xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 1913115204027ad779949094c454d704462e77d0)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
127 
128   if (LangOpts.ObjC1)
129     createObjCRuntime();
130   if (LangOpts.OpenCL)
131     createOpenCLRuntime();
132   if (LangOpts.OpenMP)
133     createOpenMPRuntime();
134   if (LangOpts.CUDA)
135     createCUDARuntime();
136 
137   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
138   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
139       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
140     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
141                                getCXXABI().getMangleContext()));
142 
143   // If debug info or coverage generation is enabled, create the CGDebugInfo
144   // object.
145   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
146       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
147     DebugInfo.reset(new CGDebugInfo(*this));
148 
149   Block.GlobalUniqueCount = 0;
150 
151   if (C.getLangOpts().ObjC1)
152     ObjCData.reset(new ObjCEntrypoints());
153 
154   if (CodeGenOpts.hasProfileClangUse()) {
155     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
156         CodeGenOpts.ProfileInstrumentUsePath);
157     if (auto E = ReaderOrErr.takeError()) {
158       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
159                                               "Could not read profile %0: %1");
160       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
161         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
162                                   << EI.message();
163       });
164     } else
165       PGOReader = std::move(ReaderOrErr.get());
166   }
167 
168   // If coverage mapping generation is enabled, create the
169   // CoverageMappingModuleGen object.
170   if (CodeGenOpts.CoverageMapping)
171     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
172 }
173 
174 CodeGenModule::~CodeGenModule() {}
175 
176 void CodeGenModule::createObjCRuntime() {
177   // This is just isGNUFamily(), but we want to force implementors of
178   // new ABIs to decide how best to do this.
179   switch (LangOpts.ObjCRuntime.getKind()) {
180   case ObjCRuntime::GNUstep:
181   case ObjCRuntime::GCC:
182   case ObjCRuntime::ObjFW:
183     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
184     return;
185 
186   case ObjCRuntime::FragileMacOSX:
187   case ObjCRuntime::MacOSX:
188   case ObjCRuntime::iOS:
189   case ObjCRuntime::WatchOS:
190     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
191     return;
192   }
193   llvm_unreachable("bad runtime kind");
194 }
195 
196 void CodeGenModule::createOpenCLRuntime() {
197   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
198 }
199 
200 void CodeGenModule::createOpenMPRuntime() {
201   // Select a specialized code generation class based on the target, if any.
202   // If it does not exist use the default implementation.
203   switch (getTriple().getArch()) {
204   case llvm::Triple::nvptx:
205   case llvm::Triple::nvptx64:
206     assert(getLangOpts().OpenMPIsDevice &&
207            "OpenMP NVPTX is only prepared to deal with device code.");
208     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
209     break;
210   default:
211     if (LangOpts.OpenMPSimd)
212       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
213     else
214       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
215     break;
216   }
217 }
218 
219 void CodeGenModule::createCUDARuntime() {
220   CUDARuntime.reset(CreateNVCUDARuntime(*this));
221 }
222 
223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
224   Replacements[Name] = C;
225 }
226 
227 void CodeGenModule::applyReplacements() {
228   for (auto &I : Replacements) {
229     StringRef MangledName = I.first();
230     llvm::Constant *Replacement = I.second;
231     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
232     if (!Entry)
233       continue;
234     auto *OldF = cast<llvm::Function>(Entry);
235     auto *NewF = dyn_cast<llvm::Function>(Replacement);
236     if (!NewF) {
237       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
238         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
239       } else {
240         auto *CE = cast<llvm::ConstantExpr>(Replacement);
241         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
242                CE->getOpcode() == llvm::Instruction::GetElementPtr);
243         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
244       }
245     }
246 
247     // Replace old with new, but keep the old order.
248     OldF->replaceAllUsesWith(Replacement);
249     if (NewF) {
250       NewF->removeFromParent();
251       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
252                                                        NewF);
253     }
254     OldF->eraseFromParent();
255   }
256 }
257 
258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
259   GlobalValReplacements.push_back(std::make_pair(GV, C));
260 }
261 
262 void CodeGenModule::applyGlobalValReplacements() {
263   for (auto &I : GlobalValReplacements) {
264     llvm::GlobalValue *GV = I.first;
265     llvm::Constant *C = I.second;
266 
267     GV->replaceAllUsesWith(C);
268     GV->eraseFromParent();
269   }
270 }
271 
272 // This is only used in aliases that we created and we know they have a
273 // linear structure.
274 static const llvm::GlobalObject *getAliasedGlobal(
275     const llvm::GlobalIndirectSymbol &GIS) {
276   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
277   const llvm::Constant *C = &GIS;
278   for (;;) {
279     C = C->stripPointerCasts();
280     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
281       return GO;
282     // stripPointerCasts will not walk over weak aliases.
283     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
284     if (!GIS2)
285       return nullptr;
286     if (!Visited.insert(GIS2).second)
287       return nullptr;
288     C = GIS2->getIndirectSymbol();
289   }
290 }
291 
292 void CodeGenModule::checkAliases() {
293   // Check if the constructed aliases are well formed. It is really unfortunate
294   // that we have to do this in CodeGen, but we only construct mangled names
295   // and aliases during codegen.
296   bool Error = false;
297   DiagnosticsEngine &Diags = getDiags();
298   for (const GlobalDecl &GD : Aliases) {
299     const auto *D = cast<ValueDecl>(GD.getDecl());
300     SourceLocation Location;
301     bool IsIFunc = D->hasAttr<IFuncAttr>();
302     if (const Attr *A = D->getDefiningAttr())
303       Location = A->getLocation();
304     else
305       llvm_unreachable("Not an alias or ifunc?");
306     StringRef MangledName = getMangledName(GD);
307     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
308     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
309     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
310     if (!GV) {
311       Error = true;
312       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
313     } else if (GV->isDeclaration()) {
314       Error = true;
315       Diags.Report(Location, diag::err_alias_to_undefined)
316           << IsIFunc << IsIFunc;
317     } else if (IsIFunc) {
318       // Check resolver function type.
319       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
320           GV->getType()->getPointerElementType());
321       assert(FTy);
322       if (!FTy->getReturnType()->isPointerTy())
323         Diags.Report(Location, diag::err_ifunc_resolver_return);
324       if (FTy->getNumParams())
325         Diags.Report(Location, diag::err_ifunc_resolver_params);
326     }
327 
328     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329     llvm::GlobalValue *AliaseeGV;
330     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332     else
333       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334 
335     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336       StringRef AliasSection = SA->getName();
337       if (AliasSection != AliaseeGV->getSection())
338         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339             << AliasSection << IsIFunc << IsIFunc;
340     }
341 
342     // We have to handle alias to weak aliases in here. LLVM itself disallows
343     // this since the object semantics would not match the IL one. For
344     // compatibility with gcc we implement it by just pointing the alias
345     // to its aliasee's aliasee. We also warn, since the user is probably
346     // expecting the link to be weak.
347     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348       if (GA->isInterposable()) {
349         Diags.Report(Location, diag::warn_alias_to_weak_alias)
350             << GV->getName() << GA->getName() << IsIFunc;
351         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352             GA->getIndirectSymbol(), Alias->getType());
353         Alias->setIndirectSymbol(Aliasee);
354       }
355     }
356   }
357   if (!Error)
358     return;
359 
360   for (const GlobalDecl &GD : Aliases) {
361     StringRef MangledName = getMangledName(GD);
362     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365     Alias->eraseFromParent();
366   }
367 }
368 
369 void CodeGenModule::clear() {
370   DeferredDeclsToEmit.clear();
371   if (OpenMPRuntime)
372     OpenMPRuntime->clear();
373 }
374 
375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376                                        StringRef MainFile) {
377   if (!hasDiagnostics())
378     return;
379   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380     if (MainFile.empty())
381       MainFile = "<stdin>";
382     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383   } else {
384     if (Mismatched > 0)
385       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386 
387     if (Missing > 0)
388       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389   }
390 }
391 
392 void CodeGenModule::Release() {
393   EmitDeferred();
394   EmitVTablesOpportunistically();
395   applyGlobalValReplacements();
396   applyReplacements();
397   checkAliases();
398   emitMultiVersionFunctions();
399   EmitCXXGlobalInitFunc();
400   EmitCXXGlobalDtorFunc();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
408       AddGlobalCtor(CudaCtorFunction);
409     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
410       AddGlobalDtor(CudaDtorFunction);
411   }
412   if (OpenMPRuntime)
413     if (llvm::Function *OpenMPRegistrationFunction =
414             OpenMPRuntime->emitRegistrationFunction()) {
415       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
416         OpenMPRegistrationFunction : nullptr;
417       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
418     }
419   if (PGOReader) {
420     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
421     if (PGOStats.hasDiagnostics())
422       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
423   }
424   EmitCtorList(GlobalCtors, "llvm.global_ctors");
425   EmitCtorList(GlobalDtors, "llvm.global_dtors");
426   EmitGlobalAnnotations();
427   EmitStaticExternCAliases();
428   EmitDeferredUnusedCoverageMappings();
429   if (CoverageMapping)
430     CoverageMapping->emit();
431   if (CodeGenOpts.SanitizeCfiCrossDso) {
432     CodeGenFunction(*this).EmitCfiCheckFail();
433     CodeGenFunction(*this).EmitCfiCheckStub();
434   }
435   emitAtAvailableLinkGuard();
436   emitLLVMUsed();
437   if (SanStats)
438     SanStats->finish();
439 
440   if (CodeGenOpts.Autolink &&
441       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
442     EmitModuleLinkOptions();
443   }
444 
445   // Record mregparm value now so it is visible through rest of codegen.
446   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
447     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
448                               CodeGenOpts.NumRegisterParameters);
449 
450   if (CodeGenOpts.DwarfVersion) {
451     // We actually want the latest version when there are conflicts.
452     // We can change from Warning to Latest if such mode is supported.
453     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
454                               CodeGenOpts.DwarfVersion);
455   }
456   if (CodeGenOpts.EmitCodeView) {
457     // Indicate that we want CodeView in the metadata.
458     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
459   }
460   if (CodeGenOpts.ControlFlowGuard) {
461     // We want function ID tables for Control Flow Guard.
462     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
463   }
464   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
465     // We don't support LTO with 2 with different StrictVTablePointers
466     // FIXME: we could support it by stripping all the information introduced
467     // by StrictVTablePointers.
468 
469     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
470 
471     llvm::Metadata *Ops[2] = {
472               llvm::MDString::get(VMContext, "StrictVTablePointers"),
473               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
474                   llvm::Type::getInt32Ty(VMContext), 1))};
475 
476     getModule().addModuleFlag(llvm::Module::Require,
477                               "StrictVTablePointersRequirement",
478                               llvm::MDNode::get(VMContext, Ops));
479   }
480   if (DebugInfo)
481     // We support a single version in the linked module. The LLVM
482     // parser will drop debug info with a different version number
483     // (and warn about it, too).
484     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
485                               llvm::DEBUG_METADATA_VERSION);
486 
487   // We need to record the widths of enums and wchar_t, so that we can generate
488   // the correct build attributes in the ARM backend. wchar_size is also used by
489   // TargetLibraryInfo.
490   uint64_t WCharWidth =
491       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
492   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
493 
494   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
495   if (   Arch == llvm::Triple::arm
496       || Arch == llvm::Triple::armeb
497       || Arch == llvm::Triple::thumb
498       || Arch == llvm::Triple::thumbeb) {
499     // The minimum width of an enum in bytes
500     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
501     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
502   }
503 
504   if (CodeGenOpts.SanitizeCfiCrossDso) {
505     // Indicate that we want cross-DSO control flow integrity checks.
506     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
507   }
508 
509   if (CodeGenOpts.CFProtectionReturn &&
510       Target.checkCFProtectionReturnSupported(getDiags())) {
511     // Indicate that we want to instrument return control flow protection.
512     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
513                               1);
514   }
515 
516   if (CodeGenOpts.CFProtectionBranch &&
517       Target.checkCFProtectionBranchSupported(getDiags())) {
518     // Indicate that we want to instrument branch control flow protection.
519     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
520                               1);
521   }
522 
523   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
524     // Indicate whether __nvvm_reflect should be configured to flush denormal
525     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
526     // property.)
527     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
528                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
529   }
530 
531   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
532   if (LangOpts.OpenCL) {
533     EmitOpenCLMetadata();
534     // Emit SPIR version.
535     if (getTriple().getArch() == llvm::Triple::spir ||
536         getTriple().getArch() == llvm::Triple::spir64) {
537       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
538       // opencl.spir.version named metadata.
539       llvm::Metadata *SPIRVerElts[] = {
540           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
541               Int32Ty, LangOpts.OpenCLVersion / 100)),
542           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
543               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
544       llvm::NamedMDNode *SPIRVerMD =
545           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
546       llvm::LLVMContext &Ctx = TheModule.getContext();
547       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
548     }
549   }
550 
551   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
552     assert(PLevel < 3 && "Invalid PIC Level");
553     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
554     if (Context.getLangOpts().PIE)
555       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
556   }
557 
558   SimplifyPersonality();
559 
560   if (getCodeGenOpts().EmitDeclMetadata)
561     EmitDeclMetadata();
562 
563   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
564     EmitCoverageFile();
565 
566   if (DebugInfo)
567     DebugInfo->finalize();
568 
569   EmitVersionIdentMetadata();
570 
571   EmitTargetMetadata();
572 }
573 
574 void CodeGenModule::EmitOpenCLMetadata() {
575   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
576   // opencl.ocl.version named metadata node.
577   llvm::Metadata *OCLVerElts[] = {
578       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
579           Int32Ty, LangOpts.OpenCLVersion / 100)),
580       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
581           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
582   llvm::NamedMDNode *OCLVerMD =
583       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
584   llvm::LLVMContext &Ctx = TheModule.getContext();
585   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
586 }
587 
588 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
589   // Make sure that this type is translated.
590   Types.UpdateCompletedType(TD);
591 }
592 
593 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
594   // Make sure that this type is translated.
595   Types.RefreshTypeCacheForClass(RD);
596 }
597 
598 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
599   if (!TBAA)
600     return nullptr;
601   return TBAA->getTypeInfo(QTy);
602 }
603 
604 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
605   // Pointee values may have incomplete types, but they shall never be
606   // dereferenced.
607   if (AccessType->isIncompleteType())
608     return TBAAAccessInfo::getIncompleteInfo();
609 
610   uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity();
611   return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size);
612 }
613 
614 TBAAAccessInfo
615 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
616   if (!TBAA)
617     return TBAAAccessInfo();
618   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
619 }
620 
621 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
622   if (!TBAA)
623     return nullptr;
624   return TBAA->getTBAAStructInfo(QTy);
625 }
626 
627 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
628   if (!TBAA)
629     return nullptr;
630   return TBAA->getBaseTypeInfo(QTy);
631 }
632 
633 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
634   if (!TBAA)
635     return nullptr;
636   return TBAA->getAccessTagInfo(Info);
637 }
638 
639 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
640                                                    TBAAAccessInfo TargetInfo) {
641   if (!TBAA)
642     return TBAAAccessInfo();
643   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
644 }
645 
646 TBAAAccessInfo
647 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
648                                                    TBAAAccessInfo InfoB) {
649   if (!TBAA)
650     return TBAAAccessInfo();
651   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
652 }
653 
654 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
655                                                 TBAAAccessInfo TBAAInfo) {
656   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
657     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
658 }
659 
660 void CodeGenModule::DecorateInstructionWithInvariantGroup(
661     llvm::Instruction *I, const CXXRecordDecl *RD) {
662   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
663                  llvm::MDNode::get(getLLVMContext(), {}));
664 }
665 
666 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
667   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
668   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
669 }
670 
671 /// ErrorUnsupported - Print out an error that codegen doesn't support the
672 /// specified stmt yet.
673 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
674   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
675                                                "cannot compile this %0 yet");
676   std::string Msg = Type;
677   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
678     << Msg << S->getSourceRange();
679 }
680 
681 /// ErrorUnsupported - Print out an error that codegen doesn't support the
682 /// specified decl yet.
683 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
684   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
685                                                "cannot compile this %0 yet");
686   std::string Msg = Type;
687   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
688 }
689 
690 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
691   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
692 }
693 
694 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
695                                         const NamedDecl *D,
696                                         ForDefinition_t IsForDefinition) const {
697   // Internal definitions always have default visibility.
698   if (GV->hasLocalLinkage()) {
699     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
700     return;
701   }
702 
703   // Set visibility for definitions.
704   LinkageInfo LV = D->getLinkageAndVisibility();
705   if (LV.isVisibilityExplicit() ||
706       (IsForDefinition && !GV->hasAvailableExternallyLinkage()))
707     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
708 }
709 
710 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
711   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
712       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
713       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
714       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
715       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
716 }
717 
718 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
719     CodeGenOptions::TLSModel M) {
720   switch (M) {
721   case CodeGenOptions::GeneralDynamicTLSModel:
722     return llvm::GlobalVariable::GeneralDynamicTLSModel;
723   case CodeGenOptions::LocalDynamicTLSModel:
724     return llvm::GlobalVariable::LocalDynamicTLSModel;
725   case CodeGenOptions::InitialExecTLSModel:
726     return llvm::GlobalVariable::InitialExecTLSModel;
727   case CodeGenOptions::LocalExecTLSModel:
728     return llvm::GlobalVariable::LocalExecTLSModel;
729   }
730   llvm_unreachable("Invalid TLS model!");
731 }
732 
733 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
734   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
735 
736   llvm::GlobalValue::ThreadLocalMode TLM;
737   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
738 
739   // Override the TLS model if it is explicitly specified.
740   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
741     TLM = GetLLVMTLSModel(Attr->getModel());
742   }
743 
744   GV->setThreadLocalMode(TLM);
745 }
746 
747 static void AppendTargetMangling(const CodeGenModule &CGM,
748                                  const TargetAttr *Attr, raw_ostream &Out) {
749   if (Attr->isDefaultVersion())
750     return;
751 
752   Out << '.';
753   const auto &Target = CGM.getTarget();
754   TargetAttr::ParsedTargetAttr Info =
755       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
756                     // Multiversioning doesn't allow "no-${feature}", so we can
757                     // only have "+" prefixes here.
