1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CodeGenTBAA.h" 25 #include "CoverageMappingGen.h" 26 #include "TargetInfo.h" 27 #include "clang/AST/ASTContext.h" 28 #include "clang/AST/CharUnits.h" 29 #include "clang/AST/DeclCXX.h" 30 #include "clang/AST/DeclObjC.h" 31 #include "clang/AST/DeclTemplate.h" 32 #include "clang/AST/Mangle.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/RecursiveASTVisitor.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/CharInfo.h" 37 #include "clang/Basic/Diagnostic.h" 38 #include "clang/Basic/Module.h" 39 #include "clang/Basic/SourceManager.h" 40 #include "clang/Basic/TargetInfo.h" 41 #include "clang/Basic/Version.h" 42 #include "clang/Frontend/CodeGenOptions.h" 43 #include "clang/Sema/SemaDiagnostic.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/Triple.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/CallingConv.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/ProfileData/InstrProfReader.h" 53 #include "llvm/Support/ConvertUTF.h" 54 #include "llvm/Support/ErrorHandling.h" 55 56 using namespace clang; 57 using namespace CodeGen; 58 59 static const char AnnotationSection[] = "llvm.metadata"; 60 61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 62 switch (CGM.getTarget().getCXXABI().getKind()) { 63 case TargetCXXABI::GenericAArch64: 64 case TargetCXXABI::GenericARM: 65 case TargetCXXABI::iOS: 66 case TargetCXXABI::iOS64: 67 case TargetCXXABI::GenericMIPS: 68 case TargetCXXABI::GenericItanium: 69 return CreateItaniumCXXABI(CGM); 70 case TargetCXXABI::Microsoft: 71 return CreateMicrosoftCXXABI(CGM); 72 } 73 74 llvm_unreachable("invalid C++ ABI kind"); 75 } 76 77 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 78 llvm::Module &M, const llvm::DataLayout &TD, 79 DiagnosticsEngine &diags, 80 CoverageSourceInfo *CoverageInfo) 81 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 82 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 83 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 84 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 85 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 86 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 87 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 88 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 89 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 90 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 91 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 92 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 93 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 94 95 // Initialize the type cache. 96 llvm::LLVMContext &LLVMContext = M.getContext(); 97 VoidTy = llvm::Type::getVoidTy(LLVMContext); 98 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 99 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 100 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 101 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 102 FloatTy = llvm::Type::getFloatTy(LLVMContext); 103 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 104 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 105 PointerAlignInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 107 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 108 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 109 Int8PtrTy = Int8Ty->getPointerTo(0); 110 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 111 112 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 113 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 114 115 if (LangOpts.ObjC1) 116 createObjCRuntime(); 117 if (LangOpts.OpenCL) 118 createOpenCLRuntime(); 119 if (LangOpts.OpenMP) 120 createOpenMPRuntime(); 121 if (LangOpts.CUDA) 122 createCUDARuntime(); 123 124 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 125 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 126 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 127 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 128 getCXXABI().getMangleContext()); 129 130 // If debug info or coverage generation is enabled, create the CGDebugInfo 131 // object. 132 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 133 CodeGenOpts.EmitGcovArcs || 134 CodeGenOpts.EmitGcovNotes) 135 DebugInfo = new CGDebugInfo(*this); 136 137 Block.GlobalUniqueCount = 0; 138 139 if (C.getLangOpts().ObjCAutoRefCount) 140 ARCData = new ARCEntrypoints(); 141 RRData = new RREntrypoints(); 142 143 if (!CodeGenOpts.InstrProfileInput.empty()) { 144 auto ReaderOrErr = 145 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 146 if (std::error_code EC = ReaderOrErr.getError()) { 147 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 148 "Could not read profile: %0"); 149 getDiags().Report(DiagID) << EC.message(); 150 } else 151 PGOReader = std::move(ReaderOrErr.get()); 152 } 153 154 // If coverage mapping generation is enabled, create the 155 // CoverageMappingModuleGen object. 156 if (CodeGenOpts.CoverageMapping) 157 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 158 } 159 160 CodeGenModule::~CodeGenModule() { 161 delete ObjCRuntime; 162 delete OpenCLRuntime; 163 delete OpenMPRuntime; 164 delete CUDARuntime; 165 delete TheTargetCodeGenInfo; 166 delete TBAA; 167 delete DebugInfo; 168 delete ARCData; 169 delete RRData; 170 } 171 172 void CodeGenModule::createObjCRuntime() { 173 // This is just isGNUFamily(), but we want to force implementors of 174 // new ABIs to decide how best to do this. 175 switch (LangOpts.ObjCRuntime.getKind()) { 176 case ObjCRuntime::GNUstep: 177 case ObjCRuntime::GCC: 178 case ObjCRuntime::ObjFW: 179 ObjCRuntime = CreateGNUObjCRuntime(*this); 180 return; 181 182 case ObjCRuntime::FragileMacOSX: 183 case ObjCRuntime::MacOSX: 184 case ObjCRuntime::iOS: 185 ObjCRuntime = CreateMacObjCRuntime(*this); 186 return; 187 } 188 llvm_unreachable("bad runtime kind"); 189 } 190 191 void CodeGenModule::createOpenCLRuntime() { 192 OpenCLRuntime = new CGOpenCLRuntime(*this); 193 } 194 195 void CodeGenModule::createOpenMPRuntime() { 196 OpenMPRuntime = new CGOpenMPRuntime(*this); 197 } 198 199 void CodeGenModule::createCUDARuntime() { 200 CUDARuntime = CreateNVCUDARuntime(*this); 201 } 202 203 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 204 Replacements[Name] = C; 205 } 206 207 void CodeGenModule::applyReplacements() { 208 for (ReplacementsTy::iterator I = Replacements.begin(), 209 E = Replacements.end(); 210 I != E; ++I) { 211 StringRef MangledName = I->first(); 212 llvm::Constant *Replacement = I->second; 213 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 214 if (!Entry) 215 continue; 216 auto *OldF = cast<llvm::Function>(Entry); 217 auto *NewF = dyn_cast<llvm::Function>(Replacement); 218 if (!NewF) { 219 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 220 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 221 } else { 222 auto *CE = cast<llvm::ConstantExpr>(Replacement); 223 assert(CE->getOpcode() == llvm::Instruction::BitCast || 224 CE->getOpcode() == llvm::Instruction::GetElementPtr); 225 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 226 } 227 } 228 229 // Replace old with new, but keep the old order. 230 OldF->replaceAllUsesWith(Replacement); 231 if (NewF) { 232 NewF->removeFromParent(); 233 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 234 } 235 OldF->eraseFromParent(); 236 } 237 } 238 239 // This is only used in aliases that we created and we know they have a 240 // linear structure. 241 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 242 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 243 const llvm::Constant *C = &GA; 244 for (;;) { 245 C = C->stripPointerCasts(); 246 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 247 return GO; 248 // stripPointerCasts will not walk over weak aliases. 249 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 250 if (!GA2) 251 return nullptr; 252 if (!Visited.insert(GA2).second) 253 return nullptr; 254 C = GA2->getAliasee(); 255 } 256 } 257 258 void CodeGenModule::checkAliases() { 259 // Check if the constructed aliases are well formed. It is really unfortunate 260 // that we have to do this in CodeGen, but we only construct mangled names 261 // and aliases during codegen. 262 bool Error = false; 263 DiagnosticsEngine &Diags = getDiags(); 264 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 265 E = Aliases.end(); I != E; ++I) { 266 const GlobalDecl &GD = *I; 267 const auto *D = cast<ValueDecl>(GD.getDecl()); 268 const AliasAttr *AA = D->getAttr<AliasAttr>(); 269 StringRef MangledName = getMangledName(GD); 270 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 271 auto *Alias = cast<llvm::GlobalAlias>(Entry); 272 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 273 if (!GV) { 274 Error = true; 275 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 276 } else if (GV->isDeclaration()) { 277 Error = true; 278 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 279 } 280 281 llvm::Constant *Aliasee = Alias->getAliasee(); 282 llvm::GlobalValue *AliaseeGV; 283 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 284 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 285 else 286 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 287 288 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 289 StringRef AliasSection = SA->getName(); 290 if (AliasSection != AliaseeGV->getSection()) 291 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 292 << AliasSection; 293 } 294 295 // We have to handle alias to weak aliases in here. LLVM itself disallows 296 // this since the object semantics would not match the IL one. For 297 // compatibility with gcc we implement it by just pointing the alias 298 // to its aliasee's aliasee. We also warn, since the user is probably 299 // expecting the link to be weak. 300 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 301 if (GA->mayBeOverridden()) { 302 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 303 << GV->getName() << GA->getName(); 304 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 305 GA->getAliasee(), Alias->getType()); 306 Alias->setAliasee(Aliasee); 307 } 308 } 309 } 310 if (!Error) 311 return; 312 313 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 314 E = Aliases.end(); I != E; ++I) { 315 const GlobalDecl &GD = *I; 316 StringRef MangledName = getMangledName(GD); 317 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 318 auto *Alias = cast<llvm::GlobalAlias>(Entry); 319 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 320 Alias->eraseFromParent(); 321 } 322 } 323 324 void CodeGenModule::clear() { 325 DeferredDeclsToEmit.clear(); 326 if (OpenMPRuntime) 327 OpenMPRuntime->clear(); 328 } 329 330 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 331 StringRef MainFile) { 332 if (!hasDiagnostics()) 333 return; 334 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 335 if (MainFile.empty()) 336 MainFile = "<stdin>"; 337 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 338 } else 339 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 340 << Mismatched; 341 } 342 343 void CodeGenModule::Release() { 344 EmitDeferred(); 345 applyReplacements(); 346 checkAliases(); 347 EmitCXXGlobalInitFunc(); 348 EmitCXXGlobalDtorFunc(); 349 EmitCXXThreadLocalInitFunc(); 350 if (ObjCRuntime) 351 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 352 AddGlobalCtor(ObjCInitFunction); 353 if (PGOReader && PGOStats.hasDiagnostics()) 354 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 355 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 356 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 357 EmitGlobalAnnotations(); 358 EmitStaticExternCAliases(); 359 EmitDeferredUnusedCoverageMappings(); 360 if (CoverageMapping) 361 CoverageMapping->emit(); 362 emitLLVMUsed(); 363 364 if (CodeGenOpts.Autolink && 365 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 366 EmitModuleLinkOptions(); 367 } 368 if (CodeGenOpts.DwarfVersion) 369 // We actually want the latest version when there are conflicts. 370 // We can change from Warning to Latest if such mode is supported. 371 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 372 CodeGenOpts.DwarfVersion); 373 if (DebugInfo) 374 // We support a single version in the linked module. The LLVM 375 // parser will drop debug info with a different version number 376 // (and warn about it, too). 377 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 378 llvm::DEBUG_METADATA_VERSION); 379 380 // We need to record the widths of enums and wchar_t, so that we can generate 381 // the correct build attributes in the ARM backend. 382 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 383 if ( Arch == llvm::Triple::arm 384 || Arch == llvm::Triple::armeb 385 || Arch == llvm::Triple::thumb 386 || Arch == llvm::Triple::thumbeb) { 387 // Width of wchar_t in bytes 388 uint64_t WCharWidth = 389 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 390 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 391 392 // The minimum width of an enum in bytes 393 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 394 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 395 } 396 397 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 398 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 399 switch (PLevel) { 400 case 0: break; 401 case 1: PL = llvm::PICLevel::Small; break; 402 case 2: PL = llvm::PICLevel::Large; break; 403 default: llvm_unreachable("Invalid PIC Level"); 404 } 405 406 getModule().setPICLevel(PL); 407 } 408 409 SimplifyPersonality(); 410 411 if (getCodeGenOpts().EmitDeclMetadata) 412 EmitDeclMetadata(); 413 414 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 415 EmitCoverageFile(); 416 417 if (DebugInfo) 418 DebugInfo->finalize(); 419 420 EmitVersionIdentMetadata(); 421 422 EmitTargetMetadata(); 423 } 424 425 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 426 // Make sure that this type is translated. 427 Types.UpdateCompletedType(TD); 428 } 429 430 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 431 if (!TBAA) 432 return nullptr; 433 return TBAA->getTBAAInfo(QTy); 434 } 435 436 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 437 if (!TBAA) 438 return nullptr; 439 return TBAA->getTBAAInfoForVTablePtr(); 440 } 441 442 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 443 if (!TBAA) 444 return nullptr; 445 return TBAA->getTBAAStructInfo(QTy); 446 } 447 448 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 449 if (!TBAA) 450 return nullptr; 451 return TBAA->getTBAAStructTypeInfo(QTy); 452 } 453 454 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 455 llvm::MDNode *AccessN, 456 uint64_t O) { 457 if (!TBAA) 458 return nullptr; 459 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 460 } 461 462 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 463 /// and struct-path aware TBAA, the tag has the same format: 464 /// base type, access type and offset. 465 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 466 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 467 llvm::MDNode *TBAAInfo, 468 bool ConvertTypeToTag) { 469 if (ConvertTypeToTag && TBAA) 470 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 471 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 472 else 473 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 474 } 475 476 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 477 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 478 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 479 } 480 481 /// ErrorUnsupported - Print out an error that codegen doesn't support the 482 /// specified stmt yet. 483 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 484 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 485 "cannot compile this %0 yet"); 486 std::string Msg = Type; 487 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 488 << Msg << S->getSourceRange(); 489 } 490 491 /// ErrorUnsupported - Print out an error that codegen doesn't support the 492 /// specified decl yet. 493 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 494 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 495 "cannot compile this %0 yet"); 496 std::string Msg = Type; 497 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 498 } 499 500 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 501 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 502 } 503 504 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 505 const NamedDecl *D) const { 506 // Internal definitions always have default visibility. 