1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "ConstantBuilder.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecordLayout.h" 37 #include "clang/AST/RecursiveASTVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/IR/CallSite.h" 49 #include "llvm/IR/CallingConv.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/ProfileData/InstrProfReader.h" 55 #include "llvm/Support/ConvertUTF.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MD5.h" 58 59 using namespace clang; 60 using namespace CodeGen; 61 62 static const char AnnotationSection[] = "llvm.metadata"; 63 64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 65 switch (CGM.getTarget().getCXXABI().getKind()) { 66 case TargetCXXABI::GenericAArch64: 67 case TargetCXXABI::GenericARM: 68 case TargetCXXABI::iOS: 69 case TargetCXXABI::iOS64: 70 case TargetCXXABI::WatchOS: 71 case TargetCXXABI::GenericMIPS: 72 case TargetCXXABI::GenericItanium: 73 case TargetCXXABI::WebAssembly: 74 return CreateItaniumCXXABI(CGM); 75 case TargetCXXABI::Microsoft: 76 return CreateMicrosoftCXXABI(CGM); 77 } 78 79 llvm_unreachable("invalid C++ ABI kind"); 80 } 81 82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 83 const PreprocessorOptions &PPO, 84 const CodeGenOptions &CGO, llvm::Module &M, 85 DiagnosticsEngine &diags, 86 CoverageSourceInfo *CoverageInfo) 87 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 88 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 89 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 90 VMContext(M.getContext()), Types(*this), VTables(*this), 91 SanitizerMD(new SanitizerMetadata(*this)) { 92 93 // Initialize the type cache. 94 llvm::LLVMContext &LLVMContext = M.getContext(); 95 VoidTy = llvm::Type::getVoidTy(LLVMContext); 96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 97 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 100 FloatTy = llvm::Type::getFloatTy(LLVMContext); 101 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 105 SizeSizeInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 107 IntAlignInBytes = 108 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 109 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 110 IntPtrTy = llvm::IntegerType::get(LLVMContext, 111 C.getTargetInfo().getMaxPointerWidth()); 112 Int8PtrTy = Int8Ty->getPointerTo(0); 113 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 114 115 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 116 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 117 118 if (LangOpts.ObjC1) 119 createObjCRuntime(); 120 if (LangOpts.OpenCL) 121 createOpenCLRuntime(); 122 if (LangOpts.OpenMP) 123 createOpenMPRuntime(); 124 if (LangOpts.CUDA) 125 createCUDARuntime(); 126 127 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 128 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 129 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 130 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 131 getCXXABI().getMangleContext())); 132 133 // If debug info or coverage generation is enabled, create the CGDebugInfo 134 // object. 135 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 136 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 137 DebugInfo.reset(new CGDebugInfo(*this)); 138 139 Block.GlobalUniqueCount = 0; 140 141 if (C.getLangOpts().ObjC1) 142 ObjCData.reset(new ObjCEntrypoints()); 143 144 if (CodeGenOpts.hasProfileClangUse()) { 145 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 146 CodeGenOpts.ProfileInstrumentUsePath); 147 if (auto E = ReaderOrErr.takeError()) { 148 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 149 "Could not read profile %0: %1"); 150 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 151 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 152 << EI.message(); 153 }); 154 } else 155 PGOReader = std::move(ReaderOrErr.get()); 156 } 157 158 // If coverage mapping generation is enabled, create the 159 // CoverageMappingModuleGen object. 160 if (CodeGenOpts.CoverageMapping) 161 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 162 } 163 164 CodeGenModule::~CodeGenModule() {} 165 166 void CodeGenModule::createObjCRuntime() { 167 // This is just isGNUFamily(), but we want to force implementors of 168 // new ABIs to decide how best to do this. 169 switch (LangOpts.ObjCRuntime.getKind()) { 170 case ObjCRuntime::GNUstep: 171 case ObjCRuntime::GCC: 172 case ObjCRuntime::ObjFW: 173 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 174 return; 175 176 case ObjCRuntime::FragileMacOSX: 177 case ObjCRuntime::MacOSX: 178 case ObjCRuntime::iOS: 179 case ObjCRuntime::WatchOS: 180 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 181 return; 182 } 183 llvm_unreachable("bad runtime kind"); 184 } 185 186 void CodeGenModule::createOpenCLRuntime() { 187 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 188 } 189 190 void CodeGenModule::createOpenMPRuntime() { 191 // Select a specialized code generation class based on the target, if any. 192 // If it does not exist use the default implementation. 193 switch (getTriple().getArch()) { 194 case llvm::Triple::nvptx: 195 case llvm::Triple::nvptx64: 196 assert(getLangOpts().OpenMPIsDevice && 197 "OpenMP NVPTX is only prepared to deal with device code."); 198 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 199 break; 200 default: 201 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 202 break; 203 } 204 } 205 206 void CodeGenModule::createCUDARuntime() { 207 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 208 } 209 210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 211 Replacements[Name] = C; 212 } 213 214 void CodeGenModule::applyReplacements() { 215 for (auto &I : Replacements) { 216 StringRef MangledName = I.first(); 217 llvm::Constant *Replacement = I.second; 218 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 219 if (!Entry) 220 continue; 221 auto *OldF = cast<llvm::Function>(Entry); 222 auto *NewF = dyn_cast<llvm::Function>(Replacement); 223 if (!NewF) { 224 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 225 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 226 } else { 227 auto *CE = cast<llvm::ConstantExpr>(Replacement); 228 assert(CE->getOpcode() == llvm::Instruction::BitCast || 229 CE->getOpcode() == llvm::Instruction::GetElementPtr); 230 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 231 } 232 } 233 234 // Replace old with new, but keep the old order. 235 OldF->replaceAllUsesWith(Replacement); 236 if (NewF) { 237 NewF->removeFromParent(); 238 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 239 NewF); 240 } 241 OldF->eraseFromParent(); 242 } 243 } 244 245 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 246 GlobalValReplacements.push_back(std::make_pair(GV, C)); 247 } 248 249 void CodeGenModule::applyGlobalValReplacements() { 250 for (auto &I : GlobalValReplacements) { 251 llvm::GlobalValue *GV = I.first; 252 llvm::Constant *C = I.second; 253 254 GV->replaceAllUsesWith(C); 255 GV->eraseFromParent(); 256 } 257 } 258 259 // This is only used in aliases that we created and we know they have a 260 // linear structure. 261 static const llvm::GlobalObject *getAliasedGlobal( 262 const llvm::GlobalIndirectSymbol &GIS) { 263 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 264 const llvm::Constant *C = &GIS; 265 for (;;) { 266 C = C->stripPointerCasts(); 267 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 268 return GO; 269 // stripPointerCasts will not walk over weak aliases. 270 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 271 if (!GIS2) 272 return nullptr; 273 if (!Visited.insert(GIS2).second) 274 return nullptr; 275 C = GIS2->getIndirectSymbol(); 276 } 277 } 278 279 void CodeGenModule::checkAliases() { 280 // Check if the constructed aliases are well formed. It is really unfortunate 281 // that we have to do this in CodeGen, but we only construct mangled names 282 // and aliases during codegen. 283 bool Error = false; 284 DiagnosticsEngine &Diags = getDiags(); 285 for (const GlobalDecl &GD : Aliases) { 286 const auto *D = cast<ValueDecl>(GD.getDecl()); 287 SourceLocation Location; 288 bool IsIFunc = D->hasAttr<IFuncAttr>(); 289 if (const Attr *A = D->getDefiningAttr()) 290 Location = A->getLocation(); 291 else 292 llvm_unreachable("Not an alias or ifunc?"); 293 StringRef MangledName = getMangledName(GD); 294 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 295 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 296 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 297 if (!GV) { 298 Error = true; 299 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 300 } else if (GV->isDeclaration()) { 301 Error = true; 302 Diags.Report(Location, diag::err_alias_to_undefined) 303 << IsIFunc << IsIFunc; 304 } else if (IsIFunc) { 305 // Check resolver function type. 306 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 307 GV->getType()->getPointerElementType()); 308 assert(FTy); 309 if (!FTy->getReturnType()->isPointerTy()) 310 Diags.Report(Location, diag::err_ifunc_resolver_return); 311 if (FTy->getNumParams()) 312 Diags.Report(Location, diag::err_ifunc_resolver_params); 313 } 314 315 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 316 llvm::GlobalValue *AliaseeGV; 317 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 318 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 319 else 320 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 321 322 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 323 StringRef AliasSection = SA->getName(); 324 if (AliasSection != AliaseeGV->getSection()) 325 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 326 << AliasSection << IsIFunc << IsIFunc; 327 } 328 329 // We have to handle alias to weak aliases in here. LLVM itself disallows 330 // this since the object semantics would not match the IL one. For 331 // compatibility with gcc we implement it by just pointing the alias 332 // to its aliasee's aliasee. We also warn, since the user is probably 333 // expecting the link to be weak. 334 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 335 if (GA->isInterposable()) { 336 Diags.Report(Location, diag::warn_alias_to_weak_alias) 337 << GV->getName() << GA->getName() << IsIFunc; 338 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 339 GA->getIndirectSymbol(), Alias->getType()); 340 Alias->setIndirectSymbol(Aliasee); 341 } 342 } 343 } 344 if (!Error) 345 return; 346 347 for (const GlobalDecl &GD : Aliases) { 348 StringRef MangledName = getMangledName(GD); 349 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 350 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 351 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 352 Alias->eraseFromParent(); 353 } 354 } 355 356 void CodeGenModule::clear() { 357 DeferredDeclsToEmit.clear(); 358 if (OpenMPRuntime) 359 OpenMPRuntime->clear(); 360 } 361 362 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 363 StringRef MainFile) { 364 if (!hasDiagnostics()) 365 return; 366 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 367 if (MainFile.empty()) 368 MainFile = "<stdin>"; 369 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 370 } else 371 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 372 << Mismatched; 373 } 374 375 void CodeGenModule::Release() { 376 EmitDeferred(); 377 applyGlobalValReplacements(); 378 applyReplacements(); 379 checkAliases(); 380 EmitCXXGlobalInitFunc(); 381 EmitCXXGlobalDtorFunc(); 382 EmitCXXThreadLocalInitFunc(); 383 if (ObjCRuntime) 384 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 385 AddGlobalCtor(ObjCInitFunction); 386 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 387 CUDARuntime) { 388 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 389 AddGlobalCtor(CudaCtorFunction); 390 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 391 AddGlobalDtor(CudaDtorFunction); 392 } 393 if (OpenMPRuntime) 394 if (llvm::Function *OpenMPRegistrationFunction = 395 OpenMPRuntime->emitRegistrationFunction()) 396 AddGlobalCtor(OpenMPRegistrationFunction, 0); 397 if (PGOReader) { 398 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 399 if (PGOStats.hasDiagnostics()) 400 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 401 } 402 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 403 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 404 EmitGlobalAnnotations(); 405 EmitStaticExternCAliases(); 406 EmitDeferredUnusedCoverageMappings(); 407 if (CoverageMapping) 408 CoverageMapping->emit(); 409 if (CodeGenOpts.SanitizeCfiCrossDso) 410 CodeGenFunction(*this).EmitCfiCheckFail(); 411 emitLLVMUsed(); 412 if (SanStats) 413 SanStats->finish(); 414 415 if (CodeGenOpts.Autolink && 416 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 417 EmitModuleLinkOptions(); 418 } 419 if (CodeGenOpts.DwarfVersion) { 420 // We actually want the latest version when there are conflicts. 421 // We can change from Warning to Latest if such mode is supported. 422 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 423 CodeGenOpts.DwarfVersion); 424 } 425 if (CodeGenOpts.EmitCodeView) { 426 // Indicate that we want CodeView in the metadata. 427 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 428 } 429 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 430 // We don't support LTO with 2 with different StrictVTablePointers 431 // FIXME: we could support it by stripping all the information introduced 432 // by StrictVTablePointers. 433 434 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 435 436 llvm::Metadata *Ops[2] = { 437 llvm::MDString::get(VMContext, "StrictVTablePointers"), 438 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 439 llvm::Type::getInt32Ty(VMContext), 1))}; 440 441 getModule().addModuleFlag(llvm::Module::Require, 442 "StrictVTablePointersRequirement", 443 llvm::MDNode::get(VMContext, Ops)); 444 } 445 if (DebugInfo) 446 // We support a single version in the linked module. The LLVM 447 // parser will drop debug info with a different version number 448 // (and warn about it, too). 449 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 450 llvm::DEBUG_METADATA_VERSION); 451 452 // We need to record the widths of enums and wchar_t, so that we can generate 453 // the correct build attributes in the ARM backend. 454 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 455 if ( Arch == llvm::Triple::arm 456 || Arch == llvm::Triple::armeb 457 || Arch == llvm::Triple::thumb 458 || Arch == llvm::Triple::thumbeb) { 459 // Width of wchar_t in bytes 460 uint64_t WCharWidth = 461 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 462 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 463 464 // The minimum width of an enum in bytes 465 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 466 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 467 } 468 469 if (CodeGenOpts.SanitizeCfiCrossDso) { 470 // Indicate that we want cross-DSO control flow integrity checks. 471 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 472 } 473 474 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 475 // Indicate whether __nvvm_reflect should be configured to flush denormal 476 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 477 // property.) 478 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 479 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 480 } 481 482 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 483 assert(PLevel < 3 && "Invalid PIC Level"); 484 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 485 if (Context.getLangOpts().PIE) 486 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 487 } 488 489 SimplifyPersonality(); 490 491 if (getCodeGenOpts().EmitDeclMetadata) 492 EmitDeclMetadata(); 493 494 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 495 EmitCoverageFile(); 496 497 if (DebugInfo) 498 DebugInfo->finalize(); 499 500 EmitVersionIdentMetadata(); 501 502 EmitTargetMetadata(); 503 } 504 505 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 506 // Make sure that this type is translated. 507 Types.UpdateCompletedType(TD); 508 } 509 510 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 511 // Make sure that this type is translated. 512 Types.RefreshTypeCacheForClass(RD); 513 } 514 515 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 516 if (!TBAA) 517 return nullptr; 518 return TBAA->getTBAAInfo(QTy); 519 } 520 521 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 522 if (!TBAA) 523 return nullptr; 524 return TBAA->getTBAAInfoForVTablePtr(); 525 } 526 527 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 528 if (!TBAA) 529 return nullptr; 530 return TBAA->getTBAAStructInfo(QTy); 531 } 532 533 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 534 llvm::MDNode *AccessN, 535 uint64_t O) { 536 if (!TBAA) 537 return nullptr; 538 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 539 } 540 541 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 542 /// and struct-path aware TBAA, the tag has the same format: 543 /// base type, access type and offset. 544 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 545 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 546 llvm::MDNode *TBAAInfo, 547 bool ConvertTypeToTag) { 548 if (ConvertTypeToTag && TBAA) 549 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 550 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 551 else 552 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 553 } 554 555 void CodeGenModule::DecorateInstructionWithInvariantGroup( 556 llvm::Instruction *I, const CXXRecordDecl *RD) { 557 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 558 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 559 // Check if we have to wrap MDString in MDNode. 560 if (!MetaDataNode) 561 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 562 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 563 } 564 565 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 566 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 567 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 568 } 569 570 /// ErrorUnsupported - Print out an error that codegen doesn't support the 571 /// specified stmt yet. 572 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 573 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 574 "cannot compile this %0 yet"); 575 std::string Msg = Type; 576 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 577 << Msg << S->getSourceRange(); 578 } 579 580 /// ErrorUnsupported - Print out an error that codegen doesn't support the 581 /// specified decl yet. 582 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 583 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 584 "cannot compile this %0 yet"); 585 std::string Msg = Type; 586 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 587 } 588 589 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 590 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 591 } 592 593 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 594 const NamedDecl *D) const { 595 // Internal definitions always have default visibility. 596 if (GV->hasLocalLinkage()) { 597 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 598 return; 599 } 600 601 // Set visibility for definitions. 602 LinkageInfo LV = D->getLinkageAndVisibility(); 603 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 604 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 605 } 606 607 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 608 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 609 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 610 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 611 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 612 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 613 } 614 615 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 616 CodeGenOptions::TLSModel M) { 617 switch (M) { 618 case CodeGenOptions::GeneralDynamicTLSModel: 619 return llvm::GlobalVariable::GeneralDynamicTLSModel; 620 case CodeGenOptions::LocalDynamicTLSModel: 621 return llvm::GlobalVariable::LocalDynamicTLSModel; 622 case CodeGenOptions::InitialExecTLSModel: 623 return llvm::GlobalVariable::InitialExecTLSModel; 624 case CodeGenOptions::LocalExecTLSModel: 625 return llvm::GlobalVariable::LocalExecTLSModel; 626 } 627 llvm_unreachable("Invalid TLS model!"); 628 } 629 630 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 631 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 632 633 llvm::GlobalValue::ThreadLocalMode TLM; 634 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 635 636 // Override the TLS model if it is explicitly specified. 