758                     assert(LHS.startswith("+") && RHS.startswith("+") &&
759                            "Features should always have a prefix.");
760                     return Target.multiVersionSortPriority(LHS.substr(1)) >
761                            Target.multiVersionSortPriority(RHS.substr(1));
762                   });
763 
764   bool IsFirst = true;
765 
766   if (!Info.Architecture.empty()) {
767     IsFirst = false;
768     Out << "arch_" << Info.Architecture;
769   }
770 
771   for (StringRef Feat : Info.Features) {
772     if (!IsFirst)
773       Out << '_';
774     IsFirst = false;
775     Out << Feat.substr(1);
776   }
777 }
778 
779 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
780                                       const NamedDecl *ND,
781                                       bool OmitTargetMangling = false) {
782   SmallString<256> Buffer;
783   llvm::raw_svector_ostream Out(Buffer);
784   MangleContext &MC = CGM.getCXXABI().getMangleContext();
785   if (MC.shouldMangleDeclName(ND)) {
786     llvm::raw_svector_ostream Out(Buffer);
787     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
788       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
789     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
790       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
791     else
792       MC.mangleName(ND, Out);
793   } else {
794     IdentifierInfo *II = ND->getIdentifier();
795     assert(II && "Attempt to mangle unnamed decl.");
796     const auto *FD = dyn_cast<FunctionDecl>(ND);
797 
798     if (FD &&
799         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
800       llvm::raw_svector_ostream Out(Buffer);
801       Out << "__regcall3__" << II->getName();
802     } else {
803       Out << II->getName();
804     }
805   }
806 
807   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
808     if (FD->isMultiVersion() && !OmitTargetMangling)
809       AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
810   return Out.str();
811 }
812 
813 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
814                                             const FunctionDecl *FD) {
815   if (!FD->isMultiVersion())
816     return;
817 
818   // Get the name of what this would be without the 'target' attribute.  This
819   // allows us to lookup the version that was emitted when this wasn't a
820   // multiversion function.
821   std::string NonTargetName =
822       getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
823   GlobalDecl OtherGD;
824   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
825     assert(OtherGD.getCanonicalDecl()
826                .getDecl()
827                ->getAsFunction()
828                ->isMultiVersion() &&
829            "Other GD should now be a multiversioned function");
830     // OtherFD is the version of this function that was mangled BEFORE
831     // becoming a MultiVersion function.  It potentially needs to be updated.
832     const FunctionDecl *OtherFD =
833         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
834     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
835     // This is so that if the initial version was already the 'default'
836     // version, we don't try to update it.
837     if (OtherName != NonTargetName) {
838       // Remove instead of erase, since others may have stored the StringRef
839       // to this.
840       const auto ExistingRecord = Manglings.find(NonTargetName);
841       if (ExistingRecord != std::end(Manglings))
842         Manglings.remove(&(*ExistingRecord));
843       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
844       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
845       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
846         Entry->setName(OtherName);
847     }
848   }
849 }
850 
851 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
852   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
853 
854   // Some ABIs don't have constructor variants.  Make sure that base and
855   // complete constructors get mangled the same.
856   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
857     if (!getTarget().getCXXABI().hasConstructorVariants()) {
858       CXXCtorType OrigCtorType = GD.getCtorType();
859       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
860       if (OrigCtorType == Ctor_Base)
861         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
862     }
863   }
864 
865   auto FoundName = MangledDeclNames.find(CanonicalGD);
866   if (FoundName != MangledDeclNames.end())
867     return FoundName->second;
868 
869 
870   // Keep the first result in the case of a mangling collision.
871   const auto *ND = cast<NamedDecl>(GD.getDecl());
872   auto Result =
873       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
874   return MangledDeclNames[CanonicalGD] = Result.first->first();
875 }
876 
877 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
878                                              const BlockDecl *BD) {
879   MangleContext &MangleCtx = getCXXABI().getMangleContext();
880   const Decl *D = GD.getDecl();
881 
882   SmallString<256> Buffer;
883   llvm::raw_svector_ostream Out(Buffer);
884   if (!D)
885     MangleCtx.mangleGlobalBlock(BD,
886       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
887   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
888     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
889   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
890     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
891   else
892     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
893 
894   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
895   return Result.first->first();
896 }
897 
898 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
899   return getModule().getNamedValue(Name);
900 }
901 
902 /// AddGlobalCtor - Add a function to the list that will be called before
903 /// main() runs.
904 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
905                                   llvm::Constant *AssociatedData) {
906   // FIXME: Type coercion of void()* types.
907   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
908 }
909 
910 /// AddGlobalDtor - Add a function to the list that will be called
911 /// when the module is unloaded.
912 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
913   // FIXME: Type coercion of void()* types.
914   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
915 }
916 
917 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
918   if (Fns.empty()) return;
919 
920   // Ctor function type is void()*.
921   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
922   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
923 
924   // Get the type of a ctor entry, { i32, void ()*, i8* }.
925   llvm::StructType *CtorStructTy = llvm::StructType::get(
926       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
927 
928   // Construct the constructor and destructor arrays.
929   ConstantInitBuilder builder(*this);
930   auto ctors = builder.beginArray(CtorStructTy);
931   for (const auto &I : Fns) {
932     auto ctor = ctors.beginStruct(CtorStructTy);
933     ctor.addInt(Int32Ty, I.Priority);
934     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
935     if (I.AssociatedData)
936       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
937     else
938       ctor.addNullPointer(VoidPtrTy);
939     ctor.finishAndAddTo(ctors);
940   }
941 
942   auto list =
943     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
944                                 /*constant*/ false,
945                                 llvm::GlobalValue::AppendingLinkage);
946 
947   // The LTO linker doesn't seem to like it when we set an alignment
948   // on appending variables.  Take it off as a workaround.
949   list->setAlignment(0);
950 
951   Fns.clear();
952 }
953 
954 llvm::GlobalValue::LinkageTypes
955 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
956   const auto *D = cast<FunctionDecl>(GD.getDecl());
957 
958   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
959 
960   if (isa<CXXDestructorDecl>(D) &&
961       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
962                                          GD.getDtorType())) {
963     // Destructor variants in the Microsoft C++ ABI are always internal or
964     // linkonce_odr thunks emitted on an as-needed basis.
965     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
966                                    : llvm::GlobalValue::LinkOnceODRLinkage;
967   }
968 
969   if (isa<CXXConstructorDecl>(D) &&
970       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
971       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
972     // Our approach to inheriting constructors is fundamentally different from
973     // that used by the MS ABI, so keep our inheriting constructor thunks
974     // internal rather than trying to pick an unambiguous mangling for them.
975     return llvm::GlobalValue::InternalLinkage;
976   }
977 
978   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
979 }
980 
981 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
982   const auto *FD = cast<FunctionDecl>(GD.getDecl());
983 
984   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
985     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
986       // Don't dllexport/import destructor thunks.
987       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
988       return;
989     }
990   }
991 
992   if (FD->hasAttr<DLLImportAttr>())
993     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
994   else if (FD->hasAttr<DLLExportAttr>())
995     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
996   else
997     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
998 }
999 
1000 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1001   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1002   if (!MDS) return nullptr;
1003 
1004   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1005 }
1006 
1007 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
1008                                                     llvm::Function *F) {
1009   setNonAliasAttributes(D, F);
1010 }
1011 
1012 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1013                                               const CGFunctionInfo &Info,
1014                                               llvm::Function *F) {
1015   unsigned CallingConv;
1016   llvm::AttributeList PAL;
1017   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1018   F->setAttributes(PAL);
1019   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1020 }
1021 
1022 /// Determines whether the language options require us to model
1023 /// unwind exceptions.  We treat -fexceptions as mandating this
1024 /// except under the fragile ObjC ABI with only ObjC exceptions
1025 /// enabled.  This means, for example, that C with -fexceptions
1026 /// enables this.
1027 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1028   // If exceptions are completely disabled, obviously this is false.
1029   if (!LangOpts.Exceptions) return false;
1030 
1031   // If C++ exceptions are enabled, this is true.
1032   if (LangOpts.CXXExceptions) return true;
1033 
1034   // If ObjC exceptions are enabled, this depends on the ABI.
1035   if (LangOpts.ObjCExceptions) {
1036     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1037   }
1038 
1039   return true;
1040 }
1041 
1042 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1043                                                            llvm::Function *F) {
1044   llvm::AttrBuilder B;
1045 
1046   if (CodeGenOpts.UnwindTables)
1047     B.addAttribute(llvm::Attribute::UWTable);
1048 
1049   if (!hasUnwindExceptions(LangOpts))
1050     B.addAttribute(llvm::Attribute::NoUnwind);
1051 
1052   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1053     B.addAttribute(llvm::Attribute::StackProtect);
1054   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1055     B.addAttribute(llvm::Attribute::StackProtectStrong);
1056   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1057     B.addAttribute(llvm::Attribute::StackProtectReq);
1058 
1059   if (!D) {
1060     // If we don't have a declaration to control inlining, the function isn't
1061     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1062     // disabled, mark the function as noinline.
1063     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1064         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1065       B.addAttribute(llvm::Attribute::NoInline);
1066 
1067     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1068     return;
1069   }
1070 
1071   // Track whether we need to add the optnone LLVM attribute,
1072   // starting with the default for this optimization level.
1073   bool ShouldAddOptNone =
1074       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1075   // We can't add optnone in the following cases, it won't pass the verifier.
1076   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1077   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1078   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1079 
1080   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1081     B.addAttribute(llvm::Attribute::OptimizeNone);
1082 
1083     // OptimizeNone implies noinline; we should not be inlining such functions.
1084     B.addAttribute(llvm::Attribute::NoInline);
1085     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1086            "OptimizeNone and AlwaysInline on same function!");
1087 
1088     // We still need to handle naked functions even though optnone subsumes
1089     // much of their semantics.
1090     if (D->hasAttr<NakedAttr>())
1091       B.addAttribute(llvm::Attribute::Naked);
1092 
1093     // OptimizeNone wins over OptimizeForSize and MinSize.
1094     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1095     F->removeFnAttr(llvm::Attribute::MinSize);
1096   } else if (D->hasAttr<NakedAttr>()) {
1097     // Naked implies noinline: we should not be inlining such functions.
1098     B.addAttribute(llvm::Attribute::Naked);
1099     B.addAttribute(llvm::Attribute::NoInline);
1100   } else if (D->hasAttr<NoDuplicateAttr>()) {
1101     B.addAttribute(llvm::Attribute::NoDuplicate);
1102   } else if (D->hasAttr<NoInlineAttr>()) {
1103     B.addAttribute(llvm::Attribute::NoInline);
1104   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1105              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1106     // (noinline wins over always_inline, and we can't specify both in IR)
1107     B.addAttribute(llvm::Attribute::AlwaysInline);
1108   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1109     // If we're not inlining, then force everything that isn't always_inline to
1110     // carry an explicit noinline attribute.
1111     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1112       B.addAttribute(llvm::Attribute::NoInline);
1113   } else {
1114     // Otherwise, propagate the inline hint attribute and potentially use its
1115     // absence to mark things as noinline.
1116     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1117       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1118             return Redecl->isInlineSpecified();
1119           })) {
1120         B.addAttribute(llvm::Attribute::InlineHint);
1121       } else if (CodeGenOpts.getInlining() ==
1122                      CodeGenOptions::OnlyHintInlining &&
1123                  !FD->isInlined() &&
1124                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1125         B.addAttribute(llvm::Attribute::NoInline);
1126       }
1127     }
1128   }
1129 
1130   // Add other optimization related attributes if we are optimizing this
1131   // function.
1132   if (!D->hasAttr<OptimizeNoneAttr>()) {
1133     if (D->hasAttr<ColdAttr>()) {
1134       if (!ShouldAddOptNone)
1135         B.addAttribute(llvm::Attribute::OptimizeForSize);
1136       B.addAttribute(llvm::Attribute::Cold);
1137     }
1138 
1139     if (D->hasAttr<MinSizeAttr>())
1140       B.addAttribute(llvm::Attribute::MinSize);
1141   }
1142 
1143   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1144 
1145   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1146   if (alignment)
1147     F->setAlignment(alignment);
1148 
1149   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1150   // reserve a bit for differentiating between virtual and non-virtual member
1151   // functions. If the current target's C++ ABI requires this and this is a
1152   // member function, set its alignment accordingly.
1153   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1154     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1155       F->setAlignment(2);
1156   }
1157 
1158   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1159   if (CodeGenOpts.SanitizeCfiCrossDso)
1160     if (auto *FD = dyn_cast<FunctionDecl>(D))
1161       CreateFunctionTypeMetadata(FD, F);
1162 }
1163 
1164 void CodeGenModule::SetCommonAttributes(const Decl *D,
1165                                         llvm::GlobalValue *GV) {
1166   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
1167     setGlobalVisibility(GV, ND, ForDefinition);
1168   else
1169     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1170 
1171   if (D && D->hasAttr<UsedAttr>())
1172     addUsedGlobal(GV);
1173 }
1174 
1175 void CodeGenModule::setAliasAttributes(const Decl *D,
1176                                        llvm::GlobalValue *GV) {
1177   SetCommonAttributes(D, GV);
1178 
1179   // Process the dllexport attribute based on whether the original definition
1180   // (not necessarily the aliasee) was exported.
1181   if (D->hasAttr<DLLExportAttr>())
1182     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1183 }
1184 
1185 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1186                                           llvm::GlobalObject *GO) {
1187   SetCommonAttributes(D, GO);
1188 
1189   if (D) {
1190     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1191       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1192         GV->addAttribute("bss-section", SA->getName());
1193       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1194         GV->addAttribute("data-section", SA->getName());
1195       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1196         GV->addAttribute("rodata-section", SA->getName());
1197     }
1198 
1199     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1200       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1201        if (!D->getAttr<SectionAttr>())
1202          F->addFnAttr("implicit-section-name", SA->getName());
1203     }
1204 
1205     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1206       GO->setSection(SA->getName());
1207   }
1208 
1209   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition);
1210 }
1211 
1212 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1213                                                   llvm::Function *F,
1214                                                   const CGFunctionInfo &FI) {
1215   SetLLVMFunctionAttributes(D, FI, F);
1216   SetLLVMFunctionAttributesForDefinition(D, F);
1217 
1218   F->setLinkage(llvm::Function::InternalLinkage);
1219 
1220   setNonAliasAttributes(D, F);
1221 }
1222 
1223 static void setLinkageForGV(llvm::GlobalValue *GV,
1224                             const NamedDecl *ND) {
1225   // Set linkage and visibility in case we never see a definition.
1226   LinkageInfo LV = ND->getLinkageAndVisibility();
1227   if (!isExternallyVisible(LV.getLinkage())) {
1228     // Don't set internal linkage on declarations.
1229   } else {
1230     if (ND->hasAttr<DLLImportAttr>()) {
1231       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1232       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1233     } else if (ND->hasAttr<DLLExportAttr>()) {
1234       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1235     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1236       // "extern_weak" is overloaded in LLVM; we probably should have
1237       // separate linkage types for this.
1238       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1239     }
1240   }
1241 }
1242 
1243 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1244                                                llvm::Function *F) {
1245   // Only if we are checking indirect calls.
1246   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1247     return;
1248 
1249   // Non-static class methods are handled via vtable pointer checks elsewhere.
1250   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1251     return;
1252 
1253   // Additionally, if building with cross-DSO support...
1254   if (CodeGenOpts.SanitizeCfiCrossDso) {
1255     // Skip available_externally functions. They won't be codegen'ed in the
1256     // current module anyway.
1257     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1258       return;
1259   }
1260 
1261   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1262   F->addTypeMetadata(0, MD);
1263   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1264 
1265   // Emit a hash-based bit set entry for cross-DSO calls.
1266   if (CodeGenOpts.SanitizeCfiCrossDso)
1267     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1268       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1269 }
1270 
1271 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1272                                           bool IsIncompleteFunction,
1273                                           bool IsThunk,
1274                                           ForDefinition_t IsForDefinition) {
1275 
1276   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1277     // If this is an intrinsic function, set the function's attributes
1278     // to the intrinsic's attributes.
1279     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1280     return;
1281   }
1282 
1283   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1284 
1285   if (!IsIncompleteFunction) {
1286     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1287     // Setup target-specific attributes.
1288     if (!IsForDefinition)
1289       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this,
1290                                                  NotForDefinition);
1291   }
1292 
1293   // Add the Returned attribute for "this", except for iOS 5 and earlier
1294   // where substantial code, including the libstdc++ dylib, was compiled with
1295   // GCC and does not actually return "this".
1296   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1297       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1298     assert(!F->arg_empty() &&
1299            F->arg_begin()->getType()
1300              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1301            "unexpected this return");
1302     F->addAttribute(1, llvm::Attribute::Returned);
1303   }
1304 
1305   // Only a few attributes are set on declarations; these may later be
1306   // overridden by a definition.
1307 
1308   setLinkageForGV(F, FD);
1309   setGlobalVisibility(F, FD, NotForDefinition);
1310 
1311   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1312     F->addFnAttr("implicit-section-name");
1313   }
1314 
1315   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1316     F->setSection(SA->getName());
1317 
1318   if (FD->isReplaceableGlobalAllocationFunction()) {
1319     // A replaceable global allocation function does not act like a builtin by
1320     // default, only if it is invoked by a new-expression or delete-expression.
1321     F->addAttribute(llvm::AttributeList::FunctionIndex,
1322                     llvm::Attribute::NoBuiltin);
1323 
1324     // A sane operator new returns a non-aliasing pointer.
1325     // FIXME: Also add NonNull attribute to the return value
1326     // for the non-nothrow forms?
1327     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1328     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1329         (Kind == OO_New || Kind == OO_Array_New))
1330       F->addAttribute(llvm::AttributeList::ReturnIndex,
1331                       llvm::Attribute::NoAlias);
1332   }
1333 
1334   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1335     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1336   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1337     if (MD->isVirtual())
1338       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1339 
1340   // Don't emit entries for function declarations in the cross-DSO mode. This
1341   // is handled with better precision by the receiving DSO.
1342   if (!CodeGenOpts.SanitizeCfiCrossDso)
1343     CreateFunctionTypeMetadata(FD, F);
1344 
1345   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1346     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1347 }
1348 
1349 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1350   assert(!GV->isDeclaration() &&
1351          "Only globals with definition can force usage.");
1352   LLVMUsed.emplace_back(GV);
1353 }
1354 
1355 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1356   assert(!GV->isDeclaration() &&
1357          "Only globals with definition can force usage.");
1358   LLVMCompilerUsed.emplace_back(GV);
1359 }
1360 
1361 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1362                      std::vector<llvm::WeakTrackingVH> &List) {
1363   // Don't create llvm.used if there is no need.
1364   if (List.empty())
1365     return;
1366 
1367   // Convert List to what ConstantArray needs.
