1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenTBAA.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclTemplate.h" 29 #include "clang/AST/Mangle.h" 30 #include "clang/AST/RecordLayout.h" 31 #include "clang/AST/RecursiveASTVisitor.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/ConvertUTF.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/Module.h" 36 #include "clang/Basic/SourceManager.h" 37 #include "clang/Basic/TargetInfo.h" 38 #include "clang/Frontend/CodeGenOptions.h" 39 #include "llvm/ADT/APSInt.h" 40 #include "llvm/ADT/Triple.h" 41 #include "llvm/IR/CallingConv.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Target/Mangler.h" 49 using namespace clang; 50 using namespace CodeGen; 51 52 static const char AnnotationSection[] = "llvm.metadata"; 53 54 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 55 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 56 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 57 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 58 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 59 } 60 61 llvm_unreachable("invalid C++ ABI kind"); 62 } 63 64 65 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 66 llvm::Module &M, const llvm::DataLayout &TD, 67 DiagnosticsEngine &diags) 68 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 69 TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags), 70 ABI(createCXXABI(*this)), 71 Types(*this), 72 TBAA(0), 73 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 74 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 75 RRData(0), CFConstantStringClassRef(0), 76 ConstantStringClassRef(0), NSConstantStringType(0), 77 VMContext(M.getContext()), 78 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 79 BlockObjectAssign(0), BlockObjectDispose(0), 80 BlockDescriptorType(0), GenericBlockLiteralType(0) { 81 82 // Initialize the type cache. 83 llvm::LLVMContext &LLVMContext = M.getContext(); 84 VoidTy = llvm::Type::getVoidTy(LLVMContext); 85 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 86 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 87 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 88 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 89 FloatTy = llvm::Type::getFloatTy(LLVMContext); 90 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 91 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 92 PointerAlignInBytes = 93 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 94 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 95 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 96 Int8PtrTy = Int8Ty->getPointerTo(0); 97 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 98 99 if (LangOpts.ObjC1) 100 createObjCRuntime(); 101 if (LangOpts.OpenCL) 102 createOpenCLRuntime(); 103 if (LangOpts.CUDA) 104 createCUDARuntime(); 105 106 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 107 if (LangOpts.SanitizeThread || 108 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 109 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 110 ABI.getMangleContext()); 111 112 // If debug info or coverage generation is enabled, create the CGDebugInfo 113 // object. 114 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 115 CodeGenOpts.EmitGcovArcs || 116 CodeGenOpts.EmitGcovNotes) 117 DebugInfo = new CGDebugInfo(*this); 118 119 Block.GlobalUniqueCount = 0; 120 121 if (C.getLangOpts().ObjCAutoRefCount) 122 ARCData = new ARCEntrypoints(); 123 RRData = new RREntrypoints(); 124 } 125 126 CodeGenModule::~CodeGenModule() { 127 delete ObjCRuntime; 128 delete OpenCLRuntime; 129 delete CUDARuntime; 130 delete TheTargetCodeGenInfo; 131 delete &ABI; 132 delete TBAA; 133 delete DebugInfo; 134 delete ARCData; 135 delete RRData; 136 } 137 138 void CodeGenModule::createObjCRuntime() { 139 // This is just isGNUFamily(), but we want to force implementors of 140 // new ABIs to decide how best to do this. 141 switch (LangOpts.ObjCRuntime.getKind()) { 142 case ObjCRuntime::GNUstep: 143 case ObjCRuntime::GCC: 144 case ObjCRuntime::ObjFW: 145 ObjCRuntime = CreateGNUObjCRuntime(*this); 146 return; 147 148 case ObjCRuntime::FragileMacOSX: 149 case ObjCRuntime::MacOSX: 150 case ObjCRuntime::iOS: 151 ObjCRuntime = CreateMacObjCRuntime(*this); 152 return; 153 } 154 llvm_unreachable("bad runtime kind"); 155 } 156 157 void CodeGenModule::createOpenCLRuntime() { 158 OpenCLRuntime = new CGOpenCLRuntime(*this); 159 } 160 161 void CodeGenModule::createCUDARuntime() { 162 CUDARuntime = CreateNVCUDARuntime(*this); 163 } 164 165 void CodeGenModule::Release() { 166 EmitDeferred(); 167 EmitCXXGlobalInitFunc(); 168 EmitCXXGlobalDtorFunc(); 169 if (ObjCRuntime) 170 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 171 AddGlobalCtor(ObjCInitFunction); 172 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 173 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 174 EmitGlobalAnnotations(); 175 EmitLLVMUsed(); 176 177 SimplifyPersonality(); 178 179 if (getCodeGenOpts().EmitDeclMetadata) 180 EmitDeclMetadata(); 181 182 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 183 EmitCoverageFile(); 184 185 if (DebugInfo) 186 DebugInfo->finalize(); 187 } 188 189 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 190 // Make sure that this type is translated. 