3126 GV->setConstant(true); 3127 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3128 } 3129 emitter.finalize(GV); 3130 } 3131 } 3132 } 3133 } 3134 } 3135 3136 LangAS ExpectedAS = 3137 D ? D->getType().getAddressSpace() 3138 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3139 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3140 Ty->getPointerAddressSpace()); 3141 if (AddrSpace != ExpectedAS) 3142 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3143 ExpectedAS, Ty); 3144 3145 return GV; 3146 } 3147 3148 llvm::Constant * 3149 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3150 ForDefinition_t IsForDefinition) { 3151 const Decl *D = GD.getDecl(); 3152 if (isa<CXXConstructorDecl>(D)) 3153 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 3154 getFromCtorType(GD.getCtorType()), 3155 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3156 /*DontDefer=*/false, IsForDefinition); 3157 else if (isa<CXXDestructorDecl>(D)) 3158 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 3159 getFromDtorType(GD.getDtorType()), 3160 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3161 /*DontDefer=*/false, IsForDefinition); 3162 else if (isa<CXXMethodDecl>(D)) { 3163 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3164 cast<CXXMethodDecl>(D)); 3165 auto Ty = getTypes().GetFunctionType(*FInfo); 3166 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3167 IsForDefinition); 3168 } else if (isa<FunctionDecl>(D)) { 3169 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3170 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3171 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3172 IsForDefinition); 3173 } else 3174 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3175 IsForDefinition); 3176 } 3177 3178 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3179 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3180 unsigned Alignment) { 3181 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3182 llvm::GlobalVariable *OldGV = nullptr; 3183 3184 if (GV) { 3185 // Check if the variable has the right type. 3186 if (GV->getType()->getElementType() == Ty) 3187 return GV; 3188 3189 // Because C++ name mangling, the only way we can end up with an already 3190 // existing global with the same name is if it has been declared extern "C". 3191 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3192 OldGV = GV; 3193 } 3194 3195 // Create a new variable. 3196 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3197 Linkage, nullptr, Name); 3198 3199 if (OldGV) { 3200 // Replace occurrences of the old variable if needed. 3201 GV->takeName(OldGV); 3202 3203 if (!OldGV->use_empty()) { 3204 llvm::Constant *NewPtrForOldDecl = 3205 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3206 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3207 } 3208 3209 OldGV->eraseFromParent(); 3210 } 3211 3212 if (supportsCOMDAT() && GV->isWeakForLinker() && 3213 !GV->hasAvailableExternallyLinkage()) 3214 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3215 3216 GV->setAlignment(Alignment); 3217 3218 return GV; 3219 } 3220 3221 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3222 /// given global variable. If Ty is non-null and if the global doesn't exist, 3223 /// then it will be created with the specified type instead of whatever the 3224 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3225 /// that an actual global with type Ty will be returned, not conversion of a 3226 /// variable with the same mangled name but some other type. 3227 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3228 llvm::Type *Ty, 3229 ForDefinition_t IsForDefinition) { 3230 assert(D->hasGlobalStorage() && "Not a global variable"); 3231 QualType ASTTy = D->getType(); 3232 if (!Ty) 3233 Ty = getTypes().ConvertTypeForMem(ASTTy); 3234 3235 llvm::PointerType *PTy = 3236 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3237 3238 StringRef MangledName = getMangledName(D); 3239 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3240 } 3241 3242 /// CreateRuntimeVariable - Create a new runtime global variable with the 3243 /// specified type and name. 3244 llvm::Constant * 3245 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3246 StringRef Name) { 3247 auto *Ret = 3248 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3249 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3250 return Ret; 3251 } 3252 3253 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3254 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3255 3256 StringRef MangledName = getMangledName(D); 3257 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3258 3259 // We already have a definition, not declaration, with the same mangled name. 3260 // Emitting of declaration is not required (and actually overwrites emitted 3261 // definition). 3262 if (GV && !GV->isDeclaration()) 3263 return; 3264 3265 // If we have not seen a reference to this variable yet, place it into the 3266 // deferred declarations table to be emitted if needed later. 3267 if (!MustBeEmitted(D) && !GV) { 3268 DeferredDecls[MangledName] = D; 3269 return; 3270 } 3271 3272 // The tentative definition is the only definition. 3273 EmitGlobalVarDefinition(D); 3274 } 3275 3276 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3277 return Context.toCharUnitsFromBits( 3278 getDataLayout().getTypeStoreSizeInBits(Ty)); 3279 } 3280 3281 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3282 LangAS AddrSpace = LangAS::Default; 3283 if (LangOpts.OpenCL) { 3284 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3285 assert(AddrSpace == LangAS::opencl_global || 3286 AddrSpace == LangAS::opencl_constant || 3287 AddrSpace == LangAS::opencl_local || 3288 AddrSpace >= LangAS::FirstTargetAddressSpace); 3289 return AddrSpace; 3290 } 3291 3292 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3293 if (D && D->hasAttr<CUDAConstantAttr>()) 3294 return LangAS::cuda_constant; 3295 else if (D && D->hasAttr<CUDASharedAttr>()) 3296 return LangAS::cuda_shared; 3297 else if (D && D->hasAttr<CUDADeviceAttr>()) 3298 return LangAS::cuda_device; 3299 else if (D && D->getType().isConstQualified()) 3300 return LangAS::cuda_constant; 3301 else 3302 return LangAS::cuda_device; 3303 } 3304 3305 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3306 } 3307 3308 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3309 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3310 if (LangOpts.OpenCL) 3311 return LangAS::opencl_constant; 3312 if (auto AS = getTarget().getConstantAddressSpace()) 3313 return AS.getValue(); 3314 return LangAS::Default; 3315 } 3316 3317 // In address space agnostic languages, string literals are in default address 3318 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3319 // emitted in constant address space in LLVM IR. To be consistent with other 3320 // parts of AST, string literal global variables in constant address space 3321 // need to be casted to default address space before being put into address 3322 // map and referenced by other part of CodeGen. 3323 // In OpenCL, string literals are in constant address space in AST, therefore 3324 // they should not be casted to default address space. 3325 static llvm::Constant * 3326 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3327 llvm::GlobalVariable *GV) { 3328 llvm::Constant *Cast = GV; 3329 if (!CGM.getLangOpts().OpenCL) { 3330 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3331 if (AS != LangAS::Default) 3332 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3333 CGM, GV, AS.getValue(), LangAS::Default, 3334 GV->getValueType()->getPointerTo( 3335 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3336 } 3337 } 3338 return Cast; 3339 } 3340 3341 template<typename SomeDecl> 3342 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3343 llvm::GlobalValue *GV) { 3344 if (!getLangOpts().CPlusPlus) 3345 return; 3346 3347 // Must have 'used' attribute, or else inline assembly can't rely on 3348 // the name existing. 3349 if (!D->template hasAttr<UsedAttr>()) 3350 return; 3351 3352 // Must have internal linkage and an ordinary name. 3353 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3354 return; 3355 3356 // Must be in an extern "C" context. Entities declared directly within 3357 // a record are not extern "C" even if the record is in such a context. 3358 const SomeDecl *First = D->getFirstDecl(); 3359 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3360 return; 3361 3362 // OK, this is an internal linkage entity inside an extern "C" linkage 3363 // specification. Make a note of that so we can give it the "expected" 3364 // mangled name if nothing else is using that name. 3365 std::pair<StaticExternCMap::iterator, bool> R = 3366 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3367 3368 // If we have multiple internal linkage entities with the same name 3369 // in extern "C" regions, none of them gets that name. 3370 if (!R.second) 3371 R.first->second = nullptr; 3372 } 3373 3374 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3375 if (!CGM.supportsCOMDAT()) 3376 return false; 3377 3378 if (D.hasAttr<SelectAnyAttr>()) 3379 return true; 3380 3381 GVALinkage Linkage; 3382 if (auto *VD = dyn_cast<VarDecl>(&D)) 3383 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3384 else 3385 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3386 3387 switch (Linkage) { 3388 case GVA_Internal: 3389 case GVA_AvailableExternally: 3390 case GVA_StrongExternal: 3391 return false; 3392 case GVA_DiscardableODR: 3393 case GVA_StrongODR: 3394 return true; 3395 } 3396 llvm_unreachable("No such linkage"); 3397 } 3398 3399 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3400 llvm::GlobalObject &GO) { 3401 if (!shouldBeInCOMDAT(*this, D)) 3402 return; 3403 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3404 } 3405 3406 /// Pass IsTentative as true if you want to create a tentative definition. 3407 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3408 bool IsTentative) { 3409 // OpenCL global variables of sampler type are translated to function calls, 3410 // therefore no need to be translated. 3411 QualType ASTTy = D->getType(); 3412 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3413 return; 3414 3415 // If this is OpenMP device, check if it is legal to emit this global 3416 // normally. 