637 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 638 TLM = GetLLVMTLSModel(Attr->getModel()); 639 } 640 641 GV->setThreadLocalMode(TLM); 642 } 643 644 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 645 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 646 647 // Some ABIs don't have constructor variants. Make sure that base and 648 // complete constructors get mangled the same. 649 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 650 if (!getTarget().getCXXABI().hasConstructorVariants()) { 651 CXXCtorType OrigCtorType = GD.getCtorType(); 652 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 653 if (OrigCtorType == Ctor_Base) 654 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 655 } 656 } 657 658 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 659 if (!FoundStr.empty()) 660 return FoundStr; 661 662 const auto *ND = cast<NamedDecl>(GD.getDecl()); 663 SmallString<256> Buffer; 664 StringRef Str; 665 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 666 llvm::raw_svector_ostream Out(Buffer); 667 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 668 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 669 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 670 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 671 else 672 getCXXABI().getMangleContext().mangleName(ND, Out); 673 Str = Out.str(); 674 } else { 675 IdentifierInfo *II = ND->getIdentifier(); 676 assert(II && "Attempt to mangle unnamed decl."); 677 const auto *FD = dyn_cast<FunctionDecl>(ND); 678 679 if (FD && 680 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 681 llvm::raw_svector_ostream Out(Buffer); 682 Out << "__regcall3__" << II->getName(); 683 Str = Out.str(); 684 } else { 685 Str = II->getName(); 686 } 687 } 688 689 // Keep the first result in the case of a mangling collision. 690 auto Result = Manglings.insert(std::make_pair(Str, GD)); 691 return FoundStr = Result.first->first(); 692 } 693 694 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 695 const BlockDecl *BD) { 696 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 697 const Decl *D = GD.getDecl(); 698 699 SmallString<256> Buffer; 700 llvm::raw_svector_ostream Out(Buffer); 701 if (!D) 702 MangleCtx.mangleGlobalBlock(BD, 703 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 704 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 705 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 706 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 707 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 708 else 709 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 710 711 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 712 return Result.first->first(); 713 } 714 715 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 716 return getModule().getNamedValue(Name); 717 } 718 719 /// AddGlobalCtor - Add a function to the list that will be called before 720 /// main() runs. 721 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 722 llvm::Constant *AssociatedData) { 723 // FIXME: Type coercion of void()* types. 724 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 725 } 726 727 /// AddGlobalDtor - Add a function to the list that will be called 728 /// when the module is unloaded. 729 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 730 // FIXME: Type coercion of void()* types. 731 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 732 } 733 734 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 735 if (Fns.empty()) return; 736 737 // Ctor function type is void()*. 738 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 739 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 740 741 // Get the type of a ctor entry, { i32, void ()*, i8* }. 742 llvm::StructType *CtorStructTy = llvm::StructType::get( 743 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 744 745 // Construct the constructor and destructor arrays. 746 ConstantBuilder builder(*this); 747 auto ctors = builder.beginArray(CtorStructTy); 748 for (const auto &I : Fns) { 749 auto ctor = ctors.beginStruct(CtorStructTy); 750 ctor.addInt(Int32Ty, I.Priority); 751 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 752 if (I.AssociatedData) 753 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 754 else 755 ctor.addNullPointer(VoidPtrTy); 756 ctors.add(ctor.finish()); 757 } 758 759 auto list = 760 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 761 /*constant*/ false, 762 llvm::GlobalValue::AppendingLinkage); 763 764 // The LTO linker doesn't seem to like it when we set an alignment 765 // on appending variables. Take it off as a workaround. 766 list->setAlignment(0); 767 768 Fns.clear(); 769 } 770 771 llvm::GlobalValue::LinkageTypes 772 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 773 const auto *D = cast<FunctionDecl>(GD.getDecl()); 774 775 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 776 777 if (isa<CXXDestructorDecl>(D) && 778 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 779 GD.getDtorType())) { 780 // Destructor variants in the Microsoft C++ ABI are always internal or 781 // linkonce_odr thunks emitted on an as-needed basis. 782 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 783 : llvm::GlobalValue::LinkOnceODRLinkage; 784 } 785 786 if (isa<CXXConstructorDecl>(D) && 787 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 788 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 789 // Our approach to inheriting constructors is fundamentally different from 790 // that used by the MS ABI, so keep our inheriting constructor thunks 791 // internal rather than trying to pick an unambiguous mangling for them. 792 return llvm::GlobalValue::InternalLinkage; 793 } 794 795 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 796 } 797 798 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 799 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 800 801 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 802 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 803 // Don't dllexport/import destructor thunks. 804 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 805 return; 806 } 807 } 808 809 if (FD->hasAttr<DLLImportAttr>()) 810 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 811 else if (FD->hasAttr<DLLExportAttr>()) 812 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 813 else 814 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 815 } 816 817 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 818 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 819 if (!MDS) return nullptr; 820 821 llvm::MD5 md5; 822 llvm::MD5::MD5Result result; 823 md5.update(MDS->getString()); 824 md5.final(result); 825 uint64_t id = 0; 826 for (int i = 0; i < 8; ++i) 827 id |= static_cast<uint64_t>(result[i]) << (i * 8); 828 return llvm::ConstantInt::get(Int64Ty, id); 829 } 830 831 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 832 llvm::Function *F) { 833 setNonAliasAttributes(D, F); 834 } 835 836 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 837 const CGFunctionInfo &Info, 838 llvm::Function *F) { 839 unsigned CallingConv; 840 AttributeListType AttributeList; 841 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv, 842 false); 843 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 844 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 845 } 846 847 /// Determines whether the language options require us to model 848 /// unwind exceptions. We treat -fexceptions as mandating this 849 /// except under the fragile ObjC ABI with only ObjC exceptions 850 /// enabled. This means, for example, that C with -fexceptions 851 /// enables this. 852 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 853 // If exceptions are completely disabled, obviously this is false. 854 if (!LangOpts.Exceptions) return false; 855 856 // If C++ exceptions are enabled, this is true. 857 if (LangOpts.CXXExceptions) return true; 858 859 // If ObjC exceptions are enabled, this depends on the ABI. 860 if (LangOpts.ObjCExceptions) { 861 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 862 } 863 864 return true; 865 } 866 867 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 868 llvm::Function *F) { 869 llvm::AttrBuilder B; 870 871 if (CodeGenOpts.UnwindTables) 872 B.addAttribute(llvm::Attribute::UWTable); 873 874 if (!hasUnwindExceptions(LangOpts)) 875 B.addAttribute(llvm::Attribute::NoUnwind); 876 877 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 878 B.addAttribute(llvm::Attribute::StackProtect); 879 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 880 B.addAttribute(llvm::Attribute::StackProtectStrong); 881 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 882 B.addAttribute(llvm::Attribute::StackProtectReq); 883 884 if (!D) { 885 F->addAttributes(llvm::AttributeSet::FunctionIndex, 886 llvm::AttributeSet::get( 887 F->getContext(), 888 llvm::AttributeSet::FunctionIndex, B)); 889 return; 890 } 891 892 if (D->hasAttr<NakedAttr>()) { 893 // Naked implies noinline: we should not be inlining such functions. 894 B.addAttribute(llvm::Attribute::Naked); 895 B.addAttribute(llvm::Attribute::NoInline); 896 } else if (D->hasAttr<NoDuplicateAttr>()) { 897 B.addAttribute(llvm::Attribute::NoDuplicate); 898 } else if (D->hasAttr<NoInlineAttr>()) { 899 B.addAttribute(llvm::Attribute::NoInline); 900 } else if (D->hasAttr<AlwaysInlineAttr>() && 901 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 902 llvm::Attribute::NoInline)) { 903 // (noinline wins over always_inline, and we can't specify both in IR) 904 B.addAttribute(llvm::Attribute::AlwaysInline); 905 } 906 907 if (D->hasAttr<ColdAttr>()) { 908 if (!D->hasAttr<OptimizeNoneAttr>()) 909 B.addAttribute(llvm::Attribute::OptimizeForSize); 910 B.addAttribute(llvm::Attribute::Cold); 911 } 912 913 if (D->hasAttr<MinSizeAttr>()) 914 B.addAttribute(llvm::Attribute::MinSize); 915 916 F->addAttributes(llvm::AttributeSet::FunctionIndex, 917 llvm::AttributeSet::get( 918 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 919 920 if (D->hasAttr<OptimizeNoneAttr>()) { 921 // OptimizeNone implies noinline; we should not be inlining such functions. 922 F->addFnAttr(llvm::Attribute::OptimizeNone); 923 F->addFnAttr(llvm::Attribute::NoInline); 924 925 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 926 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 927 F->removeFnAttr(llvm::Attribute::MinSize); 928 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 929 "OptimizeNone and AlwaysInline on same function!"); 930 931 // Attribute 'inlinehint' has no effect on 'optnone' functions. 932 // Explicitly remove it from the set of function attributes. 933 F->removeFnAttr(llvm::Attribute::InlineHint); 934 } 935 936 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 937 if (alignment) 938 F->setAlignment(alignment); 939 940 // Some C++ ABIs require 2-byte alignment for member functions, in order to 941 // reserve a bit for differentiating between virtual and non-virtual member 942 // functions. If the current target's C++ ABI requires this and this is a 943 // member function, set its alignment accordingly. 944 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 945 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 946 F->setAlignment(2); 947 } 948 949 // In the cross-dso CFI mode, we want !type attributes on definitions only. 950 if (CodeGenOpts.SanitizeCfiCrossDso) 951 if (auto *FD = dyn_cast<FunctionDecl>(D)) 952 CreateFunctionTypeMetadata(FD, F); 953 } 954 955 void CodeGenModule::SetCommonAttributes(const Decl *D, 956 llvm::GlobalValue *GV) { 957 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 958 setGlobalVisibility(GV, ND); 959 else 960 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 961 962 if (D && D->hasAttr<UsedAttr>()) 963 addUsedGlobal(GV); 964 } 965 966 void CodeGenModule::setAliasAttributes(const Decl *D, 967 llvm::GlobalValue *GV) { 968 SetCommonAttributes(D, GV); 969 970 // Process the dllexport attribute based on whether the original definition 971 // (not necessarily the aliasee) was exported. 972 if (D->hasAttr<DLLExportAttr>()) 973 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 974 } 975 976 void CodeGenModule::setNonAliasAttributes(const Decl *D, 977 llvm::GlobalObject *GO) { 978 SetCommonAttributes(D, GO); 979 980 if (D) 981 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 982 GO->setSection(SA->getName()); 983 984 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 985 } 986 987 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 988 llvm::Function *F, 989 const CGFunctionInfo &FI) { 990 SetLLVMFunctionAttributes(D, FI, F); 991 SetLLVMFunctionAttributesForDefinition(D, F); 992 993 F->setLinkage(llvm::Function::InternalLinkage); 994 995 setNonAliasAttributes(D, F); 996 } 997 998 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 999 const NamedDecl *ND) { 1000 // Set linkage and visibility in case we never see a definition. 1001 LinkageInfo LV = ND->getLinkageAndVisibility(); 1002 if (LV.getLinkage() != ExternalLinkage) { 1003 // Don't set internal linkage on declarations. 1004 } else { 1005 if (ND->hasAttr<DLLImportAttr>()) { 1006 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1007 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1008 } else if (ND->hasAttr<DLLExportAttr>()) { 1009 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1010 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1011 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1012 // "extern_weak" is overloaded in LLVM; we probably should have 1013 // separate linkage types for this. 1014 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1015 } 1016 1017 // Set visibility on a declaration only if it's explicit. 1018 if (LV.isVisibilityExplicit()) 1019 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1020 } 1021 } 1022 1023 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1024 llvm::Function *F) { 1025 // Only if we are checking indirect calls. 1026 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1027 return; 1028 1029 // Non-static class methods are handled via vtable pointer checks elsewhere. 1030 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1031 return; 1032 1033 // Additionally, if building with cross-DSO support... 1034 if (CodeGenOpts.SanitizeCfiCrossDso) { 1035 // Skip available_externally functions. They won't be codegen'ed in the 1036 // current module anyway. 1037 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1038 return; 1039 } 1040 1041 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1042 F->addTypeMetadata(0, MD); 1043 1044 // Emit a hash-based bit set entry for cross-DSO calls. 1045 if (CodeGenOpts.SanitizeCfiCrossDso) 1046 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1047 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1048 } 1049 1050 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1051 bool IsIncompleteFunction, 1052 bool IsThunk) { 1053 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1054 // If this is an intrinsic function, set the function's attributes 1055 // to the intrinsic's attributes. 1056 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1057 return; 1058 } 1059 1060 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1061 1062 if (!IsIncompleteFunction) 1063 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1064 1065 // Add the Returned attribute for "this", except for iOS 5 and earlier 1066 // where substantial code, including the libstdc++ dylib, was compiled with 1067 // GCC and does not actually return "this". 1068 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1069 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1070 assert(!F->arg_empty() && 1071 F->arg_begin()->getType() 1072 ->canLosslesslyBitCastTo(F->getReturnType()) && 1073 "unexpected this return"); 1074 F->addAttribute(1, llvm::Attribute::Returned); 1075 } 1076 1077 // Only a few attributes are set on declarations; these may later be 1078 // overridden by a definition. 1079 1080 setLinkageAndVisibilityForGV(F, FD); 1081 1082 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1083 F->setSection(SA->getName()); 1084 1085 if (FD->isReplaceableGlobalAllocationFunction()) { 1086 // A replaceable global allocation function does not act like a builtin by 1087 // default, only if it is invoked by a new-expression or delete-expression. 1088 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1089 llvm::Attribute::NoBuiltin); 1090 1091 // A sane operator new returns a non-aliasing pointer. 1092 // FIXME: Also add NonNull attribute to the return value 1093 // for the non-nothrow forms? 1094 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1095 if (getCodeGenOpts().AssumeSaneOperatorNew && 1096 (Kind == OO_New || Kind == OO_Array_New)) 1097 F->addAttribute(llvm::AttributeSet::ReturnIndex, 1098 llvm::Attribute::NoAlias); 1099 } 1100 1101 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1102 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1103 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1104 if (MD->isVirtual()) 1105 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1106 1107 // Don't emit entries for function declarations in the cross-DSO mode. This 1108 // is handled with better precision by the receiving DSO. 1109 if (!CodeGenOpts.SanitizeCfiCrossDso) 1110 CreateFunctionTypeMetadata(FD, F); 1111 } 1112 1113 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1114 assert(!GV->isDeclaration() && 1115 "Only globals with definition can force usage."); 1116 LLVMUsed.emplace_back(GV); 1117 } 1118 1119 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1120 assert(!GV->isDeclaration() && 1121 "Only globals with definition can force usage."); 1122 LLVMCompilerUsed.emplace_back(GV); 1123 } 1124 1125 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1126 std::vector<llvm::WeakVH> &List) { 1127 // Don't create llvm.used if there is no need. 1128 if (List.empty()) 1129 return; 1130 1131 // Convert List to what ConstantArray needs. 1132 SmallVector<llvm::Constant*, 8> UsedArray; 1133 UsedArray.resize(List.size()); 1134 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1135 UsedArray[i] = 1136 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1137 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1138 } 1139 1140 if (UsedArray.empty()) 1141 return; 1142 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1143 1144 auto *GV = new llvm::GlobalVariable( 1145 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1146 llvm::ConstantArray::get(ATy, UsedArray), Name); 1147 1148 GV->setSection("llvm.metadata"); 1149 } 1150 1151 void CodeGenModule::emitLLVMUsed() { 1152 emitUsed(*this, "llvm.used", LLVMUsed); 1153 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1154 } 1155 1156 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1157 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1158 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1159 } 1160 1161 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1162 llvm::SmallString<32> Opt; 1163 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1164 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1165 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1166 } 1167 1168 void CodeGenModule::AddDependentLib(StringRef Lib) { 1169 llvm::SmallString<24> Opt; 1170 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1171 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1172 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1173 } 1174 1175 /// \brief Add link options implied by the given module, including modules 1176 /// it depends on, using a postorder walk. 1177 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1178 SmallVectorImpl<llvm::Metadata *> &Metadata, 1179 llvm::SmallPtrSet<Module *, 16> &Visited) { 1180 // Import this module's parent. 