xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 188ad3ac02d06cab3ca13241196a3e110f845439)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/Frontend/CodeGenOptions.h"
45 #include "clang/Sema/SemaDiagnostic.h"
46 #include "llvm/ADT/Triple.h"
47 #include "llvm/IR/CallSite.h"
48 #include "llvm/IR/CallingConv.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/ProfileData/InstrProfReader.h"
54 #include "llvm/Support/ConvertUTF.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MD5.h"
57 
58 using namespace clang;
59 using namespace CodeGen;
60 
61 static const char AnnotationSection[] = "llvm.metadata";
62 
63 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
64   switch (CGM.getTarget().getCXXABI().getKind()) {
65   case TargetCXXABI::GenericAArch64:
66   case TargetCXXABI::GenericARM:
67   case TargetCXXABI::iOS:
68   case TargetCXXABI::iOS64:
69   case TargetCXXABI::WatchOS:
70   case TargetCXXABI::GenericMIPS:
71   case TargetCXXABI::GenericItanium:
72   case TargetCXXABI::WebAssembly:
73     return CreateItaniumCXXABI(CGM);
74   case TargetCXXABI::Microsoft:
75     return CreateMicrosoftCXXABI(CGM);
76   }
77 
78   llvm_unreachable("invalid C++ ABI kind");
79 }
80 
81 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
82                              const PreprocessorOptions &PPO,
83                              const CodeGenOptions &CGO, llvm::Module &M,
84                              DiagnosticsEngine &diags,
85                              CoverageSourceInfo *CoverageInfo)
86     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
87       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
88       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
89       VMContext(M.getContext()), Types(*this), VTables(*this),
90       SanitizerMD(new SanitizerMetadata(*this)) {
91 
92   // Initialize the type cache.
93   llvm::LLVMContext &LLVMContext = M.getContext();
94   VoidTy = llvm::Type::getVoidTy(LLVMContext);
95   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
96   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
97   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
98   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
99   FloatTy = llvm::Type::getFloatTy(LLVMContext);
100   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
101   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
102   PointerAlignInBytes =
103     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
104   SizeSizeInBytes =
105     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
106   IntAlignInBytes =
107     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
108   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
109   IntPtrTy = llvm::IntegerType::get(LLVMContext,
110     C.getTargetInfo().getMaxPointerWidth());
111   Int8PtrTy = Int8Ty->getPointerTo(0);
112   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
113 
114   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
115   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
116 
117   if (LangOpts.ObjC1)
118     createObjCRuntime();
119   if (LangOpts.OpenCL)
120     createOpenCLRuntime();
121   if (LangOpts.OpenMP)
122     createOpenMPRuntime();
123   if (LangOpts.CUDA)
124     createCUDARuntime();
125 
126   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
127   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
128       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
129     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
130                                getCXXABI().getMangleContext()));
131 
132   // If debug info or coverage generation is enabled, create the CGDebugInfo
133   // object.
134   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
135       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
136     DebugInfo.reset(new CGDebugInfo(*this));
137 
138   Block.GlobalUniqueCount = 0;
139 
140   if (C.getLangOpts().ObjC1)
141     ObjCData.reset(new ObjCEntrypoints());
142 
143   if (CodeGenOpts.hasProfileClangUse()) {
144     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
145         CodeGenOpts.ProfileInstrumentUsePath);
146     if (auto E = ReaderOrErr.takeError()) {
147       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
148                                               "Could not read profile %0: %1");
149       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
150         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
151                                   << EI.message();
152       });
153     } else
154       PGOReader = std::move(ReaderOrErr.get());
155   }
156 
157   // If coverage mapping generation is enabled, create the
158   // CoverageMappingModuleGen object.
159   if (CodeGenOpts.CoverageMapping)
160     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
161 }
162 
163 CodeGenModule::~CodeGenModule() {}
164 
165 void CodeGenModule::createObjCRuntime() {
166   // This is just isGNUFamily(), but we want to force implementors of
167   // new ABIs to decide how best to do this.
168   switch (LangOpts.ObjCRuntime.getKind()) {
169   case ObjCRuntime::GNUstep:
170   case ObjCRuntime::GCC:
171   case ObjCRuntime::ObjFW:
172     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
173     return;
174 
175   case ObjCRuntime::FragileMacOSX:
176   case ObjCRuntime::MacOSX:
177   case ObjCRuntime::iOS:
178   case ObjCRuntime::WatchOS:
179     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
180     return;
181   }
182   llvm_unreachable("bad runtime kind");
183 }
184 
185 void CodeGenModule::createOpenCLRuntime() {
186   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
187 }
188 
189 void CodeGenModule::createOpenMPRuntime() {
190   // Select a specialized code generation class based on the target, if any.
191   // If it does not exist use the default implementation.
192   switch (getTriple().getArch()) {
193   case llvm::Triple::nvptx:
194   case llvm::Triple::nvptx64:
195     assert(getLangOpts().OpenMPIsDevice &&
196            "OpenMP NVPTX is only prepared to deal with device code.");
197     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
198     break;
199   default:
200     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
201     break;
202   }
203 }
204 
205 void CodeGenModule::createCUDARuntime() {
206   CUDARuntime.reset(CreateNVCUDARuntime(*this));
207 }
208 
209 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
210   Replacements[Name] = C;
211 }
212 
213 void CodeGenModule::applyReplacements() {
214   for (auto &I : Replacements) {
215     StringRef MangledName = I.first();
216     llvm::Constant *Replacement = I.second;
217     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
218     if (!Entry)
219       continue;
220     auto *OldF = cast<llvm::Function>(Entry);
221     auto *NewF = dyn_cast<llvm::Function>(Replacement);
222     if (!NewF) {
223       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
224         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
225       } else {
226         auto *CE = cast<llvm::ConstantExpr>(Replacement);
227         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
228                CE->getOpcode() == llvm::Instruction::GetElementPtr);
229         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
230       }
231     }
232 
233     // Replace old with new, but keep the old order.
234     OldF->replaceAllUsesWith(Replacement);
235     if (NewF) {
236       NewF->removeFromParent();
237       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
238                                                        NewF);
239     }
240     OldF->eraseFromParent();
241   }
242 }
243 
244 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
245   GlobalValReplacements.push_back(std::make_pair(GV, C));
246 }
247 
248 void CodeGenModule::applyGlobalValReplacements() {
249   for (auto &I : GlobalValReplacements) {
250     llvm::GlobalValue *GV = I.first;
251     llvm::Constant *C = I.second;
252 
253     GV->replaceAllUsesWith(C);
254     GV->eraseFromParent();
255   }
256 }
257 
258 // This is only used in aliases that we created and we know they have a
259 // linear structure.
260 static const llvm::GlobalObject *getAliasedGlobal(
261     const llvm::GlobalIndirectSymbol &GIS) {
262   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
263   const llvm::Constant *C = &GIS;
264   for (;;) {
265     C = C->stripPointerCasts();
266     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
267       return GO;
268     // stripPointerCasts will not walk over weak aliases.
269     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
270     if (!GIS2)
271       return nullptr;
272     if (!Visited.insert(GIS2).second)
273       return nullptr;
274     C = GIS2->getIndirectSymbol();
275   }
276 }
277 
278 void CodeGenModule::checkAliases() {
279   // Check if the constructed aliases are well formed. It is really unfortunate
280   // that we have to do this in CodeGen, but we only construct mangled names
281   // and aliases during codegen.
282   bool Error = false;
283   DiagnosticsEngine &Diags = getDiags();
284   for (const GlobalDecl &GD : Aliases) {
285     const auto *D = cast<ValueDecl>(GD.getDecl());
286     SourceLocation Location;
287     bool IsIFunc = D->hasAttr<IFuncAttr>();
288     if (const Attr *A = D->getDefiningAttr())
289       Location = A->getLocation();
290     else
291       llvm_unreachable("Not an alias or ifunc?");
292     StringRef MangledName = getMangledName(GD);
293     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
294     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
295     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
296     if (!GV) {
297       Error = true;
298       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
299     } else if (GV->isDeclaration()) {
300       Error = true;
301       Diags.Report(Location, diag::err_alias_to_undefined)
302           << IsIFunc << IsIFunc;
303     } else if (IsIFunc) {
304       // Check resolver function type.
305       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
306           GV->getType()->getPointerElementType());
307       assert(FTy);
308       if (!FTy->getReturnType()->isPointerTy())
309         Diags.Report(Location, diag::err_ifunc_resolver_return);
310       if (FTy->getNumParams())
311         Diags.Report(Location, diag::err_ifunc_resolver_params);
312     }
313 
314     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
315     llvm::GlobalValue *AliaseeGV;
316     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
317       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
318     else
319       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
320 
321     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
322       StringRef AliasSection = SA->getName();
323       if (AliasSection != AliaseeGV->getSection())
324         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
325             << AliasSection << IsIFunc << IsIFunc;
326     }
327 
328     // We have to handle alias to weak aliases in here. LLVM itself disallows
329     // this since the object semantics would not match the IL one. For
330     // compatibility with gcc we implement it by just pointing the alias
331     // to its aliasee's aliasee. We also warn, since the user is probably
332     // expecting the link to be weak.
333     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
334       if (GA->isInterposable()) {
335         Diags.Report(Location, diag::warn_alias_to_weak_alias)
336             << GV->getName() << GA->getName() << IsIFunc;
337         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
338             GA->getIndirectSymbol(), Alias->getType());
339         Alias->setIndirectSymbol(Aliasee);
340       }
341     }
342   }
343   if (!Error)
344     return;
345 
346   for (const GlobalDecl &GD : Aliases) {
347     StringRef MangledName = getMangledName(GD);
348     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
349     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
350     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
351     Alias->eraseFromParent();
352   }
353 }
354 
355 void CodeGenModule::clear() {
356   DeferredDeclsToEmit.clear();
357   if (OpenMPRuntime)
358     OpenMPRuntime->clear();
359 }
360 
361 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
362                                        StringRef MainFile) {
363   if (!hasDiagnostics())
364     return;
365   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
366     if (MainFile.empty())
367       MainFile = "<stdin>";
368     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
369   } else
370     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
371                                                       << Mismatched;
372 }
373 
374 void CodeGenModule::Release() {
375   EmitDeferred();
376   applyGlobalValReplacements();
377   applyReplacements();
378   checkAliases();
379   EmitCXXGlobalInitFunc();
380   EmitCXXGlobalDtorFunc();
381   EmitCXXThreadLocalInitFunc();
382   if (ObjCRuntime)
383     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
384       AddGlobalCtor(ObjCInitFunction);
385   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
386       CUDARuntime) {
387     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
388       AddGlobalCtor(CudaCtorFunction);
389     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
390       AddGlobalDtor(CudaDtorFunction);
391   }
392   if (OpenMPRuntime)
393     if (llvm::Function *OpenMPRegistrationFunction =
394             OpenMPRuntime->emitRegistrationFunction())
395       AddGlobalCtor(OpenMPRegistrationFunction, 0);
396   if (PGOReader) {
397     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
398     if (PGOStats.hasDiagnostics())
399       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
400   }
401   EmitCtorList(GlobalCtors, "llvm.global_ctors");
402   EmitCtorList(GlobalDtors, "llvm.global_dtors");
403   EmitGlobalAnnotations();
404   EmitStaticExternCAliases();
405   EmitDeferredUnusedCoverageMappings();
406   if (CoverageMapping)
407     CoverageMapping->emit();
408   if (CodeGenOpts.SanitizeCfiCrossDso)
409     CodeGenFunction(*this).EmitCfiCheckFail();
410   emitLLVMUsed();
411   if (SanStats)
412     SanStats->finish();
413 
414   if (CodeGenOpts.Autolink &&
415       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
416     EmitModuleLinkOptions();
417   }
418   if (CodeGenOpts.DwarfVersion) {
419     // We actually want the latest version when there are conflicts.
420     // We can change from Warning to Latest if such mode is supported.
421     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
422                               CodeGenOpts.DwarfVersion);
423   }
424   if (CodeGenOpts.EmitCodeView) {
425     // Indicate that we want CodeView in the metadata.
426     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
427   }
428   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
429     // We don't support LTO with 2 with different StrictVTablePointers
430     // FIXME: we could support it by stripping all the information introduced
431     // by StrictVTablePointers.
432 
433     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
434 
435     llvm::Metadata *Ops[2] = {
436               llvm::MDString::get(VMContext, "StrictVTablePointers"),
437               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
438                   llvm::Type::getInt32Ty(VMContext), 1))};
439 
440     getModule().addModuleFlag(llvm::Module::Require,
441                               "StrictVTablePointersRequirement",
442                               llvm::MDNode::get(VMContext, Ops));
443   }
444   if (DebugInfo)
445     // We support a single version in the linked module. The LLVM
446     // parser will drop debug info with a different version number
447     // (and warn about it, too).
448     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
449                               llvm::DEBUG_METADATA_VERSION);
450 
451   // We need to record the widths of enums and wchar_t, so that we can generate
452   // the correct build attributes in the ARM backend.
453   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
454   if (   Arch == llvm::Triple::arm
455       || Arch == llvm::Triple::armeb
456       || Arch == llvm::Triple::thumb
457       || Arch == llvm::Triple::thumbeb) {
458     // Width of wchar_t in bytes
459     uint64_t WCharWidth =
460         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
461     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
462 
463     // The minimum width of an enum in bytes
464     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
465     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
466   }
467 
468   if (CodeGenOpts.SanitizeCfiCrossDso) {
469     // Indicate that we want cross-DSO control flow integrity checks.
470     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
471   }
472 
473   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
474     // Indicate whether __nvvm_reflect should be configured to flush denormal
475     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
476     // property.)
477     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
478                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
479   }
480 
481   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
482     assert(PLevel < 3 && "Invalid PIC Level");
483     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
484     if (Context.getLangOpts().PIE)
485       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
486   }
487 
488   SimplifyPersonality();
489 
490   if (getCodeGenOpts().EmitDeclMetadata)
491     EmitDeclMetadata();
492 
493   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
494     EmitCoverageFile();
495 
496   if (DebugInfo)
497     DebugInfo->finalize();
498 
499   EmitVersionIdentMetadata();
500 
501   EmitTargetMetadata();
502 }
503 
504 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
505   // Make sure that this type is translated.
506   Types.UpdateCompletedType(TD);
507 }
508 
509 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
510   // Make sure that this type is translated.
511   Types.RefreshTypeCacheForClass(RD);
512 }
513 
514 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
515   if (!TBAA)
516     return nullptr;
517   return TBAA->getTBAAInfo(QTy);
518 }
519 
520 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
521   if (!TBAA)
522     return nullptr;
523   return TBAA->getTBAAInfoForVTablePtr();
524 }
525 
526 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
527   if (!TBAA)
528     return nullptr;
529   return TBAA->getTBAAStructInfo(QTy);
530 }
531 
532 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
533                                                   llvm::MDNode *AccessN,
534                                                   uint64_t O) {
535   if (!TBAA)
536     return nullptr;
537   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
538 }
539 
540 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
541 /// and struct-path aware TBAA, the tag has the same format:
542 /// base type, access type and offset.
543 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
544 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
545                                                 llvm::MDNode *TBAAInfo,
546                                                 bool ConvertTypeToTag) {
547   if (ConvertTypeToTag && TBAA)
548     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
549                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
550   else
551     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
552 }
553 
554 void CodeGenModule::DecorateInstructionWithInvariantGroup(
555     llvm::Instruction *I, const CXXRecordDecl *RD) {
556   llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
557   auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
558   // Check if we have to wrap MDString in MDNode.
559   if (!MetaDataNode)
560     MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
561   I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
562 }
563 
564 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
565   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
566   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
567 }
568 
569 /// ErrorUnsupported - Print out an error that codegen doesn't support the
570 /// specified stmt yet.
571 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
572   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
573                                                "cannot compile this %0 yet");
574   std::string Msg = Type;
575   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
576     << Msg << S->getSourceRange();
577 }
578 
579 /// ErrorUnsupported - Print out an error that codegen doesn't support the
580 /// specified decl yet.
581 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
582   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
583                                                "cannot compile this %0 yet");
584   std::string Msg = Type;
585   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
586 }
587 
588 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
589   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
590 }
591 
592 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
593                                         const NamedDecl *D) const {
594   // Internal definitions always have default visibility.
595   if (GV->hasLocalLinkage()) {
596     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
597     return;
598   }
599 
600   // Set visibility for definitions.
601   LinkageInfo LV = D->getLinkageAndVisibility();
602   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
603     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
604 }
605 
606 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
607   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
608       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
609       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
610       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
611       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
612 }
613 
614 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
615     CodeGenOptions::TLSModel M) {
616   switch (M) {
617   case CodeGenOptions::GeneralDynamicTLSModel:
618     return llvm::GlobalVariable::GeneralDynamicTLSModel;
619   case CodeGenOptions::LocalDynamicTLSModel:
620     return llvm::GlobalVariable::LocalDynamicTLSModel;
621   case CodeGenOptions::InitialExecTLSModel:
622     return llvm::GlobalVariable::InitialExecTLSModel;
623   case CodeGenOptions::LocalExecTLSModel:
624     return llvm::GlobalVariable::LocalExecTLSModel;
625   }
626   llvm_unreachable("Invalid TLS model!");
627 }
628 
629 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
630   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
631 
632   llvm::GlobalValue::ThreadLocalMode TLM;
633   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
634 
635   // Override the TLS model if it is explicitly specified.