507 if (GV->hasLocalLinkage()) { 508 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 509 return; 510 } 511 512 // Set visibility for definitions. 513 LinkageInfo LV = D->getLinkageAndVisibility(); 514 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 515 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 516 } 517 518 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 519 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 520 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 521 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 522 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 523 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 524 } 525 526 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 527 CodeGenOptions::TLSModel M) { 528 switch (M) { 529 case CodeGenOptions::GeneralDynamicTLSModel: 530 return llvm::GlobalVariable::GeneralDynamicTLSModel; 531 case CodeGenOptions::LocalDynamicTLSModel: 532 return llvm::GlobalVariable::LocalDynamicTLSModel; 533 case CodeGenOptions::InitialExecTLSModel: 534 return llvm::GlobalVariable::InitialExecTLSModel; 535 case CodeGenOptions::LocalExecTLSModel: 536 return llvm::GlobalVariable::LocalExecTLSModel; 537 } 538 llvm_unreachable("Invalid TLS model!"); 539 } 540 541 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 542 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 543 544 llvm::GlobalValue::ThreadLocalMode TLM; 545 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 546 547 // Override the TLS model if it is explicitly specified. 548 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 549 TLM = GetLLVMTLSModel(Attr->getModel()); 550 } 551 552 GV->setThreadLocalMode(TLM); 553 } 554 555 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 556 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 557 if (!FoundStr.empty()) 558 return FoundStr; 559 560 const auto *ND = cast<NamedDecl>(GD.getDecl()); 561 SmallString<256> Buffer; 562 StringRef Str; 563 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 564 llvm::raw_svector_ostream Out(Buffer); 565 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 566 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 567 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 568 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 569 else 570 getCXXABI().getMangleContext().mangleName(ND, Out); 571 Str = Out.str(); 572 } else { 573 IdentifierInfo *II = ND->getIdentifier(); 574 assert(II && "Attempt to mangle unnamed decl."); 575 Str = II->getName(); 576 } 577 578 // Keep the first result in the case of a mangling collision. 579 auto Result = Manglings.insert(std::make_pair(Str, GD)); 580 return FoundStr = Result.first->first(); 581 } 582 583 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 584 const BlockDecl *BD) { 585 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 586 const Decl *D = GD.getDecl(); 587 588 SmallString<256> Buffer; 589 llvm::raw_svector_ostream Out(Buffer); 590 if (!D) 591 MangleCtx.mangleGlobalBlock(BD, 592 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 593 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 594 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 595 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 596 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 597 else 598 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 599 600 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 601 return Result.first->first(); 602 } 603 604 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 605 return getModule().getNamedValue(Name); 606 } 607 608 /// AddGlobalCtor - Add a function to the list that will be called before 609 /// main() runs. 610 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 611 llvm::Constant *AssociatedData) { 612 // FIXME: Type coercion of void()* types. 613 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 614 } 615 616 /// AddGlobalDtor - Add a function to the list that will be called 617 /// when the module is unloaded. 618 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 619 // FIXME: Type coercion of void()* types. 620 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 621 } 622 623 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 624 // Ctor function type is void()*. 625 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 626 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 627 628 // Get the type of a ctor entry, { i32, void ()*, i8* }. 629 llvm::StructType *CtorStructTy = llvm::StructType::get( 630 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 631 632 // Construct the constructor and destructor arrays. 633 SmallVector<llvm::Constant*, 8> Ctors; 634 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 635 llvm::Constant *S[] = { 636 llvm::ConstantInt::get(Int32Ty, I->Priority, false), 637 llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy), 638 (I->AssociatedData 639 ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy) 640 : llvm::Constant::getNullValue(VoidPtrTy)) 641 }; 642 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 643 } 644 645 if (!Ctors.empty()) { 646 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 647 new llvm::GlobalVariable(TheModule, AT, false, 648 llvm::GlobalValue::AppendingLinkage, 649 llvm::ConstantArray::get(AT, Ctors), 650 GlobalName); 651 } 652 } 653 654 llvm::GlobalValue::LinkageTypes 655 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 656 const auto *D = cast<FunctionDecl>(GD.getDecl()); 657 658 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 659 660 if (isa<CXXDestructorDecl>(D) && 661 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 662 GD.getDtorType())) { 663 // Destructor variants in the Microsoft C++ ABI are always internal or 664 // linkonce_odr thunks emitted on an as-needed basis. 665 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 666 : llvm::GlobalValue::LinkOnceODRLinkage; 667 } 668 669 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 670 } 671 672 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 673 llvm::Function *F) { 674 setNonAliasAttributes(D, F); 675 } 676 677 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 678 const CGFunctionInfo &Info, 679 llvm::Function *F) { 680 unsigned CallingConv; 681 AttributeListType AttributeList; 682 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 683 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 684 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 685 } 686 687 /// Determines whether the language options require us to model 688 /// unwind exceptions. We treat -fexceptions as mandating this 689 /// except under the fragile ObjC ABI with only ObjC exceptions 690 /// enabled. This means, for example, that C with -fexceptions 691 /// enables this. 692 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 693 // If exceptions are completely disabled, obviously this is false. 694 if (!LangOpts.Exceptions) return false; 695 696 // If C++ exceptions are enabled, this is true. 697 if (LangOpts.CXXExceptions) return true; 698 699 // If ObjC exceptions are enabled, this depends on the ABI. 700 if (LangOpts.ObjCExceptions) { 701 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 702 } 703 704 return true; 705 } 706 707 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 708 llvm::Function *F) { 709 llvm::AttrBuilder B; 710 711 if (CodeGenOpts.UnwindTables) 712 B.addAttribute(llvm::Attribute::UWTable); 713 714 if (!hasUnwindExceptions(LangOpts)) 715 B.addAttribute(llvm::Attribute::NoUnwind); 716 717 if (D->hasAttr<NakedAttr>()) { 718 // Naked implies noinline: we should not be inlining such functions. 719 B.addAttribute(llvm::Attribute::Naked); 720 B.addAttribute(llvm::Attribute::NoInline); 721 } else if (D->hasAttr<NoDuplicateAttr>()) { 722 B.addAttribute(llvm::Attribute::NoDuplicate); 723 } else if (D->hasAttr<NoInlineAttr>()) { 724 B.addAttribute(llvm::Attribute::NoInline); 725 } else if (D->hasAttr<AlwaysInlineAttr>() && 726 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 727 llvm::Attribute::NoInline)) { 728 // (noinline wins over always_inline, and we can't specify both in IR) 729 B.addAttribute(llvm::Attribute::AlwaysInline); 730 } 731 732 if (D->hasAttr<ColdAttr>()) { 733 if (!D->hasAttr<OptimizeNoneAttr>()) 734 B.addAttribute(llvm::Attribute::OptimizeForSize); 735 B.addAttribute(llvm::Attribute::Cold); 736 } 737 738 if (D->hasAttr<MinSizeAttr>()) 739 B.addAttribute(llvm::Attribute::MinSize); 740 741 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 742 B.addAttribute(llvm::Attribute::StackProtect); 743 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 744 B.addAttribute(llvm::Attribute::StackProtectStrong); 745 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 746 B.addAttribute(llvm::Attribute::StackProtectReq); 747 748 // Add sanitizer attributes if function is not blacklisted. 749 if (!isInSanitizerBlacklist(F, D->getLocation())) { 750 // When AddressSanitizer is enabled, set SanitizeAddress attribute 751 // unless __attribute__((no_sanitize_address)) is used. 752 if (LangOpts.Sanitize.has(SanitizerKind::Address) && 753 !D->hasAttr<NoSanitizeAddressAttr>()) 754 B.addAttribute(llvm::Attribute::SanitizeAddress); 755 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 756 if (LangOpts.Sanitize.has(SanitizerKind::Thread) && 757 !D->hasAttr<NoSanitizeThreadAttr>()) 758 B.addAttribute(llvm::Attribute::SanitizeThread); 759 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 760 if (LangOpts.Sanitize.has(SanitizerKind::Memory) && 761 !D->hasAttr<NoSanitizeMemoryAttr>()) 762 B.addAttribute(llvm::Attribute::SanitizeMemory); 763 } 764 765 F->addAttributes(llvm::AttributeSet::FunctionIndex, 766 llvm::AttributeSet::get( 767 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 768 769 if (D->hasAttr<OptimizeNoneAttr>()) { 770 // OptimizeNone implies noinline; we should not be inlining such functions. 771 F->addFnAttr(llvm::Attribute::OptimizeNone); 772 F->addFnAttr(llvm::Attribute::NoInline); 773 774 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 775 assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) && 776 "OptimizeNone and OptimizeForSize on same function!"); 777 assert(!F->hasFnAttribute(llvm::Attribute::MinSize) && 778 "OptimizeNone and MinSize on same function!"); 779 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 780 "OptimizeNone and AlwaysInline on same function!"); 781 782 // Attribute 'inlinehint' has no effect on 'optnone' functions. 783 // Explicitly remove it from the set of function attributes. 784 F->removeFnAttr(llvm::Attribute::InlineHint); 785 } 786 787 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 788 F->setUnnamedAddr(true); 789 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 790 if (MD->isVirtual()) 791 F->setUnnamedAddr(true); 792 793 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 794 if (alignment) 795 F->setAlignment(alignment); 796 797 // C++ ABI requires 2-byte alignment for member functions. 798 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 799 F->setAlignment(2); 800 } 801 802 void CodeGenModule::SetCommonAttributes(const Decl *D, 803 llvm::GlobalValue *GV) { 804 if (const auto *ND = dyn_cast<NamedDecl>(D)) 805 setGlobalVisibility(GV, ND); 806 else 807 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 808 809 if (D->hasAttr<UsedAttr>()) 810 addUsedGlobal(GV); 811 } 812 813 void CodeGenModule::setAliasAttributes(const Decl *D, 814 llvm::GlobalValue *GV) { 815 SetCommonAttributes(D, GV); 816 817 // Process the dllexport attribute based on whether the original definition 818 // (not necessarily the aliasee) was exported. 819 if (D->hasAttr<DLLExportAttr>()) 820 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 821 } 822 823 void CodeGenModule::setNonAliasAttributes(const Decl *D, 824 llvm::GlobalObject *GO) { 825 SetCommonAttributes(D, GO); 826 827 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 828 GO->setSection(SA->getName()); 829 830 getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this); 831 } 832 833 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 834 llvm::Function *F, 835 const CGFunctionInfo &FI) { 836 SetLLVMFunctionAttributes(D, FI, F); 837 SetLLVMFunctionAttributesForDefinition(D, F); 838 839 F->setLinkage(llvm::Function::InternalLinkage); 840 841 setNonAliasAttributes(D, F); 842 } 843 844 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 845 const NamedDecl *ND) { 846 // Set linkage and visibility in case we never see a definition. 847 LinkageInfo LV = ND->getLinkageAndVisibility(); 848 if (LV.getLinkage() != ExternalLinkage) { 849 // Don't set internal linkage on declarations. 850 } else { 851 if (ND->hasAttr<DLLImportAttr>()) { 852 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 853 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 854 } else if (ND->hasAttr<DLLExportAttr>()) { 855 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 856 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 857 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 858 // "extern_weak" is overloaded in LLVM; we probably should have 859 // separate linkage types for this. 860 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 861 } 862 863 // Set visibility on a declaration only if it's explicit. 864 if (LV.isVisibilityExplicit()) 865 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 866 } 867 } 868 869 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 870 bool IsIncompleteFunction, 871 bool IsThunk) { 872 if (unsigned IID = F->getIntrinsicID()) { 873 // If this is an intrinsic function, set the function's attributes 874 // to the intrinsic's attributes. 875 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 876 (llvm::Intrinsic::ID)IID)); 877 return; 878 } 879 880 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 881 882 if (!IsIncompleteFunction) 883 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 884 885 // Add the Returned attribute for "this", except for iOS 5 and earlier 886 // where substantial code, including the libstdc++ dylib, was compiled with 887 // GCC and does not actually return "this". 888 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 889 !(getTarget().getTriple().isiOS() && 890 getTarget().getTriple().isOSVersionLT(6))) { 891 assert(!F->arg_empty() && 892 F->arg_begin()->getType() 893 ->canLosslesslyBitCastTo(F->getReturnType()) && 894 "unexpected this return"); 895 F->addAttribute(1, llvm::Attribute::Returned); 896 } 897 898 // Only a few attributes are set on declarations; these may later be 899 // overridden by a definition. 900 901 setLinkageAndVisibilityForGV(F, FD); 902 903 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 904 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 905 // Don't dllexport/import destructor thunks. 906 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 907 } 908 } 909 910 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 911 F->setSection(SA->getName()); 912 913 // A replaceable global allocation function does not act like a builtin by 914 // default, only if it is invoked by a new-expression or delete-expression. 915 if (FD->isReplaceableGlobalAllocationFunction()) 916 F->addAttribute(llvm::AttributeSet::FunctionIndex, 917 llvm::Attribute::NoBuiltin); 918 } 919 920 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 921 assert(!GV->isDeclaration() && 922 "Only globals with definition can force usage."); 923 LLVMUsed.push_back(GV); 924 } 925 926 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 927 assert(!GV->isDeclaration() && 928 "Only globals with definition can force usage."); 929 LLVMCompilerUsed.push_back(GV); 930 } 931 932 static void emitUsed(CodeGenModule &CGM, StringRef Name, 933 std::vector<llvm::WeakVH> &List) { 934 // Don't create llvm.used if there is no need. 935 if (List.empty()) 936 return; 937 938 // Convert List to what ConstantArray needs. 