1181 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1182 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1183 } 1184 1185 // Import this module's dependencies. 1186 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1187 if (Visited.insert(Mod->Imports[I - 1]).second) 1188 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1189 } 1190 1191 // Add linker options to link against the libraries/frameworks 1192 // described by this module. 1193 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1194 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1195 // Link against a framework. Frameworks are currently Darwin only, so we 1196 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1197 if (Mod->LinkLibraries[I-1].IsFramework) { 1198 llvm::Metadata *Args[2] = { 1199 llvm::MDString::get(Context, "-framework"), 1200 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1201 1202 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1203 continue; 1204 } 1205 1206 // Link against a library. 1207 llvm::SmallString<24> Opt; 1208 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1209 Mod->LinkLibraries[I-1].Library, Opt); 1210 auto *OptString = llvm::MDString::get(Context, Opt); 1211 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1212 } 1213 } 1214 1215 void CodeGenModule::EmitModuleLinkOptions() { 1216 // Collect the set of all of the modules we want to visit to emit link 1217 // options, which is essentially the imported modules and all of their 1218 // non-explicit child modules. 1219 llvm::SetVector<clang::Module *> LinkModules; 1220 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1221 SmallVector<clang::Module *, 16> Stack; 1222 1223 // Seed the stack with imported modules. 1224 for (Module *M : ImportedModules) 1225 if (Visited.insert(M).second) 1226 Stack.push_back(M); 1227 1228 // Find all of the modules to import, making a little effort to prune 1229 // non-leaf modules. 1230 while (!Stack.empty()) { 1231 clang::Module *Mod = Stack.pop_back_val(); 1232 1233 bool AnyChildren = false; 1234 1235 // Visit the submodules of this module. 1236 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1237 SubEnd = Mod->submodule_end(); 1238 Sub != SubEnd; ++Sub) { 1239 // Skip explicit children; they need to be explicitly imported to be 1240 // linked against. 1241 if ((*Sub)->IsExplicit) 1242 continue; 1243 1244 if (Visited.insert(*Sub).second) { 1245 Stack.push_back(*Sub); 1246 AnyChildren = true; 1247 } 1248 } 1249 1250 // We didn't find any children, so add this module to the list of 1251 // modules to link against. 1252 if (!AnyChildren) { 1253 LinkModules.insert(Mod); 1254 } 1255 } 1256 1257 // Add link options for all of the imported modules in reverse topological 1258 // order. We don't do anything to try to order import link flags with respect 1259 // to linker options inserted by things like #pragma comment(). 1260 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1261 Visited.clear(); 1262 for (Module *M : LinkModules) 1263 if (Visited.insert(M).second) 1264 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1265 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1266 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1267 1268 // Add the linker options metadata flag. 1269 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1270 llvm::MDNode::get(getLLVMContext(), 1271 LinkerOptionsMetadata)); 1272 } 1273 1274 void CodeGenModule::EmitDeferred() { 1275 // Emit code for any potentially referenced deferred decls. Since a 1276 // previously unused static decl may become used during the generation of code 1277 // for a static function, iterate until no changes are made. 1278 1279 if (!DeferredVTables.empty()) { 1280 EmitDeferredVTables(); 1281 1282 // Emitting a vtable doesn't directly cause more vtables to 1283 // become deferred, although it can cause functions to be 1284 // emitted that then need those vtables. 1285 assert(DeferredVTables.empty()); 1286 } 1287 1288 // Stop if we're out of both deferred vtables and deferred declarations. 1289 if (DeferredDeclsToEmit.empty()) 1290 return; 1291 1292 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1293 // work, it will not interfere with this. 1294 std::vector<DeferredGlobal> CurDeclsToEmit; 1295 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1296 1297 for (DeferredGlobal &G : CurDeclsToEmit) { 1298 GlobalDecl D = G.GD; 1299 G.GV = nullptr; 1300 1301 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1302 // to get GlobalValue with exactly the type we need, not something that 1303 // might had been created for another decl with the same mangled name but 1304 // different type. 1305 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1306 GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1307 1308 // In case of different address spaces, we may still get a cast, even with 1309 // IsForDefinition equal to true. Query mangled names table to get 1310 // GlobalValue. 1311 if (!GV) 1312 GV = GetGlobalValue(getMangledName(D)); 1313 1314 // Make sure GetGlobalValue returned non-null. 1315 assert(GV); 1316 1317 // Check to see if we've already emitted this. This is necessary 1318 // for a couple of reasons: first, decls can end up in the 1319 // deferred-decls queue multiple times, and second, decls can end 1320 // up with definitions in unusual ways (e.g. by an extern inline 1321 // function acquiring a strong function redefinition). Just 1322 // ignore these cases. 1323 if (!GV->isDeclaration()) 1324 continue; 1325 1326 // Otherwise, emit the definition and move on to the next one. 1327 EmitGlobalDefinition(D, GV); 1328 1329 // If we found out that we need to emit more decls, do that recursively. 1330 // This has the advantage that the decls are emitted in a DFS and related 1331 // ones are close together, which is convenient for testing. 1332 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1333 EmitDeferred(); 1334 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1335 } 1336 } 1337 } 1338 1339 void CodeGenModule::EmitGlobalAnnotations() { 1340 if (Annotations.empty()) 1341 return; 1342 1343 // Create a new global variable for the ConstantStruct in the Module. 1344 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1345 Annotations[0]->getType(), Annotations.size()), Annotations); 1346 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1347 llvm::GlobalValue::AppendingLinkage, 1348 Array, "llvm.global.annotations"); 1349 gv->setSection(AnnotationSection); 1350 } 1351 1352 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1353 llvm::Constant *&AStr = AnnotationStrings[Str]; 1354 if (AStr) 1355 return AStr; 1356 1357 // Not found yet, create a new global. 1358 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1359 auto *gv = 1360 new llvm::GlobalVariable(getModule(), s->getType(), true, 1361 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1362 gv->setSection(AnnotationSection); 1363 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1364 AStr = gv; 1365 return gv; 1366 } 1367 1368 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1369 SourceManager &SM = getContext().getSourceManager(); 1370 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1371 if (PLoc.isValid()) 1372 return EmitAnnotationString(PLoc.getFilename()); 1373 return EmitAnnotationString(SM.getBufferName(Loc)); 1374 } 1375 1376 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1377 SourceManager &SM = getContext().getSourceManager(); 1378 PresumedLoc PLoc = SM.getPresumedLoc(L); 1379 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1380 SM.getExpansionLineNumber(L); 1381 return llvm::ConstantInt::get(Int32Ty, LineNo); 1382 } 1383 1384 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1385 const AnnotateAttr *AA, 1386 SourceLocation L) { 1387 // Get the globals for file name, annotation, and the line number. 1388 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1389 *UnitGV = EmitAnnotationUnit(L), 1390 *LineNoCst = EmitAnnotationLineNo(L); 1391 1392 // Create the ConstantStruct for the global annotation. 1393 llvm::Constant *Fields[4] = { 1394 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1395 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1396 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1397 LineNoCst 1398 }; 1399 return llvm::ConstantStruct::getAnon(Fields); 1400 } 1401 1402 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1403 llvm::GlobalValue *GV) { 1404 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1405 // Get the struct elements for these annotations. 1406 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1407 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1408 } 1409 1410 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1411 SourceLocation Loc) const { 1412 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1413 // Blacklist by function name. 1414 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1415 return true; 1416 // Blacklist by location. 1417 if (Loc.isValid()) 1418 return SanitizerBL.isBlacklistedLocation(Loc); 1419 // If location is unknown, this may be a compiler-generated function. Assume 1420 // it's located in the main file. 1421 auto &SM = Context.getSourceManager(); 1422 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1423 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1424 } 1425 return false; 1426 } 1427 1428 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1429 SourceLocation Loc, QualType Ty, 1430 StringRef Category) const { 1431 // For now globals can be blacklisted only in ASan and KASan. 1432 if (!LangOpts.Sanitize.hasOneOf( 1433 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1434 return false; 1435 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1436 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1437 return true; 1438 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1439 return true; 1440 // Check global type. 1441 if (!Ty.isNull()) { 1442 // Drill down the array types: if global variable of a fixed type is 1443 // blacklisted, we also don't instrument arrays of them. 1444 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1445 Ty = AT->getElementType(); 1446 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1447 // We allow to blacklist only record types (classes, structs etc.) 1448 if (Ty->isRecordType()) { 1449 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1450 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1451 return true; 1452 } 1453 } 1454 return false; 1455 } 1456 1457 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1458 // Never defer when EmitAllDecls is specified. 1459 if (LangOpts.EmitAllDecls) 1460 return true; 1461 1462 return getContext().DeclMustBeEmitted(Global); 1463 } 1464 1465 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1466 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1467 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1468 // Implicit template instantiations may change linkage if they are later 1469 // explicitly instantiated, so they should not be emitted eagerly. 1470 return false; 1471 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1472 if (Context.getInlineVariableDefinitionKind(VD) == 1473 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1474 // A definition of an inline constexpr static data member may change 1475 // linkage later if it's redeclared outside the class. 1476 return false; 1477 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1478 // codegen for global variables, because they may be marked as threadprivate. 1479 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1480 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1481 return false; 1482 1483 return true; 1484 } 1485 1486 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1487 const CXXUuidofExpr* E) { 1488 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1489 // well-formed. 1490 StringRef Uuid = E->getUuidStr(); 1491 std::string Name = "_GUID_" + Uuid.lower(); 1492 std::replace(Name.begin(), Name.end(), '-', '_'); 1493 1494 // The UUID descriptor should be pointer aligned. 1495 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1496 1497 // Look for an existing global. 1498 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1499 return ConstantAddress(GV, Alignment); 1500 1501 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1502 assert(Init && "failed to initialize as constant"); 1503 1504 auto *GV = new llvm::GlobalVariable( 1505 getModule(), Init->getType(), 1506 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1507 if (supportsCOMDAT()) 1508 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1509 return ConstantAddress(GV, Alignment); 1510 } 1511 1512 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1513 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1514 assert(AA && "No alias?"); 1515 1516 CharUnits Alignment = getContext().getDeclAlign(VD); 1517 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1518 1519 // See if there is already something with the target's name in the module. 1520 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1521 if (Entry) { 1522 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1523 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1524 return ConstantAddress(Ptr, Alignment); 1525 } 1526 1527 llvm::Constant *Aliasee; 1528 if (isa<llvm::FunctionType>(DeclTy)) 1529 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1530 GlobalDecl(cast<FunctionDecl>(VD)), 1531 /*ForVTable=*/false); 1532 else 1533 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1534 llvm::PointerType::getUnqual(DeclTy), 1535 nullptr); 1536 1537 auto *F = cast<llvm::GlobalValue>(Aliasee); 1538 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1539 WeakRefReferences.insert(F); 1540 1541 return ConstantAddress(Aliasee, Alignment); 1542 } 1543 1544 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1545 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1546 1547 // Weak references don't produce any output by themselves. 1548 if (Global->hasAttr<WeakRefAttr>()) 1549 return; 1550 1551 // If this is an alias definition (which otherwise looks like a declaration) 1552 // emit it now. 1553 if (Global->hasAttr<AliasAttr>()) 1554 return EmitAliasDefinition(GD); 1555 1556 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1557 if (Global->hasAttr<IFuncAttr>()) 1558 return emitIFuncDefinition(GD); 1559 1560 // If this is CUDA, be selective about which declarations we emit. 1561 if (LangOpts.CUDA) { 1562 if (LangOpts.CUDAIsDevice) { 1563 if (!Global->hasAttr<CUDADeviceAttr>() && 1564 !Global->hasAttr<CUDAGlobalAttr>() && 1565 !Global->hasAttr<CUDAConstantAttr>() && 1566 !Global->hasAttr<CUDASharedAttr>()) 1567 return; 1568 } else { 1569 // We need to emit host-side 'shadows' for all global 1570 // device-side variables because the CUDA runtime needs their 1571 // size and host-side address in order to provide access to 1572 // their device-side incarnations. 1573 1574 // So device-only functions are the only things we skip. 1575 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1576 Global->hasAttr<CUDADeviceAttr>()) 1577 return; 1578 1579 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1580 "Expected Variable or Function"); 1581 } 1582 } 1583 1584 if (LangOpts.OpenMP) { 1585 // If this is OpenMP device, check if it is legal to emit this global 1586 // normally. 1587 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1588 return; 1589 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1590 if (MustBeEmitted(Global)) 1591 EmitOMPDeclareReduction(DRD); 1592 return; 1593 } 1594 } 1595 1596 // Ignore declarations, they will be emitted on their first use. 1597 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1598 // Forward declarations are emitted lazily on first use. 1599 if (!FD->doesThisDeclarationHaveABody()) { 1600 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1601 return; 1602 1603 StringRef MangledName = getMangledName(GD); 1604 1605 // Compute the function info and LLVM type. 1606 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1607 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1608 1609 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1610 /*DontDefer=*/false); 1611 return; 1612 } 1613 } else { 1614 const auto *VD = cast<VarDecl>(Global); 1615 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1616 // We need to emit device-side global CUDA variables even if a 1617 // variable does not have a definition -- we still need to define 1618 // host-side shadow for it. 1619 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1620 !VD->hasDefinition() && 1621 (VD->hasAttr<CUDAConstantAttr>() || 1622 VD->hasAttr<CUDADeviceAttr>()); 1623 if (!MustEmitForCuda && 1624 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1625 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1626 // If this declaration may have caused an inline variable definition to 1627 // change linkage, make sure that it's emitted. 1628 if (Context.getInlineVariableDefinitionKind(VD) == 1629 ASTContext::InlineVariableDefinitionKind::Strong) 1630 GetAddrOfGlobalVar(VD); 1631 return; 1632 } 1633 } 1634 1635 // Defer code generation to first use when possible, e.g. if this is an inline 1636 // function. If the global must always be emitted, do it eagerly if possible 1637 // to benefit from cache locality. 1638 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1639 // Emit the definition if it can't be deferred. 1640 EmitGlobalDefinition(GD); 1641 return; 1642 } 1643 1644 // If we're deferring emission of a C++ variable with an 1645 // initializer, remember the order in which it appeared in the file. 1646 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1647 cast<VarDecl>(Global)->hasInit()) { 1648 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1649 CXXGlobalInits.push_back(nullptr); 1650 } 1651 1652 StringRef MangledName = getMangledName(GD); 1653 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1654 // The value has already been used and should therefore be emitted. 1655 addDeferredDeclToEmit(GV, GD); 1656 } else if (MustBeEmitted(Global)) { 1657 // The value must be emitted, but cannot be emitted eagerly. 1658 assert(!MayBeEmittedEagerly(Global)); 1659 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1660 } else { 1661 // Otherwise, remember that we saw a deferred decl with this name. The 1662 // first use of the mangled name will cause it to move into 1663 // DeferredDeclsToEmit. 1664 DeferredDecls[MangledName] = GD; 1665 } 1666 } 1667 1668 namespace { 1669 struct FunctionIsDirectlyRecursive : 1670 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1671 const StringRef Name; 1672 const Builtin::Context &BI; 1673 bool Result; 1674 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1675 Name(N), BI(C), Result(false) { 1676 } 1677 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1678 1679 bool TraverseCallExpr(CallExpr *E) { 1680 const FunctionDecl *FD = E->getDirectCallee(); 1681 if (!FD) 1682 return true; 1683 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1684 if (Attr && Name == Attr->getLabel()) { 1685 Result = true; 1686 return false; 1687 } 1688 unsigned BuiltinID = FD->getBuiltinID(); 1689 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1690 return true; 1691 StringRef BuiltinName = BI.getName(BuiltinID); 1692 if (BuiltinName.startswith("__builtin_") && 1693 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1694 Result = true; 1695 return false; 1696 } 1697 return true; 1698 } 1699 }; 1700 1701 struct DLLImportFunctionVisitor 1702 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1703 bool SafeToInline = true; 1704 1705 bool shouldVisitImplicitCode() const { return true; } 1706 1707 bool VisitVarDecl(VarDecl *VD) { 1708 // A thread-local variable cannot be imported. 