3417 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3418 OpenMPRuntime->emitTargetGlobalVariable(D)) 3419 return; 3420 3421 llvm::Constant *Init = nullptr; 3422 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3423 bool NeedsGlobalCtor = false; 3424 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3425 3426 const VarDecl *InitDecl; 3427 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3428 3429 Optional<ConstantEmitter> emitter; 3430 3431 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3432 // as part of their declaration." Sema has already checked for 3433 // error cases, so we just need to set Init to UndefValue. 3434 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3435 D->hasAttr<CUDASharedAttr>()) 3436 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3437 else if (!InitExpr) { 3438 // This is a tentative definition; tentative definitions are 3439 // implicitly initialized with { 0 }. 3440 // 3441 // Note that tentative definitions are only emitted at the end of 3442 // a translation unit, so they should never have incomplete 3443 // type. In addition, EmitTentativeDefinition makes sure that we 3444 // never attempt to emit a tentative definition if a real one 3445 // exists. A use may still exists, however, so we still may need 3446 // to do a RAUW. 3447 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3448 Init = EmitNullConstant(D->getType()); 3449 } else { 3450 initializedGlobalDecl = GlobalDecl(D); 3451 emitter.emplace(*this); 3452 Init = emitter->tryEmitForInitializer(*InitDecl); 3453 3454 if (!Init) { 3455 QualType T = InitExpr->getType(); 3456 if (D->getType()->isReferenceType()) 3457 T = D->getType(); 3458 3459 if (getLangOpts().CPlusPlus) { 3460 Init = EmitNullConstant(T); 3461 NeedsGlobalCtor = true; 3462 } else { 3463 ErrorUnsupported(D, "static initializer"); 3464 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3465 } 3466 } else { 3467 // We don't need an initializer, so remove the entry for the delayed 3468 // initializer position (just in case this entry was delayed) if we 3469 // also don't need to register a destructor. 3470 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3471 DelayedCXXInitPosition.erase(D); 3472 } 3473 } 3474 3475 llvm::Type* InitType = Init->getType(); 3476 llvm::Constant *Entry = 3477 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3478 3479 // Strip off a bitcast if we got one back. 3480 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3481 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3482 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3483 // All zero index gep. 3484 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3485 Entry = CE->getOperand(0); 3486 } 3487 3488 // Entry is now either a Function or GlobalVariable. 3489 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3490 3491 // We have a definition after a declaration with the wrong type. 3492 // We must make a new GlobalVariable* and update everything that used OldGV 3493 // (a declaration or tentative definition) with the new GlobalVariable* 3494 // (which will be a definition). 3495 // 3496 // This happens if there is a prototype for a global (e.g. 3497 // "extern int x[];") and then a definition of a different type (e.g. 3498 // "int x[10];"). This also happens when an initializer has a different type 3499 // from the type of the global (this happens with unions). 3500 if (!GV || GV->getType()->getElementType() != InitType || 3501 GV->getType()->getAddressSpace() != 3502 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3503 3504 // Move the old entry aside so that we'll create a new one. 3505 Entry->setName(StringRef()); 3506 3507 // Make a new global with the correct type, this is now guaranteed to work. 3508 GV = cast<llvm::GlobalVariable>( 3509 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3510 3511 // Replace all uses of the old global with the new global 3512 llvm::Constant *NewPtrForOldDecl = 3513 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3514 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3515 3516 // Erase the old global, since it is no longer used. 3517 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3518 } 3519 3520 MaybeHandleStaticInExternC(D, GV); 3521 3522 if (D->hasAttr<AnnotateAttr>()) 3523 AddGlobalAnnotations(D, GV); 3524 3525 // Set the llvm linkage type as appropriate. 3526 llvm::GlobalValue::LinkageTypes Linkage = 3527 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3528 3529 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3530 // the device. [...]" 3531 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3532 // __device__, declares a variable that: [...] 3533 // Is accessible from all the threads within the grid and from the host 3534 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3535 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3536 if (GV && LangOpts.CUDA) { 3537 if (LangOpts.CUDAIsDevice) { 3538 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3539 GV->setExternallyInitialized(true); 3540 } else { 3541 // Host-side shadows of external declarations of device-side 3542 // global variables become internal definitions. These have to 3543 // be internal in order to prevent name conflicts with global 3544 // host variables with the same name in a different TUs. 3545 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3546 Linkage = llvm::GlobalValue::InternalLinkage; 3547 3548 // Shadow variables and their properties must be registered 3549 // with CUDA runtime. 3550 unsigned Flags = 0; 3551 if (!D->hasDefinition()) 3552 Flags |= CGCUDARuntime::ExternDeviceVar; 3553 if (D->hasAttr<CUDAConstantAttr>()) 3554 Flags |= CGCUDARuntime::ConstantDeviceVar; 3555 getCUDARuntime().registerDeviceVar(*GV, Flags); 3556 } else if (D->hasAttr<CUDASharedAttr>()) 3557 // __shared__ variables are odd. Shadows do get created, but 3558 // they are not registered with the CUDA runtime, so they 3559 // can't really be used to access their device-side 3560 // counterparts. It's not clear yet whether it's nvcc's bug or 3561 // a feature, but we've got to do the same for compatibility. 3562 Linkage = llvm::GlobalValue::InternalLinkage; 3563 } 3564 } 3565 3566 GV->setInitializer(Init); 3567 if (emitter) emitter->finalize(GV); 3568 3569 // If it is safe to mark the global 'constant', do so now. 3570 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3571 isTypeConstant(D->getType(), true)); 3572 3573 // If it is in a read-only section, mark it 'constant'. 3574 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3575 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3576 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3577 GV->setConstant(true); 3578 } 3579 3580 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3581 3582 3583 // On Darwin, if the normal linkage of a C++ thread_local variable is 3584 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3585 // copies within a linkage unit; otherwise, the backing variable has 3586 // internal linkage and all accesses should just be calls to the 3587 // Itanium-specified entry point, which has the normal linkage of the 3588 // variable. This is to preserve the ability to change the implementation 3589 // behind the scenes. 3590 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3591 Context.getTargetInfo().getTriple().isOSDarwin() && 3592 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3593 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3594 Linkage = llvm::GlobalValue::InternalLinkage; 3595 3596 GV->setLinkage(Linkage); 3597 if (D->hasAttr<DLLImportAttr>()) 3598 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3599 else if (D->hasAttr<DLLExportAttr>()) 3600 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3601 else 3602 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3603 3604 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3605 // common vars aren't constant even if declared const. 3606 GV->setConstant(false); 3607 // Tentative definition of global variables may be initialized with 3608 // non-zero null pointers. In this case they should have weak linkage 3609 // since common linkage must have zero initializer and must not have 3610 // explicit section therefore cannot have non-zero initial value. 3611 if (!GV->getInitializer()->isNullValue()) 3612 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3613 } 3614 3615 setNonAliasAttributes(D, GV); 3616 3617 if (D->getTLSKind() && !GV->isThreadLocal()) { 3618 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3619 CXXThreadLocals.push_back(D); 3620 setTLSMode(GV, *D); 3621 } 3622 3623 maybeSetTrivialComdat(*D, *GV); 3624 3625 // Emit the initializer function if necessary. 3626 if (NeedsGlobalCtor || NeedsGlobalDtor) 3627 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3628 3629 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3630 3631 // Emit global variable debug information. 3632 if (CGDebugInfo *DI = getModuleDebugInfo()) 3633 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3634 DI->EmitGlobalVariable(GV, D); 3635 } 3636 3637 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3638 CodeGenModule &CGM, const VarDecl *D, 3639 bool NoCommon) { 3640 // Don't give variables common linkage if -fno-common was specified unless it 3641 // was overridden by a NoCommon attribute. 3642 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3643 return true; 3644 3645 // C11 6.9.2/2: 3646 // A declaration of an identifier for an object that has file scope without 3647 // an initializer, and without a storage-class specifier or with the 3648 // storage-class specifier static, constitutes a tentative definition. 3649 if (D->getInit() || D->hasExternalStorage()) 3650 return true; 3651 3652 // A variable cannot be both common and exist in a section. 3653 if (D->hasAttr<SectionAttr>()) 3654 return true; 3655 3656 // A variable cannot be both common and exist in a section. 3657 // We don't try to determine which is the right section in the front-end. 3658 // If no specialized section name is applicable, it will resort to default. 3659 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3660 D->hasAttr<PragmaClangDataSectionAttr>() || 3661 D->hasAttr<PragmaClangRodataSectionAttr>()) 3662 return true; 3663 3664 // Thread local vars aren't considered common linkage. 3665 if (D->getTLSKind()) 3666 return true; 3667 3668 // Tentative definitions marked with WeakImportAttr are true definitions. 3669 if (D->hasAttr<WeakImportAttr>()) 3670 return true; 3671 3672 // A variable cannot be both common and exist in a comdat. 