1368   SmallVector<llvm::Constant*, 8> UsedArray;
1369   UsedArray.resize(List.size());
1370   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1371     UsedArray[i] =
1372         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1373             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1374   }
1375 
1376   if (UsedArray.empty())
1377     return;
1378   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1379 
1380   auto *GV = new llvm::GlobalVariable(
1381       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1382       llvm::ConstantArray::get(ATy, UsedArray), Name);
1383 
1384   GV->setSection("llvm.metadata");
1385 }
1386 
1387 void CodeGenModule::emitLLVMUsed() {
1388   emitUsed(*this, "llvm.used", LLVMUsed);
1389   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1390 }
1391 
1392 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1393   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1394   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1395 }
1396 
1397 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1398   llvm::SmallString<32> Opt;
1399   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1400   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1401   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1402 }
1403 
1404 void CodeGenModule::AddDependentLib(StringRef Lib) {
1405   llvm::SmallString<24> Opt;
1406   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1407   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1408   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1409 }
1410 
1411 /// \brief Add link options implied by the given module, including modules
1412 /// it depends on, using a postorder walk.
1413 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1414                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1415                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1416   // Import this module's parent.
1417   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1418     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1419   }
1420 
1421   // Import this module's dependencies.
1422   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1423     if (Visited.insert(Mod->Imports[I - 1]).second)
1424       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1425   }
1426 
1427   // Add linker options to link against the libraries/frameworks
1428   // described by this module.
1429   llvm::LLVMContext &Context = CGM.getLLVMContext();
1430   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1431     // Link against a framework.  Frameworks are currently Darwin only, so we
1432     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1433     if (Mod->LinkLibraries[I-1].IsFramework) {
1434       llvm::Metadata *Args[2] = {
1435           llvm::MDString::get(Context, "-framework"),
1436           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1437 
1438       Metadata.push_back(llvm::MDNode::get(Context, Args));
1439       continue;
1440     }
1441 
1442     // Link against a library.
1443     llvm::SmallString<24> Opt;
1444     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1445       Mod->LinkLibraries[I-1].Library, Opt);
1446     auto *OptString = llvm::MDString::get(Context, Opt);
1447     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1448   }
1449 }
1450 
1451 void CodeGenModule::EmitModuleLinkOptions() {
1452   // Collect the set of all of the modules we want to visit to emit link
1453   // options, which is essentially the imported modules and all of their
1454   // non-explicit child modules.
1455   llvm::SetVector<clang::Module *> LinkModules;
1456   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1457   SmallVector<clang::Module *, 16> Stack;
1458 
1459   // Seed the stack with imported modules.
1460   for (Module *M : ImportedModules) {
1461     // Do not add any link flags when an implementation TU of a module imports
1462     // a header of that same module.
1463     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1464         !getLangOpts().isCompilingModule())
1465       continue;
1466     if (Visited.insert(M).second)
1467       Stack.push_back(M);
1468   }
1469 
1470   // Find all of the modules to import, making a little effort to prune
1471   // non-leaf modules.
1472   while (!Stack.empty()) {
1473     clang::Module *Mod = Stack.pop_back_val();
1474 
1475     bool AnyChildren = false;
1476 
1477     // Visit the submodules of this module.
1478     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1479                                         SubEnd = Mod->submodule_end();
1480          Sub != SubEnd; ++Sub) {
1481       // Skip explicit children; they need to be explicitly imported to be
1482       // linked against.
1483       if ((*Sub)->IsExplicit)
1484         continue;
1485 
1486       if (Visited.insert(*Sub).second) {
1487         Stack.push_back(*Sub);
1488         AnyChildren = true;
1489       }
1490     }
1491 
1492     // We didn't find any children, so add this module to the list of
1493     // modules to link against.
1494     if (!AnyChildren) {
1495       LinkModules.insert(Mod);
1496     }
1497   }
1498 
1499   // Add link options for all of the imported modules in reverse topological
1500   // order.  We don't do anything to try to order import link flags with respect
1501   // to linker options inserted by things like #pragma comment().
1502   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1503   Visited.clear();
1504   for (Module *M : LinkModules)
1505     if (Visited.insert(M).second)
1506       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1507   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1508   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1509 
1510   // Add the linker options metadata flag.
1511   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1512   for (auto *MD : LinkerOptionsMetadata)
1513     NMD->addOperand(MD);
1514 }
1515 
1516 void CodeGenModule::EmitDeferred() {
1517   // Emit code for any potentially referenced deferred decls.  Since a
1518   // previously unused static decl may become used during the generation of code
1519   // for a static function, iterate until no changes are made.
1520 
1521   if (!DeferredVTables.empty()) {
1522     EmitDeferredVTables();
1523 
1524     // Emitting a vtable doesn't directly cause more vtables to
1525     // become deferred, although it can cause functions to be
1526     // emitted that then need those vtables.
1527     assert(DeferredVTables.empty());
1528   }
1529 
1530   // Stop if we're out of both deferred vtables and deferred declarations.
1531   if (DeferredDeclsToEmit.empty())
1532     return;
1533 
1534   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1535   // work, it will not interfere with this.
1536   std::vector<GlobalDecl> CurDeclsToEmit;
1537   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1538 
1539   for (GlobalDecl &D : CurDeclsToEmit) {
1540     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1541     // to get GlobalValue with exactly the type we need, not something that
1542     // might had been created for another decl with the same mangled name but
1543     // different type.
1544     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1545         GetAddrOfGlobal(D, ForDefinition));
1546 
1547     // In case of different address spaces, we may still get a cast, even with
1548     // IsForDefinition equal to true. Query mangled names table to get
1549     // GlobalValue.
1550     if (!GV)
1551       GV = GetGlobalValue(getMangledName(D));
1552 
1553     // Make sure GetGlobalValue returned non-null.
1554     assert(GV);
1555 
1556     // Check to see if we've already emitted this.  This is necessary
1557     // for a couple of reasons: first, decls can end up in the
1558     // deferred-decls queue multiple times, and second, decls can end
1559     // up with definitions in unusual ways (e.g. by an extern inline
1560     // function acquiring a strong function redefinition).  Just
1561     // ignore these cases.
1562     if (!GV->isDeclaration())
1563       continue;
1564 
1565     // Otherwise, emit the definition and move on to the next one.
1566     EmitGlobalDefinition(D, GV);
1567 
1568     // If we found out that we need to emit more decls, do that recursively.
1569     // This has the advantage that the decls are emitted in a DFS and related
1570     // ones are close together, which is convenient for testing.
1571     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1572       EmitDeferred();
1573       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1574     }
1575   }
1576 }
1577 
1578 void CodeGenModule::EmitVTablesOpportunistically() {
1579   // Try to emit external vtables as available_externally if they have emitted
1580   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1581   // is not allowed to create new references to things that need to be emitted
1582   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1583 
1584   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1585          && "Only emit opportunistic vtables with optimizations");
1586 
1587   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1588     assert(getVTables().isVTableExternal(RD) &&
1589            "This queue should only contain external vtables");
1590     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1591       VTables.GenerateClassData(RD);
1592   }
1593   OpportunisticVTables.clear();
1594 }
1595 
1596 void CodeGenModule::EmitGlobalAnnotations() {
1597   if (Annotations.empty())
1598     return;
1599 
1600   // Create a new global variable for the ConstantStruct in the Module.
1601   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1602     Annotations[0]->getType(), Annotations.size()), Annotations);
1603   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1604                                       llvm::GlobalValue::AppendingLinkage,
1605                                       Array, "llvm.global.annotations");
1606   gv->setSection(AnnotationSection);
1607 }
1608 
1609 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1610   llvm::Constant *&AStr = AnnotationStrings[Str];
1611   if (AStr)
1612     return AStr;
1613 
1614   // Not found yet, create a new global.
1615   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1616   auto *gv =
1617       new llvm::GlobalVariable(getModule(), s->getType(), true,
1618                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1619   gv->setSection(AnnotationSection);
1620   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1621   AStr = gv;
1622   return gv;
1623 }
1624 
1625 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1626   SourceManager &SM = getContext().getSourceManager();
1627   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1628   if (PLoc.isValid())
1629     return EmitAnnotationString(PLoc.getFilename());
1630   return EmitAnnotationString(SM.getBufferName(Loc));
1631 }
1632 
1633 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1634   SourceManager &SM = getContext().getSourceManager();
1635   PresumedLoc PLoc = SM.getPresumedLoc(L);
1636   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1637     SM.getExpansionLineNumber(L);
1638   return llvm::ConstantInt::get(Int32Ty, LineNo);
1639 }
1640 
1641 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1642                                                 const AnnotateAttr *AA,
1643                                                 SourceLocation L) {
1644   // Get the globals for file name, annotation, and the line number.
1645   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1646                  *UnitGV = EmitAnnotationUnit(L),
1647                  *LineNoCst = EmitAnnotationLineNo(L);
1648 
1649   // Create the ConstantStruct for the global annotation.
1650   llvm::Constant *Fields[4] = {
1651     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1652     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1653     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1654     LineNoCst
1655   };
1656   return llvm::ConstantStruct::getAnon(Fields);
1657 }
1658 
1659 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1660                                          llvm::GlobalValue *GV) {
1661   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1662   // Get the struct elements for these annotations.
1663   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1664     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1665 }
1666 
1667 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1668                                            llvm::Function *Fn,
1669                                            SourceLocation Loc) const {
1670   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1671   // Blacklist by function name.
1672   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1673     return true;
1674   // Blacklist by location.
1675   if (Loc.isValid())
1676     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1677   // If location is unknown, this may be a compiler-generated function. Assume
1678   // it's located in the main file.
1679   auto &SM = Context.getSourceManager();
1680   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1681     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1682   }
1683   return false;
1684 }
1685 
1686 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1687                                            SourceLocation Loc, QualType Ty,
1688                                            StringRef Category) const {
1689   // For now globals can be blacklisted only in ASan and KASan.
1690   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1691       (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress);
1692   if (!EnabledAsanMask)
1693     return false;
1694   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1695   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1696     return true;
1697   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1698     return true;
1699   // Check global type.
1700   if (!Ty.isNull()) {
1701     // Drill down the array types: if global variable of a fixed type is
1702     // blacklisted, we also don't instrument arrays of them.
1703     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1704       Ty = AT->getElementType();
1705     Ty = Ty.getCanonicalType().getUnqualifiedType();
1706     // We allow to blacklist only record types (classes, structs etc.)
1707     if (Ty->isRecordType()) {
1708       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1709       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1710         return true;
1711     }
1712   }
1713   return false;
1714 }
1715 
1716 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1717                                    StringRef Category) const {
1718   if (!LangOpts.XRayInstrument)
1719     return false;
1720   const auto &XRayFilter = getContext().getXRayFilter();
1721   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1722   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1723   if (Loc.isValid())
1724     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1725   if (Attr == ImbueAttr::NONE)
1726     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1727   switch (Attr) {
1728   case ImbueAttr::NONE:
1729     return false;
1730   case ImbueAttr::ALWAYS:
1731     Fn->addFnAttr("function-instrument", "xray-always");
1732     break;
1733   case ImbueAttr::ALWAYS_ARG1:
1734     Fn->addFnAttr("function-instrument", "xray-always");
1735     Fn->addFnAttr("xray-log-args", "1");
1736     break;
1737   case ImbueAttr::NEVER:
1738     Fn->addFnAttr("function-instrument", "xray-never");
1739     break;
1740   }
1741   return true;
1742 }
1743 
1744 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1745   // Never defer when EmitAllDecls is specified.
1746   if (LangOpts.EmitAllDecls)
1747     return true;
1748 
1749   return getContext().DeclMustBeEmitted(Global);
1750 }
1751 
1752 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1753   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1754     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1755       // Implicit template instantiations may change linkage if they are later
1756       // explicitly instantiated, so they should not be emitted eagerly.
1757       return false;
1758   if (const auto *VD = dyn_cast<VarDecl>(Global))
1759     if (Context.getInlineVariableDefinitionKind(VD) ==
1760         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1761       // A definition of an inline constexpr static data member may change
1762       // linkage later if it's redeclared outside the class.
1763       return false;
1764   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1765   // codegen for global variables, because they may be marked as threadprivate.
1766   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1767       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1768     return false;
1769 
1770   return true;
1771 }
1772 
1773 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1774     const CXXUuidofExpr* E) {
1775   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1776   // well-formed.
1777   StringRef Uuid = E->getUuidStr();
1778   std::string Name = "_GUID_" + Uuid.lower();
1779   std::replace(Name.begin(), Name.end(), '-', '_');
1780 
1781   // The UUID descriptor should be pointer aligned.
1782   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1783 
1784   // Look for an existing global.
1785   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1786     return ConstantAddress(GV, Alignment);
1787 
1788   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1789   assert(Init && "failed to initialize as constant");
1790 
1791   auto *GV = new llvm::GlobalVariable(
1792       getModule(), Init->getType(),
1793       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1794   if (supportsCOMDAT())
1795     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1796   return ConstantAddress(GV, Alignment);
1797 }
1798 
1799 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1800   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1801   assert(AA && "No alias?");
1802 
1803   CharUnits Alignment = getContext().getDeclAlign(VD);
1804   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1805 
1806   // See if there is already something with the target's name in the module.
1807   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1808   if (Entry) {
1809     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1810     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1811     return ConstantAddress(Ptr, Alignment);
1812   }
1813 
1814   llvm::Constant *Aliasee;
1815   if (isa<llvm::FunctionType>(DeclTy))
1816     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1817                                       GlobalDecl(cast<FunctionDecl>(VD)),
1818                                       /*ForVTable=*/false);
1819   else
1820     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1821                                     llvm::PointerType::getUnqual(DeclTy),
1822                                     nullptr);
1823 
1824   auto *F = cast<llvm::GlobalValue>(Aliasee);
1825   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1826   WeakRefReferences.insert(F);
1827 
1828   return ConstantAddress(Aliasee, Alignment);
1829 }
1830 
1831 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1832   const auto *Global = cast<ValueDecl>(GD.getDecl());
1833 
1834   // Weak references don't produce any output by themselves.
1835   if (Global->hasAttr<WeakRefAttr>())
1836     return;
1837 
1838   // If this is an alias definition (which otherwise looks like a declaration)
1839   // emit it now.
1840   if (Global->hasAttr<AliasAttr>())
1841     return EmitAliasDefinition(GD);
1842 
1843   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1844   if (Global->hasAttr<IFuncAttr>())
1845     return emitIFuncDefinition(GD);
1846 
1847   // If this is CUDA, be selective about which declarations we emit.
1848   if (LangOpts.CUDA) {
1849     if (LangOpts.CUDAIsDevice) {
1850       if (!Global->hasAttr<CUDADeviceAttr>() &&
1851           !Global->hasAttr<CUDAGlobalAttr>() &&
1852           !Global->hasAttr<CUDAConstantAttr>() &&
1853           !Global->hasAttr<CUDASharedAttr>())
1854         return;
1855     } else {
1856       // We need to emit host-side 'shadows' for all global
1857       // device-side variables because the CUDA runtime needs their
1858       // size and host-side address in order to provide access to
1859       // their device-side incarnations.
1860 
1861       // So device-only functions are the only things we skip.
1862       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1863           Global->hasAttr<CUDADeviceAttr>())
1864         return;
1865 
1866       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1867              "Expected Variable or Function");
1868     }
1869   }
1870 
1871   if (LangOpts.OpenMP) {
1872     // If this is OpenMP device, check if it is legal to emit this global
1873     // normally.
1874     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1875       return;
1876     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1877       if (MustBeEmitted(Global))
1878         EmitOMPDeclareReduction(DRD);
1879       return;
1880     }
1881   }
1882 
1883   // Ignore declarations, they will be emitted on their first use.
1884   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1885     // Forward declarations are emitted lazily on first use.
1886     if (!FD->doesThisDeclarationHaveABody()) {
1887       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1888         return;
1889 
1890       StringRef MangledName = getMangledName(GD);
1891 
1892       // Compute the function info and LLVM type.
1893       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1894       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1895 
1896       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1897                               /*DontDefer=*/false);
1898       return;
1899     }
1900   } else {
1901     const auto *VD = cast<VarDecl>(Global);
1902     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1903     // We need to emit device-side global CUDA variables even if a
1904     // variable does not have a definition -- we still need to define
1905     // host-side shadow for it.
1906     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1907                            !VD->hasDefinition() &&
1908                            (VD->hasAttr<CUDAConstantAttr>() ||
1909                             VD->hasAttr<CUDADeviceAttr>());
1910     if (!MustEmitForCuda &&
1911         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1912         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1913       // If this declaration may have caused an inline variable definition to
1914       // change linkage, make sure that it's emitted.
1915       if (Context.getInlineVariableDefinitionKind(VD) ==
1916           ASTContext::InlineVariableDefinitionKind::Strong)
1917         GetAddrOfGlobalVar(VD);
1918       return;
1919     }
1920   }
1921 
1922   // Defer code generation to first use when possible, e.g. if this is an inline
1923   // function. If the global must always be emitted, do it eagerly if possible
1924   // to benefit from cache locality.
1925   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1926     // Emit the definition if it can't be deferred.
1927     EmitGlobalDefinition(GD);
1928     return;
1929   }
1930 
1931   // If we're deferring emission of a C++ variable with an
1932   // initializer, remember the order in which it appeared in the file.
1933   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1934       cast<VarDecl>(Global)->hasInit()) {
1935     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1936     CXXGlobalInits.push_back(nullptr);
1937   }
1938 
1939   StringRef MangledName = getMangledName(GD);
1940   if (GetGlobalValue(MangledName) != nullptr) {
1941     // The value has already been used and should therefore be emitted.
1942     addDeferredDeclToEmit(GD);
1943   } else if (MustBeEmitted(Global)) {
1944     // The value must be emitted, but cannot be emitted eagerly.
1945     assert(!MayBeEmittedEagerly(Global));
1946     addDeferredDeclToEmit(GD);
1947   } else {
1948     // Otherwise, remember that we saw a deferred decl with this name.  The
1949     // first use of the mangled name will cause it to move into
1950     // DeferredDeclsToEmit.
1951     DeferredDecls[MangledName] = GD;
1952   }
1953 }
1954 
1955 // Check if T is a class type with a destructor that's not dllimport.