191 Types.UpdateCompletedType(TD); 192 } 193 194 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 195 if (!TBAA) 196 return 0; 197 return TBAA->getTBAAInfo(QTy); 198 } 199 200 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 201 if (!TBAA) 202 return 0; 203 return TBAA->getTBAAInfoForVTablePtr(); 204 } 205 206 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 207 if (!TBAA) 208 return 0; 209 return TBAA->getTBAAStructInfo(QTy); 210 } 211 212 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 213 llvm::MDNode *TBAAInfo) { 214 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 215 } 216 217 bool CodeGenModule::isTargetDarwin() const { 218 return getContext().getTargetInfo().getTriple().isOSDarwin(); 219 } 220 221 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 222 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 223 getDiags().Report(Context.getFullLoc(loc), diagID); 224 } 225 226 /// ErrorUnsupported - Print out an error that codegen doesn't support the 227 /// specified stmt yet. 228 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 229 bool OmitOnError) { 230 if (OmitOnError && getDiags().hasErrorOccurred()) 231 return; 232 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 233 "cannot compile this %0 yet"); 234 std::string Msg = Type; 235 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 236 << Msg << S->getSourceRange(); 237 } 238 239 /// ErrorUnsupported - Print out an error that codegen doesn't support the 240 /// specified decl yet. 241 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 242 bool OmitOnError) { 243 if (OmitOnError && getDiags().hasErrorOccurred()) 244 return; 245 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 246 "cannot compile this %0 yet"); 247 std::string Msg = Type; 248 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 249 } 250 251 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 252 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 253 } 254 255 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 256 const NamedDecl *D) const { 257 // Internal definitions always have default visibility. 258 if (GV->hasLocalLinkage()) { 259 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 260 return; 261 } 262 263 // Set visibility for definitions. 264 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 265 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 266 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 267 } 268 269 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 270 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 271 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 272 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 273 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 274 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 275 } 276 277 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 278 CodeGenOptions::TLSModel M) { 279 switch (M) { 280 case CodeGenOptions::GeneralDynamicTLSModel: 281 return llvm::GlobalVariable::GeneralDynamicTLSModel; 282 case CodeGenOptions::LocalDynamicTLSModel: 283 return llvm::GlobalVariable::LocalDynamicTLSModel; 284 case CodeGenOptions::InitialExecTLSModel: 285 return llvm::GlobalVariable::InitialExecTLSModel; 286 case CodeGenOptions::LocalExecTLSModel: 287 return llvm::GlobalVariable::LocalExecTLSModel; 288 } 289 llvm_unreachable("Invalid TLS model!"); 290 } 291 292 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 293 const VarDecl &D) const { 294 assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!"); 295 296 llvm::GlobalVariable::ThreadLocalMode TLM; 297 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 298 299 // Override the TLS model if it is explicitly specified. 300 if (D.hasAttr<TLSModelAttr>()) { 301 const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>(); 302 TLM = GetLLVMTLSModel(Attr->getModel()); 303 } 304 305 GV->setThreadLocalMode(TLM); 306 } 307 308 /// Set the symbol visibility of type information (vtable and RTTI) 309 /// associated with the given type. 310 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 311 const CXXRecordDecl *RD, 312 TypeVisibilityKind TVK) const { 313 setGlobalVisibility(GV, RD); 314 315 if (!CodeGenOpts.HiddenWeakVTables) 316 return; 317 318 // We never want to drop the visibility for RTTI names. 319 if (TVK == TVK_ForRTTIName) 320 return; 321 322 // We want to drop the visibility to hidden for weak type symbols. 323 // This isn't possible if there might be unresolved references 324 // elsewhere that rely on this symbol being visible. 325 326 // This should be kept roughly in sync with setThunkVisibility 327 // in CGVTables.cpp. 328 329 // Preconditions. 330 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 331 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 332 return; 333 334 // Don't override an explicit visibility attribute. 335 if (RD->getExplicitVisibility()) 336 return; 337 338 switch (RD->getTemplateSpecializationKind()) { 339 // We have to disable the optimization if this is an EI definition 340 // because there might be EI declarations in other shared objects. 341 case TSK_ExplicitInstantiationDefinition: 342 case TSK_ExplicitInstantiationDeclaration: 343 return; 344 345 // Every use of a non-template class's type information has to emit it. 346 case TSK_Undeclared: 347 break; 348 349 // In theory, implicit instantiations can ignore the possibility of 350 // an explicit instantiation declaration because there necessarily 351 // must be an EI definition somewhere with default visibility. In 352 // practice, it's possible to have an explicit instantiation for 353 // an arbitrary template class, and linkers aren't necessarily able 354 // to deal with mixed-visibility symbols. 355 case TSK_ExplicitSpecialization: 356 case TSK_ImplicitInstantiation: 357 return; 358 } 359 360 // If there's a key function, there may be translation units 361 // that don't have the key function's definition. But ignore 362 // this if we're emitting RTTI under -fno-rtti. 363 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 364 if (Context.getKeyFunction(RD)) 365 return; 366 } 367 368 // Otherwise, drop the visibility to hidden. 369 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 370 GV->setUnnamedAddr(true); 371 } 372 373 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 374 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 375 376 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 377 if (!Str.empty()) 378 return Str; 379 380 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 381 IdentifierInfo *II = ND->getIdentifier(); 382 assert(II && "Attempt to mangle unnamed decl."); 383 384 Str = II->getName(); 385 return Str; 386 } 387 388 SmallString<256> Buffer; 389 llvm::raw_svector_ostream Out(Buffer); 390 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 391 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 392 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 393 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 394 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 395 getCXXABI().getMangleContext().mangleBlock(BD, Out, 