xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 1860b520a2327702e1b50455c87882879eb777d3)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
127 
128   if (LangOpts.ObjC1)
129     createObjCRuntime();
130   if (LangOpts.OpenCL)
131     createOpenCLRuntime();
132   if (LangOpts.OpenMP)
133     createOpenMPRuntime();
134   if (LangOpts.CUDA)
135     createCUDARuntime();
136 
137   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
138   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
139       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
140     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
141                                getCXXABI().getMangleContext()));
142 
143   // If debug info or coverage generation is enabled, create the CGDebugInfo
144   // object.
145   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
146       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
147     DebugInfo.reset(new CGDebugInfo(*this));
148 
149   Block.GlobalUniqueCount = 0;
150 
151   if (C.getLangOpts().ObjC1)
152     ObjCData.reset(new ObjCEntrypoints());
153 
154   if (CodeGenOpts.hasProfileClangUse()) {
155     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
156         CodeGenOpts.ProfileInstrumentUsePath);
157     if (auto E = ReaderOrErr.takeError()) {
158       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
159                                               "Could not read profile %0: %1");
160       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
161         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
162                                   << EI.message();
163       });
164     } else
165       PGOReader = std::move(ReaderOrErr.get());
166   }
167 
168   // If coverage mapping generation is enabled, create the
169   // CoverageMappingModuleGen object.
170   if (CodeGenOpts.CoverageMapping)
171     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
172 }
173 
174 CodeGenModule::~CodeGenModule() {}
175 
176 void CodeGenModule::createObjCRuntime() {
177   // This is just isGNUFamily(), but we want to force implementors of
178   // new ABIs to decide how best to do this.
179   switch (LangOpts.ObjCRuntime.getKind()) {
180   case ObjCRuntime::GNUstep:
181   case ObjCRuntime::GCC:
182   case ObjCRuntime::ObjFW:
183     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
184     return;
185 
186   case ObjCRuntime::FragileMacOSX:
187   case ObjCRuntime::MacOSX:
188   case ObjCRuntime::iOS:
189   case ObjCRuntime::WatchOS:
190     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
191     return;
192   }
193   llvm_unreachable("bad runtime kind");
194 }
195 
196 void CodeGenModule::createOpenCLRuntime() {
197   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
198 }
199 
200 void CodeGenModule::createOpenMPRuntime() {
201   // Select a specialized code generation class based on the target, if any.
202   // If it does not exist use the default implementation.
203   switch (getTriple().getArch()) {
204   case llvm::Triple::nvptx:
205   case llvm::Triple::nvptx64:
206     assert(getLangOpts().OpenMPIsDevice &&
207            "OpenMP NVPTX is only prepared to deal with device code.");
208     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
209     break;
210   default:
211     if (LangOpts.OpenMPSimd)
212       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
213     else
214       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
215     break;
216   }
217 }
218 
219 void CodeGenModule::createCUDARuntime() {
220   CUDARuntime.reset(CreateNVCUDARuntime(*this));
221 }
222 
223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
224   Replacements[Name] = C;
225 }
226 
227 void CodeGenModule::applyReplacements() {
228   for (auto &I : Replacements) {
229     StringRef MangledName = I.first();
230     llvm::Constant *Replacement = I.second;
231     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
232     if (!Entry)
233       continue;
234     auto *OldF = cast<llvm::Function>(Entry);
235     auto *NewF = dyn_cast<llvm::Function>(Replacement);
236     if (!NewF) {
237       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
238         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
239       } else {
240         auto *CE = cast<llvm::ConstantExpr>(Replacement);
241         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
242                CE->getOpcode() == llvm::Instruction::GetElementPtr);
243         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
244       }
245     }
246 
247     // Replace old with new, but keep the old order.
248     OldF->replaceAllUsesWith(Replacement);
249     if (NewF) {
250       NewF->removeFromParent();
251       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
252                                                        NewF);
253     }
254     OldF->eraseFromParent();
255   }
256 }
257 
258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
259   GlobalValReplacements.push_back(std::make_pair(GV, C));
260 }
261 
262 void CodeGenModule::applyGlobalValReplacements() {
263   for (auto &I : GlobalValReplacements) {
264     llvm::GlobalValue *GV = I.first;
265     llvm::Constant *C = I.second;
266 
267     GV->replaceAllUsesWith(C);
268     GV->eraseFromParent();
269   }
270 }
271 
272 // This is only used in aliases that we created and we know they have a
273 // linear structure.
274 static const llvm::GlobalObject *getAliasedGlobal(
275     const llvm::GlobalIndirectSymbol &GIS) {
276   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
277   const llvm::Constant *C = &GIS;
278   for (;;) {
279     C = C->stripPointerCasts();
280     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
281       return GO;
282     // stripPointerCasts will not walk over weak aliases.
283     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
284     if (!GIS2)
285       return nullptr;
286     if (!Visited.insert(GIS2).second)
287       return nullptr;
288     C = GIS2->getIndirectSymbol();
289   }
290 }
291 
292 void CodeGenModule::checkAliases() {
293   // Check if the constructed aliases are well formed. It is really unfortunate
294   // that we have to do this in CodeGen, but we only construct mangled names
295   // and aliases during codegen.
296   bool Error = false;
297   DiagnosticsEngine &Diags = getDiags();
298   for (const GlobalDecl &GD : Aliases) {
299     const auto *D = cast<ValueDecl>(GD.getDecl());
300     SourceLocation Location;
301     bool IsIFunc = D->hasAttr<IFuncAttr>();
302     if (const Attr *A = D->getDefiningAttr())
303       Location = A->getLocation();
304     else
305       llvm_unreachable("Not an alias or ifunc?");
306     StringRef MangledName = getMangledName(GD);
307     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
308     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
309     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
310     if (!GV) {
311       Error = true;
312       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
313     } else if (GV->isDeclaration()) {
314       Error = true;
315       Diags.Report(Location, diag::err_alias_to_undefined)
316           << IsIFunc << IsIFunc;
317     } else if (IsIFunc) {
318       // Check resolver function type.
319       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
320           GV->getType()->getPointerElementType());
321       assert(FTy);
322       if (!FTy->getReturnType()->isPointerTy())
323         Diags.Report(Location, diag::err_ifunc_resolver_return);
324       if (FTy->getNumParams())
325         Diags.Report(Location, diag::err_ifunc_resolver_params);
326     }
327 
328     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329     llvm::GlobalValue *AliaseeGV;
330     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332     else
333       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334 
335     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336       StringRef AliasSection = SA->getName();
337       if (AliasSection != AliaseeGV->getSection())
338         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339             << AliasSection << IsIFunc << IsIFunc;
340     }
341 
342     // We have to handle alias to weak aliases in here. LLVM itself disallows
343     // this since the object semantics would not match the IL one. For
344     // compatibility with gcc we implement it by just pointing the alias
345     // to its aliasee's aliasee. We also warn, since the user is probably
346     // expecting the link to be weak.
347     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348       if (GA->isInterposable()) {
349         Diags.Report(Location, diag::warn_alias_to_weak_alias)
350             << GV->getName() << GA->getName() << IsIFunc;
351         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352             GA->getIndirectSymbol(), Alias->getType());
353         Alias->setIndirectSymbol(Aliasee);
354       }
355     }
356   }
357   if (!Error)
358     return;
359 
360   for (const GlobalDecl &GD : Aliases) {
361     StringRef MangledName = getMangledName(GD);
362     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365     Alias->eraseFromParent();
366   }
367 }
368 
369 void CodeGenModule::clear() {
370   DeferredDeclsToEmit.clear();
371   if (OpenMPRuntime)
372     OpenMPRuntime->clear();
373 }
374 
375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376                                        StringRef MainFile) {
377   if (!hasDiagnostics())
378     return;
379   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380     if (MainFile.empty())
381       MainFile = "<stdin>";
382     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383   } else {
384     if (Mismatched > 0)
385       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386 
387     if (Missing > 0)
388       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389   }
390 }
391 
392 void CodeGenModule::Release() {
393   EmitDeferred();
394   EmitVTablesOpportunistically();
395   applyGlobalValReplacements();
396   applyReplacements();
397   checkAliases();
398   emitMultiVersionFunctions();
399   EmitCXXGlobalInitFunc();
400   EmitCXXGlobalDtorFunc();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
408       AddGlobalCtor(CudaCtorFunction);
409     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
410       AddGlobalDtor(CudaDtorFunction);
411   }
412   if (OpenMPRuntime)
413     if (llvm::Function *OpenMPRegistrationFunction =
414             OpenMPRuntime->emitRegistrationFunction()) {
415       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
416         OpenMPRegistrationFunction : nullptr;
417       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
418     }
419   if (PGOReader) {
420     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
421     if (PGOStats.hasDiagnostics())
422       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
423   }
424   EmitCtorList(GlobalCtors, "llvm.global_ctors");
425   EmitCtorList(GlobalDtors, "llvm.global_dtors");
426   EmitGlobalAnnotations();
427   EmitStaticExternCAliases();
428   EmitDeferredUnusedCoverageMappings();
429   if (CoverageMapping)
430     CoverageMapping->emit();
431   if (CodeGenOpts.SanitizeCfiCrossDso) {
432     CodeGenFunction(*this).EmitCfiCheckFail();
433     CodeGenFunction(*this).EmitCfiCheckStub();
434   }
435   emitAtAvailableLinkGuard();
436   emitLLVMUsed();
437   if (SanStats)
438     SanStats->finish();
439 
440   if (CodeGenOpts.Autolink &&
441       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
442     EmitModuleLinkOptions();
443   }
444 
445   // Record mregparm value now so it is visible through rest of codegen.
446   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
447     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
448                               CodeGenOpts.NumRegisterParameters);
449 
450   if (CodeGenOpts.DwarfVersion) {
451     // We actually want the latest version when there are conflicts.
452     // We can change from Warning to Latest if such mode is supported.
453     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
454                               CodeGenOpts.DwarfVersion);
455   }
456   if (CodeGenOpts.EmitCodeView) {
457     // Indicate that we want CodeView in the metadata.
458     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
459   }
460   if (CodeGenOpts.ControlFlowGuard) {
461     // We want function ID tables for Control Flow Guard.
462     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
463   }
464   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
465     // We don't support LTO with 2 with different StrictVTablePointers
466     // FIXME: we could support it by stripping all the information introduced
467     // by StrictVTablePointers.
468 
469     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
470 
471     llvm::Metadata *Ops[2] = {
472               llvm::MDString::get(VMContext, "StrictVTablePointers"),
473               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
474                   llvm::Type::getInt32Ty(VMContext), 1))};
475 
476     getModule().addModuleFlag(llvm::Module::Require,
477                               "StrictVTablePointersRequirement",
478                               llvm::MDNode::get(VMContext, Ops));
479   }
480   if (DebugInfo)
481     // We support a single version in the linked module. The LLVM
482     // parser will drop debug info with a different version number
483     // (and warn about it, too).
484     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
485                               llvm::DEBUG_METADATA_VERSION);
486 
487   // We need to record the widths of enums and wchar_t, so that we can generate
488   // the correct build attributes in the ARM backend. wchar_size is also used by
489   // TargetLibraryInfo.
490   uint64_t WCharWidth =
491       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
492   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
493 
494   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
495   if (   Arch == llvm::Triple::arm
496       || Arch == llvm::Triple::armeb
497       || Arch == llvm::Triple::thumb
498       || Arch == llvm::Triple::thumbeb) {
499     // The minimum width of an enum in bytes
500     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
501     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
502   }
503 
504   if (CodeGenOpts.SanitizeCfiCrossDso) {
505     // Indicate that we want cross-DSO control flow integrity checks.
506     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
507   }
508 
509   if (CodeGenOpts.CFProtectionReturn &&
510       Target.checkCFProtectionReturnSupported(getDiags())) {
511     // Indicate that we want to instrument return control flow protection.
512     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
513                               1);
514   }
515 
516   if (CodeGenOpts.CFProtectionBranch &&
517       Target.checkCFProtectionBranchSupported(getDiags())) {
518     // Indicate that we want to instrument branch control flow protection.
519     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
520                               1);
521   }
522 
523   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
524     // Indicate whether __nvvm_reflect should be configured to flush denormal
525     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
526     // property.)
527     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
528                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
529   }
530 
531   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
532   if (LangOpts.OpenCL) {
533     EmitOpenCLMetadata();
534     // Emit SPIR version.
535     if (getTriple().getArch() == llvm::Triple::spir ||
536         getTriple().getArch() == llvm::Triple::spir64) {
537       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
538       // opencl.spir.version named metadata.
539       llvm::Metadata *SPIRVerElts[] = {
540           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
541               Int32Ty, LangOpts.OpenCLVersion / 100)),
542           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
543               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
544       llvm::NamedMDNode *SPIRVerMD =
545           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
546       llvm::LLVMContext &Ctx = TheModule.getContext();
547       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
548     }
549   }
550 
551   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
552     assert(PLevel < 3 && "Invalid PIC Level");
553     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
554     if (Context.getLangOpts().PIE)
555       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
556   }
557 
558   SimplifyPersonality();
559 
560   if (getCodeGenOpts().EmitDeclMetadata)
561     EmitDeclMetadata();
562 
563   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
564     EmitCoverageFile();
565 
566   if (DebugInfo)
567     DebugInfo->finalize();
568 
569   EmitVersionIdentMetadata();
570 
571   EmitTargetMetadata();
572 }
573 
574 void CodeGenModule::EmitOpenCLMetadata() {
575   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
576   // opencl.ocl.version named metadata node.
577   llvm::Metadata *OCLVerElts[] = {
578       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
579           Int32Ty, LangOpts.OpenCLVersion / 100)),
580       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
581           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
582   llvm::NamedMDNode *OCLVerMD =
583       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
584   llvm::LLVMContext &Ctx = TheModule.getContext();
585   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
586 }
587 
588 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
589   // Make sure that this type is translated.
590   Types.UpdateCompletedType(TD);
591 }
592 
593 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
594   // Make sure that this type is translated.
595   Types.RefreshTypeCacheForClass(RD);
596 }
597 
598 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
599   if (!TBAA)
600     return nullptr;
601   return TBAA->getTypeInfo(QTy);
602 }
603 
604 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
605   // Pointee values may have incomplete types, but they shall never be
606   // dereferenced.
607   if (AccessType->isIncompleteType())
608     return TBAAAccessInfo::getIncompleteInfo();
609 
610   uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity();
611   return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size);
612 }
613 
614 TBAAAccessInfo
615 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
616   if (!TBAA)
617     return TBAAAccessInfo();
618   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
619 }
620 
621 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
622   if (!TBAA)
623     return nullptr;
624   return TBAA->getTBAAStructInfo(QTy);
625 }
626 
627 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
628   if (!TBAA)
629     return nullptr;
630   return TBAA->getBaseTypeInfo(QTy);
631 }
632 
633 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
634   if (!TBAA)
635     return nullptr;
636   return TBAA->getAccessTagInfo(Info);
637 }
638 
639 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
640                                                    TBAAAccessInfo TargetInfo) {
641   if (!TBAA)
642     return TBAAAccessInfo();
643   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
644 }
645 
646 TBAAAccessInfo
647 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
648                                                    TBAAAccessInfo InfoB) {
649   if (!TBAA)
650     return TBAAAccessInfo();
651   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
652 }
653 
654 TBAAAccessInfo
655 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
656                                               TBAAAccessInfo SrcInfo) {
657   if (!TBAA)
658     return TBAAAccessInfo();
659   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
660 }
661 
662 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
663                                                 TBAAAccessInfo TBAAInfo) {
664   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
665     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
666 }
667 
668 void CodeGenModule::DecorateInstructionWithInvariantGroup(
669     llvm::Instruction *I, const CXXRecordDecl *RD) {
670   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
671                  llvm::MDNode::get(getLLVMContext(), {}));
672 }
673 
674 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
675   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
676   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
677 }
678 
679 /// ErrorUnsupported - Print out an error that codegen doesn't support the
680 /// specified stmt yet.
681 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
682   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
683                                                "cannot compile this %0 yet");
684   std::string Msg = Type;
685   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
686     << Msg << S->getSourceRange();
687 }
688 
689 /// ErrorUnsupported - Print out an error that codegen doesn't support the
690 /// specified decl yet.
691 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
692   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
693                                                "cannot compile this %0 yet");
694   std::string Msg = Type;
695   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
696 }
697 
698 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
699   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
700 }
701 
702 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
703                                         const NamedDecl *D,
704                                         ForDefinition_t IsForDefinition) const {
705   if (GV->hasDLLImportStorageClass())
706     return;
707   // Internal definitions always have default visibility.
708   if (GV->hasLocalLinkage()) {
709     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
710     return;
711   }
712 
713   // Set visibility for definitions.
714   LinkageInfo LV = D->getLinkageAndVisibility();
715   if (LV.isVisibilityExplicit() ||
716       (IsForDefinition && !GV->hasAvailableExternallyLinkage()))
717     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
718 }
719 
720 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
721   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
722       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
723       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
724       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
725       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
726 }
727 
728 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
729     CodeGenOptions::TLSModel M) {
730   switch (M) {
731   case CodeGenOptions::GeneralDynamicTLSModel:
732     return llvm::GlobalVariable::GeneralDynamicTLSModel;
733   case CodeGenOptions::LocalDynamicTLSModel:
734     return llvm::GlobalVariable::LocalDynamicTLSModel;
735   case CodeGenOptions::InitialExecTLSModel:
736     return llvm::GlobalVariable::InitialExecTLSModel;
737   case CodeGenOptions::LocalExecTLSModel:
738     return llvm::GlobalVariable::LocalExecTLSModel;
739   }
740   llvm_unreachable("Invalid TLS model!");
741 }
742 
743 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
744   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
745 
746   llvm::GlobalValue::ThreadLocalMode TLM;
747   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
748 
749   // Override the TLS model if it is explicitly specified.
750   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
751     TLM = GetLLVMTLSModel(Attr->getModel());
752   }
753 
754   GV->setThreadLocalMode(TLM);
755 }
756 
757 static void AppendTargetMangling(const CodeGenModule &CGM,
758                                  const TargetAttr *Attr, raw_ostream &Out) {
759   if (Attr->isDefaultVersion())
760     return;
761 
762   Out << '.';
763   const auto &Target = CGM.getTarget();
764   TargetAttr::ParsedTargetAttr Info =
765       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
766                     // Multiversioning doesn't allow "no-${feature}", so we can
767                     // only have "+" prefixes here.