1956 static bool HasNonDllImportDtor(QualType T) {
1957   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
1958     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1959       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1960         return true;
1961 
1962   return false;
1963 }
1964 
1965 namespace {
1966   struct FunctionIsDirectlyRecursive :
1967     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1968     const StringRef Name;
1969     const Builtin::Context &BI;
1970     bool Result;
1971     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1972       Name(N), BI(C), Result(false) {
1973     }
1974     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1975 
1976     bool TraverseCallExpr(CallExpr *E) {
1977       const FunctionDecl *FD = E->getDirectCallee();
1978       if (!FD)
1979         return true;
1980       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1981       if (Attr && Name == Attr->getLabel()) {
1982         Result = true;
1983         return false;
1984       }
1985       unsigned BuiltinID = FD->getBuiltinID();
1986       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1987         return true;
1988       StringRef BuiltinName = BI.getName(BuiltinID);
1989       if (BuiltinName.startswith("__builtin_") &&
1990           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1991         Result = true;
1992         return false;
1993       }
1994       return true;
1995     }
1996   };
1997 
1998   // Make sure we're not referencing non-imported vars or functions.
1999   struct DLLImportFunctionVisitor
2000       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2001     bool SafeToInline = true;
2002 
2003     bool shouldVisitImplicitCode() const { return true; }
2004 
2005     bool VisitVarDecl(VarDecl *VD) {
2006       if (VD->getTLSKind()) {
2007         // A thread-local variable cannot be imported.
2008         SafeToInline = false;
2009         return SafeToInline;
2010       }
2011 
2012       // A variable definition might imply a destructor call.
2013       if (VD->isThisDeclarationADefinition())
2014         SafeToInline = !HasNonDllImportDtor(VD->getType());
2015 
2016       return SafeToInline;
2017     }
2018 
2019     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2020       if (const auto *D = E->getTemporary()->getDestructor())
2021         SafeToInline = D->hasAttr<DLLImportAttr>();
2022       return SafeToInline;
2023     }
2024 
2025     bool VisitDeclRefExpr(DeclRefExpr *E) {
2026       ValueDecl *VD = E->getDecl();
2027       if (isa<FunctionDecl>(VD))
2028         SafeToInline = VD->hasAttr<DLLImportAttr>();
2029       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2030         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2031       return SafeToInline;
2032     }
2033 
2034     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2035       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2036       return SafeToInline;
2037     }
2038 
2039     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2040       CXXMethodDecl *M = E->getMethodDecl();
2041       if (!M) {
2042         // Call through a pointer to member function. This is safe to inline.
2043         SafeToInline = true;
2044       } else {
2045         SafeToInline = M->hasAttr<DLLImportAttr>();
2046       }
2047       return SafeToInline;
2048     }
2049 
2050     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2051       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2052       return SafeToInline;
2053     }
2054 
2055     bool VisitCXXNewExpr(CXXNewExpr *E) {
2056       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2057       return SafeToInline;
2058     }
2059   };
2060 }
2061 
2062 // isTriviallyRecursive - Check if this function calls another
2063 // decl that, because of the asm attribute or the other decl being a builtin,
2064 // ends up pointing to itself.
2065 bool
2066 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2067   StringRef Name;
2068   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2069     // asm labels are a special kind of mangling we have to support.
2070     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2071     if (!Attr)
2072       return false;
2073     Name = Attr->getLabel();
2074   } else {
2075     Name = FD->getName();
2076   }
2077 
2078   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2079   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2080   return Walker.Result;
2081 }
2082 
2083 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2084   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2085     return true;
2086   const auto *F = cast<FunctionDecl>(GD.getDecl());
2087   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2088     return false;
2089 
2090   if (F->hasAttr<DLLImportAttr>()) {
2091     // Check whether it would be safe to inline this dllimport function.
2092     DLLImportFunctionVisitor Visitor;
2093     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2094     if (!Visitor.SafeToInline)
2095       return false;
2096 
2097     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2098       // Implicit destructor invocations aren't captured in the AST, so the
2099       // check above can't see them. Check for them manually here.
2100       for (const Decl *Member : Dtor->getParent()->decls())
2101         if (isa<FieldDecl>(Member))
2102           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2103             return false;
2104       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2105         if (HasNonDllImportDtor(B.getType()))
2106           return false;
2107     }
2108   }
2109 
2110   // PR9614. Avoid cases where the source code is lying to us. An available
2111   // externally function should have an equivalent function somewhere else,
2112   // but a function that calls itself is clearly not equivalent to the real
2113   // implementation.
2114   // This happens in glibc's btowc and in some configure checks.
2115   return !isTriviallyRecursive(F);
2116 }
2117 
2118 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2119   return CodeGenOpts.OptimizationLevel > 0;
2120 }
2121 
2122 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2123   const auto *D = cast<ValueDecl>(GD.getDecl());
2124 
2125   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2126                                  Context.getSourceManager(),
2127                                  "Generating code for declaration");
2128 
2129   if (isa<FunctionDecl>(D)) {
2130     // At -O0, don't generate IR for functions with available_externally
2131     // linkage.
2132     if (!shouldEmitFunction(GD))
2133       return;
2134 
2135     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2136       // Make sure to emit the definition(s) before we emit the thunks.
2137       // This is necessary for the generation of certain thunks.
2138       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2139         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2140       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2141         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2142       else
2143         EmitGlobalFunctionDefinition(GD, GV);
2144 
2145       if (Method->isVirtual())
2146         getVTables().EmitThunks(GD);
2147 
2148       return;
2149     }
2150 
2151     return EmitGlobalFunctionDefinition(GD, GV);
2152   }
2153 
2154   if (const auto *VD = dyn_cast<VarDecl>(D))
2155     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2156 
2157   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2158 }
2159 
2160 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2161                                                       llvm::Function *NewFn);
2162 
2163 void CodeGenModule::emitMultiVersionFunctions() {
2164   for (GlobalDecl GD : MultiVersionFuncs) {
2165     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2166     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2167     getContext().forEachMultiversionedFunctionVersion(
2168         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2169           GlobalDecl CurGD{
2170               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2171           StringRef MangledName = getMangledName(CurGD);
2172           llvm::Constant *Func = GetGlobalValue(MangledName);
2173           if (!Func) {
2174             if (CurFD->isDefined()) {
2175               EmitGlobalFunctionDefinition(CurGD, nullptr);
2176               Func = GetGlobalValue(MangledName);
2177             } else {
2178               const CGFunctionInfo &FI =
2179                   getTypes().arrangeGlobalDeclaration(GD);
2180               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2181               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2182                                        /*DontDefer=*/false, ForDefinition);
2183             }
2184             assert(Func && "This should have just been created");
2185           }
2186           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2187                                CurFD->getAttr<TargetAttr>()->parse());
2188         });
2189 
2190     llvm::Function *ResolverFunc = cast<llvm::Function>(
2191         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2192     if (supportsCOMDAT())
2193       ResolverFunc->setComdat(
2194           getModule().getOrInsertComdat(ResolverFunc->getName()));
2195     std::stable_sort(
2196         Options.begin(), Options.end(),
2197         std::greater<CodeGenFunction::MultiVersionResolverOption>());
2198     CodeGenFunction CGF(*this);
2199     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2200   }
2201 }
2202 
2203 /// If an ifunc for the specified mangled name is not in the module, create and
2204 /// return an llvm IFunc Function with the specified type.
2205 llvm::Constant *
2206 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2207                                             StringRef MangledName,
2208                                             const FunctionDecl *FD) {
2209   std::string IFuncName = (MangledName + ".ifunc").str();
2210   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2211     return IFuncGV;
2212 
2213   // Since this is the first time we've created this IFunc, make sure
2214   // that we put this multiversioned function into the list to be
2215   // replaced later.
2216   MultiVersionFuncs.push_back(GD);
2217 
2218   std::string ResolverName = (MangledName + ".resolver").str();
2219   llvm::Type *ResolverType = llvm::FunctionType::get(
2220       llvm::PointerType::get(DeclTy,
2221                              Context.getTargetAddressSpace(FD->getType())),
2222       false);
2223   llvm::Constant *Resolver =
2224       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2225                               /*ForVTable=*/false);
2226   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2227       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2228   GIF->setName(IFuncName);
2229   SetCommonAttributes(FD, GIF);
2230 
2231   return GIF;
2232 }
2233 
2234 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2235 /// module, create and return an llvm Function with the specified type. If there
2236 /// is something in the module with the specified name, return it potentially
2237 /// bitcasted to the right type.
2238 ///
2239 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2240 /// to set the attributes on the function when it is first created.
2241 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2242     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2243     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2244     ForDefinition_t IsForDefinition) {
2245   const Decl *D = GD.getDecl();
2246 
2247   // Any attempts to use a MultiVersion function should result in retrieving
2248   // the iFunc instead. Name Mangling will handle the rest of the changes.
2249   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2250     if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2251       UpdateMultiVersionNames(GD, FD);
2252       if (!IsForDefinition)
2253         return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2254     }
2255   }
2256 
2257   // Lookup the entry, lazily creating it if necessary.
2258   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2259   if (Entry) {
2260     if (WeakRefReferences.erase(Entry)) {
2261       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2262       if (FD && !FD->hasAttr<WeakAttr>())
2263         Entry->setLinkage(llvm::Function::ExternalLinkage);
2264     }
2265 
2266     // Handle dropped DLL attributes.
2267     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2268       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2269 
2270     // If there are two attempts to define the same mangled name, issue an
2271     // error.
2272     if (IsForDefinition && !Entry->isDeclaration()) {
2273       GlobalDecl OtherGD;
2274       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2275       // to make sure that we issue an error only once.
2276       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2277           (GD.getCanonicalDecl().getDecl() !=
2278            OtherGD.getCanonicalDecl().getDecl()) &&
2279           DiagnosedConflictingDefinitions.insert(GD).second) {
2280         getDiags().Report(D->getLocation(),
2281                           diag::err_duplicate_mangled_name);
2282         getDiags().Report(OtherGD.getDecl()->getLocation(),
2283                           diag::note_previous_definition);
2284       }
2285     }
2286 
2287     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2288         (Entry->getType()->getElementType() == Ty)) {
2289       return Entry;
2290     }
2291 
2292     // Make sure the result is of the correct type.
2293     // (If function is requested for a definition, we always need to create a new
2294     // function, not just return a bitcast.)
2295     if (!IsForDefinition)
2296       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2297   }
2298 
2299   // This function doesn't have a complete type (for example, the return
2300   // type is an incomplete struct). Use a fake type instead, and make
2301   // sure not to try to set attributes.
2302   bool IsIncompleteFunction = false;
2303 
2304   llvm::FunctionType *FTy;
2305   if (isa<llvm::FunctionType>(Ty)) {
2306     FTy = cast<llvm::FunctionType>(Ty);
2307   } else {
2308     FTy = llvm::FunctionType::get(VoidTy, false);
2309     IsIncompleteFunction = true;
2310   }
2311 
2312   llvm::Function *F =
2313       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2314                              Entry ? StringRef() : MangledName, &getModule());
2315 
2316   // If we already created a function with the same mangled name (but different
2317   // type) before, take its name and add it to the list of functions to be
2318   // replaced with F at the end of CodeGen.
2319   //
2320   // This happens if there is a prototype for a function (e.g. "int f()") and
2321   // then a definition of a different type (e.g. "int f(int x)").
2322   if (Entry) {
2323     F->takeName(Entry);
2324 
2325     // This might be an implementation of a function without a prototype, in
2326     // which case, try to do special replacement of calls which match the new
2327     // prototype.  The really key thing here is that we also potentially drop
2328     // arguments from the call site so as to make a direct call, which makes the
2329     // inliner happier and suppresses a number of optimizer warnings (!) about
2330     // dropping arguments.
2331     if (!Entry->use_empty()) {
2332       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2333       Entry->removeDeadConstantUsers();
2334     }
2335 
2336     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2337         F, Entry->getType()->getElementType()->getPointerTo());
2338     addGlobalValReplacement(Entry, BC);
2339   }
2340 
2341   assert(F->getName() == MangledName && "name was uniqued!");
2342   if (D)
2343     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk,
2344                           IsForDefinition);
2345   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2346     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2347     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2348   }
2349 
2350   if (!DontDefer) {
2351     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2352     // each other bottoming out with the base dtor.  Therefore we emit non-base
2353     // dtors on usage, even if there is no dtor definition in the TU.
2354     if (D && isa<CXXDestructorDecl>(D) &&
2355         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2356                                            GD.getDtorType()))
2357       addDeferredDeclToEmit(GD);
2358 
2359     // This is the first use or definition of a mangled name.  If there is a
2360     // deferred decl with this name, remember that we need to emit it at the end
2361     // of the file.
2362     auto DDI = DeferredDecls.find(MangledName);
2363     if (DDI != DeferredDecls.end()) {
2364       // Move the potentially referenced deferred decl to the
2365       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2366       // don't need it anymore).
2367       addDeferredDeclToEmit(DDI->second);
2368       DeferredDecls.erase(DDI);
2369 
2370       // Otherwise, there are cases we have to worry about where we're
2371       // using a declaration for which we must emit a definition but where
2372       // we might not find a top-level definition:
2373       //   - member functions defined inline in their classes
2374       //   - friend functions defined inline in some class
2375       //   - special member functions with implicit definitions
2376       // If we ever change our AST traversal to walk into class methods,
2377       // this will be unnecessary.
2378       //
2379       // We also don't emit a definition for a function if it's going to be an
2380       // entry in a vtable, unless it's already marked as used.
2381     } else if (getLangOpts().CPlusPlus && D) {
2382       // Look for a declaration that's lexically in a record.
2383       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2384            FD = FD->getPreviousDecl()) {
2385         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2386           if (FD->doesThisDeclarationHaveABody()) {
2387             addDeferredDeclToEmit(GD.getWithDecl(FD));
2388             break;
2389           }
2390         }
2391       }
2392     }
2393   }
2394 
2395   // Make sure the result is of the requested type.
2396   if (!IsIncompleteFunction) {
2397     assert(F->getType()->getElementType() == Ty);
2398     return F;
2399   }
2400 
2401   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2402   return llvm::ConstantExpr::getBitCast(F, PTy);
2403 }
2404 
2405 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2406 /// non-null, then this function will use the specified type if it has to
2407 /// create it (this occurs when we see a definition of the function).
2408 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2409                                                  llvm::Type *Ty,
2410                                                  bool ForVTable,
2411                                                  bool DontDefer,
2412                                               ForDefinition_t IsForDefinition) {
2413   // If there was no specific requested type, just convert it now.
2414   if (!Ty) {
2415     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2416     auto CanonTy = Context.getCanonicalType(FD->getType());
2417     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2418   }
2419 
2420   StringRef MangledName = getMangledName(GD);
2421   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2422                                  /*IsThunk=*/false, llvm::AttributeList(),
2423                                  IsForDefinition);
2424 }
2425 
2426 static const FunctionDecl *
2427 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2428   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2429   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2430 
2431   IdentifierInfo &CII = C.Idents.get(Name);
2432   for (const auto &Result : DC->lookup(&CII))
2433     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2434       return FD;
2435 
2436   if (!C.getLangOpts().CPlusPlus)
2437     return nullptr;
2438 
2439   // Demangle the premangled name from getTerminateFn()
2440   IdentifierInfo &CXXII =
2441       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2442           ? C.Idents.get("terminate")
2443           : C.Idents.get(Name);
2444 
2445   for (const auto &N : {"__cxxabiv1", "std"}) {
2446     IdentifierInfo &NS = C.Idents.get(N);
2447     for (const auto &Result : DC->lookup(&NS)) {
2448       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2449       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2450         for (const auto &Result : LSD->lookup(&NS))
2451           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2452             break;
2453 
2454       if (ND)
2455         for (const auto &Result : ND->lookup(&CXXII))
2456           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2457             return FD;
2458     }
2459   }
2460 
2461   return nullptr;
2462 }
2463 
2464 /// CreateRuntimeFunction - Create a new runtime function with the specified
2465 /// type and name.
2466 llvm::Constant *
2467 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2468                                      llvm::AttributeList ExtraAttrs,
2469                                      bool Local) {
2470   llvm::Constant *C =
2471       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2472                               /*DontDefer=*/false, /*IsThunk=*/false,
2473                               ExtraAttrs);
2474 
2475   if (auto *F = dyn_cast<llvm::Function>(C)) {
2476     if (F->empty()) {
2477       F->setCallingConv(getRuntimeCC());
2478 
2479       if (!Local && getTriple().isOSBinFormatCOFF() &&
2480           !getCodeGenOpts().LTOVisibilityPublicStd &&
2481           !getTriple().isWindowsGNUEnvironment()) {
2482         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2483         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2484           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2485           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2486         }
2487       }
2488     }
2489   }
2490 
2491   return C;
2492 }
2493 
2494 /// CreateBuiltinFunction - Create a new builtin function with the specified
2495 /// type and name.
2496 llvm::Constant *
2497 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2498                                      llvm::AttributeList ExtraAttrs) {
2499   llvm::Constant *C =
2500       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2501                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2502   if (auto *F = dyn_cast<llvm::Function>(C))
2503     if (F->empty())
2504       F->setCallingConv(getBuiltinCC());
2505   return C;
2506 }
2507 
2508 /// isTypeConstant - Determine whether an object of this type can be emitted
2509 /// as a constant.
2510 ///
2511 /// If ExcludeCtor is true, the duration when the object's constructor runs
2512 /// will not be considered. The caller will need to verify that the object is
2513 /// not written to during its construction.
2514 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2515   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2516     return false;
2517 
2518   if (Context.getLangOpts().CPlusPlus) {
2519     if (const CXXRecordDecl *Record
2520           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2521       return ExcludeCtor && !Record->hasMutableFields() &&
2522              Record->hasTrivialDestructor();
2523   }
2524 
2525   return true;
2526 }
2527 
2528 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2529 /// create and return an llvm GlobalVariable with the specified type.  If there
2530 /// is something in the module with the specified name, return it potentially
2531 /// bitcasted to the right type.
2532 ///
2533 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2534 /// to set the attributes on the global when it is first created.
2535 ///
2536 /// If IsForDefinition is true, it is guranteed that an actual global with
2537 /// type Ty will be returned, not conversion of a variable with the same
2538 /// mangled name but some other type.
2539 llvm::Constant *
2540 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2541                                      llvm::PointerType *Ty,
2542                                      const VarDecl *D,
2543                                      ForDefinition_t IsForDefinition) {
2544   // Lookup the entry, lazily creating it if necessary.
2545   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2546   if (Entry) {
2547     if (WeakRefReferences.erase(Entry)) {
2548       if (D && !D->hasAttr<WeakAttr>())
2549         Entry->setLinkage(llvm::Function::ExternalLinkage);
2550     }
2551 
2552     // Handle dropped DLL attributes.