636   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
637     TLM = GetLLVMTLSModel(Attr->getModel());
638   }
639 
640   GV->setThreadLocalMode(TLM);
641 }
642 
643 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
644   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
645 
646   // Some ABIs don't have constructor variants.  Make sure that base and
647   // complete constructors get mangled the same.
648   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
649     if (!getTarget().getCXXABI().hasConstructorVariants()) {
650       CXXCtorType OrigCtorType = GD.getCtorType();
651       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
652       if (OrigCtorType == Ctor_Base)
653         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
654     }
655   }
656 
657   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
658   if (!FoundStr.empty())
659     return FoundStr;
660 
661   const auto *ND = cast<NamedDecl>(GD.getDecl());
662   SmallString<256> Buffer;
663   StringRef Str;
664   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
665     llvm::raw_svector_ostream Out(Buffer);
666     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
667       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
668     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
669       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
670     else
671       getCXXABI().getMangleContext().mangleName(ND, Out);
672     Str = Out.str();
673   } else {
674     IdentifierInfo *II = ND->getIdentifier();
675     assert(II && "Attempt to mangle unnamed decl.");
676     Str = II->getName();
677   }
678 
679   // Keep the first result in the case of a mangling collision.
680   auto Result = Manglings.insert(std::make_pair(Str, GD));
681   return FoundStr = Result.first->first();
682 }
683 
684 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
685                                              const BlockDecl *BD) {
686   MangleContext &MangleCtx = getCXXABI().getMangleContext();
687   const Decl *D = GD.getDecl();
688 
689   SmallString<256> Buffer;
690   llvm::raw_svector_ostream Out(Buffer);
691   if (!D)
692     MangleCtx.mangleGlobalBlock(BD,
693       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
694   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
695     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
696   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
697     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
698   else
699     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
700 
701   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
702   return Result.first->first();
703 }
704 
705 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
706   return getModule().getNamedValue(Name);
707 }
708 
709 /// AddGlobalCtor - Add a function to the list that will be called before
710 /// main() runs.
711 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
712                                   llvm::Constant *AssociatedData) {
713   // FIXME: Type coercion of void()* types.
714   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
715 }
716 
717 /// AddGlobalDtor - Add a function to the list that will be called
718 /// when the module is unloaded.
719 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
720   // FIXME: Type coercion of void()* types.
721   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
722 }
723 
724 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
725   // Ctor function type is void()*.
726   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
727   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
728 
729   // Get the type of a ctor entry, { i32, void ()*, i8* }.
730   llvm::StructType *CtorStructTy = llvm::StructType::get(
731       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
732 
733   // Construct the constructor and destructor arrays.
734   SmallVector<llvm::Constant *, 8> Ctors;
735   for (const auto &I : Fns) {
736     llvm::Constant *S[] = {
737         llvm::ConstantInt::get(Int32Ty, I.Priority, false),
738         llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy),
739         (I.AssociatedData
740              ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)
741              : llvm::Constant::getNullValue(VoidPtrTy))};
742     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
743   }
744 
745   if (!Ctors.empty()) {
746     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
747     new llvm::GlobalVariable(TheModule, AT, false,
748                              llvm::GlobalValue::AppendingLinkage,
749                              llvm::ConstantArray::get(AT, Ctors),
750                              GlobalName);
751   }
752   Fns.clear();
753 }
754 
755 llvm::GlobalValue::LinkageTypes
756 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
757   const auto *D = cast<FunctionDecl>(GD.getDecl());
758 
759   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
760 
761   if (isa<CXXDestructorDecl>(D) &&
762       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
763                                          GD.getDtorType())) {
764     // Destructor variants in the Microsoft C++ ABI are always internal or
765     // linkonce_odr thunks emitted on an as-needed basis.
766     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
767                                    : llvm::GlobalValue::LinkOnceODRLinkage;
768   }
769 
770   if (isa<CXXConstructorDecl>(D) &&
771       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
772       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
773     // Our approach to inheriting constructors is fundamentally different from
774     // that used by the MS ABI, so keep our inheriting constructor thunks
775     // internal rather than trying to pick an unambiguous mangling for them.
776     return llvm::GlobalValue::InternalLinkage;
777   }
778 
779   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
780 }
781 
782 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
783   const auto *FD = cast<FunctionDecl>(GD.getDecl());
784 
785   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
786     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
787       // Don't dllexport/import destructor thunks.
788       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
789       return;
790     }
791   }
792 
793   if (FD->hasAttr<DLLImportAttr>())
794     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
795   else if (FD->hasAttr<DLLExportAttr>())
796     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
797   else
798     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
799 }
800 
801 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
802   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
803   if (!MDS) return nullptr;
804 
805   llvm::MD5 md5;
806   llvm::MD5::MD5Result result;
807   md5.update(MDS->getString());
808   md5.final(result);
809   uint64_t id = 0;
810   for (int i = 0; i < 8; ++i)
811     id |= static_cast<uint64_t>(result[i]) << (i * 8);
812   return llvm::ConstantInt::get(Int64Ty, id);
813 }
814 
815 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
816                                                     llvm::Function *F) {
817   setNonAliasAttributes(D, F);
818 }
819 
820 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
821                                               const CGFunctionInfo &Info,
822                                               llvm::Function *F) {
823   unsigned CallingConv;
824   AttributeListType AttributeList;
825   ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
826                          false);
827   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
828   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
829 }
830 
831 /// Determines whether the language options require us to model
832 /// unwind exceptions.  We treat -fexceptions as mandating this
833 /// except under the fragile ObjC ABI with only ObjC exceptions
834 /// enabled.  This means, for example, that C with -fexceptions
835 /// enables this.
836 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
837   // If exceptions are completely disabled, obviously this is false.
838   if (!LangOpts.Exceptions) return false;
839 
840   // If C++ exceptions are enabled, this is true.
841   if (LangOpts.CXXExceptions) return true;
842 
843   // If ObjC exceptions are enabled, this depends on the ABI.
844   if (LangOpts.ObjCExceptions) {
845     return LangOpts.ObjCRuntime.hasUnwindExceptions();
846   }
847 
848   return true;
849 }
850 
851 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
852                                                            llvm::Function *F) {
853   llvm::AttrBuilder B;
854 
855   if (CodeGenOpts.UnwindTables)
856     B.addAttribute(llvm::Attribute::UWTable);
857 
858   if (!hasUnwindExceptions(LangOpts))
859     B.addAttribute(llvm::Attribute::NoUnwind);
860 
861   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
862     B.addAttribute(llvm::Attribute::StackProtect);
863   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
864     B.addAttribute(llvm::Attribute::StackProtectStrong);
865   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
866     B.addAttribute(llvm::Attribute::StackProtectReq);
867 
868   if (!D) {
869     F->addAttributes(llvm::AttributeSet::FunctionIndex,
870                      llvm::AttributeSet::get(
871                          F->getContext(),
872                          llvm::AttributeSet::FunctionIndex, B));
873     return;
874   }
875 
876   if (D->hasAttr<NakedAttr>()) {
877     // Naked implies noinline: we should not be inlining such functions.
878     B.addAttribute(llvm::Attribute::Naked);
879     B.addAttribute(llvm::Attribute::NoInline);
880   } else if (D->hasAttr<NoDuplicateAttr>()) {
881     B.addAttribute(llvm::Attribute::NoDuplicate);
882   } else if (D->hasAttr<NoInlineAttr>()) {
883     B.addAttribute(llvm::Attribute::NoInline);
884   } else if (D->hasAttr<AlwaysInlineAttr>() &&
885              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
886                                               llvm::Attribute::NoInline)) {
887     // (noinline wins over always_inline, and we can't specify both in IR)
888     B.addAttribute(llvm::Attribute::AlwaysInline);
889   }
890 
891   if (D->hasAttr<ColdAttr>()) {
892     if (!D->hasAttr<OptimizeNoneAttr>())
893       B.addAttribute(llvm::Attribute::OptimizeForSize);
894     B.addAttribute(llvm::Attribute::Cold);
895   }
896 
897   if (D->hasAttr<MinSizeAttr>())
898     B.addAttribute(llvm::Attribute::MinSize);
899 
900   F->addAttributes(llvm::AttributeSet::FunctionIndex,
901                    llvm::AttributeSet::get(
902                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
903 
904   if (D->hasAttr<OptimizeNoneAttr>()) {
905     // OptimizeNone implies noinline; we should not be inlining such functions.
906     F->addFnAttr(llvm::Attribute::OptimizeNone);
907     F->addFnAttr(llvm::Attribute::NoInline);
908 
909     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
910     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
911     F->removeFnAttr(llvm::Attribute::MinSize);
912     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
913            "OptimizeNone and AlwaysInline on same function!");
914 
915     // Attribute 'inlinehint' has no effect on 'optnone' functions.
916     // Explicitly remove it from the set of function attributes.
917     F->removeFnAttr(llvm::Attribute::InlineHint);
918   }
919 
920   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
921   if (alignment)
922     F->setAlignment(alignment);
923 
924   // Some C++ ABIs require 2-byte alignment for member functions, in order to
925   // reserve a bit for differentiating between virtual and non-virtual member
926   // functions. If the current target's C++ ABI requires this and this is a
927   // member function, set its alignment accordingly.
928   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
929     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
930       F->setAlignment(2);
931   }
932 }
933 
934 void CodeGenModule::SetCommonAttributes(const Decl *D,
935                                         llvm::GlobalValue *GV) {
936   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
937     setGlobalVisibility(GV, ND);
938   else
939     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
940 
941   if (D && D->hasAttr<UsedAttr>())
942     addUsedGlobal(GV);
943 }
944 
945 void CodeGenModule::setAliasAttributes(const Decl *D,
946                                        llvm::GlobalValue *GV) {
947   SetCommonAttributes(D, GV);
948 
949   // Process the dllexport attribute based on whether the original definition
950   // (not necessarily the aliasee) was exported.
951   if (D->hasAttr<DLLExportAttr>())
952     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
953 }
954 
955 void CodeGenModule::setNonAliasAttributes(const Decl *D,
956                                           llvm::GlobalObject *GO) {
957   SetCommonAttributes(D, GO);
958 
959   if (D)
960     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
961       GO->setSection(SA->getName());
962 
963   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
964 }
965 
966 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
967                                                   llvm::Function *F,
968                                                   const CGFunctionInfo &FI) {
969   SetLLVMFunctionAttributes(D, FI, F);
970   SetLLVMFunctionAttributesForDefinition(D, F);
971 
972   F->setLinkage(llvm::Function::InternalLinkage);
973 
974   setNonAliasAttributes(D, F);
975 }
976 
977 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
978                                          const NamedDecl *ND) {
979   // Set linkage and visibility in case we never see a definition.
980   LinkageInfo LV = ND->getLinkageAndVisibility();
981   if (LV.getLinkage() != ExternalLinkage) {
982     // Don't set internal linkage on declarations.
983   } else {
984     if (ND->hasAttr<DLLImportAttr>()) {
985       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
986       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
987     } else if (ND->hasAttr<DLLExportAttr>()) {
988       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
989       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
990     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
991       // "extern_weak" is overloaded in LLVM; we probably should have
992       // separate linkage types for this.
993       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
994     }
995 
996     // Set visibility on a declaration only if it's explicit.
997     if (LV.isVisibilityExplicit())
998       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
999   }
1000 }
1001 
1002 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1003                                                llvm::Function *F) {
1004   // Only if we are checking indirect calls.
1005   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1006     return;
1007 
1008   // Non-static class methods are handled via vtable pointer checks elsewhere.
1009   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1010     return;
1011 
1012   // Additionally, if building with cross-DSO support...
1013   if (CodeGenOpts.SanitizeCfiCrossDso) {
1014     // Don't emit entries for function declarations. In cross-DSO mode these are
1015     // handled with better precision at run time.
1016     if (!FD->hasBody())
1017       return;
1018     // Skip available_externally functions. They won't be codegen'ed in the
1019     // current module anyway.
1020     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1021       return;
1022   }
1023 
1024   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1025   F->addTypeMetadata(0, MD);
1026 
1027   // Emit a hash-based bit set entry for cross-DSO calls.
1028   if (CodeGenOpts.SanitizeCfiCrossDso)
1029     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1030       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1031 }
1032 
1033 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1034                                           bool IsIncompleteFunction,
1035                                           bool IsThunk) {
1036   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1037     // If this is an intrinsic function, set the function's attributes
1038     // to the intrinsic's attributes.
1039     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1040     return;
1041   }
1042 
1043   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1044 
1045   if (!IsIncompleteFunction)
1046     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1047 
1048   // Add the Returned attribute for "this", except for iOS 5 and earlier
1049   // where substantial code, including the libstdc++ dylib, was compiled with
1050   // GCC and does not actually return "this".
1051   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1052       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1053     assert(!F->arg_empty() &&
1054            F->arg_begin()->getType()
1055              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1056            "unexpected this return");
1057     F->addAttribute(1, llvm::Attribute::Returned);
1058   }
1059 
1060   // Only a few attributes are set on declarations; these may later be
1061   // overridden by a definition.
1062 
1063   setLinkageAndVisibilityForGV(F, FD);
1064 
1065   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1066     F->setSection(SA->getName());
1067 
1068   if (FD->isReplaceableGlobalAllocationFunction()) {
1069     // A replaceable global allocation function does not act like a builtin by
1070     // default, only if it is invoked by a new-expression or delete-expression.
1071     F->addAttribute(llvm::AttributeSet::FunctionIndex,
1072                     llvm::Attribute::NoBuiltin);
1073 
1074     // A sane operator new returns a non-aliasing pointer.
1075     // FIXME: Also add NonNull attribute to the return value
1076     // for the non-nothrow forms?
1077     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1078     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1079         (Kind == OO_New || Kind == OO_Array_New))
1080       F->addAttribute(llvm::AttributeSet::ReturnIndex,
1081                       llvm::Attribute::NoAlias);
1082   }
1083 
1084   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1085     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1086   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1087     if (MD->isVirtual())
1088       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1089 
1090   CreateFunctionTypeMetadata(FD, F);
1091 }
1092 
1093 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1094   assert(!GV->isDeclaration() &&
1095          "Only globals with definition can force usage.");
1096   LLVMUsed.emplace_back(GV);
1097 }
1098 
1099 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1100   assert(!GV->isDeclaration() &&
1101          "Only globals with definition can force usage.");
1102   LLVMCompilerUsed.emplace_back(GV);
1103 }
1104 
1105 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1106                      std::vector<llvm::WeakVH> &List) {
1107   // Don't create llvm.used if there is no need.
1108   if (List.empty())
1109     return;
1110 
1111   // Convert List to what ConstantArray needs.
1112   SmallVector<llvm::Constant*, 8> UsedArray;
1113   UsedArray.resize(List.size());
1114   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1115     UsedArray[i] =
1116         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1117             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1118   }
1119 
1120   if (UsedArray.empty())
1121     return;
1122   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1123 
1124   auto *GV = new llvm::GlobalVariable(
1125       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1126       llvm::ConstantArray::get(ATy, UsedArray), Name);
1127 
1128   GV->setSection("llvm.metadata");
1129 }
1130 
1131 void CodeGenModule::emitLLVMUsed() {
1132   emitUsed(*this, "llvm.used", LLVMUsed);
1133   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1134 }
1135 
1136 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1137   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1138   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1139 }
1140 
1141 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1142   llvm::SmallString<32> Opt;
1143   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1144   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1145   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1146 }
1147 
1148 void CodeGenModule::AddDependentLib(StringRef Lib) {
1149   llvm::SmallString<24> Opt;
1150   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1151   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1152   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1153 }
1154 
1155 /// \brief Add link options implied by the given module, including modules
1156 /// it depends on, using a postorder walk.
1157 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1158                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1159                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1160   // Import this module's parent.
1161   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1162     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1163   }
1164 
1165   // Import this module's dependencies.
1166   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1167     if (Visited.insert(Mod->Imports[I - 1]).second)
1168       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1169   }
1170 
1171   // Add linker options to link against the libraries/frameworks
1172   // described by this module.
1173   llvm::LLVMContext &Context = CGM.getLLVMContext();
1174   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1175     // Link against a framework.  Frameworks are currently Darwin only, so we
1176     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1177     if (Mod->LinkLibraries[I-1].IsFramework) {
1178       llvm::Metadata *Args[2] = {
1179           llvm::MDString::get(Context, "-framework"),
1180           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1181 
1182       Metadata.push_back(llvm::MDNode::get(Context, Args));
1183       continue;
1184     }
1185 
1186     // Link against a library.