768                     assert(LHS.startswith("+") && RHS.startswith("+") &&
769                            "Features should always have a prefix.");
770                     return Target.multiVersionSortPriority(LHS.substr(1)) >
771                            Target.multiVersionSortPriority(RHS.substr(1));
772                   });
773 
774   bool IsFirst = true;
775 
776   if (!Info.Architecture.empty()) {
777     IsFirst = false;
778     Out << "arch_" << Info.Architecture;
779   }
780 
781   for (StringRef Feat : Info.Features) {
782     if (!IsFirst)
783       Out << '_';
784     IsFirst = false;
785     Out << Feat.substr(1);
786   }
787 }
788 
789 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
790                                       const NamedDecl *ND,
791                                       bool OmitTargetMangling = false) {
792   SmallString<256> Buffer;
793   llvm::raw_svector_ostream Out(Buffer);
794   MangleContext &MC = CGM.getCXXABI().getMangleContext();
795   if (MC.shouldMangleDeclName(ND)) {
796     llvm::raw_svector_ostream Out(Buffer);
797     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
798       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
799     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
800       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
801     else
802       MC.mangleName(ND, Out);
803   } else {
804     IdentifierInfo *II = ND->getIdentifier();
805     assert(II && "Attempt to mangle unnamed decl.");
806     const auto *FD = dyn_cast<FunctionDecl>(ND);
807 
808     if (FD &&
809         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
810       llvm::raw_svector_ostream Out(Buffer);
811       Out << "__regcall3__" << II->getName();
812     } else {
813       Out << II->getName();
814     }
815   }
816 
817   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
818     if (FD->isMultiVersion() && !OmitTargetMangling)
819       AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
820   return Out.str();
821 }
822 
823 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
824                                             const FunctionDecl *FD) {
825   if (!FD->isMultiVersion())
826     return;
827 
828   // Get the name of what this would be without the 'target' attribute.  This
829   // allows us to lookup the version that was emitted when this wasn't a
830   // multiversion function.
831   std::string NonTargetName =
832       getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
833   GlobalDecl OtherGD;
834   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
835     assert(OtherGD.getCanonicalDecl()
836                .getDecl()
837                ->getAsFunction()
838                ->isMultiVersion() &&
839            "Other GD should now be a multiversioned function");
840     // OtherFD is the version of this function that was mangled BEFORE
841     // becoming a MultiVersion function.  It potentially needs to be updated.
842     const FunctionDecl *OtherFD =
843         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
844     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
845     // This is so that if the initial version was already the 'default'
846     // version, we don't try to update it.
847     if (OtherName != NonTargetName) {
848       // Remove instead of erase, since others may have stored the StringRef
849       // to this.
850       const auto ExistingRecord = Manglings.find(NonTargetName);
851       if (ExistingRecord != std::end(Manglings))
852         Manglings.remove(&(*ExistingRecord));
853       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
854       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
855       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
856         Entry->setName(OtherName);
857     }
858   }
859 }
860 
861 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
862   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
863 
864   // Some ABIs don't have constructor variants.  Make sure that base and
865   // complete constructors get mangled the same.
866   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
867     if (!getTarget().getCXXABI().hasConstructorVariants()) {
868       CXXCtorType OrigCtorType = GD.getCtorType();
869       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
870       if (OrigCtorType == Ctor_Base)
871         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
872     }
873   }
874 
875   auto FoundName = MangledDeclNames.find(CanonicalGD);
876   if (FoundName != MangledDeclNames.end())
877     return FoundName->second;
878 
879 
880   // Keep the first result in the case of a mangling collision.
881   const auto *ND = cast<NamedDecl>(GD.getDecl());
882   auto Result =
883       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
884   return MangledDeclNames[CanonicalGD] = Result.first->first();
885 }
886 
887 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
888                                              const BlockDecl *BD) {
889   MangleContext &MangleCtx = getCXXABI().getMangleContext();
890   const Decl *D = GD.getDecl();
891 
892   SmallString<256> Buffer;
893   llvm::raw_svector_ostream Out(Buffer);
894   if (!D)
895     MangleCtx.mangleGlobalBlock(BD,
896       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
897   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
898     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
899   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
900     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
901   else
902     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
903 
904   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
905   return Result.first->first();
906 }
907 
908 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
909   return getModule().getNamedValue(Name);
910 }
911 
912 /// AddGlobalCtor - Add a function to the list that will be called before
913 /// main() runs.
914 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
915                                   llvm::Constant *AssociatedData) {
916   // FIXME: Type coercion of void()* types.
917   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
918 }
919 
920 /// AddGlobalDtor - Add a function to the list that will be called
921 /// when the module is unloaded.
922 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
923   // FIXME: Type coercion of void()* types.
924   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
925 }
926 
927 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
928   if (Fns.empty()) return;
929 
930   // Ctor function type is void()*.
931   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
932   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
933 
934   // Get the type of a ctor entry, { i32, void ()*, i8* }.
935   llvm::StructType *CtorStructTy = llvm::StructType::get(
936       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
937 
938   // Construct the constructor and destructor arrays.
939   ConstantInitBuilder builder(*this);
940   auto ctors = builder.beginArray(CtorStructTy);
941   for (const auto &I : Fns) {
942     auto ctor = ctors.beginStruct(CtorStructTy);
943     ctor.addInt(Int32Ty, I.Priority);
944     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
945     if (I.AssociatedData)
946       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
947     else
948       ctor.addNullPointer(VoidPtrTy);
949     ctor.finishAndAddTo(ctors);
950   }
951 
952   auto list =
953     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
954                                 /*constant*/ false,
955                                 llvm::GlobalValue::AppendingLinkage);
956 
957   // The LTO linker doesn't seem to like it when we set an alignment
958   // on appending variables.  Take it off as a workaround.
959   list->setAlignment(0);
960 
961   Fns.clear();
962 }
963 
964 llvm::GlobalValue::LinkageTypes
965 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
966   const auto *D = cast<FunctionDecl>(GD.getDecl());
967 
968   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
969 
970   if (isa<CXXDestructorDecl>(D) &&
971       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
972                                          GD.getDtorType())) {
973     // Destructor variants in the Microsoft C++ ABI are always internal or
974     // linkonce_odr thunks emitted on an as-needed basis.
975     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
976                                    : llvm::GlobalValue::LinkOnceODRLinkage;
977   }
978 
979   if (isa<CXXConstructorDecl>(D) &&
980       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
981       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
982     // Our approach to inheriting constructors is fundamentally different from
983     // that used by the MS ABI, so keep our inheriting constructor thunks
984     // internal rather than trying to pick an unambiguous mangling for them.
985     return llvm::GlobalValue::InternalLinkage;
986   }
987 
988   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
989 }
990 
991 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
992   const auto *FD = cast<FunctionDecl>(GD.getDecl());
993 
994   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
995     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
996       // Don't dllexport/import destructor thunks.
997       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
998       return;
999     }
1000   }
1001 
1002   if (FD->hasAttr<DLLImportAttr>())
1003     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1004   else if (FD->hasAttr<DLLExportAttr>())
1005     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1006   else
1007     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
1008 }
1009 
1010 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1011   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1012   if (!MDS) return nullptr;
1013 
1014   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1015 }
1016 
1017 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
1018                                                     llvm::Function *F) {
1019   setNonAliasAttributes(D, F);
1020 }
1021 
1022 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1023                                               const CGFunctionInfo &Info,
1024                                               llvm::Function *F) {
1025   unsigned CallingConv;
1026   llvm::AttributeList PAL;
1027   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1028   F->setAttributes(PAL);
1029   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1030 }
1031 
1032 /// Determines whether the language options require us to model
1033 /// unwind exceptions.  We treat -fexceptions as mandating this
1034 /// except under the fragile ObjC ABI with only ObjC exceptions
1035 /// enabled.  This means, for example, that C with -fexceptions
1036 /// enables this.
1037 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1038   // If exceptions are completely disabled, obviously this is false.
1039   if (!LangOpts.Exceptions) return false;
1040 
1041   // If C++ exceptions are enabled, this is true.
1042   if (LangOpts.CXXExceptions) return true;
1043 
1044   // If ObjC exceptions are enabled, this depends on the ABI.
1045   if (LangOpts.ObjCExceptions) {
1046     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1047   }
1048 
1049   return true;
1050 }
1051 
1052 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1053                                                            llvm::Function *F) {
1054   llvm::AttrBuilder B;
1055 
1056   if (CodeGenOpts.UnwindTables)
1057     B.addAttribute(llvm::Attribute::UWTable);
1058 
1059   if (!hasUnwindExceptions(LangOpts))
1060     B.addAttribute(llvm::Attribute::NoUnwind);
1061 
1062   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1063     B.addAttribute(llvm::Attribute::StackProtect);
1064   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1065     B.addAttribute(llvm::Attribute::StackProtectStrong);
1066   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1067     B.addAttribute(llvm::Attribute::StackProtectReq);
1068 
1069   if (!D) {
1070     // If we don't have a declaration to control inlining, the function isn't
1071     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1072     // disabled, mark the function as noinline.
1073     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1074         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1075       B.addAttribute(llvm::Attribute::NoInline);
1076 
1077     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1078     return;
1079   }
1080 
1081   // Track whether we need to add the optnone LLVM attribute,
1082   // starting with the default for this optimization level.
1083   bool ShouldAddOptNone =
1084       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1085   // We can't add optnone in the following cases, it won't pass the verifier.
1086   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1087   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1088   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1089 
1090   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1091     B.addAttribute(llvm::Attribute::OptimizeNone);
1092 
1093     // OptimizeNone implies noinline; we should not be inlining such functions.
1094     B.addAttribute(llvm::Attribute::NoInline);
1095     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1096            "OptimizeNone and AlwaysInline on same function!");
1097 
1098     // We still need to handle naked functions even though optnone subsumes
1099     // much of their semantics.
1100     if (D->hasAttr<NakedAttr>())
1101       B.addAttribute(llvm::Attribute::Naked);
1102 
1103     // OptimizeNone wins over OptimizeForSize and MinSize.
1104     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1105     F->removeFnAttr(llvm::Attribute::MinSize);
1106   } else if (D->hasAttr<NakedAttr>()) {
1107     // Naked implies noinline: we should not be inlining such functions.
1108     B.addAttribute(llvm::Attribute::Naked);
1109     B.addAttribute(llvm::Attribute::NoInline);
1110   } else if (D->hasAttr<NoDuplicateAttr>()) {
1111     B.addAttribute(llvm::Attribute::NoDuplicate);
1112   } else if (D->hasAttr<NoInlineAttr>()) {
1113     B.addAttribute(llvm::Attribute::NoInline);
1114   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1115              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1116     // (noinline wins over always_inline, and we can't specify both in IR)
1117     B.addAttribute(llvm::Attribute::AlwaysInline);
1118   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1119     // If we're not inlining, then force everything that isn't always_inline to
1120     // carry an explicit noinline attribute.
1121     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1122       B.addAttribute(llvm::Attribute::NoInline);
1123   } else {
1124     // Otherwise, propagate the inline hint attribute and potentially use its
1125     // absence to mark things as noinline.
1126     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1127       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1128             return Redecl->isInlineSpecified();
1129           })) {
1130         B.addAttribute(llvm::Attribute::InlineHint);
1131       } else if (CodeGenOpts.getInlining() ==
1132                      CodeGenOptions::OnlyHintInlining &&
1133                  !FD->isInlined() &&
1134                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1135         B.addAttribute(llvm::Attribute::NoInline);
1136       }
1137     }
1138   }
1139 
1140   // Add other optimization related attributes if we are optimizing this
1141   // function.
1142   if (!D->hasAttr<OptimizeNoneAttr>()) {
1143     if (D->hasAttr<ColdAttr>()) {
1144       if (!ShouldAddOptNone)
1145         B.addAttribute(llvm::Attribute::OptimizeForSize);
1146       B.addAttribute(llvm::Attribute::Cold);
1147     }
1148 
1149     if (D->hasAttr<MinSizeAttr>())
1150       B.addAttribute(llvm::Attribute::MinSize);
1151   }
1152 
1153   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1154 
1155   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1156   if (alignment)
1157     F->setAlignment(alignment);
1158 
1159   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1160   // reserve a bit for differentiating between virtual and non-virtual member
1161   // functions. If the current target's C++ ABI requires this and this is a
1162   // member function, set its alignment accordingly.
1163   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1164     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1165       F->setAlignment(2);
1166   }
1167 
1168   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1169   if (CodeGenOpts.SanitizeCfiCrossDso)
1170     if (auto *FD = dyn_cast<FunctionDecl>(D))
1171       CreateFunctionTypeMetadata(FD, F);
1172 }
1173 
1174 void CodeGenModule::SetCommonAttributes(const Decl *D,
1175                                         llvm::GlobalValue *GV) {
1176   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
1177     setGlobalVisibility(GV, ND, ForDefinition);
1178   else
1179     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1180 
1181   if (D && D->hasAttr<UsedAttr>())
1182     addUsedGlobal(GV);
1183 }
1184 
1185 void CodeGenModule::setAliasAttributes(const Decl *D,
1186                                        llvm::GlobalValue *GV) {
1187   SetCommonAttributes(D, GV);
1188 
1189   // Process the dllexport attribute based on whether the original definition
1190   // (not necessarily the aliasee) was exported.
1191   if (D->hasAttr<DLLExportAttr>())
1192     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1193 }
1194 
1195 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1196                                           llvm::GlobalObject *GO) {
1197   SetCommonAttributes(D, GO);
1198 
1199   if (D) {
1200     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1201       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1202         GV->addAttribute("bss-section", SA->getName());
1203       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1204         GV->addAttribute("data-section", SA->getName());
1205       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1206         GV->addAttribute("rodata-section", SA->getName());
1207     }
1208 
1209     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1210       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1211        if (!D->getAttr<SectionAttr>())
1212          F->addFnAttr("implicit-section-name", SA->getName());
1213     }
1214 
1215     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1216       GO->setSection(SA->getName());
1217   }
1218 
1219   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition);
1220 }
1221 
1222 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1223                                                   llvm::Function *F,
1224                                                   const CGFunctionInfo &FI) {
1225   SetLLVMFunctionAttributes(D, FI, F);
1226   SetLLVMFunctionAttributesForDefinition(D, F);
1227 
1228   F->setLinkage(llvm::Function::InternalLinkage);
1229 
1230   setNonAliasAttributes(D, F);
1231 }
1232 
1233 static void setLinkageForGV(llvm::GlobalValue *GV,
1234                             const NamedDecl *ND) {
1235   // Set linkage and visibility in case we never see a definition.
1236   LinkageInfo LV = ND->getLinkageAndVisibility();
1237   if (!isExternallyVisible(LV.getLinkage())) {
1238     // Don't set internal linkage on declarations.
1239   } else {
1240     if (ND->hasAttr<DLLImportAttr>()) {
1241       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1242       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1243     } else if (ND->hasAttr<DLLExportAttr>()) {
1244       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1245     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1246       // "extern_weak" is overloaded in LLVM; we probably should have
1247       // separate linkage types for this.
1248       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1249     }
1250   }
1251 }
1252 
1253 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1254                                                llvm::Function *F) {
1255   // Only if we are checking indirect calls.
1256   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1257     return;
1258 
1259   // Non-static class methods are handled via vtable pointer checks elsewhere.
1260   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1261     return;
1262 
1263   // Additionally, if building with cross-DSO support...
1264   if (CodeGenOpts.SanitizeCfiCrossDso) {
1265     // Skip available_externally functions. They won't be codegen'ed in the
1266     // current module anyway.
1267     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1268       return;
1269   }
1270 
1271   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1272   F->addTypeMetadata(0, MD);
1273   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1274 
1275   // Emit a hash-based bit set entry for cross-DSO calls.
1276   if (CodeGenOpts.SanitizeCfiCrossDso)
1277     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1278       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1279 }
1280 
1281 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1282                                           bool IsIncompleteFunction,
1283                                           bool IsThunk,
1284                                           ForDefinition_t IsForDefinition) {
1285 
1286   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1287     // If this is an intrinsic function, set the function's attributes
1288     // to the intrinsic's attributes.
1289     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1290     return;
1291   }
1292 
1293   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1294 
1295   if (!IsIncompleteFunction) {
1296     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1297     // Setup target-specific attributes.
1298     if (!IsForDefinition)
1299       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this,
1300                                                  NotForDefinition);
1301   }
1302 
1303   // Add the Returned attribute for "this", except for iOS 5 and earlier
1304   // where substantial code, including the libstdc++ dylib, was compiled with
1305   // GCC and does not actually return "this".
1306   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1307       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1308     assert(!F->arg_empty() &&
1309            F->arg_begin()->getType()
1310              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1311            "unexpected this return");
1312     F->addAttribute(1, llvm::Attribute::Returned);
1313   }
1314 
1315   // Only a few attributes are set on declarations; these may later be
1316   // overridden by a definition.
1317 
1318   setLinkageForGV(F, FD);
1319   setGlobalVisibility(F, FD, NotForDefinition);
1320 
1321   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1322     F->addFnAttr("implicit-section-name");
1323   }
1324 
1325   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1326     F->setSection(SA->getName());
1327 
1328   if (FD->isReplaceableGlobalAllocationFunction()) {
1329     // A replaceable global allocation function does not act like a builtin by
1330     // default, only if it is invoked by a new-expression or delete-expression.
1331     F->addAttribute(llvm::AttributeList::FunctionIndex,
1332                     llvm::Attribute::NoBuiltin);
1333 
1334     // A sane operator new returns a non-aliasing pointer.
1335     // FIXME: Also add NonNull attribute to the return value
1336     // for the non-nothrow forms?
1337     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1338     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1339         (Kind == OO_New || Kind == OO_Array_New))
1340       F->addAttribute(llvm::AttributeList::ReturnIndex,
1341                       llvm::Attribute::NoAlias);
1342   }
1343 
1344   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1345     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1346   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1347     if (MD->isVirtual())
1348       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1349 
1350   // Don't emit entries for function declarations in the cross-DSO mode. This
1351   // is handled with better precision by the receiving DSO.
1352   if (!CodeGenOpts.SanitizeCfiCrossDso)
1353     CreateFunctionTypeMetadata(FD, F);
1354 
1355   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1356     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1357 }
1358 
1359 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1360   assert(!GV->isDeclaration() &&
1361          "Only globals with definition can force usage.");
1362   LLVMUsed.emplace_back(GV);
1363 }
1364 
1365 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1366   assert(!GV->isDeclaration() &&
1367          "Only globals with definition can force usage.");
1368   LLVMCompilerUsed.emplace_back(GV);
1369 }
1370 
1371 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1372                      std::vector<llvm::WeakTrackingVH> &List) {
1373   // Don't create llvm.used if there is no need.