3673 if (shouldBeInCOMDAT(CGM, *D)) 3674 return true; 3675 3676 // Declarations with a required alignment do not have common linkage in MSVC 3677 // mode. 3678 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3679 if (D->hasAttr<AlignedAttr>()) 3680 return true; 3681 QualType VarType = D->getType(); 3682 if (Context.isAlignmentRequired(VarType)) 3683 return true; 3684 3685 if (const auto *RT = VarType->getAs<RecordType>()) { 3686 const RecordDecl *RD = RT->getDecl(); 3687 for (const FieldDecl *FD : RD->fields()) { 3688 if (FD->isBitField()) 3689 continue; 3690 if (FD->hasAttr<AlignedAttr>()) 3691 return true; 3692 if (Context.isAlignmentRequired(FD->getType())) 3693 return true; 3694 } 3695 } 3696 } 3697 3698 return false; 3699 } 3700 3701 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3702 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3703 if (Linkage == GVA_Internal) 3704 return llvm::Function::InternalLinkage; 3705 3706 if (D->hasAttr<WeakAttr>()) { 3707 if (IsConstantVariable) 3708 return llvm::GlobalVariable::WeakODRLinkage; 3709 else 3710 return llvm::GlobalVariable::WeakAnyLinkage; 3711 } 3712 3713 if (const auto *FD = D->getAsFunction()) 3714 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 3715 return llvm::GlobalVariable::LinkOnceAnyLinkage; 3716 3717 // We are guaranteed to have a strong definition somewhere else, 3718 // so we can use available_externally linkage. 3719 if (Linkage == GVA_AvailableExternally) 3720 return llvm::GlobalValue::AvailableExternallyLinkage; 3721 3722 // Note that Apple's kernel linker doesn't support symbol 3723 // coalescing, so we need to avoid linkonce and weak linkages there. 3724 // Normally, this means we just map to internal, but for explicit 3725 // instantiations we'll map to external. 3726 3727 // In C++, the compiler has to emit a definition in every translation unit 3728 // that references the function. We should use linkonce_odr because 3729 // a) if all references in this translation unit are optimized away, we 3730 // don't need to codegen it. b) if the function persists, it needs to be 3731 // merged with other definitions. c) C++ has the ODR, so we know the 3732 // definition is dependable. 3733 if (Linkage == GVA_DiscardableODR) 3734 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3735 : llvm::Function::InternalLinkage; 3736 3737 // An explicit instantiation of a template has weak linkage, since 3738 // explicit instantiations can occur in multiple translation units 3739 // and must all be equivalent. However, we are not allowed to 3740 // throw away these explicit instantiations. 3741 // 3742 // We don't currently support CUDA device code spread out across multiple TUs, 3743 // so say that CUDA templates are either external (for kernels) or internal. 3744 // This lets llvm perform aggressive inter-procedural optimizations. 3745 if (Linkage == GVA_StrongODR) { 3746 if (Context.getLangOpts().AppleKext) 3747 return llvm::Function::ExternalLinkage; 3748 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3749 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3750 : llvm::Function::InternalLinkage; 3751 return llvm::Function::WeakODRLinkage; 3752 } 3753 3754 // C++ doesn't have tentative definitions and thus cannot have common 3755 // linkage. 3756 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3757 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3758 CodeGenOpts.NoCommon)) 3759 return llvm::GlobalVariable::CommonLinkage; 3760 3761 // selectany symbols are externally visible, so use weak instead of 3762 // linkonce. MSVC optimizes away references to const selectany globals, so 3763 // all definitions should be the same and ODR linkage should be used. 3764 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3765 if (D->hasAttr<SelectAnyAttr>()) 3766 return llvm::GlobalVariable::WeakODRLinkage; 3767 3768 // Otherwise, we have strong external linkage. 3769 assert(Linkage == GVA_StrongExternal); 3770 return llvm::GlobalVariable::ExternalLinkage; 3771 } 3772 3773 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3774 const VarDecl *VD, bool IsConstant) { 3775 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3776 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3777 } 3778 3779 /// Replace the uses of a function that was declared with a non-proto type. 3780 /// We want to silently drop extra arguments from call sites 3781 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3782 llvm::Function *newFn) { 3783 // Fast path. 3784 if (old->use_empty()) return; 3785 3786 llvm::Type *newRetTy = newFn->getReturnType(); 3787 SmallVector<llvm::Value*, 4> newArgs; 3788 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3789 3790 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3791 ui != ue; ) { 3792 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3793 llvm::User *user = use->getUser(); 3794 3795 // Recognize and replace uses of bitcasts. Most calls to 3796 // unprototyped functions will use bitcasts. 3797 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3798 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3799 replaceUsesOfNonProtoConstant(bitcast, newFn); 3800 continue; 3801 } 3802 3803 // Recognize calls to the function. 3804 llvm::CallSite callSite(user); 3805 if (!callSite) continue; 3806 if (!callSite.isCallee(&*use)) continue; 3807 3808 // If the return types don't match exactly, then we can't 3809 // transform this call unless it's dead. 3810 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3811 continue; 3812 3813 // Get the call site's attribute list. 3814 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3815 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3816 3817 // If the function was passed too few arguments, don't transform. 3818 unsigned newNumArgs = newFn->arg_size(); 3819 if (callSite.arg_size() < newNumArgs) continue; 3820 3821 // If extra arguments were passed, we silently drop them. 3822 // If any of the types mismatch, we don't transform. 3823 unsigned argNo = 0; 3824 bool dontTransform = false; 3825 for (llvm::Argument &A : newFn->args()) { 3826 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3827 dontTransform = true; 3828 break; 3829 } 3830 3831 // Add any parameter attributes. 3832 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3833 argNo++; 3834 } 3835 if (dontTransform) 3836 continue; 3837 3838 // Okay, we can transform this. Create the new call instruction and copy 3839 // over the required information. 3840 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3841 3842 // Copy over any operand bundles. 3843 callSite.getOperandBundlesAsDefs(newBundles); 3844 3845 llvm::CallSite newCall; 3846 if (callSite.isCall()) { 3847 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3848 callSite.getInstruction()); 3849 } else { 3850 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3851 newCall = llvm::InvokeInst::Create(newFn, 3852 oldInvoke->getNormalDest(), 3853 oldInvoke->getUnwindDest(), 3854 newArgs, newBundles, "", 3855 callSite.getInstruction()); 3856 } 3857 newArgs.clear(); // for the next iteration 3858 3859 if (!newCall->getType()->isVoidTy()) 3860 newCall->takeName(callSite.getInstruction()); 3861 newCall.setAttributes(llvm::AttributeList::get( 3862 newFn->getContext(), oldAttrs.getFnAttributes(), 3863 oldAttrs.getRetAttributes(), newArgAttrs)); 3864 newCall.setCallingConv(callSite.getCallingConv()); 3865 3866 // Finally, remove the old call, replacing any uses with the new one. 3867 if (!callSite->use_empty()) 3868 callSite->replaceAllUsesWith(newCall.getInstruction()); 3869 3870 // Copy debug location attached to CI. 3871 if (callSite->getDebugLoc()) 3872 newCall->setDebugLoc(callSite->getDebugLoc()); 3873 3874 callSite->eraseFromParent(); 3875 } 3876 } 3877 3878 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3879 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3880 /// existing call uses of the old function in the module, this adjusts them to 3881 /// call the new function directly. 3882 /// 3883 /// This is not just a cleanup: the always_inline pass requires direct calls to 3884 /// functions to be able to inline them. If there is a bitcast in the way, it 3885 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3886 /// run at -O0. 3887 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3888 llvm::Function *NewFn) { 3889 // If we're redefining a global as a function, don't transform it. 3890 if (!isa<llvm::Function>(Old)) return; 3891 3892 replaceUsesOfNonProtoConstant(Old, NewFn); 3893 } 3894 3895 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3896 auto DK = VD->isThisDeclarationADefinition(); 3897 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3898 return; 3899 3900 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3901 // If we have a definition, this might be a deferred decl. If the 3902 // instantiation is explicit, make sure we emit it at the end. 3903 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3904 GetAddrOfGlobalVar(VD); 3905 3906 EmitTopLevelDecl(VD); 3907 } 3908 3909 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3910 llvm::GlobalValue *GV) { 3911 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3912 3913 // Compute the function info and LLVM type. 3914 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3915 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3916 3917 // Get or create the prototype for the function. 3918 if (!GV || (GV->getType()->getElementType() != Ty)) 3919 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3920 /*DontDefer=*/true, 3921 ForDefinition)); 3922 3923 // Already emitted. 3924 if (!GV->isDeclaration()) 3925 return; 3926 3927 // We need to set linkage and visibility on the function before 3928 // generating code for it because various parts of IR generation 3929 // want to propagate this information down (e.g. to local static 3930 // declarations). 