1187     llvm::SmallString<24> Opt;
1188     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1189       Mod->LinkLibraries[I-1].Library, Opt);
1190     auto *OptString = llvm::MDString::get(Context, Opt);
1191     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1192   }
1193 }
1194 
1195 void CodeGenModule::EmitModuleLinkOptions() {
1196   // Collect the set of all of the modules we want to visit to emit link
1197   // options, which is essentially the imported modules and all of their
1198   // non-explicit child modules.
1199   llvm::SetVector<clang::Module *> LinkModules;
1200   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1201   SmallVector<clang::Module *, 16> Stack;
1202 
1203   // Seed the stack with imported modules.
1204   for (Module *M : ImportedModules)
1205     if (Visited.insert(M).second)
1206       Stack.push_back(M);
1207 
1208   // Find all of the modules to import, making a little effort to prune
1209   // non-leaf modules.
1210   while (!Stack.empty()) {
1211     clang::Module *Mod = Stack.pop_back_val();
1212 
1213     bool AnyChildren = false;
1214 
1215     // Visit the submodules of this module.
1216     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1217                                         SubEnd = Mod->submodule_end();
1218          Sub != SubEnd; ++Sub) {
1219       // Skip explicit children; they need to be explicitly imported to be
1220       // linked against.
1221       if ((*Sub)->IsExplicit)
1222         continue;
1223 
1224       if (Visited.insert(*Sub).second) {
1225         Stack.push_back(*Sub);
1226         AnyChildren = true;
1227       }
1228     }
1229 
1230     // We didn't find any children, so add this module to the list of
1231     // modules to link against.
1232     if (!AnyChildren) {
1233       LinkModules.insert(Mod);
1234     }
1235   }
1236 
1237   // Add link options for all of the imported modules in reverse topological
1238   // order.  We don't do anything to try to order import link flags with respect
1239   // to linker options inserted by things like #pragma comment().
1240   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1241   Visited.clear();
1242   for (Module *M : LinkModules)
1243     if (Visited.insert(M).second)
1244       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1245   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1246   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1247 
1248   // Add the linker options metadata flag.
1249   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1250                             llvm::MDNode::get(getLLVMContext(),
1251                                               LinkerOptionsMetadata));
1252 }
1253 
1254 void CodeGenModule::EmitDeferred() {
1255   // Emit code for any potentially referenced deferred decls.  Since a
1256   // previously unused static decl may become used during the generation of code
1257   // for a static function, iterate until no changes are made.
1258 
1259   if (!DeferredVTables.empty()) {
1260     EmitDeferredVTables();
1261 
1262     // Emitting a vtable doesn't directly cause more vtables to
1263     // become deferred, although it can cause functions to be
1264     // emitted that then need those vtables.
1265     assert(DeferredVTables.empty());
1266   }
1267 
1268   // Stop if we're out of both deferred vtables and deferred declarations.
1269   if (DeferredDeclsToEmit.empty())
1270     return;
1271 
1272   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1273   // work, it will not interfere with this.
1274   std::vector<DeferredGlobal> CurDeclsToEmit;
1275   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1276 
1277   for (DeferredGlobal &G : CurDeclsToEmit) {
1278     GlobalDecl D = G.GD;
1279     G.GV = nullptr;
1280 
1281     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1282     // to get GlobalValue with exactly the type we need, not something that
1283     // might had been created for another decl with the same mangled name but
1284     // different type.
1285     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1286         GetAddrOfGlobal(D, /*IsForDefinition=*/true));
1287 
1288     // In case of different address spaces, we may still get a cast, even with
1289     // IsForDefinition equal to true. Query mangled names table to get
1290     // GlobalValue.
1291     if (!GV)
1292       GV = GetGlobalValue(getMangledName(D));
1293 
1294     // Make sure GetGlobalValue returned non-null.
1295     assert(GV);
1296 
1297     // Check to see if we've already emitted this.  This is necessary
1298     // for a couple of reasons: first, decls can end up in the
1299     // deferred-decls queue multiple times, and second, decls can end
1300     // up with definitions in unusual ways (e.g. by an extern inline
1301     // function acquiring a strong function redefinition).  Just
1302     // ignore these cases.
1303     if (!GV->isDeclaration())
1304       continue;
1305 
1306     // Otherwise, emit the definition and move on to the next one.
1307     EmitGlobalDefinition(D, GV);
1308 
1309     // If we found out that we need to emit more decls, do that recursively.
1310     // This has the advantage that the decls are emitted in a DFS and related
1311     // ones are close together, which is convenient for testing.
1312     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1313       EmitDeferred();
1314       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1315     }
1316   }
1317 }
1318 
1319 void CodeGenModule::EmitGlobalAnnotations() {
1320   if (Annotations.empty())
1321     return;
1322 
1323   // Create a new global variable for the ConstantStruct in the Module.
1324   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1325     Annotations[0]->getType(), Annotations.size()), Annotations);
1326   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1327                                       llvm::GlobalValue::AppendingLinkage,
1328                                       Array, "llvm.global.annotations");
1329   gv->setSection(AnnotationSection);
1330 }
1331 
1332 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1333   llvm::Constant *&AStr = AnnotationStrings[Str];
1334   if (AStr)
1335     return AStr;
1336 
1337   // Not found yet, create a new global.
1338   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1339   auto *gv =
1340       new llvm::GlobalVariable(getModule(), s->getType(), true,
1341                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1342   gv->setSection(AnnotationSection);
1343   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1344   AStr = gv;
1345   return gv;
1346 }
1347 
1348 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1349   SourceManager &SM = getContext().getSourceManager();
1350   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1351   if (PLoc.isValid())
1352     return EmitAnnotationString(PLoc.getFilename());
1353   return EmitAnnotationString(SM.getBufferName(Loc));
1354 }
1355 
1356 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1357   SourceManager &SM = getContext().getSourceManager();
1358   PresumedLoc PLoc = SM.getPresumedLoc(L);
1359   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1360     SM.getExpansionLineNumber(L);
1361   return llvm::ConstantInt::get(Int32Ty, LineNo);
1362 }
1363 
1364 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1365                                                 const AnnotateAttr *AA,
1366                                                 SourceLocation L) {
1367   // Get the globals for file name, annotation, and the line number.
1368   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1369                  *UnitGV = EmitAnnotationUnit(L),
1370                  *LineNoCst = EmitAnnotationLineNo(L);
1371 
1372   // Create the ConstantStruct for the global annotation.
1373   llvm::Constant *Fields[4] = {
1374     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1375     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1376     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1377     LineNoCst
1378   };
1379   return llvm::ConstantStruct::getAnon(Fields);
1380 }
1381 
1382 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1383                                          llvm::GlobalValue *GV) {
1384   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1385   // Get the struct elements for these annotations.
1386   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1387     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1388 }
1389 
1390 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1391                                            SourceLocation Loc) const {
1392   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1393   // Blacklist by function name.
1394   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1395     return true;
1396   // Blacklist by location.
1397   if (Loc.isValid())
1398     return SanitizerBL.isBlacklistedLocation(Loc);
1399   // If location is unknown, this may be a compiler-generated function. Assume
1400   // it's located in the main file.
1401   auto &SM = Context.getSourceManager();
1402   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1403     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1404   }
1405   return false;
1406 }
1407 
1408 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1409                                            SourceLocation Loc, QualType Ty,
1410                                            StringRef Category) const {
1411   // For now globals can be blacklisted only in ASan and KASan.
1412   if (!LangOpts.Sanitize.hasOneOf(
1413           SanitizerKind::Address | SanitizerKind::KernelAddress))
1414     return false;
1415   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1416   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1417     return true;
1418   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1419     return true;
1420   // Check global type.
1421   if (!Ty.isNull()) {
1422     // Drill down the array types: if global variable of a fixed type is
1423     // blacklisted, we also don't instrument arrays of them.
1424     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1425       Ty = AT->getElementType();
1426     Ty = Ty.getCanonicalType().getUnqualifiedType();
1427     // We allow to blacklist only record types (classes, structs etc.)
1428     if (Ty->isRecordType()) {
1429       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1430       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1431         return true;
1432     }
1433   }
1434   return false;
1435 }
1436 
1437 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1438   // Never defer when EmitAllDecls is specified.
1439   if (LangOpts.EmitAllDecls)
1440     return true;
1441 
1442   return getContext().DeclMustBeEmitted(Global);
1443 }
1444 
1445 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1446   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1447     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1448       // Implicit template instantiations may change linkage if they are later
1449       // explicitly instantiated, so they should not be emitted eagerly.
1450       return false;
1451   if (const auto *VD = dyn_cast<VarDecl>(Global))
1452     if (Context.getInlineVariableDefinitionKind(VD) ==
1453         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1454       // A definition of an inline constexpr static data member may change
1455       // linkage later if it's redeclared outside the class.
1456       return false;
1457   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1458   // codegen for global variables, because they may be marked as threadprivate.
1459   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1460       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1461     return false;
1462 
1463   return true;
1464 }
1465 
1466 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1467     const CXXUuidofExpr* E) {
1468   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1469   // well-formed.
1470   StringRef Uuid = E->getUuidStr();
1471   std::string Name = "_GUID_" + Uuid.lower();
1472   std::replace(Name.begin(), Name.end(), '-', '_');
1473 
1474   // The UUID descriptor should be pointer aligned.
1475   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1476 
1477   // Look for an existing global.
1478   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1479     return ConstantAddress(GV, Alignment);
1480 
1481   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1482   assert(Init && "failed to initialize as constant");
1483 
1484   auto *GV = new llvm::GlobalVariable(
1485       getModule(), Init->getType(),
1486       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1487   if (supportsCOMDAT())
1488     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1489   return ConstantAddress(GV, Alignment);
1490 }
1491 
1492 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1493   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1494   assert(AA && "No alias?");
1495 
1496   CharUnits Alignment = getContext().getDeclAlign(VD);
1497   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1498 
1499   // See if there is already something with the target's name in the module.
1500   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1501   if (Entry) {
1502     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1503     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1504     return ConstantAddress(Ptr, Alignment);
1505   }
1506 
1507   llvm::Constant *Aliasee;
1508   if (isa<llvm::FunctionType>(DeclTy))
1509     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1510                                       GlobalDecl(cast<FunctionDecl>(VD)),
1511                                       /*ForVTable=*/false);
1512   else
1513     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1514                                     llvm::PointerType::getUnqual(DeclTy),
1515                                     nullptr);
1516 
1517   auto *F = cast<llvm::GlobalValue>(Aliasee);
1518   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1519   WeakRefReferences.insert(F);
1520 
1521   return ConstantAddress(Aliasee, Alignment);
1522 }
1523 
1524 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1525   const auto *Global = cast<ValueDecl>(GD.getDecl());
1526 
1527   // Weak references don't produce any output by themselves.
1528   if (Global->hasAttr<WeakRefAttr>())
1529     return;
1530 
1531   // If this is an alias definition (which otherwise looks like a declaration)
1532   // emit it now.
1533   if (Global->hasAttr<AliasAttr>())
1534     return EmitAliasDefinition(GD);
1535 
1536   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1537   if (Global->hasAttr<IFuncAttr>())
1538     return emitIFuncDefinition(GD);
1539 
1540   // If this is CUDA, be selective about which declarations we emit.
1541   if (LangOpts.CUDA) {
1542     if (LangOpts.CUDAIsDevice) {
1543       if (!Global->hasAttr<CUDADeviceAttr>() &&
1544           !Global->hasAttr<CUDAGlobalAttr>() &&
1545           !Global->hasAttr<CUDAConstantAttr>() &&
1546           !Global->hasAttr<CUDASharedAttr>())
1547         return;
1548     } else {
1549       // We need to emit host-side 'shadows' for all global
1550       // device-side variables because the CUDA runtime needs their
1551       // size and host-side address in order to provide access to
1552       // their device-side incarnations.
1553 
1554       // So device-only functions are the only things we skip.
1555       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1556           Global->hasAttr<CUDADeviceAttr>())
1557         return;
1558 
1559       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1560              "Expected Variable or Function");
1561     }
1562   }
1563 
1564   if (LangOpts.OpenMP) {
1565     // If this is OpenMP device, check if it is legal to emit this global
1566     // normally.
1567     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1568       return;
1569     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1570       if (MustBeEmitted(Global))
1571         EmitOMPDeclareReduction(DRD);
1572       return;
1573     }
1574   }
1575 
1576   // Ignore declarations, they will be emitted on their first use.
1577   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1578     // Forward declarations are emitted lazily on first use.
1579     if (!FD->doesThisDeclarationHaveABody()) {
1580       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1581         return;
1582 
1583       StringRef MangledName = getMangledName(GD);
1584 
1585       // Compute the function info and LLVM type.
1586       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1587       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1588 
1589       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1590                               /*DontDefer=*/false);
1591       return;
1592     }
1593   } else {
1594     const auto *VD = cast<VarDecl>(Global);
1595     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1596     // We need to emit device-side global CUDA variables even if a
1597     // variable does not have a definition -- we still need to define
1598     // host-side shadow for it.
1599     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1600                            !VD->hasDefinition() &&
1601                            (VD->hasAttr<CUDAConstantAttr>() ||
1602                             VD->hasAttr<CUDADeviceAttr>());
1603     if (!MustEmitForCuda &&
1604         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1605         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1606       // If this declaration may have caused an inline variable definition to
1607       // change linkage, make sure that it's emitted.
1608       if (Context.getInlineVariableDefinitionKind(VD) ==
1609           ASTContext::InlineVariableDefinitionKind::Strong)
1610         GetAddrOfGlobalVar(VD);
1611       return;
1612     }
1613   }
1614 
1615   // Defer code generation to first use when possible, e.g. if this is an inline
1616   // function. If the global must always be emitted, do it eagerly if possible
1617   // to benefit from cache locality.
1618   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1619     // Emit the definition if it can't be deferred.
1620     EmitGlobalDefinition(GD);
1621     return;
1622   }
1623 
1624   // If we're deferring emission of a C++ variable with an
1625   // initializer, remember the order in which it appeared in the file.
1626   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1627       cast<VarDecl>(Global)->hasInit()) {
1628     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1629     CXXGlobalInits.push_back(nullptr);
1630   }
1631 
1632   StringRef MangledName = getMangledName(GD);
1633   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1634     // The value has already been used and should therefore be emitted.
1635     addDeferredDeclToEmit(GV, GD);
1636   } else if (MustBeEmitted(Global)) {
1637     // The value must be emitted, but cannot be emitted eagerly.
1638     assert(!MayBeEmittedEagerly(Global));
1639     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1640   } else {
1641     // Otherwise, remember that we saw a deferred decl with this name.  The
1642     // first use of the mangled name will cause it to move into
1643     // DeferredDeclsToEmit.
1644     DeferredDecls[MangledName] = GD;
1645   }
1646 }
1647 
1648 namespace {
1649   struct FunctionIsDirectlyRecursive :
1650     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1651     const StringRef Name;
1652     const Builtin::Context &BI;
1653     bool Result;
1654     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1655       Name(N), BI(C), Result(false) {
1656     }
1657     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1658 
1659     bool TraverseCallExpr(CallExpr *E) {
1660       const FunctionDecl *FD = E->getDirectCallee();
1661       if (!FD)
1662         return true;
1663       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1664       if (Attr && Name == Attr->getLabel()) {
1665         Result = true;
1666         return false;
1667       }
1668       unsigned BuiltinID = FD->getBuiltinID();
1669       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1670         return true;
1671       StringRef BuiltinName = BI.getName(BuiltinID);
1672       if (BuiltinName.startswith("__builtin_") &&
1673           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1674         Result = true;
1675         return false;
1676       }
1677       return true;
1678     }
1679   };
1680 
1681   struct DLLImportFunctionVisitor
1682       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1683     bool SafeToInline = true;
1684 
1685     bool shouldVisitImplicitCode() const { return true; }
1686 
1687     bool VisitVarDecl(VarDecl *VD) {
1688       // A thread-local variable cannot be imported.
1689       SafeToInline = !VD->getTLSKind();
1690       return SafeToInline;
1691     }
1692 
1693     // Make sure we're not referencing non-imported vars or functions.
1694     bool VisitDeclRefExpr(DeclRefExpr *E) {
1695       ValueDecl *VD = E->getDecl();
1696       if (isa<FunctionDecl>(VD))
1697         SafeToInline = VD->hasAttr<DLLImportAttr>();
1698       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1699         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1700       return SafeToInline;
1701     }
1702     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
1703       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
1704       return SafeToInline;
1705     }
1706     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1707       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1708       return SafeToInline;
1709     }
1710     bool VisitCXXNewExpr(CXXNewExpr *E) {
1711       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1712       return SafeToInline;
1713     }
1714   };
1715 }
1716 
1717 // isTriviallyRecursive - Check if this function calls another
1718 // decl that, because of the asm attribute or the other decl being a builtin,
1719 // ends up pointing to itself.
1720 bool
1721 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1722   StringRef Name;
1723   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1724     // asm labels are a special kind of mangling we have to support.
1725     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1726     if (!Attr)
1727       return false;
1728     Name = Attr->getLabel();
1729   } else {
1730     Name = FD->getName();
1731   }
1732 
1733   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1734   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1735   return Walker.Result;
1736 }
1737 
1738 // Check if T is a class type with a destructor that's not dllimport.