1374   if (List.empty())
1375     return;
1376 
1377   // Convert List to what ConstantArray needs.
1378   SmallVector<llvm::Constant*, 8> UsedArray;
1379   UsedArray.resize(List.size());
1380   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1381     UsedArray[i] =
1382         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1383             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1384   }
1385 
1386   if (UsedArray.empty())
1387     return;
1388   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1389 
1390   auto *GV = new llvm::GlobalVariable(
1391       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1392       llvm::ConstantArray::get(ATy, UsedArray), Name);
1393 
1394   GV->setSection("llvm.metadata");
1395 }
1396 
1397 void CodeGenModule::emitLLVMUsed() {
1398   emitUsed(*this, "llvm.used", LLVMUsed);
1399   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1400 }
1401 
1402 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1403   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1404   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1405 }
1406 
1407 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1408   llvm::SmallString<32> Opt;
1409   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1410   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1411   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1412 }
1413 
1414 void CodeGenModule::AddDependentLib(StringRef Lib) {
1415   llvm::SmallString<24> Opt;
1416   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1417   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1418   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1419 }
1420 
1421 /// \brief Add link options implied by the given module, including modules
1422 /// it depends on, using a postorder walk.
1423 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1424                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1425                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1426   // Import this module's parent.
1427   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1428     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1429   }
1430 
1431   // Import this module's dependencies.
1432   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1433     if (Visited.insert(Mod->Imports[I - 1]).second)
1434       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1435   }
1436 
1437   // Add linker options to link against the libraries/frameworks
1438   // described by this module.
1439   llvm::LLVMContext &Context = CGM.getLLVMContext();
1440   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1441     // Link against a framework.  Frameworks are currently Darwin only, so we
1442     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1443     if (Mod->LinkLibraries[I-1].IsFramework) {
1444       llvm::Metadata *Args[2] = {
1445           llvm::MDString::get(Context, "-framework"),
1446           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1447 
1448       Metadata.push_back(llvm::MDNode::get(Context, Args));
1449       continue;
1450     }
1451 
1452     // Link against a library.
1453     llvm::SmallString<24> Opt;
1454     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1455       Mod->LinkLibraries[I-1].Library, Opt);
1456     auto *OptString = llvm::MDString::get(Context, Opt);
1457     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1458   }
1459 }
1460 
1461 void CodeGenModule::EmitModuleLinkOptions() {
1462   // Collect the set of all of the modules we want to visit to emit link
1463   // options, which is essentially the imported modules and all of their
1464   // non-explicit child modules.
1465   llvm::SetVector<clang::Module *> LinkModules;
1466   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1467   SmallVector<clang::Module *, 16> Stack;
1468 
1469   // Seed the stack with imported modules.
1470   for (Module *M : ImportedModules) {
1471     // Do not add any link flags when an implementation TU of a module imports
1472     // a header of that same module.
1473     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1474         !getLangOpts().isCompilingModule())
1475       continue;
1476     if (Visited.insert(M).second)
1477       Stack.push_back(M);
1478   }
1479 
1480   // Find all of the modules to import, making a little effort to prune
1481   // non-leaf modules.
1482   while (!Stack.empty()) {
1483     clang::Module *Mod = Stack.pop_back_val();
1484 
1485     bool AnyChildren = false;
1486 
1487     // Visit the submodules of this module.
1488     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1489                                         SubEnd = Mod->submodule_end();
1490          Sub != SubEnd; ++Sub) {
1491       // Skip explicit children; they need to be explicitly imported to be
1492       // linked against.
1493       if ((*Sub)->IsExplicit)
1494         continue;
1495 
1496       if (Visited.insert(*Sub).second) {
1497         Stack.push_back(*Sub);
1498         AnyChildren = true;
1499       }
1500     }
1501 
1502     // We didn't find any children, so add this module to the list of
1503     // modules to link against.
1504     if (!AnyChildren) {
1505       LinkModules.insert(Mod);
1506     }
1507   }
1508 
1509   // Add link options for all of the imported modules in reverse topological
1510   // order.  We don't do anything to try to order import link flags with respect
1511   // to linker options inserted by things like #pragma comment().
1512   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1513   Visited.clear();
1514   for (Module *M : LinkModules)
1515     if (Visited.insert(M).second)
1516       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1517   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1518   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1519 
1520   // Add the linker options metadata flag.
1521   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1522   for (auto *MD : LinkerOptionsMetadata)
1523     NMD->addOperand(MD);
1524 }
1525 
1526 void CodeGenModule::EmitDeferred() {
1527   // Emit code for any potentially referenced deferred decls.  Since a
1528   // previously unused static decl may become used during the generation of code
1529   // for a static function, iterate until no changes are made.
1530 
1531   if (!DeferredVTables.empty()) {
1532     EmitDeferredVTables();
1533 
1534     // Emitting a vtable doesn't directly cause more vtables to
1535     // become deferred, although it can cause functions to be
1536     // emitted that then need those vtables.
1537     assert(DeferredVTables.empty());
1538   }
1539 
1540   // Stop if we're out of both deferred vtables and deferred declarations.
1541   if (DeferredDeclsToEmit.empty())
1542     return;
1543 
1544   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1545   // work, it will not interfere with this.
1546   std::vector<GlobalDecl> CurDeclsToEmit;
1547   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1548 
1549   for (GlobalDecl &D : CurDeclsToEmit) {
1550     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1551     // to get GlobalValue with exactly the type we need, not something that
1552     // might had been created for another decl with the same mangled name but
1553     // different type.
1554     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1555         GetAddrOfGlobal(D, ForDefinition));
1556 
1557     // In case of different address spaces, we may still get a cast, even with
1558     // IsForDefinition equal to true. Query mangled names table to get
1559     // GlobalValue.
1560     if (!GV)
1561       GV = GetGlobalValue(getMangledName(D));
1562 
1563     // Make sure GetGlobalValue returned non-null.
1564     assert(GV);
1565 
1566     // Check to see if we've already emitted this.  This is necessary
1567     // for a couple of reasons: first, decls can end up in the
1568     // deferred-decls queue multiple times, and second, decls can end
1569     // up with definitions in unusual ways (e.g. by an extern inline
1570     // function acquiring a strong function redefinition).  Just
1571     // ignore these cases.
1572     if (!GV->isDeclaration())
1573       continue;
1574 
1575     // Otherwise, emit the definition and move on to the next one.
1576     EmitGlobalDefinition(D, GV);
1577 
1578     // If we found out that we need to emit more decls, do that recursively.
1579     // This has the advantage that the decls are emitted in a DFS and related
1580     // ones are close together, which is convenient for testing.
1581     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1582       EmitDeferred();
1583       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1584     }
1585   }
1586 }
1587 
1588 void CodeGenModule::EmitVTablesOpportunistically() {
1589   // Try to emit external vtables as available_externally if they have emitted
1590   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1591   // is not allowed to create new references to things that need to be emitted
1592   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1593 
1594   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1595          && "Only emit opportunistic vtables with optimizations");
1596 
1597   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1598     assert(getVTables().isVTableExternal(RD) &&
1599            "This queue should only contain external vtables");
1600     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1601       VTables.GenerateClassData(RD);
1602   }
1603   OpportunisticVTables.clear();
1604 }
1605 
1606 void CodeGenModule::EmitGlobalAnnotations() {
1607   if (Annotations.empty())
1608     return;
1609 
1610   // Create a new global variable for the ConstantStruct in the Module.
1611   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1612     Annotations[0]->getType(), Annotations.size()), Annotations);
1613   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1614                                       llvm::GlobalValue::AppendingLinkage,
1615                                       Array, "llvm.global.annotations");
1616   gv->setSection(AnnotationSection);
1617 }
1618 
1619 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1620   llvm::Constant *&AStr = AnnotationStrings[Str];
1621   if (AStr)
1622     return AStr;
1623 
1624   // Not found yet, create a new global.
1625   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1626   auto *gv =
1627       new llvm::GlobalVariable(getModule(), s->getType(), true,
1628                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1629   gv->setSection(AnnotationSection);
1630   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1631   AStr = gv;
1632   return gv;
1633 }
1634 
1635 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1636   SourceManager &SM = getContext().getSourceManager();
1637   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1638   if (PLoc.isValid())
1639     return EmitAnnotationString(PLoc.getFilename());
1640   return EmitAnnotationString(SM.getBufferName(Loc));
1641 }
1642 
1643 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1644   SourceManager &SM = getContext().getSourceManager();
1645   PresumedLoc PLoc = SM.getPresumedLoc(L);
1646   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1647     SM.getExpansionLineNumber(L);
1648   return llvm::ConstantInt::get(Int32Ty, LineNo);
1649 }
1650 
1651 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1652                                                 const AnnotateAttr *AA,
1653                                                 SourceLocation L) {
1654   // Get the globals for file name, annotation, and the line number.
1655   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1656                  *UnitGV = EmitAnnotationUnit(L),
1657                  *LineNoCst = EmitAnnotationLineNo(L);
1658 
1659   // Create the ConstantStruct for the global annotation.
1660   llvm::Constant *Fields[4] = {
1661     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1662     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1663     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1664     LineNoCst
1665   };
1666   return llvm::ConstantStruct::getAnon(Fields);
1667 }
1668 
1669 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1670                                          llvm::GlobalValue *GV) {
1671   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1672   // Get the struct elements for these annotations.
1673   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1674     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1675 }
1676 
1677 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1678                                            llvm::Function *Fn,
1679                                            SourceLocation Loc) const {
1680   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1681   // Blacklist by function name.
1682   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1683     return true;
1684   // Blacklist by location.
1685   if (Loc.isValid())
1686     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1687   // If location is unknown, this may be a compiler-generated function. Assume
1688   // it's located in the main file.
1689   auto &SM = Context.getSourceManager();
1690   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1691     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1692   }
1693   return false;
1694 }
1695 
1696 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1697                                            SourceLocation Loc, QualType Ty,
1698                                            StringRef Category) const {
1699   // For now globals can be blacklisted only in ASan and KASan.
1700   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1701       (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress);
1702   if (!EnabledAsanMask)
1703     return false;
1704   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1705   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1706     return true;
1707   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1708     return true;
1709   // Check global type.
1710   if (!Ty.isNull()) {
1711     // Drill down the array types: if global variable of a fixed type is
1712     // blacklisted, we also don't instrument arrays of them.
1713     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1714       Ty = AT->getElementType();
1715     Ty = Ty.getCanonicalType().getUnqualifiedType();
1716     // We allow to blacklist only record types (classes, structs etc.)
1717     if (Ty->isRecordType()) {
1718       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1719       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1720         return true;
1721     }
1722   }
1723   return false;
1724 }
1725 
1726 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1727                                    StringRef Category) const {
1728   if (!LangOpts.XRayInstrument)
1729     return false;
1730   const auto &XRayFilter = getContext().getXRayFilter();
1731   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1732   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1733   if (Loc.isValid())
1734     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1735   if (Attr == ImbueAttr::NONE)
1736     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1737   switch (Attr) {
1738   case ImbueAttr::NONE:
1739     return false;
1740   case ImbueAttr::ALWAYS:
1741     Fn->addFnAttr("function-instrument", "xray-always");
1742     break;
1743   case ImbueAttr::ALWAYS_ARG1:
1744     Fn->addFnAttr("function-instrument", "xray-always");
1745     Fn->addFnAttr("xray-log-args", "1");
1746     break;
1747   case ImbueAttr::NEVER:
1748     Fn->addFnAttr("function-instrument", "xray-never");
1749     break;
1750   }
1751   return true;
1752 }
1753 
1754 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1755   // Never defer when EmitAllDecls is specified.
1756   if (LangOpts.EmitAllDecls)
1757     return true;
1758 
1759   return getContext().DeclMustBeEmitted(Global);
1760 }
1761 
1762 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1763   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1764     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1765       // Implicit template instantiations may change linkage if they are later
1766       // explicitly instantiated, so they should not be emitted eagerly.
1767       return false;
1768   if (const auto *VD = dyn_cast<VarDecl>(Global))
1769     if (Context.getInlineVariableDefinitionKind(VD) ==
1770         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1771       // A definition of an inline constexpr static data member may change
1772       // linkage later if it's redeclared outside the class.
1773       return false;
1774   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1775   // codegen for global variables, because they may be marked as threadprivate.
1776   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1777       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1778     return false;
1779 
1780   return true;
1781 }
1782 
1783 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1784     const CXXUuidofExpr* E) {
1785   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1786   // well-formed.
1787   StringRef Uuid = E->getUuidStr();
1788   std::string Name = "_GUID_" + Uuid.lower();
1789   std::replace(Name.begin(), Name.end(), '-', '_');
1790 
1791   // The UUID descriptor should be pointer aligned.
1792   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1793 
1794   // Look for an existing global.
1795   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1796     return ConstantAddress(GV, Alignment);
1797 
1798   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1799   assert(Init && "failed to initialize as constant");
1800 
1801   auto *GV = new llvm::GlobalVariable(
1802       getModule(), Init->getType(),
1803       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1804   if (supportsCOMDAT())
1805     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1806   return ConstantAddress(GV, Alignment);
1807 }
1808 
1809 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1810   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1811   assert(AA && "No alias?");
1812 
1813   CharUnits Alignment = getContext().getDeclAlign(VD);
1814   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1815 
1816   // See if there is already something with the target's name in the module.
1817   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1818   if (Entry) {
1819     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1820     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1821     return ConstantAddress(Ptr, Alignment);
1822   }
1823 
1824   llvm::Constant *Aliasee;
1825   if (isa<llvm::FunctionType>(DeclTy))
1826     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1827                                       GlobalDecl(cast<FunctionDecl>(VD)),
1828                                       /*ForVTable=*/false);
1829   else
1830     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1831                                     llvm::PointerType::getUnqual(DeclTy),
1832                                     nullptr);
1833 
1834   auto *F = cast<llvm::GlobalValue>(Aliasee);
1835   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1836   WeakRefReferences.insert(F);
1837 
1838   return ConstantAddress(Aliasee, Alignment);
1839 }
1840 
1841 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1842   const auto *Global = cast<ValueDecl>(GD.getDecl());
1843 
1844   // Weak references don't produce any output by themselves.
1845   if (Global->hasAttr<WeakRefAttr>())
1846     return;
1847 
1848   // If this is an alias definition (which otherwise looks like a declaration)
1849   // emit it now.
1850   if (Global->hasAttr<AliasAttr>())
1851     return EmitAliasDefinition(GD);
1852 
1853   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1854   if (Global->hasAttr<IFuncAttr>())
1855     return emitIFuncDefinition(GD);
1856 
1857   // If this is CUDA, be selective about which declarations we emit.
1858   if (LangOpts.CUDA) {
1859     if (LangOpts.CUDAIsDevice) {
1860       if (!Global->hasAttr<CUDADeviceAttr>() &&
1861           !Global->hasAttr<CUDAGlobalAttr>() &&
1862           !Global->hasAttr<CUDAConstantAttr>() &&
1863           !Global->hasAttr<CUDASharedAttr>())
1864         return;
1865     } else {
1866       // We need to emit host-side 'shadows' for all global
1867       // device-side variables because the CUDA runtime needs their
1868       // size and host-side address in order to provide access to
1869       // their device-side incarnations.
1870 
1871       // So device-only functions are the only things we skip.
1872       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1873           Global->hasAttr<CUDADeviceAttr>())
1874         return;
1875 
1876       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1877              "Expected Variable or Function");
1878     }
1879   }
1880 
1881   if (LangOpts.OpenMP) {
1882     // If this is OpenMP device, check if it is legal to emit this global
1883     // normally.
1884     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1885       return;
1886     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1887       if (MustBeEmitted(Global))
1888         EmitOMPDeclareReduction(DRD);
1889       return;
1890     }
1891   }
1892 
1893   // Ignore declarations, they will be emitted on their first use.
1894   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1895     // Forward declarations are emitted lazily on first use.
1896     if (!FD->doesThisDeclarationHaveABody()) {
1897       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1898         return;
1899 
1900       StringRef MangledName = getMangledName(GD);
1901 
1902       // Compute the function info and LLVM type.
1903       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1904       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1905 
1906       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1907                               /*DontDefer=*/false);
1908       return;
1909     }
1910   } else {
1911     const auto *VD = cast<VarDecl>(Global);
1912     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1913     // We need to emit device-side global CUDA variables even if a
1914     // variable does not have a definition -- we still need to define
1915     // host-side shadow for it.
1916     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1917                            !VD->hasDefinition() &&
1918                            (VD->hasAttr<CUDAConstantAttr>() ||
1919                             VD->hasAttr<CUDADeviceAttr>());
1920     if (!MustEmitForCuda &&
1921         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1922         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1923       // If this declaration may have caused an inline variable definition to
1924       // change linkage, make sure that it's emitted.
1925       if (Context.getInlineVariableDefinitionKind(VD) ==
1926           ASTContext::InlineVariableDefinitionKind::Strong)
1927         GetAddrOfGlobalVar(VD);
1928       return;
1929     }
1930   }
1931 
1932   // Defer code generation to first use when possible, e.g. if this is an inline
1933   // function. If the global must always be emitted, do it eagerly if possible
1934   // to benefit from cache locality.
1935   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1936     // Emit the definition if it can't be deferred.
1937     EmitGlobalDefinition(GD);
1938     return;
1939   }
1940 
1941   // If we're deferring emission of a C++ variable with an
1942   // initializer, remember the order in which it appeared in the file.
1943   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1944       cast<VarDecl>(Global)->hasInit()) {
1945     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1946     CXXGlobalInits.push_back(nullptr);
1947   }
1948 
1949   StringRef MangledName = getMangledName(GD);
1950   if (GetGlobalValue(MangledName) != nullptr) {
1951     // The value has already been used and should therefore be emitted.
1952     addDeferredDeclToEmit(GD);
1953   } else if (MustBeEmitted(Global)) {
1954     // The value must be emitted, but cannot be emitted eagerly.
1955     assert(!MayBeEmittedEagerly(Global));
1956     addDeferredDeclToEmit(GD);
1957   } else {
1958     // Otherwise, remember that we saw a deferred decl with this name.  The
1959     // first use of the mangled name will cause it to move into
1960     // DeferredDeclsToEmit.
1961     DeferredDecls[MangledName] = GD;
1962   }
1963 }
1964 
1965 // Check if T is a class type with a destructor that's not dllimport.