396 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl())); 397 else 398 getCXXABI().getMangleContext().mangleName(ND, Out); 399 400 // Allocate space for the mangled name. 401 Out.flush(); 402 size_t Length = Buffer.size(); 403 char *Name = MangledNamesAllocator.Allocate<char>(Length); 404 std::copy(Buffer.begin(), Buffer.end(), Name); 405 406 Str = StringRef(Name, Length); 407 408 return Str; 409 } 410 411 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 412 const BlockDecl *BD) { 413 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 414 const Decl *D = GD.getDecl(); 415 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 416 if (D == 0) 417 MangleCtx.mangleGlobalBlock(BD, 418 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 419 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 420 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 421 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 422 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 423 else 424 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 425 } 426 427 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 428 return getModule().getNamedValue(Name); 429 } 430 431 /// AddGlobalCtor - Add a function to the list that will be called before 432 /// main() runs. 433 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 434 // FIXME: Type coercion of void()* types. 435 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 436 } 437 438 /// AddGlobalDtor - Add a function to the list that will be called 439 /// when the module is unloaded. 440 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 441 // FIXME: Type coercion of void()* types. 442 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 443 } 444 445 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 446 // Ctor function type is void()*. 447 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 448 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 449 450 // Get the type of a ctor entry, { i32, void ()* }. 451 llvm::StructType *CtorStructTy = 452 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 453 454 // Construct the constructor and destructor arrays. 455 SmallVector<llvm::Constant*, 8> Ctors; 456 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 457 llvm::Constant *S[] = { 458 llvm::ConstantInt::get(Int32Ty, I->second, false), 459 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 460 }; 461 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 462 } 463 464 if (!Ctors.empty()) { 465 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 466 new llvm::GlobalVariable(TheModule, AT, false, 467 llvm::GlobalValue::AppendingLinkage, 468 llvm::ConstantArray::get(AT, Ctors), 469 GlobalName); 470 } 471 } 472 473 llvm::GlobalValue::LinkageTypes 474 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 475 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 476 477 if (Linkage == GVA_Internal) 478 return llvm::Function::InternalLinkage; 479 480 if (D->hasAttr<DLLExportAttr>()) 481 return llvm::Function::DLLExportLinkage; 482 483 if (D->hasAttr<WeakAttr>()) 484 return llvm::Function::WeakAnyLinkage; 485 486 // In C99 mode, 'inline' functions are guaranteed to have a strong 487 // definition somewhere else, so we can use available_externally linkage. 488 if (Linkage == GVA_C99Inline) 489 return llvm::Function::AvailableExternallyLinkage; 490 491 // Note that Apple's kernel linker doesn't support symbol 492 // coalescing, so we need to avoid linkonce and weak linkages there. 493 // Normally, this means we just map to internal, but for explicit 494 // instantiations we'll map to external. 495 496 // In C++, the compiler has to emit a definition in every translation unit 497 // that references the function. We should use linkonce_odr because 498 // a) if all references in this translation unit are optimized away, we 499 // don't need to codegen it. b) if the function persists, it needs to be 500 // merged with other definitions. c) C++ has the ODR, so we know the 501 // definition is dependable. 502 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 503 return !Context.getLangOpts().AppleKext 504 ? llvm::Function::LinkOnceODRLinkage 505 : llvm::Function::InternalLinkage; 506 507 // An explicit instantiation of a template has weak linkage, since 508 // explicit instantiations can occur in multiple translation units 509 // and must all be equivalent. However, we are not allowed to 510 // throw away these explicit instantiations. 511 if (Linkage == GVA_ExplicitTemplateInstantiation) 512 return !Context.getLangOpts().AppleKext 513 ? llvm::Function::WeakODRLinkage 514 : llvm::Function::ExternalLinkage; 515 516 // Otherwise, we have strong external linkage. 517 assert(Linkage == GVA_StrongExternal); 518 return llvm::Function::ExternalLinkage; 519 } 520 521 522 /// SetFunctionDefinitionAttributes - Set attributes for a global. 523 /// 524 /// FIXME: This is currently only done for aliases and functions, but not for 525 /// variables (these details are set in EmitGlobalVarDefinition for variables). 526 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 527 llvm::GlobalValue *GV) { 528 SetCommonAttributes(D, GV); 529 } 530 531 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 532 const CGFunctionInfo &Info, 533 llvm::Function *F) { 534 unsigned CallingConv; 535 AttributeListType AttributeList; 536 ConstructAttributeList(Info, D, AttributeList, CallingConv); 537 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 538 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 539 } 540 541 /// Determines whether the language options require us to model 542 /// unwind exceptions. We treat -fexceptions as mandating this 543 /// except under the fragile ObjC ABI with only ObjC exceptions 544 /// enabled. This means, for example, that C with -fexceptions 545 /// enables this. 546 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 547 // If exceptions are completely disabled, obviously this is false. 