1739 static bool HasNonDllImportDtor(QualType T) {
1740   if (const RecordType *RT = dyn_cast<RecordType>(T))
1741     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1742       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1743         return true;
1744 
1745   return false;
1746 }
1747 
1748 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1749   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1750     return true;
1751   const auto *F = cast<FunctionDecl>(GD.getDecl());
1752   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1753     return false;
1754 
1755   if (F->hasAttr<DLLImportAttr>()) {
1756     // Check whether it would be safe to inline this dllimport function.
1757     DLLImportFunctionVisitor Visitor;
1758     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1759     if (!Visitor.SafeToInline)
1760       return false;
1761 
1762     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
1763       // Implicit destructor invocations aren't captured in the AST, so the
1764       // check above can't see them. Check for them manually here.
1765       for (const Decl *Member : Dtor->getParent()->decls())
1766         if (isa<FieldDecl>(Member))
1767           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
1768             return false;
1769       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
1770         if (HasNonDllImportDtor(B.getType()))
1771           return false;
1772     }
1773   }
1774 
1775   // PR9614. Avoid cases where the source code is lying to us. An available
1776   // externally function should have an equivalent function somewhere else,
1777   // but a function that calls itself is clearly not equivalent to the real
1778   // implementation.
1779   // This happens in glibc's btowc and in some configure checks.
1780   return !isTriviallyRecursive(F);
1781 }
1782 
1783 /// If the type for the method's class was generated by
1784 /// CGDebugInfo::createContextChain(), the cache contains only a
1785 /// limited DIType without any declarations. Since EmitFunctionStart()
1786 /// needs to find the canonical declaration for each method, we need
1787 /// to construct the complete type prior to emitting the method.
1788 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1789   if (!D->isInstance())
1790     return;
1791 
1792   if (CGDebugInfo *DI = getModuleDebugInfo())
1793     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
1794       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1795       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1796     }
1797 }
1798 
1799 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1800   const auto *D = cast<ValueDecl>(GD.getDecl());
1801 
1802   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1803                                  Context.getSourceManager(),
1804                                  "Generating code for declaration");
1805 
1806   if (isa<FunctionDecl>(D)) {
1807     // At -O0, don't generate IR for functions with available_externally
1808     // linkage.
1809     if (!shouldEmitFunction(GD))
1810       return;
1811 
1812     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1813       CompleteDIClassType(Method);
1814       // Make sure to emit the definition(s) before we emit the thunks.
1815       // This is necessary for the generation of certain thunks.
1816       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1817         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1818       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1819         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1820       else
1821         EmitGlobalFunctionDefinition(GD, GV);
1822 
1823       if (Method->isVirtual())
1824         getVTables().EmitThunks(GD);
1825 
1826       return;
1827     }
1828 
1829     return EmitGlobalFunctionDefinition(GD, GV);
1830   }
1831 
1832   if (const auto *VD = dyn_cast<VarDecl>(D))
1833     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1834 
1835   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1836 }
1837 
1838 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1839                                                       llvm::Function *NewFn);
1840 
1841 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1842 /// module, create and return an llvm Function with the specified type. If there
1843 /// is something in the module with the specified name, return it potentially
1844 /// bitcasted to the right type.
1845 ///
1846 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1847 /// to set the attributes on the function when it is first created.
1848 llvm::Constant *
1849 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1850                                        llvm::Type *Ty,
1851                                        GlobalDecl GD, bool ForVTable,
1852                                        bool DontDefer, bool IsThunk,
1853                                        llvm::AttributeSet ExtraAttrs,
1854                                        bool IsForDefinition) {
1855   const Decl *D = GD.getDecl();
1856 
1857   // Lookup the entry, lazily creating it if necessary.
1858   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1859   if (Entry) {
1860     if (WeakRefReferences.erase(Entry)) {
1861       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1862       if (FD && !FD->hasAttr<WeakAttr>())
1863         Entry->setLinkage(llvm::Function::ExternalLinkage);
1864     }
1865 
1866     // Handle dropped DLL attributes.
1867     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1868       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1869 
1870     // If there are two attempts to define the same mangled name, issue an
1871     // error.
1872     if (IsForDefinition && !Entry->isDeclaration()) {
1873       GlobalDecl OtherGD;
1874       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1875       // to make sure that we issue an error only once.
1876       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1877           (GD.getCanonicalDecl().getDecl() !=
1878            OtherGD.getCanonicalDecl().getDecl()) &&
1879           DiagnosedConflictingDefinitions.insert(GD).second) {
1880         getDiags().Report(D->getLocation(),
1881                           diag::err_duplicate_mangled_name);
1882         getDiags().Report(OtherGD.getDecl()->getLocation(),
1883                           diag::note_previous_definition);
1884       }
1885     }
1886 
1887     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1888         (Entry->getType()->getElementType() == Ty)) {
1889       return Entry;
1890     }
1891 
1892     // Make sure the result is of the correct type.
1893     // (If function is requested for a definition, we always need to create a new
1894     // function, not just return a bitcast.)
1895     if (!IsForDefinition)
1896       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1897   }
1898 
1899   // This function doesn't have a complete type (for example, the return
1900   // type is an incomplete struct). Use a fake type instead, and make
1901   // sure not to try to set attributes.
1902   bool IsIncompleteFunction = false;
1903 
1904   llvm::FunctionType *FTy;
1905   if (isa<llvm::FunctionType>(Ty)) {
1906     FTy = cast<llvm::FunctionType>(Ty);
1907   } else {
1908     FTy = llvm::FunctionType::get(VoidTy, false);
1909     IsIncompleteFunction = true;
1910   }
1911 
1912   llvm::Function *F =
1913       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1914                              Entry ? StringRef() : MangledName, &getModule());
1915 
1916   // If we already created a function with the same mangled name (but different
1917   // type) before, take its name and add it to the list of functions to be
1918   // replaced with F at the end of CodeGen.
1919   //
1920   // This happens if there is a prototype for a function (e.g. "int f()") and
1921   // then a definition of a different type (e.g. "int f(int x)").
1922   if (Entry) {
1923     F->takeName(Entry);
1924 
1925     // This might be an implementation of a function without a prototype, in
1926     // which case, try to do special replacement of calls which match the new
1927     // prototype.  The really key thing here is that we also potentially drop
1928     // arguments from the call site so as to make a direct call, which makes the
1929     // inliner happier and suppresses a number of optimizer warnings (!) about
1930     // dropping arguments.
1931     if (!Entry->use_empty()) {
1932       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
1933       Entry->removeDeadConstantUsers();
1934     }
1935 
1936     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
1937         F, Entry->getType()->getElementType()->getPointerTo());
1938     addGlobalValReplacement(Entry, BC);
1939   }
1940 
1941   assert(F->getName() == MangledName && "name was uniqued!");
1942   if (D)
1943     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1944   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1945     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1946     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1947                      llvm::AttributeSet::get(VMContext,
1948                                              llvm::AttributeSet::FunctionIndex,
1949                                              B));
1950   }
1951 
1952   if (!DontDefer) {
1953     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1954     // each other bottoming out with the base dtor.  Therefore we emit non-base
1955     // dtors on usage, even if there is no dtor definition in the TU.
1956     if (D && isa<CXXDestructorDecl>(D) &&
1957         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1958                                            GD.getDtorType()))
1959       addDeferredDeclToEmit(F, GD);
1960 
1961     // This is the first use or definition of a mangled name.  If there is a
1962     // deferred decl with this name, remember that we need to emit it at the end
1963     // of the file.
1964     auto DDI = DeferredDecls.find(MangledName);
1965     if (DDI != DeferredDecls.end()) {
1966       // Move the potentially referenced deferred decl to the
1967       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1968       // don't need it anymore).
1969       addDeferredDeclToEmit(F, DDI->second);
1970       DeferredDecls.erase(DDI);
1971 
1972       // Otherwise, there are cases we have to worry about where we're
1973       // using a declaration for which we must emit a definition but where
1974       // we might not find a top-level definition:
1975       //   - member functions defined inline in their classes
1976       //   - friend functions defined inline in some class
1977       //   - special member functions with implicit definitions
1978       // If we ever change our AST traversal to walk into class methods,
1979       // this will be unnecessary.
1980       //
1981       // We also don't emit a definition for a function if it's going to be an
1982       // entry in a vtable, unless it's already marked as used.
1983     } else if (getLangOpts().CPlusPlus && D) {
1984       // Look for a declaration that's lexically in a record.
1985       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1986            FD = FD->getPreviousDecl()) {
1987         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1988           if (FD->doesThisDeclarationHaveABody()) {
1989             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1990             break;
1991           }
1992         }
1993       }
1994     }
1995   }
1996 
1997   // Make sure the result is of the requested type.
1998   if (!IsIncompleteFunction) {
1999     assert(F->getType()->getElementType() == Ty);
2000     return F;
2001   }
2002 
2003   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2004   return llvm::ConstantExpr::getBitCast(F, PTy);
2005 }
2006 
2007 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2008 /// non-null, then this function will use the specified type if it has to
2009 /// create it (this occurs when we see a definition of the function).
2010 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2011                                                  llvm::Type *Ty,
2012                                                  bool ForVTable,
2013                                                  bool DontDefer,
2014                                                  bool IsForDefinition) {
2015   // If there was no specific requested type, just convert it now.
2016   if (!Ty) {
2017     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2018     auto CanonTy = Context.getCanonicalType(FD->getType());
2019     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2020   }
2021 
2022   StringRef MangledName = getMangledName(GD);
2023   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2024                                  /*IsThunk=*/false, llvm::AttributeSet(),
2025                                  IsForDefinition);
2026 }
2027 
2028 /// CreateRuntimeFunction - Create a new runtime function with the specified
2029 /// type and name.
2030 llvm::Constant *
2031 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
2032                                      StringRef Name,
2033                                      llvm::AttributeSet ExtraAttrs) {
2034   llvm::Constant *C =
2035       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2036                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2037   if (auto *F = dyn_cast<llvm::Function>(C))
2038     if (F->empty())
2039       F->setCallingConv(getRuntimeCC());
2040   return C;
2041 }
2042 
2043 /// CreateBuiltinFunction - Create a new builtin function with the specified
2044 /// type and name.
2045 llvm::Constant *
2046 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
2047                                      StringRef Name,
2048                                      llvm::AttributeSet ExtraAttrs) {
2049   llvm::Constant *C =
2050       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2051                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2052   if (auto *F = dyn_cast<llvm::Function>(C))
2053     if (F->empty())
2054       F->setCallingConv(getBuiltinCC());
2055   return C;
2056 }
2057 
2058 /// isTypeConstant - Determine whether an object of this type can be emitted
2059 /// as a constant.
2060 ///
2061 /// If ExcludeCtor is true, the duration when the object's constructor runs
2062 /// will not be considered. The caller will need to verify that the object is
2063 /// not written to during its construction.
2064 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2065   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2066     return false;
2067 
2068   if (Context.getLangOpts().CPlusPlus) {
2069     if (const CXXRecordDecl *Record
2070           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2071       return ExcludeCtor && !Record->hasMutableFields() &&
2072              Record->hasTrivialDestructor();
2073   }
2074 
2075   return true;
2076 }
2077 
2078 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2079 /// create and return an llvm GlobalVariable with the specified type.  If there
2080 /// is something in the module with the specified name, return it potentially
2081 /// bitcasted to the right type.
2082 ///
2083 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2084 /// to set the attributes on the global when it is first created.
2085 ///
2086 /// If IsForDefinition is true, it is guranteed that an actual global with
2087 /// type Ty will be returned, not conversion of a variable with the same
2088 /// mangled name but some other type.
2089 llvm::Constant *
2090 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2091                                      llvm::PointerType *Ty,
2092                                      const VarDecl *D,
2093                                      bool IsForDefinition) {
2094   // Lookup the entry, lazily creating it if necessary.
2095   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2096   if (Entry) {
2097     if (WeakRefReferences.erase(Entry)) {
2098       if (D && !D->hasAttr<WeakAttr>())
2099         Entry->setLinkage(llvm::Function::ExternalLinkage);
2100     }
2101 
2102     // Handle dropped DLL attributes.
2103     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2104       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2105 
2106     if (Entry->getType() == Ty)
2107       return Entry;
2108 
2109     // If there are two attempts to define the same mangled name, issue an
2110     // error.
2111     if (IsForDefinition && !Entry->isDeclaration()) {
2112       GlobalDecl OtherGD;
2113       const VarDecl *OtherD;
2114 
2115       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2116       // to make sure that we issue an error only once.
2117       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2118           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2119           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2120           OtherD->hasInit() &&
2121           DiagnosedConflictingDefinitions.insert(D).second) {
2122         getDiags().Report(D->getLocation(),
2123                           diag::err_duplicate_mangled_name);
2124         getDiags().Report(OtherGD.getDecl()->getLocation(),
2125                           diag::note_previous_definition);
2126       }
2127     }
2128 
2129     // Make sure the result is of the correct type.
2130     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2131       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2132 
2133     // (If global is requested for a definition, we always need to create a new
2134     // global, not just return a bitcast.)
2135     if (!IsForDefinition)
2136       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2137   }
2138 
2139   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2140   auto *GV = new llvm::GlobalVariable(
2141       getModule(), Ty->getElementType(), false,
2142       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2143       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2144 
2145   // If we already created a global with the same mangled name (but different
2146   // type) before, take its name and remove it from its parent.
2147   if (Entry) {
2148     GV->takeName(Entry);
2149 
2150     if (!Entry->use_empty()) {
2151       llvm::Constant *NewPtrForOldDecl =
2152           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2153       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2154     }
2155 
2156     Entry->eraseFromParent();
2157   }
2158 
2159   // This is the first use or definition of a mangled name.  If there is a
2160   // deferred decl with this name, remember that we need to emit it at the end
2161   // of the file.
2162   auto DDI = DeferredDecls.find(MangledName);
2163   if (DDI != DeferredDecls.end()) {
2164     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2165     // list, and remove it from DeferredDecls (since we don't need it anymore).
2166     addDeferredDeclToEmit(GV, DDI->second);
2167     DeferredDecls.erase(DDI);
2168   }
2169 
2170   // Handle things which are present even on external declarations.
2171   if (D) {
2172     // FIXME: This code is overly simple and should be merged with other global
2173     // handling.
2174     GV->setConstant(isTypeConstant(D->getType(), false));
2175 
2176     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2177 
2178     setLinkageAndVisibilityForGV(GV, D);
2179 
2180     if (D->getTLSKind()) {
2181       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2182         CXXThreadLocals.push_back(D);
2183       setTLSMode(GV, *D);
2184     }
2185 
2186     // If required by the ABI, treat declarations of static data members with
2187     // inline initializers as definitions.
2188     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2189       EmitGlobalVarDefinition(D);
2190     }
2191 
2192     // Handle XCore specific ABI requirements.
2193     if (getTriple().getArch() == llvm::Triple::xcore &&
2194         D->getLanguageLinkage() == CLanguageLinkage &&
2195         D->getType().isConstant(Context) &&
2196         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2197       GV->setSection(".cp.rodata");
2198   }
2199 
2200   if (AddrSpace != Ty->getAddressSpace())
2201     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2202 
2203   return GV;
2204 }
2205 
2206 llvm::Constant *
2207 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2208                                bool IsForDefinition) {
2209   if (isa<CXXConstructorDecl>(GD.getDecl()))
2210     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()),
2211                                 getFromCtorType(GD.getCtorType()),
2212                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2213                                 /*DontDefer=*/false, IsForDefinition);
2214   else if (isa<CXXDestructorDecl>(GD.getDecl()))
2215     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()),
2216                                 getFromDtorType(GD.getDtorType()),
2217                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2218                                 /*DontDefer=*/false, IsForDefinition);
2219   else if (isa<CXXMethodDecl>(GD.getDecl())) {
2220     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2221         cast<CXXMethodDecl>(GD.getDecl()));
2222     auto Ty = getTypes().GetFunctionType(*FInfo);
2223     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2224                              IsForDefinition);
2225   } else if (isa<FunctionDecl>(GD.getDecl())) {
2226     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2227     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2228     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2229                              IsForDefinition);
2230   } else
2231     return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr,
2232                               IsForDefinition);
2233 }
2234 
2235 llvm::GlobalVariable *
2236 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2237                                       llvm::Type *Ty,
2238                                       llvm::GlobalValue::LinkageTypes Linkage) {
2239   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2240   llvm::GlobalVariable *OldGV = nullptr;
2241 
2242   if (GV) {
2243     // Check if the variable has the right type.
2244     if (GV->getType()->getElementType() == Ty)
2245       return GV;
2246 
2247     // Because C++ name mangling, the only way we can end up with an already
2248     // existing global with the same name is if it has been declared extern "C".
2249     assert(GV->isDeclaration() && "Declaration has wrong type!");
2250     OldGV = GV;
2251   }
2252 
2253   // Create a new variable.
2254   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2255                                 Linkage, nullptr, Name);
2256 
2257   if (OldGV) {
2258     // Replace occurrences of the old variable if needed.