3931 auto *Fn = cast<llvm::Function>(GV); 3932 setFunctionLinkage(GD, Fn); 3933 3934 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3935 setGVProperties(Fn, GD); 3936 3937 MaybeHandleStaticInExternC(D, Fn); 3938 3939 3940 maybeSetTrivialComdat(*D, *Fn); 3941 3942 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3943 3944 setNonAliasAttributes(GD, Fn); 3945 SetLLVMFunctionAttributesForDefinition(D, Fn); 3946 3947 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3948 AddGlobalCtor(Fn, CA->getPriority()); 3949 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3950 AddGlobalDtor(Fn, DA->getPriority()); 3951 if (D->hasAttr<AnnotateAttr>()) 3952 AddGlobalAnnotations(D, Fn); 3953 3954 if (D->isCPUSpecificMultiVersion()) { 3955 auto *Spec = D->getAttr<CPUSpecificAttr>(); 3956 // If there is another specific version we need to emit, do so here. 3957 if (Spec->ActiveArgIndex + 1 < Spec->cpus_size()) { 3958 ++Spec->ActiveArgIndex; 3959 EmitGlobalFunctionDefinition(GD, nullptr); 3960 } 3961 } 3962 } 3963 3964 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3965 const auto *D = cast<ValueDecl>(GD.getDecl()); 3966 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3967 assert(AA && "Not an alias?"); 3968 3969 StringRef MangledName = getMangledName(GD); 3970 3971 if (AA->getAliasee() == MangledName) { 3972 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3973 return; 3974 } 3975 3976 // If there is a definition in the module, then it wins over the alias. 3977 // This is dubious, but allow it to be safe. Just ignore the alias. 3978 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3979 if (Entry && !Entry->isDeclaration()) 3980 return; 3981 3982 Aliases.push_back(GD); 3983 3984 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3985 3986 // Create a reference to the named value. This ensures that it is emitted 3987 // if a deferred decl. 3988 llvm::Constant *Aliasee; 3989 if (isa<llvm::FunctionType>(DeclTy)) 3990 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3991 /*ForVTable=*/false); 3992 else 3993 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3994 llvm::PointerType::getUnqual(DeclTy), 3995 /*D=*/nullptr); 3996 3997 // Create the new alias itself, but don't set a name yet. 3998 auto *GA = llvm::GlobalAlias::create( 3999 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 4000 4001 if (Entry) { 4002 if (GA->getAliasee() == Entry) { 4003 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4004 return; 4005 } 4006 4007 assert(Entry->isDeclaration()); 4008 4009 // If there is a declaration in the module, then we had an extern followed 4010 // by the alias, as in: 4011 // extern int test6(); 4012 // ... 4013 // int test6() __attribute__((alias("test7"))); 4014 // 4015 // Remove it and replace uses of it with the alias. 4016 GA->takeName(Entry); 4017 4018 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4019 Entry->getType())); 4020 Entry->eraseFromParent(); 4021 } else { 4022 GA->setName(MangledName); 4023 } 4024 4025 // Set attributes which are particular to an alias; this is a 4026 // specialization of the attributes which may be set on a global 4027 // variable/function. 4028 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4029 D->isWeakImported()) { 4030 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4031 } 4032 4033 if (const auto *VD = dyn_cast<VarDecl>(D)) 4034 if (VD->getTLSKind()) 4035 setTLSMode(GA, *VD); 4036 4037 SetCommonAttributes(GD, GA); 4038 } 4039 4040 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4041 const auto *D = cast<ValueDecl>(GD.getDecl()); 4042 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4043 assert(IFA && "Not an ifunc?"); 4044 4045 StringRef MangledName = getMangledName(GD); 4046 4047 if (IFA->getResolver() == MangledName) { 4048 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4049 return; 4050 } 4051 4052 // Report an error if some definition overrides ifunc. 4053 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4054 if (Entry && !Entry->isDeclaration()) { 4055 GlobalDecl OtherGD; 4056 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4057 DiagnosedConflictingDefinitions.insert(GD).second) { 4058 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4059 << MangledName; 4060 Diags.Report(OtherGD.getDecl()->getLocation(), 4061 diag::note_previous_definition); 4062 } 4063 return; 4064 } 4065 4066 Aliases.push_back(GD); 4067 4068 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4069 llvm::Constant *Resolver = 4070 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4071 /*ForVTable=*/false); 4072 llvm::GlobalIFunc *GIF = 4073 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4074 "", Resolver, &getModule()); 4075 if (Entry) { 4076 if (GIF->getResolver() == Entry) { 4077 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4078 return; 4079 } 4080 assert(Entry->isDeclaration()); 4081 4082 // If there is a declaration in the module, then we had an extern followed 4083 // by the ifunc, as in: 4084 // extern int test(); 4085 // ... 4086 // int test() __attribute__((ifunc("resolver"))); 4087 // 4088 // Remove it and replace uses of it with the ifunc. 4089 GIF->takeName(Entry); 4090 4091 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4092 Entry->getType())); 4093 Entry->eraseFromParent(); 4094 } else 4095 GIF->setName(MangledName); 4096 4097 SetCommonAttributes(GD, GIF); 4098 } 4099 4100 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4101 ArrayRef<llvm::Type*> Tys) { 4102 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4103 Tys); 4104 } 4105 4106 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4107 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4108 const StringLiteral *Literal, bool TargetIsLSB, 4109 bool &IsUTF16, unsigned &StringLength) { 4110 StringRef String = Literal->getString(); 4111 unsigned NumBytes = String.size(); 4112 4113 // Check for simple case. 4114 if (!Literal->containsNonAsciiOrNull()) { 4115 StringLength = NumBytes; 4116 return *Map.insert(std::make_pair(String, nullptr)).first; 4117 } 4118 4119 // Otherwise, convert the UTF8 literals into a string of shorts. 4120 IsUTF16 = true; 4121 4122 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4123 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4124 llvm::UTF16 *ToPtr = &ToBuf[0]; 4125 4126 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4127 ToPtr + NumBytes, llvm::strictConversion); 4128 4129 // ConvertUTF8toUTF16 returns the length in ToPtr. 4130 StringLength = ToPtr - &ToBuf[0]; 4131 4132 // Add an explicit null. 4133 *ToPtr = 0; 4134 return *Map.insert(std::make_pair( 4135 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4136 (StringLength + 1) * 2), 4137 nullptr)).first; 4138 } 4139 4140 ConstantAddress 4141 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4142 unsigned StringLength = 0; 4143 bool isUTF16 = false; 4144 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4145 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4146 getDataLayout().isLittleEndian(), isUTF16, 4147 StringLength); 4148 4149 if (auto *C = Entry.second) 4150 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4151 4152 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4153 llvm::Constant *Zeros[] = { Zero, Zero }; 4154 4155 const ASTContext &Context = getContext(); 4156 const llvm::Triple &Triple = getTriple(); 4157 4158 const auto CFRuntime = getLangOpts().CFRuntime; 4159 const bool IsSwiftABI = 4160 static_cast<unsigned>(CFRuntime) >= 4161 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4162 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4163 4164 // If we don't already have it, get __CFConstantStringClassReference. 4165 if (!CFConstantStringClassRef) { 4166 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4167 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4168 Ty = llvm::ArrayType::get(Ty, 0); 4169 4170 switch (CFRuntime) { 4171 default: break; 4172 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4173 case LangOptions::CoreFoundationABI::Swift5_0: 4174 CFConstantStringClassName = 4175 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4176 : "$S10Foundation19_NSCFConstantStringCN"; 4177 Ty = IntPtrTy; 4178 break; 4179 case LangOptions::CoreFoundationABI::Swift4_2: 4180 CFConstantStringClassName = 4181 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4182 : "$s10Foundation19_NSCFConstantStringCN"; 4183 Ty = IntPtrTy; 4184 break; 4185 case LangOptions::CoreFoundationABI::Swift4_1: 4186 CFConstantStringClassName = 4187 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4188 : "__T010Foundation19_NSCFConstantStringCN"; 4189 Ty = IntPtrTy; 4190 break; 4191 } 4192 4193 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4194 4195 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4196 llvm::GlobalValue *GV = nullptr; 4197 4198 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4199 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4200 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4201 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4202 4203 const VarDecl *VD = nullptr; 4204 for (const auto &Result : DC->lookup(&II)) 4205 if ((VD = dyn_cast<VarDecl>(Result))) 4206 break; 4207 4208 if (Triple.isOSBinFormatELF()) { 4209 if (!VD) 4210 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4211 } else { 4212 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4213 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4214 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4215 else 4216 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4217 } 4218 4219 setDSOLocal(GV); 4220 } 4221 } 4222 4223 // Decay array -> ptr 4224 CFConstantStringClassRef = 4225 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4226 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4227 } 4228 4229 QualType CFTy = Context.getCFConstantStringType(); 4230 4231 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4232 4233 ConstantInitBuilder Builder(*this); 4234 auto Fields = Builder.beginStruct(STy); 4235 4236 // Class pointer. 4237 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4238 4239 // Flags. 4240 if (IsSwiftABI) { 4241 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4242 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4243 } else { 4244 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4245 } 4246 4247 // String pointer. 4248 llvm::Constant *C = nullptr; 4249 if (isUTF16) { 4250 auto Arr = llvm::makeArrayRef( 4251 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4252 Entry.first().size() / 2); 4253 C = llvm::ConstantDataArray::get(VMContext, Arr); 4254 } else { 4255 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4256 } 4257 4258 // Note: -fwritable-strings doesn't make the backing store strings of 4259 // CFStrings writable. (See <rdar://problem/10657500>) 4260 auto *GV = 4261 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4262 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4263 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4264 // Don't enforce the target's minimum global alignment, since the only use 4265 // of the string is via this class initializer. 