1709 SafeToInline = !VD->getTLSKind(); 1710 return SafeToInline; 1711 } 1712 1713 // Make sure we're not referencing non-imported vars or functions. 1714 bool VisitDeclRefExpr(DeclRefExpr *E) { 1715 ValueDecl *VD = E->getDecl(); 1716 if (isa<FunctionDecl>(VD)) 1717 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1718 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1719 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1720 return SafeToInline; 1721 } 1722 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1723 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1724 return SafeToInline; 1725 } 1726 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1727 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1728 return SafeToInline; 1729 } 1730 bool VisitCXXNewExpr(CXXNewExpr *E) { 1731 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1732 return SafeToInline; 1733 } 1734 }; 1735 } 1736 1737 // isTriviallyRecursive - Check if this function calls another 1738 // decl that, because of the asm attribute or the other decl being a builtin, 1739 // ends up pointing to itself. 1740 bool 1741 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1742 StringRef Name; 1743 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1744 // asm labels are a special kind of mangling we have to support. 1745 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1746 if (!Attr) 1747 return false; 1748 Name = Attr->getLabel(); 1749 } else { 1750 Name = FD->getName(); 1751 } 1752 1753 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1754 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1755 return Walker.Result; 1756 } 1757 1758 // Check if T is a class type with a destructor that's not dllimport. 1759 static bool HasNonDllImportDtor(QualType T) { 1760 if (const RecordType *RT = dyn_cast<RecordType>(T)) 1761 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1762 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1763 return true; 1764 1765 return false; 1766 } 1767 1768 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1769 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1770 return true; 1771 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1772 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1773 return false; 1774 1775 if (F->hasAttr<DLLImportAttr>()) { 1776 // Check whether it would be safe to inline this dllimport function. 1777 DLLImportFunctionVisitor Visitor; 1778 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1779 if (!Visitor.SafeToInline) 1780 return false; 1781 1782 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1783 // Implicit destructor invocations aren't captured in the AST, so the 1784 // check above can't see them. Check for them manually here. 1785 for (const Decl *Member : Dtor->getParent()->decls()) 1786 if (isa<FieldDecl>(Member)) 1787 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1788 return false; 1789 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1790 if (HasNonDllImportDtor(B.getType())) 1791 return false; 1792 } 1793 } 1794 1795 // PR9614. Avoid cases where the source code is lying to us. An available 1796 // externally function should have an equivalent function somewhere else, 1797 // but a function that calls itself is clearly not equivalent to the real 1798 // implementation. 1799 // This happens in glibc's btowc and in some configure checks. 1800 return !isTriviallyRecursive(F); 1801 } 1802 1803 /// If the type for the method's class was generated by 1804 /// CGDebugInfo::createContextChain(), the cache contains only a 1805 /// limited DIType without any declarations. Since EmitFunctionStart() 1806 /// needs to find the canonical declaration for each method, we need 1807 /// to construct the complete type prior to emitting the method. 1808 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1809 if (!D->isInstance()) 1810 return; 1811 1812 if (CGDebugInfo *DI = getModuleDebugInfo()) 1813 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 1814 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1815 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1816 } 1817 } 1818 1819 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1820 const auto *D = cast<ValueDecl>(GD.getDecl()); 1821 1822 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1823 Context.getSourceManager(), 1824 "Generating code for declaration"); 1825 1826 if (isa<FunctionDecl>(D)) { 1827 // At -O0, don't generate IR for functions with available_externally 1828 // linkage. 1829 if (!shouldEmitFunction(GD)) 1830 return; 1831 1832 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1833 CompleteDIClassType(Method); 1834 // Make sure to emit the definition(s) before we emit the thunks. 1835 // This is necessary for the generation of certain thunks. 1836 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1837 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1838 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1839 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1840 else 1841 EmitGlobalFunctionDefinition(GD, GV); 1842 1843 if (Method->isVirtual()) 1844 getVTables().EmitThunks(GD); 1845 1846 return; 1847 } 1848 1849 return EmitGlobalFunctionDefinition(GD, GV); 1850 } 1851 1852 if (const auto *VD = dyn_cast<VarDecl>(D)) 1853 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1854 1855 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1856 } 1857 1858 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1859 llvm::Function *NewFn); 1860 1861 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1862 /// module, create and return an llvm Function with the specified type. If there 1863 /// is something in the module with the specified name, return it potentially 1864 /// bitcasted to the right type. 1865 /// 1866 /// If D is non-null, it specifies a decl that correspond to this. This is used 1867 /// to set the attributes on the function when it is first created. 1868 llvm::Constant * 1869 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1870 llvm::Type *Ty, 1871 GlobalDecl GD, bool ForVTable, 1872 bool DontDefer, bool IsThunk, 1873 llvm::AttributeSet ExtraAttrs, 1874 bool IsForDefinition) { 1875 const Decl *D = GD.getDecl(); 1876 1877 // Lookup the entry, lazily creating it if necessary. 1878 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1879 if (Entry) { 1880 if (WeakRefReferences.erase(Entry)) { 1881 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1882 if (FD && !FD->hasAttr<WeakAttr>()) 1883 Entry->setLinkage(llvm::Function::ExternalLinkage); 1884 } 1885 1886 // Handle dropped DLL attributes. 1887 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1888 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1889 1890 // If there are two attempts to define the same mangled name, issue an 1891 // error. 1892 if (IsForDefinition && !Entry->isDeclaration()) { 1893 GlobalDecl OtherGD; 1894 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1895 // to make sure that we issue an error only once. 1896 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1897 (GD.getCanonicalDecl().getDecl() != 1898 OtherGD.getCanonicalDecl().getDecl()) && 1899 DiagnosedConflictingDefinitions.insert(GD).second) { 1900 getDiags().Report(D->getLocation(), 1901 diag::err_duplicate_mangled_name); 1902 getDiags().Report(OtherGD.getDecl()->getLocation(), 1903 diag::note_previous_definition); 1904 } 1905 } 1906 1907 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1908 (Entry->getType()->getElementType() == Ty)) { 1909 return Entry; 1910 } 1911 1912 // Make sure the result is of the correct type. 1913 // (If function is requested for a definition, we always need to create a new 1914 // function, not just return a bitcast.) 1915 if (!IsForDefinition) 1916 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1917 } 1918 1919 // This function doesn't have a complete type (for example, the return 1920 // type is an incomplete struct). Use a fake type instead, and make 1921 // sure not to try to set attributes. 1922 bool IsIncompleteFunction = false; 1923 1924 llvm::FunctionType *FTy; 1925 if (isa<llvm::FunctionType>(Ty)) { 1926 FTy = cast<llvm::FunctionType>(Ty); 1927 } else { 1928 FTy = llvm::FunctionType::get(VoidTy, false); 1929 IsIncompleteFunction = true; 1930 } 1931 1932 llvm::Function *F = 1933 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1934 Entry ? StringRef() : MangledName, &getModule()); 1935 1936 // If we already created a function with the same mangled name (but different 1937 // type) before, take its name and add it to the list of functions to be 1938 // replaced with F at the end of CodeGen. 1939 // 1940 // This happens if there is a prototype for a function (e.g. "int f()") and 1941 // then a definition of a different type (e.g. "int f(int x)"). 1942 if (Entry) { 1943 F->takeName(Entry); 1944 1945 // This might be an implementation of a function without a prototype, in 1946 // which case, try to do special replacement of calls which match the new 1947 // prototype. The really key thing here is that we also potentially drop 1948 // arguments from the call site so as to make a direct call, which makes the 1949 // inliner happier and suppresses a number of optimizer warnings (!) about 1950 // dropping arguments. 1951 if (!Entry->use_empty()) { 1952 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1953 Entry->removeDeadConstantUsers(); 1954 } 1955 1956 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1957 F, Entry->getType()->getElementType()->getPointerTo()); 1958 addGlobalValReplacement(Entry, BC); 1959 } 1960 1961 assert(F->getName() == MangledName && "name was uniqued!"); 1962 if (D) 1963 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1964 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1965 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1966 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1967 llvm::AttributeSet::get(VMContext, 1968 llvm::AttributeSet::FunctionIndex, 1969 B)); 1970 } 1971 1972 if (!DontDefer) { 1973 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1974 // each other bottoming out with the base dtor. Therefore we emit non-base 1975 // dtors on usage, even if there is no dtor definition in the TU. 1976 if (D && isa<CXXDestructorDecl>(D) && 1977 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1978 GD.getDtorType())) 1979 addDeferredDeclToEmit(F, GD); 1980 1981 // This is the first use or definition of a mangled name. If there is a 1982 // deferred decl with this name, remember that we need to emit it at the end 1983 // of the file. 1984 auto DDI = DeferredDecls.find(MangledName); 1985 if (DDI != DeferredDecls.end()) { 1986 // Move the potentially referenced deferred decl to the 1987 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1988 // don't need it anymore). 1989 addDeferredDeclToEmit(F, DDI->second); 1990 DeferredDecls.erase(DDI); 1991 1992 // Otherwise, there are cases we have to worry about where we're 1993 // using a declaration for which we must emit a definition but where 1994 // we might not find a top-level definition: 1995 // - member functions defined inline in their classes 1996 // - friend functions defined inline in some class 1997 // - special member functions with implicit definitions 1998 // If we ever change our AST traversal to walk into class methods, 1999 // this will be unnecessary. 2000 // 2001 // We also don't emit a definition for a function if it's going to be an 2002 // entry in a vtable, unless it's already marked as used. 2003 } else if (getLangOpts().CPlusPlus && D) { 2004 // Look for a declaration that's lexically in a record. 2005 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2006 FD = FD->getPreviousDecl()) { 2007 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2008 if (FD->doesThisDeclarationHaveABody()) { 2009 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 2010 break; 2011 } 2012 } 2013 } 2014 } 2015 } 2016 2017 // Make sure the result is of the requested type. 2018 if (!IsIncompleteFunction) { 2019 assert(F->getType()->getElementType() == Ty); 2020 return F; 2021 } 2022 2023 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2024 return llvm::ConstantExpr::getBitCast(F, PTy); 2025 } 2026 2027 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2028 /// non-null, then this function will use the specified type if it has to 2029 /// create it (this occurs when we see a definition of the function). 2030 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2031 llvm::Type *Ty, 2032 bool ForVTable, 2033 bool DontDefer, 2034 bool IsForDefinition) { 2035 // If there was no specific requested type, just convert it now. 2036 if (!Ty) { 2037 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2038 auto CanonTy = Context.getCanonicalType(FD->getType()); 2039 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2040 } 2041 2042 StringRef MangledName = getMangledName(GD); 2043 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2044 /*IsThunk=*/false, llvm::AttributeSet(), 2045 IsForDefinition); 2046 } 2047 2048 /// CreateRuntimeFunction - Create a new runtime function with the specified 2049 /// type and name. 2050 llvm::Constant * 2051 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 2052 StringRef Name, 2053 llvm::AttributeSet ExtraAttrs) { 2054 llvm::Constant *C = 2055 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2056 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2057 if (auto *F = dyn_cast<llvm::Function>(C)) 2058 if (F->empty()) 2059 F->setCallingConv(getRuntimeCC()); 2060 return C; 2061 } 2062 2063 /// CreateBuiltinFunction - Create a new builtin function with the specified 2064 /// type and name. 2065 llvm::Constant * 2066 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 2067 StringRef Name, 2068 llvm::AttributeSet ExtraAttrs) { 2069 llvm::Constant *C = 2070 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2071 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2072 if (auto *F = dyn_cast<llvm::Function>(C)) 2073 if (F->empty()) 2074 F->setCallingConv(getBuiltinCC()); 2075 return C; 2076 } 2077 2078 /// isTypeConstant - Determine whether an object of this type can be emitted 2079 /// as a constant. 2080 /// 2081 /// If ExcludeCtor is true, the duration when the object's constructor runs 2082 /// will not be considered. The caller will need to verify that the object is 2083 /// not written to during its construction. 2084 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2085 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2086 return false; 2087 2088 if (Context.getLangOpts().CPlusPlus) { 2089 if (const CXXRecordDecl *Record 2090 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2091 return ExcludeCtor && !Record->hasMutableFields() && 2092 Record->hasTrivialDestructor(); 2093 } 2094 2095 return true; 2096 } 2097 2098 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2099 /// create and return an llvm GlobalVariable with the specified type. If there 2100 /// is something in the module with the specified name, return it potentially 2101 /// bitcasted to the right type. 2102 /// 2103 /// If D is non-null, it specifies a decl that correspond to this. This is used 2104 /// to set the attributes on the global when it is first created. 2105 /// 2106 /// If IsForDefinition is true, it is guranteed that an actual global with 2107 /// type Ty will be returned, not conversion of a variable with the same 2108 /// mangled name but some other type. 2109 llvm::Constant * 2110 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2111 llvm::PointerType *Ty, 2112 const VarDecl *D, 2113 bool IsForDefinition) { 2114 // Lookup the entry, lazily creating it if necessary. 2115 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2116 if (Entry) { 2117 if (WeakRefReferences.erase(Entry)) { 2118 if (D && !D->hasAttr<WeakAttr>()) 2119 Entry->setLinkage(llvm::Function::ExternalLinkage); 2120 } 2121 2122 // Handle dropped DLL attributes. 2123 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2124 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2125 2126 if (Entry->getType() == Ty) 2127 return Entry; 2128 2129 // If there are two attempts to define the same mangled name, issue an 2130 // error. 2131 if (IsForDefinition && !Entry->isDeclaration()) { 2132 GlobalDecl OtherGD; 2133 const VarDecl *OtherD; 2134 2135 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2136 // to make sure that we issue an error only once. 2137 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2138 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2139 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2140 OtherD->hasInit() && 2141 DiagnosedConflictingDefinitions.insert(D).second) { 2142 getDiags().Report(D->getLocation(), 2143 diag::err_duplicate_mangled_name); 2144 getDiags().Report(OtherGD.getDecl()->getLocation(), 2145 diag::note_previous_definition); 2146 } 2147 } 2148 2149 // Make sure the result is of the correct type. 2150 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2151 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2152 2153 // (If global is requested for a definition, we always need to create a new 2154 // global, not just return a bitcast.) 2155 if (!IsForDefinition) 2156 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2157 } 2158 2159 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2160 auto *GV = new llvm::GlobalVariable( 2161 getModule(), Ty->getElementType(), false, 2162 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2163 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2164 2165 // If we already created a global with the same mangled name (but different 2166 // type) before, take its name and remove it from its parent. 2167 if (Entry) { 2168 GV->takeName(Entry); 2169 2170 if (!Entry->use_empty()) { 2171 llvm::Constant *NewPtrForOldDecl = 2172 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2173 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2174 } 2175 2176 Entry->eraseFromParent(); 2177 } 2178 2179 // This is the first use or definition of a mangled name. If there is a 2180 // deferred decl with this name, remember that we need to emit it at the end 2181 // of the file. 2182 auto DDI = DeferredDecls.find(MangledName); 2183 if (DDI != DeferredDecls.end()) { 2184 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2185 // list, and remove it from DeferredDecls (since we don't need it anymore). 2186 addDeferredDeclToEmit(GV, DDI->second); 2187 DeferredDecls.erase(DDI); 2188 } 2189 2190 // Handle things which are present even on external declarations. 2191 if (D) { 2192 // FIXME: This code is overly simple and should be merged with other global 2193 // handling. 2194 GV->setConstant(isTypeConstant(D->getType(), false)); 2195 2196 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2197 2198 setLinkageAndVisibilityForGV(GV, D); 2199 2200 if (D->getTLSKind()) { 2201 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2202 CXXThreadLocals.push_back(D); 2203 setTLSMode(GV, *D); 2204 } 2205 2206 // If required by the ABI, treat declarations of static data members with 2207 // inline initializers as definitions. 2208 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2209 EmitGlobalVarDefinition(D); 2210 } 2211 2212 // Handle XCore specific ABI requirements. 