939 SmallVector<llvm::Constant*, 8> UsedArray; 940 UsedArray.resize(List.size()); 941 for (unsigned i = 0, e = List.size(); i != e; ++i) { 942 UsedArray[i] = 943 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 944 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 945 } 946 947 if (UsedArray.empty()) 948 return; 949 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 950 951 auto *GV = new llvm::GlobalVariable( 952 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 953 llvm::ConstantArray::get(ATy, UsedArray), Name); 954 955 GV->setSection("llvm.metadata"); 956 } 957 958 void CodeGenModule::emitLLVMUsed() { 959 emitUsed(*this, "llvm.used", LLVMUsed); 960 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 961 } 962 963 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 964 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 965 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 966 } 967 968 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 969 llvm::SmallString<32> Opt; 970 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 971 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 972 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 973 } 974 975 void CodeGenModule::AddDependentLib(StringRef Lib) { 976 llvm::SmallString<24> Opt; 977 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 978 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 979 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 980 } 981 982 /// \brief Add link options implied by the given module, including modules 983 /// it depends on, using a postorder walk. 984 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 985 SmallVectorImpl<llvm::Metadata *> &Metadata, 986 llvm::SmallPtrSet<Module *, 16> &Visited) { 987 // Import this module's parent. 988 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 989 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 990 } 991 992 // Import this module's dependencies. 993 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 994 if (Visited.insert(Mod->Imports[I - 1]).second) 995 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 996 } 997 998 // Add linker options to link against the libraries/frameworks 999 // described by this module. 1000 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1001 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1002 // Link against a framework. Frameworks are currently Darwin only, so we 1003 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1004 if (Mod->LinkLibraries[I-1].IsFramework) { 1005 llvm::Metadata *Args[2] = { 1006 llvm::MDString::get(Context, "-framework"), 1007 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1008 1009 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1010 continue; 1011 } 1012 1013 // Link against a library. 1014 llvm::SmallString<24> Opt; 1015 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1016 Mod->LinkLibraries[I-1].Library, Opt); 1017 auto *OptString = llvm::MDString::get(Context, Opt); 1018 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1019 } 1020 } 1021 1022 void CodeGenModule::EmitModuleLinkOptions() { 1023 // Collect the set of all of the modules we want to visit to emit link 1024 // options, which is essentially the imported modules and all of their 1025 // non-explicit child modules. 1026 llvm::SetVector<clang::Module *> LinkModules; 1027 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1028 SmallVector<clang::Module *, 16> Stack; 1029 1030 // Seed the stack with imported modules. 1031 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 1032 MEnd = ImportedModules.end(); 1033 M != MEnd; ++M) { 1034 if (Visited.insert(*M).second) 1035 Stack.push_back(*M); 1036 } 1037 1038 // Find all of the modules to import, making a little effort to prune 1039 // non-leaf modules. 1040 while (!Stack.empty()) { 1041 clang::Module *Mod = Stack.pop_back_val(); 1042 1043 bool AnyChildren = false; 1044 1045 // Visit the submodules of this module. 1046 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1047 SubEnd = Mod->submodule_end(); 1048 Sub != SubEnd; ++Sub) { 1049 // Skip explicit children; they need to be explicitly imported to be 1050 // linked against. 1051 if ((*Sub)->IsExplicit) 1052 continue; 1053 1054 if (Visited.insert(*Sub).second) { 1055 Stack.push_back(*Sub); 1056 AnyChildren = true; 1057 } 1058 } 1059 1060 // We didn't find any children, so add this module to the list of 1061 // modules to link against. 1062 if (!AnyChildren) { 1063 LinkModules.insert(Mod); 1064 } 1065 } 1066 1067 // Add link options for all of the imported modules in reverse topological 1068 // order. We don't do anything to try to order import link flags with respect 1069 // to linker options inserted by things like #pragma comment(). 1070 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1071 Visited.clear(); 1072 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 1073 MEnd = LinkModules.end(); 1074 M != MEnd; ++M) { 1075 if (Visited.insert(*M).second) 1076 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 1077 } 1078 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1079 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1080 1081 // Add the linker options metadata flag. 1082 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1083 llvm::MDNode::get(getLLVMContext(), 1084 LinkerOptionsMetadata)); 1085 } 1086 1087 void CodeGenModule::EmitDeferred() { 1088 // Emit code for any potentially referenced deferred decls. Since a 1089 // previously unused static decl may become used during the generation of code 1090 // for a static function, iterate until no changes are made. 1091 1092 if (!DeferredVTables.empty()) { 1093 EmitDeferredVTables(); 1094 1095 // Emitting a v-table doesn't directly cause more v-tables to 1096 // become deferred, although it can cause functions to be 1097 // emitted that then need those v-tables. 1098 assert(DeferredVTables.empty()); 1099 } 1100 1101 // Stop if we're out of both deferred v-tables and deferred declarations. 1102 if (DeferredDeclsToEmit.empty()) 1103 return; 1104 1105 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1106 // work, it will not interfere with this. 1107 std::vector<DeferredGlobal> CurDeclsToEmit; 1108 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1109 1110 for (DeferredGlobal &G : CurDeclsToEmit) { 1111 GlobalDecl D = G.GD; 1112 llvm::GlobalValue *GV = G.GV; 1113 G.GV = nullptr; 1114 1115 assert(!GV || GV == GetGlobalValue(getMangledName(D))); 1116 if (!GV) 1117 GV = GetGlobalValue(getMangledName(D)); 1118 1119 // Check to see if we've already emitted this. This is necessary 1120 // for a couple of reasons: first, decls can end up in the 1121 // deferred-decls queue multiple times, and second, decls can end 1122 // up with definitions in unusual ways (e.g. by an extern inline 1123 // function acquiring a strong function redefinition). Just 1124 // ignore these cases. 1125 if (GV && !GV->isDeclaration()) 1126 continue; 1127 1128 // Otherwise, emit the definition and move on to the next one. 1129 EmitGlobalDefinition(D, GV); 1130 1131 // If we found out that we need to emit more decls, do that recursively. 1132 // This has the advantage that the decls are emitted in a DFS and related 1133 // ones are close together, which is convenient for testing. 1134 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1135 EmitDeferred(); 1136 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1137 } 1138 } 1139 } 1140 1141 void CodeGenModule::EmitGlobalAnnotations() { 1142 if (Annotations.empty()) 1143 return; 1144 1145 // Create a new global variable for the ConstantStruct in the Module. 1146 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1147 Annotations[0]->getType(), Annotations.size()), Annotations); 1148 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1149 llvm::GlobalValue::AppendingLinkage, 1150 Array, "llvm.global.annotations"); 1151 gv->setSection(AnnotationSection); 1152 } 1153 1154 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1155 llvm::Constant *&AStr = AnnotationStrings[Str]; 1156 if (AStr) 1157 return AStr; 1158 1159 // Not found yet, create a new global. 1160 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1161 auto *gv = 1162 new llvm::GlobalVariable(getModule(), s->getType(), true, 1163 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1164 gv->setSection(AnnotationSection); 1165 gv->setUnnamedAddr(true); 1166 AStr = gv; 1167 return gv; 1168 } 1169 1170 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1171 SourceManager &SM = getContext().getSourceManager(); 1172 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1173 if (PLoc.isValid()) 1174 return EmitAnnotationString(PLoc.getFilename()); 1175 return EmitAnnotationString(SM.getBufferName(Loc)); 1176 } 1177 1178 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1179 SourceManager &SM = getContext().getSourceManager(); 1180 PresumedLoc PLoc = SM.getPresumedLoc(L); 1181 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1182 SM.getExpansionLineNumber(L); 1183 return llvm::ConstantInt::get(Int32Ty, LineNo); 1184 } 1185 1186 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1187 const AnnotateAttr *AA, 1188 SourceLocation L) { 1189 // Get the globals for file name, annotation, and the line number. 1190 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1191 *UnitGV = EmitAnnotationUnit(L), 1192 *LineNoCst = EmitAnnotationLineNo(L); 1193 1194 // Create the ConstantStruct for the global annotation. 1195 llvm::Constant *Fields[4] = { 1196 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1197 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1198 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1199 LineNoCst 1200 }; 1201 return llvm::ConstantStruct::getAnon(Fields); 1202 } 1203 1204 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1205 llvm::GlobalValue *GV) { 1206 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1207 // Get the struct elements for these annotations. 1208 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1209 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1210 } 1211 1212 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1213 SourceLocation Loc) const { 1214 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1215 // Blacklist by function name. 1216 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1217 return true; 1218 // Blacklist by location. 1219 if (!Loc.isInvalid()) 1220 return SanitizerBL.isBlacklistedLocation(Loc); 1221 // If location is unknown, this may be a compiler-generated function. Assume 1222 // it's located in the main file. 1223 auto &SM = Context.getSourceManager(); 1224 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1225 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1226 } 1227 return false; 1228 } 1229 1230 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1231 SourceLocation Loc, QualType Ty, 1232 StringRef Category) const { 1233 // For now globals can be blacklisted only in ASan. 1234 if (!LangOpts.Sanitize.has(SanitizerKind::Address)) 1235 return false; 1236 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1237 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1238 return true; 1239 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1240 return true; 1241 // Check global type. 1242 if (!Ty.isNull()) { 1243 // Drill down the array types: if global variable of a fixed type is 1244 // blacklisted, we also don't instrument arrays of them. 1245 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1246 Ty = AT->getElementType(); 1247 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1248 // We allow to blacklist only record types (classes, structs etc.) 1249 if (Ty->isRecordType()) { 1250 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1251 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1252 return true; 1253 } 1254 } 1255 return false; 1256 } 1257 1258 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1259 // Never defer when EmitAllDecls is specified. 1260 if (LangOpts.EmitAllDecls) 1261 return true; 1262 1263 return getContext().DeclMustBeEmitted(Global); 1264 } 1265 1266 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1267 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1268 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1269 // Implicit template instantiations may change linkage if they are later 1270 // explicitly instantiated, so they should not be emitted eagerly. 1271 return false; 1272 1273 return true; 1274 } 1275 1276 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1277 const CXXUuidofExpr* E) { 1278 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1279 // well-formed. 1280 StringRef Uuid = E->getUuidAsStringRef(Context); 1281 std::string Name = "_GUID_" + Uuid.lower(); 1282 std::replace(Name.begin(), Name.end(), '-', '_'); 1283 1284 // Look for an existing global. 1285 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1286 return GV; 1287 1288 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1289 assert(Init && "failed to initialize as constant"); 1290 1291 auto *GV = new llvm::GlobalVariable( 1292 getModule(), Init->getType(), 1293 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1294 if (supportsCOMDAT()) 1295 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1296 return GV; 1297 } 1298 1299 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1300 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1301 assert(AA && "No alias?"); 1302 1303 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1304 1305 // See if there is already something with the target's name in the module. 1306 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1307 if (Entry) { 1308 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1309 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1310 } 1311 1312 llvm::Constant *Aliasee; 1313 if (isa<llvm::FunctionType>(DeclTy)) 1314 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1315 GlobalDecl(cast<FunctionDecl>(VD)), 1316 /*ForVTable=*/false); 1317 else 1318 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1319 llvm::PointerType::getUnqual(DeclTy), 1320 nullptr); 1321 1322 auto *F = cast<llvm::GlobalValue>(Aliasee); 1323 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1324 WeakRefReferences.insert(F); 1325 1326 return Aliasee; 1327 } 1328 1329 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1330 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1331 1332 // Weak references don't produce any output by themselves. 1333 if (Global->hasAttr<WeakRefAttr>()) 1334 return; 1335 1336 // If this is an alias definition (which otherwise looks like a declaration) 1337 // emit it now. 1338 if (Global->hasAttr<AliasAttr>()) 1339 return EmitAliasDefinition(GD); 1340 1341 // If this is CUDA, be selective about which declarations we emit. 1342 if (LangOpts.CUDA) { 1343 if (LangOpts.CUDAIsDevice) { 1344 if (!Global->hasAttr<CUDADeviceAttr>() && 1345 !Global->hasAttr<CUDAGlobalAttr>() && 1346 !Global->hasAttr<CUDAConstantAttr>() && 1347 !Global->hasAttr<CUDASharedAttr>()) 1348 return; 1349 } else { 1350 if (!Global->hasAttr<CUDAHostAttr>() && ( 1351 Global->hasAttr<CUDADeviceAttr>() || 1352 Global->hasAttr<CUDAConstantAttr>() || 1353 Global->hasAttr<CUDASharedAttr>())) 1354 return; 1355 } 1356 } 1357 1358 // Ignore declarations, they will be emitted on their first use. 1359 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1360 // Forward declarations are emitted lazily on first use. 1361 if (!FD->doesThisDeclarationHaveABody()) { 1362 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1363 return; 1364 1365 StringRef MangledName = getMangledName(GD); 1366 1367 // Compute the function info and LLVM type. 1368 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1369 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1370 1371 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1372 /*DontDefer=*/false); 1373 return; 1374 } 1375 } else { 1376 const auto *VD = cast<VarDecl>(Global); 1377 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1378 1379 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1380 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1381 return; 1382 } 1383 1384 // Defer code generation to first use when possible, e.g. if this is an inline 1385 // function. If the global must always be emitted, do it eagerly if possible 1386 // to benefit from cache locality. 1387 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1388 // Emit the definition if it can't be deferred. 1389 EmitGlobalDefinition(GD); 1390 return; 1391 } 1392 1393 // If we're deferring emission of a C++ variable with an 1394 // initializer, remember the order in which it appeared in the file. 1395 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1396 cast<VarDecl>(Global)->hasInit()) { 1397 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1398 CXXGlobalInits.push_back(nullptr); 1399 } 1400 1401 StringRef MangledName = getMangledName(GD); 1402 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1403 // The value has already been used and should therefore be emitted. 