548 if (!LangOpts.Exceptions) return false; 549 550 // If C++ exceptions are enabled, this is true. 551 if (LangOpts.CXXExceptions) return true; 552 553 // If ObjC exceptions are enabled, this depends on the ABI. 554 if (LangOpts.ObjCExceptions) { 555 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 556 } 557 558 return true; 559 } 560 561 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 562 llvm::Function *F) { 563 if (CodeGenOpts.UnwindTables) 564 F->setHasUWTable(); 565 566 if (!hasUnwindExceptions(LangOpts)) 567 F->addFnAttr(llvm::Attribute::NoUnwind); 568 569 if (D->hasAttr<NakedAttr>()) { 570 // Naked implies noinline: we should not be inlining such functions. 571 F->addFnAttr(llvm::Attribute::Naked); 572 F->addFnAttr(llvm::Attribute::NoInline); 573 } 574 575 if (D->hasAttr<NoInlineAttr>()) 576 F->addFnAttr(llvm::Attribute::NoInline); 577 578 // (noinline wins over always_inline, and we can't specify both in IR) 579 if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) && 580 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 581 llvm::Attribute::NoInline)) 582 F->addFnAttr(llvm::Attribute::AlwaysInline); 583 584 // FIXME: Communicate hot and cold attributes to LLVM more directly. 585 if (D->hasAttr<ColdAttr>()) 586 F->addFnAttr(llvm::Attribute::OptimizeForSize); 587 588 if (D->hasAttr<MinSizeAttr>()) 589 F->addFnAttr(llvm::Attribute::MinSize); 590 591 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 592 F->setUnnamedAddr(true); 593 594 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 595 if (MD->isVirtual()) 596 F->setUnnamedAddr(true); 597 598 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 599 F->addFnAttr(llvm::Attribute::StackProtect); 600 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 601 F->addFnAttr(llvm::Attribute::StackProtectReq); 602 603 if (LangOpts.SanitizeAddress) { 604 // When AddressSanitizer is enabled, set AddressSafety attribute 605 // unless __attribute__((no_address_safety_analysis)) is used. 606 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 607 F->addFnAttr(llvm::Attribute::AddressSafety); 608 } 609 610 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 611 if (alignment) 612 F->setAlignment(alignment); 613 614 // C++ ABI requires 2-byte alignment for member functions. 615 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 616 F->setAlignment(2); 617 } 618 619 void CodeGenModule::SetCommonAttributes(const Decl *D, 620 llvm::GlobalValue *GV) { 621 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 622 setGlobalVisibility(GV, ND); 623 else 624 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 625 626 if (D->hasAttr<UsedAttr>()) 627 AddUsedGlobal(GV); 628 629 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 630 GV->setSection(SA->getName()); 631 632 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 633 } 634 635 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 636 llvm::Function *F, 637 const CGFunctionInfo &FI) { 638 SetLLVMFunctionAttributes(D, FI, F); 639 SetLLVMFunctionAttributesForDefinition(D, F); 640 641 F->setLinkage(llvm::Function::InternalLinkage); 642 643 SetCommonAttributes(D, F); 644 } 645 646 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 647 llvm::Function *F, 648 bool IsIncompleteFunction) { 649 if (unsigned IID = F->getIntrinsicID()) { 650 // If this is an intrinsic function, set the function's attributes 651 // to the intrinsic's attributes. 652 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 653 (llvm::Intrinsic::ID)IID)); 654 return; 655 } 656 657 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 658 659 if (!IsIncompleteFunction) 660 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 661 662 // Only a few attributes are set on declarations; these may later be 663 // overridden by a definition. 664 665 if (FD->hasAttr<DLLImportAttr>()) { 666 F->setLinkage(llvm::Function::DLLImportLinkage); 667 } else if (FD->hasAttr<WeakAttr>() || 668 FD->isWeakImported()) { 669 // "extern_weak" is overloaded in LLVM; we probably should have 670 // separate linkage types for this. 671 F->setLinkage(llvm::Function::ExternalWeakLinkage); 672 } else { 673 F->setLinkage(llvm::Function::ExternalLinkage); 674 675 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 676 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 677 F->setVisibility(GetLLVMVisibility(LV.visibility())); 678 } 679 } 680 681 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 682 F->setSection(SA->getName()); 683 } 684 685 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 686 assert(!GV->isDeclaration() && 687 "Only globals with definition can force usage."); 688 LLVMUsed.push_back(GV); 689 } 690 691 void CodeGenModule::EmitLLVMUsed() { 692 // Don't create llvm.used if there is no need. 693 if (LLVMUsed.empty()) 694 return; 695 696 // Convert LLVMUsed to what ConstantArray needs. 697 SmallVector<llvm::Constant*, 8> UsedArray; 698 UsedArray.resize(LLVMUsed.size()); 699 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 700 UsedArray[i] = 701 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 702 Int8PtrTy); 703 } 704 705 if (UsedArray.empty()) 706 return; 707 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 708 709 llvm::GlobalVariable *GV = 710 new llvm::GlobalVariable(getModule(), ATy, false, 711 llvm::GlobalValue::AppendingLinkage, 712 llvm::ConstantArray::get(ATy, UsedArray), 713 "llvm.used"); 714 715 GV->setSection("llvm.metadata"); 716 } 717 718 void CodeGenModule::EmitDeferred() { 719 // Emit code for any potentially referenced deferred decls. Since a 720 // previously unused static decl may become used during the generation of code 721 // for a static function, iterate until no changes are made. 722 723 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 724 if (!DeferredVTables.empty()) { 725 const CXXRecordDecl *RD = DeferredVTables.back(); 726 DeferredVTables.pop_back(); 727 getCXXABI().EmitVTables(RD); 728 continue; 729 } 730 731 GlobalDecl D = DeferredDeclsToEmit.back(); 732 DeferredDeclsToEmit.pop_back(); 733 734 // Check to see if we've already emitted this. This is necessary 735 // for a couple of reasons: first, decls can end up in the 736 // deferred-decls queue multiple times, and second, decls can end 737 // up with definitions in unusual ways (e.g. by an extern inline 738 // function acquiring a strong function redefinition). Just 739 // ignore these cases. 