2213 if (getTriple().getArch() == llvm::Triple::xcore && 2214 D->getLanguageLinkage() == CLanguageLinkage && 2215 D->getType().isConstant(Context) && 2216 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2217 GV->setSection(".cp.rodata"); 2218 } 2219 2220 if (AddrSpace != Ty->getAddressSpace()) 2221 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2222 2223 return GV; 2224 } 2225 2226 llvm::Constant * 2227 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2228 bool IsForDefinition) { 2229 if (isa<CXXConstructorDecl>(GD.getDecl())) 2230 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2231 getFromCtorType(GD.getCtorType()), 2232 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2233 /*DontDefer=*/false, IsForDefinition); 2234 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2235 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2236 getFromDtorType(GD.getDtorType()), 2237 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2238 /*DontDefer=*/false, IsForDefinition); 2239 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2240 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2241 cast<CXXMethodDecl>(GD.getDecl())); 2242 auto Ty = getTypes().GetFunctionType(*FInfo); 2243 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2244 IsForDefinition); 2245 } else if (isa<FunctionDecl>(GD.getDecl())) { 2246 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2247 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2248 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2249 IsForDefinition); 2250 } else 2251 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr, 2252 IsForDefinition); 2253 } 2254 2255 llvm::GlobalVariable * 2256 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2257 llvm::Type *Ty, 2258 llvm::GlobalValue::LinkageTypes Linkage) { 2259 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2260 llvm::GlobalVariable *OldGV = nullptr; 2261 2262 if (GV) { 2263 // Check if the variable has the right type. 2264 if (GV->getType()->getElementType() == Ty) 2265 return GV; 2266 2267 // Because C++ name mangling, the only way we can end up with an already 2268 // existing global with the same name is if it has been declared extern "C". 2269 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2270 OldGV = GV; 2271 } 2272 2273 // Create a new variable. 2274 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2275 Linkage, nullptr, Name); 2276 2277 if (OldGV) { 2278 // Replace occurrences of the old variable if needed. 2279 GV->takeName(OldGV); 2280 2281 if (!OldGV->use_empty()) { 2282 llvm::Constant *NewPtrForOldDecl = 2283 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2284 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2285 } 2286 2287 OldGV->eraseFromParent(); 2288 } 2289 2290 if (supportsCOMDAT() && GV->isWeakForLinker() && 2291 !GV->hasAvailableExternallyLinkage()) 2292 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2293 2294 return GV; 2295 } 2296 2297 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2298 /// given global variable. If Ty is non-null and if the global doesn't exist, 2299 /// then it will be created with the specified type instead of whatever the 2300 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2301 /// that an actual global with type Ty will be returned, not conversion of a 2302 /// variable with the same mangled name but some other type. 2303 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2304 llvm::Type *Ty, 2305 bool IsForDefinition) { 2306 assert(D->hasGlobalStorage() && "Not a global variable"); 2307 QualType ASTTy = D->getType(); 2308 if (!Ty) 2309 Ty = getTypes().ConvertTypeForMem(ASTTy); 2310 2311 llvm::PointerType *PTy = 2312 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2313 2314 StringRef MangledName = getMangledName(D); 2315 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2316 } 2317 2318 /// CreateRuntimeVariable - Create a new runtime global variable with the 2319 /// specified type and name. 2320 llvm::Constant * 2321 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2322 StringRef Name) { 2323 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2324 } 2325 2326 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2327 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2328 2329 StringRef MangledName = getMangledName(D); 2330 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2331 2332 // We already have a definition, not declaration, with the same mangled name. 2333 // Emitting of declaration is not required (and actually overwrites emitted 2334 // definition). 2335 if (GV && !GV->isDeclaration()) 2336 return; 2337 2338 // If we have not seen a reference to this variable yet, place it into the 2339 // deferred declarations table to be emitted if needed later. 2340 if (!MustBeEmitted(D) && !GV) { 2341 DeferredDecls[MangledName] = D; 2342 return; 2343 } 2344 2345 // The tentative definition is the only definition. 2346 EmitGlobalVarDefinition(D); 2347 } 2348 2349 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2350 return Context.toCharUnitsFromBits( 2351 getDataLayout().getTypeStoreSizeInBits(Ty)); 2352 } 2353 2354 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2355 unsigned AddrSpace) { 2356 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2357 if (D->hasAttr<CUDAConstantAttr>()) 2358 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2359 else if (D->hasAttr<CUDASharedAttr>()) 2360 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2361 else 2362 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2363 } 2364 2365 return AddrSpace; 2366 } 2367 2368 template<typename SomeDecl> 2369 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2370 llvm::GlobalValue *GV) { 2371 if (!getLangOpts().CPlusPlus) 2372 return; 2373 2374 // Must have 'used' attribute, or else inline assembly can't rely on 2375 // the name existing. 2376 if (!D->template hasAttr<UsedAttr>()) 2377 return; 2378 2379 // Must have internal linkage and an ordinary name. 2380 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2381 return; 2382 2383 // Must be in an extern "C" context. Entities declared directly within 2384 // a record are not extern "C" even if the record is in such a context. 2385 const SomeDecl *First = D->getFirstDecl(); 2386 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2387 return; 2388 2389 // OK, this is an internal linkage entity inside an extern "C" linkage 2390 // specification. Make a note of that so we can give it the "expected" 2391 // mangled name if nothing else is using that name. 2392 std::pair<StaticExternCMap::iterator, bool> R = 2393 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2394 2395 // If we have multiple internal linkage entities with the same name 2396 // in extern "C" regions, none of them gets that name. 2397 if (!R.second) 2398 R.first->second = nullptr; 2399 } 2400 2401 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2402 if (!CGM.supportsCOMDAT()) 2403 return false; 2404 2405 if (D.hasAttr<SelectAnyAttr>()) 2406 return true; 2407 2408 GVALinkage Linkage; 2409 if (auto *VD = dyn_cast<VarDecl>(&D)) 2410 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2411 else 2412 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2413 2414 switch (Linkage) { 2415 case GVA_Internal: 2416 case GVA_AvailableExternally: 2417 case GVA_StrongExternal: 2418 return false; 2419 case GVA_DiscardableODR: 2420 case GVA_StrongODR: 2421 return true; 2422 } 2423 llvm_unreachable("No such linkage"); 2424 } 2425 2426 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2427 llvm::GlobalObject &GO) { 2428 if (!shouldBeInCOMDAT(*this, D)) 2429 return; 2430 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2431 } 2432 2433 /// Pass IsTentative as true if you want to create a tentative definition. 2434 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2435 bool IsTentative) { 2436 // OpenCL global variables of sampler type are translated to function calls, 2437 // therefore no need to be translated. 2438 QualType ASTTy = D->getType(); 2439 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2440 return; 2441 2442 llvm::Constant *Init = nullptr; 2443 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2444 bool NeedsGlobalCtor = false; 2445 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2446 2447 const VarDecl *InitDecl; 2448 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2449 2450 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2451 // as part of their declaration." Sema has already checked for 2452 // error cases, so we just need to set Init to UndefValue. 2453 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2454 D->hasAttr<CUDASharedAttr>()) 2455 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2456 else if (!InitExpr) { 2457 // This is a tentative definition; tentative definitions are 2458 // implicitly initialized with { 0 }. 2459 // 2460 // Note that tentative definitions are only emitted at the end of 2461 // a translation unit, so they should never have incomplete 2462 // type. In addition, EmitTentativeDefinition makes sure that we 2463 // never attempt to emit a tentative definition if a real one 2464 // exists. A use may still exists, however, so we still may need 2465 // to do a RAUW. 2466 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2467 Init = EmitNullConstant(D->getType()); 2468 } else { 2469 initializedGlobalDecl = GlobalDecl(D); 2470 Init = EmitConstantInit(*InitDecl); 2471 2472 if (!Init) { 2473 QualType T = InitExpr->getType(); 2474 if (D->getType()->isReferenceType()) 2475 T = D->getType(); 2476 2477 if (getLangOpts().CPlusPlus) { 2478 Init = EmitNullConstant(T); 2479 NeedsGlobalCtor = true; 2480 } else { 2481 ErrorUnsupported(D, "static initializer"); 2482 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2483 } 2484 } else { 2485 // We don't need an initializer, so remove the entry for the delayed 2486 // initializer position (just in case this entry was delayed) if we 2487 // also don't need to register a destructor. 2488 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2489 DelayedCXXInitPosition.erase(D); 2490 } 2491 } 2492 2493 llvm::Type* InitType = Init->getType(); 2494 llvm::Constant *Entry = 2495 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative); 2496 2497 // Strip off a bitcast if we got one back. 2498 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2499 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2500 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2501 // All zero index gep. 2502 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2503 Entry = CE->getOperand(0); 2504 } 2505 2506 // Entry is now either a Function or GlobalVariable. 2507 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2508 2509 // We have a definition after a declaration with the wrong type. 2510 // We must make a new GlobalVariable* and update everything that used OldGV 2511 // (a declaration or tentative definition) with the new GlobalVariable* 2512 // (which will be a definition). 2513 // 2514 // This happens if there is a prototype for a global (e.g. 2515 // "extern int x[];") and then a definition of a different type (e.g. 2516 // "int x[10];"). This also happens when an initializer has a different type 2517 // from the type of the global (this happens with unions). 2518 if (!GV || 2519 GV->getType()->getElementType() != InitType || 2520 GV->getType()->getAddressSpace() != 2521 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2522 2523 // Move the old entry aside so that we'll create a new one. 2524 Entry->setName(StringRef()); 2525 2526 // Make a new global with the correct type, this is now guaranteed to work. 2527 GV = cast<llvm::GlobalVariable>( 2528 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative)); 2529 2530 // Replace all uses of the old global with the new global 2531 llvm::Constant *NewPtrForOldDecl = 2532 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2533 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2534 2535 // Erase the old global, since it is no longer used. 2536 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2537 } 2538 2539 MaybeHandleStaticInExternC(D, GV); 2540 2541 if (D->hasAttr<AnnotateAttr>()) 2542 AddGlobalAnnotations(D, GV); 2543 2544 // Set the llvm linkage type as appropriate. 2545 llvm::GlobalValue::LinkageTypes Linkage = 2546 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2547 2548 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2549 // the device. [...]" 2550 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2551 // __device__, declares a variable that: [...] 2552 // Is accessible from all the threads within the grid and from the host 2553 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2554 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2555 if (GV && LangOpts.CUDA) { 2556 if (LangOpts.CUDAIsDevice) { 2557 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2558 GV->setExternallyInitialized(true); 2559 } else { 2560 // Host-side shadows of external declarations of device-side 2561 // global variables become internal definitions. These have to 2562 // be internal in order to prevent name conflicts with global 2563 // host variables with the same name in a different TUs. 2564 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2565 Linkage = llvm::GlobalValue::InternalLinkage; 2566 2567 // Shadow variables and their properties must be registered 2568 // with CUDA runtime. 2569 unsigned Flags = 0; 2570 if (!D->hasDefinition()) 2571 Flags |= CGCUDARuntime::ExternDeviceVar; 2572 if (D->hasAttr<CUDAConstantAttr>()) 2573 Flags |= CGCUDARuntime::ConstantDeviceVar; 2574 getCUDARuntime().registerDeviceVar(*GV, Flags); 2575 } else if (D->hasAttr<CUDASharedAttr>()) 2576 // __shared__ variables are odd. Shadows do get created, but 2577 // they are not registered with the CUDA runtime, so they 2578 // can't really be used to access their device-side 2579 // counterparts. It's not clear yet whether it's nvcc's bug or 2580 // a feature, but we've got to do the same for compatibility. 2581 Linkage = llvm::GlobalValue::InternalLinkage; 2582 } 2583 } 2584 GV->setInitializer(Init); 2585 2586 // If it is safe to mark the global 'constant', do so now. 2587 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2588 isTypeConstant(D->getType(), true)); 2589 2590 // If it is in a read-only section, mark it 'constant'. 2591 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2592 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2593 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2594 GV->setConstant(true); 2595 } 2596 2597 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2598 2599 2600 // On Darwin, if the normal linkage of a C++ thread_local variable is 2601 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2602 // copies within a linkage unit; otherwise, the backing variable has 2603 // internal linkage and all accesses should just be calls to the 2604 // Itanium-specified entry point, which has the normal linkage of the 2605 // variable. This is to preserve the ability to change the implementation 2606 // behind the scenes. 2607 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2608 Context.getTargetInfo().getTriple().isOSDarwin() && 2609 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2610 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2611 Linkage = llvm::GlobalValue::InternalLinkage; 2612 2613 GV->setLinkage(Linkage); 2614 if (D->hasAttr<DLLImportAttr>()) 2615 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2616 else if (D->hasAttr<DLLExportAttr>()) 2617 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2618 else 2619 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2620 2621 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2622 // common vars aren't constant even if declared const. 2623 GV->setConstant(false); 2624 2625 setNonAliasAttributes(D, GV); 2626 2627 if (D->getTLSKind() && !GV->isThreadLocal()) { 2628 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2629 CXXThreadLocals.push_back(D); 2630 setTLSMode(GV, *D); 2631 } 2632 2633 maybeSetTrivialComdat(*D, *GV); 2634 2635 // Emit the initializer function if necessary. 2636 if (NeedsGlobalCtor || NeedsGlobalDtor) 2637 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2638 2639 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2640 2641 // Emit global variable debug information. 2642 if (CGDebugInfo *DI = getModuleDebugInfo()) 2643 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2644 DI->EmitGlobalVariable(GV, D); 2645 } 2646 2647 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2648 CodeGenModule &CGM, const VarDecl *D, 2649 bool NoCommon) { 2650 // Don't give variables common linkage if -fno-common was specified unless it 2651 // was overridden by a NoCommon attribute. 2652 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2653 return true; 2654 2655 // C11 6.9.2/2: 2656 // A declaration of an identifier for an object that has file scope without 2657 // an initializer, and without a storage-class specifier or with the 2658 // storage-class specifier static, constitutes a tentative definition. 2659 if (D->getInit() || D->hasExternalStorage()) 2660 return true; 2661 2662 // A variable cannot be both common and exist in a section. 2663 if (D->hasAttr<SectionAttr>()) 2664 return true; 2665 2666 // Thread local vars aren't considered common linkage. 2667 if (D->getTLSKind()) 2668 return true; 2669 2670 // Tentative definitions marked with WeakImportAttr are true definitions. 2671 if (D->hasAttr<WeakImportAttr>()) 2672 return true; 2673 2674 // A variable cannot be both common and exist in a comdat. 2675 if (shouldBeInCOMDAT(CGM, *D)) 2676 return true; 2677 2678 // Declarations with a required alignment do not have common linkage in MSVC 2679 // mode. 2680 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2681 if (D->hasAttr<AlignedAttr>()) 2682 return true; 2683 QualType VarType = D->getType(); 2684 if (Context.isAlignmentRequired(VarType)) 2685 return true; 2686 2687 if (const auto *RT = VarType->getAs<RecordType>()) { 2688 const RecordDecl *RD = RT->getDecl(); 2689 for (const FieldDecl *FD : RD->fields()) { 2690 if (FD->isBitField()) 2691 continue; 2692 if (FD->hasAttr<AlignedAttr>()) 2693 return true; 2694 if (Context.isAlignmentRequired(FD->getType())) 2695 return true; 2696 } 2697 } 2698 } 2699 2700 return false; 2701 } 2702 2703 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2704 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2705 if (Linkage == GVA_Internal) 2706 return llvm::Function::InternalLinkage; 2707 2708 if (D->hasAttr<WeakAttr>()) { 2709 if (IsConstantVariable) 2710 return llvm::GlobalVariable::WeakODRLinkage; 2711 else 2712 return llvm::GlobalVariable::WeakAnyLinkage; 2713 } 2714 2715 // We are guaranteed to have a strong definition somewhere else, 2716 // so we can use available_externally linkage. 2717 if (Linkage == GVA_AvailableExternally) 2718 return llvm::Function::AvailableExternallyLinkage; 2719 2720 // Note that Apple's kernel linker doesn't support symbol 2721 // coalescing, so we need to avoid linkonce and weak linkages there. 2722 // Normally, this means we just map to internal, but for explicit 2723 // instantiations we'll map to external. 2724 2725 // In C++, the compiler has to emit a definition in every translation unit 2726 // that references the function. We should use linkonce_odr because 2727 // a) if all references in this translation unit are optimized away, we 2728 // don't need to codegen it. b) if the function persists, it needs to be 2729 // merged with other definitions. c) C++ has the ODR, so we know the 2730 // definition is dependable. 2731 if (Linkage == GVA_DiscardableODR) 2732 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2733 : llvm::Function::InternalLinkage; 2734 2735 // An explicit instantiation of a template has weak linkage, since 2736 // explicit instantiations can occur in multiple translation units 2737 // and must all be equivalent. However, we are not allowed to 2738 // throw away these explicit instantiations. 2739 // 2740 // We don't currently support CUDA device code spread out across multiple TUs, 2741 // so say that CUDA templates are either external (for kernels) or internal. 