1404 addDeferredDeclToEmit(GV, GD); 1405 } else if (MustBeEmitted(Global)) { 1406 // The value must be emitted, but cannot be emitted eagerly. 1407 assert(!MayBeEmittedEagerly(Global)); 1408 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1409 } else { 1410 // Otherwise, remember that we saw a deferred decl with this name. The 1411 // first use of the mangled name will cause it to move into 1412 // DeferredDeclsToEmit. 1413 DeferredDecls[MangledName] = GD; 1414 } 1415 } 1416 1417 namespace { 1418 struct FunctionIsDirectlyRecursive : 1419 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1420 const StringRef Name; 1421 const Builtin::Context &BI; 1422 bool Result; 1423 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1424 Name(N), BI(C), Result(false) { 1425 } 1426 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1427 1428 bool TraverseCallExpr(CallExpr *E) { 1429 const FunctionDecl *FD = E->getDirectCallee(); 1430 if (!FD) 1431 return true; 1432 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1433 if (Attr && Name == Attr->getLabel()) { 1434 Result = true; 1435 return false; 1436 } 1437 unsigned BuiltinID = FD->getBuiltinID(); 1438 if (!BuiltinID) 1439 return true; 1440 StringRef BuiltinName = BI.GetName(BuiltinID); 1441 if (BuiltinName.startswith("__builtin_") && 1442 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1443 Result = true; 1444 return false; 1445 } 1446 return true; 1447 } 1448 }; 1449 } 1450 1451 // isTriviallyRecursive - Check if this function calls another 1452 // decl that, because of the asm attribute or the other decl being a builtin, 1453 // ends up pointing to itself. 1454 bool 1455 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1456 StringRef Name; 1457 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1458 // asm labels are a special kind of mangling we have to support. 1459 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1460 if (!Attr) 1461 return false; 1462 Name = Attr->getLabel(); 1463 } else { 1464 Name = FD->getName(); 1465 } 1466 1467 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1468 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1469 return Walker.Result; 1470 } 1471 1472 bool 1473 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1474 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1475 return true; 1476 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1477 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1478 return false; 1479 // PR9614. Avoid cases where the source code is lying to us. An available 1480 // externally function should have an equivalent function somewhere else, 1481 // but a function that calls itself is clearly not equivalent to the real 1482 // implementation. 1483 // This happens in glibc's btowc and in some configure checks. 1484 return !isTriviallyRecursive(F); 1485 } 1486 1487 /// If the type for the method's class was generated by 1488 /// CGDebugInfo::createContextChain(), the cache contains only a 1489 /// limited DIType without any declarations. Since EmitFunctionStart() 1490 /// needs to find the canonical declaration for each method, we need 1491 /// to construct the complete type prior to emitting the method. 1492 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1493 if (!D->isInstance()) 1494 return; 1495 1496 if (CGDebugInfo *DI = getModuleDebugInfo()) 1497 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1498 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1499 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1500 } 1501 } 1502 1503 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1504 const auto *D = cast<ValueDecl>(GD.getDecl()); 1505 1506 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1507 Context.getSourceManager(), 1508 "Generating code for declaration"); 1509 1510 if (isa<FunctionDecl>(D)) { 1511 // At -O0, don't generate IR for functions with available_externally 1512 // linkage. 1513 if (!shouldEmitFunction(GD)) 1514 return; 1515 1516 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1517 CompleteDIClassType(Method); 1518 // Make sure to emit the definition(s) before we emit the thunks. 1519 // This is necessary for the generation of certain thunks. 1520 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1521 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1522 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1523 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1524 else 1525 EmitGlobalFunctionDefinition(GD, GV); 1526 1527 if (Method->isVirtual()) 1528 getVTables().EmitThunks(GD); 1529 1530 return; 1531 } 1532 1533 return EmitGlobalFunctionDefinition(GD, GV); 1534 } 1535 1536 if (const auto *VD = dyn_cast<VarDecl>(D)) 1537 return EmitGlobalVarDefinition(VD); 1538 1539 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1540 } 1541 1542 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1543 /// module, create and return an llvm Function with the specified type. If there 1544 /// is something in the module with the specified name, return it potentially 1545 /// bitcasted to the right type. 1546 /// 1547 /// If D is non-null, it specifies a decl that correspond to this. This is used 1548 /// to set the attributes on the function when it is first created. 1549 llvm::Constant * 1550 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1551 llvm::Type *Ty, 1552 GlobalDecl GD, bool ForVTable, 1553 bool DontDefer, bool IsThunk, 1554 llvm::AttributeSet ExtraAttrs) { 1555 const Decl *D = GD.getDecl(); 1556 1557 // Lookup the entry, lazily creating it if necessary. 1558 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1559 if (Entry) { 1560 if (WeakRefReferences.erase(Entry)) { 1561 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1562 if (FD && !FD->hasAttr<WeakAttr>()) 1563 Entry->setLinkage(llvm::Function::ExternalLinkage); 1564 } 1565 1566 // Handle dropped DLL attributes. 1567 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1568 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1569 1570 if (Entry->getType()->getElementType() == Ty) 1571 return Entry; 1572 1573 // Make sure the result is of the correct type. 1574 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1575 } 1576 1577 // This function doesn't have a complete type (for example, the return 1578 // type is an incomplete struct). Use a fake type instead, and make 1579 // sure not to try to set attributes. 1580 bool IsIncompleteFunction = false; 1581 1582 llvm::FunctionType *FTy; 1583 if (isa<llvm::FunctionType>(Ty)) { 1584 FTy = cast<llvm::FunctionType>(Ty); 1585 } else { 1586 FTy = llvm::FunctionType::get(VoidTy, false); 1587 IsIncompleteFunction = true; 1588 } 1589 1590 llvm::Function *F = llvm::Function::Create(FTy, 1591 llvm::Function::ExternalLinkage, 1592 MangledName, &getModule()); 1593 assert(F->getName() == MangledName && "name was uniqued!"); 1594 if (D) 1595 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1596 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1597 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1598 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1599 llvm::AttributeSet::get(VMContext, 1600 llvm::AttributeSet::FunctionIndex, 1601 B)); 1602 } 1603 1604 if (!DontDefer) { 1605 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1606 // each other bottoming out with the base dtor. Therefore we emit non-base 1607 // dtors on usage, even if there is no dtor definition in the TU. 1608 if (D && isa<CXXDestructorDecl>(D) && 1609 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1610 GD.getDtorType())) 1611 addDeferredDeclToEmit(F, GD); 1612 1613 // This is the first use or definition of a mangled name. If there is a 1614 // deferred decl with this name, remember that we need to emit it at the end 1615 // of the file. 1616 auto DDI = DeferredDecls.find(MangledName); 1617 if (DDI != DeferredDecls.end()) { 1618 // Move the potentially referenced deferred decl to the 1619 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1620 // don't need it anymore). 1621 addDeferredDeclToEmit(F, DDI->second); 1622 DeferredDecls.erase(DDI); 1623 1624 // Otherwise, there are cases we have to worry about where we're 1625 // using a declaration for which we must emit a definition but where 1626 // we might not find a top-level definition: 1627 // - member functions defined inline in their classes 1628 // - friend functions defined inline in some class 1629 // - special member functions with implicit definitions 1630 // If we ever change our AST traversal to walk into class methods, 1631 // this will be unnecessary. 1632 // 1633 // We also don't emit a definition for a function if it's going to be an 1634 // entry in a vtable, unless it's already marked as used. 1635 } else if (getLangOpts().CPlusPlus && D) { 1636 // Look for a declaration that's lexically in a record. 1637 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1638 FD = FD->getPreviousDecl()) { 1639 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1640 if (FD->doesThisDeclarationHaveABody()) { 1641 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1642 break; 1643 } 1644 } 1645 } 1646 } 1647 } 1648 1649 // Make sure the result is of the requested type. 1650 if (!IsIncompleteFunction) { 1651 assert(F->getType()->getElementType() == Ty); 1652 return F; 1653 } 1654 1655 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1656 return llvm::ConstantExpr::getBitCast(F, PTy); 1657 } 1658 1659 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1660 /// non-null, then this function will use the specified type if it has to 1661 /// create it (this occurs when we see a definition of the function). 1662 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1663 llvm::Type *Ty, 1664 bool ForVTable, 1665 bool DontDefer) { 1666 // If there was no specific requested type, just convert it now. 1667 if (!Ty) 1668 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1669 1670 StringRef MangledName = getMangledName(GD); 1671 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1672 } 1673 1674 /// CreateRuntimeFunction - Create a new runtime function with the specified 1675 /// type and name. 1676 llvm::Constant * 1677 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1678 StringRef Name, 1679 llvm::AttributeSet ExtraAttrs) { 1680 llvm::Constant *C = 1681 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1682 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1683 if (auto *F = dyn_cast<llvm::Function>(C)) 1684 if (F->empty()) 1685 F->setCallingConv(getRuntimeCC()); 1686 return C; 1687 } 1688 1689 /// CreateBuiltinFunction - Create a new builtin function with the specified 1690 /// type and name. 1691 llvm::Constant * 1692 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1693 StringRef Name, 1694 llvm::AttributeSet ExtraAttrs) { 1695 llvm::Constant *C = 1696 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1697 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1698 if (auto *F = dyn_cast<llvm::Function>(C)) 1699 if (F->empty()) 1700 F->setCallingConv(getBuiltinCC()); 1701 return C; 1702 } 1703 1704 /// isTypeConstant - Determine whether an object of this type can be emitted 1705 /// as a constant. 1706 /// 1707 /// If ExcludeCtor is true, the duration when the object's constructor runs 1708 /// will not be considered. The caller will need to verify that the object is 1709 /// not written to during its construction. 1710 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1711 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1712 return false; 1713 1714 if (Context.getLangOpts().CPlusPlus) { 1715 if (const CXXRecordDecl *Record 1716 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1717 return ExcludeCtor && !Record->hasMutableFields() && 1718 Record->hasTrivialDestructor(); 1719 } 1720 1721 return true; 1722 } 1723 1724 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1725 /// create and return an llvm GlobalVariable with the specified type. If there 1726 /// is something in the module with the specified name, return it potentially 1727 /// bitcasted to the right type. 1728 /// 1729 /// If D is non-null, it specifies a decl that correspond to this. This is used 1730 /// to set the attributes on the global when it is first created. 1731 llvm::Constant * 1732 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1733 llvm::PointerType *Ty, 1734 const VarDecl *D) { 1735 // Lookup the entry, lazily creating it if necessary. 1736 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1737 if (Entry) { 1738 if (WeakRefReferences.erase(Entry)) { 1739 if (D && !D->hasAttr<WeakAttr>()) 1740 Entry->setLinkage(llvm::Function::ExternalLinkage); 1741 } 1742 1743 // Handle dropped DLL attributes. 1744 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1745 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1746 1747 if (Entry->getType() == Ty) 1748 return Entry; 1749 1750 // Make sure the result is of the correct type. 1751 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1752 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1753 1754 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1755 } 1756 1757 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1758 auto *GV = new llvm::GlobalVariable( 1759 getModule(), Ty->getElementType(), false, 1760 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1761 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1762 1763 // This is the first use or definition of a mangled name. If there is a 1764 // deferred decl with this name, remember that we need to emit it at the end 1765 // of the file. 1766 auto DDI = DeferredDecls.find(MangledName); 1767 if (DDI != DeferredDecls.end()) { 1768 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1769 // list, and remove it from DeferredDecls (since we don't need it anymore). 1770 addDeferredDeclToEmit(GV, DDI->second); 1771 DeferredDecls.erase(DDI); 1772 } 1773 1774 // Handle things which are present even on external declarations. 1775 if (D) { 1776 // FIXME: This code is overly simple and should be merged with other global 1777 // handling. 1778 GV->setConstant(isTypeConstant(D->getType(), false)); 1779 1780 setLinkageAndVisibilityForGV(GV, D); 1781 1782 if (D->getTLSKind()) { 1783 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1784 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1785 setTLSMode(GV, *D); 1786 } 1787 1788 // If required by the ABI, treat declarations of static data members with 1789 // inline initializers as definitions. 1790 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1791 EmitGlobalVarDefinition(D); 1792 } 1793 1794 // Handle XCore specific ABI requirements. 1795 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1796 D->getLanguageLinkage() == CLanguageLinkage && 1797 D->getType().isConstant(Context) && 1798 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1799 GV->setSection(".cp.rodata"); 1800 } 1801 1802 if (AddrSpace != Ty->getAddressSpace()) 1803 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1804 1805 return GV; 1806 } 1807 1808 1809 llvm::GlobalVariable * 1810 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1811 llvm::Type *Ty, 1812 llvm::GlobalValue::LinkageTypes Linkage) { 1813 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1814 llvm::GlobalVariable *OldGV = nullptr; 1815 1816 if (GV) { 1817 // Check if the variable has the right type. 1818 if (GV->getType()->getElementType() == Ty) 1819 return GV; 1820 1821 // Because C++ name mangling, the only way we can end up with an already 1822 // existing global with the same name is if it has been declared extern "C". 1823 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1824 OldGV = GV; 1825 } 1826 1827 // Create a new variable. 1828 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1829 Linkage, nullptr, Name); 1830 1831 if (OldGV) { 1832 // Replace occurrences of the old variable if needed. 