740 // 741 // TODO: That said, looking this up multiple times is very wasteful. 742 StringRef Name = getMangledName(D); 743 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 744 assert(CGRef && "Deferred decl wasn't referenced?"); 745 746 if (!CGRef->isDeclaration()) 747 continue; 748 749 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 750 // purposes an alias counts as a definition. 751 if (isa<llvm::GlobalAlias>(CGRef)) 752 continue; 753 754 // Otherwise, emit the definition and move on to the next one. 755 EmitGlobalDefinition(D); 756 } 757 } 758 759 void CodeGenModule::EmitGlobalAnnotations() { 760 if (Annotations.empty()) 761 return; 762 763 // Create a new global variable for the ConstantStruct in the Module. 764 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 765 Annotations[0]->getType(), Annotations.size()), Annotations); 766 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 767 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 768 "llvm.global.annotations"); 769 gv->setSection(AnnotationSection); 770 } 771 772 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 773 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 774 if (i != AnnotationStrings.end()) 775 return i->second; 776 777 // Not found yet, create a new global. 778 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 779 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 780 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 781 gv->setSection(AnnotationSection); 782 gv->setUnnamedAddr(true); 783 AnnotationStrings[Str] = gv; 784 return gv; 785 } 786 787 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 788 SourceManager &SM = getContext().getSourceManager(); 789 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 790 if (PLoc.isValid()) 791 return EmitAnnotationString(PLoc.getFilename()); 792 return EmitAnnotationString(SM.getBufferName(Loc)); 793 } 794 795 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 796 SourceManager &SM = getContext().getSourceManager(); 797 PresumedLoc PLoc = SM.getPresumedLoc(L); 798 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 799 SM.getExpansionLineNumber(L); 800 return llvm::ConstantInt::get(Int32Ty, LineNo); 801 } 802 803 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 804 const AnnotateAttr *AA, 805 SourceLocation L) { 806 // Get the globals for file name, annotation, and the line number. 807 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 808 *UnitGV = EmitAnnotationUnit(L), 809 *LineNoCst = EmitAnnotationLineNo(L); 810 811 // Create the ConstantStruct for the global annotation. 812 llvm::Constant *Fields[4] = { 813 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 814 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 815 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 816 LineNoCst 817 }; 818 return llvm::ConstantStruct::getAnon(Fields); 819 } 820 821 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 822 llvm::GlobalValue *GV) { 823 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 824 // Get the struct elements for these annotations. 825 for (specific_attr_iterator<AnnotateAttr> 826 ai = D->specific_attr_begin<AnnotateAttr>(), 827 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 828 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 829 } 830 831 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 832 // Never defer when EmitAllDecls is specified. 833 if (LangOpts.EmitAllDecls) 834 return false; 835 836 return !getContext().DeclMustBeEmitted(Global); 837 } 838 839 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 840 const CXXUuidofExpr* E) { 841 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 842 // well-formed. 843 StringRef Uuid; 844 if (E->isTypeOperand()) 845 Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid(); 846 else { 847 // Special case: __uuidof(0) means an all-zero GUID. 848 Expr *Op = E->getExprOperand(); 849 if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 850 Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid(); 851 else 852 Uuid = "00000000-0000-0000-0000-000000000000"; 853 } 854 std::string Name = "__uuid_" + Uuid.str(); 855 856 // Look for an existing global. 857 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 858 return GV; 859 860 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 861 assert(Init && "failed to initialize as constant"); 862 863 // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the 864 // first field is declared as "long", which for many targets is 8 bytes. 865 // Those architectures are not supported. (With the MS abi, long is always 4 866 // bytes.) 867 llvm::Type *GuidType = getTypes().ConvertType(E->getType()); 868 if (Init->getType() != GuidType) { 869 DiagnosticsEngine &Diags = getDiags(); 870 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 871 "__uuidof codegen is not supported on this architecture"); 872 Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange(); 873 Init = llvm::UndefValue::get(GuidType); 874 } 875 876 llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType, 877 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name); 878 GV->setUnnamedAddr(true); 879 return GV; 880 } 881 882 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 883 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 884 assert(AA && "No alias?"); 885 886 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 887 888 // See if there is already something with the target's name in the module. 889 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 890 if (Entry) { 891 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 892 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 893 } 894 895 llvm::Constant *Aliasee; 896 if (isa<llvm::FunctionType>(DeclTy)) 897 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 898 GlobalDecl(cast<FunctionDecl>(VD)), 899 /*ForVTable=*/false); 900 else 901 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 902 llvm::PointerType::getUnqual(DeclTy), 0); 903 904 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 905 F->setLinkage(llvm::Function::ExternalWeakLinkage); 906 WeakRefReferences.insert(F); 907 908 return Aliasee; 909 } 910 911 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 912 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 913 914 // Weak references don't produce any output by themselves. 