2742 // This lets llvm perform aggressive inter-procedural optimizations. 2743 if (Linkage == GVA_StrongODR) { 2744 if (Context.getLangOpts().AppleKext) 2745 return llvm::Function::ExternalLinkage; 2746 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 2747 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 2748 : llvm::Function::InternalLinkage; 2749 return llvm::Function::WeakODRLinkage; 2750 } 2751 2752 // C++ doesn't have tentative definitions and thus cannot have common 2753 // linkage. 2754 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2755 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2756 CodeGenOpts.NoCommon)) 2757 return llvm::GlobalVariable::CommonLinkage; 2758 2759 // selectany symbols are externally visible, so use weak instead of 2760 // linkonce. MSVC optimizes away references to const selectany globals, so 2761 // all definitions should be the same and ODR linkage should be used. 2762 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2763 if (D->hasAttr<SelectAnyAttr>()) 2764 return llvm::GlobalVariable::WeakODRLinkage; 2765 2766 // Otherwise, we have strong external linkage. 2767 assert(Linkage == GVA_StrongExternal); 2768 return llvm::GlobalVariable::ExternalLinkage; 2769 } 2770 2771 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2772 const VarDecl *VD, bool IsConstant) { 2773 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2774 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2775 } 2776 2777 /// Replace the uses of a function that was declared with a non-proto type. 2778 /// We want to silently drop extra arguments from call sites 2779 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2780 llvm::Function *newFn) { 2781 // Fast path. 2782 if (old->use_empty()) return; 2783 2784 llvm::Type *newRetTy = newFn->getReturnType(); 2785 SmallVector<llvm::Value*, 4> newArgs; 2786 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2787 2788 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2789 ui != ue; ) { 2790 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2791 llvm::User *user = use->getUser(); 2792 2793 // Recognize and replace uses of bitcasts. Most calls to 2794 // unprototyped functions will use bitcasts. 2795 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2796 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2797 replaceUsesOfNonProtoConstant(bitcast, newFn); 2798 continue; 2799 } 2800 2801 // Recognize calls to the function. 2802 llvm::CallSite callSite(user); 2803 if (!callSite) continue; 2804 if (!callSite.isCallee(&*use)) continue; 2805 2806 // If the return types don't match exactly, then we can't 2807 // transform this call unless it's dead. 2808 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2809 continue; 2810 2811 // Get the call site's attribute list. 2812 SmallVector<llvm::AttributeSet, 8> newAttrs; 2813 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2814 2815 // Collect any return attributes from the call. 2816 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2817 newAttrs.push_back( 2818 llvm::AttributeSet::get(newFn->getContext(), 2819 oldAttrs.getRetAttributes())); 2820 2821 // If the function was passed too few arguments, don't transform. 2822 unsigned newNumArgs = newFn->arg_size(); 2823 if (callSite.arg_size() < newNumArgs) continue; 2824 2825 // If extra arguments were passed, we silently drop them. 2826 // If any of the types mismatch, we don't transform. 2827 unsigned argNo = 0; 2828 bool dontTransform = false; 2829 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2830 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2831 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2832 dontTransform = true; 2833 break; 2834 } 2835 2836 // Add any parameter attributes. 2837 if (oldAttrs.hasAttributes(argNo + 1)) 2838 newAttrs. 2839 push_back(llvm:: 2840 AttributeSet::get(newFn->getContext(), 2841 oldAttrs.getParamAttributes(argNo + 1))); 2842 } 2843 if (dontTransform) 2844 continue; 2845 2846 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2847 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2848 oldAttrs.getFnAttributes())); 2849 2850 // Okay, we can transform this. Create the new call instruction and copy 2851 // over the required information. 2852 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2853 2854 // Copy over any operand bundles. 2855 callSite.getOperandBundlesAsDefs(newBundles); 2856 2857 llvm::CallSite newCall; 2858 if (callSite.isCall()) { 2859 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2860 callSite.getInstruction()); 2861 } else { 2862 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2863 newCall = llvm::InvokeInst::Create(newFn, 2864 oldInvoke->getNormalDest(), 2865 oldInvoke->getUnwindDest(), 2866 newArgs, newBundles, "", 2867 callSite.getInstruction()); 2868 } 2869 newArgs.clear(); // for the next iteration 2870 2871 if (!newCall->getType()->isVoidTy()) 2872 newCall->takeName(callSite.getInstruction()); 2873 newCall.setAttributes( 2874 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2875 newCall.setCallingConv(callSite.getCallingConv()); 2876 2877 // Finally, remove the old call, replacing any uses with the new one. 2878 if (!callSite->use_empty()) 2879 callSite->replaceAllUsesWith(newCall.getInstruction()); 2880 2881 // Copy debug location attached to CI. 2882 if (callSite->getDebugLoc()) 2883 newCall->setDebugLoc(callSite->getDebugLoc()); 2884 2885 callSite->eraseFromParent(); 2886 } 2887 } 2888 2889 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2890 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2891 /// existing call uses of the old function in the module, this adjusts them to 2892 /// call the new function directly. 2893 /// 2894 /// This is not just a cleanup: the always_inline pass requires direct calls to 2895 /// functions to be able to inline them. If there is a bitcast in the way, it 2896 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2897 /// run at -O0. 2898 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2899 llvm::Function *NewFn) { 2900 // If we're redefining a global as a function, don't transform it. 2901 if (!isa<llvm::Function>(Old)) return; 2902 2903 replaceUsesOfNonProtoConstant(Old, NewFn); 2904 } 2905 2906 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2907 auto DK = VD->isThisDeclarationADefinition(); 2908 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 2909 return; 2910 2911 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2912 // If we have a definition, this might be a deferred decl. If the 2913 // instantiation is explicit, make sure we emit it at the end. 2914 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2915 GetAddrOfGlobalVar(VD); 2916 2917 EmitTopLevelDecl(VD); 2918 } 2919 2920 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2921 llvm::GlobalValue *GV) { 2922 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2923 2924 // Compute the function info and LLVM type. 2925 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2926 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2927 2928 // Get or create the prototype for the function. 2929 if (!GV || (GV->getType()->getElementType() != Ty)) 2930 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2931 /*DontDefer=*/true, 2932 /*IsForDefinition=*/true)); 2933 2934 // Already emitted. 2935 if (!GV->isDeclaration()) 2936 return; 2937 2938 // We need to set linkage and visibility on the function before 2939 // generating code for it because various parts of IR generation 2940 // want to propagate this information down (e.g. to local static 2941 // declarations). 2942 auto *Fn = cast<llvm::Function>(GV); 2943 setFunctionLinkage(GD, Fn); 2944 setFunctionDLLStorageClass(GD, Fn); 2945 2946 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2947 setGlobalVisibility(Fn, D); 2948 2949 MaybeHandleStaticInExternC(D, Fn); 2950 2951 maybeSetTrivialComdat(*D, *Fn); 2952 2953 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2954 2955 setFunctionDefinitionAttributes(D, Fn); 2956 SetLLVMFunctionAttributesForDefinition(D, Fn); 2957 2958 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2959 AddGlobalCtor(Fn, CA->getPriority()); 2960 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2961 AddGlobalDtor(Fn, DA->getPriority()); 2962 if (D->hasAttr<AnnotateAttr>()) 2963 AddGlobalAnnotations(D, Fn); 2964 } 2965 2966 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2967 const auto *D = cast<ValueDecl>(GD.getDecl()); 2968 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2969 assert(AA && "Not an alias?"); 2970 2971 StringRef MangledName = getMangledName(GD); 2972 2973 if (AA->getAliasee() == MangledName) { 2974 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 2975 return; 2976 } 2977 2978 // If there is a definition in the module, then it wins over the alias. 2979 // This is dubious, but allow it to be safe. Just ignore the alias. 2980 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2981 if (Entry && !Entry->isDeclaration()) 2982 return; 2983 2984 Aliases.push_back(GD); 2985 2986 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2987 2988 // Create a reference to the named value. This ensures that it is emitted 2989 // if a deferred decl. 2990 llvm::Constant *Aliasee; 2991 if (isa<llvm::FunctionType>(DeclTy)) 2992 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2993 /*ForVTable=*/false); 2994 else 2995 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2996 llvm::PointerType::getUnqual(DeclTy), 2997 /*D=*/nullptr); 2998 2999 // Create the new alias itself, but don't set a name yet. 3000 auto *GA = llvm::GlobalAlias::create( 3001 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3002 3003 if (Entry) { 3004 if (GA->getAliasee() == Entry) { 3005 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3006 return; 3007 } 3008 3009 assert(Entry->isDeclaration()); 3010 3011 // If there is a declaration in the module, then we had an extern followed 3012 // by the alias, as in: 3013 // extern int test6(); 3014 // ... 3015 // int test6() __attribute__((alias("test7"))); 3016 // 3017 // Remove it and replace uses of it with the alias. 3018 GA->takeName(Entry); 3019 3020 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3021 Entry->getType())); 3022 Entry->eraseFromParent(); 3023 } else { 3024 GA->setName(MangledName); 3025 } 3026 3027 // Set attributes which are particular to an alias; this is a 3028 // specialization of the attributes which may be set on a global 3029 // variable/function. 3030 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3031 D->isWeakImported()) { 3032 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3033 } 3034 3035 if (const auto *VD = dyn_cast<VarDecl>(D)) 3036 if (VD->getTLSKind()) 3037 setTLSMode(GA, *VD); 3038 3039 setAliasAttributes(D, GA); 3040 } 3041 3042 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3043 const auto *D = cast<ValueDecl>(GD.getDecl()); 3044 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3045 assert(IFA && "Not an ifunc?"); 3046 3047 StringRef MangledName = getMangledName(GD); 3048 3049 if (IFA->getResolver() == MangledName) { 3050 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3051 return; 3052 } 3053 3054 // Report an error if some definition overrides ifunc. 3055 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3056 if (Entry && !Entry->isDeclaration()) { 3057 GlobalDecl OtherGD; 3058 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3059 DiagnosedConflictingDefinitions.insert(GD).second) { 3060 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3061 Diags.Report(OtherGD.getDecl()->getLocation(), 3062 diag::note_previous_definition); 3063 } 3064 return; 3065 } 3066 3067 Aliases.push_back(GD); 3068 3069 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3070 llvm::Constant *Resolver = 3071 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3072 /*ForVTable=*/false); 3073 llvm::GlobalIFunc *GIF = 3074 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3075 "", Resolver, &getModule()); 3076 if (Entry) { 3077 if (GIF->getResolver() == Entry) { 3078 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3079 return; 3080 } 3081 assert(Entry->isDeclaration()); 3082 3083 // If there is a declaration in the module, then we had an extern followed 3084 // by the ifunc, as in: 3085 // extern int test(); 3086 // ... 3087 // int test() __attribute__((ifunc("resolver"))); 3088 // 3089 // Remove it and replace uses of it with the ifunc. 3090 GIF->takeName(Entry); 3091 3092 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3093 Entry->getType())); 3094 Entry->eraseFromParent(); 3095 } else 3096 GIF->setName(MangledName); 3097 3098 SetCommonAttributes(D, GIF); 3099 } 3100 3101 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3102 ArrayRef<llvm::Type*> Tys) { 3103 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3104 Tys); 3105 } 3106 3107 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3108 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3109 const StringLiteral *Literal, bool TargetIsLSB, 3110 bool &IsUTF16, unsigned &StringLength) { 3111 StringRef String = Literal->getString(); 3112 unsigned NumBytes = String.size(); 3113 3114 // Check for simple case. 3115 if (!Literal->containsNonAsciiOrNull()) { 3116 StringLength = NumBytes; 3117 return *Map.insert(std::make_pair(String, nullptr)).first; 3118 } 3119 3120 // Otherwise, convert the UTF8 literals into a string of shorts. 3121 IsUTF16 = true; 3122 3123 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3124 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3125 llvm::UTF16 *ToPtr = &ToBuf[0]; 3126 3127 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3128 ToPtr + NumBytes, llvm::strictConversion); 3129 3130 // ConvertUTF8toUTF16 returns the length in ToPtr. 3131 StringLength = ToPtr - &ToBuf[0]; 3132 3133 // Add an explicit null. 3134 *ToPtr = 0; 3135 return *Map.insert(std::make_pair( 3136 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3137 (StringLength + 1) * 2), 3138 nullptr)).first; 3139 } 3140 3141 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3142 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3143 const StringLiteral *Literal, unsigned &StringLength) { 3144 StringRef String = Literal->getString(); 3145 StringLength = String.size(); 3146 return *Map.insert(std::make_pair(String, nullptr)).first; 3147 } 3148 3149 ConstantAddress 3150 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3151 unsigned StringLength = 0; 3152 bool isUTF16 = false; 3153 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3154 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3155 getDataLayout().isLittleEndian(), isUTF16, 3156 StringLength); 3157 3158 if (auto *C = Entry.second) 3159 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3160 3161 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3162 llvm::Constant *Zeros[] = { Zero, Zero }; 3163 3164 // If we don't already have it, get __CFConstantStringClassReference. 3165 if (!CFConstantStringClassRef) { 3166 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3167 Ty = llvm::ArrayType::get(Ty, 0); 3168 llvm::Constant *GV = 3169 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3170 3171 if (getTriple().isOSBinFormatCOFF()) { 3172 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3173 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3174 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3175 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3176 3177 const VarDecl *VD = nullptr; 3178 for (const auto &Result : DC->lookup(&II)) 3179 if ((VD = dyn_cast<VarDecl>(Result))) 3180 break; 3181 3182 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3183 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3184 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3185 } else { 3186 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3187 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3188 } 3189 } 3190 3191 // Decay array -> ptr 3192 CFConstantStringClassRef = 3193 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3194 } 3195 3196 QualType CFTy = getContext().getCFConstantStringType(); 3197 3198 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3199 3200 ConstantBuilder Builder(*this); 3201 auto Fields = Builder.beginStruct(STy); 3202 3203 // Class pointer. 3204 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3205 3206 // Flags. 3207 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3208 3209 // String pointer. 3210 llvm::Constant *C = nullptr; 3211 if (isUTF16) { 3212 auto Arr = llvm::makeArrayRef( 3213 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3214 Entry.first().size() / 2); 3215 C = llvm::ConstantDataArray::get(VMContext, Arr); 3216 } else { 3217 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3218 } 3219 3220 // Note: -fwritable-strings doesn't make the backing store strings of 3221 // CFStrings writable. (See <rdar://problem/10657500>) 3222 auto *GV = 3223 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3224 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3225 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3226 // Don't enforce the target's minimum global alignment, since the only use 3227 // of the string is via this class initializer. 3228 CharUnits Align = isUTF16 3229 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3230 : getContext().getTypeAlignInChars(getContext().CharTy); 3231 GV->setAlignment(Align.getQuantity()); 3232 3233 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3234 // Without it LLVM can merge the string with a non unnamed_addr one during 3235 // LTO. Doing that changes the section it ends in, which surprises ld64. 3236 if (getTriple().isOSBinFormatMachO()) 3237 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3238 : "__TEXT,__cstring,cstring_literals"); 3239 3240 // String. 3241 llvm::Constant *Str = 3242 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3243 3244 if (isUTF16) 3245 // Cast the UTF16 string to the correct type. 3246 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3247 Fields.add(Str); 3248 3249 // String length. 3250 auto Ty = getTypes().ConvertType(getContext().LongTy); 3251 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3252 3253 CharUnits Alignment = getPointerAlign(); 3254 3255 // The struct. 3256 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3257 /*isConstant=*/false, 3258 llvm::GlobalVariable::PrivateLinkage); 3259 switch (getTriple().getObjectFormat()) { 3260 case llvm::Triple::UnknownObjectFormat: 3261 llvm_unreachable("unknown file format"); 3262 case llvm::Triple::COFF: 3263 case llvm::Triple::ELF: 3264 GV->setSection("cfstring"); 3265 break; 3266 case llvm::Triple::MachO: 3267 GV->setSection("__DATA,__cfstring"); 3268 break; 3269 } 3270 Entry.second = GV; 3271 3272 return ConstantAddress(GV, Alignment); 3273 } 3274 3275 ConstantAddress 3276 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 3277 unsigned StringLength = 0; 3278 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3279 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 3280 3281 if (auto *C = Entry.second) 3282 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3283 3284 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3285 llvm::Constant *Zeros[] = { Zero, Zero }; 3286 llvm::Value *V; 3287 // If we don't already have it, get _NSConstantStringClassReference. 