4266 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4267 : Context.getTypeAlignInChars(Context.CharTy); 4268 GV->setAlignment(Align.getQuantity()); 4269 4270 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4271 // Without it LLVM can merge the string with a non unnamed_addr one during 4272 // LTO. Doing that changes the section it ends in, which surprises ld64. 4273 if (Triple.isOSBinFormatMachO()) 4274 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4275 : "__TEXT,__cstring,cstring_literals"); 4276 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4277 // the static linker to adjust permissions to read-only later on. 4278 else if (Triple.isOSBinFormatELF()) 4279 GV->setSection(".rodata"); 4280 4281 // String. 4282 llvm::Constant *Str = 4283 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4284 4285 if (isUTF16) 4286 // Cast the UTF16 string to the correct type. 4287 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4288 Fields.add(Str); 4289 4290 // String length. 4291 llvm::IntegerType *LengthTy = 4292 llvm::IntegerType::get(getModule().getContext(), 4293 Context.getTargetInfo().getLongWidth()); 4294 if (IsSwiftABI) { 4295 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4296 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4297 LengthTy = Int32Ty; 4298 else 4299 LengthTy = IntPtrTy; 4300 } 4301 Fields.addInt(LengthTy, StringLength); 4302 4303 CharUnits Alignment = getPointerAlign(); 4304 4305 // The struct. 4306 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4307 /*isConstant=*/false, 4308 llvm::GlobalVariable::PrivateLinkage); 4309 switch (Triple.getObjectFormat()) { 4310 case llvm::Triple::UnknownObjectFormat: 4311 llvm_unreachable("unknown file format"); 4312 case llvm::Triple::COFF: 4313 case llvm::Triple::ELF: 4314 case llvm::Triple::Wasm: 4315 GV->setSection("cfstring"); 4316 break; 4317 case llvm::Triple::MachO: 4318 GV->setSection("__DATA,__cfstring"); 4319 break; 4320 } 4321 Entry.second = GV; 4322 4323 return ConstantAddress(GV, Alignment); 4324 } 4325 4326 bool CodeGenModule::getExpressionLocationsEnabled() const { 4327 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4328 } 4329 4330 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4331 if (ObjCFastEnumerationStateType.isNull()) { 4332 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4333 D->startDefinition(); 4334 4335 QualType FieldTypes[] = { 4336 Context.UnsignedLongTy, 4337 Context.getPointerType(Context.getObjCIdType()), 4338 Context.getPointerType(Context.UnsignedLongTy), 4339 Context.getConstantArrayType(Context.UnsignedLongTy, 4340 llvm::APInt(32, 5), ArrayType::Normal, 0) 4341 }; 4342 4343 for (size_t i = 0; i < 4; ++i) { 4344 FieldDecl *Field = FieldDecl::Create(Context, 4345 D, 4346 SourceLocation(), 4347 SourceLocation(), nullptr, 4348 FieldTypes[i], /*TInfo=*/nullptr, 4349 /*BitWidth=*/nullptr, 4350 /*Mutable=*/false, 4351 ICIS_NoInit); 4352 Field->setAccess(AS_public); 4353 D->addDecl(Field); 4354 } 4355 4356 D->completeDefinition(); 4357 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4358 } 4359 4360 return ObjCFastEnumerationStateType; 4361 } 4362 4363 llvm::Constant * 4364 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4365 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4366 4367 // Don't emit it as the address of the string, emit the string data itself 4368 // as an inline array. 4369 if (E->getCharByteWidth() == 1) { 4370 SmallString<64> Str(E->getString()); 4371 4372 // Resize the string to the right size, which is indicated by its type. 4373 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4374 Str.resize(CAT->getSize().getZExtValue()); 4375 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4376 } 4377 4378 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4379 llvm::Type *ElemTy = AType->getElementType(); 4380 unsigned NumElements = AType->getNumElements(); 4381 4382 // Wide strings have either 2-byte or 4-byte elements. 4383 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4384 SmallVector<uint16_t, 32> Elements; 4385 Elements.reserve(NumElements); 4386 4387 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4388 Elements.push_back(E->getCodeUnit(i)); 4389 Elements.resize(NumElements); 4390 return llvm::ConstantDataArray::get(VMContext, Elements); 4391 } 4392 4393 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4394 SmallVector<uint32_t, 32> Elements; 4395 Elements.reserve(NumElements); 4396 4397 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4398 Elements.push_back(E->getCodeUnit(i)); 4399 Elements.resize(NumElements); 4400 return llvm::ConstantDataArray::get(VMContext, Elements); 4401 } 4402 4403 static llvm::GlobalVariable * 4404 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4405 CodeGenModule &CGM, StringRef GlobalName, 4406 CharUnits Alignment) { 4407 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4408 CGM.getStringLiteralAddressSpace()); 4409 4410 llvm::Module &M = CGM.getModule(); 4411 // Create a global variable for this string 4412 auto *GV = new llvm::GlobalVariable( 4413 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4414 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4415 GV->setAlignment(Alignment.getQuantity()); 4416 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4417 if (GV->isWeakForLinker()) { 4418 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4419 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4420 } 4421 CGM.setDSOLocal(GV); 4422 4423 return GV; 4424 } 4425 4426 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4427 /// constant array for the given string literal. 4428 ConstantAddress 4429 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4430 StringRef Name) { 4431 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4432 4433 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4434 llvm::GlobalVariable **Entry = nullptr; 4435 if (!LangOpts.WritableStrings) { 4436 Entry = &ConstantStringMap[C]; 4437 if (auto GV = *Entry) { 4438 if (Alignment.getQuantity() > GV->getAlignment()) 4439 GV->setAlignment(Alignment.getQuantity()); 4440 return ConstantAddress(GV, Alignment); 4441 } 4442 } 4443 4444 SmallString<256> MangledNameBuffer; 4445 StringRef GlobalVariableName; 4446 llvm::GlobalValue::LinkageTypes LT; 4447 4448 // Mangle the string literal if that's how the ABI merges duplicate strings. 4449 // Don't do it if they are writable, since we don't want writes in one TU to 4450 // affect strings in another. 4451 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4452 !LangOpts.WritableStrings) { 4453 llvm::raw_svector_ostream Out(MangledNameBuffer); 4454 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4455 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4456 GlobalVariableName = MangledNameBuffer; 4457 } else { 4458 LT = llvm::GlobalValue::PrivateLinkage; 4459 GlobalVariableName = Name; 4460 } 4461 4462 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4463 if (Entry) 4464 *Entry = GV; 4465 4466 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4467 QualType()); 4468 4469 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4470 Alignment); 4471 } 4472 4473 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4474 /// array for the given ObjCEncodeExpr node. 4475 ConstantAddress 4476 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4477 std::string Str; 4478 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4479 4480 return GetAddrOfConstantCString(Str); 4481 } 4482 4483 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4484 /// the literal and a terminating '\0' character. 4485 /// The result has pointer to array type. 4486 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4487 const std::string &Str, const char *GlobalName) { 4488 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4489 CharUnits Alignment = 4490 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4491 4492 llvm::Constant *C = 4493 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4494 4495 // Don't share any string literals if strings aren't constant. 4496 llvm::GlobalVariable **Entry = nullptr; 4497 if (!LangOpts.WritableStrings) { 4498 Entry = &ConstantStringMap[C]; 4499 if (auto GV = *Entry) { 4500 if (Alignment.getQuantity() > GV->getAlignment()) 4501 GV->setAlignment(Alignment.getQuantity()); 4502 return ConstantAddress(GV, Alignment); 4503 } 4504 } 4505 4506 // Get the default prefix if a name wasn't specified. 4507 if (!GlobalName) 4508 GlobalName = ".str"; 4509 // Create a global variable for this. 4510 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4511 GlobalName, Alignment); 4512 if (Entry) 4513 *Entry = GV; 4514 4515 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4516 Alignment); 4517 } 4518 4519 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4520 const MaterializeTemporaryExpr *E, const Expr *Init) { 4521 assert((E->getStorageDuration() == SD_Static || 4522 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4523 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4524 4525 // If we're not materializing a subobject of the temporary, keep the 4526 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4527 QualType MaterializedType = Init->getType(); 4528 if (Init == E->GetTemporaryExpr()) 4529 MaterializedType = E->getType(); 4530 4531 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4532 4533 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4534 return ConstantAddress(Slot, Align); 4535 4536 // FIXME: If an externally-visible declaration extends multiple temporaries, 4537 // we need to give each temporary the same name in every translation unit (and 4538 // we also need to make the temporaries externally-visible). 4539 SmallString<256> Name; 4540 llvm::raw_svector_ostream Out(Name); 4541 getCXXABI().getMangleContext().mangleReferenceTemporary( 4542 VD, E->getManglingNumber(), Out); 4543 4544 APValue *Value = nullptr; 4545 if (E->getStorageDuration() == SD_Static) { 4546 // We might have a cached constant initializer for this temporary. Note 4547 // that this might have a different value from the value computed by 4548 // evaluating the initializer if the surrounding constant expression 4549 // modifies the temporary. 4550 Value = getContext().getMaterializedTemporaryValue(E, false); 4551 if (Value && Value->isUninit()) 4552 Value = nullptr; 4553 } 4554 4555 // Try evaluating it now, it might have a constant initializer. 