1833 GV->takeName(OldGV); 1834 1835 if (!OldGV->use_empty()) { 1836 llvm::Constant *NewPtrForOldDecl = 1837 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1838 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1839 } 1840 1841 OldGV->eraseFromParent(); 1842 } 1843 1844 if (supportsCOMDAT() && GV->isWeakForLinker() && 1845 !GV->hasAvailableExternallyLinkage()) 1846 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1847 1848 return GV; 1849 } 1850 1851 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1852 /// given global variable. If Ty is non-null and if the global doesn't exist, 1853 /// then it will be created with the specified type instead of whatever the 1854 /// normal requested type would be. 1855 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1856 llvm::Type *Ty) { 1857 assert(D->hasGlobalStorage() && "Not a global variable"); 1858 QualType ASTTy = D->getType(); 1859 if (!Ty) 1860 Ty = getTypes().ConvertTypeForMem(ASTTy); 1861 1862 llvm::PointerType *PTy = 1863 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1864 1865 StringRef MangledName = getMangledName(D); 1866 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1867 } 1868 1869 /// CreateRuntimeVariable - Create a new runtime global variable with the 1870 /// specified type and name. 1871 llvm::Constant * 1872 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1873 StringRef Name) { 1874 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1875 } 1876 1877 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1878 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1879 1880 if (!MustBeEmitted(D)) { 1881 // If we have not seen a reference to this variable yet, place it 1882 // into the deferred declarations table to be emitted if needed 1883 // later. 1884 StringRef MangledName = getMangledName(D); 1885 if (!GetGlobalValue(MangledName)) { 1886 DeferredDecls[MangledName] = D; 1887 return; 1888 } 1889 } 1890 1891 // The tentative definition is the only definition. 1892 EmitGlobalVarDefinition(D); 1893 } 1894 1895 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1896 return Context.toCharUnitsFromBits( 1897 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1898 } 1899 1900 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1901 unsigned AddrSpace) { 1902 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 1903 if (D->hasAttr<CUDAConstantAttr>()) 1904 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1905 else if (D->hasAttr<CUDASharedAttr>()) 1906 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1907 else 1908 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1909 } 1910 1911 return AddrSpace; 1912 } 1913 1914 template<typename SomeDecl> 1915 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1916 llvm::GlobalValue *GV) { 1917 if (!getLangOpts().CPlusPlus) 1918 return; 1919 1920 // Must have 'used' attribute, or else inline assembly can't rely on 1921 // the name existing. 1922 if (!D->template hasAttr<UsedAttr>()) 1923 return; 1924 1925 // Must have internal linkage and an ordinary name. 1926 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1927 return; 1928 1929 // Must be in an extern "C" context. Entities declared directly within 1930 // a record are not extern "C" even if the record is in such a context. 1931 const SomeDecl *First = D->getFirstDecl(); 1932 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1933 return; 1934 1935 // OK, this is an internal linkage entity inside an extern "C" linkage 1936 // specification. Make a note of that so we can give it the "expected" 1937 // mangled name if nothing else is using that name. 1938 std::pair<StaticExternCMap::iterator, bool> R = 1939 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1940 1941 // If we have multiple internal linkage entities with the same name 1942 // in extern "C" regions, none of them gets that name. 1943 if (!R.second) 1944 R.first->second = nullptr; 1945 } 1946 1947 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 1948 if (!CGM.supportsCOMDAT()) 1949 return false; 1950 1951 if (D.hasAttr<SelectAnyAttr>()) 1952 return true; 1953 1954 GVALinkage Linkage; 1955 if (auto *VD = dyn_cast<VarDecl>(&D)) 1956 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 1957 else 1958 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 1959 1960 switch (Linkage) { 1961 case GVA_Internal: 1962 case GVA_AvailableExternally: 1963 case GVA_StrongExternal: 1964 return false; 1965 case GVA_DiscardableODR: 1966 case GVA_StrongODR: 1967 return true; 1968 } 1969 llvm_unreachable("No such linkage"); 1970 } 1971 1972 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 1973 llvm::GlobalObject &GO) { 1974 if (!shouldBeInCOMDAT(*this, D)) 1975 return; 1976 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 1977 } 1978 1979 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1980 llvm::Constant *Init = nullptr; 1981 QualType ASTTy = D->getType(); 1982 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1983 bool NeedsGlobalCtor = false; 1984 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1985 1986 const VarDecl *InitDecl; 1987 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1988 1989 if (!InitExpr) { 1990 // This is a tentative definition; tentative definitions are 1991 // implicitly initialized with { 0 }. 1992 // 1993 // Note that tentative definitions are only emitted at the end of 1994 // a translation unit, so they should never have incomplete 1995 // type. In addition, EmitTentativeDefinition makes sure that we 1996 // never attempt to emit a tentative definition if a real one 1997 // exists. A use may still exists, however, so we still may need 1998 // to do a RAUW. 1999 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2000 Init = EmitNullConstant(D->getType()); 2001 } else { 2002 initializedGlobalDecl = GlobalDecl(D); 2003 Init = EmitConstantInit(*InitDecl); 2004 2005 if (!Init) { 2006 QualType T = InitExpr->getType(); 2007 if (D->getType()->isReferenceType()) 2008 T = D->getType(); 2009 2010 if (getLangOpts().CPlusPlus) { 2011 Init = EmitNullConstant(T); 2012 NeedsGlobalCtor = true; 2013 } else { 2014 ErrorUnsupported(D, "static initializer"); 2015 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2016 } 2017 } else { 2018 // We don't need an initializer, so remove the entry for the delayed 2019 // initializer position (just in case this entry was delayed) if we 2020 // also don't need to register a destructor. 2021 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2022 DelayedCXXInitPosition.erase(D); 2023 } 2024 } 2025 2026 llvm::Type* InitType = Init->getType(); 2027 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2028 2029 // Strip off a bitcast if we got one back. 2030 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2031 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2032 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2033 // All zero index gep. 2034 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2035 Entry = CE->getOperand(0); 2036 } 2037 2038 // Entry is now either a Function or GlobalVariable. 2039 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2040 2041 // We have a definition after a declaration with the wrong type. 2042 // We must make a new GlobalVariable* and update everything that used OldGV 2043 // (a declaration or tentative definition) with the new GlobalVariable* 2044 // (which will be a definition). 2045 // 2046 // This happens if there is a prototype for a global (e.g. 2047 // "extern int x[];") and then a definition of a different type (e.g. 2048 // "int x[10];"). This also happens when an initializer has a different type 2049 // from the type of the global (this happens with unions). 2050 if (!GV || 2051 GV->getType()->getElementType() != InitType || 2052 GV->getType()->getAddressSpace() != 2053 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2054 2055 // Move the old entry aside so that we'll create a new one. 2056 Entry->setName(StringRef()); 2057 2058 // Make a new global with the correct type, this is now guaranteed to work. 2059 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2060 2061 // Replace all uses of the old global with the new global 2062 llvm::Constant *NewPtrForOldDecl = 2063 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2064 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2065 2066 // Erase the old global, since it is no longer used. 2067 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2068 } 2069 2070 MaybeHandleStaticInExternC(D, GV); 2071 2072 if (D->hasAttr<AnnotateAttr>()) 2073 AddGlobalAnnotations(D, GV); 2074 2075 GV->setInitializer(Init); 2076 2077 // If it is safe to mark the global 'constant', do so now. 2078 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2079 isTypeConstant(D->getType(), true)); 2080 2081 // If it is in a read-only section, mark it 'constant'. 2082 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2083 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2084 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2085 GV->setConstant(true); 2086 } 2087 2088 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2089 2090 // Set the llvm linkage type as appropriate. 2091 llvm::GlobalValue::LinkageTypes Linkage = 2092 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2093 2094 // On Darwin, the backing variable for a C++11 thread_local variable always 2095 // has internal linkage; all accesses should just be calls to the 2096 // Itanium-specified entry point, which has the normal linkage of the 2097 // variable. 2098 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2099 Context.getTargetInfo().getTriple().isMacOSX()) 2100 Linkage = llvm::GlobalValue::InternalLinkage; 2101 2102 GV->setLinkage(Linkage); 2103 if (D->hasAttr<DLLImportAttr>()) 2104 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2105 else if (D->hasAttr<DLLExportAttr>()) 2106 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2107 else 2108 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2109 2110 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2111 // common vars aren't constant even if declared const. 2112 GV->setConstant(false); 2113 2114 setNonAliasAttributes(D, GV); 2115 2116 if (D->getTLSKind() && !GV->isThreadLocal()) { 2117 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2118 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2119 setTLSMode(GV, *D); 2120 } 2121 2122 maybeSetTrivialComdat(*D, *GV); 2123 2124 // Emit the initializer function if necessary. 2125 if (NeedsGlobalCtor || NeedsGlobalDtor) 2126 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2127 2128 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2129 2130 // Emit global variable debug information. 2131 if (CGDebugInfo *DI = getModuleDebugInfo()) 2132 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2133 DI->EmitGlobalVariable(GV, D); 2134 } 2135 2136 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2137 const VarDecl *D, bool NoCommon) { 2138 // Don't give variables common linkage if -fno-common was specified unless it 2139 // was overridden by a NoCommon attribute. 2140 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2141 return true; 2142 2143 // C11 6.9.2/2: 2144 // A declaration of an identifier for an object that has file scope without 2145 // an initializer, and without a storage-class specifier or with the 2146 // storage-class specifier static, constitutes a tentative definition. 2147 if (D->getInit() || D->hasExternalStorage()) 2148 return true; 2149 2150 // A variable cannot be both common and exist in a section. 2151 if (D->hasAttr<SectionAttr>()) 2152 return true; 2153 2154 // Thread local vars aren't considered common linkage. 2155 if (D->getTLSKind()) 2156 return true; 2157 2158 // Tentative definitions marked with WeakImportAttr are true definitions. 2159 if (D->hasAttr<WeakImportAttr>()) 2160 return true; 2161 2162 // Declarations with a required alignment do not have common linakge in MSVC 2163 // mode. 2164 if (Context.getLangOpts().MSVCCompat) { 2165 if (D->hasAttr<AlignedAttr>()) 2166 return true; 2167 QualType VarType = D->getType(); 2168 if (Context.isAlignmentRequired(VarType)) 2169 return true; 2170 2171 if (const auto *RT = VarType->getAs<RecordType>()) { 2172 const RecordDecl *RD = RT->getDecl(); 2173 for (const FieldDecl *FD : RD->fields()) { 2174 if (FD->isBitField()) 2175 continue; 2176 if (FD->hasAttr<AlignedAttr>()) 2177 return true; 2178 if (Context.isAlignmentRequired(FD->getType())) 2179 return true; 2180 } 2181 } 2182 } 2183 2184 return false; 2185 } 2186 2187 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2188 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2189 if (Linkage == GVA_Internal) 2190 return llvm::Function::InternalLinkage; 2191 2192 if (D->hasAttr<WeakAttr>()) { 2193 if (IsConstantVariable) 2194 return llvm::GlobalVariable::WeakODRLinkage; 2195 else 2196 return llvm::GlobalVariable::WeakAnyLinkage; 2197 } 2198 2199 // We are guaranteed to have a strong definition somewhere else, 2200 // so we can use available_externally linkage. 2201 if (Linkage == GVA_AvailableExternally) 2202 return llvm::Function::AvailableExternallyLinkage; 2203 2204 // Note that Apple's kernel linker doesn't support symbol 2205 // coalescing, so we need to avoid linkonce and weak linkages there. 2206 // Normally, this means we just map to internal, but for explicit 2207 // instantiations we'll map to external. 2208 2209 // In C++, the compiler has to emit a definition in every translation unit 2210 // that references the function. We should use linkonce_odr because 2211 // a) if all references in this translation unit are optimized away, we 2212 // don't need to codegen it. b) if the function persists, it needs to be 2213 // merged with other definitions. c) C++ has the ODR, so we know the 2214 // definition is dependable. 2215 if (Linkage == GVA_DiscardableODR) 2216 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2217 : llvm::Function::InternalLinkage; 2218 2219 // An explicit instantiation of a template has weak linkage, since 2220 // explicit instantiations can occur in multiple translation units 2221 // and must all be equivalent. However, we are not allowed to 2222 // throw away these explicit instantiations. 2223 if (Linkage == GVA_StrongODR) 2224 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2225 : llvm::Function::ExternalLinkage; 2226 2227 // C++ doesn't have tentative definitions and thus cannot have common 2228 // linkage. 2229 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2230 !isVarDeclStrongDefinition(Context, cast<VarDecl>(D), 2231 CodeGenOpts.NoCommon)) 2232 return llvm::GlobalVariable::CommonLinkage; 2233 2234 // selectany symbols are externally visible, so use weak instead of 2235 // linkonce. MSVC optimizes away references to const selectany globals, so 2236 // all definitions should be the same and ODR linkage should be used. 2237 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2238 if (D->hasAttr<SelectAnyAttr>()) 2239 return llvm::GlobalVariable::WeakODRLinkage; 2240 2241 // Otherwise, we have strong external linkage. 2242 assert(Linkage == GVA_StrongExternal); 2243 return llvm::GlobalVariable::ExternalLinkage; 2244 } 2245 2246 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2247 const VarDecl *VD, bool IsConstant) { 2248 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2249 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2250 } 2251 2252 /// Replace the uses of a function that was declared with a non-proto type. 2253 /// We want to silently drop extra arguments from call sites 2254 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2255 llvm::Function *newFn) { 2256 // Fast path. 2257 if (old->use_empty()) return; 2258 2259 llvm::Type *newRetTy = newFn->getReturnType(); 2260 SmallVector<llvm::Value*, 4> newArgs; 2261 2262 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2263 ui != ue; ) { 2264 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2265 llvm::User *user = use->getUser(); 2266 2267 // Recognize and replace uses of bitcasts. Most calls to 2268 // unprototyped functions will use bitcasts. 2269 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2270 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2271 replaceUsesOfNonProtoConstant(bitcast, newFn); 2272 continue; 2273 } 2274 2275 // Recognize calls to the function. 2276 llvm::CallSite callSite(user); 2277 if (!callSite) continue; 2278 if (!callSite.isCallee(&*use)) continue; 2279 2280 // If the return types don't match exactly, then we can't 2281 // transform this call unless it's dead. 2282 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2283 continue; 2284 2285 // Get the call site's attribute list. 2286 SmallVector<llvm::AttributeSet, 8> newAttrs; 2287 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2288 2289 // Collect any return attributes from the call. 2290 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2291 newAttrs.push_back( 2292 llvm::AttributeSet::get(newFn->getContext(), 2293 oldAttrs.getRetAttributes())); 2294 2295 // If the function was passed too few arguments, don't transform. 