3288 if (!ConstantStringClassRef) { 3289 std::string StringClass(getLangOpts().ObjCConstantStringClass); 3290 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3291 llvm::Constant *GV; 3292 if (LangOpts.ObjCRuntime.isNonFragile()) { 3293 std::string str = 3294 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 3295 : "OBJC_CLASS_$_" + StringClass; 3296 GV = getObjCRuntime().GetClassGlobal(str); 3297 // Make sure the result is of the correct type. 3298 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3299 V = llvm::ConstantExpr::getBitCast(GV, PTy); 3300 ConstantStringClassRef = V; 3301 } else { 3302 std::string str = 3303 StringClass.empty() ? "_NSConstantStringClassReference" 3304 : "_" + StringClass + "ClassReference"; 3305 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 3306 GV = CreateRuntimeVariable(PTy, str); 3307 // Decay array -> ptr 3308 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 3309 ConstantStringClassRef = V; 3310 } 3311 } else 3312 V = ConstantStringClassRef; 3313 3314 if (!NSConstantStringType) { 3315 // Construct the type for a constant NSString. 3316 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 3317 D->startDefinition(); 3318 3319 QualType FieldTypes[3]; 3320 3321 // const int *isa; 3322 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 3323 // const char *str; 3324 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 3325 // unsigned int length; 3326 FieldTypes[2] = Context.UnsignedIntTy; 3327 3328 // Create fields 3329 for (unsigned i = 0; i < 3; ++i) { 3330 FieldDecl *Field = FieldDecl::Create(Context, D, 3331 SourceLocation(), 3332 SourceLocation(), nullptr, 3333 FieldTypes[i], /*TInfo=*/nullptr, 3334 /*BitWidth=*/nullptr, 3335 /*Mutable=*/false, 3336 ICIS_NoInit); 3337 Field->setAccess(AS_public); 3338 D->addDecl(Field); 3339 } 3340 3341 D->completeDefinition(); 3342 QualType NSTy = Context.getTagDeclType(D); 3343 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 3344 } 3345 3346 ConstantBuilder Builder(*this); 3347 auto Fields = Builder.beginStruct(NSConstantStringType); 3348 3349 // Class pointer. 3350 Fields.add(cast<llvm::ConstantExpr>(V)); 3351 3352 // String pointer. 3353 llvm::Constant *C = 3354 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3355 3356 llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage; 3357 bool isConstant = !LangOpts.WritableStrings; 3358 3359 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 3360 Linkage, C, ".str"); 3361 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3362 // Don't enforce the target's minimum global alignment, since the only use 3363 // of the string is via this class initializer. 3364 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3365 GV->setAlignment(Align.getQuantity()); 3366 Fields.add( 3367 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros)); 3368 3369 // String length. 3370 Fields.addInt(IntTy, StringLength); 3371 3372 // The struct. 3373 CharUnits Alignment = getPointerAlign(); 3374 GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment, 3375 /*constant*/ true, 3376 llvm::GlobalVariable::PrivateLinkage); 3377 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3378 const char *NSStringNonFragileABISection = 3379 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3380 // FIXME. Fix section. 3381 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3382 ? NSStringNonFragileABISection 3383 : NSStringSection); 3384 Entry.second = GV; 3385 3386 return ConstantAddress(GV, Alignment); 3387 } 3388 3389 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3390 if (ObjCFastEnumerationStateType.isNull()) { 3391 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3392 D->startDefinition(); 3393 3394 QualType FieldTypes[] = { 3395 Context.UnsignedLongTy, 3396 Context.getPointerType(Context.getObjCIdType()), 3397 Context.getPointerType(Context.UnsignedLongTy), 3398 Context.getConstantArrayType(Context.UnsignedLongTy, 3399 llvm::APInt(32, 5), ArrayType::Normal, 0) 3400 }; 3401 3402 for (size_t i = 0; i < 4; ++i) { 3403 FieldDecl *Field = FieldDecl::Create(Context, 3404 D, 3405 SourceLocation(), 3406 SourceLocation(), nullptr, 3407 FieldTypes[i], /*TInfo=*/nullptr, 3408 /*BitWidth=*/nullptr, 3409 /*Mutable=*/false, 3410 ICIS_NoInit); 3411 Field->setAccess(AS_public); 3412 D->addDecl(Field); 3413 } 3414 3415 D->completeDefinition(); 3416 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3417 } 3418 3419 return ObjCFastEnumerationStateType; 3420 } 3421 3422 llvm::Constant * 3423 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3424 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3425 3426 // Don't emit it as the address of the string, emit the string data itself 3427 // as an inline array. 3428 if (E->getCharByteWidth() == 1) { 3429 SmallString<64> Str(E->getString()); 3430 3431 // Resize the string to the right size, which is indicated by its type. 3432 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3433 Str.resize(CAT->getSize().getZExtValue()); 3434 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3435 } 3436 3437 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3438 llvm::Type *ElemTy = AType->getElementType(); 3439 unsigned NumElements = AType->getNumElements(); 3440 3441 // Wide strings have either 2-byte or 4-byte elements. 3442 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3443 SmallVector<uint16_t, 32> Elements; 3444 Elements.reserve(NumElements); 3445 3446 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3447 Elements.push_back(E->getCodeUnit(i)); 3448 Elements.resize(NumElements); 3449 return llvm::ConstantDataArray::get(VMContext, Elements); 3450 } 3451 3452 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3453 SmallVector<uint32_t, 32> Elements; 3454 Elements.reserve(NumElements); 3455 3456 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3457 Elements.push_back(E->getCodeUnit(i)); 3458 Elements.resize(NumElements); 3459 return llvm::ConstantDataArray::get(VMContext, Elements); 3460 } 3461 3462 static llvm::GlobalVariable * 3463 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3464 CodeGenModule &CGM, StringRef GlobalName, 3465 CharUnits Alignment) { 3466 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3467 unsigned AddrSpace = 0; 3468 if (CGM.getLangOpts().OpenCL) 3469 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3470 3471 llvm::Module &M = CGM.getModule(); 3472 // Create a global variable for this string 3473 auto *GV = new llvm::GlobalVariable( 3474 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3475 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3476 GV->setAlignment(Alignment.getQuantity()); 3477 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3478 if (GV->isWeakForLinker()) { 3479 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3480 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3481 } 3482 3483 return GV; 3484 } 3485 3486 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3487 /// constant array for the given string literal. 3488 ConstantAddress 3489 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3490 StringRef Name) { 3491 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3492 3493 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3494 llvm::GlobalVariable **Entry = nullptr; 3495 if (!LangOpts.WritableStrings) { 3496 Entry = &ConstantStringMap[C]; 3497 if (auto GV = *Entry) { 3498 if (Alignment.getQuantity() > GV->getAlignment()) 3499 GV->setAlignment(Alignment.getQuantity()); 3500 return ConstantAddress(GV, Alignment); 3501 } 3502 } 3503 3504 SmallString<256> MangledNameBuffer; 3505 StringRef GlobalVariableName; 3506 llvm::GlobalValue::LinkageTypes LT; 3507 3508 // Mangle the string literal if the ABI allows for it. However, we cannot 3509 // do this if we are compiling with ASan or -fwritable-strings because they 3510 // rely on strings having normal linkage. 3511 if (!LangOpts.WritableStrings && 3512 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3513 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3514 llvm::raw_svector_ostream Out(MangledNameBuffer); 3515 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3516 3517 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3518 GlobalVariableName = MangledNameBuffer; 3519 } else { 3520 LT = llvm::GlobalValue::PrivateLinkage; 3521 GlobalVariableName = Name; 3522 } 3523 3524 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3525 if (Entry) 3526 *Entry = GV; 3527 3528 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3529 QualType()); 3530 return ConstantAddress(GV, Alignment); 3531 } 3532 3533 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3534 /// array for the given ObjCEncodeExpr node. 3535 ConstantAddress 3536 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3537 std::string Str; 3538 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3539 3540 return GetAddrOfConstantCString(Str); 3541 } 3542 3543 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3544 /// the literal and a terminating '\0' character. 3545 /// The result has pointer to array type. 3546 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3547 const std::string &Str, const char *GlobalName) { 3548 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3549 CharUnits Alignment = 3550 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3551 3552 llvm::Constant *C = 3553 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3554 3555 // Don't share any string literals if strings aren't constant. 3556 llvm::GlobalVariable **Entry = nullptr; 3557 if (!LangOpts.WritableStrings) { 3558 Entry = &ConstantStringMap[C]; 3559 if (auto GV = *Entry) { 3560 if (Alignment.getQuantity() > GV->getAlignment()) 3561 GV->setAlignment(Alignment.getQuantity()); 3562 return ConstantAddress(GV, Alignment); 3563 } 3564 } 3565 3566 // Get the default prefix if a name wasn't specified. 3567 if (!GlobalName) 3568 GlobalName = ".str"; 3569 // Create a global variable for this. 3570 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3571 GlobalName, Alignment); 3572 if (Entry) 3573 *Entry = GV; 3574 return ConstantAddress(GV, Alignment); 3575 } 3576 3577 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3578 const MaterializeTemporaryExpr *E, const Expr *Init) { 3579 assert((E->getStorageDuration() == SD_Static || 3580 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3581 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3582 3583 // If we're not materializing a subobject of the temporary, keep the 3584 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3585 QualType MaterializedType = Init->getType(); 3586 if (Init == E->GetTemporaryExpr()) 3587 MaterializedType = E->getType(); 3588 3589 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3590 3591 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3592 return ConstantAddress(Slot, Align); 3593 3594 // FIXME: If an externally-visible declaration extends multiple temporaries, 3595 // we need to give each temporary the same name in every translation unit (and 3596 // we also need to make the temporaries externally-visible). 3597 SmallString<256> Name; 3598 llvm::raw_svector_ostream Out(Name); 3599 getCXXABI().getMangleContext().mangleReferenceTemporary( 3600 VD, E->getManglingNumber(), Out); 3601 3602 APValue *Value = nullptr; 3603 if (E->getStorageDuration() == SD_Static) { 3604 // We might have a cached constant initializer for this temporary. Note 3605 // that this might have a different value from the value computed by 3606 // evaluating the initializer if the surrounding constant expression 3607 // modifies the temporary. 3608 Value = getContext().getMaterializedTemporaryValue(E, false); 3609 if (Value && Value->isUninit()) 3610 Value = nullptr; 3611 } 3612 3613 // Try evaluating it now, it might have a constant initializer. 3614 Expr::EvalResult EvalResult; 3615 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3616 !EvalResult.hasSideEffects()) 3617 Value = &EvalResult.Val; 3618 3619 llvm::Constant *InitialValue = nullptr; 3620 bool Constant = false; 3621 llvm::Type *Type; 3622 if (Value) { 3623 // The temporary has a constant initializer, use it. 3624 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3625 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3626 Type = InitialValue->getType(); 3627 } else { 3628 // No initializer, the initialization will be provided when we 3629 // initialize the declaration which performed lifetime extension. 3630 Type = getTypes().ConvertTypeForMem(MaterializedType); 3631 } 3632 3633 // Create a global variable for this lifetime-extended temporary. 3634 llvm::GlobalValue::LinkageTypes Linkage = 3635 getLLVMLinkageVarDefinition(VD, Constant); 3636 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3637 const VarDecl *InitVD; 3638 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3639 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3640 // Temporaries defined inside a class get linkonce_odr linkage because the 3641 // class can be defined in multipe translation units. 3642 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3643 } else { 3644 // There is no need for this temporary to have external linkage if the 3645 // VarDecl has external linkage. 3646 Linkage = llvm::GlobalVariable::InternalLinkage; 3647 } 3648 } 3649 unsigned AddrSpace = GetGlobalVarAddressSpace( 3650 VD, getContext().getTargetAddressSpace(MaterializedType)); 3651 auto *GV = new llvm::GlobalVariable( 3652 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3653 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3654 AddrSpace); 3655 setGlobalVisibility(GV, VD); 3656 GV->setAlignment(Align.getQuantity()); 3657 if (supportsCOMDAT() && GV->isWeakForLinker()) 3658 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3659 if (VD->getTLSKind()) 3660 setTLSMode(GV, *VD); 3661 MaterializedGlobalTemporaryMap[E] = GV; 3662 return ConstantAddress(GV, Align); 3663 } 3664 3665 /// EmitObjCPropertyImplementations - Emit information for synthesized 3666 /// properties for an implementation. 3667 void CodeGenModule::EmitObjCPropertyImplementations(const 3668 ObjCImplementationDecl *D) { 3669 for (const auto *PID : D->property_impls()) { 3670 // Dynamic is just for type-checking. 3671 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3672 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3673 3674 // Determine which methods need to be implemented, some may have 3675 // been overridden. Note that ::isPropertyAccessor is not the method 3676 // we want, that just indicates if the decl came from a 3677 // property. What we want to know is if the method is defined in 3678 // this implementation. 3679 if (!D->getInstanceMethod(PD->getGetterName())) 3680 CodeGenFunction(*this).GenerateObjCGetter( 3681 const_cast<ObjCImplementationDecl *>(D), PID); 3682 if (!PD->isReadOnly() && 3683 !D->getInstanceMethod(PD->getSetterName())) 3684 CodeGenFunction(*this).GenerateObjCSetter( 3685 const_cast<ObjCImplementationDecl *>(D), PID); 3686 } 3687 } 3688 } 3689 3690 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3691 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3692 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3693 ivar; ivar = ivar->getNextIvar()) 3694 if (ivar->getType().isDestructedType()) 3695 return true; 3696 3697 return false; 3698 } 3699 3700 static bool AllTrivialInitializers(CodeGenModule &CGM, 3701 ObjCImplementationDecl *D) { 3702 CodeGenFunction CGF(CGM); 3703 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3704 E = D->init_end(); B != E; ++B) { 3705 CXXCtorInitializer *CtorInitExp = *B; 3706 Expr *Init = CtorInitExp->getInit(); 3707 if (!CGF.isTrivialInitializer(Init)) 3708 return false; 3709 } 3710 return true; 3711 } 3712 3713 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3714 /// for an implementation. 3715 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3716 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3717 if (needsDestructMethod(D)) { 3718 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3719 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3720 ObjCMethodDecl *DTORMethod = 3721 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3722 cxxSelector, getContext().VoidTy, nullptr, D, 3723 /*isInstance=*/true, /*isVariadic=*/false, 3724 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3725 /*isDefined=*/false, ObjCMethodDecl::Required); 3726 D->addInstanceMethod(DTORMethod); 3727 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3728 D->setHasDestructors(true); 3729 } 3730 3731 // If the implementation doesn't have any ivar initializers, we don't need 3732 // a .cxx_construct. 3733 if (D->getNumIvarInitializers() == 0 || 3734 AllTrivialInitializers(*this, D)) 3735 return; 3736 3737 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3738 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3739 // The constructor returns 'self'. 3740 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3741 D->getLocation(), 3742 D->getLocation(), 3743 cxxSelector, 3744 getContext().getObjCIdType(), 3745 nullptr, D, /*isInstance=*/true, 3746 /*isVariadic=*/false, 3747 /*isPropertyAccessor=*/true, 3748 /*isImplicitlyDeclared=*/true, 3749 /*isDefined=*/false, 3750 ObjCMethodDecl::Required); 3751 D->addInstanceMethod(CTORMethod); 3752 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3753 D->setHasNonZeroConstructors(true); 3754 } 3755 3756 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3757 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3758 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3759 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3760 ErrorUnsupported(LSD, "linkage spec"); 3761 return; 3762 } 3763 3764 EmitDeclContext(LSD); 3765 } 3766 3767 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3768 for (auto *I : DC->decls()) { 3769 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3770 // are themselves considered "top-level", so EmitTopLevelDecl on an 3771 // ObjCImplDecl does not recursively visit them. We need to do that in 3772 // case they're nested inside another construct (LinkageSpecDecl / 3773 // ExportDecl) that does stop them from being considered "top-level". 3774 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3775 for (auto *M : OID->methods()) 3776 EmitTopLevelDecl(M); 3777 } 3778 3779 EmitTopLevelDecl(I); 3780 } 3781 } 3782 3783 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3784 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3785 // Ignore dependent declarations. 3786 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3787 return; 3788 3789 switch (D->getKind()) { 3790 case Decl::CXXConversion: 3791 case Decl::CXXMethod: 3792 case Decl::Function: 3793 // Skip function templates 3794 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3795 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3796 return; 3797 3798 EmitGlobal(cast<FunctionDecl>(D)); 3799 // Always provide some coverage mapping 3800 // even for the functions that aren't emitted. 3801 AddDeferredUnusedCoverageMapping(D); 3802 break; 3803 3804 case Decl::Var: 3805 case Decl::Decomposition: 3806 // Skip variable templates 3807 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3808 return; 3809 case Decl::VarTemplateSpecialization: 3810 EmitGlobal(cast<VarDecl>(D)); 3811 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3812 for (auto *B : DD->bindings()) 3813 if (auto *HD = B->getHoldingVar()) 3814 EmitGlobal(HD); 3815 break; 3816 3817 // Indirect fields from global anonymous structs and unions can be 3818 // ignored; only the actual variable requires IR gen support. 3819 case Decl::IndirectField: 3820 break; 3821 3822 // C++ Decls 3823 case Decl::Namespace: 3824 EmitDeclContext(cast<NamespaceDecl>(D)); 3825 break; 3826 case Decl::CXXRecord: 3827 // Emit any static data members, they may be definitions. 3828 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3829 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3830 EmitTopLevelDecl(I); 3831 break; 3832 // No code generation needed. 