1966 static bool HasNonDllImportDtor(QualType T) {
1967   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
1968     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1969       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1970         return true;
1971 
1972   return false;
1973 }
1974 
1975 namespace {
1976   struct FunctionIsDirectlyRecursive :
1977     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1978     const StringRef Name;
1979     const Builtin::Context &BI;
1980     bool Result;
1981     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1982       Name(N), BI(C), Result(false) {
1983     }
1984     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1985 
1986     bool TraverseCallExpr(CallExpr *E) {
1987       const FunctionDecl *FD = E->getDirectCallee();
1988       if (!FD)
1989         return true;
1990       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1991       if (Attr && Name == Attr->getLabel()) {
1992         Result = true;
1993         return false;
1994       }
1995       unsigned BuiltinID = FD->getBuiltinID();
1996       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1997         return true;
1998       StringRef BuiltinName = BI.getName(BuiltinID);
1999       if (BuiltinName.startswith("__builtin_") &&
2000           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2001         Result = true;
2002         return false;
2003       }
2004       return true;
2005     }
2006   };
2007 
2008   // Make sure we're not referencing non-imported vars or functions.
2009   struct DLLImportFunctionVisitor
2010       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2011     bool SafeToInline = true;
2012 
2013     bool shouldVisitImplicitCode() const { return true; }
2014 
2015     bool VisitVarDecl(VarDecl *VD) {
2016       if (VD->getTLSKind()) {
2017         // A thread-local variable cannot be imported.
2018         SafeToInline = false;
2019         return SafeToInline;
2020       }
2021 
2022       // A variable definition might imply a destructor call.
2023       if (VD->isThisDeclarationADefinition())
2024         SafeToInline = !HasNonDllImportDtor(VD->getType());
2025 
2026       return SafeToInline;
2027     }
2028 
2029     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2030       if (const auto *D = E->getTemporary()->getDestructor())
2031         SafeToInline = D->hasAttr<DLLImportAttr>();
2032       return SafeToInline;
2033     }
2034 
2035     bool VisitDeclRefExpr(DeclRefExpr *E) {
2036       ValueDecl *VD = E->getDecl();
2037       if (isa<FunctionDecl>(VD))
2038         SafeToInline = VD->hasAttr<DLLImportAttr>();
2039       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2040         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2041       return SafeToInline;
2042     }
2043 
2044     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2045       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2046       return SafeToInline;
2047     }
2048 
2049     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2050       CXXMethodDecl *M = E->getMethodDecl();
2051       if (!M) {
2052         // Call through a pointer to member function. This is safe to inline.
2053         SafeToInline = true;
2054       } else {
2055         SafeToInline = M->hasAttr<DLLImportAttr>();
2056       }
2057       return SafeToInline;
2058     }
2059 
2060     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2061       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2062       return SafeToInline;
2063     }
2064 
2065     bool VisitCXXNewExpr(CXXNewExpr *E) {
2066       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2067       return SafeToInline;
2068     }
2069   };
2070 }
2071 
2072 // isTriviallyRecursive - Check if this function calls another
2073 // decl that, because of the asm attribute or the other decl being a builtin,
2074 // ends up pointing to itself.
2075 bool
2076 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2077   StringRef Name;
2078   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2079     // asm labels are a special kind of mangling we have to support.
2080     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2081     if (!Attr)
2082       return false;
2083     Name = Attr->getLabel();
2084   } else {
2085     Name = FD->getName();
2086   }
2087 
2088   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2089   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2090   return Walker.Result;
2091 }
2092 
2093 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2094   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2095     return true;
2096   const auto *F = cast<FunctionDecl>(GD.getDecl());
2097   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2098     return false;
2099 
2100   if (F->hasAttr<DLLImportAttr>()) {
2101     // Check whether it would be safe to inline this dllimport function.
2102     DLLImportFunctionVisitor Visitor;
2103     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2104     if (!Visitor.SafeToInline)
2105       return false;
2106 
2107     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2108       // Implicit destructor invocations aren't captured in the AST, so the
2109       // check above can't see them. Check for them manually here.
2110       for (const Decl *Member : Dtor->getParent()->decls())
2111         if (isa<FieldDecl>(Member))
2112           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2113             return false;
2114       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2115         if (HasNonDllImportDtor(B.getType()))
2116           return false;
2117     }
2118   }
2119 
2120   // PR9614. Avoid cases where the source code is lying to us. An available
2121   // externally function should have an equivalent function somewhere else,
2122   // but a function that calls itself is clearly not equivalent to the real
2123   // implementation.
2124   // This happens in glibc's btowc and in some configure checks.
2125   return !isTriviallyRecursive(F);
2126 }
2127 
2128 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2129   return CodeGenOpts.OptimizationLevel > 0;
2130 }
2131 
2132 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2133   const auto *D = cast<ValueDecl>(GD.getDecl());
2134 
2135   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2136                                  Context.getSourceManager(),
2137                                  "Generating code for declaration");
2138 
2139   if (isa<FunctionDecl>(D)) {
2140     // At -O0, don't generate IR for functions with available_externally
2141     // linkage.
2142     if (!shouldEmitFunction(GD))
2143       return;
2144 
2145     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2146       // Make sure to emit the definition(s) before we emit the thunks.
2147       // This is necessary for the generation of certain thunks.
2148       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2149         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2150       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2151         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2152       else
2153         EmitGlobalFunctionDefinition(GD, GV);
2154 
2155       if (Method->isVirtual())
2156         getVTables().EmitThunks(GD);
2157 
2158       return;
2159     }
2160 
2161     return EmitGlobalFunctionDefinition(GD, GV);
2162   }
2163 
2164   if (const auto *VD = dyn_cast<VarDecl>(D))
2165     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2166 
2167   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2168 }
2169 
2170 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2171                                                       llvm::Function *NewFn);
2172 
2173 void CodeGenModule::emitMultiVersionFunctions() {
2174   for (GlobalDecl GD : MultiVersionFuncs) {
2175     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2176     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2177     getContext().forEachMultiversionedFunctionVersion(
2178         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2179           GlobalDecl CurGD{
2180               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2181           StringRef MangledName = getMangledName(CurGD);
2182           llvm::Constant *Func = GetGlobalValue(MangledName);
2183           if (!Func) {
2184             if (CurFD->isDefined()) {
2185               EmitGlobalFunctionDefinition(CurGD, nullptr);
2186               Func = GetGlobalValue(MangledName);
2187             } else {
2188               const CGFunctionInfo &FI =
2189                   getTypes().arrangeGlobalDeclaration(GD);
2190               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2191               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2192                                        /*DontDefer=*/false, ForDefinition);
2193             }
2194             assert(Func && "This should have just been created");
2195           }
2196           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2197                                CurFD->getAttr<TargetAttr>()->parse());
2198         });
2199 
2200     llvm::Function *ResolverFunc = cast<llvm::Function>(
2201         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2202     if (supportsCOMDAT())
2203       ResolverFunc->setComdat(
2204           getModule().getOrInsertComdat(ResolverFunc->getName()));
2205     std::stable_sort(
2206         Options.begin(), Options.end(),
2207         std::greater<CodeGenFunction::MultiVersionResolverOption>());
2208     CodeGenFunction CGF(*this);
2209     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2210   }
2211 }
2212 
2213 /// If an ifunc for the specified mangled name is not in the module, create and
2214 /// return an llvm IFunc Function with the specified type.
2215 llvm::Constant *
2216 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2217                                             StringRef MangledName,
2218                                             const FunctionDecl *FD) {
2219   std::string IFuncName = (MangledName + ".ifunc").str();
2220   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2221     return IFuncGV;
2222 
2223   // Since this is the first time we've created this IFunc, make sure
2224   // that we put this multiversioned function into the list to be
2225   // replaced later.
2226   MultiVersionFuncs.push_back(GD);
2227 
2228   std::string ResolverName = (MangledName + ".resolver").str();
2229   llvm::Type *ResolverType = llvm::FunctionType::get(
2230       llvm::PointerType::get(DeclTy,
2231                              Context.getTargetAddressSpace(FD->getType())),
2232       false);
2233   llvm::Constant *Resolver =
2234       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2235                               /*ForVTable=*/false);
2236   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2237       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2238   GIF->setName(IFuncName);
2239   SetCommonAttributes(FD, GIF);
2240 
2241   return GIF;
2242 }
2243 
2244 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2245 /// module, create and return an llvm Function with the specified type. If there
2246 /// is something in the module with the specified name, return it potentially
2247 /// bitcasted to the right type.
2248 ///
2249 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2250 /// to set the attributes on the function when it is first created.
2251 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2252     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2253     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2254     ForDefinition_t IsForDefinition) {
2255   const Decl *D = GD.getDecl();
2256 
2257   // Any attempts to use a MultiVersion function should result in retrieving
2258   // the iFunc instead. Name Mangling will handle the rest of the changes.
2259   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2260     if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2261       UpdateMultiVersionNames(GD, FD);
2262       if (!IsForDefinition)
2263         return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2264     }
2265   }
2266 
2267   // Lookup the entry, lazily creating it if necessary.
2268   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2269   if (Entry) {
2270     if (WeakRefReferences.erase(Entry)) {
2271       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2272       if (FD && !FD->hasAttr<WeakAttr>())
2273         Entry->setLinkage(llvm::Function::ExternalLinkage);
2274     }
2275 
2276     // Handle dropped DLL attributes.
2277     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2278       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2279 
2280     // If there are two attempts to define the same mangled name, issue an
2281     // error.
2282     if (IsForDefinition && !Entry->isDeclaration()) {
2283       GlobalDecl OtherGD;
2284       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2285       // to make sure that we issue an error only once.
2286       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2287           (GD.getCanonicalDecl().getDecl() !=
2288            OtherGD.getCanonicalDecl().getDecl()) &&
2289           DiagnosedConflictingDefinitions.insert(GD).second) {
2290         getDiags().Report(D->getLocation(),
2291                           diag::err_duplicate_mangled_name);
2292         getDiags().Report(OtherGD.getDecl()->getLocation(),
2293                           diag::note_previous_definition);
2294       }
2295     }
2296 
2297     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2298         (Entry->getType()->getElementType() == Ty)) {
2299       return Entry;
2300     }
2301 
2302     // Make sure the result is of the correct type.
2303     // (If function is requested for a definition, we always need to create a new
2304     // function, not just return a bitcast.)
2305     if (!IsForDefinition)
2306       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2307   }
2308 
2309   // This function doesn't have a complete type (for example, the return
2310   // type is an incomplete struct). Use a fake type instead, and make
2311   // sure not to try to set attributes.
2312   bool IsIncompleteFunction = false;
2313 
2314   llvm::FunctionType *FTy;
2315   if (isa<llvm::FunctionType>(Ty)) {
2316     FTy = cast<llvm::FunctionType>(Ty);
2317   } else {
2318     FTy = llvm::FunctionType::get(VoidTy, false);
2319     IsIncompleteFunction = true;
2320   }
2321 
2322   llvm::Function *F =
2323       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2324                              Entry ? StringRef() : MangledName, &getModule());
2325 
2326   // If we already created a function with the same mangled name (but different
2327   // type) before, take its name and add it to the list of functions to be
2328   // replaced with F at the end of CodeGen.
2329   //
2330   // This happens if there is a prototype for a function (e.g. "int f()") and
2331   // then a definition of a different type (e.g. "int f(int x)").
2332   if (Entry) {
2333     F->takeName(Entry);
2334 
2335     // This might be an implementation of a function without a prototype, in
2336     // which case, try to do special replacement of calls which match the new
2337     // prototype.  The really key thing here is that we also potentially drop
2338     // arguments from the call site so as to make a direct call, which makes the
2339     // inliner happier and suppresses a number of optimizer warnings (!) about
2340     // dropping arguments.
2341     if (!Entry->use_empty()) {
2342       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2343       Entry->removeDeadConstantUsers();
2344     }
2345 
2346     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2347         F, Entry->getType()->getElementType()->getPointerTo());
2348     addGlobalValReplacement(Entry, BC);
2349   }
2350 
2351   assert(F->getName() == MangledName && "name was uniqued!");
2352   if (D)
2353     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk,
2354                           IsForDefinition);
2355   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2356     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2357     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2358   }
2359 
2360   if (!DontDefer) {
2361     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2362     // each other bottoming out with the base dtor.  Therefore we emit non-base
2363     // dtors on usage, even if there is no dtor definition in the TU.
2364     if (D && isa<CXXDestructorDecl>(D) &&
2365         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2366                                            GD.getDtorType()))
2367       addDeferredDeclToEmit(GD);
2368 
2369     // This is the first use or definition of a mangled name.  If there is a
2370     // deferred decl with this name, remember that we need to emit it at the end
2371     // of the file.
2372     auto DDI = DeferredDecls.find(MangledName);
2373     if (DDI != DeferredDecls.end()) {
2374       // Move the potentially referenced deferred decl to the
2375       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2376       // don't need it anymore).
2377       addDeferredDeclToEmit(DDI->second);
2378       DeferredDecls.erase(DDI);
2379 
2380       // Otherwise, there are cases we have to worry about where we're
2381       // using a declaration for which we must emit a definition but where
2382       // we might not find a top-level definition:
2383       //   - member functions defined inline in their classes
2384       //   - friend functions defined inline in some class
2385       //   - special member functions with implicit definitions
2386       // If we ever change our AST traversal to walk into class methods,
2387       // this will be unnecessary.
2388       //
2389       // We also don't emit a definition for a function if it's going to be an
2390       // entry in a vtable, unless it's already marked as used.
2391     } else if (getLangOpts().CPlusPlus && D) {
2392       // Look for a declaration that's lexically in a record.
2393       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2394            FD = FD->getPreviousDecl()) {
2395         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2396           if (FD->doesThisDeclarationHaveABody()) {
2397             addDeferredDeclToEmit(GD.getWithDecl(FD));
2398             break;
2399           }
2400         }
2401       }
2402     }
2403   }
2404 
2405   // Make sure the result is of the requested type.
2406   if (!IsIncompleteFunction) {
2407     assert(F->getType()->getElementType() == Ty);
2408     return F;
2409   }
2410 
2411   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2412   return llvm::ConstantExpr::getBitCast(F, PTy);
2413 }
2414 
2415 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2416 /// non-null, then this function will use the specified type if it has to
2417 /// create it (this occurs when we see a definition of the function).
2418 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2419                                                  llvm::Type *Ty,
2420                                                  bool ForVTable,
2421                                                  bool DontDefer,
2422                                               ForDefinition_t IsForDefinition) {
2423   // If there was no specific requested type, just convert it now.
2424   if (!Ty) {
2425     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2426     auto CanonTy = Context.getCanonicalType(FD->getType());
2427     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2428   }
2429 
2430   StringRef MangledName = getMangledName(GD);
2431   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2432                                  /*IsThunk=*/false, llvm::AttributeList(),
2433                                  IsForDefinition);
2434 }
2435 
2436 static const FunctionDecl *
2437 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2438   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2439   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2440 
2441   IdentifierInfo &CII = C.Idents.get(Name);
2442   for (const auto &Result : DC->lookup(&CII))
2443     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2444       return FD;
2445 
2446   if (!C.getLangOpts().CPlusPlus)
2447     return nullptr;
2448 
2449   // Demangle the premangled name from getTerminateFn()
2450   IdentifierInfo &CXXII =
2451       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2452           ? C.Idents.get("terminate")
2453           : C.Idents.get(Name);
2454 
2455   for (const auto &N : {"__cxxabiv1", "std"}) {
2456     IdentifierInfo &NS = C.Idents.get(N);
2457     for (const auto &Result : DC->lookup(&NS)) {
2458       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2459       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2460         for (const auto &Result : LSD->lookup(&NS))
2461           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2462             break;
2463 
2464       if (ND)
2465         for (const auto &Result : ND->lookup(&CXXII))
2466           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2467             return FD;
2468     }
2469   }
2470 
2471   return nullptr;
2472 }
2473 
2474 /// CreateRuntimeFunction - Create a new runtime function with the specified
2475 /// type and name.
2476 llvm::Constant *
2477 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2478                                      llvm::AttributeList ExtraAttrs,
2479                                      bool Local) {
2480   llvm::Constant *C =
2481       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2482                               /*DontDefer=*/false, /*IsThunk=*/false,
2483                               ExtraAttrs);
2484 
2485   if (auto *F = dyn_cast<llvm::Function>(C)) {
2486     if (F->empty()) {
2487       F->setCallingConv(getRuntimeCC());
2488 
2489       if (!Local && getTriple().isOSBinFormatCOFF() &&
2490           !getCodeGenOpts().LTOVisibilityPublicStd &&
2491           !getTriple().isWindowsGNUEnvironment()) {
2492         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2493         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2494           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2495           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2496         }
2497       }
2498     }
2499   }
2500 
2501   return C;
2502 }
2503 
2504 /// CreateBuiltinFunction - Create a new builtin function with the specified
2505 /// type and name.
2506 llvm::Constant *
2507 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2508                                      llvm::AttributeList ExtraAttrs) {
2509   llvm::Constant *C =
2510       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2511                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2512   if (auto *F = dyn_cast<llvm::Function>(C))
2513     if (F->empty())
2514       F->setCallingConv(getBuiltinCC());
2515   return C;
2516 }
2517 
2518 /// isTypeConstant - Determine whether an object of this type can be emitted
2519 /// as a constant.
2520 ///
2521 /// If ExcludeCtor is true, the duration when the object's constructor runs
2522 /// will not be considered. The caller will need to verify that the object is
2523 /// not written to during its construction.
2524 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2525   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2526     return false;
2527 
2528   if (Context.getLangOpts().CPlusPlus) {
2529     if (const CXXRecordDecl *Record
2530           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2531       return ExcludeCtor && !Record->hasMutableFields() &&
2532              Record->hasTrivialDestructor();
2533   }
2534 
2535   return true;
2536 }
2537 
2538 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2539 /// create and return an llvm GlobalVariable with the specified type.  If there
2540 /// is something in the module with the specified name, return it potentially
2541 /// bitcasted to the right type.
2542 ///
2543 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2544 /// to set the attributes on the global when it is first created.
2545 ///
2546 /// If IsForDefinition is true, it is guranteed that an actual global with
2547 /// type Ty will be returned, not conversion of a variable with the same
2548 /// mangled name but some other type.
2549 llvm::Constant *
2550 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2551                                      llvm::PointerType *Ty,
2552                                      const VarDecl *D,
2553                                      ForDefinition_t IsForDefinition) {
2554   // Lookup the entry, lazily creating it if necessary.