2553     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2554       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2555 
2556     if (Entry->getType() == Ty)
2557       return Entry;
2558 
2559     // If there are two attempts to define the same mangled name, issue an
2560     // error.
2561     if (IsForDefinition && !Entry->isDeclaration()) {
2562       GlobalDecl OtherGD;
2563       const VarDecl *OtherD;
2564 
2565       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2566       // to make sure that we issue an error only once.
2567       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2568           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2569           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2570           OtherD->hasInit() &&
2571           DiagnosedConflictingDefinitions.insert(D).second) {
2572         getDiags().Report(D->getLocation(),
2573                           diag::err_duplicate_mangled_name);
2574         getDiags().Report(OtherGD.getDecl()->getLocation(),
2575                           diag::note_previous_definition);
2576       }
2577     }
2578 
2579     // Make sure the result is of the correct type.
2580     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2581       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2582 
2583     // (If global is requested for a definition, we always need to create a new
2584     // global, not just return a bitcast.)
2585     if (!IsForDefinition)
2586       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2587   }
2588 
2589   auto AddrSpace = GetGlobalVarAddressSpace(D);
2590   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2591 
2592   auto *GV = new llvm::GlobalVariable(
2593       getModule(), Ty->getElementType(), false,
2594       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2595       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2596 
2597   // If we already created a global with the same mangled name (but different
2598   // type) before, take its name and remove it from its parent.
2599   if (Entry) {
2600     GV->takeName(Entry);
2601 
2602     if (!Entry->use_empty()) {
2603       llvm::Constant *NewPtrForOldDecl =
2604           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2605       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2606     }
2607 
2608     Entry->eraseFromParent();
2609   }
2610 
2611   // This is the first use or definition of a mangled name.  If there is a
2612   // deferred decl with this name, remember that we need to emit it at the end
2613   // of the file.
2614   auto DDI = DeferredDecls.find(MangledName);
2615   if (DDI != DeferredDecls.end()) {
2616     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2617     // list, and remove it from DeferredDecls (since we don't need it anymore).
2618     addDeferredDeclToEmit(DDI->second);
2619     DeferredDecls.erase(DDI);
2620   }
2621 
2622   // Handle things which are present even on external declarations.
2623   if (D) {
2624     // FIXME: This code is overly simple and should be merged with other global
2625     // handling.
2626     GV->setConstant(isTypeConstant(D->getType(), false));
2627 
2628     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2629 
2630     setLinkageForGV(GV, D);
2631     setGlobalVisibility(GV, D, NotForDefinition);
2632 
2633     if (D->getTLSKind()) {
2634       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2635         CXXThreadLocals.push_back(D);
2636       setTLSMode(GV, *D);
2637     }
2638 
2639     // If required by the ABI, treat declarations of static data members with
2640     // inline initializers as definitions.
2641     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2642       EmitGlobalVarDefinition(D);
2643     }
2644 
2645     // Emit section information for extern variables.
2646     if (D->hasExternalStorage()) {
2647       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2648         GV->setSection(SA->getName());
2649     }
2650 
2651     // Handle XCore specific ABI requirements.
2652     if (getTriple().getArch() == llvm::Triple::xcore &&
2653         D->getLanguageLinkage() == CLanguageLinkage &&
2654         D->getType().isConstant(Context) &&
2655         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2656       GV->setSection(".cp.rodata");
2657 
2658     // Check if we a have a const declaration with an initializer, we may be
2659     // able to emit it as available_externally to expose it's value to the
2660     // optimizer.
2661     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2662         D->getType().isConstQualified() && !GV->hasInitializer() &&
2663         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2664       const auto *Record =
2665           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2666       bool HasMutableFields = Record && Record->hasMutableFields();
2667       if (!HasMutableFields) {
2668         const VarDecl *InitDecl;
2669         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2670         if (InitExpr) {
2671           ConstantEmitter emitter(*this);
2672           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2673           if (Init) {
2674             auto *InitType = Init->getType();
2675             if (GV->getType()->getElementType() != InitType) {
2676               // The type of the initializer does not match the definition.
2677               // This happens when an initializer has a different type from
2678               // the type of the global (because of padding at the end of a
2679               // structure for instance).
2680               GV->setName(StringRef());
2681               // Make a new global with the correct type, this is now guaranteed
2682               // to work.
2683               auto *NewGV = cast<llvm::GlobalVariable>(
2684                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2685 
2686               // Erase the old global, since it is no longer used.
2687               cast<llvm::GlobalValue>(GV)->eraseFromParent();
2688               GV = NewGV;
2689             } else {
2690               GV->setInitializer(Init);
2691               GV->setConstant(true);
2692               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2693             }
2694             emitter.finalize(GV);
2695           }
2696         }
2697       }
2698     }
2699   }
2700 
2701   LangAS ExpectedAS =
2702       D ? D->getType().getAddressSpace()
2703         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2704   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2705          Ty->getPointerAddressSpace());
2706   if (AddrSpace != ExpectedAS)
2707     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2708                                                        ExpectedAS, Ty);
2709 
2710   return GV;
2711 }
2712 
2713 llvm::Constant *
2714 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2715                                ForDefinition_t IsForDefinition) {
2716   const Decl *D = GD.getDecl();
2717   if (isa<CXXConstructorDecl>(D))
2718     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2719                                 getFromCtorType(GD.getCtorType()),
2720                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2721                                 /*DontDefer=*/false, IsForDefinition);
2722   else if (isa<CXXDestructorDecl>(D))
2723     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2724                                 getFromDtorType(GD.getDtorType()),
2725                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2726                                 /*DontDefer=*/false, IsForDefinition);
2727   else if (isa<CXXMethodDecl>(D)) {
2728     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2729         cast<CXXMethodDecl>(D));
2730     auto Ty = getTypes().GetFunctionType(*FInfo);
2731     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2732                              IsForDefinition);
2733   } else if (isa<FunctionDecl>(D)) {
2734     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2735     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2736     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2737                              IsForDefinition);
2738   } else
2739     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2740                               IsForDefinition);
2741 }
2742 
2743 llvm::GlobalVariable *
2744 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2745                                       llvm::Type *Ty,
2746                                       llvm::GlobalValue::LinkageTypes Linkage) {
2747   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2748   llvm::GlobalVariable *OldGV = nullptr;
2749 
2750   if (GV) {
2751     // Check if the variable has the right type.
2752     if (GV->getType()->getElementType() == Ty)
2753       return GV;
2754 
2755     // Because C++ name mangling, the only way we can end up with an already
2756     // existing global with the same name is if it has been declared extern "C".
2757     assert(GV->isDeclaration() && "Declaration has wrong type!");
2758     OldGV = GV;
2759   }
2760 
2761   // Create a new variable.
2762   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2763                                 Linkage, nullptr, Name);
2764 
2765   if (OldGV) {
2766     // Replace occurrences of the old variable if needed.
2767     GV->takeName(OldGV);
2768 
2769     if (!OldGV->use_empty()) {
2770       llvm::Constant *NewPtrForOldDecl =
2771       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2772       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2773     }
2774 
2775     OldGV->eraseFromParent();
2776   }
2777 
2778   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2779       !GV->hasAvailableExternallyLinkage())
2780     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2781 
2782   return GV;
2783 }
2784 
2785 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2786 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2787 /// then it will be created with the specified type instead of whatever the
2788 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2789 /// that an actual global with type Ty will be returned, not conversion of a
2790 /// variable with the same mangled name but some other type.
2791 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2792                                                   llvm::Type *Ty,
2793                                            ForDefinition_t IsForDefinition) {
2794   assert(D->hasGlobalStorage() && "Not a global variable");
2795   QualType ASTTy = D->getType();
2796   if (!Ty)
2797     Ty = getTypes().ConvertTypeForMem(ASTTy);
2798 
2799   llvm::PointerType *PTy =
2800     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2801 
2802   StringRef MangledName = getMangledName(D);
2803   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2804 }
2805 
2806 /// CreateRuntimeVariable - Create a new runtime global variable with the
2807 /// specified type and name.
2808 llvm::Constant *
2809 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2810                                      StringRef Name) {
2811   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2812 }
2813 
2814 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2815   assert(!D->getInit() && "Cannot emit definite definitions here!");
2816 
2817   StringRef MangledName = getMangledName(D);
2818   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2819 
2820   // We already have a definition, not declaration, with the same mangled name.
2821   // Emitting of declaration is not required (and actually overwrites emitted
2822   // definition).
2823   if (GV && !GV->isDeclaration())
2824     return;
2825 
2826   // If we have not seen a reference to this variable yet, place it into the
2827   // deferred declarations table to be emitted if needed later.
2828   if (!MustBeEmitted(D) && !GV) {
2829       DeferredDecls[MangledName] = D;
2830       return;
2831   }
2832 
2833   // The tentative definition is the only definition.
2834   EmitGlobalVarDefinition(D);
2835 }
2836 
2837 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2838   return Context.toCharUnitsFromBits(
2839       getDataLayout().getTypeStoreSizeInBits(Ty));
2840 }
2841 
2842 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2843   LangAS AddrSpace = LangAS::Default;
2844   if (LangOpts.OpenCL) {
2845     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
2846     assert(AddrSpace == LangAS::opencl_global ||
2847            AddrSpace == LangAS::opencl_constant ||
2848            AddrSpace == LangAS::opencl_local ||
2849            AddrSpace >= LangAS::FirstTargetAddressSpace);
2850     return AddrSpace;
2851   }
2852 
2853   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2854     if (D && D->hasAttr<CUDAConstantAttr>())
2855       return LangAS::cuda_constant;
2856     else if (D && D->hasAttr<CUDASharedAttr>())
2857       return LangAS::cuda_shared;
2858     else
2859       return LangAS::cuda_device;
2860   }
2861 
2862   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
2863 }
2864 
2865 template<typename SomeDecl>
2866 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2867                                                llvm::GlobalValue *GV) {
2868   if (!getLangOpts().CPlusPlus)
2869     return;
2870 
2871   // Must have 'used' attribute, or else inline assembly can't rely on
2872   // the name existing.
2873   if (!D->template hasAttr<UsedAttr>())
2874     return;
2875 
2876   // Must have internal linkage and an ordinary name.
2877   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2878     return;
2879 
2880   // Must be in an extern "C" context. Entities declared directly within
2881   // a record are not extern "C" even if the record is in such a context.
2882   const SomeDecl *First = D->getFirstDecl();
2883   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2884     return;
2885 
2886   // OK, this is an internal linkage entity inside an extern "C" linkage
2887   // specification. Make a note of that so we can give it the "expected"
2888   // mangled name if nothing else is using that name.
2889   std::pair<StaticExternCMap::iterator, bool> R =
2890       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2891 
2892   // If we have multiple internal linkage entities with the same name
2893   // in extern "C" regions, none of them gets that name.
2894   if (!R.second)
2895     R.first->second = nullptr;
2896 }
2897 
2898 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2899   if (!CGM.supportsCOMDAT())
2900     return false;
2901 
2902   if (D.hasAttr<SelectAnyAttr>())
2903     return true;
2904 
2905   GVALinkage Linkage;
2906   if (auto *VD = dyn_cast<VarDecl>(&D))
2907     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2908   else
2909     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2910 
2911   switch (Linkage) {
2912   case GVA_Internal:
2913   case GVA_AvailableExternally:
2914   case GVA_StrongExternal:
2915     return false;
2916   case GVA_DiscardableODR:
2917   case GVA_StrongODR:
2918     return true;
2919   }
2920   llvm_unreachable("No such linkage");
2921 }
2922 
2923 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2924                                           llvm::GlobalObject &GO) {
2925   if (!shouldBeInCOMDAT(*this, D))
2926     return;
2927   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2928 }
2929 
2930 /// Pass IsTentative as true if you want to create a tentative definition.
2931 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2932                                             bool IsTentative) {
2933   // OpenCL global variables of sampler type are translated to function calls,
2934   // therefore no need to be translated.
2935   QualType ASTTy = D->getType();
2936   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2937     return;
2938 
2939   llvm::Constant *Init = nullptr;
2940   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2941   bool NeedsGlobalCtor = false;
2942   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2943 
2944   const VarDecl *InitDecl;
2945   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2946 
2947   Optional<ConstantEmitter> emitter;
2948 
2949   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2950   // as part of their declaration."  Sema has already checked for
2951   // error cases, so we just need to set Init to UndefValue.
2952   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2953       D->hasAttr<CUDASharedAttr>())
2954     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2955   else if (!InitExpr) {
2956     // This is a tentative definition; tentative definitions are
2957     // implicitly initialized with { 0 }.
2958     //
2959     // Note that tentative definitions are only emitted at the end of
2960     // a translation unit, so they should never have incomplete
2961     // type. In addition, EmitTentativeDefinition makes sure that we
2962     // never attempt to emit a tentative definition if a real one
2963     // exists. A use may still exists, however, so we still may need
2964     // to do a RAUW.
2965     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2966     Init = EmitNullConstant(D->getType());
2967   } else {
2968     initializedGlobalDecl = GlobalDecl(D);
2969     emitter.emplace(*this);
2970     Init = emitter->tryEmitForInitializer(*InitDecl);
2971 
2972     if (!Init) {
2973       QualType T = InitExpr->getType();
2974       if (D->getType()->isReferenceType())
2975         T = D->getType();
2976 
2977       if (getLangOpts().CPlusPlus) {
2978         Init = EmitNullConstant(T);
2979         NeedsGlobalCtor = true;
2980       } else {
2981         ErrorUnsupported(D, "static initializer");
2982         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2983       }
2984     } else {
2985       // We don't need an initializer, so remove the entry for the delayed
2986       // initializer position (just in case this entry was delayed) if we
2987       // also don't need to register a destructor.
2988       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2989         DelayedCXXInitPosition.erase(D);
2990     }
2991   }
2992 
2993   llvm::Type* InitType = Init->getType();
2994   llvm::Constant *Entry =
2995       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
2996 
2997   // Strip off a bitcast if we got one back.
2998   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2999     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3000            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3001            // All zero index gep.
3002            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3003     Entry = CE->getOperand(0);
3004   }
3005 
3006   // Entry is now either a Function or GlobalVariable.
3007   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3008 
3009   // We have a definition after a declaration with the wrong type.
3010   // We must make a new GlobalVariable* and update everything that used OldGV
3011   // (a declaration or tentative definition) with the new GlobalVariable*
3012   // (which will be a definition).
3013   //
3014   // This happens if there is a prototype for a global (e.g.
3015   // "extern int x[];") and then a definition of a different type (e.g.
3016   // "int x[10];"). This also happens when an initializer has a different type
3017   // from the type of the global (this happens with unions).
3018   if (!GV || GV->getType()->getElementType() != InitType ||
3019       GV->getType()->getAddressSpace() !=
3020           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3021 
3022     // Move the old entry aside so that we'll create a new one.
3023     Entry->setName(StringRef());
3024 
3025     // Make a new global with the correct type, this is now guaranteed to work.
3026     GV = cast<llvm::GlobalVariable>(
3027         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3028 
3029     // Replace all uses of the old global with the new global
3030     llvm::Constant *NewPtrForOldDecl =
3031         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3032     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3033 
3034     // Erase the old global, since it is no longer used.
3035     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3036   }
3037 
3038   MaybeHandleStaticInExternC(D, GV);
3039 
3040   if (D->hasAttr<AnnotateAttr>())
3041     AddGlobalAnnotations(D, GV);
3042 
3043   // Set the llvm linkage type as appropriate.
3044   llvm::GlobalValue::LinkageTypes Linkage =
3045       getLLVMLinkageVarDefinition(D, GV->isConstant());
3046 
3047   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3048   // the device. [...]"
3049   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3050   // __device__, declares a variable that: [...]
3051   // Is accessible from all the threads within the grid and from the host
3052   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3053   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3054   if (GV && LangOpts.CUDA) {
3055     if (LangOpts.CUDAIsDevice) {
3056       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3057         GV->setExternallyInitialized(true);
3058     } else {
3059       // Host-side shadows of external declarations of device-side
3060       // global variables become internal definitions. These have to
3061       // be internal in order to prevent name conflicts with global
3062       // host variables with the same name in a different TUs.
3063       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3064         Linkage = llvm::GlobalValue::InternalLinkage;
3065 
3066         // Shadow variables and their properties must be registered
3067         // with CUDA runtime.
3068         unsigned Flags = 0;
3069         if (!D->hasDefinition())
3070           Flags |= CGCUDARuntime::ExternDeviceVar;
3071         if (D->hasAttr<CUDAConstantAttr>())
3072           Flags |= CGCUDARuntime::ConstantDeviceVar;
3073         getCUDARuntime().registerDeviceVar(*GV, Flags);
3074       } else if (D->hasAttr<CUDASharedAttr>())
3075         // __shared__ variables are odd. Shadows do get created, but
3076         // they are not registered with the CUDA runtime, so they
3077         // can't really be used to access their device-side
3078         // counterparts. It's not clear yet whether it's nvcc's bug or
3079         // a feature, but we've got to do the same for compatibility.
3080         Linkage = llvm::GlobalValue::InternalLinkage;
3081     }
3082   }
3083 
3084   GV->setInitializer(Init);
3085   if (emitter) emitter->finalize(GV);
3086 
3087   // If it is safe to mark the global 'constant', do so now.
3088   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3089                   isTypeConstant(D->getType(), true));
3090 
3091   // If it is in a read-only section, mark it 'constant'.
3092   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3093     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3094     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3095       GV->setConstant(true);
3096   }
3097 
3098   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3099 
3100 
3101   // On Darwin, if the normal linkage of a C++ thread_local variable is
3102   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3103   // copies within a linkage unit; otherwise, the backing variable has
3104   // internal linkage and all accesses should just be calls to the
3105   // Itanium-specified entry point, which has the normal linkage of the
3106   // variable. This is to preserve the ability to change the implementation
3107   // behind the scenes.
3108   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3109       Context.getTargetInfo().getTriple().isOSDarwin() &&
3110       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3111       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3112     Linkage = llvm::GlobalValue::InternalLinkage;
3113 
3114   GV->setLinkage(Linkage);
3115   if (D->hasAttr<DLLImportAttr>())
3116     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3117   else if (D->hasAttr<DLLExportAttr>())
3118     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3119   else
3120     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3121 
3122   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3123     // common vars aren't constant even if declared const.