2296 unsigned newNumArgs = newFn->arg_size(); 2297 if (callSite.arg_size() < newNumArgs) continue; 2298 2299 // If extra arguments were passed, we silently drop them. 2300 // If any of the types mismatch, we don't transform. 2301 unsigned argNo = 0; 2302 bool dontTransform = false; 2303 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2304 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2305 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2306 dontTransform = true; 2307 break; 2308 } 2309 2310 // Add any parameter attributes. 2311 if (oldAttrs.hasAttributes(argNo + 1)) 2312 newAttrs. 2313 push_back(llvm:: 2314 AttributeSet::get(newFn->getContext(), 2315 oldAttrs.getParamAttributes(argNo + 1))); 2316 } 2317 if (dontTransform) 2318 continue; 2319 2320 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2321 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2322 oldAttrs.getFnAttributes())); 2323 2324 // Okay, we can transform this. Create the new call instruction and copy 2325 // over the required information. 2326 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2327 2328 llvm::CallSite newCall; 2329 if (callSite.isCall()) { 2330 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2331 callSite.getInstruction()); 2332 } else { 2333 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2334 newCall = llvm::InvokeInst::Create(newFn, 2335 oldInvoke->getNormalDest(), 2336 oldInvoke->getUnwindDest(), 2337 newArgs, "", 2338 callSite.getInstruction()); 2339 } 2340 newArgs.clear(); // for the next iteration 2341 2342 if (!newCall->getType()->isVoidTy()) 2343 newCall->takeName(callSite.getInstruction()); 2344 newCall.setAttributes( 2345 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2346 newCall.setCallingConv(callSite.getCallingConv()); 2347 2348 // Finally, remove the old call, replacing any uses with the new one. 2349 if (!callSite->use_empty()) 2350 callSite->replaceAllUsesWith(newCall.getInstruction()); 2351 2352 // Copy debug location attached to CI. 2353 if (callSite->getDebugLoc()) 2354 newCall->setDebugLoc(callSite->getDebugLoc()); 2355 callSite->eraseFromParent(); 2356 } 2357 } 2358 2359 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2360 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2361 /// existing call uses of the old function in the module, this adjusts them to 2362 /// call the new function directly. 2363 /// 2364 /// This is not just a cleanup: the always_inline pass requires direct calls to 2365 /// functions to be able to inline them. If there is a bitcast in the way, it 2366 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2367 /// run at -O0. 2368 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2369 llvm::Function *NewFn) { 2370 // If we're redefining a global as a function, don't transform it. 2371 if (!isa<llvm::Function>(Old)) return; 2372 2373 replaceUsesOfNonProtoConstant(Old, NewFn); 2374 } 2375 2376 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2377 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2378 // If we have a definition, this might be a deferred decl. If the 2379 // instantiation is explicit, make sure we emit it at the end. 2380 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2381 GetAddrOfGlobalVar(VD); 2382 2383 EmitTopLevelDecl(VD); 2384 } 2385 2386 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2387 llvm::GlobalValue *GV) { 2388 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2389 2390 // Compute the function info and LLVM type. 2391 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2392 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2393 2394 // Get or create the prototype for the function. 2395 if (!GV) { 2396 llvm::Constant *C = 2397 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2398 2399 // Strip off a bitcast if we got one back. 2400 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2401 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2402 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2403 } else { 2404 GV = cast<llvm::GlobalValue>(C); 2405 } 2406 } 2407 2408 if (!GV->isDeclaration()) { 2409 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2410 GlobalDecl OldGD = Manglings.lookup(GV->getName()); 2411 if (auto *Prev = OldGD.getDecl()) 2412 getDiags().Report(Prev->getLocation(), diag::note_previous_definition); 2413 return; 2414 } 2415 2416 if (GV->getType()->getElementType() != Ty) { 2417 // If the types mismatch then we have to rewrite the definition. 2418 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2419 2420 // F is the Function* for the one with the wrong type, we must make a new 2421 // Function* and update everything that used F (a declaration) with the new 2422 // Function* (which will be a definition). 2423 // 2424 // This happens if there is a prototype for a function 2425 // (e.g. "int f()") and then a definition of a different type 2426 // (e.g. "int f(int x)"). Move the old function aside so that it 2427 // doesn't interfere with GetAddrOfFunction. 2428 GV->setName(StringRef()); 2429 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2430 2431 // This might be an implementation of a function without a 2432 // prototype, in which case, try to do special replacement of 2433 // calls which match the new prototype. The really key thing here 2434 // is that we also potentially drop arguments from the call site 2435 // so as to make a direct call, which makes the inliner happier 2436 // and suppresses a number of optimizer warnings (!) about 2437 // dropping arguments. 2438 if (!GV->use_empty()) { 2439 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2440 GV->removeDeadConstantUsers(); 2441 } 2442 2443 // Replace uses of F with the Function we will endow with a body. 2444 if (!GV->use_empty()) { 2445 llvm::Constant *NewPtrForOldDecl = 2446 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2447 GV->replaceAllUsesWith(NewPtrForOldDecl); 2448 } 2449 2450 // Ok, delete the old function now, which is dead. 2451 GV->eraseFromParent(); 2452 2453 GV = NewFn; 2454 } 2455 2456 // We need to set linkage and visibility on the function before 2457 // generating code for it because various parts of IR generation 2458 // want to propagate this information down (e.g. to local static 2459 // declarations). 2460 auto *Fn = cast<llvm::Function>(GV); 2461 setFunctionLinkage(GD, Fn); 2462 if (D->hasAttr<DLLImportAttr>()) 2463 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2464 else if (D->hasAttr<DLLExportAttr>()) 2465 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2466 else 2467 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2468 2469 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2470 setGlobalVisibility(Fn, D); 2471 2472 MaybeHandleStaticInExternC(D, Fn); 2473 2474 maybeSetTrivialComdat(*D, *Fn); 2475 2476 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2477 2478 setFunctionDefinitionAttributes(D, Fn); 2479 SetLLVMFunctionAttributesForDefinition(D, Fn); 2480 2481 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2482 AddGlobalCtor(Fn, CA->getPriority()); 2483 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2484 AddGlobalDtor(Fn, DA->getPriority()); 2485 if (D->hasAttr<AnnotateAttr>()) 2486 AddGlobalAnnotations(D, Fn); 2487 } 2488 2489 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2490 const auto *D = cast<ValueDecl>(GD.getDecl()); 2491 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2492 assert(AA && "Not an alias?"); 2493 2494 StringRef MangledName = getMangledName(GD); 2495 2496 // If there is a definition in the module, then it wins over the alias. 2497 // This is dubious, but allow it to be safe. Just ignore the alias. 2498 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2499 if (Entry && !Entry->isDeclaration()) 2500 return; 2501 2502 Aliases.push_back(GD); 2503 2504 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2505 2506 // Create a reference to the named value. This ensures that it is emitted 2507 // if a deferred decl. 2508 llvm::Constant *Aliasee; 2509 if (isa<llvm::FunctionType>(DeclTy)) 2510 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2511 /*ForVTable=*/false); 2512 else 2513 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2514 llvm::PointerType::getUnqual(DeclTy), 2515 /*D=*/nullptr); 2516 2517 // Create the new alias itself, but don't set a name yet. 2518 auto *GA = llvm::GlobalAlias::create( 2519 cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0, 2520 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2521 2522 if (Entry) { 2523 if (GA->getAliasee() == Entry) { 2524 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2525 return; 2526 } 2527 2528 assert(Entry->isDeclaration()); 2529 2530 // If there is a declaration in the module, then we had an extern followed 2531 // by the alias, as in: 2532 // extern int test6(); 2533 // ... 2534 // int test6() __attribute__((alias("test7"))); 2535 // 2536 // Remove it and replace uses of it with the alias. 2537 GA->takeName(Entry); 2538 2539 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2540 Entry->getType())); 2541 Entry->eraseFromParent(); 2542 } else { 2543 GA->setName(MangledName); 2544 } 2545 2546 // Set attributes which are particular to an alias; this is a 2547 // specialization of the attributes which may be set on a global 2548 // variable/function. 2549 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2550 D->isWeakImported()) { 2551 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2552 } 2553 2554 if (const auto *VD = dyn_cast<VarDecl>(D)) 2555 if (VD->getTLSKind()) 2556 setTLSMode(GA, *VD); 2557 2558 setAliasAttributes(D, GA); 2559 } 2560 2561 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2562 ArrayRef<llvm::Type*> Tys) { 2563 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2564 Tys); 2565 } 2566 2567 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2568 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2569 const StringLiteral *Literal, bool TargetIsLSB, 2570 bool &IsUTF16, unsigned &StringLength) { 2571 StringRef String = Literal->getString(); 2572 unsigned NumBytes = String.size(); 2573 2574 // Check for simple case. 2575 if (!Literal->containsNonAsciiOrNull()) { 2576 StringLength = NumBytes; 2577 return *Map.insert(std::make_pair(String, nullptr)).first; 2578 } 2579 2580 // Otherwise, convert the UTF8 literals into a string of shorts. 2581 IsUTF16 = true; 2582 2583 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2584 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2585 UTF16 *ToPtr = &ToBuf[0]; 2586 2587 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2588 &ToPtr, ToPtr + NumBytes, 2589 strictConversion); 2590 2591 // ConvertUTF8toUTF16 returns the length in ToPtr. 2592 StringLength = ToPtr - &ToBuf[0]; 2593 2594 // Add an explicit null. 2595 *ToPtr = 0; 2596 return *Map.insert(std::make_pair( 2597 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2598 (StringLength + 1) * 2), 2599 nullptr)).first; 2600 } 2601 2602 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2603 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2604 const StringLiteral *Literal, unsigned &StringLength) { 2605 StringRef String = Literal->getString(); 2606 StringLength = String.size(); 2607 return *Map.insert(std::make_pair(String, nullptr)).first; 2608 } 2609 2610 llvm::Constant * 2611 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2612 unsigned StringLength = 0; 2613 bool isUTF16 = false; 2614 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2615 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2616 getDataLayout().isLittleEndian(), isUTF16, 2617 StringLength); 2618 2619 if (auto *C = Entry.second) 2620 return C; 2621 2622 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2623 llvm::Constant *Zeros[] = { Zero, Zero }; 2624 llvm::Value *V; 2625 2626 // If we don't already have it, get __CFConstantStringClassReference. 2627 if (!CFConstantStringClassRef) { 2628 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2629 Ty = llvm::ArrayType::get(Ty, 0); 2630 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2631 "__CFConstantStringClassReference"); 2632 // Decay array -> ptr 2633 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2634 CFConstantStringClassRef = V; 2635 } 2636 else 2637 V = CFConstantStringClassRef; 2638 2639 QualType CFTy = getContext().getCFConstantStringType(); 2640 2641 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2642 2643 llvm::Constant *Fields[4]; 2644 2645 // Class pointer. 2646 Fields[0] = cast<llvm::ConstantExpr>(V); 2647 2648 // Flags. 2649 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2650 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2651 llvm::ConstantInt::get(Ty, 0x07C8); 2652 2653 // String pointer. 2654 llvm::Constant *C = nullptr; 2655 if (isUTF16) { 2656 ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>( 2657 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2658 Entry.first().size() / 2); 2659 C = llvm::ConstantDataArray::get(VMContext, Arr); 2660 } else { 2661 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2662 } 2663 2664 // Note: -fwritable-strings doesn't make the backing store strings of 2665 // CFStrings writable. (See <rdar://problem/10657500>) 2666 auto *GV = 2667 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2668 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2669 GV->setUnnamedAddr(true); 2670 // Don't enforce the target's minimum global alignment, since the only use 2671 // of the string is via this class initializer. 2672 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2673 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2674 // that changes the section it ends in, which surprises ld64. 2675 if (isUTF16) { 2676 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2677 GV->setAlignment(Align.getQuantity()); 2678 GV->setSection("__TEXT,__ustring"); 2679 } else { 2680 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2681 GV->setAlignment(Align.getQuantity()); 2682 GV->setSection("__TEXT,__cstring,cstring_literals"); 2683 } 2684 2685 // String. 2686 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV->getType(), GV, Zeros); 2687 2688 if (isUTF16) 2689 // Cast the UTF16 string to the correct type. 2690 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2691 2692 // String length. 2693 Ty = getTypes().ConvertType(getContext().LongTy); 2694 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2695 2696 // The struct. 2697 C = llvm::ConstantStruct::get(STy, Fields); 2698 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2699 llvm::GlobalVariable::PrivateLinkage, C, 2700 "_unnamed_cfstring_"); 2701 GV->setSection("__DATA,__cfstring"); 2702 Entry.second = GV; 2703 2704 return GV; 2705 } 2706 2707 llvm::GlobalVariable * 2708 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2709 unsigned StringLength = 0; 2710 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2711 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2712 2713 if (auto *C = Entry.second) 2714 return C; 2715 2716 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2717 llvm::Constant *Zeros[] = { Zero, Zero }; 2718 llvm::Value *V; 2719 // If we don't already have it, get _NSConstantStringClassReference. 2720 if (!ConstantStringClassRef) { 2721 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2722 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2723 llvm::Constant *GV; 2724 if (LangOpts.ObjCRuntime.isNonFragile()) { 2725 std::string str = 2726 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2727 : "OBJC_CLASS_$_" + StringClass; 2728 GV = getObjCRuntime().GetClassGlobal(str); 2729 // Make sure the result is of the correct type. 2730 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2731 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2732 ConstantStringClassRef = V; 2733 } else { 2734 std::string str = 2735 StringClass.empty() ? "_NSConstantStringClassReference" 2736 : "_" + StringClass + "ClassReference"; 2737 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2738 GV = CreateRuntimeVariable(PTy, str); 2739 // Decay array -> ptr 2740 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2741 ConstantStringClassRef = V; 2742 } 2743 } else 2744 V = ConstantStringClassRef; 2745 2746 if (!NSConstantStringType) { 2747 // Construct the type for a constant NSString. 