2555   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2556   if (Entry) {
2557     if (WeakRefReferences.erase(Entry)) {
2558       if (D && !D->hasAttr<WeakAttr>())
2559         Entry->setLinkage(llvm::Function::ExternalLinkage);
2560     }
2561 
2562     // Handle dropped DLL attributes.
2563     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2564       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2565 
2566     if (Entry->getType() == Ty)
2567       return Entry;
2568 
2569     // If there are two attempts to define the same mangled name, issue an
2570     // error.
2571     if (IsForDefinition && !Entry->isDeclaration()) {
2572       GlobalDecl OtherGD;
2573       const VarDecl *OtherD;
2574 
2575       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2576       // to make sure that we issue an error only once.
2577       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2578           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2579           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2580           OtherD->hasInit() &&
2581           DiagnosedConflictingDefinitions.insert(D).second) {
2582         getDiags().Report(D->getLocation(),
2583                           diag::err_duplicate_mangled_name);
2584         getDiags().Report(OtherGD.getDecl()->getLocation(),
2585                           diag::note_previous_definition);
2586       }
2587     }
2588 
2589     // Make sure the result is of the correct type.
2590     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2591       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2592 
2593     // (If global is requested for a definition, we always need to create a new
2594     // global, not just return a bitcast.)
2595     if (!IsForDefinition)
2596       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2597   }
2598 
2599   auto AddrSpace = GetGlobalVarAddressSpace(D);
2600   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2601 
2602   auto *GV = new llvm::GlobalVariable(
2603       getModule(), Ty->getElementType(), false,
2604       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2605       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2606 
2607   // If we already created a global with the same mangled name (but different
2608   // type) before, take its name and remove it from its parent.
2609   if (Entry) {
2610     GV->takeName(Entry);
2611 
2612     if (!Entry->use_empty()) {
2613       llvm::Constant *NewPtrForOldDecl =
2614           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2615       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2616     }
2617 
2618     Entry->eraseFromParent();
2619   }
2620 
2621   // This is the first use or definition of a mangled name.  If there is a
2622   // deferred decl with this name, remember that we need to emit it at the end
2623   // of the file.
2624   auto DDI = DeferredDecls.find(MangledName);
2625   if (DDI != DeferredDecls.end()) {
2626     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2627     // list, and remove it from DeferredDecls (since we don't need it anymore).
2628     addDeferredDeclToEmit(DDI->second);
2629     DeferredDecls.erase(DDI);
2630   }
2631 
2632   // Handle things which are present even on external declarations.
2633   if (D) {
2634     // FIXME: This code is overly simple and should be merged with other global
2635     // handling.
2636     GV->setConstant(isTypeConstant(D->getType(), false));
2637 
2638     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2639 
2640     setLinkageForGV(GV, D);
2641     setGlobalVisibility(GV, D, NotForDefinition);
2642 
2643     if (D->getTLSKind()) {
2644       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2645         CXXThreadLocals.push_back(D);
2646       setTLSMode(GV, *D);
2647     }
2648 
2649     // If required by the ABI, treat declarations of static data members with
2650     // inline initializers as definitions.
2651     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2652       EmitGlobalVarDefinition(D);
2653     }
2654 
2655     // Emit section information for extern variables.
2656     if (D->hasExternalStorage()) {
2657       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2658         GV->setSection(SA->getName());
2659     }
2660 
2661     // Handle XCore specific ABI requirements.
2662     if (getTriple().getArch() == llvm::Triple::xcore &&
2663         D->getLanguageLinkage() == CLanguageLinkage &&
2664         D->getType().isConstant(Context) &&
2665         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2666       GV->setSection(".cp.rodata");
2667 
2668     // Check if we a have a const declaration with an initializer, we may be
2669     // able to emit it as available_externally to expose it's value to the
2670     // optimizer.
2671     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2672         D->getType().isConstQualified() && !GV->hasInitializer() &&
2673         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2674       const auto *Record =
2675           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2676       bool HasMutableFields = Record && Record->hasMutableFields();
2677       if (!HasMutableFields) {
2678         const VarDecl *InitDecl;
2679         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2680         if (InitExpr) {
2681           ConstantEmitter emitter(*this);
2682           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2683           if (Init) {
2684             auto *InitType = Init->getType();
2685             if (GV->getType()->getElementType() != InitType) {
2686               // The type of the initializer does not match the definition.
2687               // This happens when an initializer has a different type from
2688               // the type of the global (because of padding at the end of a
2689               // structure for instance).
2690               GV->setName(StringRef());
2691               // Make a new global with the correct type, this is now guaranteed
2692               // to work.
2693               auto *NewGV = cast<llvm::GlobalVariable>(
2694                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2695 
2696               // Erase the old global, since it is no longer used.
2697               cast<llvm::GlobalValue>(GV)->eraseFromParent();
2698               GV = NewGV;
2699             } else {
2700               GV->setInitializer(Init);
2701               GV->setConstant(true);
2702               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2703             }
2704             emitter.finalize(GV);
2705           }
2706         }
2707       }
2708     }
2709   }
2710 
2711   LangAS ExpectedAS =
2712       D ? D->getType().getAddressSpace()
2713         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2714   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2715          Ty->getPointerAddressSpace());
2716   if (AddrSpace != ExpectedAS)
2717     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2718                                                        ExpectedAS, Ty);
2719 
2720   return GV;
2721 }
2722 
2723 llvm::Constant *
2724 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2725                                ForDefinition_t IsForDefinition) {
2726   const Decl *D = GD.getDecl();
2727   if (isa<CXXConstructorDecl>(D))
2728     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2729                                 getFromCtorType(GD.getCtorType()),
2730                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2731                                 /*DontDefer=*/false, IsForDefinition);
2732   else if (isa<CXXDestructorDecl>(D))
2733     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2734                                 getFromDtorType(GD.getDtorType()),
2735                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2736                                 /*DontDefer=*/false, IsForDefinition);
2737   else if (isa<CXXMethodDecl>(D)) {
2738     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2739         cast<CXXMethodDecl>(D));
2740     auto Ty = getTypes().GetFunctionType(*FInfo);
2741     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2742                              IsForDefinition);
2743   } else if (isa<FunctionDecl>(D)) {
2744     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2745     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2746     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2747                              IsForDefinition);
2748   } else
2749     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2750                               IsForDefinition);
2751 }
2752 
2753 llvm::GlobalVariable *
2754 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2755                                       llvm::Type *Ty,
2756                                       llvm::GlobalValue::LinkageTypes Linkage) {
2757   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2758   llvm::GlobalVariable *OldGV = nullptr;
2759 
2760   if (GV) {
2761     // Check if the variable has the right type.
2762     if (GV->getType()->getElementType() == Ty)
2763       return GV;
2764 
2765     // Because C++ name mangling, the only way we can end up with an already
2766     // existing global with the same name is if it has been declared extern "C".
2767     assert(GV->isDeclaration() && "Declaration has wrong type!");
2768     OldGV = GV;
2769   }
2770 
2771   // Create a new variable.
2772   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2773                                 Linkage, nullptr, Name);
2774 
2775   if (OldGV) {
2776     // Replace occurrences of the old variable if needed.
2777     GV->takeName(OldGV);
2778 
2779     if (!OldGV->use_empty()) {
2780       llvm::Constant *NewPtrForOldDecl =
2781       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2782       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2783     }
2784 
2785     OldGV->eraseFromParent();
2786   }
2787 
2788   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2789       !GV->hasAvailableExternallyLinkage())
2790     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2791 
2792   return GV;
2793 }
2794 
2795 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2796 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2797 /// then it will be created with the specified type instead of whatever the
2798 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2799 /// that an actual global with type Ty will be returned, not conversion of a
2800 /// variable with the same mangled name but some other type.
2801 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2802                                                   llvm::Type *Ty,
2803                                            ForDefinition_t IsForDefinition) {
2804   assert(D->hasGlobalStorage() && "Not a global variable");
2805   QualType ASTTy = D->getType();
2806   if (!Ty)
2807     Ty = getTypes().ConvertTypeForMem(ASTTy);
2808 
2809   llvm::PointerType *PTy =
2810     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2811 
2812   StringRef MangledName = getMangledName(D);
2813   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2814 }
2815 
2816 /// CreateRuntimeVariable - Create a new runtime global variable with the
2817 /// specified type and name.
2818 llvm::Constant *
2819 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2820                                      StringRef Name) {
2821   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2822 }
2823 
2824 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2825   assert(!D->getInit() && "Cannot emit definite definitions here!");
2826 
2827   StringRef MangledName = getMangledName(D);
2828   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2829 
2830   // We already have a definition, not declaration, with the same mangled name.
2831   // Emitting of declaration is not required (and actually overwrites emitted
2832   // definition).
2833   if (GV && !GV->isDeclaration())
2834     return;
2835 
2836   // If we have not seen a reference to this variable yet, place it into the
2837   // deferred declarations table to be emitted if needed later.
2838   if (!MustBeEmitted(D) && !GV) {
2839       DeferredDecls[MangledName] = D;
2840       return;
2841   }
2842 
2843   // The tentative definition is the only definition.
2844   EmitGlobalVarDefinition(D);
2845 }
2846 
2847 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2848   return Context.toCharUnitsFromBits(
2849       getDataLayout().getTypeStoreSizeInBits(Ty));
2850 }
2851 
2852 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2853   LangAS AddrSpace = LangAS::Default;
2854   if (LangOpts.OpenCL) {
2855     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
2856     assert(AddrSpace == LangAS::opencl_global ||
2857            AddrSpace == LangAS::opencl_constant ||
2858            AddrSpace == LangAS::opencl_local ||
2859            AddrSpace >= LangAS::FirstTargetAddressSpace);
2860     return AddrSpace;
2861   }
2862 
2863   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2864     if (D && D->hasAttr<CUDAConstantAttr>())
2865       return LangAS::cuda_constant;
2866     else if (D && D->hasAttr<CUDASharedAttr>())
2867       return LangAS::cuda_shared;
2868     else
2869       return LangAS::cuda_device;
2870   }
2871 
2872   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
2873 }
2874 
2875 template<typename SomeDecl>
2876 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2877                                                llvm::GlobalValue *GV) {
2878   if (!getLangOpts().CPlusPlus)
2879     return;
2880 
2881   // Must have 'used' attribute, or else inline assembly can't rely on
2882   // the name existing.
2883   if (!D->template hasAttr<UsedAttr>())
2884     return;
2885 
2886   // Must have internal linkage and an ordinary name.
2887   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2888     return;
2889 
2890   // Must be in an extern "C" context. Entities declared directly within
2891   // a record are not extern "C" even if the record is in such a context.
2892   const SomeDecl *First = D->getFirstDecl();
2893   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2894     return;
2895 
2896   // OK, this is an internal linkage entity inside an extern "C" linkage
2897   // specification. Make a note of that so we can give it the "expected"
2898   // mangled name if nothing else is using that name.
2899   std::pair<StaticExternCMap::iterator, bool> R =
2900       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2901 
2902   // If we have multiple internal linkage entities with the same name
2903   // in extern "C" regions, none of them gets that name.
2904   if (!R.second)
2905     R.first->second = nullptr;
2906 }
2907 
2908 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2909   if (!CGM.supportsCOMDAT())
2910     return false;
2911 
2912   if (D.hasAttr<SelectAnyAttr>())
2913     return true;
2914 
2915   GVALinkage Linkage;
2916   if (auto *VD = dyn_cast<VarDecl>(&D))
2917     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2918   else
2919     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2920 
2921   switch (Linkage) {
2922   case GVA_Internal:
2923   case GVA_AvailableExternally:
2924   case GVA_StrongExternal:
2925     return false;
2926   case GVA_DiscardableODR:
2927   case GVA_StrongODR:
2928     return true;
2929   }
2930   llvm_unreachable("No such linkage");
2931 }
2932 
2933 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2934                                           llvm::GlobalObject &GO) {
2935   if (!shouldBeInCOMDAT(*this, D))
2936     return;
2937   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2938 }
2939 
2940 /// Pass IsTentative as true if you want to create a tentative definition.
2941 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2942                                             bool IsTentative) {
2943   // OpenCL global variables of sampler type are translated to function calls,
2944   // therefore no need to be translated.
2945   QualType ASTTy = D->getType();
2946   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2947     return;
2948 
2949   llvm::Constant *Init = nullptr;
2950   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2951   bool NeedsGlobalCtor = false;
2952   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2953 
2954   const VarDecl *InitDecl;
2955   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2956 
2957   Optional<ConstantEmitter> emitter;
2958 
2959   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2960   // as part of their declaration."  Sema has already checked for
2961   // error cases, so we just need to set Init to UndefValue.
2962   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2963       D->hasAttr<CUDASharedAttr>())
2964     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2965   else if (!InitExpr) {
2966     // This is a tentative definition; tentative definitions are
2967     // implicitly initialized with { 0 }.
2968     //
2969     // Note that tentative definitions are only emitted at the end of
2970     // a translation unit, so they should never have incomplete
2971     // type. In addition, EmitTentativeDefinition makes sure that we
2972     // never attempt to emit a tentative definition if a real one
2973     // exists. A use may still exists, however, so we still may need
2974     // to do a RAUW.
2975     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2976     Init = EmitNullConstant(D->getType());
2977   } else {
2978     initializedGlobalDecl = GlobalDecl(D);
2979     emitter.emplace(*this);
2980     Init = emitter->tryEmitForInitializer(*InitDecl);
2981 
2982     if (!Init) {
2983       QualType T = InitExpr->getType();
2984       if (D->getType()->isReferenceType())
2985         T = D->getType();
2986 
2987       if (getLangOpts().CPlusPlus) {
2988         Init = EmitNullConstant(T);
2989         NeedsGlobalCtor = true;
2990       } else {
2991         ErrorUnsupported(D, "static initializer");
2992         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2993       }
2994     } else {
2995       // We don't need an initializer, so remove the entry for the delayed
2996       // initializer position (just in case this entry was delayed) if we
2997       // also don't need to register a destructor.
2998       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2999         DelayedCXXInitPosition.erase(D);
3000     }
3001   }
3002 
3003   llvm::Type* InitType = Init->getType();
3004   llvm::Constant *Entry =
3005       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3006 
3007   // Strip off a bitcast if we got one back.
3008   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3009     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3010            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3011            // All zero index gep.
3012            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3013     Entry = CE->getOperand(0);
3014   }
3015 
3016   // Entry is now either a Function or GlobalVariable.
3017   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3018 
3019   // We have a definition after a declaration with the wrong type.
3020   // We must make a new GlobalVariable* and update everything that used OldGV
3021   // (a declaration or tentative definition) with the new GlobalVariable*
3022   // (which will be a definition).
3023   //
3024   // This happens if there is a prototype for a global (e.g.
3025   // "extern int x[];") and then a definition of a different type (e.g.
3026   // "int x[10];"). This also happens when an initializer has a different type
3027   // from the type of the global (this happens with unions).
3028   if (!GV || GV->getType()->getElementType() != InitType ||
3029       GV->getType()->getAddressSpace() !=
3030           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3031 
3032     // Move the old entry aside so that we'll create a new one.
3033     Entry->setName(StringRef());
3034 
3035     // Make a new global with the correct type, this is now guaranteed to work.
3036     GV = cast<llvm::GlobalVariable>(
3037         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3038 
3039     // Replace all uses of the old global with the new global
3040     llvm::Constant *NewPtrForOldDecl =
3041         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3042     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3043 
3044     // Erase the old global, since it is no longer used.
3045     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3046   }
3047 
3048   MaybeHandleStaticInExternC(D, GV);
3049 
3050   if (D->hasAttr<AnnotateAttr>())
3051     AddGlobalAnnotations(D, GV);
3052 
3053   // Set the llvm linkage type as appropriate.
3054   llvm::GlobalValue::LinkageTypes Linkage =
3055       getLLVMLinkageVarDefinition(D, GV->isConstant());
3056 
3057   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3058   // the device. [...]"
3059   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3060   // __device__, declares a variable that: [...]
3061   // Is accessible from all the threads within the grid and from the host
3062   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3063   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3064   if (GV && LangOpts.CUDA) {
3065     if (LangOpts.CUDAIsDevice) {
3066       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3067         GV->setExternallyInitialized(true);
3068     } else {
3069       // Host-side shadows of external declarations of device-side
3070       // global variables become internal definitions. These have to
3071       // be internal in order to prevent name conflicts with global
3072       // host variables with the same name in a different TUs.
3073       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3074         Linkage = llvm::GlobalValue::InternalLinkage;
3075 
3076         // Shadow variables and their properties must be registered
3077         // with CUDA runtime.
3078         unsigned Flags = 0;
3079         if (!D->hasDefinition())
3080           Flags |= CGCUDARuntime::ExternDeviceVar;
3081         if (D->hasAttr<CUDAConstantAttr>())
3082           Flags |= CGCUDARuntime::ConstantDeviceVar;
3083         getCUDARuntime().registerDeviceVar(*GV, Flags);
3084       } else if (D->hasAttr<CUDASharedAttr>())
3085         // __shared__ variables are odd. Shadows do get created, but
3086         // they are not registered with the CUDA runtime, so they
3087         // can't really be used to access their device-side
3088         // counterparts. It's not clear yet whether it's nvcc's bug or
3089         // a feature, but we've got to do the same for compatibility.
3090         Linkage = llvm::GlobalValue::InternalLinkage;
3091     }
3092   }
3093 
3094   GV->setInitializer(Init);
3095   if (emitter) emitter->finalize(GV);
3096 
3097   // If it is safe to mark the global 'constant', do so now.
3098   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3099                   isTypeConstant(D->getType(), true));
3100 
3101   // If it is in a read-only section, mark it 'constant'.
3102   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3103     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3104     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3105       GV->setConstant(true);
3106   }
3107 
3108   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3109 
3110 
3111   // On Darwin, if the normal linkage of a C++ thread_local variable is
3112   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3113   // copies within a linkage unit; otherwise, the backing variable has
3114   // internal linkage and all accesses should just be calls to the
3115   // Itanium-specified entry point, which has the normal linkage of the
3116   // variable. This is to preserve the ability to change the implementation
3117   // behind the scenes.
3118   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3119       Context.getTargetInfo().getTriple().isOSDarwin() &&
3120       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3121       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3122     Linkage = llvm::GlobalValue::InternalLinkage;
3123 
3124   GV->setLinkage(Linkage);
3125   if (D->hasAttr<DLLImportAttr>())
3126     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3127   else if (D->hasAttr<DLLExportAttr>())
3128     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3129   else
3130     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3131 
3132   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3133     // common vars aren't constant even if declared const.