915 if (Global->hasAttr<WeakRefAttr>()) 916 return; 917 918 // If this is an alias definition (which otherwise looks like a declaration) 919 // emit it now. 920 if (Global->hasAttr<AliasAttr>()) 921 return EmitAliasDefinition(GD); 922 923 // If this is CUDA, be selective about which declarations we emit. 924 if (LangOpts.CUDA) { 925 if (CodeGenOpts.CUDAIsDevice) { 926 if (!Global->hasAttr<CUDADeviceAttr>() && 927 !Global->hasAttr<CUDAGlobalAttr>() && 928 !Global->hasAttr<CUDAConstantAttr>() && 929 !Global->hasAttr<CUDASharedAttr>()) 930 return; 931 } else { 932 if (!Global->hasAttr<CUDAHostAttr>() && ( 933 Global->hasAttr<CUDADeviceAttr>() || 934 Global->hasAttr<CUDAConstantAttr>() || 935 Global->hasAttr<CUDASharedAttr>())) 936 return; 937 } 938 } 939 940 // Ignore declarations, they will be emitted on their first use. 941 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 942 // Forward declarations are emitted lazily on first use. 943 if (!FD->doesThisDeclarationHaveABody()) { 944 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 945 return; 946 947 const FunctionDecl *InlineDefinition = 0; 948 FD->getBody(InlineDefinition); 949 950 StringRef MangledName = getMangledName(GD); 951 DeferredDecls.erase(MangledName); 952 EmitGlobalDefinition(InlineDefinition); 953 return; 954 } 955 } else { 956 const VarDecl *VD = cast<VarDecl>(Global); 957 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 958 959 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 960 return; 961 } 962 963 // Defer code generation when possible if this is a static definition, inline 964 // function etc. These we only want to emit if they are used. 965 if (!MayDeferGeneration(Global)) { 966 // Emit the definition if it can't be deferred. 967 EmitGlobalDefinition(GD); 968 return; 969 } 970 971 // If we're deferring emission of a C++ variable with an 972 // initializer, remember the order in which it appeared in the file. 973 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 974 cast<VarDecl>(Global)->hasInit()) { 975 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 976 CXXGlobalInits.push_back(0); 977 } 978 979 // If the value has already been used, add it directly to the 980 // DeferredDeclsToEmit list. 981 StringRef MangledName = getMangledName(GD); 982 if (GetGlobalValue(MangledName)) 983 DeferredDeclsToEmit.push_back(GD); 984 else { 985 // Otherwise, remember that we saw a deferred decl with this name. The 986 // first use of the mangled name will cause it to move into 987 // DeferredDeclsToEmit. 988 DeferredDecls[MangledName] = GD; 989 } 990 } 991 992 namespace { 993 struct FunctionIsDirectlyRecursive : 994 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 995 const StringRef Name; 996 const Builtin::Context &BI; 997 bool Result; 998 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 999 Name(N), BI(C), Result(false) { 1000 } 1001 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1002 1003 bool TraverseCallExpr(CallExpr *E) { 1004 const FunctionDecl *FD = E->getDirectCallee(); 1005 if (!FD) 1006 return true; 1007 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1008 if (Attr && Name == Attr->getLabel()) { 1009 Result = true; 1010 return false; 1011 } 1012 unsigned BuiltinID = FD->getBuiltinID(); 1013 if (!BuiltinID) 1014 return true; 1015 StringRef BuiltinName = BI.GetName(BuiltinID); 1016 if (BuiltinName.startswith("__builtin_") && 1017 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1018 Result = true; 1019 return false; 1020 } 1021 return true; 1022 } 1023 }; 1024 } 1025 1026 // isTriviallyRecursive - Check if this function calls another 1027 // decl that, because of the asm attribute or the other decl being a builtin, 1028 // ends up pointing to itself. 1029 bool 1030 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1031 StringRef Name; 1032 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1033 // asm labels are a special kind of mangling we have to support. 1034 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1035 if (!Attr) 1036 return false; 1037 Name = Attr->getLabel(); 1038 } else { 1039 Name = FD->getName(); 1040 } 1041 1042 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1043 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1044 return Walker.Result; 1045 } 1046 1047 bool 1048 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 1049 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 1050 return true; 1051 if (CodeGenOpts.OptimizationLevel == 0 && 1052 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 1053 return false; 1054 // PR9614. Avoid cases where the source code is lying to us. An available 1055 // externally function should have an equivalent function somewhere else, 1056 // but a function that calls itself is clearly not equivalent to the real 1057 // implementation. 1058 // This happens in glibc's btowc and in some configure checks. 1059 return !isTriviallyRecursive(F); 1060 } 1061 1062 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 1063 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1064 1065 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1066 Context.getSourceManager(), 1067 "Generating code for declaration"); 1068 1069 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 1070 // At -O0, don't generate IR for functions with available_externally 1071 // linkage. 1072 if (!shouldEmitFunction(Function)) 1073 return; 1074 1075 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1076 // Make sure to emit the definition(s) before we emit the thunks. 1077 // This is necessary for the generation of certain thunks. 