4556 Expr::EvalResult EvalResult; 4557 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4558 !EvalResult.hasSideEffects()) 4559 Value = &EvalResult.Val; 4560 4561 LangAS AddrSpace = 4562 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4563 4564 Optional<ConstantEmitter> emitter; 4565 llvm::Constant *InitialValue = nullptr; 4566 bool Constant = false; 4567 llvm::Type *Type; 4568 if (Value) { 4569 // The temporary has a constant initializer, use it. 4570 emitter.emplace(*this); 4571 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4572 MaterializedType); 4573 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4574 Type = InitialValue->getType(); 4575 } else { 4576 // No initializer, the initialization will be provided when we 4577 // initialize the declaration which performed lifetime extension. 4578 Type = getTypes().ConvertTypeForMem(MaterializedType); 4579 } 4580 4581 // Create a global variable for this lifetime-extended temporary. 4582 llvm::GlobalValue::LinkageTypes Linkage = 4583 getLLVMLinkageVarDefinition(VD, Constant); 4584 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4585 const VarDecl *InitVD; 4586 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4587 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4588 // Temporaries defined inside a class get linkonce_odr linkage because the 4589 // class can be defined in multiple translation units. 4590 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4591 } else { 4592 // There is no need for this temporary to have external linkage if the 4593 // VarDecl has external linkage. 4594 Linkage = llvm::GlobalVariable::InternalLinkage; 4595 } 4596 } 4597 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4598 auto *GV = new llvm::GlobalVariable( 4599 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4600 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4601 if (emitter) emitter->finalize(GV); 4602 setGVProperties(GV, VD); 4603 GV->setAlignment(Align.getQuantity()); 4604 if (supportsCOMDAT() && GV->isWeakForLinker()) 4605 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4606 if (VD->getTLSKind()) 4607 setTLSMode(GV, *VD); 4608 llvm::Constant *CV = GV; 4609 if (AddrSpace != LangAS::Default) 4610 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4611 *this, GV, AddrSpace, LangAS::Default, 4612 Type->getPointerTo( 4613 getContext().getTargetAddressSpace(LangAS::Default))); 4614 MaterializedGlobalTemporaryMap[E] = CV; 4615 return ConstantAddress(CV, Align); 4616 } 4617 4618 /// EmitObjCPropertyImplementations - Emit information for synthesized 4619 /// properties for an implementation. 4620 void CodeGenModule::EmitObjCPropertyImplementations(const 4621 ObjCImplementationDecl *D) { 4622 for (const auto *PID : D->property_impls()) { 4623 // Dynamic is just for type-checking. 4624 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4625 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4626 4627 // Determine which methods need to be implemented, some may have 4628 // been overridden. Note that ::isPropertyAccessor is not the method 4629 // we want, that just indicates if the decl came from a 4630 // property. What we want to know is if the method is defined in 4631 // this implementation. 4632 if (!D->getInstanceMethod(PD->getGetterName())) 4633 CodeGenFunction(*this).GenerateObjCGetter( 4634 const_cast<ObjCImplementationDecl *>(D), PID); 4635 if (!PD->isReadOnly() && 4636 !D->getInstanceMethod(PD->getSetterName())) 4637 CodeGenFunction(*this).GenerateObjCSetter( 4638 const_cast<ObjCImplementationDecl *>(D), PID); 4639 } 4640 } 4641 } 4642 4643 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4644 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4645 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4646 ivar; ivar = ivar->getNextIvar()) 4647 if (ivar->getType().isDestructedType()) 4648 return true; 4649 4650 return false; 4651 } 4652 4653 static bool AllTrivialInitializers(CodeGenModule &CGM, 4654 ObjCImplementationDecl *D) { 4655 CodeGenFunction CGF(CGM); 4656 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4657 E = D->init_end(); B != E; ++B) { 4658 CXXCtorInitializer *CtorInitExp = *B; 4659 Expr *Init = CtorInitExp->getInit(); 4660 if (!CGF.isTrivialInitializer(Init)) 4661 return false; 4662 } 4663 return true; 4664 } 4665 4666 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4667 /// for an implementation. 4668 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4669 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4670 if (needsDestructMethod(D)) { 4671 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4672 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4673 ObjCMethodDecl *DTORMethod = 4674 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4675 cxxSelector, getContext().VoidTy, nullptr, D, 4676 /*isInstance=*/true, /*isVariadic=*/false, 4677 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4678 /*isDefined=*/false, ObjCMethodDecl::Required); 4679 D->addInstanceMethod(DTORMethod); 4680 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4681 D->setHasDestructors(true); 4682 } 4683 4684 // If the implementation doesn't have any ivar initializers, we don't need 4685 // a .cxx_construct. 4686 if (D->getNumIvarInitializers() == 0 || 4687 AllTrivialInitializers(*this, D)) 4688 return; 4689 4690 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4691 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4692 // The constructor returns 'self'. 4693 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4694 D->getLocation(), 4695 D->getLocation(), 4696 cxxSelector, 4697 getContext().getObjCIdType(), 4698 nullptr, D, /*isInstance=*/true, 4699 /*isVariadic=*/false, 4700 /*isPropertyAccessor=*/true, 4701 /*isImplicitlyDeclared=*/true, 4702 /*isDefined=*/false, 4703 ObjCMethodDecl::Required); 4704 D->addInstanceMethod(CTORMethod); 4705 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4706 D->setHasNonZeroConstructors(true); 4707 } 4708 4709 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4710 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4711 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4712 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4713 ErrorUnsupported(LSD, "linkage spec"); 4714 return; 4715 } 4716 4717 EmitDeclContext(LSD); 4718 } 4719 4720 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4721 for (auto *I : DC->decls()) { 4722 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4723 // are themselves considered "top-level", so EmitTopLevelDecl on an 4724 // ObjCImplDecl does not recursively visit them. We need to do that in 4725 // case they're nested inside another construct (LinkageSpecDecl / 4726 // ExportDecl) that does stop them from being considered "top-level". 4727 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4728 for (auto *M : OID->methods()) 4729 EmitTopLevelDecl(M); 4730 } 4731 4732 EmitTopLevelDecl(I); 4733 } 4734 } 4735 4736 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4737 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4738 // Ignore dependent declarations. 4739 if (D->isTemplated()) 4740 return; 4741 4742 switch (D->getKind()) { 4743 case Decl::CXXConversion: 4744 case Decl::CXXMethod: 4745 case Decl::Function: 4746 EmitGlobal(cast<FunctionDecl>(D)); 4747 // Always provide some coverage mapping 4748 // even for the functions that aren't emitted. 4749 AddDeferredUnusedCoverageMapping(D); 4750 break; 4751 4752 case Decl::CXXDeductionGuide: 4753 // Function-like, but does not result in code emission. 4754 break; 4755 4756 case Decl::Var: 4757 case Decl::Decomposition: 4758 case Decl::VarTemplateSpecialization: 4759 EmitGlobal(cast<VarDecl>(D)); 4760 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4761 for (auto *B : DD->bindings()) 4762 if (auto *HD = B->getHoldingVar()) 4763 EmitGlobal(HD); 4764 break; 4765 4766 // Indirect fields from global anonymous structs and unions can be 4767 // ignored; only the actual variable requires IR gen support. 4768 case Decl::IndirectField: 4769 break; 4770 4771 // C++ Decls 4772 case Decl::Namespace: 4773 EmitDeclContext(cast<NamespaceDecl>(D)); 4774 break; 4775 case Decl::ClassTemplateSpecialization: { 4776 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4777 if (DebugInfo && 4778 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4779 Spec->hasDefinition()) 4780 DebugInfo->completeTemplateDefinition(*Spec); 4781 } LLVM_FALLTHROUGH; 4782 case Decl::CXXRecord: 4783 if (DebugInfo) { 4784 if (auto *ES = D->getASTContext().getExternalSource()) 4785 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4786 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4787 } 4788 // Emit any static data members, they may be definitions. 4789 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4790 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4791 EmitTopLevelDecl(I); 4792 break; 4793 // No code generation needed. 4794 case Decl::UsingShadow: 4795 case Decl::ClassTemplate: 4796 case Decl::VarTemplate: 4797 case Decl::VarTemplatePartialSpecialization: 4798 case Decl::FunctionTemplate: 4799 case Decl::TypeAliasTemplate: 4800 case Decl::Block: 4801 case Decl::Empty: 4802 break; 4803 case Decl::Using: // using X; [C++] 4804 if (CGDebugInfo *DI = getModuleDebugInfo()) 4805 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4806 return; 4807 case Decl::NamespaceAlias: 4808 if (CGDebugInfo *DI = getModuleDebugInfo()) 4809 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4810 return; 4811 case Decl::UsingDirective: // using namespace X; [C++] 4812 if (CGDebugInfo *DI = getModuleDebugInfo()) 4813 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4814 return; 4815 case Decl::CXXConstructor: 4816 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4817 break; 4818 case Decl::CXXDestructor: 4819 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4820 break; 4821 4822 case Decl::StaticAssert: 4823 // Nothing to do. 4824 break; 4825 4826 // Objective-C Decls 4827 4828 // Forward declarations, no (immediate) code generation. 4829 case Decl::ObjCInterface: 4830 case Decl::ObjCCategory: 4831 break; 4832 4833 case Decl::ObjCProtocol: { 4834 auto *Proto = cast<ObjCProtocolDecl>(D); 4835 if (Proto->isThisDeclarationADefinition()) 4836 ObjCRuntime->GenerateProtocol(Proto); 4837 break; 4838 } 4839 4840 case Decl::ObjCCategoryImpl: 4841 // Categories have properties but don't support synthesize so we 4842 // can ignore them here. 4843 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4844 break; 4845 4846 case Decl::ObjCImplementation: { 4847 auto *OMD = cast<ObjCImplementationDecl>(D); 4848 EmitObjCPropertyImplementations(OMD); 4849 EmitObjCIvarInitializations(OMD); 4850 ObjCRuntime->GenerateClass(OMD); 4851 // Emit global variable debug information. 