3134     GV->setConstant(false);
3135     // Tentative definition of global variables may be initialized with
3136     // non-zero null pointers. In this case they should have weak linkage
3137     // since common linkage must have zero initializer and must not have
3138     // explicit section therefore cannot have non-zero initial value.
3139     if (!GV->getInitializer()->isNullValue())
3140       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3141   }
3142 
3143   setNonAliasAttributes(D, GV);
3144 
3145   if (D->getTLSKind() && !GV->isThreadLocal()) {
3146     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3147       CXXThreadLocals.push_back(D);
3148     setTLSMode(GV, *D);
3149   }
3150 
3151   maybeSetTrivialComdat(*D, *GV);
3152 
3153   // Emit the initializer function if necessary.
3154   if (NeedsGlobalCtor || NeedsGlobalDtor)
3155     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3156 
3157   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3158 
3159   // Emit global variable debug information.
3160   if (CGDebugInfo *DI = getModuleDebugInfo())
3161     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3162       DI->EmitGlobalVariable(GV, D);
3163 }
3164 
3165 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3166                                       CodeGenModule &CGM, const VarDecl *D,
3167                                       bool NoCommon) {
3168   // Don't give variables common linkage if -fno-common was specified unless it
3169   // was overridden by a NoCommon attribute.
3170   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3171     return true;
3172 
3173   // C11 6.9.2/2:
3174   //   A declaration of an identifier for an object that has file scope without
3175   //   an initializer, and without a storage-class specifier or with the
3176   //   storage-class specifier static, constitutes a tentative definition.
3177   if (D->getInit() || D->hasExternalStorage())
3178     return true;
3179 
3180   // A variable cannot be both common and exist in a section.
3181   if (D->hasAttr<SectionAttr>())
3182     return true;
3183 
3184   // A variable cannot be both common and exist in a section.
3185   // We dont try to determine which is the right section in the front-end.
3186   // If no specialized section name is applicable, it will resort to default.
3187   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3188       D->hasAttr<PragmaClangDataSectionAttr>() ||
3189       D->hasAttr<PragmaClangRodataSectionAttr>())
3190     return true;
3191 
3192   // Thread local vars aren't considered common linkage.
3193   if (D->getTLSKind())
3194     return true;
3195 
3196   // Tentative definitions marked with WeakImportAttr are true definitions.
3197   if (D->hasAttr<WeakImportAttr>())
3198     return true;
3199 
3200   // A variable cannot be both common and exist in a comdat.
3201   if (shouldBeInCOMDAT(CGM, *D))
3202     return true;
3203 
3204   // Declarations with a required alignment do not have common linkage in MSVC
3205   // mode.
3206   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3207     if (D->hasAttr<AlignedAttr>())
3208       return true;
3209     QualType VarType = D->getType();
3210     if (Context.isAlignmentRequired(VarType))
3211       return true;
3212 
3213     if (const auto *RT = VarType->getAs<RecordType>()) {
3214       const RecordDecl *RD = RT->getDecl();
3215       for (const FieldDecl *FD : RD->fields()) {
3216         if (FD->isBitField())
3217           continue;
3218         if (FD->hasAttr<AlignedAttr>())
3219           return true;
3220         if (Context.isAlignmentRequired(FD->getType()))
3221           return true;
3222       }
3223     }
3224   }
3225 
3226   return false;
3227 }
3228 
3229 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3230     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3231   if (Linkage == GVA_Internal)
3232     return llvm::Function::InternalLinkage;
3233 
3234   if (D->hasAttr<WeakAttr>()) {
3235     if (IsConstantVariable)
3236       return llvm::GlobalVariable::WeakODRLinkage;
3237     else
3238       return llvm::GlobalVariable::WeakAnyLinkage;
3239   }
3240 
3241   // We are guaranteed to have a strong definition somewhere else,
3242   // so we can use available_externally linkage.
3243   if (Linkage == GVA_AvailableExternally)
3244     return llvm::GlobalValue::AvailableExternallyLinkage;
3245 
3246   // Note that Apple's kernel linker doesn't support symbol
3247   // coalescing, so we need to avoid linkonce and weak linkages there.
3248   // Normally, this means we just map to internal, but for explicit
3249   // instantiations we'll map to external.
3250 
3251   // In C++, the compiler has to emit a definition in every translation unit
3252   // that references the function.  We should use linkonce_odr because
3253   // a) if all references in this translation unit are optimized away, we
3254   // don't need to codegen it.  b) if the function persists, it needs to be
3255   // merged with other definitions. c) C++ has the ODR, so we know the
3256   // definition is dependable.
3257   if (Linkage == GVA_DiscardableODR)
3258     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3259                                             : llvm::Function::InternalLinkage;
3260 
3261   // An explicit instantiation of a template has weak linkage, since
3262   // explicit instantiations can occur in multiple translation units
3263   // and must all be equivalent. However, we are not allowed to
3264   // throw away these explicit instantiations.
3265   //
3266   // We don't currently support CUDA device code spread out across multiple TUs,
3267   // so say that CUDA templates are either external (for kernels) or internal.
3268   // This lets llvm perform aggressive inter-procedural optimizations.
3269   if (Linkage == GVA_StrongODR) {
3270     if (Context.getLangOpts().AppleKext)
3271       return llvm::Function::ExternalLinkage;
3272     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3273       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3274                                           : llvm::Function::InternalLinkage;
3275     return llvm::Function::WeakODRLinkage;
3276   }
3277 
3278   // C++ doesn't have tentative definitions and thus cannot have common
3279   // linkage.
3280   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3281       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3282                                  CodeGenOpts.NoCommon))
3283     return llvm::GlobalVariable::CommonLinkage;
3284 
3285   // selectany symbols are externally visible, so use weak instead of
3286   // linkonce.  MSVC optimizes away references to const selectany globals, so
3287   // all definitions should be the same and ODR linkage should be used.
3288   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3289   if (D->hasAttr<SelectAnyAttr>())
3290     return llvm::GlobalVariable::WeakODRLinkage;
3291 
3292   // Otherwise, we have strong external linkage.
3293   assert(Linkage == GVA_StrongExternal);
3294   return llvm::GlobalVariable::ExternalLinkage;
3295 }
3296 
3297 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3298     const VarDecl *VD, bool IsConstant) {
3299   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3300   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3301 }
3302 
3303 /// Replace the uses of a function that was declared with a non-proto type.
3304 /// We want to silently drop extra arguments from call sites
3305 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3306                                           llvm::Function *newFn) {
3307   // Fast path.
3308   if (old->use_empty()) return;
3309 
3310   llvm::Type *newRetTy = newFn->getReturnType();
3311   SmallVector<llvm::Value*, 4> newArgs;
3312   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3313 
3314   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3315          ui != ue; ) {
3316     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3317     llvm::User *user = use->getUser();
3318 
3319     // Recognize and replace uses of bitcasts.  Most calls to
3320     // unprototyped functions will use bitcasts.
3321     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3322       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3323         replaceUsesOfNonProtoConstant(bitcast, newFn);
3324       continue;
3325     }
3326 
3327     // Recognize calls to the function.
3328     llvm::CallSite callSite(user);
3329     if (!callSite) continue;
3330     if (!callSite.isCallee(&*use)) continue;
3331 
3332     // If the return types don't match exactly, then we can't
3333     // transform this call unless it's dead.
3334     if (callSite->getType() != newRetTy && !callSite->use_empty())
3335       continue;
3336 
3337     // Get the call site's attribute list.
3338     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3339     llvm::AttributeList oldAttrs = callSite.getAttributes();
3340 
3341     // If the function was passed too few arguments, don't transform.
3342     unsigned newNumArgs = newFn->arg_size();
3343     if (callSite.arg_size() < newNumArgs) continue;
3344 
3345     // If extra arguments were passed, we silently drop them.
3346     // If any of the types mismatch, we don't transform.
3347     unsigned argNo = 0;
3348     bool dontTransform = false;
3349     for (llvm::Argument &A : newFn->args()) {
3350       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3351         dontTransform = true;
3352         break;
3353       }
3354 
3355       // Add any parameter attributes.
3356       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3357       argNo++;
3358     }
3359     if (dontTransform)
3360       continue;
3361 
3362     // Okay, we can transform this.  Create the new call instruction and copy
3363     // over the required information.
3364     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3365 
3366     // Copy over any operand bundles.
3367     callSite.getOperandBundlesAsDefs(newBundles);
3368 
3369     llvm::CallSite newCall;
3370     if (callSite.isCall()) {
3371       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3372                                        callSite.getInstruction());
3373     } else {
3374       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3375       newCall = llvm::InvokeInst::Create(newFn,
3376                                          oldInvoke->getNormalDest(),
3377                                          oldInvoke->getUnwindDest(),
3378                                          newArgs, newBundles, "",
3379                                          callSite.getInstruction());
3380     }
3381     newArgs.clear(); // for the next iteration
3382 
3383     if (!newCall->getType()->isVoidTy())
3384       newCall->takeName(callSite.getInstruction());
3385     newCall.setAttributes(llvm::AttributeList::get(
3386         newFn->getContext(), oldAttrs.getFnAttributes(),
3387         oldAttrs.getRetAttributes(), newArgAttrs));
3388     newCall.setCallingConv(callSite.getCallingConv());
3389 
3390     // Finally, remove the old call, replacing any uses with the new one.
3391     if (!callSite->use_empty())
3392       callSite->replaceAllUsesWith(newCall.getInstruction());
3393 
3394     // Copy debug location attached to CI.
3395     if (callSite->getDebugLoc())
3396       newCall->setDebugLoc(callSite->getDebugLoc());
3397 
3398     callSite->eraseFromParent();
3399   }
3400 }
3401 
3402 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3403 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3404 /// existing call uses of the old function in the module, this adjusts them to
3405 /// call the new function directly.
3406 ///
3407 /// This is not just a cleanup: the always_inline pass requires direct calls to
3408 /// functions to be able to inline them.  If there is a bitcast in the way, it
3409 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3410 /// run at -O0.
3411 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3412                                                       llvm::Function *NewFn) {
3413   // If we're redefining a global as a function, don't transform it.
3414   if (!isa<llvm::Function>(Old)) return;
3415 
3416   replaceUsesOfNonProtoConstant(Old, NewFn);
3417 }
3418 
3419 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3420   auto DK = VD->isThisDeclarationADefinition();
3421   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3422     return;
3423 
3424   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3425   // If we have a definition, this might be a deferred decl. If the
3426   // instantiation is explicit, make sure we emit it at the end.
3427   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3428     GetAddrOfGlobalVar(VD);
3429 
3430   EmitTopLevelDecl(VD);
3431 }
3432 
3433 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3434                                                  llvm::GlobalValue *GV) {
3435   const auto *D = cast<FunctionDecl>(GD.getDecl());
3436 
3437   // Compute the function info and LLVM type.
3438   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3439   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3440 
3441   // Get or create the prototype for the function.
3442   if (!GV || (GV->getType()->getElementType() != Ty))
3443     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3444                                                    /*DontDefer=*/true,
3445                                                    ForDefinition));
3446 
3447   // Already emitted.
3448   if (!GV->isDeclaration())
3449     return;
3450 
3451   // We need to set linkage and visibility on the function before
3452   // generating code for it because various parts of IR generation
3453   // want to propagate this information down (e.g. to local static
3454   // declarations).
3455   auto *Fn = cast<llvm::Function>(GV);
3456   setFunctionLinkage(GD, Fn);
3457   setFunctionDLLStorageClass(GD, Fn);
3458 
3459   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3460   setGlobalVisibility(Fn, D, ForDefinition);
3461 
3462   MaybeHandleStaticInExternC(D, Fn);
3463 
3464   maybeSetTrivialComdat(*D, *Fn);
3465 
3466   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3467 
3468   setFunctionDefinitionAttributes(D, Fn);
3469   SetLLVMFunctionAttributesForDefinition(D, Fn);
3470 
3471   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3472     AddGlobalCtor(Fn, CA->getPriority());
3473   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3474     AddGlobalDtor(Fn, DA->getPriority());
3475   if (D->hasAttr<AnnotateAttr>())
3476     AddGlobalAnnotations(D, Fn);
3477 }
3478 
3479 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3480   const auto *D = cast<ValueDecl>(GD.getDecl());
3481   const AliasAttr *AA = D->getAttr<AliasAttr>();
3482   assert(AA && "Not an alias?");
3483 
3484   StringRef MangledName = getMangledName(GD);
3485 
3486   if (AA->getAliasee() == MangledName) {
3487     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3488     return;
3489   }
3490 
3491   // If there is a definition in the module, then it wins over the alias.
3492   // This is dubious, but allow it to be safe.  Just ignore the alias.
3493   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3494   if (Entry && !Entry->isDeclaration())
3495     return;
3496 
3497   Aliases.push_back(GD);
3498 
3499   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3500 
3501   // Create a reference to the named value.  This ensures that it is emitted
3502   // if a deferred decl.
3503   llvm::Constant *Aliasee;
3504   if (isa<llvm::FunctionType>(DeclTy))
3505     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3506                                       /*ForVTable=*/false);
3507   else
3508     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3509                                     llvm::PointerType::getUnqual(DeclTy),
3510                                     /*D=*/nullptr);
3511 
3512   // Create the new alias itself, but don't set a name yet.
3513   auto *GA = llvm::GlobalAlias::create(
3514       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3515 
3516   if (Entry) {
3517     if (GA->getAliasee() == Entry) {
3518       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3519       return;
3520     }
3521 
3522     assert(Entry->isDeclaration());
3523 
3524     // If there is a declaration in the module, then we had an extern followed
3525     // by the alias, as in:
3526     //   extern int test6();
3527     //   ...
3528     //   int test6() __attribute__((alias("test7")));
3529     //
3530     // Remove it and replace uses of it with the alias.
3531     GA->takeName(Entry);
3532 
3533     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3534                                                           Entry->getType()));
3535     Entry->eraseFromParent();
3536   } else {
3537     GA->setName(MangledName);
3538   }
3539 
3540   // Set attributes which are particular to an alias; this is a
3541   // specialization of the attributes which may be set on a global
3542   // variable/function.
3543   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3544       D->isWeakImported()) {
3545     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3546   }
3547 
3548   if (const auto *VD = dyn_cast<VarDecl>(D))
3549     if (VD->getTLSKind())
3550       setTLSMode(GA, *VD);
3551 
3552   setAliasAttributes(D, GA);
3553 }
3554 
3555 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3556   const auto *D = cast<ValueDecl>(GD.getDecl());
3557   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3558   assert(IFA && "Not an ifunc?");
3559 
3560   StringRef MangledName = getMangledName(GD);
3561 
3562   if (IFA->getResolver() == MangledName) {
3563     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3564     return;
3565   }
3566 
3567   // Report an error if some definition overrides ifunc.
3568   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3569   if (Entry && !Entry->isDeclaration()) {
3570     GlobalDecl OtherGD;
3571     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3572         DiagnosedConflictingDefinitions.insert(GD).second) {
3573       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3574       Diags.Report(OtherGD.getDecl()->getLocation(),
3575                    diag::note_previous_definition);
3576     }
3577     return;
3578   }
3579 
3580   Aliases.push_back(GD);
3581 
3582   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3583   llvm::Constant *Resolver =
3584       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3585                               /*ForVTable=*/false);
3586   llvm::GlobalIFunc *GIF =
3587       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3588                                 "", Resolver, &getModule());
3589   if (Entry) {
3590     if (GIF->getResolver() == Entry) {
3591       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3592       return;
3593     }
3594     assert(Entry->isDeclaration());
3595 
3596     // If there is a declaration in the module, then we had an extern followed
3597     // by the ifunc, as in:
3598     //   extern int test();
3599     //   ...
3600     //   int test() __attribute__((ifunc("resolver")));
3601     //
3602     // Remove it and replace uses of it with the ifunc.
3603     GIF->takeName(Entry);
3604 
3605     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3606                                                           Entry->getType()));
3607     Entry->eraseFromParent();
3608   } else
3609     GIF->setName(MangledName);
3610 
3611   SetCommonAttributes(D, GIF);
3612 }
3613 
3614 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3615                                             ArrayRef<llvm::Type*> Tys) {
3616   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3617                                          Tys);
3618 }
3619 
3620 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3621 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3622                          const StringLiteral *Literal, bool TargetIsLSB,
3623                          bool &IsUTF16, unsigned &StringLength) {
3624   StringRef String = Literal->getString();
3625   unsigned NumBytes = String.size();
3626 
3627   // Check for simple case.
3628   if (!Literal->containsNonAsciiOrNull()) {
3629     StringLength = NumBytes;
3630     return *Map.insert(std::make_pair(String, nullptr)).first;
3631   }
3632 
3633   // Otherwise, convert the UTF8 literals into a string of shorts.
3634   IsUTF16 = true;
3635 
3636   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3637   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3638   llvm::UTF16 *ToPtr = &ToBuf[0];
3639 
3640   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3641                                  ToPtr + NumBytes, llvm::strictConversion);
3642 
3643   // ConvertUTF8toUTF16 returns the length in ToPtr.
3644   StringLength = ToPtr - &ToBuf[0];
3645 
3646   // Add an explicit null.
3647   *ToPtr = 0;
3648   return *Map.insert(std::make_pair(
3649                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3650                                    (StringLength + 1) * 2),
3651                          nullptr)).first;
3652 }
3653 
3654 ConstantAddress
3655 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3656   unsigned StringLength = 0;
3657   bool isUTF16 = false;
3658   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3659       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3660                                getDataLayout().isLittleEndian(), isUTF16,
3661                                StringLength);
3662 
3663   if (auto *C = Entry.second)
3664     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3665 
3666   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3667   llvm::Constant *Zeros[] = { Zero, Zero };
3668 
3669   // If we don't already have it, get __CFConstantStringClassReference.
3670   if (!CFConstantStringClassRef) {
3671     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3672     Ty = llvm::ArrayType::get(Ty, 0);
3673     llvm::Constant *GV =
3674         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3675 
3676     if (getTriple().isOSBinFormatCOFF()) {
3677       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3678       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3679       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3680       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3681 
3682       const VarDecl *VD = nullptr;
3683       for (const auto &Result : DC->lookup(&II))
3684         if ((VD = dyn_cast<VarDecl>(Result)))
3685           break;
3686 
3687       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3688         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3689         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3690       } else {
3691         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3692         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3693       }
3694     }
3695 
3696     // Decay array -> ptr
3697     CFConstantStringClassRef =
3698         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3699   }
3700 
3701   QualType CFTy = getContext().getCFConstantStringType();
3702 
3703   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3704 
3705   ConstantInitBuilder Builder(*this);
3706   auto Fields = Builder.beginStruct(STy);
3707 
3708   // Class pointer.