2259     GV->takeName(OldGV);
2260 
2261     if (!OldGV->use_empty()) {
2262       llvm::Constant *NewPtrForOldDecl =
2263       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2264       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2265     }
2266 
2267     OldGV->eraseFromParent();
2268   }
2269 
2270   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2271       !GV->hasAvailableExternallyLinkage())
2272     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2273 
2274   return GV;
2275 }
2276 
2277 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2278 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2279 /// then it will be created with the specified type instead of whatever the
2280 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2281 /// that an actual global with type Ty will be returned, not conversion of a
2282 /// variable with the same mangled name but some other type.
2283 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2284                                                   llvm::Type *Ty,
2285                                                   bool IsForDefinition) {
2286   assert(D->hasGlobalStorage() && "Not a global variable");
2287   QualType ASTTy = D->getType();
2288   if (!Ty)
2289     Ty = getTypes().ConvertTypeForMem(ASTTy);
2290 
2291   llvm::PointerType *PTy =
2292     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2293 
2294   StringRef MangledName = getMangledName(D);
2295   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2296 }
2297 
2298 /// CreateRuntimeVariable - Create a new runtime global variable with the
2299 /// specified type and name.
2300 llvm::Constant *
2301 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2302                                      StringRef Name) {
2303   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2304 }
2305 
2306 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2307   assert(!D->getInit() && "Cannot emit definite definitions here!");
2308 
2309   StringRef MangledName = getMangledName(D);
2310   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2311 
2312   // We already have a definition, not declaration, with the same mangled name.
2313   // Emitting of declaration is not required (and actually overwrites emitted
2314   // definition).
2315   if (GV && !GV->isDeclaration())
2316     return;
2317 
2318   // If we have not seen a reference to this variable yet, place it into the
2319   // deferred declarations table to be emitted if needed later.
2320   if (!MustBeEmitted(D) && !GV) {
2321       DeferredDecls[MangledName] = D;
2322       return;
2323   }
2324 
2325   // The tentative definition is the only definition.
2326   EmitGlobalVarDefinition(D);
2327 }
2328 
2329 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2330   return Context.toCharUnitsFromBits(
2331       getDataLayout().getTypeStoreSizeInBits(Ty));
2332 }
2333 
2334 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2335                                                  unsigned AddrSpace) {
2336   if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2337     if (D->hasAttr<CUDAConstantAttr>())
2338       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2339     else if (D->hasAttr<CUDASharedAttr>())
2340       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2341     else
2342       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2343   }
2344 
2345   return AddrSpace;
2346 }
2347 
2348 template<typename SomeDecl>
2349 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2350                                                llvm::GlobalValue *GV) {
2351   if (!getLangOpts().CPlusPlus)
2352     return;
2353 
2354   // Must have 'used' attribute, or else inline assembly can't rely on
2355   // the name existing.
2356   if (!D->template hasAttr<UsedAttr>())
2357     return;
2358 
2359   // Must have internal linkage and an ordinary name.
2360   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2361     return;
2362 
2363   // Must be in an extern "C" context. Entities declared directly within
2364   // a record are not extern "C" even if the record is in such a context.
2365   const SomeDecl *First = D->getFirstDecl();
2366   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2367     return;
2368 
2369   // OK, this is an internal linkage entity inside an extern "C" linkage
2370   // specification. Make a note of that so we can give it the "expected"
2371   // mangled name if nothing else is using that name.
2372   std::pair<StaticExternCMap::iterator, bool> R =
2373       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2374 
2375   // If we have multiple internal linkage entities with the same name
2376   // in extern "C" regions, none of them gets that name.
2377   if (!R.second)
2378     R.first->second = nullptr;
2379 }
2380 
2381 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2382   if (!CGM.supportsCOMDAT())
2383     return false;
2384 
2385   if (D.hasAttr<SelectAnyAttr>())
2386     return true;
2387 
2388   GVALinkage Linkage;
2389   if (auto *VD = dyn_cast<VarDecl>(&D))
2390     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2391   else
2392     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2393 
2394   switch (Linkage) {
2395   case GVA_Internal:
2396   case GVA_AvailableExternally:
2397   case GVA_StrongExternal:
2398     return false;
2399   case GVA_DiscardableODR:
2400   case GVA_StrongODR:
2401     return true;
2402   }
2403   llvm_unreachable("No such linkage");
2404 }
2405 
2406 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2407                                           llvm::GlobalObject &GO) {
2408   if (!shouldBeInCOMDAT(*this, D))
2409     return;
2410   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2411 }
2412 
2413 /// Pass IsTentative as true if you want to create a tentative definition.
2414 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2415                                             bool IsTentative) {
2416   // OpenCL global variables of sampler type are translated to function calls,
2417   // therefore no need to be translated.
2418   QualType ASTTy = D->getType();
2419   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2420     return;
2421 
2422   llvm::Constant *Init = nullptr;
2423   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2424   bool NeedsGlobalCtor = false;
2425   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2426 
2427   const VarDecl *InitDecl;
2428   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2429 
2430   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2431   // as part of their declaration."  Sema has already checked for
2432   // error cases, so we just need to set Init to UndefValue.
2433   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2434       D->hasAttr<CUDASharedAttr>())
2435     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2436   else if (!InitExpr) {
2437     // This is a tentative definition; tentative definitions are
2438     // implicitly initialized with { 0 }.
2439     //
2440     // Note that tentative definitions are only emitted at the end of
2441     // a translation unit, so they should never have incomplete
2442     // type. In addition, EmitTentativeDefinition makes sure that we
2443     // never attempt to emit a tentative definition if a real one
2444     // exists. A use may still exists, however, so we still may need
2445     // to do a RAUW.
2446     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2447     Init = EmitNullConstant(D->getType());
2448   } else {
2449     initializedGlobalDecl = GlobalDecl(D);
2450     Init = EmitConstantInit(*InitDecl);
2451 
2452     if (!Init) {
2453       QualType T = InitExpr->getType();
2454       if (D->getType()->isReferenceType())
2455         T = D->getType();
2456 
2457       if (getLangOpts().CPlusPlus) {
2458         Init = EmitNullConstant(T);
2459         NeedsGlobalCtor = true;
2460       } else {
2461         ErrorUnsupported(D, "static initializer");
2462         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2463       }
2464     } else {
2465       // We don't need an initializer, so remove the entry for the delayed
2466       // initializer position (just in case this entry was delayed) if we
2467       // also don't need to register a destructor.
2468       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2469         DelayedCXXInitPosition.erase(D);
2470     }
2471   }
2472 
2473   llvm::Type* InitType = Init->getType();
2474   llvm::Constant *Entry =
2475       GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative);
2476 
2477   // Strip off a bitcast if we got one back.
2478   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2479     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2480            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2481            // All zero index gep.
2482            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2483     Entry = CE->getOperand(0);
2484   }
2485 
2486   // Entry is now either a Function or GlobalVariable.
2487   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2488 
2489   // We have a definition after a declaration with the wrong type.
2490   // We must make a new GlobalVariable* and update everything that used OldGV
2491   // (a declaration or tentative definition) with the new GlobalVariable*
2492   // (which will be a definition).
2493   //
2494   // This happens if there is a prototype for a global (e.g.
2495   // "extern int x[];") and then a definition of a different type (e.g.
2496   // "int x[10];"). This also happens when an initializer has a different type
2497   // from the type of the global (this happens with unions).
2498   if (!GV ||
2499       GV->getType()->getElementType() != InitType ||
2500       GV->getType()->getAddressSpace() !=
2501        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2502 
2503     // Move the old entry aside so that we'll create a new one.
2504     Entry->setName(StringRef());
2505 
2506     // Make a new global with the correct type, this is now guaranteed to work.
2507     GV = cast<llvm::GlobalVariable>(
2508         GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative));
2509 
2510     // Replace all uses of the old global with the new global
2511     llvm::Constant *NewPtrForOldDecl =
2512         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2513     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2514 
2515     // Erase the old global, since it is no longer used.
2516     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2517   }
2518 
2519   MaybeHandleStaticInExternC(D, GV);
2520 
2521   if (D->hasAttr<AnnotateAttr>())
2522     AddGlobalAnnotations(D, GV);
2523 
2524   // Set the llvm linkage type as appropriate.
2525   llvm::GlobalValue::LinkageTypes Linkage =
2526       getLLVMLinkageVarDefinition(D, GV->isConstant());
2527 
2528   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2529   // the device. [...]"
2530   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2531   // __device__, declares a variable that: [...]
2532   // Is accessible from all the threads within the grid and from the host
2533   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2534   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2535   if (GV && LangOpts.CUDA) {
2536     if (LangOpts.CUDAIsDevice) {
2537       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2538         GV->setExternallyInitialized(true);
2539     } else {
2540       // Host-side shadows of external declarations of device-side
2541       // global variables become internal definitions. These have to
2542       // be internal in order to prevent name conflicts with global
2543       // host variables with the same name in a different TUs.
2544       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2545         Linkage = llvm::GlobalValue::InternalLinkage;
2546 
2547         // Shadow variables and their properties must be registered
2548         // with CUDA runtime.
2549         unsigned Flags = 0;
2550         if (!D->hasDefinition())
2551           Flags |= CGCUDARuntime::ExternDeviceVar;
2552         if (D->hasAttr<CUDAConstantAttr>())
2553           Flags |= CGCUDARuntime::ConstantDeviceVar;
2554         getCUDARuntime().registerDeviceVar(*GV, Flags);
2555       } else if (D->hasAttr<CUDASharedAttr>())
2556         // __shared__ variables are odd. Shadows do get created, but
2557         // they are not registered with the CUDA runtime, so they
2558         // can't really be used to access their device-side
2559         // counterparts. It's not clear yet whether it's nvcc's bug or
2560         // a feature, but we've got to do the same for compatibility.
2561         Linkage = llvm::GlobalValue::InternalLinkage;
2562     }
2563   }
2564   GV->setInitializer(Init);
2565 
2566   // If it is safe to mark the global 'constant', do so now.
2567   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2568                   isTypeConstant(D->getType(), true));
2569 
2570   // If it is in a read-only section, mark it 'constant'.
2571   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2572     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2573     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2574       GV->setConstant(true);
2575   }
2576 
2577   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2578 
2579 
2580   // On Darwin, if the normal linkage of a C++ thread_local variable is
2581   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2582   // copies within a linkage unit; otherwise, the backing variable has
2583   // internal linkage and all accesses should just be calls to the
2584   // Itanium-specified entry point, which has the normal linkage of the
2585   // variable. This is to preserve the ability to change the implementation
2586   // behind the scenes.
2587   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2588       Context.getTargetInfo().getTriple().isOSDarwin() &&
2589       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2590       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2591     Linkage = llvm::GlobalValue::InternalLinkage;
2592 
2593   GV->setLinkage(Linkage);
2594   if (D->hasAttr<DLLImportAttr>())
2595     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2596   else if (D->hasAttr<DLLExportAttr>())
2597     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2598   else
2599     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2600 
2601   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2602     // common vars aren't constant even if declared const.
2603     GV->setConstant(false);
2604 
2605   setNonAliasAttributes(D, GV);
2606 
2607   if (D->getTLSKind() && !GV->isThreadLocal()) {
2608     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2609       CXXThreadLocals.push_back(D);
2610     setTLSMode(GV, *D);
2611   }
2612 
2613   maybeSetTrivialComdat(*D, *GV);
2614 
2615   // Emit the initializer function if necessary.
2616   if (NeedsGlobalCtor || NeedsGlobalDtor)
2617     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2618 
2619   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2620 
2621   // Emit global variable debug information.
2622   if (CGDebugInfo *DI = getModuleDebugInfo())
2623     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2624       DI->EmitGlobalVariable(GV, D);
2625 }
2626 
2627 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2628                                       CodeGenModule &CGM, const VarDecl *D,
2629                                       bool NoCommon) {
2630   // Don't give variables common linkage if -fno-common was specified unless it
2631   // was overridden by a NoCommon attribute.
2632   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2633     return true;
2634 
2635   // C11 6.9.2/2:
2636   //   A declaration of an identifier for an object that has file scope without
2637   //   an initializer, and without a storage-class specifier or with the
2638   //   storage-class specifier static, constitutes a tentative definition.
2639   if (D->getInit() || D->hasExternalStorage())
2640     return true;
2641 
2642   // A variable cannot be both common and exist in a section.
2643   if (D->hasAttr<SectionAttr>())
2644     return true;
2645 
2646   // Thread local vars aren't considered common linkage.
2647   if (D->getTLSKind())
2648     return true;
2649 
2650   // Tentative definitions marked with WeakImportAttr are true definitions.
2651   if (D->hasAttr<WeakImportAttr>())
2652     return true;
2653 
2654   // A variable cannot be both common and exist in a comdat.
2655   if (shouldBeInCOMDAT(CGM, *D))
2656     return true;
2657 
2658   // Declarations with a required alignment do not have common linkage in MSVC
2659   // mode.
2660   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2661     if (D->hasAttr<AlignedAttr>())
2662       return true;
2663     QualType VarType = D->getType();
2664     if (Context.isAlignmentRequired(VarType))
2665       return true;
2666 
2667     if (const auto *RT = VarType->getAs<RecordType>()) {
2668       const RecordDecl *RD = RT->getDecl();
2669       for (const FieldDecl *FD : RD->fields()) {
2670         if (FD->isBitField())
2671           continue;
2672         if (FD->hasAttr<AlignedAttr>())
2673           return true;
2674         if (Context.isAlignmentRequired(FD->getType()))
2675           return true;
2676       }
2677     }
2678   }
2679 
2680   return false;
2681 }
2682 
2683 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2684     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2685   if (Linkage == GVA_Internal)
2686     return llvm::Function::InternalLinkage;
2687 
2688   if (D->hasAttr<WeakAttr>()) {
2689     if (IsConstantVariable)
2690       return llvm::GlobalVariable::WeakODRLinkage;
2691     else
2692       return llvm::GlobalVariable::WeakAnyLinkage;
2693   }
2694 
2695   // We are guaranteed to have a strong definition somewhere else,
2696   // so we can use available_externally linkage.
2697   if (Linkage == GVA_AvailableExternally)
2698     return llvm::Function::AvailableExternallyLinkage;
2699 
2700   // Note that Apple's kernel linker doesn't support symbol
2701   // coalescing, so we need to avoid linkonce and weak linkages there.
2702   // Normally, this means we just map to internal, but for explicit
2703   // instantiations we'll map to external.
2704 
2705   // In C++, the compiler has to emit a definition in every translation unit
2706   // that references the function.  We should use linkonce_odr because
2707   // a) if all references in this translation unit are optimized away, we
2708   // don't need to codegen it.  b) if the function persists, it needs to be
2709   // merged with other definitions. c) C++ has the ODR, so we know the
2710   // definition is dependable.
2711   if (Linkage == GVA_DiscardableODR)
2712     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2713                                             : llvm::Function::InternalLinkage;
2714 
2715   // An explicit instantiation of a template has weak linkage, since
2716   // explicit instantiations can occur in multiple translation units
2717   // and must all be equivalent. However, we are not allowed to
2718   // throw away these explicit instantiations.
2719   //
2720   // We don't currently support CUDA device code spread out across multiple TUs,
2721   // so say that CUDA templates are either external (for kernels) or internal.
2722   // This lets llvm perform aggressive inter-procedural optimizations.
2723   if (Linkage == GVA_StrongODR) {
2724     if (Context.getLangOpts().AppleKext)
2725       return llvm::Function::ExternalLinkage;
2726     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
2727       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
2728                                           : llvm::Function::InternalLinkage;
2729     return llvm::Function::WeakODRLinkage;
2730   }
2731 
2732   // C++ doesn't have tentative definitions and thus cannot have common
2733   // linkage.
2734   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2735       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2736                                  CodeGenOpts.NoCommon))
2737     return llvm::GlobalVariable::CommonLinkage;
2738 
2739   // selectany symbols are externally visible, so use weak instead of
2740   // linkonce.  MSVC optimizes away references to const selectany globals, so
2741   // all definitions should be the same and ODR linkage should be used.
2742   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2743   if (D->hasAttr<SelectAnyAttr>())
2744     return llvm::GlobalVariable::WeakODRLinkage;
2745 
2746   // Otherwise, we have strong external linkage.
2747   assert(Linkage == GVA_StrongExternal);
2748   return llvm::GlobalVariable::ExternalLinkage;
2749 }
2750 
2751 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2752     const VarDecl *VD, bool IsConstant) {
2753   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2754   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2755 }
2756 
2757 /// Replace the uses of a function that was declared with a non-proto type.
2758 /// We want to silently drop extra arguments from call sites
2759 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2760                                           llvm::Function *newFn) {
2761   // Fast path.
2762   if (old->use_empty()) return;
2763 
2764   llvm::Type *newRetTy = newFn->getReturnType();
2765   SmallVector<llvm::Value*, 4> newArgs;
2766   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2767 
2768   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2769          ui != ue; ) {
2770     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2771     llvm::User *user = use->getUser();
2772 
2773     // Recognize and replace uses of bitcasts.  Most calls to
2774     // unprototyped functions will use bitcasts.