4852 if (CGDebugInfo *DI = getModuleDebugInfo()) 4853 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4854 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4855 OMD->getClassInterface()), OMD->getLocation()); 4856 break; 4857 } 4858 case Decl::ObjCMethod: { 4859 auto *OMD = cast<ObjCMethodDecl>(D); 4860 // If this is not a prototype, emit the body. 4861 if (OMD->getBody()) 4862 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4863 break; 4864 } 4865 case Decl::ObjCCompatibleAlias: 4866 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4867 break; 4868 4869 case Decl::PragmaComment: { 4870 const auto *PCD = cast<PragmaCommentDecl>(D); 4871 switch (PCD->getCommentKind()) { 4872 case PCK_Unknown: 4873 llvm_unreachable("unexpected pragma comment kind"); 4874 case PCK_Linker: 4875 AppendLinkerOptions(PCD->getArg()); 4876 break; 4877 case PCK_Lib: 4878 if (getTarget().getTriple().isOSBinFormatELF() && 4879 !getTarget().getTriple().isPS4()) 4880 AddELFLibDirective(PCD->getArg()); 4881 else 4882 AddDependentLib(PCD->getArg()); 4883 break; 4884 case PCK_Compiler: 4885 case PCK_ExeStr: 4886 case PCK_User: 4887 break; // We ignore all of these. 4888 } 4889 break; 4890 } 4891 4892 case Decl::PragmaDetectMismatch: { 4893 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4894 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4895 break; 4896 } 4897 4898 case Decl::LinkageSpec: 4899 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4900 break; 4901 4902 case Decl::FileScopeAsm: { 4903 // File-scope asm is ignored during device-side CUDA compilation. 4904 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4905 break; 4906 // File-scope asm is ignored during device-side OpenMP compilation. 4907 if (LangOpts.OpenMPIsDevice) 4908 break; 4909 auto *AD = cast<FileScopeAsmDecl>(D); 4910 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4911 break; 4912 } 4913 4914 case Decl::Import: { 4915 auto *Import = cast<ImportDecl>(D); 4916 4917 // If we've already imported this module, we're done. 4918 if (!ImportedModules.insert(Import->getImportedModule())) 4919 break; 4920 4921 // Emit debug information for direct imports. 4922 if (!Import->getImportedOwningModule()) { 4923 if (CGDebugInfo *DI = getModuleDebugInfo()) 4924 DI->EmitImportDecl(*Import); 4925 } 4926 4927 // Find all of the submodules and emit the module initializers. 4928 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4929 SmallVector<clang::Module *, 16> Stack; 4930 Visited.insert(Import->getImportedModule()); 4931 Stack.push_back(Import->getImportedModule()); 4932 4933 while (!Stack.empty()) { 4934 clang::Module *Mod = Stack.pop_back_val(); 4935 if (!EmittedModuleInitializers.insert(Mod).second) 4936 continue; 4937 4938 for (auto *D : Context.getModuleInitializers(Mod)) 4939 EmitTopLevelDecl(D); 4940 4941 // Visit the submodules of this module. 4942 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4943 SubEnd = Mod->submodule_end(); 4944 Sub != SubEnd; ++Sub) { 4945 // Skip explicit children; they need to be explicitly imported to emit 4946 // the initializers. 4947 if ((*Sub)->IsExplicit) 4948 continue; 4949 4950 if (Visited.insert(*Sub).second) 4951 Stack.push_back(*Sub); 4952 } 4953 } 4954 break; 4955 } 4956 4957 case Decl::Export: 4958 EmitDeclContext(cast<ExportDecl>(D)); 4959 break; 4960 4961 case Decl::OMPThreadPrivate: 4962 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4963 break; 4964 4965 case Decl::OMPDeclareReduction: 4966 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4967 break; 4968 4969 case Decl::OMPRequires: 4970 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 4971 break; 4972 4973 default: 4974 // Make sure we handled everything we should, every other kind is a 4975 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4976 // function. Need to recode Decl::Kind to do that easily. 4977 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4978 break; 4979 } 4980 } 4981 4982 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4983 // Do we need to generate coverage mapping? 4984 if (!CodeGenOpts.CoverageMapping) 4985 return; 4986 switch (D->getKind()) { 4987 case Decl::CXXConversion: 4988 case Decl::CXXMethod: 4989 case Decl::Function: 4990 case Decl::ObjCMethod: 4991 case Decl::CXXConstructor: 4992 case Decl::CXXDestructor: { 4993 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4994 return; 4995 SourceManager &SM = getContext().getSourceManager(); 4996 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 4997 return; 4998 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4999 if (I == DeferredEmptyCoverageMappingDecls.end()) 5000 DeferredEmptyCoverageMappingDecls[D] = true; 5001 break; 5002 } 5003 default: 5004 break; 5005 }; 5006 } 5007 5008 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5009 // Do we need to generate coverage mapping? 5010 if (!CodeGenOpts.CoverageMapping) 5011 return; 5012 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5013 if (Fn->isTemplateInstantiation()) 5014 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5015 } 5016 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5017 if (I == DeferredEmptyCoverageMappingDecls.end()) 5018 DeferredEmptyCoverageMappingDecls[D] = false; 5019 else 5020 I->second = false; 5021 } 5022 5023 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5024 // We call takeVector() here to avoid use-after-free. 5025 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5026 // we deserialize function bodies to emit coverage info for them, and that 5027 // deserializes more declarations. How should we handle that case? 5028 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5029 if (!Entry.second) 5030 continue; 5031 const Decl *D = Entry.first; 5032 switch (D->getKind()) { 5033 case Decl::CXXConversion: 5034 case Decl::CXXMethod: 5035 case Decl::Function: 5036 case Decl::ObjCMethod: { 5037 CodeGenPGO PGO(*this); 5038 GlobalDecl GD(cast<FunctionDecl>(D)); 5039 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5040 getFunctionLinkage(GD)); 5041 break; 5042 } 5043 case Decl::CXXConstructor: { 5044 CodeGenPGO PGO(*this); 5045 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5046 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5047 getFunctionLinkage(GD)); 5048 break; 5049 } 5050 case Decl::CXXDestructor: { 5051 CodeGenPGO PGO(*this); 5052 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5053 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5054 getFunctionLinkage(GD)); 5055 break; 5056 } 5057 default: 5058 break; 5059 }; 5060 } 5061 } 5062 5063 /// Turns the given pointer into a constant. 5064 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5065 const void *Ptr) { 5066 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5067 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5068 return llvm::ConstantInt::get(i64, PtrInt); 5069 } 5070 5071 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5072 llvm::NamedMDNode *&GlobalMetadata, 5073 GlobalDecl D, 5074 llvm::GlobalValue *Addr) { 5075 if (!GlobalMetadata) 5076 GlobalMetadata = 5077 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5078 5079 // TODO: should we report variant information for ctors/dtors? 5080 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5081 llvm::ConstantAsMetadata::get(GetPointerConstant( 5082 CGM.getLLVMContext(), D.getDecl()))}; 5083 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5084 } 5085 5086 /// For each function which is declared within an extern "C" region and marked 5087 /// as 'used', but has internal linkage, create an alias from the unmangled 5088 /// name to the mangled name if possible. People expect to be able to refer 5089 /// to such functions with an unmangled name from inline assembly within the 5090 /// same translation unit. 5091 void CodeGenModule::EmitStaticExternCAliases() { 5092 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5093 return; 5094 for (auto &I : StaticExternCValues) { 5095 IdentifierInfo *Name = I.first; 5096 llvm::GlobalValue *Val = I.second; 5097 if (Val && !getModule().getNamedValue(Name->getName())) 5098 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5099 } 5100 } 5101 5102 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5103 GlobalDecl &Result) const { 5104 auto Res = Manglings.find(MangledName); 5105 if (Res == Manglings.end()) 5106 return false; 5107 Result = Res->getValue(); 5108 return true; 5109 } 5110 5111 /// Emits metadata nodes associating all the global values in the 5112 /// current module with the Decls they came from. This is useful for 5113 /// projects using IR gen as a subroutine. 5114 /// 5115 /// Since there's currently no way to associate an MDNode directly 5116 /// with an llvm::GlobalValue, we create a global named metadata 5117 /// with the name 'clang.global.decl.ptrs'. 5118 void CodeGenModule::EmitDeclMetadata() { 5119 llvm::NamedMDNode *GlobalMetadata = nullptr; 5120 5121 for (auto &I : MangledDeclNames) { 5122 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5123 // Some mangled names don't necessarily have an associated GlobalValue 5124 // in this module, e.g. if we mangled it for DebugInfo. 5125 if (Addr) 5126 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5127 } 5128 } 5129 5130 /// Emits metadata nodes for all the local variables in the current 5131 /// function. 5132 void CodeGenFunction::EmitDeclMetadata() { 5133 if (LocalDeclMap.empty()) return; 5134 5135 llvm::LLVMContext &Context = getLLVMContext(); 5136 5137 // Find the unique metadata ID for this name. 5138 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5139 5140 llvm::NamedMDNode *GlobalMetadata = nullptr; 5141 5142 for (auto &I : LocalDeclMap) { 5143 const Decl *D = I.first; 5144 llvm::Value *Addr = I.second.getPointer(); 5145 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5146 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5147 Alloca->setMetadata( 5148 DeclPtrKind, llvm::MDNode::get( 5149 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5150 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5151 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5152 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5153 } 5154 } 5155 } 5156 5157 void CodeGenModule::EmitVersionIdentMetadata() { 5158 llvm::NamedMDNode *IdentMetadata = 5159 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5160 std::string Version = getClangFullVersion(); 5161 llvm::LLVMContext &Ctx = TheModule.getContext(); 5162 5163 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5164 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5165 } 5166 5167 void CodeGenModule::EmitTargetMetadata() { 5168 // Warning, new MangledDeclNames may be appended within this loop. 5169 // We rely on MapVector insertions adding new elements to the end 5170 // of the container. 