1078 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1079 EmitCXXConstructor(CD, GD.getCtorType()); 1080 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1081 EmitCXXDestructor(DD, GD.getDtorType()); 1082 else 1083 EmitGlobalFunctionDefinition(GD); 1084 1085 if (Method->isVirtual()) 1086 getVTables().EmitThunks(GD); 1087 1088 return; 1089 } 1090 1091 return EmitGlobalFunctionDefinition(GD); 1092 } 1093 1094 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1095 return EmitGlobalVarDefinition(VD); 1096 1097 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1098 } 1099 1100 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1101 /// module, create and return an llvm Function with the specified type. If there 1102 /// is something in the module with the specified name, return it potentially 1103 /// bitcasted to the right type. 1104 /// 1105 /// If D is non-null, it specifies a decl that correspond to this. This is used 1106 /// to set the attributes on the function when it is first created. 1107 llvm::Constant * 1108 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1109 llvm::Type *Ty, 1110 GlobalDecl D, bool ForVTable, 1111 llvm::Attribute ExtraAttrs) { 1112 // Lookup the entry, lazily creating it if necessary. 1113 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1114 if (Entry) { 1115 if (WeakRefReferences.erase(Entry)) { 1116 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 1117 if (FD && !FD->hasAttr<WeakAttr>()) 1118 Entry->setLinkage(llvm::Function::ExternalLinkage); 1119 } 1120 1121 if (Entry->getType()->getElementType() == Ty) 1122 return Entry; 1123 1124 // Make sure the result is of the correct type. 1125 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1126 } 1127 1128 // This function doesn't have a complete type (for example, the return 1129 // type is an incomplete struct). Use a fake type instead, and make 1130 // sure not to try to set attributes. 1131 bool IsIncompleteFunction = false; 1132 1133 llvm::FunctionType *FTy; 1134 if (isa<llvm::FunctionType>(Ty)) { 1135 FTy = cast<llvm::FunctionType>(Ty); 1136 } else { 1137 FTy = llvm::FunctionType::get(VoidTy, false); 1138 IsIncompleteFunction = true; 1139 } 1140 1141 llvm::Function *F = llvm::Function::Create(FTy, 1142 llvm::Function::ExternalLinkage, 1143 MangledName, &getModule()); 1144 assert(F->getName() == MangledName && "name was uniqued!"); 1145 if (D.getDecl()) 1146 SetFunctionAttributes(D, F, IsIncompleteFunction); 1147 if (ExtraAttrs.hasAttributes()) 1148 F->addAttribute(llvm::AttributeSet::FunctionIndex, ExtraAttrs); 1149 1150 // This is the first use or definition of a mangled name. If there is a 1151 // deferred decl with this name, remember that we need to emit it at the end 1152 // of the file. 1153 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1154 if (DDI != DeferredDecls.end()) { 1155 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1156 // list, and remove it from DeferredDecls (since we don't need it anymore). 1157 DeferredDeclsToEmit.push_back(DDI->second); 1158 DeferredDecls.erase(DDI); 1159 1160 // Otherwise, there are cases we have to worry about where we're 1161 // using a declaration for which we must emit a definition but where 1162 // we might not find a top-level definition: 1163 // - member functions defined inline in their classes 1164 // - friend functions defined inline in some class 1165 // - special member functions with implicit definitions 1166 // If we ever change our AST traversal to walk into class methods, 1167 // this will be unnecessary. 1168 // 1169 // We also don't emit a definition for a function if it's going to be an entry 1170 // in a vtable, unless it's already marked as used. 1171 } else if (getLangOpts().CPlusPlus && D.getDecl()) { 1172 // Look for a declaration that's lexically in a record. 1173 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1174 FD = FD->getMostRecentDecl(); 1175 do { 1176 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1177 if (FD->isImplicit() && !ForVTable) { 1178 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1179 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1180 break; 1181 } else if (FD->doesThisDeclarationHaveABody()) { 1182 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1183 break; 1184 } 1185 } 1186 FD = FD->getPreviousDecl(); 1187 } while (FD); 1188 } 1189 1190 // Make sure the result is of the requested type. 1191 if (!IsIncompleteFunction) { 1192 assert(F->getType()->getElementType() == Ty); 1193 return F; 1194 } 1195 1196 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1197 return llvm::ConstantExpr::getBitCast(F, PTy); 1198 } 1199 1200 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1201 /// non-null, then this function will use the specified type if it has to 1202 /// create it (this occurs when we see a definition of the function). 1203 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1204 llvm::Type *Ty, 1205 bool ForVTable) { 1206 // If there was no specific requested type, just convert it now. 1207 if (!Ty) 1208 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1209 1210 StringRef MangledName = getMangledName(GD); 1211 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1212 } 1213 1214 /// CreateRuntimeFunction - Create a new runtime function with the specified 1215 /// type and name. 1216 llvm::Constant * 1217 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1218 StringRef Name, 1219 llvm::Attribute ExtraAttrs) { 1220 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1221 ExtraAttrs); 1222 } 1223 1224 /// isTypeConstant - Determine whether an object of this type can be emitted 1225 /// as a constant. 1226 /// 1227 /// If ExcludeCtor is true, the duration when the object's constructor runs 1228 /// will not be considered. The caller will need to verify that the object is 1229 /// not written to during its construction. 1230 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1231 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1232 return false; 1233 1234 if (Context.getLangOpts().CPlusPlus) { 1235 if (const CXXRecordDecl *Record 1236 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1237 return ExcludeCtor && !Record->hasMutableFields() && 1238 Record->hasTrivialDestructor(); 1239 } 1240 1241 return true; 1242 } 1243 1244 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1245 /// create and return an llvm GlobalVariable with the specified type. If there 1246 /// is something in the module with the specified name, return it potentially 1247 /// bitcasted to the right type. 1248 /// 1249 /// If D is non-null, it specifies a decl that correspond to this. This is used 1250 /// to set the attributes on the global when it is first created. 