2775     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2776       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2777         replaceUsesOfNonProtoConstant(bitcast, newFn);
2778       continue;
2779     }
2780 
2781     // Recognize calls to the function.
2782     llvm::CallSite callSite(user);
2783     if (!callSite) continue;
2784     if (!callSite.isCallee(&*use)) continue;
2785 
2786     // If the return types don't match exactly, then we can't
2787     // transform this call unless it's dead.
2788     if (callSite->getType() != newRetTy && !callSite->use_empty())
2789       continue;
2790 
2791     // Get the call site's attribute list.
2792     SmallVector<llvm::AttributeSet, 8> newAttrs;
2793     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2794 
2795     // Collect any return attributes from the call.
2796     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2797       newAttrs.push_back(
2798         llvm::AttributeSet::get(newFn->getContext(),
2799                                 oldAttrs.getRetAttributes()));
2800 
2801     // If the function was passed too few arguments, don't transform.
2802     unsigned newNumArgs = newFn->arg_size();
2803     if (callSite.arg_size() < newNumArgs) continue;
2804 
2805     // If extra arguments were passed, we silently drop them.
2806     // If any of the types mismatch, we don't transform.
2807     unsigned argNo = 0;
2808     bool dontTransform = false;
2809     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2810            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2811       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2812         dontTransform = true;
2813         break;
2814       }
2815 
2816       // Add any parameter attributes.
2817       if (oldAttrs.hasAttributes(argNo + 1))
2818         newAttrs.
2819           push_back(llvm::
2820                     AttributeSet::get(newFn->getContext(),
2821                                       oldAttrs.getParamAttributes(argNo + 1)));
2822     }
2823     if (dontTransform)
2824       continue;
2825 
2826     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2827       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2828                                                  oldAttrs.getFnAttributes()));
2829 
2830     // Okay, we can transform this.  Create the new call instruction and copy
2831     // over the required information.
2832     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2833 
2834     // Copy over any operand bundles.
2835     callSite.getOperandBundlesAsDefs(newBundles);
2836 
2837     llvm::CallSite newCall;
2838     if (callSite.isCall()) {
2839       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2840                                        callSite.getInstruction());
2841     } else {
2842       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2843       newCall = llvm::InvokeInst::Create(newFn,
2844                                          oldInvoke->getNormalDest(),
2845                                          oldInvoke->getUnwindDest(),
2846                                          newArgs, newBundles, "",
2847                                          callSite.getInstruction());
2848     }
2849     newArgs.clear(); // for the next iteration
2850 
2851     if (!newCall->getType()->isVoidTy())
2852       newCall->takeName(callSite.getInstruction());
2853     newCall.setAttributes(
2854                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2855     newCall.setCallingConv(callSite.getCallingConv());
2856 
2857     // Finally, remove the old call, replacing any uses with the new one.
2858     if (!callSite->use_empty())
2859       callSite->replaceAllUsesWith(newCall.getInstruction());
2860 
2861     // Copy debug location attached to CI.
2862     if (callSite->getDebugLoc())
2863       newCall->setDebugLoc(callSite->getDebugLoc());
2864 
2865     callSite->eraseFromParent();
2866   }
2867 }
2868 
2869 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2870 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2871 /// existing call uses of the old function in the module, this adjusts them to
2872 /// call the new function directly.
2873 ///
2874 /// This is not just a cleanup: the always_inline pass requires direct calls to
2875 /// functions to be able to inline them.  If there is a bitcast in the way, it
2876 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2877 /// run at -O0.
2878 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2879                                                       llvm::Function *NewFn) {
2880   // If we're redefining a global as a function, don't transform it.
2881   if (!isa<llvm::Function>(Old)) return;
2882 
2883   replaceUsesOfNonProtoConstant(Old, NewFn);
2884 }
2885 
2886 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2887   auto DK = VD->isThisDeclarationADefinition();
2888   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
2889     return;
2890 
2891   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2892   // If we have a definition, this might be a deferred decl. If the
2893   // instantiation is explicit, make sure we emit it at the end.
2894   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2895     GetAddrOfGlobalVar(VD);
2896 
2897   EmitTopLevelDecl(VD);
2898 }
2899 
2900 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2901                                                  llvm::GlobalValue *GV) {
2902   const auto *D = cast<FunctionDecl>(GD.getDecl());
2903 
2904   // Compute the function info and LLVM type.
2905   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2906   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2907 
2908   // Get or create the prototype for the function.
2909   if (!GV || (GV->getType()->getElementType() != Ty))
2910     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
2911                                                    /*DontDefer=*/true,
2912                                                    /*IsForDefinition=*/true));
2913 
2914   // Already emitted.
2915   if (!GV->isDeclaration())
2916     return;
2917 
2918   // We need to set linkage and visibility on the function before
2919   // generating code for it because various parts of IR generation
2920   // want to propagate this information down (e.g. to local static
2921   // declarations).
2922   auto *Fn = cast<llvm::Function>(GV);
2923   setFunctionLinkage(GD, Fn);
2924   setFunctionDLLStorageClass(GD, Fn);
2925 
2926   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2927   setGlobalVisibility(Fn, D);
2928 
2929   MaybeHandleStaticInExternC(D, Fn);
2930 
2931   maybeSetTrivialComdat(*D, *Fn);
2932 
2933   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2934 
2935   setFunctionDefinitionAttributes(D, Fn);
2936   SetLLVMFunctionAttributesForDefinition(D, Fn);
2937 
2938   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2939     AddGlobalCtor(Fn, CA->getPriority());
2940   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2941     AddGlobalDtor(Fn, DA->getPriority());
2942   if (D->hasAttr<AnnotateAttr>())
2943     AddGlobalAnnotations(D, Fn);
2944 }
2945 
2946 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2947   const auto *D = cast<ValueDecl>(GD.getDecl());
2948   const AliasAttr *AA = D->getAttr<AliasAttr>();
2949   assert(AA && "Not an alias?");
2950 
2951   StringRef MangledName = getMangledName(GD);
2952 
2953   if (AA->getAliasee() == MangledName) {
2954     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
2955     return;
2956   }
2957 
2958   // If there is a definition in the module, then it wins over the alias.
2959   // This is dubious, but allow it to be safe.  Just ignore the alias.
2960   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2961   if (Entry && !Entry->isDeclaration())
2962     return;
2963 
2964   Aliases.push_back(GD);
2965 
2966   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2967 
2968   // Create a reference to the named value.  This ensures that it is emitted
2969   // if a deferred decl.
2970   llvm::Constant *Aliasee;
2971   if (isa<llvm::FunctionType>(DeclTy))
2972     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2973                                       /*ForVTable=*/false);
2974   else
2975     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2976                                     llvm::PointerType::getUnqual(DeclTy),
2977                                     /*D=*/nullptr);
2978 
2979   // Create the new alias itself, but don't set a name yet.
2980   auto *GA = llvm::GlobalAlias::create(
2981       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2982 
2983   if (Entry) {
2984     if (GA->getAliasee() == Entry) {
2985       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
2986       return;
2987     }
2988 
2989     assert(Entry->isDeclaration());
2990 
2991     // If there is a declaration in the module, then we had an extern followed
2992     // by the alias, as in:
2993     //   extern int test6();
2994     //   ...
2995     //   int test6() __attribute__((alias("test7")));
2996     //
2997     // Remove it and replace uses of it with the alias.
2998     GA->takeName(Entry);
2999 
3000     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3001                                                           Entry->getType()));
3002     Entry->eraseFromParent();
3003   } else {
3004     GA->setName(MangledName);
3005   }
3006 
3007   // Set attributes which are particular to an alias; this is a
3008   // specialization of the attributes which may be set on a global
3009   // variable/function.
3010   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3011       D->isWeakImported()) {
3012     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3013   }
3014 
3015   if (const auto *VD = dyn_cast<VarDecl>(D))
3016     if (VD->getTLSKind())
3017       setTLSMode(GA, *VD);
3018 
3019   setAliasAttributes(D, GA);
3020 }
3021 
3022 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3023   const auto *D = cast<ValueDecl>(GD.getDecl());
3024   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3025   assert(IFA && "Not an ifunc?");
3026 
3027   StringRef MangledName = getMangledName(GD);
3028 
3029   if (IFA->getResolver() == MangledName) {
3030     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3031     return;
3032   }
3033 
3034   // Report an error if some definition overrides ifunc.
3035   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3036   if (Entry && !Entry->isDeclaration()) {
3037     GlobalDecl OtherGD;
3038     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3039         DiagnosedConflictingDefinitions.insert(GD).second) {
3040       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3041       Diags.Report(OtherGD.getDecl()->getLocation(),
3042                    diag::note_previous_definition);
3043     }
3044     return;
3045   }
3046 
3047   Aliases.push_back(GD);
3048 
3049   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3050   llvm::Constant *Resolver =
3051       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3052                               /*ForVTable=*/false);
3053   llvm::GlobalIFunc *GIF =
3054       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3055                                 "", Resolver, &getModule());
3056   if (Entry) {
3057     if (GIF->getResolver() == Entry) {
3058       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3059       return;
3060     }
3061     assert(Entry->isDeclaration());
3062 
3063     // If there is a declaration in the module, then we had an extern followed
3064     // by the ifunc, as in:
3065     //   extern int test();
3066     //   ...
3067     //   int test() __attribute__((ifunc("resolver")));
3068     //
3069     // Remove it and replace uses of it with the ifunc.
3070     GIF->takeName(Entry);
3071 
3072     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3073                                                           Entry->getType()));
3074     Entry->eraseFromParent();
3075   } else
3076     GIF->setName(MangledName);
3077 
3078   SetCommonAttributes(D, GIF);
3079 }
3080 
3081 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3082                                             ArrayRef<llvm::Type*> Tys) {
3083   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3084                                          Tys);
3085 }
3086 
3087 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3088 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3089                          const StringLiteral *Literal, bool TargetIsLSB,
3090                          bool &IsUTF16, unsigned &StringLength) {
3091   StringRef String = Literal->getString();
3092   unsigned NumBytes = String.size();
3093 
3094   // Check for simple case.
3095   if (!Literal->containsNonAsciiOrNull()) {
3096     StringLength = NumBytes;
3097     return *Map.insert(std::make_pair(String, nullptr)).first;
3098   }
3099 
3100   // Otherwise, convert the UTF8 literals into a string of shorts.
3101   IsUTF16 = true;
3102 
3103   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3104   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3105   llvm::UTF16 *ToPtr = &ToBuf[0];
3106 
3107   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3108                                  ToPtr + NumBytes, llvm::strictConversion);
3109 
3110   // ConvertUTF8toUTF16 returns the length in ToPtr.
3111   StringLength = ToPtr - &ToBuf[0];
3112 
3113   // Add an explicit null.
3114   *ToPtr = 0;
3115   return *Map.insert(std::make_pair(
3116                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3117                                    (StringLength + 1) * 2),
3118                          nullptr)).first;
3119 }
3120 
3121 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3122 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3123                        const StringLiteral *Literal, unsigned &StringLength) {
3124   StringRef String = Literal->getString();
3125   StringLength = String.size();
3126   return *Map.insert(std::make_pair(String, nullptr)).first;
3127 }
3128 
3129 ConstantAddress
3130 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3131   unsigned StringLength = 0;
3132   bool isUTF16 = false;
3133   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3134       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3135                                getDataLayout().isLittleEndian(), isUTF16,
3136                                StringLength);
3137 
3138   if (auto *C = Entry.second)
3139     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3140 
3141   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3142   llvm::Constant *Zeros[] = { Zero, Zero };
3143 
3144   // If we don't already have it, get __CFConstantStringClassReference.
3145   if (!CFConstantStringClassRef) {
3146     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3147     Ty = llvm::ArrayType::get(Ty, 0);
3148     llvm::Constant *GV =
3149         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3150 
3151     if (getTriple().isOSBinFormatCOFF()) {
3152       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3153       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3154       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3155       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3156 
3157       const VarDecl *VD = nullptr;
3158       for (const auto &Result : DC->lookup(&II))
3159         if ((VD = dyn_cast<VarDecl>(Result)))
3160           break;
3161 
3162       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3163         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3164         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3165       } else {
3166         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3167         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3168       }
3169     }
3170 
3171     // Decay array -> ptr
3172     CFConstantStringClassRef =
3173         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3174   }
3175 
3176   QualType CFTy = getContext().getCFConstantStringType();
3177 
3178   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3179 
3180   llvm::Constant *Fields[4];
3181 
3182   // Class pointer.
3183   Fields[0] = cast<llvm::ConstantExpr>(CFConstantStringClassRef);
3184 
3185   // Flags.
3186   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3187   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
3188                       : llvm::ConstantInt::get(Ty, 0x07C8);
3189 
3190   // String pointer.
3191   llvm::Constant *C = nullptr;
3192   if (isUTF16) {
3193     auto Arr = llvm::makeArrayRef(
3194         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3195         Entry.first().size() / 2);
3196     C = llvm::ConstantDataArray::get(VMContext, Arr);
3197   } else {
3198     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3199   }
3200 
3201   // Note: -fwritable-strings doesn't make the backing store strings of
3202   // CFStrings writable. (See <rdar://problem/10657500>)
3203   auto *GV =
3204       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3205                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3206   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3207   // Don't enforce the target's minimum global alignment, since the only use
3208   // of the string is via this class initializer.
3209   CharUnits Align = isUTF16
3210                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3211                         : getContext().getTypeAlignInChars(getContext().CharTy);
3212   GV->setAlignment(Align.getQuantity());
3213 
3214   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3215   // Without it LLVM can merge the string with a non unnamed_addr one during
3216   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3217   if (getTriple().isOSBinFormatMachO())
3218     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3219                            : "__TEXT,__cstring,cstring_literals");
3220 
3221   // String.
3222   Fields[2] =
3223       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3224 
3225   if (isUTF16)
3226     // Cast the UTF16 string to the correct type.
3227     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
3228 
3229   // String length.
3230   Ty = getTypes().ConvertType(getContext().LongTy);
3231   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
3232 
3233   CharUnits Alignment = getPointerAlign();
3234 
3235   // The struct.
3236   C = llvm::ConstantStruct::get(STy, Fields);
3237   GV = new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/false,
3238                                 llvm::GlobalVariable::PrivateLinkage, C,
3239                                 "_unnamed_cfstring_");
3240   GV->setAlignment(Alignment.getQuantity());
3241   switch (getTriple().getObjectFormat()) {
3242   case llvm::Triple::UnknownObjectFormat:
3243     llvm_unreachable("unknown file format");
3244   case llvm::Triple::COFF:
3245   case llvm::Triple::ELF:
3246     GV->setSection("cfstring");
3247     break;
3248   case llvm::Triple::MachO:
3249     GV->setSection("__DATA,__cfstring");
3250     break;
3251   }
3252   Entry.second = GV;
3253 
3254   return ConstantAddress(GV, Alignment);
3255 }
3256 
3257 ConstantAddress
3258 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
3259   unsigned StringLength = 0;
3260   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3261       GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
3262 
3263   if (auto *C = Entry.second)
3264     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3265 
3266   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3267   llvm::Constant *Zeros[] = { Zero, Zero };
3268   llvm::Value *V;
3269   // If we don't already have it, get _NSConstantStringClassReference.
3270   if (!ConstantStringClassRef) {
3271     std::string StringClass(getLangOpts().ObjCConstantStringClass);
3272     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3273     llvm::Constant *GV;
3274     if (LangOpts.ObjCRuntime.isNonFragile()) {
3275       std::string str =
3276         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
3277                             : "OBJC_CLASS_$_" + StringClass;
3278       GV = getObjCRuntime().GetClassGlobal(str);
3279       // Make sure the result is of the correct type.
3280       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3281       V = llvm::ConstantExpr::getBitCast(GV, PTy);
3282       ConstantStringClassRef = V;
3283     } else {
3284       std::string str =
3285         StringClass.empty() ? "_NSConstantStringClassReference"
3286                             : "_" + StringClass + "ClassReference";
3287       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
3288       GV = CreateRuntimeVariable(PTy, str);
3289       // Decay array -> ptr
3290       V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
3291       ConstantStringClassRef = V;
3292     }
3293   } else
3294     V = ConstantStringClassRef;
3295 
3296   if (!NSConstantStringType) {
3297     // Construct the type for a constant NSString.
3298     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
3299     D->startDefinition();
3300 
3301     QualType FieldTypes[3];
3302 
3303     // const int *isa;
3304     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
3305     // const char *str;
3306     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
3307     // unsigned int length;
3308     FieldTypes[2] = Context.UnsignedIntTy;
3309 
3310     // Create fields
3311     for (unsigned i = 0; i < 3; ++i) {
3312       FieldDecl *Field = FieldDecl::Create(Context, D,
3313                                            SourceLocation(),
3314                                            SourceLocation(), nullptr,
3315                                            FieldTypes[i], /*TInfo=*/nullptr,
3316                                            /*BitWidth=*/nullptr,
3317                                            /*Mutable=*/false,
3318                                            ICIS_NoInit);
3319       Field->setAccess(AS_public);
3320       D->addDecl(Field);
3321     }
3322 
3323     D->completeDefinition();
3324     QualType NSTy = Context.getTagDeclType(D);
3325     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
3326   }
3327 
3328   llvm::Constant *Fields[3];
3329 
3330   // Class pointer.