2748 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2749 D->startDefinition(); 2750 2751 QualType FieldTypes[3]; 2752 2753 // const int *isa; 2754 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2755 // const char *str; 2756 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2757 // unsigned int length; 2758 FieldTypes[2] = Context.UnsignedIntTy; 2759 2760 // Create fields 2761 for (unsigned i = 0; i < 3; ++i) { 2762 FieldDecl *Field = FieldDecl::Create(Context, D, 2763 SourceLocation(), 2764 SourceLocation(), nullptr, 2765 FieldTypes[i], /*TInfo=*/nullptr, 2766 /*BitWidth=*/nullptr, 2767 /*Mutable=*/false, 2768 ICIS_NoInit); 2769 Field->setAccess(AS_public); 2770 D->addDecl(Field); 2771 } 2772 2773 D->completeDefinition(); 2774 QualType NSTy = Context.getTagDeclType(D); 2775 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2776 } 2777 2778 llvm::Constant *Fields[3]; 2779 2780 // Class pointer. 2781 Fields[0] = cast<llvm::ConstantExpr>(V); 2782 2783 // String pointer. 2784 llvm::Constant *C = 2785 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2786 2787 llvm::GlobalValue::LinkageTypes Linkage; 2788 bool isConstant; 2789 Linkage = llvm::GlobalValue::PrivateLinkage; 2790 isConstant = !LangOpts.WritableStrings; 2791 2792 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2793 Linkage, C, ".str"); 2794 GV->setUnnamedAddr(true); 2795 // Don't enforce the target's minimum global alignment, since the only use 2796 // of the string is via this class initializer. 2797 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2798 GV->setAlignment(Align.getQuantity()); 2799 Fields[1] = 2800 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2801 2802 // String length. 2803 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2804 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2805 2806 // The struct. 2807 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2808 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2809 llvm::GlobalVariable::PrivateLinkage, C, 2810 "_unnamed_nsstring_"); 2811 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2812 const char *NSStringNonFragileABISection = 2813 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2814 // FIXME. Fix section. 2815 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2816 ? NSStringNonFragileABISection 2817 : NSStringSection); 2818 Entry.second = GV; 2819 2820 return GV; 2821 } 2822 2823 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2824 if (ObjCFastEnumerationStateType.isNull()) { 2825 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2826 D->startDefinition(); 2827 2828 QualType FieldTypes[] = { 2829 Context.UnsignedLongTy, 2830 Context.getPointerType(Context.getObjCIdType()), 2831 Context.getPointerType(Context.UnsignedLongTy), 2832 Context.getConstantArrayType(Context.UnsignedLongTy, 2833 llvm::APInt(32, 5), ArrayType::Normal, 0) 2834 }; 2835 2836 for (size_t i = 0; i < 4; ++i) { 2837 FieldDecl *Field = FieldDecl::Create(Context, 2838 D, 2839 SourceLocation(), 2840 SourceLocation(), nullptr, 2841 FieldTypes[i], /*TInfo=*/nullptr, 2842 /*BitWidth=*/nullptr, 2843 /*Mutable=*/false, 2844 ICIS_NoInit); 2845 Field->setAccess(AS_public); 2846 D->addDecl(Field); 2847 } 2848 2849 D->completeDefinition(); 2850 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2851 } 2852 2853 return ObjCFastEnumerationStateType; 2854 } 2855 2856 llvm::Constant * 2857 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2858 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2859 2860 // Don't emit it as the address of the string, emit the string data itself 2861 // as an inline array. 2862 if (E->getCharByteWidth() == 1) { 2863 SmallString<64> Str(E->getString()); 2864 2865 // Resize the string to the right size, which is indicated by its type. 2866 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2867 Str.resize(CAT->getSize().getZExtValue()); 2868 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2869 } 2870 2871 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2872 llvm::Type *ElemTy = AType->getElementType(); 2873 unsigned NumElements = AType->getNumElements(); 2874 2875 // Wide strings have either 2-byte or 4-byte elements. 2876 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2877 SmallVector<uint16_t, 32> Elements; 2878 Elements.reserve(NumElements); 2879 2880 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2881 Elements.push_back(E->getCodeUnit(i)); 2882 Elements.resize(NumElements); 2883 return llvm::ConstantDataArray::get(VMContext, Elements); 2884 } 2885 2886 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2887 SmallVector<uint32_t, 32> Elements; 2888 Elements.reserve(NumElements); 2889 2890 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2891 Elements.push_back(E->getCodeUnit(i)); 2892 Elements.resize(NumElements); 2893 return llvm::ConstantDataArray::get(VMContext, Elements); 2894 } 2895 2896 static llvm::GlobalVariable * 2897 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2898 CodeGenModule &CGM, StringRef GlobalName, 2899 unsigned Alignment) { 2900 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2901 unsigned AddrSpace = 0; 2902 if (CGM.getLangOpts().OpenCL) 2903 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2904 2905 llvm::Module &M = CGM.getModule(); 2906 // Create a global variable for this string 2907 auto *GV = new llvm::GlobalVariable( 2908 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 2909 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2910 GV->setAlignment(Alignment); 2911 GV->setUnnamedAddr(true); 2912 if (GV->isWeakForLinker()) { 2913 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 2914 GV->setComdat(M.getOrInsertComdat(GV->getName())); 2915 } 2916 2917 return GV; 2918 } 2919 2920 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2921 /// constant array for the given string literal. 2922 llvm::GlobalVariable * 2923 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 2924 StringRef Name) { 2925 auto Alignment = 2926 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2927 2928 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2929 llvm::GlobalVariable **Entry = nullptr; 2930 if (!LangOpts.WritableStrings) { 2931 Entry = &ConstantStringMap[C]; 2932 if (auto GV = *Entry) { 2933 if (Alignment > GV->getAlignment()) 2934 GV->setAlignment(Alignment); 2935 return GV; 2936 } 2937 } 2938 2939 SmallString<256> MangledNameBuffer; 2940 StringRef GlobalVariableName; 2941 llvm::GlobalValue::LinkageTypes LT; 2942 2943 // Mangle the string literal if the ABI allows for it. However, we cannot 2944 // do this if we are compiling with ASan or -fwritable-strings because they 2945 // rely on strings having normal linkage. 2946 if (!LangOpts.WritableStrings && 2947 !LangOpts.Sanitize.has(SanitizerKind::Address) && 2948 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2949 llvm::raw_svector_ostream Out(MangledNameBuffer); 2950 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2951 Out.flush(); 2952 2953 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2954 GlobalVariableName = MangledNameBuffer; 2955 } else { 2956 LT = llvm::GlobalValue::PrivateLinkage; 2957 GlobalVariableName = Name; 2958 } 2959 2960 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2961 if (Entry) 2962 *Entry = GV; 2963 2964 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 2965 QualType()); 2966 return GV; 2967 } 2968 2969 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2970 /// array for the given ObjCEncodeExpr node. 2971 llvm::GlobalVariable * 2972 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2973 std::string Str; 2974 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2975 2976 return GetAddrOfConstantCString(Str); 2977 } 2978 2979 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2980 /// the literal and a terminating '\0' character. 2981 /// The result has pointer to array type. 2982 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 2983 const std::string &Str, const char *GlobalName, unsigned Alignment) { 2984 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2985 if (Alignment == 0) { 2986 Alignment = getContext() 2987 .getAlignOfGlobalVarInChars(getContext().CharTy) 2988 .getQuantity(); 2989 } 2990 2991 llvm::Constant *C = 2992 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 2993 2994 // Don't share any string literals if strings aren't constant. 2995 llvm::GlobalVariable **Entry = nullptr; 2996 if (!LangOpts.WritableStrings) { 2997 Entry = &ConstantStringMap[C]; 2998 if (auto GV = *Entry) { 2999 if (Alignment > GV->getAlignment()) 3000 GV->setAlignment(Alignment); 3001 return GV; 3002 } 3003 } 3004 3005 // Get the default prefix if a name wasn't specified. 3006 if (!GlobalName) 3007 GlobalName = ".str"; 3008 // Create a global variable for this. 3009 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3010 GlobalName, Alignment); 3011 if (Entry) 3012 *Entry = GV; 3013 return GV; 3014 } 3015 3016 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 3017 const MaterializeTemporaryExpr *E, const Expr *Init) { 3018 assert((E->getStorageDuration() == SD_Static || 3019 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3020 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3021 3022 // If we're not materializing a subobject of the temporary, keep the 3023 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3024 QualType MaterializedType = Init->getType(); 3025 if (Init == E->GetTemporaryExpr()) 3026 MaterializedType = E->getType(); 3027 3028 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 3029 if (Slot) 3030 return Slot; 3031 3032 // FIXME: If an externally-visible declaration extends multiple temporaries, 3033 // we need to give each temporary the same name in every translation unit (and 3034 // we also need to make the temporaries externally-visible). 3035 SmallString<256> Name; 3036 llvm::raw_svector_ostream Out(Name); 3037 getCXXABI().getMangleContext().mangleReferenceTemporary( 3038 VD, E->getManglingNumber(), Out); 3039 Out.flush(); 3040 3041 APValue *Value = nullptr; 3042 if (E->getStorageDuration() == SD_Static) { 3043 // We might have a cached constant initializer for this temporary. Note 3044 // that this might have a different value from the value computed by 3045 // evaluating the initializer if the surrounding constant expression 3046 // modifies the temporary. 3047 Value = getContext().getMaterializedTemporaryValue(E, false); 3048 if (Value && Value->isUninit()) 3049 Value = nullptr; 3050 } 3051 3052 // Try evaluating it now, it might have a constant initializer. 3053 Expr::EvalResult EvalResult; 3054 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3055 !EvalResult.hasSideEffects()) 3056 Value = &EvalResult.Val; 3057 3058 llvm::Constant *InitialValue = nullptr; 3059 bool Constant = false; 3060 llvm::Type *Type; 3061 if (Value) { 3062 // The temporary has a constant initializer, use it. 3063 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3064 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3065 Type = InitialValue->getType(); 3066 } else { 3067 // No initializer, the initialization will be provided when we 3068 // initialize the declaration which performed lifetime extension. 3069 Type = getTypes().ConvertTypeForMem(MaterializedType); 3070 } 3071 3072 // Create a global variable for this lifetime-extended temporary. 3073 llvm::GlobalValue::LinkageTypes Linkage = 3074 getLLVMLinkageVarDefinition(VD, Constant); 3075 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3076 const VarDecl *InitVD; 3077 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3078 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3079 // Temporaries defined inside a class get linkonce_odr linkage because the 3080 // class can be defined in multipe translation units. 3081 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3082 } else { 3083 // There is no need for this temporary to have external linkage if the 3084 // VarDecl has external linkage. 3085 Linkage = llvm::GlobalVariable::InternalLinkage; 3086 } 3087 } 3088 unsigned AddrSpace = GetGlobalVarAddressSpace( 3089 VD, getContext().getTargetAddressSpace(MaterializedType)); 3090 auto *GV = new llvm::GlobalVariable( 3091 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3092 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3093 AddrSpace); 3094 setGlobalVisibility(GV, VD); 3095 GV->setAlignment( 3096 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 3097 if (supportsCOMDAT() && GV->isWeakForLinker()) 3098 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3099 if (VD->getTLSKind()) 3100 setTLSMode(GV, *VD); 3101 Slot = GV; 3102 return GV; 3103 } 3104 3105 /// EmitObjCPropertyImplementations - Emit information for synthesized 3106 /// properties for an implementation. 3107 void CodeGenModule::EmitObjCPropertyImplementations(const 3108 ObjCImplementationDecl *D) { 3109 for (const auto *PID : D->property_impls()) { 3110 // Dynamic is just for type-checking. 3111 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3112 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3113 3114 // Determine which methods need to be implemented, some may have 3115 // been overridden. Note that ::isPropertyAccessor is not the method 3116 // we want, that just indicates if the decl came from a 3117 // property. What we want to know is if the method is defined in 3118 // this implementation. 3119 if (!D->getInstanceMethod(PD->getGetterName())) 3120 CodeGenFunction(*this).GenerateObjCGetter( 3121 const_cast<ObjCImplementationDecl *>(D), PID); 3122 if (!PD->isReadOnly() && 3123 !D->getInstanceMethod(PD->getSetterName())) 3124 CodeGenFunction(*this).GenerateObjCSetter( 3125 const_cast<ObjCImplementationDecl *>(D), PID); 3126 } 3127 } 3128 } 3129 3130 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3131 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3132 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3133 ivar; ivar = ivar->getNextIvar()) 3134 if (ivar->getType().isDestructedType()) 3135 return true; 3136 3137 return false; 3138 } 3139 3140 static bool AllTrivialInitializers(CodeGenModule &CGM, 3141 ObjCImplementationDecl *D) { 3142 CodeGenFunction CGF(CGM); 3143 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3144 E = D->init_end(); B != E; ++B) { 3145 CXXCtorInitializer *CtorInitExp = *B; 3146 Expr *Init = CtorInitExp->getInit(); 3147 if (!CGF.isTrivialInitializer(Init)) 3148 return false; 3149 } 3150 return true; 3151 } 3152 3153 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3154 /// for an implementation. 3155 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3156 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3157 if (needsDestructMethod(D)) { 3158 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3159 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3160 ObjCMethodDecl *DTORMethod = 3161 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3162 cxxSelector, getContext().VoidTy, nullptr, D, 3163 /*isInstance=*/true, /*isVariadic=*/false, 3164 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3165 /*isDefined=*/false, ObjCMethodDecl::Required); 3166 D->addInstanceMethod(DTORMethod); 3167 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3168 D->setHasDestructors(true); 3169 } 3170 3171 // If the implementation doesn't have any ivar initializers, we don't need 3172 // a .cxx_construct. 3173 if (D->getNumIvarInitializers() == 0 || 3174 AllTrivialInitializers(*this, D)) 3175 return; 3176 3177 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3178 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3179 // The constructor returns 'self'. 3180 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3181 D->getLocation(), 3182 D->getLocation(), 3183 cxxSelector, 3184 getContext().getObjCIdType(), 3185 nullptr, D, /*isInstance=*/true, 3186 /*isVariadic=*/false, 3187 /*isPropertyAccessor=*/true, 3188 /*isImplicitlyDeclared=*/true, 3189 /*isDefined=*/false, 3190 ObjCMethodDecl::Required); 3191 D->addInstanceMethod(CTORMethod); 3192 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3193 D->setHasNonZeroConstructors(true); 3194 } 3195 3196 /// EmitNamespace - Emit all declarations in a namespace. 