3833 case Decl::UsingShadow: 3834 case Decl::ClassTemplate: 3835 case Decl::VarTemplate: 3836 case Decl::VarTemplatePartialSpecialization: 3837 case Decl::FunctionTemplate: 3838 case Decl::TypeAliasTemplate: 3839 case Decl::Block: 3840 case Decl::Empty: 3841 break; 3842 case Decl::Using: // using X; [C++] 3843 if (CGDebugInfo *DI = getModuleDebugInfo()) 3844 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3845 return; 3846 case Decl::NamespaceAlias: 3847 if (CGDebugInfo *DI = getModuleDebugInfo()) 3848 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3849 return; 3850 case Decl::UsingDirective: // using namespace X; [C++] 3851 if (CGDebugInfo *DI = getModuleDebugInfo()) 3852 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3853 return; 3854 case Decl::CXXConstructor: 3855 // Skip function templates 3856 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3857 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3858 return; 3859 3860 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3861 break; 3862 case Decl::CXXDestructor: 3863 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3864 return; 3865 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3866 break; 3867 3868 case Decl::StaticAssert: 3869 // Nothing to do. 3870 break; 3871 3872 // Objective-C Decls 3873 3874 // Forward declarations, no (immediate) code generation. 3875 case Decl::ObjCInterface: 3876 case Decl::ObjCCategory: 3877 break; 3878 3879 case Decl::ObjCProtocol: { 3880 auto *Proto = cast<ObjCProtocolDecl>(D); 3881 if (Proto->isThisDeclarationADefinition()) 3882 ObjCRuntime->GenerateProtocol(Proto); 3883 break; 3884 } 3885 3886 case Decl::ObjCCategoryImpl: 3887 // Categories have properties but don't support synthesize so we 3888 // can ignore them here. 3889 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3890 break; 3891 3892 case Decl::ObjCImplementation: { 3893 auto *OMD = cast<ObjCImplementationDecl>(D); 3894 EmitObjCPropertyImplementations(OMD); 3895 EmitObjCIvarInitializations(OMD); 3896 ObjCRuntime->GenerateClass(OMD); 3897 // Emit global variable debug information. 3898 if (CGDebugInfo *DI = getModuleDebugInfo()) 3899 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3900 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3901 OMD->getClassInterface()), OMD->getLocation()); 3902 break; 3903 } 3904 case Decl::ObjCMethod: { 3905 auto *OMD = cast<ObjCMethodDecl>(D); 3906 // If this is not a prototype, emit the body. 3907 if (OMD->getBody()) 3908 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3909 break; 3910 } 3911 case Decl::ObjCCompatibleAlias: 3912 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3913 break; 3914 3915 case Decl::PragmaComment: { 3916 const auto *PCD = cast<PragmaCommentDecl>(D); 3917 switch (PCD->getCommentKind()) { 3918 case PCK_Unknown: 3919 llvm_unreachable("unexpected pragma comment kind"); 3920 case PCK_Linker: 3921 AppendLinkerOptions(PCD->getArg()); 3922 break; 3923 case PCK_Lib: 3924 AddDependentLib(PCD->getArg()); 3925 break; 3926 case PCK_Compiler: 3927 case PCK_ExeStr: 3928 case PCK_User: 3929 break; // We ignore all of these. 3930 } 3931 break; 3932 } 3933 3934 case Decl::PragmaDetectMismatch: { 3935 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3936 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3937 break; 3938 } 3939 3940 case Decl::LinkageSpec: 3941 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3942 break; 3943 3944 case Decl::FileScopeAsm: { 3945 // File-scope asm is ignored during device-side CUDA compilation. 3946 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3947 break; 3948 // File-scope asm is ignored during device-side OpenMP compilation. 3949 if (LangOpts.OpenMPIsDevice) 3950 break; 3951 auto *AD = cast<FileScopeAsmDecl>(D); 3952 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3953 break; 3954 } 3955 3956 case Decl::Import: { 3957 auto *Import = cast<ImportDecl>(D); 3958 3959 // If we've already imported this module, we're done. 3960 if (!ImportedModules.insert(Import->getImportedModule())) 3961 break; 3962 3963 // Emit debug information for direct imports. 3964 if (!Import->getImportedOwningModule()) { 3965 if (CGDebugInfo *DI = getModuleDebugInfo()) 3966 DI->EmitImportDecl(*Import); 3967 } 3968 3969 // Find all of the submodules and emit the module initializers. 3970 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3971 SmallVector<clang::Module *, 16> Stack; 3972 Visited.insert(Import->getImportedModule()); 3973 Stack.push_back(Import->getImportedModule()); 3974 3975 while (!Stack.empty()) { 3976 clang::Module *Mod = Stack.pop_back_val(); 3977 if (!EmittedModuleInitializers.insert(Mod).second) 3978 continue; 3979 3980 for (auto *D : Context.getModuleInitializers(Mod)) 3981 EmitTopLevelDecl(D); 3982 3983 // Visit the submodules of this module. 3984 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 3985 SubEnd = Mod->submodule_end(); 3986 Sub != SubEnd; ++Sub) { 3987 // Skip explicit children; they need to be explicitly imported to emit 3988 // the initializers. 3989 if ((*Sub)->IsExplicit) 3990 continue; 3991 3992 if (Visited.insert(*Sub).second) 3993 Stack.push_back(*Sub); 3994 } 3995 } 3996 break; 3997 } 3998 3999 case Decl::Export: 4000 EmitDeclContext(cast<ExportDecl>(D)); 4001 break; 4002 4003 case Decl::OMPThreadPrivate: 4004 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4005 break; 4006 4007 case Decl::ClassTemplateSpecialization: { 4008 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4009 if (DebugInfo && 4010 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4011 Spec->hasDefinition()) 4012 DebugInfo->completeTemplateDefinition(*Spec); 4013 break; 4014 } 4015 4016 case Decl::OMPDeclareReduction: 4017 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4018 break; 4019 4020 default: 4021 // Make sure we handled everything we should, every other kind is a 4022 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4023 // function. Need to recode Decl::Kind to do that easily. 4024 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4025 break; 4026 } 4027 } 4028 4029 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4030 // Do we need to generate coverage mapping? 4031 if (!CodeGenOpts.CoverageMapping) 4032 return; 4033 switch (D->getKind()) { 4034 case Decl::CXXConversion: 4035 case Decl::CXXMethod: 4036 case Decl::Function: 4037 case Decl::ObjCMethod: 4038 case Decl::CXXConstructor: 4039 case Decl::CXXDestructor: { 4040 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4041 return; 4042 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4043 if (I == DeferredEmptyCoverageMappingDecls.end()) 4044 DeferredEmptyCoverageMappingDecls[D] = true; 4045 break; 4046 } 4047 default: 4048 break; 4049 }; 4050 } 4051 4052 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4053 // Do we need to generate coverage mapping? 4054 if (!CodeGenOpts.CoverageMapping) 4055 return; 4056 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4057 if (Fn->isTemplateInstantiation()) 4058 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4059 } 4060 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4061 if (I == DeferredEmptyCoverageMappingDecls.end()) 4062 DeferredEmptyCoverageMappingDecls[D] = false; 4063 else 4064 I->second = false; 4065 } 4066 4067 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4068 std::vector<const Decl *> DeferredDecls; 4069 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4070 if (!I.second) 4071 continue; 4072 DeferredDecls.push_back(I.first); 4073 } 4074 // Sort the declarations by their location to make sure that the tests get a 4075 // predictable order for the coverage mapping for the unused declarations. 4076 if (CodeGenOpts.DumpCoverageMapping) 4077 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4078 [] (const Decl *LHS, const Decl *RHS) { 4079 return LHS->getLocStart() < RHS->getLocStart(); 4080 }); 4081 for (const auto *D : DeferredDecls) { 4082 switch (D->getKind()) { 4083 case Decl::CXXConversion: 4084 case Decl::CXXMethod: 4085 case Decl::Function: 4086 case Decl::ObjCMethod: { 4087 CodeGenPGO PGO(*this); 4088 GlobalDecl GD(cast<FunctionDecl>(D)); 4089 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4090 getFunctionLinkage(GD)); 4091 break; 4092 } 4093 case Decl::CXXConstructor: { 4094 CodeGenPGO PGO(*this); 4095 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4096 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4097 getFunctionLinkage(GD)); 4098 break; 4099 } 4100 case Decl::CXXDestructor: { 4101 CodeGenPGO PGO(*this); 4102 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4103 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4104 getFunctionLinkage(GD)); 4105 break; 4106 } 4107 default: 4108 break; 4109 }; 4110 } 4111 } 4112 4113 /// Turns the given pointer into a constant. 4114 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4115 const void *Ptr) { 4116 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4117 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4118 return llvm::ConstantInt::get(i64, PtrInt); 4119 } 4120 4121 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4122 llvm::NamedMDNode *&GlobalMetadata, 4123 GlobalDecl D, 4124 llvm::GlobalValue *Addr) { 4125 if (!GlobalMetadata) 4126 GlobalMetadata = 4127 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4128 4129 // TODO: should we report variant information for ctors/dtors? 4130 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4131 llvm::ConstantAsMetadata::get(GetPointerConstant( 4132 CGM.getLLVMContext(), D.getDecl()))}; 4133 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4134 } 4135 4136 /// For each function which is declared within an extern "C" region and marked 4137 /// as 'used', but has internal linkage, create an alias from the unmangled 4138 /// name to the mangled name if possible. People expect to be able to refer 4139 /// to such functions with an unmangled name from inline assembly within the 4140 /// same translation unit. 4141 void CodeGenModule::EmitStaticExternCAliases() { 4142 // Don't do anything if we're generating CUDA device code -- the NVPTX 4143 // assembly target doesn't support aliases. 4144 if (Context.getTargetInfo().getTriple().isNVPTX()) 4145 return; 4146 for (auto &I : StaticExternCValues) { 4147 IdentifierInfo *Name = I.first; 4148 llvm::GlobalValue *Val = I.second; 4149 if (Val && !getModule().getNamedValue(Name->getName())) 4150 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4151 } 4152 } 4153 4154 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4155 GlobalDecl &Result) const { 4156 auto Res = Manglings.find(MangledName); 4157 if (Res == Manglings.end()) 4158 return false; 4159 Result = Res->getValue(); 4160 return true; 4161 } 4162 4163 /// Emits metadata nodes associating all the global values in the 4164 /// current module with the Decls they came from. This is useful for 4165 /// projects using IR gen as a subroutine. 4166 /// 4167 /// Since there's currently no way to associate an MDNode directly 4168 /// with an llvm::GlobalValue, we create a global named metadata 4169 /// with the name 'clang.global.decl.ptrs'. 4170 void CodeGenModule::EmitDeclMetadata() { 4171 llvm::NamedMDNode *GlobalMetadata = nullptr; 4172 4173 for (auto &I : MangledDeclNames) { 4174 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4175 // Some mangled names don't necessarily have an associated GlobalValue 4176 // in this module, e.g. if we mangled it for DebugInfo. 4177 if (Addr) 4178 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4179 } 4180 } 4181 4182 /// Emits metadata nodes for all the local variables in the current 4183 /// function. 4184 void CodeGenFunction::EmitDeclMetadata() { 4185 if (LocalDeclMap.empty()) return; 4186 4187 llvm::LLVMContext &Context = getLLVMContext(); 4188 4189 // Find the unique metadata ID for this name. 4190 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4191 4192 llvm::NamedMDNode *GlobalMetadata = nullptr; 4193 4194 for (auto &I : LocalDeclMap) { 4195 const Decl *D = I.first; 4196 llvm::Value *Addr = I.second.getPointer(); 4197 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4198 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4199 Alloca->setMetadata( 4200 DeclPtrKind, llvm::MDNode::get( 4201 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4202 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4203 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4204 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4205 } 4206 } 4207 } 4208 4209 void CodeGenModule::EmitVersionIdentMetadata() { 4210 llvm::NamedMDNode *IdentMetadata = 4211 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4212 std::string Version = getClangFullVersion(); 4213 llvm::LLVMContext &Ctx = TheModule.getContext(); 4214 4215 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4216 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4217 } 4218 4219 void CodeGenModule::EmitTargetMetadata() { 4220 // Warning, new MangledDeclNames may be appended within this loop. 4221 // We rely on MapVector insertions adding new elements to the end 4222 // of the container. 4223 // FIXME: Move this loop into the one target that needs it, and only 4224 // loop over those declarations for which we couldn't emit the target 4225 // metadata when we emitted the declaration. 4226 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4227 auto Val = *(MangledDeclNames.begin() + I); 4228 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4229 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4230 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4231 } 4232 } 4233 4234 void CodeGenModule::EmitCoverageFile() { 4235 if (getCodeGenOpts().CoverageDataFile.empty() && 4236 getCodeGenOpts().CoverageNotesFile.empty()) 4237 return; 4238 4239 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4240 if (!CUNode) 4241 return; 4242 4243 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4244 llvm::LLVMContext &Ctx = TheModule.getContext(); 4245 auto *CoverageDataFile = 4246 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4247 auto *CoverageNotesFile = 4248 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4249 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4250 llvm::MDNode *CU = CUNode->getOperand(i); 4251 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4252 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4253 } 4254 } 4255 4256 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4257 // Sema has checked that all uuid strings are of the form 4258 // "12345678-1234-1234-1234-1234567890ab". 4259 assert(Uuid.size() == 36); 4260 for (unsigned i = 0; i < 36; ++i) { 4261 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4262 else assert(isHexDigit(Uuid[i])); 4263 } 4264 4265 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4266 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4267 4268 llvm::Constant *Field3[8]; 4269 for (unsigned Idx = 0; Idx < 8; ++Idx) 4270 Field3[Idx] = llvm::ConstantInt::get( 4271 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4272 4273 llvm::Constant *Fields[4] = { 4274 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4275 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4276 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4277 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4278 }; 4279 4280 return llvm::ConstantStruct::getAnon(Fields); 4281 } 4282 4283 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4284 bool ForEH) { 4285 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4286 // FIXME: should we even be calling this method if RTTI is disabled 4287 // and it's not for EH? 4288 if (!ForEH && !getLangOpts().RTTI) 4289 return llvm::Constant::getNullValue(Int8PtrTy); 4290 4291 if (ForEH && Ty->isObjCObjectPointerType() && 4292 LangOpts.ObjCRuntime.isGNUFamily()) 4293 return ObjCRuntime->GetEHType(Ty); 4294 4295 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4296 } 4297 4298 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4299 for (auto RefExpr : D->varlists()) { 4300 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4301 bool PerformInit = 4302 VD->getAnyInitializer() && 4303 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4304 /*ForRef=*/false); 4305 4306 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4307 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4308 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4309 CXXGlobalInits.push_back(InitFunction); 4310 } 4311 } 4312 4313 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4314 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4315 if (InternalId) 4316 return InternalId; 4317 4318 if (isExternallyVisible(T->getLinkage())) { 4319 std::string OutName; 4320 llvm::raw_string_ostream Out(OutName); 4321 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4322 4323 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4324 } else { 4325 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4326 llvm::ArrayRef<llvm::Metadata *>()); 4327 } 4328 4329 return InternalId; 4330 } 4331 4332 /// Returns whether this module needs the "all-vtables" type identifier. 4333 bool CodeGenModule::NeedAllVtablesTypeId() const { 4334 // Returns true if at least one of vtable-based CFI checkers is enabled and 4335 // is not in the trapping mode. 4336 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4337 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4338 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4339 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4340 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4341 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4342 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4343 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4344 } 4345 4346 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4347 CharUnits Offset, 4348 const CXXRecordDecl *RD) { 4349 llvm::Metadata *MD = 4350 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4351 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4352 4353 if (CodeGenOpts.SanitizeCfiCrossDso) 4354 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4355 VTable->addTypeMetadata(Offset.getQuantity(), 4356 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4357 4358 if (NeedAllVtablesTypeId()) { 4359 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4360 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4361 } 4362 } 4363 4364 // Fills in the supplied string map with the set of target features for the 4365 // passed in function. 4366 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4367 const FunctionDecl *FD) { 4368 StringRef TargetCPU = Target.getTargetOpts().CPU; 4369 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4370 // If we have a TargetAttr build up the feature map based on that. 4371 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4372 4373 // Make a copy of the features as passed on the command line into the 4374 // beginning of the additional features from the function to override. 4375 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4376 Target.getTargetOpts().FeaturesAsWritten.begin(), 4377 Target.getTargetOpts().FeaturesAsWritten.end()); 4378 4379 if (ParsedAttr.second != "") 4380 TargetCPU = ParsedAttr.second; 4381 4382 // Now populate the feature map, first with the TargetCPU which is either 4383 // the default or a new one from the target attribute string. Then we'll use 4384 // the passed in features (FeaturesAsWritten) along with the new ones from 4385 // the attribute. 4386 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4387 } else { 4388 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4389 Target.getTargetOpts().Features); 4390 } 4391 } 4392 4393 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4394 if (!SanStats) 4395 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4396 4397 return *SanStats; 4398 } 4399 llvm::Value * 4400 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4401 CodeGenFunction &CGF) { 4402 llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF); 4403 auto SamplerT = getOpenCLRuntime().getSamplerType(); 4404 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4405 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4406 "__translate_sampler_initializer"), 4407 {C}); 4408 } 4409