3709   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3710 
3711   // Flags.
3712   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3713 
3714   // String pointer.
3715   llvm::Constant *C = nullptr;
3716   if (isUTF16) {
3717     auto Arr = llvm::makeArrayRef(
3718         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3719         Entry.first().size() / 2);
3720     C = llvm::ConstantDataArray::get(VMContext, Arr);
3721   } else {
3722     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3723   }
3724 
3725   // Note: -fwritable-strings doesn't make the backing store strings of
3726   // CFStrings writable. (See <rdar://problem/10657500>)
3727   auto *GV =
3728       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3729                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3730   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3731   // Don't enforce the target's minimum global alignment, since the only use
3732   // of the string is via this class initializer.
3733   CharUnits Align = isUTF16
3734                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3735                         : getContext().getTypeAlignInChars(getContext().CharTy);
3736   GV->setAlignment(Align.getQuantity());
3737 
3738   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3739   // Without it LLVM can merge the string with a non unnamed_addr one during
3740   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3741   if (getTriple().isOSBinFormatMachO())
3742     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3743                            : "__TEXT,__cstring,cstring_literals");
3744 
3745   // String.
3746   llvm::Constant *Str =
3747       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3748 
3749   if (isUTF16)
3750     // Cast the UTF16 string to the correct type.
3751     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3752   Fields.add(Str);
3753 
3754   // String length.
3755   auto Ty = getTypes().ConvertType(getContext().LongTy);
3756   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3757 
3758   CharUnits Alignment = getPointerAlign();
3759 
3760   // The struct.
3761   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3762                                     /*isConstant=*/false,
3763                                     llvm::GlobalVariable::PrivateLinkage);
3764   switch (getTriple().getObjectFormat()) {
3765   case llvm::Triple::UnknownObjectFormat:
3766     llvm_unreachable("unknown file format");
3767   case llvm::Triple::COFF:
3768   case llvm::Triple::ELF:
3769   case llvm::Triple::Wasm:
3770     GV->setSection("cfstring");
3771     break;
3772   case llvm::Triple::MachO:
3773     GV->setSection("__DATA,__cfstring");
3774     break;
3775   }
3776   Entry.second = GV;
3777 
3778   return ConstantAddress(GV, Alignment);
3779 }
3780 
3781 bool CodeGenModule::getExpressionLocationsEnabled() const {
3782   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3783 }
3784 
3785 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3786   if (ObjCFastEnumerationStateType.isNull()) {
3787     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3788     D->startDefinition();
3789 
3790     QualType FieldTypes[] = {
3791       Context.UnsignedLongTy,
3792       Context.getPointerType(Context.getObjCIdType()),
3793       Context.getPointerType(Context.UnsignedLongTy),
3794       Context.getConstantArrayType(Context.UnsignedLongTy,
3795                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3796     };
3797 
3798     for (size_t i = 0; i < 4; ++i) {
3799       FieldDecl *Field = FieldDecl::Create(Context,
3800                                            D,
3801                                            SourceLocation(),
3802                                            SourceLocation(), nullptr,
3803                                            FieldTypes[i], /*TInfo=*/nullptr,
3804                                            /*BitWidth=*/nullptr,
3805                                            /*Mutable=*/false,
3806                                            ICIS_NoInit);
3807       Field->setAccess(AS_public);
3808       D->addDecl(Field);
3809     }
3810 
3811     D->completeDefinition();
3812     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3813   }
3814 
3815   return ObjCFastEnumerationStateType;
3816 }
3817 
3818 llvm::Constant *
3819 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3820   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3821 
3822   // Don't emit it as the address of the string, emit the string data itself
3823   // as an inline array.
3824   if (E->getCharByteWidth() == 1) {
3825     SmallString<64> Str(E->getString());
3826 
3827     // Resize the string to the right size, which is indicated by its type.
3828     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3829     Str.resize(CAT->getSize().getZExtValue());
3830     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3831   }
3832 
3833   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3834   llvm::Type *ElemTy = AType->getElementType();
3835   unsigned NumElements = AType->getNumElements();
3836 
3837   // Wide strings have either 2-byte or 4-byte elements.
3838   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3839     SmallVector<uint16_t, 32> Elements;
3840     Elements.reserve(NumElements);
3841 
3842     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3843       Elements.push_back(E->getCodeUnit(i));
3844     Elements.resize(NumElements);
3845     return llvm::ConstantDataArray::get(VMContext, Elements);
3846   }
3847 
3848   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3849   SmallVector<uint32_t, 32> Elements;
3850   Elements.reserve(NumElements);
3851 
3852   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3853     Elements.push_back(E->getCodeUnit(i));
3854   Elements.resize(NumElements);
3855   return llvm::ConstantDataArray::get(VMContext, Elements);
3856 }
3857 
3858 static llvm::GlobalVariable *
3859 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3860                       CodeGenModule &CGM, StringRef GlobalName,
3861                       CharUnits Alignment) {
3862   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3863   unsigned AddrSpace = 0;
3864   if (CGM.getLangOpts().OpenCL)
3865     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3866 
3867   llvm::Module &M = CGM.getModule();
3868   // Create a global variable for this string
3869   auto *GV = new llvm::GlobalVariable(
3870       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3871       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3872   GV->setAlignment(Alignment.getQuantity());
3873   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3874   if (GV->isWeakForLinker()) {
3875     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3876     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3877   }
3878 
3879   return GV;
3880 }
3881 
3882 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3883 /// constant array for the given string literal.
3884 ConstantAddress
3885 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3886                                                   StringRef Name) {
3887   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3888 
3889   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3890   llvm::GlobalVariable **Entry = nullptr;
3891   if (!LangOpts.WritableStrings) {
3892     Entry = &ConstantStringMap[C];
3893     if (auto GV = *Entry) {
3894       if (Alignment.getQuantity() > GV->getAlignment())
3895         GV->setAlignment(Alignment.getQuantity());
3896       return ConstantAddress(GV, Alignment);
3897     }
3898   }
3899 
3900   SmallString<256> MangledNameBuffer;
3901   StringRef GlobalVariableName;
3902   llvm::GlobalValue::LinkageTypes LT;
3903 
3904   // Mangle the string literal if the ABI allows for it.  However, we cannot
3905   // do this if  we are compiling with ASan or -fwritable-strings because they
3906   // rely on strings having normal linkage.
3907   if (!LangOpts.WritableStrings &&
3908       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3909       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3910     llvm::raw_svector_ostream Out(MangledNameBuffer);
3911     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3912 
3913     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3914     GlobalVariableName = MangledNameBuffer;
3915   } else {
3916     LT = llvm::GlobalValue::PrivateLinkage;
3917     GlobalVariableName = Name;
3918   }
3919 
3920   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3921   if (Entry)
3922     *Entry = GV;
3923 
3924   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3925                                   QualType());
3926   return ConstantAddress(GV, Alignment);
3927 }
3928 
3929 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3930 /// array for the given ObjCEncodeExpr node.
3931 ConstantAddress
3932 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3933   std::string Str;
3934   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3935 
3936   return GetAddrOfConstantCString(Str);
3937 }
3938 
3939 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3940 /// the literal and a terminating '\0' character.
3941 /// The result has pointer to array type.
3942 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3943     const std::string &Str, const char *GlobalName) {
3944   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3945   CharUnits Alignment =
3946     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3947 
3948   llvm::Constant *C =
3949       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3950 
3951   // Don't share any string literals if strings aren't constant.
3952   llvm::GlobalVariable **Entry = nullptr;
3953   if (!LangOpts.WritableStrings) {
3954     Entry = &ConstantStringMap[C];
3955     if (auto GV = *Entry) {
3956       if (Alignment.getQuantity() > GV->getAlignment())
3957         GV->setAlignment(Alignment.getQuantity());
3958       return ConstantAddress(GV, Alignment);
3959     }
3960   }
3961 
3962   // Get the default prefix if a name wasn't specified.
3963   if (!GlobalName)
3964     GlobalName = ".str";
3965   // Create a global variable for this.
3966   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3967                                   GlobalName, Alignment);
3968   if (Entry)
3969     *Entry = GV;
3970   return ConstantAddress(GV, Alignment);
3971 }
3972 
3973 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3974     const MaterializeTemporaryExpr *E, const Expr *Init) {
3975   assert((E->getStorageDuration() == SD_Static ||
3976           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3977   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3978 
3979   // If we're not materializing a subobject of the temporary, keep the
3980   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3981   QualType MaterializedType = Init->getType();
3982   if (Init == E->GetTemporaryExpr())
3983     MaterializedType = E->getType();
3984 
3985   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3986 
3987   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3988     return ConstantAddress(Slot, Align);
3989 
3990   // FIXME: If an externally-visible declaration extends multiple temporaries,
3991   // we need to give each temporary the same name in every translation unit (and
3992   // we also need to make the temporaries externally-visible).
3993   SmallString<256> Name;
3994   llvm::raw_svector_ostream Out(Name);
3995   getCXXABI().getMangleContext().mangleReferenceTemporary(
3996       VD, E->getManglingNumber(), Out);
3997 
3998   APValue *Value = nullptr;
3999   if (E->getStorageDuration() == SD_Static) {
4000     // We might have a cached constant initializer for this temporary. Note
4001     // that this might have a different value from the value computed by
4002     // evaluating the initializer if the surrounding constant expression
4003     // modifies the temporary.
4004     Value = getContext().getMaterializedTemporaryValue(E, false);
4005     if (Value && Value->isUninit())
4006       Value = nullptr;
4007   }
4008 
4009   // Try evaluating it now, it might have a constant initializer.
4010   Expr::EvalResult EvalResult;
4011   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4012       !EvalResult.hasSideEffects())
4013     Value = &EvalResult.Val;
4014 
4015   LangAS AddrSpace =
4016       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4017 
4018   Optional<ConstantEmitter> emitter;
4019   llvm::Constant *InitialValue = nullptr;
4020   bool Constant = false;
4021   llvm::Type *Type;
4022   if (Value) {
4023     // The temporary has a constant initializer, use it.
4024     emitter.emplace(*this);
4025     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4026                                                MaterializedType);
4027     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4028     Type = InitialValue->getType();
4029   } else {
4030     // No initializer, the initialization will be provided when we
4031     // initialize the declaration which performed lifetime extension.
4032     Type = getTypes().ConvertTypeForMem(MaterializedType);
4033   }
4034 
4035   // Create a global variable for this lifetime-extended temporary.
4036   llvm::GlobalValue::LinkageTypes Linkage =
4037       getLLVMLinkageVarDefinition(VD, Constant);
4038   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4039     const VarDecl *InitVD;
4040     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4041         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4042       // Temporaries defined inside a class get linkonce_odr linkage because the
4043       // class can be defined in multipe translation units.
4044       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4045     } else {
4046       // There is no need for this temporary to have external linkage if the
4047       // VarDecl has external linkage.
4048       Linkage = llvm::GlobalVariable::InternalLinkage;
4049     }
4050   }
4051   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4052   auto *GV = new llvm::GlobalVariable(
4053       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4054       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4055   if (emitter) emitter->finalize(GV);
4056   setGlobalVisibility(GV, VD, ForDefinition);
4057   GV->setAlignment(Align.getQuantity());
4058   if (supportsCOMDAT() && GV->isWeakForLinker())
4059     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4060   if (VD->getTLSKind())
4061     setTLSMode(GV, *VD);
4062   llvm::Constant *CV = GV;
4063   if (AddrSpace != LangAS::Default)
4064     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4065         *this, GV, AddrSpace, LangAS::Default,
4066         Type->getPointerTo(
4067             getContext().getTargetAddressSpace(LangAS::Default)));
4068   MaterializedGlobalTemporaryMap[E] = CV;
4069   return ConstantAddress(CV, Align);
4070 }
4071 
4072 /// EmitObjCPropertyImplementations - Emit information for synthesized
4073 /// properties for an implementation.
4074 void CodeGenModule::EmitObjCPropertyImplementations(const
4075                                                     ObjCImplementationDecl *D) {
4076   for (const auto *PID : D->property_impls()) {
4077     // Dynamic is just for type-checking.
4078     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4079       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4080 
4081       // Determine which methods need to be implemented, some may have
4082       // been overridden. Note that ::isPropertyAccessor is not the method
4083       // we want, that just indicates if the decl came from a
4084       // property. What we want to know is if the method is defined in
4085       // this implementation.
4086       if (!D->getInstanceMethod(PD->getGetterName()))
4087         CodeGenFunction(*this).GenerateObjCGetter(
4088                                  const_cast<ObjCImplementationDecl *>(D), PID);
4089       if (!PD->isReadOnly() &&
4090           !D->getInstanceMethod(PD->getSetterName()))
4091         CodeGenFunction(*this).GenerateObjCSetter(
4092                                  const_cast<ObjCImplementationDecl *>(D), PID);
4093     }
4094   }
4095 }
4096 
4097 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4098   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4099   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4100        ivar; ivar = ivar->getNextIvar())
4101     if (ivar->getType().isDestructedType())
4102       return true;
4103 
4104   return false;
4105 }
4106 
4107 static bool AllTrivialInitializers(CodeGenModule &CGM,
4108                                    ObjCImplementationDecl *D) {
4109   CodeGenFunction CGF(CGM);
4110   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4111        E = D->init_end(); B != E; ++B) {
4112     CXXCtorInitializer *CtorInitExp = *B;
4113     Expr *Init = CtorInitExp->getInit();
4114     if (!CGF.isTrivialInitializer(Init))
4115       return false;
4116   }
4117   return true;
4118 }
4119 
4120 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4121 /// for an implementation.
4122 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4123   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4124   if (needsDestructMethod(D)) {
4125     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4126     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4127     ObjCMethodDecl *DTORMethod =
4128       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4129                              cxxSelector, getContext().VoidTy, nullptr, D,
4130                              /*isInstance=*/true, /*isVariadic=*/false,
4131                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4132                              /*isDefined=*/false, ObjCMethodDecl::Required);
4133     D->addInstanceMethod(DTORMethod);
4134     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4135     D->setHasDestructors(true);
4136   }
4137 
4138   // If the implementation doesn't have any ivar initializers, we don't need
4139   // a .cxx_construct.
4140   if (D->getNumIvarInitializers() == 0 ||
4141       AllTrivialInitializers(*this, D))
4142     return;
4143 
4144   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4145   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4146   // The constructor returns 'self'.
4147   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4148                                                 D->getLocation(),
4149                                                 D->getLocation(),
4150                                                 cxxSelector,
4151                                                 getContext().getObjCIdType(),
4152                                                 nullptr, D, /*isInstance=*/true,
4153                                                 /*isVariadic=*/false,
4154                                                 /*isPropertyAccessor=*/true,
4155                                                 /*isImplicitlyDeclared=*/true,
4156                                                 /*isDefined=*/false,
4157                                                 ObjCMethodDecl::Required);
4158   D->addInstanceMethod(CTORMethod);
4159   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4160   D->setHasNonZeroConstructors(true);
4161 }
4162 
4163 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4164 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4165   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4166       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4167     ErrorUnsupported(LSD, "linkage spec");
4168     return;
4169   }
4170 
4171   EmitDeclContext(LSD);
4172 }
4173 
4174 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4175   for (auto *I : DC->decls()) {
4176     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4177     // are themselves considered "top-level", so EmitTopLevelDecl on an
4178     // ObjCImplDecl does not recursively visit them. We need to do that in
4179     // case they're nested inside another construct (LinkageSpecDecl /
4180     // ExportDecl) that does stop them from being considered "top-level".
4181     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4182       for (auto *M : OID->methods())
4183         EmitTopLevelDecl(M);
4184     }
4185 
4186     EmitTopLevelDecl(I);
4187   }
4188 }
4189 
4190 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4191 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4192   // Ignore dependent declarations.
4193   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
4194     return;
4195 
4196   switch (D->getKind()) {
4197   case Decl::CXXConversion:
4198   case Decl::CXXMethod:
4199   case Decl::Function:
4200     // Skip function templates
4201     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
4202         cast<FunctionDecl>(D)->isLateTemplateParsed())
4203       return;
4204 
4205     EmitGlobal(cast<FunctionDecl>(D));
4206     // Always provide some coverage mapping
4207     // even for the functions that aren't emitted.
4208     AddDeferredUnusedCoverageMapping(D);
4209     break;
4210 
4211   case Decl::CXXDeductionGuide:
4212     // Function-like, but does not result in code emission.
4213     break;
4214 
4215   case Decl::Var:
4216   case Decl::Decomposition:
4217     // Skip variable templates
4218     if (cast<VarDecl>(D)->getDescribedVarTemplate())
4219       return;
4220     LLVM_FALLTHROUGH;
4221   case Decl::VarTemplateSpecialization:
4222     EmitGlobal(cast<VarDecl>(D));
4223     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4224       for (auto *B : DD->bindings())
4225         if (auto *HD = B->getHoldingVar())
4226           EmitGlobal(HD);
4227     break;
4228 
4229   // Indirect fields from global anonymous structs and unions can be
4230   // ignored; only the actual variable requires IR gen support.
4231   case Decl::IndirectField:
4232     break;
4233 
4234   // C++ Decls
4235   case Decl::Namespace:
4236     EmitDeclContext(cast<NamespaceDecl>(D));
4237     break;
4238   case Decl::ClassTemplateSpecialization: {
4239     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4240     if (DebugInfo &&
4241         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4242         Spec->hasDefinition())
4243       DebugInfo->completeTemplateDefinition(*Spec);
4244   } LLVM_FALLTHROUGH;
4245   case Decl::CXXRecord:
4246     if (DebugInfo) {
4247       if (auto *ES = D->getASTContext().getExternalSource())
4248         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4249           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4250     }
4251     // Emit any static data members, they may be definitions.
4252     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4253       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4254         EmitTopLevelDecl(I);
4255     break;
4256     // No code generation needed.