3197 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3198 for (auto *I : ND->decls()) { 3199 if (const auto *VD = dyn_cast<VarDecl>(I)) 3200 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3201 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3202 continue; 3203 EmitTopLevelDecl(I); 3204 } 3205 } 3206 3207 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3208 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3209 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3210 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3211 ErrorUnsupported(LSD, "linkage spec"); 3212 return; 3213 } 3214 3215 for (auto *I : LSD->decls()) { 3216 // Meta-data for ObjC class includes references to implemented methods. 3217 // Generate class's method definitions first. 3218 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3219 for (auto *M : OID->methods()) 3220 EmitTopLevelDecl(M); 3221 } 3222 EmitTopLevelDecl(I); 3223 } 3224 } 3225 3226 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3227 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3228 // Ignore dependent declarations. 3229 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3230 return; 3231 3232 switch (D->getKind()) { 3233 case Decl::CXXConversion: 3234 case Decl::CXXMethod: 3235 case Decl::Function: 3236 // Skip function templates 3237 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3238 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3239 return; 3240 3241 EmitGlobal(cast<FunctionDecl>(D)); 3242 // Always provide some coverage mapping 3243 // even for the functions that aren't emitted. 3244 AddDeferredUnusedCoverageMapping(D); 3245 break; 3246 3247 case Decl::Var: 3248 // Skip variable templates 3249 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3250 return; 3251 case Decl::VarTemplateSpecialization: 3252 EmitGlobal(cast<VarDecl>(D)); 3253 break; 3254 3255 // Indirect fields from global anonymous structs and unions can be 3256 // ignored; only the actual variable requires IR gen support. 3257 case Decl::IndirectField: 3258 break; 3259 3260 // C++ Decls 3261 case Decl::Namespace: 3262 EmitNamespace(cast<NamespaceDecl>(D)); 3263 break; 3264 // No code generation needed. 3265 case Decl::UsingShadow: 3266 case Decl::ClassTemplate: 3267 case Decl::VarTemplate: 3268 case Decl::VarTemplatePartialSpecialization: 3269 case Decl::FunctionTemplate: 3270 case Decl::TypeAliasTemplate: 3271 case Decl::Block: 3272 case Decl::Empty: 3273 break; 3274 case Decl::Using: // using X; [C++] 3275 if (CGDebugInfo *DI = getModuleDebugInfo()) 3276 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3277 return; 3278 case Decl::NamespaceAlias: 3279 if (CGDebugInfo *DI = getModuleDebugInfo()) 3280 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3281 return; 3282 case Decl::UsingDirective: // using namespace X; [C++] 3283 if (CGDebugInfo *DI = getModuleDebugInfo()) 3284 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3285 return; 3286 case Decl::CXXConstructor: 3287 // Skip function templates 3288 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3289 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3290 return; 3291 3292 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3293 break; 3294 case Decl::CXXDestructor: 3295 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3296 return; 3297 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3298 break; 3299 3300 case Decl::StaticAssert: 3301 // Nothing to do. 3302 break; 3303 3304 // Objective-C Decls 3305 3306 // Forward declarations, no (immediate) code generation. 3307 case Decl::ObjCInterface: 3308 case Decl::ObjCCategory: 3309 break; 3310 3311 case Decl::ObjCProtocol: { 3312 auto *Proto = cast<ObjCProtocolDecl>(D); 3313 if (Proto->isThisDeclarationADefinition()) 3314 ObjCRuntime->GenerateProtocol(Proto); 3315 break; 3316 } 3317 3318 case Decl::ObjCCategoryImpl: 3319 // Categories have properties but don't support synthesize so we 3320 // can ignore them here. 3321 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3322 break; 3323 3324 case Decl::ObjCImplementation: { 3325 auto *OMD = cast<ObjCImplementationDecl>(D); 3326 EmitObjCPropertyImplementations(OMD); 3327 EmitObjCIvarInitializations(OMD); 3328 ObjCRuntime->GenerateClass(OMD); 3329 // Emit global variable debug information. 3330 if (CGDebugInfo *DI = getModuleDebugInfo()) 3331 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3332 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3333 OMD->getClassInterface()), OMD->getLocation()); 3334 break; 3335 } 3336 case Decl::ObjCMethod: { 3337 auto *OMD = cast<ObjCMethodDecl>(D); 3338 // If this is not a prototype, emit the body. 3339 if (OMD->getBody()) 3340 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3341 break; 3342 } 3343 case Decl::ObjCCompatibleAlias: 3344 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3345 break; 3346 3347 case Decl::LinkageSpec: 3348 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3349 break; 3350 3351 case Decl::FileScopeAsm: { 3352 auto *AD = cast<FileScopeAsmDecl>(D); 3353 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3354 break; 3355 } 3356 3357 case Decl::Import: { 3358 auto *Import = cast<ImportDecl>(D); 3359 3360 // Ignore import declarations that come from imported modules. 3361 if (clang::Module *Owner = Import->getOwningModule()) { 3362 if (getLangOpts().CurrentModule.empty() || 3363 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3364 break; 3365 } 3366 3367 ImportedModules.insert(Import->getImportedModule()); 3368 break; 3369 } 3370 3371 case Decl::OMPThreadPrivate: 3372 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3373 break; 3374 3375 case Decl::ClassTemplateSpecialization: { 3376 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3377 if (DebugInfo && 3378 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3379 Spec->hasDefinition()) 3380 DebugInfo->completeTemplateDefinition(*Spec); 3381 break; 3382 } 3383 3384 default: 3385 // Make sure we handled everything we should, every other kind is a 3386 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3387 // function. Need to recode Decl::Kind to do that easily. 3388 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3389 break; 3390 } 3391 } 3392 3393 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3394 // Do we need to generate coverage mapping? 3395 if (!CodeGenOpts.CoverageMapping) 3396 return; 3397 switch (D->getKind()) { 3398 case Decl::CXXConversion: 3399 case Decl::CXXMethod: 3400 case Decl::Function: 3401 case Decl::ObjCMethod: 3402 case Decl::CXXConstructor: 3403 case Decl::CXXDestructor: { 3404 if (!cast<FunctionDecl>(D)->hasBody()) 3405 return; 3406 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3407 if (I == DeferredEmptyCoverageMappingDecls.end()) 3408 DeferredEmptyCoverageMappingDecls[D] = true; 3409 break; 3410 } 3411 default: 3412 break; 3413 }; 3414 } 3415 3416 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3417 // Do we need to generate coverage mapping? 3418 if (!CodeGenOpts.CoverageMapping) 3419 return; 3420 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3421 if (Fn->isTemplateInstantiation()) 3422 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3423 } 3424 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3425 if (I == DeferredEmptyCoverageMappingDecls.end()) 3426 DeferredEmptyCoverageMappingDecls[D] = false; 3427 else 3428 I->second = false; 3429 } 3430 3431 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3432 std::vector<const Decl *> DeferredDecls; 3433 for (const auto I : DeferredEmptyCoverageMappingDecls) { 3434 if (!I.second) 3435 continue; 3436 DeferredDecls.push_back(I.first); 3437 } 3438 // Sort the declarations by their location to make sure that the tests get a 3439 // predictable order for the coverage mapping for the unused declarations. 3440 if (CodeGenOpts.DumpCoverageMapping) 3441 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3442 [] (const Decl *LHS, const Decl *RHS) { 3443 return LHS->getLocStart() < RHS->getLocStart(); 3444 }); 3445 for (const auto *D : DeferredDecls) { 3446 switch (D->getKind()) { 3447 case Decl::CXXConversion: 3448 case Decl::CXXMethod: 3449 case Decl::Function: 3450 case Decl::ObjCMethod: { 3451 CodeGenPGO PGO(*this); 3452 GlobalDecl GD(cast<FunctionDecl>(D)); 3453 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3454 getFunctionLinkage(GD)); 3455 break; 3456 } 3457 case Decl::CXXConstructor: { 3458 CodeGenPGO PGO(*this); 3459 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3460 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3461 getFunctionLinkage(GD)); 3462 break; 3463 } 3464 case Decl::CXXDestructor: { 3465 CodeGenPGO PGO(*this); 3466 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3467 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3468 getFunctionLinkage(GD)); 3469 break; 3470 } 3471 default: 3472 break; 3473 }; 3474 } 3475 } 3476 3477 /// Turns the given pointer into a constant. 3478 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3479 const void *Ptr) { 3480 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3481 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3482 return llvm::ConstantInt::get(i64, PtrInt); 3483 } 3484 3485 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3486 llvm::NamedMDNode *&GlobalMetadata, 3487 GlobalDecl D, 3488 llvm::GlobalValue *Addr) { 3489 if (!GlobalMetadata) 3490 GlobalMetadata = 3491 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3492 3493 // TODO: should we report variant information for ctors/dtors? 3494 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3495 llvm::ConstantAsMetadata::get(GetPointerConstant( 3496 CGM.getLLVMContext(), D.getDecl()))}; 3497 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3498 } 3499 3500 /// For each function which is declared within an extern "C" region and marked 3501 /// as 'used', but has internal linkage, create an alias from the unmangled 3502 /// name to the mangled name if possible. People expect to be able to refer 3503 /// to such functions with an unmangled name from inline assembly within the 3504 /// same translation unit. 3505 void CodeGenModule::EmitStaticExternCAliases() { 3506 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3507 E = StaticExternCValues.end(); 3508 I != E; ++I) { 3509 IdentifierInfo *Name = I->first; 3510 llvm::GlobalValue *Val = I->second; 3511 if (Val && !getModule().getNamedValue(Name->getName())) 3512 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3513 } 3514 } 3515 3516 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3517 GlobalDecl &Result) const { 3518 auto Res = Manglings.find(MangledName); 3519 if (Res == Manglings.end()) 3520 return false; 3521 Result = Res->getValue(); 3522 return true; 3523 } 3524 3525 /// Emits metadata nodes associating all the global values in the 3526 /// current module with the Decls they came from. This is useful for 3527 /// projects using IR gen as a subroutine. 3528 /// 3529 /// Since there's currently no way to associate an MDNode directly 3530 /// with an llvm::GlobalValue, we create a global named metadata 3531 /// with the name 'clang.global.decl.ptrs'. 3532 void CodeGenModule::EmitDeclMetadata() { 3533 llvm::NamedMDNode *GlobalMetadata = nullptr; 3534 3535 // StaticLocalDeclMap 3536 for (auto &I : MangledDeclNames) { 3537 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3538 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3539 } 3540 } 3541 3542 /// Emits metadata nodes for all the local variables in the current 3543 /// function. 3544 void CodeGenFunction::EmitDeclMetadata() { 3545 if (LocalDeclMap.empty()) return; 3546 3547 llvm::LLVMContext &Context = getLLVMContext(); 3548 3549 // Find the unique metadata ID for this name. 3550 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3551 3552 llvm::NamedMDNode *GlobalMetadata = nullptr; 3553 3554 for (auto &I : LocalDeclMap) { 3555 const Decl *D = I.first; 3556 llvm::Value *Addr = I.second; 3557 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3558 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3559 Alloca->setMetadata( 3560 DeclPtrKind, llvm::MDNode::get( 3561 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3562 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3563 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3564 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3565 } 3566 } 3567 } 3568 3569 void CodeGenModule::EmitVersionIdentMetadata() { 3570 llvm::NamedMDNode *IdentMetadata = 3571 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3572 std::string Version = getClangFullVersion(); 3573 llvm::LLVMContext &Ctx = TheModule.getContext(); 3574 3575 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3576 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3577 } 3578 3579 void CodeGenModule::EmitTargetMetadata() { 3580 // Warning, new MangledDeclNames may be appended within this loop. 3581 // We rely on MapVector insertions adding new elements to the end 3582 // of the container. 3583 // FIXME: Move this loop into the one target that needs it, and only 3584 // loop over those declarations for which we couldn't emit the target 3585 // metadata when we emitted the declaration. 3586 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3587 auto Val = *(MangledDeclNames.begin() + I); 3588 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3589 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3590 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3591 } 3592 } 3593 3594 void CodeGenModule::EmitCoverageFile() { 3595 if (!getCodeGenOpts().CoverageFile.empty()) { 3596 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3597 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3598 llvm::LLVMContext &Ctx = TheModule.getContext(); 3599 llvm::MDString *CoverageFile = 3600 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3601 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3602 llvm::MDNode *CU = CUNode->getOperand(i); 3603 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3604 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3605 } 3606 } 3607 } 3608 } 3609 3610 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3611 // Sema has checked that all uuid strings are of the form 3612 // "12345678-1234-1234-1234-1234567890ab". 3613 assert(Uuid.size() == 36); 3614 for (unsigned i = 0; i < 36; ++i) { 3615 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3616 else assert(isHexDigit(Uuid[i])); 3617 } 3618 3619 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3620 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3621 3622 llvm::Constant *Field3[8]; 3623 for (unsigned Idx = 0; Idx < 8; ++Idx) 3624 Field3[Idx] = llvm::ConstantInt::get( 3625 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3626 3627 llvm::Constant *Fields[4] = { 3628 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3629 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3630 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3631 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3632 }; 3633 3634 return llvm::ConstantStruct::getAnon(Fields); 3635 } 3636 3637 llvm::Constant * 3638 CodeGenModule::getAddrOfCXXCatchHandlerType(QualType Ty, 3639 QualType CatchHandlerType) { 3640 return getCXXABI().getAddrOfCXXCatchHandlerType(Ty, CatchHandlerType); 3641 } 3642 3643 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3644 bool ForEH) { 3645 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3646 // FIXME: should we even be calling this method if RTTI is disabled 3647 // and it's not for EH? 3648 if (!ForEH && !getLangOpts().RTTI) 3649 return llvm::Constant::getNullValue(Int8PtrTy); 3650 3651 if (ForEH && Ty->isObjCObjectPointerType() && 3652 LangOpts.ObjCRuntime.isGNUFamily()) 3653 return ObjCRuntime->GetEHType(Ty); 3654 3655 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3656 } 3657 3658 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3659 for (auto RefExpr : D->varlists()) { 3660 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3661 bool PerformInit = 3662 VD->getAnyInitializer() && 3663 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3664 /*ForRef=*/false); 3665 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3666 VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), PerformInit)) 3667 CXXGlobalInits.push_back(InitFunction); 3668 } 3669 } 3670 3671