3331   Fields[0] = cast<llvm::ConstantExpr>(V);
3332 
3333   // String pointer.
3334   llvm::Constant *C =
3335       llvm::ConstantDataArray::getString(VMContext, Entry.first());
3336 
3337   llvm::GlobalValue::LinkageTypes Linkage;
3338   bool isConstant;
3339   Linkage = llvm::GlobalValue::PrivateLinkage;
3340   isConstant = !LangOpts.WritableStrings;
3341 
3342   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
3343                                       Linkage, C, ".str");
3344   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3345   // Don't enforce the target's minimum global alignment, since the only use
3346   // of the string is via this class initializer.
3347   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3348   GV->setAlignment(Align.getQuantity());
3349   Fields[1] =
3350       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3351 
3352   // String length.
3353   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3354   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
3355 
3356   // The struct.
3357   CharUnits Alignment = getPointerAlign();
3358   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
3359   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3360                                 llvm::GlobalVariable::PrivateLinkage, C,
3361                                 "_unnamed_nsstring_");
3362   GV->setAlignment(Alignment.getQuantity());
3363   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
3364   const char *NSStringNonFragileABISection =
3365       "__DATA,__objc_stringobj,regular,no_dead_strip";
3366   // FIXME. Fix section.
3367   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
3368                      ? NSStringNonFragileABISection
3369                      : NSStringSection);
3370   Entry.second = GV;
3371 
3372   return ConstantAddress(GV, Alignment);
3373 }
3374 
3375 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3376   if (ObjCFastEnumerationStateType.isNull()) {
3377     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3378     D->startDefinition();
3379 
3380     QualType FieldTypes[] = {
3381       Context.UnsignedLongTy,
3382       Context.getPointerType(Context.getObjCIdType()),
3383       Context.getPointerType(Context.UnsignedLongTy),
3384       Context.getConstantArrayType(Context.UnsignedLongTy,
3385                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3386     };
3387 
3388     for (size_t i = 0; i < 4; ++i) {
3389       FieldDecl *Field = FieldDecl::Create(Context,
3390                                            D,
3391                                            SourceLocation(),
3392                                            SourceLocation(), nullptr,
3393                                            FieldTypes[i], /*TInfo=*/nullptr,
3394                                            /*BitWidth=*/nullptr,
3395                                            /*Mutable=*/false,
3396                                            ICIS_NoInit);
3397       Field->setAccess(AS_public);
3398       D->addDecl(Field);
3399     }
3400 
3401     D->completeDefinition();
3402     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3403   }
3404 
3405   return ObjCFastEnumerationStateType;
3406 }
3407 
3408 llvm::Constant *
3409 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3410   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3411 
3412   // Don't emit it as the address of the string, emit the string data itself
3413   // as an inline array.
3414   if (E->getCharByteWidth() == 1) {
3415     SmallString<64> Str(E->getString());
3416 
3417     // Resize the string to the right size, which is indicated by its type.
3418     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3419     Str.resize(CAT->getSize().getZExtValue());
3420     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3421   }
3422 
3423   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3424   llvm::Type *ElemTy = AType->getElementType();
3425   unsigned NumElements = AType->getNumElements();
3426 
3427   // Wide strings have either 2-byte or 4-byte elements.
3428   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3429     SmallVector<uint16_t, 32> Elements;
3430     Elements.reserve(NumElements);
3431 
3432     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3433       Elements.push_back(E->getCodeUnit(i));
3434     Elements.resize(NumElements);
3435     return llvm::ConstantDataArray::get(VMContext, Elements);
3436   }
3437 
3438   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3439   SmallVector<uint32_t, 32> Elements;
3440   Elements.reserve(NumElements);
3441 
3442   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3443     Elements.push_back(E->getCodeUnit(i));
3444   Elements.resize(NumElements);
3445   return llvm::ConstantDataArray::get(VMContext, Elements);
3446 }
3447 
3448 static llvm::GlobalVariable *
3449 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3450                       CodeGenModule &CGM, StringRef GlobalName,
3451                       CharUnits Alignment) {
3452   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3453   unsigned AddrSpace = 0;
3454   if (CGM.getLangOpts().OpenCL)
3455     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3456 
3457   llvm::Module &M = CGM.getModule();
3458   // Create a global variable for this string
3459   auto *GV = new llvm::GlobalVariable(
3460       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3461       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3462   GV->setAlignment(Alignment.getQuantity());
3463   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3464   if (GV->isWeakForLinker()) {
3465     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3466     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3467   }
3468 
3469   return GV;
3470 }
3471 
3472 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3473 /// constant array for the given string literal.
3474 ConstantAddress
3475 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3476                                                   StringRef Name) {
3477   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3478 
3479   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3480   llvm::GlobalVariable **Entry = nullptr;
3481   if (!LangOpts.WritableStrings) {
3482     Entry = &ConstantStringMap[C];
3483     if (auto GV = *Entry) {
3484       if (Alignment.getQuantity() > GV->getAlignment())
3485         GV->setAlignment(Alignment.getQuantity());
3486       return ConstantAddress(GV, Alignment);
3487     }
3488   }
3489 
3490   SmallString<256> MangledNameBuffer;
3491   StringRef GlobalVariableName;
3492   llvm::GlobalValue::LinkageTypes LT;
3493 
3494   // Mangle the string literal if the ABI allows for it.  However, we cannot
3495   // do this if  we are compiling with ASan or -fwritable-strings because they
3496   // rely on strings having normal linkage.
3497   if (!LangOpts.WritableStrings &&
3498       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3499       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3500     llvm::raw_svector_ostream Out(MangledNameBuffer);
3501     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3502 
3503     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3504     GlobalVariableName = MangledNameBuffer;
3505   } else {
3506     LT = llvm::GlobalValue::PrivateLinkage;
3507     GlobalVariableName = Name;
3508   }
3509 
3510   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3511   if (Entry)
3512     *Entry = GV;
3513 
3514   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3515                                   QualType());
3516   return ConstantAddress(GV, Alignment);
3517 }
3518 
3519 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3520 /// array for the given ObjCEncodeExpr node.
3521 ConstantAddress
3522 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3523   std::string Str;
3524   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3525 
3526   return GetAddrOfConstantCString(Str);
3527 }
3528 
3529 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3530 /// the literal and a terminating '\0' character.
3531 /// The result has pointer to array type.
3532 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3533     const std::string &Str, const char *GlobalName) {
3534   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3535   CharUnits Alignment =
3536     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3537 
3538   llvm::Constant *C =
3539       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3540 
3541   // Don't share any string literals if strings aren't constant.
3542   llvm::GlobalVariable **Entry = nullptr;
3543   if (!LangOpts.WritableStrings) {
3544     Entry = &ConstantStringMap[C];
3545     if (auto GV = *Entry) {
3546       if (Alignment.getQuantity() > GV->getAlignment())
3547         GV->setAlignment(Alignment.getQuantity());
3548       return ConstantAddress(GV, Alignment);
3549     }
3550   }
3551 
3552   // Get the default prefix if a name wasn't specified.
3553   if (!GlobalName)
3554     GlobalName = ".str";
3555   // Create a global variable for this.
3556   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3557                                   GlobalName, Alignment);
3558   if (Entry)
3559     *Entry = GV;
3560   return ConstantAddress(GV, Alignment);
3561 }
3562 
3563 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3564     const MaterializeTemporaryExpr *E, const Expr *Init) {
3565   assert((E->getStorageDuration() == SD_Static ||
3566           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3567   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3568 
3569   // If we're not materializing a subobject of the temporary, keep the
3570   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3571   QualType MaterializedType = Init->getType();
3572   if (Init == E->GetTemporaryExpr())
3573     MaterializedType = E->getType();
3574 
3575   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3576 
3577   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3578     return ConstantAddress(Slot, Align);
3579 
3580   // FIXME: If an externally-visible declaration extends multiple temporaries,
3581   // we need to give each temporary the same name in every translation unit (and
3582   // we also need to make the temporaries externally-visible).
3583   SmallString<256> Name;
3584   llvm::raw_svector_ostream Out(Name);
3585   getCXXABI().getMangleContext().mangleReferenceTemporary(
3586       VD, E->getManglingNumber(), Out);
3587 
3588   APValue *Value = nullptr;
3589   if (E->getStorageDuration() == SD_Static) {
3590     // We might have a cached constant initializer for this temporary. Note
3591     // that this might have a different value from the value computed by
3592     // evaluating the initializer if the surrounding constant expression
3593     // modifies the temporary.
3594     Value = getContext().getMaterializedTemporaryValue(E, false);
3595     if (Value && Value->isUninit())
3596       Value = nullptr;
3597   }
3598 
3599   // Try evaluating it now, it might have a constant initializer.
3600   Expr::EvalResult EvalResult;
3601   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3602       !EvalResult.hasSideEffects())
3603     Value = &EvalResult.Val;
3604 
3605   llvm::Constant *InitialValue = nullptr;
3606   bool Constant = false;
3607   llvm::Type *Type;
3608   if (Value) {
3609     // The temporary has a constant initializer, use it.
3610     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3611     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3612     Type = InitialValue->getType();
3613   } else {
3614     // No initializer, the initialization will be provided when we
3615     // initialize the declaration which performed lifetime extension.
3616     Type = getTypes().ConvertTypeForMem(MaterializedType);
3617   }
3618 
3619   // Create a global variable for this lifetime-extended temporary.
3620   llvm::GlobalValue::LinkageTypes Linkage =
3621       getLLVMLinkageVarDefinition(VD, Constant);
3622   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3623     const VarDecl *InitVD;
3624     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3625         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3626       // Temporaries defined inside a class get linkonce_odr linkage because the
3627       // class can be defined in multipe translation units.
3628       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3629     } else {
3630       // There is no need for this temporary to have external linkage if the
3631       // VarDecl has external linkage.
3632       Linkage = llvm::GlobalVariable::InternalLinkage;
3633     }
3634   }
3635   unsigned AddrSpace = GetGlobalVarAddressSpace(
3636       VD, getContext().getTargetAddressSpace(MaterializedType));
3637   auto *GV = new llvm::GlobalVariable(
3638       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3639       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3640       AddrSpace);
3641   setGlobalVisibility(GV, VD);
3642   GV->setAlignment(Align.getQuantity());
3643   if (supportsCOMDAT() && GV->isWeakForLinker())
3644     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3645   if (VD->getTLSKind())
3646     setTLSMode(GV, *VD);
3647   MaterializedGlobalTemporaryMap[E] = GV;
3648   return ConstantAddress(GV, Align);
3649 }
3650 
3651 /// EmitObjCPropertyImplementations - Emit information for synthesized
3652 /// properties for an implementation.
3653 void CodeGenModule::EmitObjCPropertyImplementations(const
3654                                                     ObjCImplementationDecl *D) {
3655   for (const auto *PID : D->property_impls()) {
3656     // Dynamic is just for type-checking.
3657     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3658       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3659 
3660       // Determine which methods need to be implemented, some may have
3661       // been overridden. Note that ::isPropertyAccessor is not the method
3662       // we want, that just indicates if the decl came from a
3663       // property. What we want to know is if the method is defined in
3664       // this implementation.
3665       if (!D->getInstanceMethod(PD->getGetterName()))
3666         CodeGenFunction(*this).GenerateObjCGetter(
3667                                  const_cast<ObjCImplementationDecl *>(D), PID);
3668       if (!PD->isReadOnly() &&
3669           !D->getInstanceMethod(PD->getSetterName()))
3670         CodeGenFunction(*this).GenerateObjCSetter(
3671                                  const_cast<ObjCImplementationDecl *>(D), PID);
3672     }
3673   }
3674 }
3675 
3676 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3677   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3678   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3679        ivar; ivar = ivar->getNextIvar())
3680     if (ivar->getType().isDestructedType())
3681       return true;
3682 
3683   return false;
3684 }
3685 
3686 static bool AllTrivialInitializers(CodeGenModule &CGM,
3687                                    ObjCImplementationDecl *D) {
3688   CodeGenFunction CGF(CGM);
3689   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3690        E = D->init_end(); B != E; ++B) {
3691     CXXCtorInitializer *CtorInitExp = *B;
3692     Expr *Init = CtorInitExp->getInit();
3693     if (!CGF.isTrivialInitializer(Init))
3694       return false;
3695   }
3696   return true;
3697 }
3698 
3699 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3700 /// for an implementation.
3701 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3702   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3703   if (needsDestructMethod(D)) {
3704     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3705     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3706     ObjCMethodDecl *DTORMethod =
3707       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3708                              cxxSelector, getContext().VoidTy, nullptr, D,
3709                              /*isInstance=*/true, /*isVariadic=*/false,
3710                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3711                              /*isDefined=*/false, ObjCMethodDecl::Required);
3712     D->addInstanceMethod(DTORMethod);
3713     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3714     D->setHasDestructors(true);
3715   }
3716 
3717   // If the implementation doesn't have any ivar initializers, we don't need
3718   // a .cxx_construct.
3719   if (D->getNumIvarInitializers() == 0 ||
3720       AllTrivialInitializers(*this, D))
3721     return;
3722 
3723   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3724   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3725   // The constructor returns 'self'.
3726   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3727                                                 D->getLocation(),
3728                                                 D->getLocation(),
3729                                                 cxxSelector,
3730                                                 getContext().getObjCIdType(),
3731                                                 nullptr, D, /*isInstance=*/true,
3732                                                 /*isVariadic=*/false,
3733                                                 /*isPropertyAccessor=*/true,
3734                                                 /*isImplicitlyDeclared=*/true,
3735                                                 /*isDefined=*/false,
3736                                                 ObjCMethodDecl::Required);
3737   D->addInstanceMethod(CTORMethod);
3738   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3739   D->setHasNonZeroConstructors(true);
3740 }
3741 
3742 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3743 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3744   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3745       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3746     ErrorUnsupported(LSD, "linkage spec");
3747     return;
3748   }
3749 
3750   EmitDeclContext(LSD);
3751 }
3752 
3753 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
3754   for (auto *I : DC->decls()) {
3755     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
3756     // are themselves considered "top-level", so EmitTopLevelDecl on an
3757     // ObjCImplDecl does not recursively visit them. We need to do that in
3758     // case they're nested inside another construct (LinkageSpecDecl /
3759     // ExportDecl) that does stop them from being considered "top-level".
3760     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3761       for (auto *M : OID->methods())
3762         EmitTopLevelDecl(M);
3763     }
3764 
3765     EmitTopLevelDecl(I);
3766   }
3767 }
3768 
3769 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3770 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3771   // Ignore dependent declarations.
3772   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3773     return;
3774 
3775   switch (D->getKind()) {
3776   case Decl::CXXConversion:
3777   case Decl::CXXMethod:
3778   case Decl::Function:
3779     // Skip function templates
3780     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3781         cast<FunctionDecl>(D)->isLateTemplateParsed())
3782       return;
3783 
3784     EmitGlobal(cast<FunctionDecl>(D));
3785     // Always provide some coverage mapping
3786     // even for the functions that aren't emitted.
3787     AddDeferredUnusedCoverageMapping(D);
3788     break;
3789 
3790   case Decl::Var:
3791   case Decl::Decomposition:
3792     // Skip variable templates
3793     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3794       return;
3795   case Decl::VarTemplateSpecialization:
3796     EmitGlobal(cast<VarDecl>(D));
3797     if (auto *DD = dyn_cast<DecompositionDecl>(D))
3798       for (auto *B : DD->bindings())
3799         if (auto *HD = B->getHoldingVar())
3800           EmitGlobal(HD);
3801     break;
3802 
3803   // Indirect fields from global anonymous structs and unions can be
3804   // ignored; only the actual variable requires IR gen support.
3805   case Decl::IndirectField:
3806     break;
3807 
3808   // C++ Decls
3809   case Decl::Namespace:
3810     EmitDeclContext(cast<NamespaceDecl>(D));
3811     break;
3812   case Decl::CXXRecord:
3813     // Emit any static data members, they may be definitions.
3814     for (auto *I : cast<CXXRecordDecl>(D)->decls())
3815       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
3816         EmitTopLevelDecl(I);
3817     break;
3818     // No code generation needed.