5171 // FIXME: Move this loop into the one target that needs it, and only 5172 // loop over those declarations for which we couldn't emit the target 5173 // metadata when we emitted the declaration. 5174 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5175 auto Val = *(MangledDeclNames.begin() + I); 5176 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5177 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5178 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5179 } 5180 } 5181 5182 void CodeGenModule::EmitCoverageFile() { 5183 if (getCodeGenOpts().CoverageDataFile.empty() && 5184 getCodeGenOpts().CoverageNotesFile.empty()) 5185 return; 5186 5187 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5188 if (!CUNode) 5189 return; 5190 5191 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5192 llvm::LLVMContext &Ctx = TheModule.getContext(); 5193 auto *CoverageDataFile = 5194 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5195 auto *CoverageNotesFile = 5196 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5197 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5198 llvm::MDNode *CU = CUNode->getOperand(i); 5199 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5200 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5201 } 5202 } 5203 5204 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5205 // Sema has checked that all uuid strings are of the form 5206 // "12345678-1234-1234-1234-1234567890ab". 5207 assert(Uuid.size() == 36); 5208 for (unsigned i = 0; i < 36; ++i) { 5209 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5210 else assert(isHexDigit(Uuid[i])); 5211 } 5212 5213 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5214 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5215 5216 llvm::Constant *Field3[8]; 5217 for (unsigned Idx = 0; Idx < 8; ++Idx) 5218 Field3[Idx] = llvm::ConstantInt::get( 5219 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5220 5221 llvm::Constant *Fields[4] = { 5222 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5223 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5224 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5225 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5226 }; 5227 5228 return llvm::ConstantStruct::getAnon(Fields); 5229 } 5230 5231 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5232 bool ForEH) { 5233 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5234 // FIXME: should we even be calling this method if RTTI is disabled 5235 // and it's not for EH? 5236 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5237 return llvm::Constant::getNullValue(Int8PtrTy); 5238 5239 if (ForEH && Ty->isObjCObjectPointerType() && 5240 LangOpts.ObjCRuntime.isGNUFamily()) 5241 return ObjCRuntime->GetEHType(Ty); 5242 5243 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5244 } 5245 5246 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5247 // Do not emit threadprivates in simd-only mode. 5248 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5249 return; 5250 for (auto RefExpr : D->varlists()) { 5251 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5252 bool PerformInit = 5253 VD->getAnyInitializer() && 5254 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5255 /*ForRef=*/false); 5256 5257 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5258 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5259 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5260 CXXGlobalInits.push_back(InitFunction); 5261 } 5262 } 5263 5264 llvm::Metadata * 5265 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5266 StringRef Suffix) { 5267 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5268 if (InternalId) 5269 return InternalId; 5270 5271 if (isExternallyVisible(T->getLinkage())) { 5272 std::string OutName; 5273 llvm::raw_string_ostream Out(OutName); 5274 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5275 Out << Suffix; 5276 5277 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5278 } else { 5279 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5280 llvm::ArrayRef<llvm::Metadata *>()); 5281 } 5282 5283 return InternalId; 5284 } 5285 5286 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5287 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5288 } 5289 5290 llvm::Metadata * 5291 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5292 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5293 } 5294 5295 // Generalize pointer types to a void pointer with the qualifiers of the 5296 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5297 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5298 // 'void *'. 5299 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5300 if (!Ty->isPointerType()) 5301 return Ty; 5302 5303 return Ctx.getPointerType( 5304 QualType(Ctx.VoidTy).withCVRQualifiers( 5305 Ty->getPointeeType().getCVRQualifiers())); 5306 } 5307 5308 // Apply type generalization to a FunctionType's return and argument types 5309 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5310 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5311 SmallVector<QualType, 8> GeneralizedParams; 5312 for (auto &Param : FnType->param_types()) 5313 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5314 5315 return Ctx.getFunctionType( 5316 GeneralizeType(Ctx, FnType->getReturnType()), 5317 GeneralizedParams, FnType->getExtProtoInfo()); 5318 } 5319 5320 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5321 return Ctx.getFunctionNoProtoType( 5322 GeneralizeType(Ctx, FnType->getReturnType())); 5323 5324 llvm_unreachable("Encountered unknown FunctionType"); 5325 } 5326 5327 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5328 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5329 GeneralizedMetadataIdMap, ".generalized"); 5330 } 5331 5332 /// Returns whether this module needs the "all-vtables" type identifier. 5333 bool CodeGenModule::NeedAllVtablesTypeId() const { 5334 // Returns true if at least one of vtable-based CFI checkers is enabled and 5335 // is not in the trapping mode. 5336 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5337 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5338 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5339 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5340 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5341 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5342 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5343 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5344 } 5345 5346 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5347 CharUnits Offset, 5348 const CXXRecordDecl *RD) { 5349 llvm::Metadata *MD = 5350 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5351 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5352 5353 if (CodeGenOpts.SanitizeCfiCrossDso) 5354 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5355 VTable->addTypeMetadata(Offset.getQuantity(), 5356 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5357 5358 if (NeedAllVtablesTypeId()) { 5359 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5360 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5361 } 5362 } 5363 5364 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5365 assert(TD != nullptr); 5366 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5367 5368 ParsedAttr.Features.erase( 5369 llvm::remove_if(ParsedAttr.Features, 5370 [&](const std::string &Feat) { 5371 return !Target.isValidFeatureName( 5372 StringRef{Feat}.substr(1)); 5373 }), 5374 ParsedAttr.Features.end()); 5375 return ParsedAttr; 5376 } 5377 5378 5379 // Fills in the supplied string map with the set of target features for the 5380 // passed in function. 5381 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5382 const FunctionDecl *FD) { 5383 StringRef TargetCPU = Target.getTargetOpts().CPU; 5384 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5385 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5386 5387 // Make a copy of the features as passed on the command line into the 5388 // beginning of the additional features from the function to override. 5389 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5390 Target.getTargetOpts().FeaturesAsWritten.begin(), 5391 Target.getTargetOpts().FeaturesAsWritten.end()); 5392 5393 if (ParsedAttr.Architecture != "" && 5394 Target.isValidCPUName(ParsedAttr.Architecture)) 5395 TargetCPU = ParsedAttr.Architecture; 5396 5397 // Now populate the feature map, first with the TargetCPU which is either 5398 // the default or a new one from the target attribute string. Then we'll use 5399 // the passed in features (FeaturesAsWritten) along with the new ones from 5400 // the attribute. 5401 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5402 ParsedAttr.Features); 5403 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5404 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5405 Target.getCPUSpecificCPUDispatchFeatures(SD->getCurCPUName()->getName(), 5406 FeaturesTmp); 5407 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5408 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5409 } else { 5410 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5411 Target.getTargetOpts().Features); 5412 } 5413 } 5414 5415 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5416 if (!SanStats) 5417 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5418 5419 return *SanStats; 5420 } 5421 llvm::Value * 5422 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5423 CodeGenFunction &CGF) { 5424 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5425 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5426 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5427 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5428 "__translate_sampler_initializer"), 5429 {C}); 5430 } 5431