3124     GV->setConstant(false);
3125     // Tentative definition of global variables may be initialized with
3126     // non-zero null pointers. In this case they should have weak linkage
3127     // since common linkage must have zero initializer and must not have
3128     // explicit section therefore cannot have non-zero initial value.
3129     if (!GV->getInitializer()->isNullValue())
3130       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3131   }
3132 
3133   setNonAliasAttributes(D, GV);
3134 
3135   if (D->getTLSKind() && !GV->isThreadLocal()) {
3136     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3137       CXXThreadLocals.push_back(D);
3138     setTLSMode(GV, *D);
3139   }
3140 
3141   maybeSetTrivialComdat(*D, *GV);
3142 
3143   // Emit the initializer function if necessary.
3144   if (NeedsGlobalCtor || NeedsGlobalDtor)
3145     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3146 
3147   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3148 
3149   // Emit global variable debug information.
3150   if (CGDebugInfo *DI = getModuleDebugInfo())
3151     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3152       DI->EmitGlobalVariable(GV, D);
3153 }
3154 
3155 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3156                                       CodeGenModule &CGM, const VarDecl *D,
3157                                       bool NoCommon) {
3158   // Don't give variables common linkage if -fno-common was specified unless it
3159   // was overridden by a NoCommon attribute.
3160   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3161     return true;
3162 
3163   // C11 6.9.2/2:
3164   //   A declaration of an identifier for an object that has file scope without
3165   //   an initializer, and without a storage-class specifier or with the
3166   //   storage-class specifier static, constitutes a tentative definition.
3167   if (D->getInit() || D->hasExternalStorage())
3168     return true;
3169 
3170   // A variable cannot be both common and exist in a section.
3171   if (D->hasAttr<SectionAttr>())
3172     return true;
3173 
3174   // A variable cannot be both common and exist in a section.
3175   // We dont try to determine which is the right section in the front-end.
3176   // If no specialized section name is applicable, it will resort to default.
3177   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3178       D->hasAttr<PragmaClangDataSectionAttr>() ||
3179       D->hasAttr<PragmaClangRodataSectionAttr>())
3180     return true;
3181 
3182   // Thread local vars aren't considered common linkage.
3183   if (D->getTLSKind())
3184     return true;
3185 
3186   // Tentative definitions marked with WeakImportAttr are true definitions.
3187   if (D->hasAttr<WeakImportAttr>())
3188     return true;
3189 
3190   // A variable cannot be both common and exist in a comdat.
3191   if (shouldBeInCOMDAT(CGM, *D))
3192     return true;
3193 
3194   // Declarations with a required alignment do not have common linkage in MSVC
3195   // mode.
3196   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3197     if (D->hasAttr<AlignedAttr>())
3198       return true;
3199     QualType VarType = D->getType();
3200     if (Context.isAlignmentRequired(VarType))
3201       return true;
3202 
3203     if (const auto *RT = VarType->getAs<RecordType>()) {
3204       const RecordDecl *RD = RT->getDecl();
3205       for (const FieldDecl *FD : RD->fields()) {
3206         if (FD->isBitField())
3207           continue;
3208         if (FD->hasAttr<AlignedAttr>())
3209           return true;
3210         if (Context.isAlignmentRequired(FD->getType()))
3211           return true;
3212       }
3213     }
3214   }
3215 
3216   return false;
3217 }
3218 
3219 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3220     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3221   if (Linkage == GVA_Internal)
3222     return llvm::Function::InternalLinkage;
3223 
3224   if (D->hasAttr<WeakAttr>()) {
3225     if (IsConstantVariable)
3226       return llvm::GlobalVariable::WeakODRLinkage;
3227     else
3228       return llvm::GlobalVariable::WeakAnyLinkage;
3229   }
3230 
3231   // We are guaranteed to have a strong definition somewhere else,
3232   // so we can use available_externally linkage.
3233   if (Linkage == GVA_AvailableExternally)
3234     return llvm::GlobalValue::AvailableExternallyLinkage;
3235 
3236   // Note that Apple's kernel linker doesn't support symbol
3237   // coalescing, so we need to avoid linkonce and weak linkages there.
3238   // Normally, this means we just map to internal, but for explicit
3239   // instantiations we'll map to external.
3240 
3241   // In C++, the compiler has to emit a definition in every translation unit
3242   // that references the function.  We should use linkonce_odr because
3243   // a) if all references in this translation unit are optimized away, we
3244   // don't need to codegen it.  b) if the function persists, it needs to be
3245   // merged with other definitions. c) C++ has the ODR, so we know the
3246   // definition is dependable.
3247   if (Linkage == GVA_DiscardableODR)
3248     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3249                                             : llvm::Function::InternalLinkage;
3250 
3251   // An explicit instantiation of a template has weak linkage, since
3252   // explicit instantiations can occur in multiple translation units
3253   // and must all be equivalent. However, we are not allowed to
3254   // throw away these explicit instantiations.
3255   //
3256   // We don't currently support CUDA device code spread out across multiple TUs,
3257   // so say that CUDA templates are either external (for kernels) or internal.
3258   // This lets llvm perform aggressive inter-procedural optimizations.
3259   if (Linkage == GVA_StrongODR) {
3260     if (Context.getLangOpts().AppleKext)
3261       return llvm::Function::ExternalLinkage;
3262     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3263       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3264                                           : llvm::Function::InternalLinkage;
3265     return llvm::Function::WeakODRLinkage;
3266   }
3267 
3268   // C++ doesn't have tentative definitions and thus cannot have common
3269   // linkage.
3270   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3271       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3272                                  CodeGenOpts.NoCommon))
3273     return llvm::GlobalVariable::CommonLinkage;
3274 
3275   // selectany symbols are externally visible, so use weak instead of
3276   // linkonce.  MSVC optimizes away references to const selectany globals, so
3277   // all definitions should be the same and ODR linkage should be used.
3278   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3279   if (D->hasAttr<SelectAnyAttr>())
3280     return llvm::GlobalVariable::WeakODRLinkage;
3281 
3282   // Otherwise, we have strong external linkage.
3283   assert(Linkage == GVA_StrongExternal);
3284   return llvm::GlobalVariable::ExternalLinkage;
3285 }
3286 
3287 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3288     const VarDecl *VD, bool IsConstant) {
3289   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3290   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3291 }
3292 
3293 /// Replace the uses of a function that was declared with a non-proto type.
3294 /// We want to silently drop extra arguments from call sites
3295 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3296                                           llvm::Function *newFn) {
3297   // Fast path.
3298   if (old->use_empty()) return;
3299 
3300   llvm::Type *newRetTy = newFn->getReturnType();
3301   SmallVector<llvm::Value*, 4> newArgs;
3302   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3303 
3304   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3305          ui != ue; ) {
3306     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3307     llvm::User *user = use->getUser();
3308 
3309     // Recognize and replace uses of bitcasts.  Most calls to
3310     // unprototyped functions will use bitcasts.
3311     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3312       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3313         replaceUsesOfNonProtoConstant(bitcast, newFn);
3314       continue;
3315     }
3316 
3317     // Recognize calls to the function.
3318     llvm::CallSite callSite(user);
3319     if (!callSite) continue;
3320     if (!callSite.isCallee(&*use)) continue;
3321 
3322     // If the return types don't match exactly, then we can't
3323     // transform this call unless it's dead.
3324     if (callSite->getType() != newRetTy && !callSite->use_empty())
3325       continue;
3326 
3327     // Get the call site's attribute list.
3328     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3329     llvm::AttributeList oldAttrs = callSite.getAttributes();
3330 
3331     // If the function was passed too few arguments, don't transform.
3332     unsigned newNumArgs = newFn->arg_size();
3333     if (callSite.arg_size() < newNumArgs) continue;
3334 
3335     // If extra arguments were passed, we silently drop them.
3336     // If any of the types mismatch, we don't transform.
3337     unsigned argNo = 0;
3338     bool dontTransform = false;
3339     for (llvm::Argument &A : newFn->args()) {
3340       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3341         dontTransform = true;
3342         break;
3343       }
3344 
3345       // Add any parameter attributes.
3346       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3347       argNo++;
3348     }
3349     if (dontTransform)
3350       continue;
3351 
3352     // Okay, we can transform this.  Create the new call instruction and copy
3353     // over the required information.
3354     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3355 
3356     // Copy over any operand bundles.
3357     callSite.getOperandBundlesAsDefs(newBundles);
3358 
3359     llvm::CallSite newCall;
3360     if (callSite.isCall()) {
3361       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3362                                        callSite.getInstruction());
3363     } else {
3364       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3365       newCall = llvm::InvokeInst::Create(newFn,
3366                                          oldInvoke->getNormalDest(),
3367                                          oldInvoke->getUnwindDest(),
3368                                          newArgs, newBundles, "",
3369                                          callSite.getInstruction());
3370     }
3371     newArgs.clear(); // for the next iteration
3372 
3373     if (!newCall->getType()->isVoidTy())
3374       newCall->takeName(callSite.getInstruction());
3375     newCall.setAttributes(llvm::AttributeList::get(
3376         newFn->getContext(), oldAttrs.getFnAttributes(),
3377         oldAttrs.getRetAttributes(), newArgAttrs));
3378     newCall.setCallingConv(callSite.getCallingConv());
3379 
3380     // Finally, remove the old call, replacing any uses with the new one.
3381     if (!callSite->use_empty())
3382       callSite->replaceAllUsesWith(newCall.getInstruction());
3383 
3384     // Copy debug location attached to CI.
3385     if (callSite->getDebugLoc())
3386       newCall->setDebugLoc(callSite->getDebugLoc());
3387 
3388     callSite->eraseFromParent();
3389   }
3390 }
3391 
3392 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3393 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3394 /// existing call uses of the old function in the module, this adjusts them to
3395 /// call the new function directly.
3396 ///
3397 /// This is not just a cleanup: the always_inline pass requires direct calls to
3398 /// functions to be able to inline them.  If there is a bitcast in the way, it
3399 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3400 /// run at -O0.
3401 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3402                                                       llvm::Function *NewFn) {
3403   // If we're redefining a global as a function, don't transform it.
3404   if (!isa<llvm::Function>(Old)) return;
3405 
3406   replaceUsesOfNonProtoConstant(Old, NewFn);
3407 }
3408 
3409 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3410   auto DK = VD->isThisDeclarationADefinition();
3411   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3412     return;
3413 
3414   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3415   // If we have a definition, this might be a deferred decl. If the
3416   // instantiation is explicit, make sure we emit it at the end.
3417   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3418     GetAddrOfGlobalVar(VD);
3419 
3420   EmitTopLevelDecl(VD);
3421 }
3422 
3423 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3424                                                  llvm::GlobalValue *GV) {
3425   const auto *D = cast<FunctionDecl>(GD.getDecl());
3426 
3427   // Compute the function info and LLVM type.
3428   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3429   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3430 
3431   // Get or create the prototype for the function.
3432   if (!GV || (GV->getType()->getElementType() != Ty))
3433     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3434                                                    /*DontDefer=*/true,
3435                                                    ForDefinition));
3436 
3437   // Already emitted.
3438   if (!GV->isDeclaration())
3439     return;
3440 
3441   // We need to set linkage and visibility on the function before
3442   // generating code for it because various parts of IR generation
3443   // want to propagate this information down (e.g. to local static
3444   // declarations).
3445   auto *Fn = cast<llvm::Function>(GV);
3446   setFunctionLinkage(GD, Fn);
3447   setFunctionDLLStorageClass(GD, Fn);
3448 
3449   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3450   setGlobalVisibility(Fn, D, ForDefinition);
3451 
3452   MaybeHandleStaticInExternC(D, Fn);
3453 
3454   maybeSetTrivialComdat(*D, *Fn);
3455 
3456   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3457 
3458   setFunctionDefinitionAttributes(D, Fn);
3459   SetLLVMFunctionAttributesForDefinition(D, Fn);
3460 
3461   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3462     AddGlobalCtor(Fn, CA->getPriority());
3463   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3464     AddGlobalDtor(Fn, DA->getPriority());
3465   if (D->hasAttr<AnnotateAttr>())
3466     AddGlobalAnnotations(D, Fn);
3467 }
3468 
3469 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3470   const auto *D = cast<ValueDecl>(GD.getDecl());
3471   const AliasAttr *AA = D->getAttr<AliasAttr>();
3472   assert(AA && "Not an alias?");
3473 
3474   StringRef MangledName = getMangledName(GD);
3475 
3476   if (AA->getAliasee() == MangledName) {
3477     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3478     return;
3479   }
3480 
3481   // If there is a definition in the module, then it wins over the alias.
3482   // This is dubious, but allow it to be safe.  Just ignore the alias.
3483   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3484   if (Entry && !Entry->isDeclaration())
3485     return;
3486 
3487   Aliases.push_back(GD);
3488 
3489   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3490 
3491   // Create a reference to the named value.  This ensures that it is emitted
3492   // if a deferred decl.
3493   llvm::Constant *Aliasee;
3494   if (isa<llvm::FunctionType>(DeclTy))
3495     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3496                                       /*ForVTable=*/false);
3497   else
3498     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3499                                     llvm::PointerType::getUnqual(DeclTy),
3500                                     /*D=*/nullptr);
3501 
3502   // Create the new alias itself, but don't set a name yet.
3503   auto *GA = llvm::GlobalAlias::create(
3504       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3505 
3506   if (Entry) {
3507     if (GA->getAliasee() == Entry) {
3508       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3509       return;
3510     }
3511 
3512     assert(Entry->isDeclaration());
3513 
3514     // If there is a declaration in the module, then we had an extern followed
3515     // by the alias, as in:
3516     //   extern int test6();
3517     //   ...
3518     //   int test6() __attribute__((alias("test7")));
3519     //
3520     // Remove it and replace uses of it with the alias.
3521     GA->takeName(Entry);
3522 
3523     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3524                                                           Entry->getType()));
3525     Entry->eraseFromParent();
3526   } else {
3527     GA->setName(MangledName);
3528   }
3529 
3530   // Set attributes which are particular to an alias; this is a
3531   // specialization of the attributes which may be set on a global
3532   // variable/function.
3533   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3534       D->isWeakImported()) {
3535     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3536   }
3537 
3538   if (const auto *VD = dyn_cast<VarDecl>(D))
3539     if (VD->getTLSKind())
3540       setTLSMode(GA, *VD);
3541 
3542   setAliasAttributes(D, GA);
3543 }
3544 
3545 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3546   const auto *D = cast<ValueDecl>(GD.getDecl());
3547   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3548   assert(IFA && "Not an ifunc?");
3549 
3550   StringRef MangledName = getMangledName(GD);
3551 
3552   if (IFA->getResolver() == MangledName) {
3553     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3554     return;
3555   }
3556 
3557   // Report an error if some definition overrides ifunc.
3558   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3559   if (Entry && !Entry->isDeclaration()) {
3560     GlobalDecl OtherGD;
3561     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3562         DiagnosedConflictingDefinitions.insert(GD).second) {
3563       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3564       Diags.Report(OtherGD.getDecl()->getLocation(),
3565                    diag::note_previous_definition);
3566     }
3567     return;
3568   }
3569 
3570   Aliases.push_back(GD);
3571 
3572   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3573   llvm::Constant *Resolver =
3574       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3575                               /*ForVTable=*/false);
3576   llvm::GlobalIFunc *GIF =
3577       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3578                                 "", Resolver, &getModule());
3579   if (Entry) {
3580     if (GIF->getResolver() == Entry) {
3581       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3582       return;
3583     }
3584     assert(Entry->isDeclaration());
3585 
3586     // If there is a declaration in the module, then we had an extern followed
3587     // by the ifunc, as in:
3588     //   extern int test();
3589     //   ...
3590     //   int test() __attribute__((ifunc("resolver")));
3591     //
3592     // Remove it and replace uses of it with the ifunc.
3593     GIF->takeName(Entry);
3594 
3595     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3596                                                           Entry->getType()));
3597     Entry->eraseFromParent();
3598   } else
3599     GIF->setName(MangledName);
3600 
3601   SetCommonAttributes(D, GIF);
3602 }
3603 
3604 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3605                                             ArrayRef<llvm::Type*> Tys) {
3606   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3607                                          Tys);
3608 }
3609 
3610 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3611 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3612                          const StringLiteral *Literal, bool TargetIsLSB,
3613                          bool &IsUTF16, unsigned &StringLength) {
3614   StringRef String = Literal->getString();
3615   unsigned NumBytes = String.size();
3616 
3617   // Check for simple case.
3618   if (!Literal->containsNonAsciiOrNull()) {
3619     StringLength = NumBytes;
3620     return *Map.insert(std::make_pair(String, nullptr)).first;
3621   }
3622 
3623   // Otherwise, convert the UTF8 literals into a string of shorts.
3624   IsUTF16 = true;
3625 
3626   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3627   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3628   llvm::UTF16 *ToPtr = &ToBuf[0];
3629 
3630   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3631                                  ToPtr + NumBytes, llvm::strictConversion);
3632 
3633   // ConvertUTF8toUTF16 returns the length in ToPtr.
3634   StringLength = ToPtr - &ToBuf[0];
3635 
3636   // Add an explicit null.
3637   *ToPtr = 0;
3638   return *Map.insert(std::make_pair(
3639                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3640                                    (StringLength + 1) * 2),
3641                          nullptr)).first;
3642 }
3643 
3644 ConstantAddress
3645 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3646   unsigned StringLength = 0;
3647   bool isUTF16 = false;
3648   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3649       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3650                                getDataLayout().isLittleEndian(), isUTF16,
3651                                StringLength);
3652 
3653   if (auto *C = Entry.second)
3654     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3655 
3656   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3657   llvm::Constant *Zeros[] = { Zero, Zero };
3658 
3659   // If we don't already have it, get __CFConstantStringClassReference.
3660   if (!CFConstantStringClassRef) {
3661     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3662     Ty = llvm::ArrayType::get(Ty, 0);
3663     llvm::Constant *GV =
3664         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3665 
3666     if (getTriple().isOSBinFormatCOFF()) {
3667       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3668       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3669       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3670       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3671 
3672       const VarDecl *VD = nullptr;
3673       for (const auto &Result : DC->lookup(&II))
3674         if ((VD = dyn_cast<VarDecl>(Result)))
3675           break;
3676 
3677       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3678         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3679         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3680       } else {
3681         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3682         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3683       }
3684     }
3685 
3686     // Decay array -> ptr
3687     CFConstantStringClassRef =
3688         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3689   }
3690 
3691   QualType CFTy = getContext().getCFConstantStringType();
3692 
3693   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3694 
3695   ConstantInitBuilder Builder(*this);
3696   auto Fields = Builder.beginStruct(STy);
3697 
3698   // Class pointer.