3819   case Decl::UsingShadow:
3820   case Decl::ClassTemplate:
3821   case Decl::VarTemplate:
3822   case Decl::VarTemplatePartialSpecialization:
3823   case Decl::FunctionTemplate:
3824   case Decl::TypeAliasTemplate:
3825   case Decl::Block:
3826   case Decl::Empty:
3827     break;
3828   case Decl::Using:          // using X; [C++]
3829     if (CGDebugInfo *DI = getModuleDebugInfo())
3830         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3831     return;
3832   case Decl::NamespaceAlias:
3833     if (CGDebugInfo *DI = getModuleDebugInfo())
3834         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3835     return;
3836   case Decl::UsingDirective: // using namespace X; [C++]
3837     if (CGDebugInfo *DI = getModuleDebugInfo())
3838       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3839     return;
3840   case Decl::CXXConstructor:
3841     // Skip function templates
3842     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3843         cast<FunctionDecl>(D)->isLateTemplateParsed())
3844       return;
3845 
3846     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3847     break;
3848   case Decl::CXXDestructor:
3849     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3850       return;
3851     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3852     break;
3853 
3854   case Decl::StaticAssert:
3855     // Nothing to do.
3856     break;
3857 
3858   // Objective-C Decls
3859 
3860   // Forward declarations, no (immediate) code generation.
3861   case Decl::ObjCInterface:
3862   case Decl::ObjCCategory:
3863     break;
3864 
3865   case Decl::ObjCProtocol: {
3866     auto *Proto = cast<ObjCProtocolDecl>(D);
3867     if (Proto->isThisDeclarationADefinition())
3868       ObjCRuntime->GenerateProtocol(Proto);
3869     break;
3870   }
3871 
3872   case Decl::ObjCCategoryImpl:
3873     // Categories have properties but don't support synthesize so we
3874     // can ignore them here.
3875     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3876     break;
3877 
3878   case Decl::ObjCImplementation: {
3879     auto *OMD = cast<ObjCImplementationDecl>(D);
3880     EmitObjCPropertyImplementations(OMD);
3881     EmitObjCIvarInitializations(OMD);
3882     ObjCRuntime->GenerateClass(OMD);
3883     // Emit global variable debug information.
3884     if (CGDebugInfo *DI = getModuleDebugInfo())
3885       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3886         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3887             OMD->getClassInterface()), OMD->getLocation());
3888     break;
3889   }
3890   case Decl::ObjCMethod: {
3891     auto *OMD = cast<ObjCMethodDecl>(D);
3892     // If this is not a prototype, emit the body.
3893     if (OMD->getBody())
3894       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3895     break;
3896   }
3897   case Decl::ObjCCompatibleAlias:
3898     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3899     break;
3900 
3901   case Decl::PragmaComment: {
3902     const auto *PCD = cast<PragmaCommentDecl>(D);
3903     switch (PCD->getCommentKind()) {
3904     case PCK_Unknown:
3905       llvm_unreachable("unexpected pragma comment kind");
3906     case PCK_Linker:
3907       AppendLinkerOptions(PCD->getArg());
3908       break;
3909     case PCK_Lib:
3910       AddDependentLib(PCD->getArg());
3911       break;
3912     case PCK_Compiler:
3913     case PCK_ExeStr:
3914     case PCK_User:
3915       break; // We ignore all of these.
3916     }
3917     break;
3918   }
3919 
3920   case Decl::PragmaDetectMismatch: {
3921     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3922     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3923     break;
3924   }
3925 
3926   case Decl::LinkageSpec:
3927     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3928     break;
3929 
3930   case Decl::FileScopeAsm: {
3931     // File-scope asm is ignored during device-side CUDA compilation.
3932     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3933       break;
3934     // File-scope asm is ignored during device-side OpenMP compilation.
3935     if (LangOpts.OpenMPIsDevice)
3936       break;
3937     auto *AD = cast<FileScopeAsmDecl>(D);
3938     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3939     break;
3940   }
3941 
3942   case Decl::Import: {
3943     auto *Import = cast<ImportDecl>(D);
3944 
3945     // If we've already imported this module, we're done.
3946     if (!ImportedModules.insert(Import->getImportedModule()))
3947       break;
3948 
3949     // Emit debug information for direct imports.
3950     if (!Import->getImportedOwningModule()) {
3951       if (CGDebugInfo *DI = getModuleDebugInfo())
3952         DI->EmitImportDecl(*Import);
3953     }
3954 
3955     // Find all of the submodules and emit the module initializers.
3956     llvm::SmallPtrSet<clang::Module *, 16> Visited;
3957     SmallVector<clang::Module *, 16> Stack;
3958     Visited.insert(Import->getImportedModule());
3959     Stack.push_back(Import->getImportedModule());
3960 
3961     while (!Stack.empty()) {
3962       clang::Module *Mod = Stack.pop_back_val();
3963       if (!EmittedModuleInitializers.insert(Mod).second)
3964         continue;
3965 
3966       for (auto *D : Context.getModuleInitializers(Mod))
3967         EmitTopLevelDecl(D);
3968 
3969       // Visit the submodules of this module.
3970       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
3971                                              SubEnd = Mod->submodule_end();
3972            Sub != SubEnd; ++Sub) {
3973         // Skip explicit children; they need to be explicitly imported to emit
3974         // the initializers.
3975         if ((*Sub)->IsExplicit)
3976           continue;
3977 
3978         if (Visited.insert(*Sub).second)
3979           Stack.push_back(*Sub);
3980       }
3981     }
3982     break;
3983   }
3984 
3985   case Decl::Export:
3986     EmitDeclContext(cast<ExportDecl>(D));
3987     break;
3988 
3989   case Decl::OMPThreadPrivate:
3990     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3991     break;
3992 
3993   case Decl::ClassTemplateSpecialization: {
3994     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3995     if (DebugInfo &&
3996         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3997         Spec->hasDefinition())
3998       DebugInfo->completeTemplateDefinition(*Spec);
3999     break;
4000   }
4001 
4002   case Decl::OMPDeclareReduction:
4003     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4004     break;
4005 
4006   default:
4007     // Make sure we handled everything we should, every other kind is a
4008     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4009     // function. Need to recode Decl::Kind to do that easily.
4010     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4011     break;
4012   }
4013 }
4014 
4015 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4016   // Do we need to generate coverage mapping?
4017   if (!CodeGenOpts.CoverageMapping)
4018     return;
4019   switch (D->getKind()) {
4020   case Decl::CXXConversion:
4021   case Decl::CXXMethod:
4022   case Decl::Function:
4023   case Decl::ObjCMethod:
4024   case Decl::CXXConstructor:
4025   case Decl::CXXDestructor: {
4026     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4027       return;
4028     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4029     if (I == DeferredEmptyCoverageMappingDecls.end())
4030       DeferredEmptyCoverageMappingDecls[D] = true;
4031     break;
4032   }
4033   default:
4034     break;
4035   };
4036 }
4037 
4038 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4039   // Do we need to generate coverage mapping?
4040   if (!CodeGenOpts.CoverageMapping)
4041     return;
4042   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4043     if (Fn->isTemplateInstantiation())
4044       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4045   }
4046   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4047   if (I == DeferredEmptyCoverageMappingDecls.end())
4048     DeferredEmptyCoverageMappingDecls[D] = false;
4049   else
4050     I->second = false;
4051 }
4052 
4053 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4054   std::vector<const Decl *> DeferredDecls;
4055   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
4056     if (!I.second)
4057       continue;
4058     DeferredDecls.push_back(I.first);
4059   }
4060   // Sort the declarations by their location to make sure that the tests get a
4061   // predictable order for the coverage mapping for the unused declarations.
4062   if (CodeGenOpts.DumpCoverageMapping)
4063     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
4064               [] (const Decl *LHS, const Decl *RHS) {
4065       return LHS->getLocStart() < RHS->getLocStart();
4066     });
4067   for (const auto *D : DeferredDecls) {
4068     switch (D->getKind()) {
4069     case Decl::CXXConversion:
4070     case Decl::CXXMethod:
4071     case Decl::Function:
4072     case Decl::ObjCMethod: {
4073       CodeGenPGO PGO(*this);
4074       GlobalDecl GD(cast<FunctionDecl>(D));
4075       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4076                                   getFunctionLinkage(GD));
4077       break;
4078     }
4079     case Decl::CXXConstructor: {
4080       CodeGenPGO PGO(*this);
4081       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4082       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4083                                   getFunctionLinkage(GD));
4084       break;
4085     }
4086     case Decl::CXXDestructor: {
4087       CodeGenPGO PGO(*this);
4088       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4089       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4090                                   getFunctionLinkage(GD));
4091       break;
4092     }
4093     default:
4094       break;
4095     };
4096   }
4097 }
4098 
4099 /// Turns the given pointer into a constant.
4100 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4101                                           const void *Ptr) {
4102   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4103   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4104   return llvm::ConstantInt::get(i64, PtrInt);
4105 }
4106 
4107 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4108                                    llvm::NamedMDNode *&GlobalMetadata,
4109                                    GlobalDecl D,
4110                                    llvm::GlobalValue *Addr) {
4111   if (!GlobalMetadata)
4112     GlobalMetadata =
4113       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4114 
4115   // TODO: should we report variant information for ctors/dtors?
4116   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4117                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4118                                CGM.getLLVMContext(), D.getDecl()))};
4119   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4120 }
4121 
4122 /// For each function which is declared within an extern "C" region and marked
4123 /// as 'used', but has internal linkage, create an alias from the unmangled
4124 /// name to the mangled name if possible. People expect to be able to refer
4125 /// to such functions with an unmangled name from inline assembly within the
4126 /// same translation unit.
4127 void CodeGenModule::EmitStaticExternCAliases() {
4128   // Don't do anything if we're generating CUDA device code -- the NVPTX
4129   // assembly target doesn't support aliases.
4130   if (Context.getTargetInfo().getTriple().isNVPTX())
4131     return;
4132   for (auto &I : StaticExternCValues) {
4133     IdentifierInfo *Name = I.first;
4134     llvm::GlobalValue *Val = I.second;
4135     if (Val && !getModule().getNamedValue(Name->getName()))
4136       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4137   }
4138 }
4139 
4140 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4141                                              GlobalDecl &Result) const {
4142   auto Res = Manglings.find(MangledName);
4143   if (Res == Manglings.end())
4144     return false;
4145   Result = Res->getValue();
4146   return true;
4147 }
4148 
4149 /// Emits metadata nodes associating all the global values in the
4150 /// current module with the Decls they came from.  This is useful for
4151 /// projects using IR gen as a subroutine.
4152 ///
4153 /// Since there's currently no way to associate an MDNode directly
4154 /// with an llvm::GlobalValue, we create a global named metadata
4155 /// with the name 'clang.global.decl.ptrs'.
4156 void CodeGenModule::EmitDeclMetadata() {
4157   llvm::NamedMDNode *GlobalMetadata = nullptr;
4158 
4159   for (auto &I : MangledDeclNames) {
4160     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4161     // Some mangled names don't necessarily have an associated GlobalValue
4162     // in this module, e.g. if we mangled it for DebugInfo.
4163     if (Addr)
4164       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4165   }
4166 }
4167 
4168 /// Emits metadata nodes for all the local variables in the current
4169 /// function.
4170 void CodeGenFunction::EmitDeclMetadata() {
4171   if (LocalDeclMap.empty()) return;
4172 
4173   llvm::LLVMContext &Context = getLLVMContext();
4174 
4175   // Find the unique metadata ID for this name.
4176   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4177 
4178   llvm::NamedMDNode *GlobalMetadata = nullptr;
4179 
4180   for (auto &I : LocalDeclMap) {
4181     const Decl *D = I.first;
4182     llvm::Value *Addr = I.second.getPointer();
4183     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4184       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4185       Alloca->setMetadata(
4186           DeclPtrKind, llvm::MDNode::get(
4187                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4188     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4189       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4190       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4191     }
4192   }
4193 }
4194 
4195 void CodeGenModule::EmitVersionIdentMetadata() {
4196   llvm::NamedMDNode *IdentMetadata =
4197     TheModule.getOrInsertNamedMetadata("llvm.ident");
4198   std::string Version = getClangFullVersion();
4199   llvm::LLVMContext &Ctx = TheModule.getContext();
4200 
4201   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4202   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4203 }
4204 
4205 void CodeGenModule::EmitTargetMetadata() {
4206   // Warning, new MangledDeclNames may be appended within this loop.
4207   // We rely on MapVector insertions adding new elements to the end
4208   // of the container.
4209   // FIXME: Move this loop into the one target that needs it, and only
4210   // loop over those declarations for which we couldn't emit the target
4211   // metadata when we emitted the declaration.
4212   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4213     auto Val = *(MangledDeclNames.begin() + I);
4214     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4215     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4216     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4217   }
4218 }
4219 
4220 void CodeGenModule::EmitCoverageFile() {
4221   if (getCodeGenOpts().CoverageDataFile.empty() &&
4222       getCodeGenOpts().CoverageNotesFile.empty())
4223     return;
4224 
4225   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4226   if (!CUNode)
4227     return;
4228 
4229   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4230   llvm::LLVMContext &Ctx = TheModule.getContext();
4231   auto *CoverageDataFile =
4232       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4233   auto *CoverageNotesFile =
4234       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4235   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4236     llvm::MDNode *CU = CUNode->getOperand(i);
4237     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4238     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4239   }
4240 }
4241 
4242 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4243   // Sema has checked that all uuid strings are of the form
4244   // "12345678-1234-1234-1234-1234567890ab".
4245   assert(Uuid.size() == 36);
4246   for (unsigned i = 0; i < 36; ++i) {
4247     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4248     else                                         assert(isHexDigit(Uuid[i]));
4249   }
4250 
4251   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4252   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4253 
4254   llvm::Constant *Field3[8];
4255   for (unsigned Idx = 0; Idx < 8; ++Idx)
4256     Field3[Idx] = llvm::ConstantInt::get(
4257         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4258 
4259   llvm::Constant *Fields[4] = {
4260     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4261     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4262     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4263     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4264   };
4265 
4266   return llvm::ConstantStruct::getAnon(Fields);
4267 }
4268 
4269 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4270                                                        bool ForEH) {
4271   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4272   // FIXME: should we even be calling this method if RTTI is disabled
4273   // and it's not for EH?
4274   if (!ForEH && !getLangOpts().RTTI)
4275     return llvm::Constant::getNullValue(Int8PtrTy);
4276 
4277   if (ForEH && Ty->isObjCObjectPointerType() &&
4278       LangOpts.ObjCRuntime.isGNUFamily())
4279     return ObjCRuntime->GetEHType(Ty);
4280 
4281   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4282 }
4283 
4284 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4285   for (auto RefExpr : D->varlists()) {
4286     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4287     bool PerformInit =
4288         VD->getAnyInitializer() &&
4289         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4290                                                         /*ForRef=*/false);
4291 
4292     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4293     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4294             VD, Addr, RefExpr->getLocStart(), PerformInit))
4295       CXXGlobalInits.push_back(InitFunction);
4296   }
4297 }
4298 
4299 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4300   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4301   if (InternalId)
4302     return InternalId;
4303 
4304   if (isExternallyVisible(T->getLinkage())) {
4305     std::string OutName;
4306     llvm::raw_string_ostream Out(OutName);
4307     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4308 
4309     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4310   } else {
4311     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4312                                            llvm::ArrayRef<llvm::Metadata *>());
4313   }
4314 
4315   return InternalId;
4316 }
4317 
4318 /// Returns whether this module needs the "all-vtables" type identifier.
4319 bool CodeGenModule::NeedAllVtablesTypeId() const {
4320   // Returns true if at least one of vtable-based CFI checkers is enabled and
4321   // is not in the trapping mode.
4322   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4323            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4324           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4325            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4326           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4327            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4328           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4329            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4330 }
4331 
4332 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4333                                           CharUnits Offset,
4334                                           const CXXRecordDecl *RD) {
4335   llvm::Metadata *MD =
4336       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4337   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4338 
4339   if (CodeGenOpts.SanitizeCfiCrossDso)
4340     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4341       VTable->addTypeMetadata(Offset.getQuantity(),
4342                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4343 
4344   if (NeedAllVtablesTypeId()) {
4345     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4346     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4347   }
4348 }
4349 
4350 // Fills in the supplied string map with the set of target features for the
4351 // passed in function.
4352 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4353                                           const FunctionDecl *FD) {
4354   StringRef TargetCPU = Target.getTargetOpts().CPU;
4355   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4356     // If we have a TargetAttr build up the feature map based on that.
4357     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4358 
4359     // Make a copy of the features as passed on the command line into the
4360     // beginning of the additional features from the function to override.
4361     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4362                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4363                             Target.getTargetOpts().FeaturesAsWritten.end());
4364 
4365     if (ParsedAttr.second != "")
4366       TargetCPU = ParsedAttr.second;
4367 
4368     // Now populate the feature map, first with the TargetCPU which is either
4369     // the default or a new one from the target attribute string. Then we'll use
4370     // the passed in features (FeaturesAsWritten) along with the new ones from
4371     // the attribute.
4372     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4373   } else {
4374     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4375                           Target.getTargetOpts().Features);
4376   }
4377 }
4378 
4379 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4380   if (!SanStats)
4381     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4382 
4383   return *SanStats;
4384 }
4385 llvm::Value *
4386 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4387                                                   CodeGenFunction &CGF) {
4388   llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF);
4389   auto SamplerT = getOpenCLRuntime().getSamplerType();
4390   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4391   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4392                                 "__translate_sampler_initializer"),
4393                                 {C});
4394 }
4395