4257   case Decl::UsingShadow:
4258   case Decl::ClassTemplate:
4259   case Decl::VarTemplate:
4260   case Decl::VarTemplatePartialSpecialization:
4261   case Decl::FunctionTemplate:
4262   case Decl::TypeAliasTemplate:
4263   case Decl::Block:
4264   case Decl::Empty:
4265     break;
4266   case Decl::Using:          // using X; [C++]
4267     if (CGDebugInfo *DI = getModuleDebugInfo())
4268         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4269     return;
4270   case Decl::NamespaceAlias:
4271     if (CGDebugInfo *DI = getModuleDebugInfo())
4272         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4273     return;
4274   case Decl::UsingDirective: // using namespace X; [C++]
4275     if (CGDebugInfo *DI = getModuleDebugInfo())
4276       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4277     return;
4278   case Decl::CXXConstructor:
4279     // Skip function templates
4280     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
4281         cast<FunctionDecl>(D)->isLateTemplateParsed())
4282       return;
4283 
4284     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4285     break;
4286   case Decl::CXXDestructor:
4287     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
4288       return;
4289     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4290     break;
4291 
4292   case Decl::StaticAssert:
4293     // Nothing to do.
4294     break;
4295 
4296   // Objective-C Decls
4297 
4298   // Forward declarations, no (immediate) code generation.
4299   case Decl::ObjCInterface:
4300   case Decl::ObjCCategory:
4301     break;
4302 
4303   case Decl::ObjCProtocol: {
4304     auto *Proto = cast<ObjCProtocolDecl>(D);
4305     if (Proto->isThisDeclarationADefinition())
4306       ObjCRuntime->GenerateProtocol(Proto);
4307     break;
4308   }
4309 
4310   case Decl::ObjCCategoryImpl:
4311     // Categories have properties but don't support synthesize so we
4312     // can ignore them here.
4313     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4314     break;
4315 
4316   case Decl::ObjCImplementation: {
4317     auto *OMD = cast<ObjCImplementationDecl>(D);
4318     EmitObjCPropertyImplementations(OMD);
4319     EmitObjCIvarInitializations(OMD);
4320     ObjCRuntime->GenerateClass(OMD);
4321     // Emit global variable debug information.
4322     if (CGDebugInfo *DI = getModuleDebugInfo())
4323       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4324         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4325             OMD->getClassInterface()), OMD->getLocation());
4326     break;
4327   }
4328   case Decl::ObjCMethod: {
4329     auto *OMD = cast<ObjCMethodDecl>(D);
4330     // If this is not a prototype, emit the body.
4331     if (OMD->getBody())
4332       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4333     break;
4334   }
4335   case Decl::ObjCCompatibleAlias:
4336     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4337     break;
4338 
4339   case Decl::PragmaComment: {
4340     const auto *PCD = cast<PragmaCommentDecl>(D);
4341     switch (PCD->getCommentKind()) {
4342     case PCK_Unknown:
4343       llvm_unreachable("unexpected pragma comment kind");
4344     case PCK_Linker:
4345       AppendLinkerOptions(PCD->getArg());
4346       break;
4347     case PCK_Lib:
4348       AddDependentLib(PCD->getArg());
4349       break;
4350     case PCK_Compiler:
4351     case PCK_ExeStr:
4352     case PCK_User:
4353       break; // We ignore all of these.
4354     }
4355     break;
4356   }
4357 
4358   case Decl::PragmaDetectMismatch: {
4359     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4360     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4361     break;
4362   }
4363 
4364   case Decl::LinkageSpec:
4365     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4366     break;
4367 
4368   case Decl::FileScopeAsm: {
4369     // File-scope asm is ignored during device-side CUDA compilation.
4370     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4371       break;
4372     // File-scope asm is ignored during device-side OpenMP compilation.
4373     if (LangOpts.OpenMPIsDevice)
4374       break;
4375     auto *AD = cast<FileScopeAsmDecl>(D);
4376     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4377     break;
4378   }
4379 
4380   case Decl::Import: {
4381     auto *Import = cast<ImportDecl>(D);
4382 
4383     // If we've already imported this module, we're done.
4384     if (!ImportedModules.insert(Import->getImportedModule()))
4385       break;
4386 
4387     // Emit debug information for direct imports.
4388     if (!Import->getImportedOwningModule()) {
4389       if (CGDebugInfo *DI = getModuleDebugInfo())
4390         DI->EmitImportDecl(*Import);
4391     }
4392 
4393     // Find all of the submodules and emit the module initializers.
4394     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4395     SmallVector<clang::Module *, 16> Stack;
4396     Visited.insert(Import->getImportedModule());
4397     Stack.push_back(Import->getImportedModule());
4398 
4399     while (!Stack.empty()) {
4400       clang::Module *Mod = Stack.pop_back_val();
4401       if (!EmittedModuleInitializers.insert(Mod).second)
4402         continue;
4403 
4404       for (auto *D : Context.getModuleInitializers(Mod))
4405         EmitTopLevelDecl(D);
4406 
4407       // Visit the submodules of this module.
4408       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4409                                              SubEnd = Mod->submodule_end();
4410            Sub != SubEnd; ++Sub) {
4411         // Skip explicit children; they need to be explicitly imported to emit
4412         // the initializers.
4413         if ((*Sub)->IsExplicit)
4414           continue;
4415 
4416         if (Visited.insert(*Sub).second)
4417           Stack.push_back(*Sub);
4418       }
4419     }
4420     break;
4421   }
4422 
4423   case Decl::Export:
4424     EmitDeclContext(cast<ExportDecl>(D));
4425     break;
4426 
4427   case Decl::OMPThreadPrivate:
4428     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4429     break;
4430 
4431   case Decl::OMPDeclareReduction:
4432     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4433     break;
4434 
4435   default:
4436     // Make sure we handled everything we should, every other kind is a
4437     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4438     // function. Need to recode Decl::Kind to do that easily.
4439     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4440     break;
4441   }
4442 }
4443 
4444 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4445   // Do we need to generate coverage mapping?
4446   if (!CodeGenOpts.CoverageMapping)
4447     return;
4448   switch (D->getKind()) {
4449   case Decl::CXXConversion:
4450   case Decl::CXXMethod:
4451   case Decl::Function:
4452   case Decl::ObjCMethod:
4453   case Decl::CXXConstructor:
4454   case Decl::CXXDestructor: {
4455     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4456       return;
4457     SourceManager &SM = getContext().getSourceManager();
4458     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4459       return;
4460     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4461     if (I == DeferredEmptyCoverageMappingDecls.end())
4462       DeferredEmptyCoverageMappingDecls[D] = true;
4463     break;
4464   }
4465   default:
4466     break;
4467   };
4468 }
4469 
4470 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4471   // Do we need to generate coverage mapping?
4472   if (!CodeGenOpts.CoverageMapping)
4473     return;
4474   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4475     if (Fn->isTemplateInstantiation())
4476       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4477   }
4478   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4479   if (I == DeferredEmptyCoverageMappingDecls.end())
4480     DeferredEmptyCoverageMappingDecls[D] = false;
4481   else
4482     I->second = false;
4483 }
4484 
4485 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4486   // We call takeVector() here to avoid use-after-free.
4487   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4488   // we deserialize function bodies to emit coverage info for them, and that
4489   // deserializes more declarations. How should we handle that case?
4490   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4491     if (!Entry.second)
4492       continue;
4493     const Decl *D = Entry.first;
4494     switch (D->getKind()) {
4495     case Decl::CXXConversion:
4496     case Decl::CXXMethod:
4497     case Decl::Function:
4498     case Decl::ObjCMethod: {
4499       CodeGenPGO PGO(*this);
4500       GlobalDecl GD(cast<FunctionDecl>(D));
4501       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4502                                   getFunctionLinkage(GD));
4503       break;
4504     }
4505     case Decl::CXXConstructor: {
4506       CodeGenPGO PGO(*this);
4507       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4508       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4509                                   getFunctionLinkage(GD));
4510       break;
4511     }
4512     case Decl::CXXDestructor: {
4513       CodeGenPGO PGO(*this);
4514       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4515       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4516                                   getFunctionLinkage(GD));
4517       break;
4518     }
4519     default:
4520       break;
4521     };
4522   }
4523 }
4524 
4525 /// Turns the given pointer into a constant.
4526 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4527                                           const void *Ptr) {
4528   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4529   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4530   return llvm::ConstantInt::get(i64, PtrInt);
4531 }
4532 
4533 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4534                                    llvm::NamedMDNode *&GlobalMetadata,
4535                                    GlobalDecl D,
4536                                    llvm::GlobalValue *Addr) {
4537   if (!GlobalMetadata)
4538     GlobalMetadata =
4539       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4540 
4541   // TODO: should we report variant information for ctors/dtors?
4542   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4543                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4544                                CGM.getLLVMContext(), D.getDecl()))};
4545   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4546 }
4547 
4548 /// For each function which is declared within an extern "C" region and marked
4549 /// as 'used', but has internal linkage, create an alias from the unmangled
4550 /// name to the mangled name if possible. People expect to be able to refer
4551 /// to such functions with an unmangled name from inline assembly within the
4552 /// same translation unit.
4553 void CodeGenModule::EmitStaticExternCAliases() {
4554   // Don't do anything if we're generating CUDA device code -- the NVPTX
4555   // assembly target doesn't support aliases.
4556   if (Context.getTargetInfo().getTriple().isNVPTX())
4557     return;
4558   for (auto &I : StaticExternCValues) {
4559     IdentifierInfo *Name = I.first;
4560     llvm::GlobalValue *Val = I.second;
4561     if (Val && !getModule().getNamedValue(Name->getName()))
4562       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4563   }
4564 }
4565 
4566 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4567                                              GlobalDecl &Result) const {
4568   auto Res = Manglings.find(MangledName);
4569   if (Res == Manglings.end())
4570     return false;
4571   Result = Res->getValue();
4572   return true;
4573 }
4574 
4575 /// Emits metadata nodes associating all the global values in the
4576 /// current module with the Decls they came from.  This is useful for
4577 /// projects using IR gen as a subroutine.
4578 ///
4579 /// Since there's currently no way to associate an MDNode directly
4580 /// with an llvm::GlobalValue, we create a global named metadata
4581 /// with the name 'clang.global.decl.ptrs'.
4582 void CodeGenModule::EmitDeclMetadata() {
4583   llvm::NamedMDNode *GlobalMetadata = nullptr;
4584 
4585   for (auto &I : MangledDeclNames) {
4586     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4587     // Some mangled names don't necessarily have an associated GlobalValue
4588     // in this module, e.g. if we mangled it for DebugInfo.
4589     if (Addr)
4590       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4591   }
4592 }
4593 
4594 /// Emits metadata nodes for all the local variables in the current
4595 /// function.
4596 void CodeGenFunction::EmitDeclMetadata() {
4597   if (LocalDeclMap.empty()) return;
4598 
4599   llvm::LLVMContext &Context = getLLVMContext();
4600 
4601   // Find the unique metadata ID for this name.
4602   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4603 
4604   llvm::NamedMDNode *GlobalMetadata = nullptr;
4605 
4606   for (auto &I : LocalDeclMap) {
4607     const Decl *D = I.first;
4608     llvm::Value *Addr = I.second.getPointer();
4609     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4610       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4611       Alloca->setMetadata(
4612           DeclPtrKind, llvm::MDNode::get(
4613                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4614     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4615       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4616       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4617     }
4618   }
4619 }
4620 
4621 void CodeGenModule::EmitVersionIdentMetadata() {
4622   llvm::NamedMDNode *IdentMetadata =
4623     TheModule.getOrInsertNamedMetadata("llvm.ident");
4624   std::string Version = getClangFullVersion();
4625   llvm::LLVMContext &Ctx = TheModule.getContext();
4626 
4627   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4628   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4629 }
4630 
4631 void CodeGenModule::EmitTargetMetadata() {
4632   // Warning, new MangledDeclNames may be appended within this loop.
4633   // We rely on MapVector insertions adding new elements to the end
4634   // of the container.
4635   // FIXME: Move this loop into the one target that needs it, and only
4636   // loop over those declarations for which we couldn't emit the target
4637   // metadata when we emitted the declaration.
4638   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4639     auto Val = *(MangledDeclNames.begin() + I);
4640     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4641     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4642     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4643   }
4644 }
4645 
4646 void CodeGenModule::EmitCoverageFile() {
4647   if (getCodeGenOpts().CoverageDataFile.empty() &&
4648       getCodeGenOpts().CoverageNotesFile.empty())
4649     return;
4650 
4651   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4652   if (!CUNode)
4653     return;
4654 
4655   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4656   llvm::LLVMContext &Ctx = TheModule.getContext();
4657   auto *CoverageDataFile =
4658       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4659   auto *CoverageNotesFile =
4660       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4661   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4662     llvm::MDNode *CU = CUNode->getOperand(i);
4663     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4664     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4665   }
4666 }
4667 
4668 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4669   // Sema has checked that all uuid strings are of the form
4670   // "12345678-1234-1234-1234-1234567890ab".
4671   assert(Uuid.size() == 36);
4672   for (unsigned i = 0; i < 36; ++i) {
4673     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4674     else                                         assert(isHexDigit(Uuid[i]));
4675   }
4676 
4677   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4678   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4679 
4680   llvm::Constant *Field3[8];
4681   for (unsigned Idx = 0; Idx < 8; ++Idx)
4682     Field3[Idx] = llvm::ConstantInt::get(
4683         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4684 
4685   llvm::Constant *Fields[4] = {
4686     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4687     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4688     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4689     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4690   };
4691 
4692   return llvm::ConstantStruct::getAnon(Fields);
4693 }
4694 
4695 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4696                                                        bool ForEH) {
4697   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4698   // FIXME: should we even be calling this method if RTTI is disabled
4699   // and it's not for EH?
4700   if (!ForEH && !getLangOpts().RTTI)
4701     return llvm::Constant::getNullValue(Int8PtrTy);
4702 
4703   if (ForEH && Ty->isObjCObjectPointerType() &&
4704       LangOpts.ObjCRuntime.isGNUFamily())
4705     return ObjCRuntime->GetEHType(Ty);
4706 
4707   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4708 }
4709 
4710 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4711   // Do not emit threadprivates in simd-only mode.
4712   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4713     return;
4714   for (auto RefExpr : D->varlists()) {
4715     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4716     bool PerformInit =
4717         VD->getAnyInitializer() &&
4718         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4719                                                         /*ForRef=*/false);
4720 
4721     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4722     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4723             VD, Addr, RefExpr->getLocStart(), PerformInit))
4724       CXXGlobalInits.push_back(InitFunction);
4725   }
4726 }
4727 
4728 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4729   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4730   if (InternalId)
4731     return InternalId;
4732 
4733   if (isExternallyVisible(T->getLinkage())) {
4734     std::string OutName;
4735     llvm::raw_string_ostream Out(OutName);
4736     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4737 
4738     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4739   } else {
4740     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4741                                            llvm::ArrayRef<llvm::Metadata *>());
4742   }
4743 
4744   return InternalId;
4745 }
4746 
4747 // Generalize pointer types to a void pointer with the qualifiers of the
4748 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
4749 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
4750 // 'void *'.
4751 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4752   if (!Ty->isPointerType())
4753     return Ty;
4754 
4755   return Ctx.getPointerType(
4756       QualType(Ctx.VoidTy).withCVRQualifiers(
4757           Ty->getPointeeType().getCVRQualifiers()));
4758 }
4759 
4760 // Apply type generalization to a FunctionType's return and argument types
4761 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4762   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4763     SmallVector<QualType, 8> GeneralizedParams;
4764     for (auto &Param : FnType->param_types())
4765       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4766 
4767     return Ctx.getFunctionType(
4768         GeneralizeType(Ctx, FnType->getReturnType()),
4769         GeneralizedParams, FnType->getExtProtoInfo());
4770   }
4771 
4772   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4773     return Ctx.getFunctionNoProtoType(
4774         GeneralizeType(Ctx, FnType->getReturnType()));
4775 
4776   llvm_unreachable("Encountered unknown FunctionType");
4777 }
4778 
4779 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4780   T = GeneralizeFunctionType(getContext(), T);
4781 
4782   llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4783   if (InternalId)
4784     return InternalId;
4785 
4786   if (isExternallyVisible(T->getLinkage())) {
4787     std::string OutName;
4788     llvm::raw_string_ostream Out(OutName);
4789     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4790     Out << ".generalized";
4791 
4792     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4793   } else {
4794     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4795                                            llvm::ArrayRef<llvm::Metadata *>());
4796   }
4797 
4798   return InternalId;
4799 }
4800 
4801 /// Returns whether this module needs the "all-vtables" type identifier.
4802 bool CodeGenModule::NeedAllVtablesTypeId() const {
4803   // Returns true if at least one of vtable-based CFI checkers is enabled and
4804   // is not in the trapping mode.
4805   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4806            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4807           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4808            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4809           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4810            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4811           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4812            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4813 }
4814 
4815 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4816                                           CharUnits Offset,
4817                                           const CXXRecordDecl *RD) {
4818   llvm::Metadata *MD =
4819       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4820   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4821 
4822   if (CodeGenOpts.SanitizeCfiCrossDso)
4823     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4824       VTable->addTypeMetadata(Offset.getQuantity(),
4825                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4826 
4827   if (NeedAllVtablesTypeId()) {
4828     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4829     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4830   }
4831 }
4832 
4833 // Fills in the supplied string map with the set of target features for the
4834 // passed in function.
4835 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4836                                           const FunctionDecl *FD) {
4837   StringRef TargetCPU = Target.getTargetOpts().CPU;
4838   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4839     // If we have a TargetAttr build up the feature map based on that.
4840     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4841 
4842     ParsedAttr.Features.erase(
4843         llvm::remove_if(ParsedAttr.Features,
4844                         [&](const std::string &Feat) {
4845                           return !Target.isValidFeatureName(
4846                               StringRef{Feat}.substr(1));
4847                         }),
4848         ParsedAttr.Features.end());
4849 
4850     // Make a copy of the features as passed on the command line into the
4851     // beginning of the additional features from the function to override.
4852     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4853                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4854                             Target.getTargetOpts().FeaturesAsWritten.end());
4855 
4856     if (ParsedAttr.Architecture != "" &&
4857         Target.isValidCPUName(ParsedAttr.Architecture))
4858       TargetCPU = ParsedAttr.Architecture;
4859 
4860     // Now populate the feature map, first with the TargetCPU which is either
4861     // the default or a new one from the target attribute string. Then we'll use
4862     // the passed in features (FeaturesAsWritten) along with the new ones from
4863     // the attribute.
4864     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4865                           ParsedAttr.Features);
4866   } else {
4867     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4868                           Target.getTargetOpts().Features);
4869   }
4870 }
4871 
4872 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4873   if (!SanStats)
4874     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4875 
4876   return *SanStats;
4877 }
4878 llvm::Value *
4879 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4880                                                   CodeGenFunction &CGF) {
4881   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
4882   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
4883   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4884   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4885                                 "__translate_sampler_initializer"),
4886                                 {C});
4887 }
4888