3699   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3700 
3701   // Flags.
3702   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3703 
3704   // String pointer.
3705   llvm::Constant *C = nullptr;
3706   if (isUTF16) {
3707     auto Arr = llvm::makeArrayRef(
3708         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3709         Entry.first().size() / 2);
3710     C = llvm::ConstantDataArray::get(VMContext, Arr);
3711   } else {
3712     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3713   }
3714 
3715   // Note: -fwritable-strings doesn't make the backing store strings of
3716   // CFStrings writable. (See <rdar://problem/10657500>)
3717   auto *GV =
3718       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3719                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3720   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3721   // Don't enforce the target's minimum global alignment, since the only use
3722   // of the string is via this class initializer.
3723   CharUnits Align = isUTF16
3724                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3725                         : getContext().getTypeAlignInChars(getContext().CharTy);
3726   GV->setAlignment(Align.getQuantity());
3727 
3728   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3729   // Without it LLVM can merge the string with a non unnamed_addr one during
3730   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3731   if (getTriple().isOSBinFormatMachO())
3732     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3733                            : "__TEXT,__cstring,cstring_literals");
3734 
3735   // String.
3736   llvm::Constant *Str =
3737       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3738 
3739   if (isUTF16)
3740     // Cast the UTF16 string to the correct type.
3741     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3742   Fields.add(Str);
3743 
3744   // String length.
3745   auto Ty = getTypes().ConvertType(getContext().LongTy);
3746   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3747 
3748   CharUnits Alignment = getPointerAlign();
3749 
3750   // The struct.
3751   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3752                                     /*isConstant=*/false,
3753                                     llvm::GlobalVariable::PrivateLinkage);
3754   switch (getTriple().getObjectFormat()) {
3755   case llvm::Triple::UnknownObjectFormat:
3756     llvm_unreachable("unknown file format");
3757   case llvm::Triple::COFF:
3758   case llvm::Triple::ELF:
3759   case llvm::Triple::Wasm:
3760     GV->setSection("cfstring");
3761     break;
3762   case llvm::Triple::MachO:
3763     GV->setSection("__DATA,__cfstring");
3764     break;
3765   }
3766   Entry.second = GV;
3767 
3768   return ConstantAddress(GV, Alignment);
3769 }
3770 
3771 bool CodeGenModule::getExpressionLocationsEnabled() const {
3772   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3773 }
3774 
3775 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3776   if (ObjCFastEnumerationStateType.isNull()) {
3777     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3778     D->startDefinition();
3779 
3780     QualType FieldTypes[] = {
3781       Context.UnsignedLongTy,
3782       Context.getPointerType(Context.getObjCIdType()),
3783       Context.getPointerType(Context.UnsignedLongTy),
3784       Context.getConstantArrayType(Context.UnsignedLongTy,
3785                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3786     };
3787 
3788     for (size_t i = 0; i < 4; ++i) {
3789       FieldDecl *Field = FieldDecl::Create(Context,
3790                                            D,
3791                                            SourceLocation(),
3792                                            SourceLocation(), nullptr,
3793                                            FieldTypes[i], /*TInfo=*/nullptr,
3794                                            /*BitWidth=*/nullptr,
3795                                            /*Mutable=*/false,
3796                                            ICIS_NoInit);
3797       Field->setAccess(AS_public);
3798       D->addDecl(Field);
3799     }
3800 
3801     D->completeDefinition();
3802     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3803   }
3804 
3805   return ObjCFastEnumerationStateType;
3806 }
3807 
3808 llvm::Constant *
3809 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3810   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3811 
3812   // Don't emit it as the address of the string, emit the string data itself
3813   // as an inline array.
3814   if (E->getCharByteWidth() == 1) {
3815     SmallString<64> Str(E->getString());
3816 
3817     // Resize the string to the right size, which is indicated by its type.
3818     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3819     Str.resize(CAT->getSize().getZExtValue());
3820     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3821   }
3822 
3823   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3824   llvm::Type *ElemTy = AType->getElementType();
3825   unsigned NumElements = AType->getNumElements();
3826 
3827   // Wide strings have either 2-byte or 4-byte elements.
3828   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3829     SmallVector<uint16_t, 32> Elements;
3830     Elements.reserve(NumElements);
3831 
3832     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3833       Elements.push_back(E->getCodeUnit(i));
3834     Elements.resize(NumElements);
3835     return llvm::ConstantDataArray::get(VMContext, Elements);
3836   }
3837 
3838   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3839   SmallVector<uint32_t, 32> Elements;
3840   Elements.reserve(NumElements);
3841 
3842   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3843     Elements.push_back(E->getCodeUnit(i));
3844   Elements.resize(NumElements);
3845   return llvm::ConstantDataArray::get(VMContext, Elements);
3846 }
3847 
3848 static llvm::GlobalVariable *
3849 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3850                       CodeGenModule &CGM, StringRef GlobalName,
3851                       CharUnits Alignment) {
3852   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3853   unsigned AddrSpace = 0;
3854   if (CGM.getLangOpts().OpenCL)
3855     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3856 
3857   llvm::Module &M = CGM.getModule();
3858   // Create a global variable for this string
3859   auto *GV = new llvm::GlobalVariable(
3860       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3861       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3862   GV->setAlignment(Alignment.getQuantity());
3863   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3864   if (GV->isWeakForLinker()) {
3865     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3866     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3867   }
3868 
3869   return GV;
3870 }
3871 
3872 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3873 /// constant array for the given string literal.
3874 ConstantAddress
3875 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3876                                                   StringRef Name) {
3877   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3878 
3879   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3880   llvm::GlobalVariable **Entry = nullptr;
3881   if (!LangOpts.WritableStrings) {
3882     Entry = &ConstantStringMap[C];
3883     if (auto GV = *Entry) {
3884       if (Alignment.getQuantity() > GV->getAlignment())
3885         GV->setAlignment(Alignment.getQuantity());
3886       return ConstantAddress(GV, Alignment);
3887     }
3888   }
3889 
3890   SmallString<256> MangledNameBuffer;
3891   StringRef GlobalVariableName;
3892   llvm::GlobalValue::LinkageTypes LT;
3893 
3894   // Mangle the string literal if the ABI allows for it.  However, we cannot
3895   // do this if  we are compiling with ASan or -fwritable-strings because they
3896   // rely on strings having normal linkage.
3897   if (!LangOpts.WritableStrings &&
3898       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3899       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3900     llvm::raw_svector_ostream Out(MangledNameBuffer);
3901     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3902 
3903     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3904     GlobalVariableName = MangledNameBuffer;
3905   } else {
3906     LT = llvm::GlobalValue::PrivateLinkage;
3907     GlobalVariableName = Name;
3908   }
3909 
3910   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3911   if (Entry)
3912     *Entry = GV;
3913 
3914   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3915                                   QualType());
3916   return ConstantAddress(GV, Alignment);
3917 }
3918 
3919 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3920 /// array for the given ObjCEncodeExpr node.
3921 ConstantAddress
3922 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3923   std::string Str;
3924   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3925 
3926   return GetAddrOfConstantCString(Str);
3927 }
3928 
3929 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3930 /// the literal and a terminating '\0' character.
3931 /// The result has pointer to array type.
3932 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3933     const std::string &Str, const char *GlobalName) {
3934   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3935   CharUnits Alignment =
3936     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3937 
3938   llvm::Constant *C =
3939       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3940 
3941   // Don't share any string literals if strings aren't constant.
3942   llvm::GlobalVariable **Entry = nullptr;
3943   if (!LangOpts.WritableStrings) {
3944     Entry = &ConstantStringMap[C];
3945     if (auto GV = *Entry) {
3946       if (Alignment.getQuantity() > GV->getAlignment())
3947         GV->setAlignment(Alignment.getQuantity());
3948       return ConstantAddress(GV, Alignment);
3949     }
3950   }
3951 
3952   // Get the default prefix if a name wasn't specified.
3953   if (!GlobalName)
3954     GlobalName = ".str";
3955   // Create a global variable for this.
3956   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3957                                   GlobalName, Alignment);
3958   if (Entry)
3959     *Entry = GV;
3960   return ConstantAddress(GV, Alignment);
3961 }
3962 
3963 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3964     const MaterializeTemporaryExpr *E, const Expr *Init) {
3965   assert((E->getStorageDuration() == SD_Static ||
3966           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3967   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3968 
3969   // If we're not materializing a subobject of the temporary, keep the
3970   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3971   QualType MaterializedType = Init->getType();
3972   if (Init == E->GetTemporaryExpr())
3973     MaterializedType = E->getType();
3974 
3975   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3976 
3977   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3978     return ConstantAddress(Slot, Align);
3979 
3980   // FIXME: If an externally-visible declaration extends multiple temporaries,
3981   // we need to give each temporary the same name in every translation unit (and
3982   // we also need to make the temporaries externally-visible).
3983   SmallString<256> Name;
3984   llvm::raw_svector_ostream Out(Name);
3985   getCXXABI().getMangleContext().mangleReferenceTemporary(
3986       VD, E->getManglingNumber(), Out);
3987 
3988   APValue *Value = nullptr;
3989   if (E->getStorageDuration() == SD_Static) {
3990     // We might have a cached constant initializer for this temporary. Note
3991     // that this might have a different value from the value computed by
3992     // evaluating the initializer if the surrounding constant expression
3993     // modifies the temporary.
3994     Value = getContext().getMaterializedTemporaryValue(E, false);
3995     if (Value && Value->isUninit())
3996       Value = nullptr;
3997   }
3998 
3999   // Try evaluating it now, it might have a constant initializer.
4000   Expr::EvalResult EvalResult;
4001   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4002       !EvalResult.hasSideEffects())
4003     Value = &EvalResult.Val;
4004 
4005   LangAS AddrSpace =
4006       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4007 
4008   Optional<ConstantEmitter> emitter;
4009   llvm::Constant *InitialValue = nullptr;
4010   bool Constant = false;
4011   llvm::Type *Type;
4012   if (Value) {
4013     // The temporary has a constant initializer, use it.
4014     emitter.emplace(*this);
4015     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4016                                                MaterializedType);
4017     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4018     Type = InitialValue->getType();
4019   } else {
4020     // No initializer, the initialization will be provided when we
4021     // initialize the declaration which performed lifetime extension.
4022     Type = getTypes().ConvertTypeForMem(MaterializedType);
4023   }
4024 
4025   // Create a global variable for this lifetime-extended temporary.
4026   llvm::GlobalValue::LinkageTypes Linkage =
4027       getLLVMLinkageVarDefinition(VD, Constant);
4028   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4029     const VarDecl *InitVD;
4030     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4031         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4032       // Temporaries defined inside a class get linkonce_odr linkage because the
4033       // class can be defined in multipe translation units.
4034       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4035     } else {
4036       // There is no need for this temporary to have external linkage if the
4037       // VarDecl has external linkage.
4038       Linkage = llvm::GlobalVariable::InternalLinkage;
4039     }
4040   }
4041   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4042   auto *GV = new llvm::GlobalVariable(
4043       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4044       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4045   if (emitter) emitter->finalize(GV);
4046   setGlobalVisibility(GV, VD, ForDefinition);
4047   GV->setAlignment(Align.getQuantity());
4048   if (supportsCOMDAT() && GV->isWeakForLinker())
4049     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4050   if (VD->getTLSKind())
4051     setTLSMode(GV, *VD);
4052   llvm::Constant *CV = GV;
4053   if (AddrSpace != LangAS::Default)
4054     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4055         *this, GV, AddrSpace, LangAS::Default,
4056         Type->getPointerTo(
4057             getContext().getTargetAddressSpace(LangAS::Default)));
4058   MaterializedGlobalTemporaryMap[E] = CV;
4059   return ConstantAddress(CV, Align);
4060 }
4061 
4062 /// EmitObjCPropertyImplementations - Emit information for synthesized
4063 /// properties for an implementation.
4064 void CodeGenModule::EmitObjCPropertyImplementations(const
4065                                                     ObjCImplementationDecl *D) {
4066   for (const auto *PID : D->property_impls()) {
4067     // Dynamic is just for type-checking.
4068     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4069       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4070 
4071       // Determine which methods need to be implemented, some may have
4072       // been overridden. Note that ::isPropertyAccessor is not the method
4073       // we want, that just indicates if the decl came from a
4074       // property. What we want to know is if the method is defined in
4075       // this implementation.
4076       if (!D->getInstanceMethod(PD->getGetterName()))
4077         CodeGenFunction(*this).GenerateObjCGetter(
4078                                  const_cast<ObjCImplementationDecl *>(D), PID);
4079       if (!PD->isReadOnly() &&
4080           !D->getInstanceMethod(PD->getSetterName()))
4081         CodeGenFunction(*this).GenerateObjCSetter(
4082                                  const_cast<ObjCImplementationDecl *>(D), PID);
4083     }
4084   }
4085 }
4086 
4087 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4088   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4089   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4090        ivar; ivar = ivar->getNextIvar())
4091     if (ivar->getType().isDestructedType())
4092       return true;
4093 
4094   return false;
4095 }
4096 
4097 static bool AllTrivialInitializers(CodeGenModule &CGM,
4098                                    ObjCImplementationDecl *D) {
4099   CodeGenFunction CGF(CGM);
4100   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4101        E = D->init_end(); B != E; ++B) {
4102     CXXCtorInitializer *CtorInitExp = *B;
4103     Expr *Init = CtorInitExp->getInit();
4104     if (!CGF.isTrivialInitializer(Init))
4105       return false;
4106   }
4107   return true;
4108 }
4109 
4110 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4111 /// for an implementation.
4112 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4113   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4114   if (needsDestructMethod(D)) {
4115     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4116     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4117     ObjCMethodDecl *DTORMethod =
4118       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4119                              cxxSelector, getContext().VoidTy, nullptr, D,
4120                              /*isInstance=*/true, /*isVariadic=*/false,
4121                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4122                              /*isDefined=*/false, ObjCMethodDecl::Required);
4123     D->addInstanceMethod(DTORMethod);
4124     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4125     D->setHasDestructors(true);
4126   }
4127 
4128   // If the implementation doesn't have any ivar initializers, we don't need
4129   // a .cxx_construct.
4130   if (D->getNumIvarInitializers() == 0 ||
4131       AllTrivialInitializers(*this, D))
4132     return;
4133 
4134   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4135   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4136   // The constructor returns 'self'.
4137   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4138                                                 D->getLocation(),
4139                                                 D->getLocation(),
4140                                                 cxxSelector,
4141                                                 getContext().getObjCIdType(),
4142                                                 nullptr, D, /*isInstance=*/true,
4143                                                 /*isVariadic=*/false,
4144                                                 /*isPropertyAccessor=*/true,
4145                                                 /*isImplicitlyDeclared=*/true,
4146                                                 /*isDefined=*/false,
4147                                                 ObjCMethodDecl::Required);
4148   D->addInstanceMethod(CTORMethod);
4149   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4150   D->setHasNonZeroConstructors(true);
4151 }
4152 
4153 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4154 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4155   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4156       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4157     ErrorUnsupported(LSD, "linkage spec");
4158     return;
4159   }
4160 
4161   EmitDeclContext(LSD);
4162 }
4163 
4164 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4165   for (auto *I : DC->decls()) {
4166     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4167     // are themselves considered "top-level", so EmitTopLevelDecl on an
4168     // ObjCImplDecl does not recursively visit them. We need to do that in
4169     // case they're nested inside another construct (LinkageSpecDecl /
4170     // ExportDecl) that does stop them from being considered "top-level".
4171     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4172       for (auto *M : OID->methods())
4173         EmitTopLevelDecl(M);
4174     }
4175 
4176     EmitTopLevelDecl(I);
4177   }
4178 }
4179 
4180 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4181 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4182   // Ignore dependent declarations.
4183   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
4184     return;
4185 
4186   switch (D->getKind()) {
4187   case Decl::CXXConversion:
4188   case Decl::CXXMethod:
4189   case Decl::Function:
4190     // Skip function templates
4191     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
4192         cast<FunctionDecl>(D)->isLateTemplateParsed())
4193       return;
4194 
4195     EmitGlobal(cast<FunctionDecl>(D));
4196     // Always provide some coverage mapping
4197     // even for the functions that aren't emitted.
4198     AddDeferredUnusedCoverageMapping(D);
4199     break;
4200 
4201   case Decl::CXXDeductionGuide:
4202     // Function-like, but does not result in code emission.
4203     break;
4204 
4205   case Decl::Var:
4206   case Decl::Decomposition:
4207     // Skip variable templates
4208     if (cast<VarDecl>(D)->getDescribedVarTemplate())
4209       return;
4210     LLVM_FALLTHROUGH;
4211   case Decl::VarTemplateSpecialization:
4212     EmitGlobal(cast<VarDecl>(D));
4213     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4214       for (auto *B : DD->bindings())
4215         if (auto *HD = B->getHoldingVar())
4216           EmitGlobal(HD);
4217     break;
4218 
4219   // Indirect fields from global anonymous structs and unions can be
4220   // ignored; only the actual variable requires IR gen support.
4221   case Decl::IndirectField:
4222     break;
4223 
4224   // C++ Decls
4225   case Decl::Namespace:
4226     EmitDeclContext(cast<NamespaceDecl>(D));
4227     break;
4228   case Decl::ClassTemplateSpecialization: {
4229     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4230     if (DebugInfo &&
4231         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4232         Spec->hasDefinition())
4233       DebugInfo->completeTemplateDefinition(*Spec);
4234   } LLVM_FALLTHROUGH;
4235   case Decl::CXXRecord:
4236     if (DebugInfo) {
4237       if (auto *ES = D->getASTContext().getExternalSource())
4238         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4239           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4240     }
4241     // Emit any static data members, they may be definitions.
4242     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4243       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4244         EmitTopLevelDecl(I);
4245     break;
4246     // No code generation needed.
4247   case Decl::UsingShadow:
4248   case Decl::ClassTemplate:
4249   case Decl::VarTemplate:
4250   case Decl::VarTemplatePartialSpecialization:
4251   case Decl::FunctionTemplate:
4252   case Decl::TypeAliasTemplate:
4253   case Decl::Block:
4254   case Decl::Empty:
4255     break;
4256   case Decl::Using:          // using X; [C++]
4257     if (CGDebugInfo *DI = getModuleDebugInfo())
4258         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4259     return;
4260   case Decl::NamespaceAlias:
4261     if (CGDebugInfo *DI = getModuleDebugInfo())
4262         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4263     return;
4264   case Decl::UsingDirective: // using namespace X; [C++]
4265     if (CGDebugInfo *DI = getModuleDebugInfo())
4266       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4267     return;
4268   case Decl::CXXConstructor:
4269     // Skip function templates
4270     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
4271         cast<FunctionDecl>(D)->isLateTemplateParsed())
4272       return;
4273 
4274     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4275     break;
4276   case Decl::CXXDestructor:
4277     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
4278       return;
4279     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4280     break;
4281 
4282   case Decl::StaticAssert:
4283     // Nothing to do.
4284     break;
4285 
4286   // Objective-C Decls
4287 
4288   // Forward declarations, no (immediate) code generation.
4289   case Decl::ObjCInterface:
4290   case Decl::ObjCCategory:
4291     break;
4292 
4293   case Decl::ObjCProtocol: {
4294     auto *Proto = cast<ObjCProtocolDecl>(D);
4295     if (Proto->isThisDeclarationADefinition())
4296       ObjCRuntime->GenerateProtocol(Proto);
4297     break;
4298   }
4299 
4300   case Decl::ObjCCategoryImpl:
4301     // Categories have properties but don't support synthesize so we
4302     // can ignore them here.
4303     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4304     break;
4305 
4306   case Decl::ObjCImplementation: {
4307     auto *OMD = cast<ObjCImplementationDecl>(D);
4308     EmitObjCPropertyImplementations(OMD);
4309     EmitObjCIvarInitializations(OMD);
4310     ObjCRuntime->GenerateClass(OMD);
4311     // Emit global variable debug information.
4312     if (CGDebugInfo *DI = getModuleDebugInfo())
4313       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4314         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4315             OMD->getClassInterface()), OMD->getLocation());
4316     break;
4317   }
4318   case Decl::ObjCMethod: {
4319     auto *OMD = cast<ObjCMethodDecl>(D);
4320     // If this is not a prototype, emit the body.
4321     if (OMD->getBody())
4322       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4323     break;
4324   }
4325   case Decl::ObjCCompatibleAlias:
4326     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4327     break;
4328 
4329   case Decl::PragmaComment: {
4330     const auto *PCD = cast<PragmaCommentDecl>(D);
4331     switch (PCD->getCommentKind()) {
4332     case PCK_Unknown:
4333       llvm_unreachable("unexpected pragma comment kind");
4334     case PCK_Linker:
4335       AppendLinkerOptions(PCD->getArg());
4336       break;
4337     case PCK_Lib:
4338       AddDependentLib(PCD->getArg());
4339       break;
4340     case PCK_Compiler:
4341     case PCK_ExeStr:
4342     case PCK_User:
4343       break; // We ignore all of these.
4344     }
4345     break;
4346   }
4347 
4348   case Decl::PragmaDetectMismatch: {
4349     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4350     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4351     break;
4352   }
4353 
4354   case Decl::LinkageSpec:
4355     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4356     break;
4357 
4358   case Decl::FileScopeAsm: {
4359     // File-scope asm is ignored during device-side CUDA compilation.
4360     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4361       break;
4362     // File-scope asm is ignored during device-side OpenMP compilation.
4363     if (LangOpts.OpenMPIsDevice)
4364       break;
4365     auto *AD = cast<FileScopeAsmDecl>(D);
4366     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4367     break;
4368   }
4369 
4370   case Decl::Import: {
4371     auto *Import = cast<ImportDecl>(D);
4372 
4373     // If we've already imported this module, we're done.
4374     if (!ImportedModules.insert(Import->getImportedModule()))
4375       break;
4376 
4377     // Emit debug information for direct imports.
4378     if (!Import->getImportedOwningModule()) {
4379       if (CGDebugInfo *DI = getModuleDebugInfo())
4380         DI->EmitImportDecl(*Import);
4381     }
4382 
4383     // Find all of the submodules and emit the module initializers.
4384     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4385     SmallVector<clang::Module *, 16> Stack;
4386     Visited.insert(Import->getImportedModule());
4387     Stack.push_back(Import->getImportedModule());
4388 
4389     while (!Stack.empty()) {
4390       clang::Module *Mod = Stack.pop_back_val();
4391       if (!EmittedModuleInitializers.insert(Mod).second)
4392         continue;
4393 
4394       for (auto *D : Context.getModuleInitializers(Mod))
4395         EmitTopLevelDecl(D);
4396 
4397       // Visit the submodules of this module.
4398       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4399                                              SubEnd = Mod->submodule_end();
4400            Sub != SubEnd; ++Sub) {
4401         // Skip explicit children; they need to be explicitly imported to emit
4402         // the initializers.
4403         if ((*Sub)->IsExplicit)
4404           continue;
4405 
4406         if (Visited.insert(*Sub).second)
4407           Stack.push_back(*Sub);
4408       }
4409     }
4410     break;
4411   }
4412 
4413   case Decl::Export:
4414     EmitDeclContext(cast<ExportDecl>(D));
4415     break;
4416 
4417   case Decl::OMPThreadPrivate:
4418     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4419     break;
4420 
4421   case Decl::OMPDeclareReduction:
4422     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4423     break;
4424 
4425   default:
4426     // Make sure we handled everything we should, every other kind is a
4427     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4428     // function. Need to recode Decl::Kind to do that easily.
4429     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4430     break;
4431   }
4432 }
4433 
4434 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4435   // Do we need to generate coverage mapping?
4436   if (!CodeGenOpts.CoverageMapping)
4437     return;
4438   switch (D->getKind()) {
4439   case Decl::CXXConversion:
4440   case Decl::CXXMethod:
4441   case Decl::Function:
4442   case Decl::ObjCMethod:
4443   case Decl::CXXConstructor:
4444   case Decl::CXXDestructor: {
4445     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4446       return;
4447     SourceManager &SM = getContext().getSourceManager();
4448     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4449       return;
4450     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4451     if (I == DeferredEmptyCoverageMappingDecls.end())
4452       DeferredEmptyCoverageMappingDecls[D] = true;
4453     break;
4454   }
4455   default:
4456     break;
4457   };
4458 }
4459 
4460 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4461   // Do we need to generate coverage mapping?
4462   if (!CodeGenOpts.CoverageMapping)
4463     return;
4464   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4465     if (Fn->isTemplateInstantiation())
4466       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4467   }
4468   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4469   if (I == DeferredEmptyCoverageMappingDecls.end())
4470     DeferredEmptyCoverageMappingDecls[D] = false;
4471   else
4472     I->second = false;
4473 }
4474 
4475 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4476   // We call takeVector() here to avoid use-after-free.
4477   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4478   // we deserialize function bodies to emit coverage info for them, and that
4479   // deserializes more declarations. How should we handle that case?
4480   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4481     if (!Entry.second)
4482       continue;
4483     const Decl *D = Entry.first;
4484     switch (D->getKind()) {
4485     case Decl::CXXConversion:
4486     case Decl::CXXMethod:
4487     case Decl::Function:
4488     case Decl::ObjCMethod: {
4489       CodeGenPGO PGO(*this);
4490       GlobalDecl GD(cast<FunctionDecl>(D));
4491       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4492                                   getFunctionLinkage(GD));
4493       break;
4494     }
4495     case Decl::CXXConstructor: {
4496       CodeGenPGO PGO(*this);
4497       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4498       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4499                                   getFunctionLinkage(GD));
4500       break;
4501     }
4502     case Decl::CXXDestructor: {
4503       CodeGenPGO PGO(*this);
4504       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4505       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4506                                   getFunctionLinkage(GD));
4507       break;
4508     }
4509     default:
4510       break;
4511     };
4512   }
4513 }
4514 
4515 /// Turns the given pointer into a constant.
4516 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4517                                           const void *Ptr) {
4518   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4519   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4520   return llvm::ConstantInt::get(i64, PtrInt);
4521 }
4522 
4523 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4524                                    llvm::NamedMDNode *&GlobalMetadata,
4525                                    GlobalDecl D,
4526                                    llvm::GlobalValue *Addr) {
4527   if (!GlobalMetadata)
4528     GlobalMetadata =
4529       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4530 
4531   // TODO: should we report variant information for ctors/dtors?
4532   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4533                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4534                                CGM.getLLVMContext(), D.getDecl()))};
4535   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4536 }
4537 
4538 /// For each function which is declared within an extern "C" region and marked
4539 /// as 'used', but has internal linkage, create an alias from the unmangled
4540 /// name to the mangled name if possible. People expect to be able to refer
4541 /// to such functions with an unmangled name from inline assembly within the
4542 /// same translation unit.
4543 void CodeGenModule::EmitStaticExternCAliases() {
4544   // Don't do anything if we're generating CUDA device code -- the NVPTX
4545   // assembly target doesn't support aliases.
4546   if (Context.getTargetInfo().getTriple().isNVPTX())
4547     return;
4548   for (auto &I : StaticExternCValues) {
4549     IdentifierInfo *Name = I.first;
4550     llvm::GlobalValue *Val = I.second;
4551     if (Val && !getModule().getNamedValue(Name->getName()))
4552       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4553   }
4554 }
4555 
4556 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4557                                              GlobalDecl &Result) const {
4558   auto Res = Manglings.find(MangledName);
4559   if (Res == Manglings.end())
4560     return false;
4561   Result = Res->getValue();
4562   return true;
4563 }
4564 
4565 /// Emits metadata nodes associating all the global values in the
4566 /// current module with the Decls they came from.  This is useful for
4567 /// projects using IR gen as a subroutine.
4568 ///
4569 /// Since there's currently no way to associate an MDNode directly
4570 /// with an llvm::GlobalValue, we create a global named metadata
4571 /// with the name 'clang.global.decl.ptrs'.
4572 void CodeGenModule::EmitDeclMetadata() {
4573   llvm::NamedMDNode *GlobalMetadata = nullptr;
4574 
4575   for (auto &I : MangledDeclNames) {
4576     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4577     // Some mangled names don't necessarily have an associated GlobalValue
4578     // in this module, e.g. if we mangled it for DebugInfo.
4579     if (Addr)
4580       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4581   }
4582 }
4583 
4584 /// Emits metadata nodes for all the local variables in the current
4585 /// function.
4586 void CodeGenFunction::EmitDeclMetadata() {
4587   if (LocalDeclMap.empty()) return;
4588 
4589   llvm::LLVMContext &Context = getLLVMContext();
4590 
4591   // Find the unique metadata ID for this name.
4592   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4593 
4594   llvm::NamedMDNode *GlobalMetadata = nullptr;
4595 
4596   for (auto &I : LocalDeclMap) {
4597     const Decl *D = I.first;
4598     llvm::Value *Addr = I.second.getPointer();
4599     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4600       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4601       Alloca->setMetadata(
4602           DeclPtrKind, llvm::MDNode::get(
4603                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4604     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4605       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4606       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4607     }
4608   }
4609 }
4610 
4611 void CodeGenModule::EmitVersionIdentMetadata() {
4612   llvm::NamedMDNode *IdentMetadata =
4613     TheModule.getOrInsertNamedMetadata("llvm.ident");
4614   std::string Version = getClangFullVersion();
4615   llvm::LLVMContext &Ctx = TheModule.getContext();
4616 
4617   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4618   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4619 }
4620 
4621 void CodeGenModule::EmitTargetMetadata() {
4622   // Warning, new MangledDeclNames may be appended within this loop.
4623   // We rely on MapVector insertions adding new elements to the end
4624   // of the container.
4625   // FIXME: Move this loop into the one target that needs it, and only
4626   // loop over those declarations for which we couldn't emit the target
4627   // metadata when we emitted the declaration.
4628   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4629     auto Val = *(MangledDeclNames.begin() + I);
4630     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4631     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4632     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4633   }
4634 }
4635 
4636 void CodeGenModule::EmitCoverageFile() {
4637   if (getCodeGenOpts().CoverageDataFile.empty() &&
4638       getCodeGenOpts().CoverageNotesFile.empty())
4639     return;
4640 
4641   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4642   if (!CUNode)
4643     return;
4644 
4645   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4646   llvm::LLVMContext &Ctx = TheModule.getContext();
4647   auto *CoverageDataFile =
4648       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4649   auto *CoverageNotesFile =
4650       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4651   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4652     llvm::MDNode *CU = CUNode->getOperand(i);
4653     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4654     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4655   }
4656 }
4657 
4658 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4659   // Sema has checked that all uuid strings are of the form
4660   // "12345678-1234-1234-1234-1234567890ab".
4661   assert(Uuid.size() == 36);
4662   for (unsigned i = 0; i < 36; ++i) {
4663     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4664     else                                         assert(isHexDigit(Uuid[i]));
4665   }
4666 
4667   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4668   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4669 
4670   llvm::Constant *Field3[8];
4671   for (unsigned Idx = 0; Idx < 8; ++Idx)
4672     Field3[Idx] = llvm::ConstantInt::get(
4673         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4674 
4675   llvm::Constant *Fields[4] = {
4676     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4677     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4678     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4679     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4680   };
4681 
4682   return llvm::ConstantStruct::getAnon(Fields);
4683 }
4684 
4685 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4686                                                        bool ForEH) {
4687   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4688   // FIXME: should we even be calling this method if RTTI is disabled
4689   // and it's not for EH?
4690   if (!ForEH && !getLangOpts().RTTI)
4691     return llvm::Constant::getNullValue(Int8PtrTy);
4692 
4693   if (ForEH && Ty->isObjCObjectPointerType() &&
4694       LangOpts.ObjCRuntime.isGNUFamily())
4695     return ObjCRuntime->GetEHType(Ty);
4696 
4697   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4698 }
4699 
4700 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4701   // Do not emit threadprivates in simd-only mode.
4702   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4703     return;
4704   for (auto RefExpr : D->varlists()) {
4705     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4706     bool PerformInit =
4707         VD->getAnyInitializer() &&
4708         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4709                                                         /*ForRef=*/false);
4710 
4711     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4712     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4713             VD, Addr, RefExpr->getLocStart(), PerformInit))
4714       CXXGlobalInits.push_back(InitFunction);
4715   }
4716 }
4717 
4718 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4719   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4720   if (InternalId)
4721     return InternalId;
4722 
4723   if (isExternallyVisible(T->getLinkage())) {
4724     std::string OutName;
4725     llvm::raw_string_ostream Out(OutName);
4726     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4727 
4728     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4729   } else {
4730     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4731                                            llvm::ArrayRef<llvm::Metadata *>());
4732   }
4733 
4734   return InternalId;
4735 }
4736 
4737 // Generalize pointer types to a void pointer with the qualifiers of the
4738 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
4739 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
4740 // 'void *'.
4741 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4742   if (!Ty->isPointerType())
4743     return Ty;
4744 
4745   return Ctx.getPointerType(
4746       QualType(Ctx.VoidTy).withCVRQualifiers(
4747           Ty->getPointeeType().getCVRQualifiers()));
4748 }
4749 
4750 // Apply type generalization to a FunctionType's return and argument types
4751 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4752   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4753     SmallVector<QualType, 8> GeneralizedParams;
4754     for (auto &Param : FnType->param_types())
4755       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4756 
4757     return Ctx.getFunctionType(
4758         GeneralizeType(Ctx, FnType->getReturnType()),
4759         GeneralizedParams, FnType->getExtProtoInfo());
4760   }
4761 
4762   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4763     return Ctx.getFunctionNoProtoType(
4764         GeneralizeType(Ctx, FnType->getReturnType()));
4765 
4766   llvm_unreachable("Encountered unknown FunctionType");
4767 }
4768 
4769 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4770   T = GeneralizeFunctionType(getContext(), T);
4771 
4772   llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4773   if (InternalId)
4774     return InternalId;
4775 
4776   if (isExternallyVisible(T->getLinkage())) {
4777     std::string OutName;
4778     llvm::raw_string_ostream Out(OutName);
4779     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4780     Out << ".generalized";
4781 
4782     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4783   } else {
4784     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4785                                            llvm::ArrayRef<llvm::Metadata *>());
4786   }
4787 
4788   return InternalId;
4789 }
4790 
4791 /// Returns whether this module needs the "all-vtables" type identifier.
4792 bool CodeGenModule::NeedAllVtablesTypeId() const {
4793   // Returns true if at least one of vtable-based CFI checkers is enabled and
4794   // is not in the trapping mode.
4795   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4796            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4797           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4798            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4799           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4800            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4801           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4802            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4803 }
4804 
4805 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4806                                           CharUnits Offset,
4807                                           const CXXRecordDecl *RD) {
4808   llvm::Metadata *MD =
4809       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4810   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4811 
4812   if (CodeGenOpts.SanitizeCfiCrossDso)
4813     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4814       VTable->addTypeMetadata(Offset.getQuantity(),
4815                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4816 
4817   if (NeedAllVtablesTypeId()) {
4818     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4819     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4820   }
4821 }
4822 
4823 // Fills in the supplied string map with the set of target features for the
4824 // passed in function.
4825 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4826                                           const FunctionDecl *FD) {
4827   StringRef TargetCPU = Target.getTargetOpts().CPU;
4828   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4829     // If we have a TargetAttr build up the feature map based on that.
4830     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4831 
4832     ParsedAttr.Features.erase(
4833         llvm::remove_if(ParsedAttr.Features,
4834                         [&](const std::string &Feat) {
4835                           return !Target.isValidFeatureName(
4836                               StringRef{Feat}.substr(1));
4837                         }),
4838         ParsedAttr.Features.end());
4839 
4840     // Make a copy of the features as passed on the command line into the
4841     // beginning of the additional features from the function to override.
4842     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4843                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4844                             Target.getTargetOpts().FeaturesAsWritten.end());
4845 
4846     if (ParsedAttr.Architecture != "" &&
4847         Target.isValidCPUName(ParsedAttr.Architecture))
4848       TargetCPU = ParsedAttr.Architecture;
4849 
4850     // Now populate the feature map, first with the TargetCPU which is either
4851     // the default or a new one from the target attribute string. Then we'll use
4852     // the passed in features (FeaturesAsWritten) along with the new ones from
4853     // the attribute.
4854     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4855                           ParsedAttr.Features);
4856   } else {
4857     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4858                           Target.getTargetOpts().Features);
4859   }
4860 }
4861 
4862 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4863   if (!SanStats)
4864     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4865 
4866   return *SanStats;
4867 }
4868 llvm::Value *
4869 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4870                                                   CodeGenFunction &CGF) {
4871   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
4872   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
4873   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4874   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4875                                 "__translate_sampler_initializer"),
4876                                 {C});
4877 }
4878