1251 llvm::Constant * 1252 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1253 llvm::PointerType *Ty, 1254 const VarDecl *D, 1255 bool UnnamedAddr) { 1256 // Lookup the entry, lazily creating it if necessary. 1257 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1258 if (Entry) { 1259 if (WeakRefReferences.erase(Entry)) { 1260 if (D && !D->hasAttr<WeakAttr>()) 1261 Entry->setLinkage(llvm::Function::ExternalLinkage); 1262 } 1263 1264 if (UnnamedAddr) 1265 Entry->setUnnamedAddr(true); 1266 1267 if (Entry->getType() == Ty) 1268 return Entry; 1269 1270 // Make sure the result is of the correct type. 1271 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1272 } 1273 1274 // This is the first use or definition of a mangled name. If there is a 1275 // deferred decl with this name, remember that we need to emit it at the end 1276 // of the file. 1277 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1278 if (DDI != DeferredDecls.end()) { 1279 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1280 // list, and remove it from DeferredDecls (since we don't need it anymore). 1281 DeferredDeclsToEmit.push_back(DDI->second); 1282 DeferredDecls.erase(DDI); 1283 } 1284 1285 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1286 llvm::GlobalVariable *GV = 1287 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1288 llvm::GlobalValue::ExternalLinkage, 1289 0, MangledName, 0, 1290 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1291 1292 // Handle things which are present even on external declarations. 1293 if (D) { 1294 // FIXME: This code is overly simple and should be merged with other global 1295 // handling. 1296 GV->setConstant(isTypeConstant(D->getType(), false)); 1297 1298 // Set linkage and visibility in case we never see a definition. 1299 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1300 if (LV.linkage() != ExternalLinkage) { 1301 // Don't set internal linkage on declarations. 1302 } else { 1303 if (D->hasAttr<DLLImportAttr>()) 1304 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1305 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1306 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1307 1308 // Set visibility on a declaration only if it's explicit. 1309 if (LV.visibilityExplicit()) 1310 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1311 } 1312 1313 if (D->isThreadSpecified()) 1314 setTLSMode(GV, *D); 1315 } 1316 1317 if (AddrSpace != Ty->getAddressSpace()) 1318 return llvm::ConstantExpr::getBitCast(GV, Ty); 1319 else 1320 return GV; 1321 } 1322 1323 1324 llvm::GlobalVariable * 1325 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1326 llvm::Type *Ty, 1327 llvm::GlobalValue::LinkageTypes Linkage) { 1328 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1329 llvm::GlobalVariable *OldGV = 0; 1330 1331 1332 if (GV) { 1333 // Check if the variable has the right type. 1334 if (GV->getType()->getElementType() == Ty) 1335 return GV; 1336 1337 // Because C++ name mangling, the only way we can end up with an already 1338 // existing global with the same name is if it has been declared extern "C". 1339 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1340 OldGV = GV; 1341 } 1342 1343 // Create a new variable. 1344 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1345 Linkage, 0, Name); 1346 1347 if (OldGV) { 1348 // Replace occurrences of the old variable if needed. 1349 GV->takeName(OldGV); 1350 1351 if (!OldGV->use_empty()) { 1352 llvm::Constant *NewPtrForOldDecl = 1353 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1354 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1355 } 1356 1357 OldGV->eraseFromParent(); 1358 } 1359 1360 return GV; 1361 } 1362 1363 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1364 /// given global variable. If Ty is non-null and if the global doesn't exist, 1365 /// then it will be created with the specified type instead of whatever the 1366 /// normal requested type would be. 1367 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1368 llvm::Type *Ty) { 1369 assert(D->hasGlobalStorage() && "Not a global variable"); 1370 QualType ASTTy = D->getType(); 1371 if (Ty == 0) 1372 Ty = getTypes().ConvertTypeForMem(ASTTy); 1373 1374 llvm::PointerType *PTy = 1375 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1376 1377 StringRef MangledName = getMangledName(D); 1378 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1379 } 1380 1381 /// CreateRuntimeVariable - Create a new runtime global variable with the 1382 /// specified type and name. 1383 llvm::Constant * 1384 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1385 StringRef Name) { 1386 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1387 true); 1388 } 1389 1390 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1391 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1392 1393 if (MayDeferGeneration(D)) { 1394 // If we have not seen a reference to this variable yet, place it 1395 // into the deferred declarations table to be emitted if needed 1396 // later. 1397 StringRef MangledName = getMangledName(D); 1398 if (!GetGlobalValue(MangledName)) { 1399 DeferredDecls[MangledName] = D; 1400 return; 1401 } 1402 } 1403 1404 // The tentative definition is the only definition. 1405 EmitGlobalVarDefinition(D); 1406 } 1407 1408 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1409 if (DefinitionRequired) 1410 getCXXABI().EmitVTables(Class); 1411 } 1412 1413 llvm::GlobalVariable::LinkageTypes 1414 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1415 if (RD->getLinkage() != ExternalLinkage) 1416 return llvm::GlobalVariable::InternalLinkage; 1417 1418 if (const CXXMethodDecl *KeyFunction 1419 = RD->getASTContext().getKeyFunction(RD)) { 1420 // If this class has a key function, use that to determine the linkage of 1421 // the vtable. 1422 const FunctionDecl *Def = 0; 1423 if (KeyFunction->hasBody(Def)) 1424 KeyFunction = cast<CXXMethodDecl>(Def); 1425 1426 switch (KeyFunction->getTemplateSpecializationKind()) { 1427 case TSK_Undeclared: 1428 case TSK_ExplicitSpecialization: 1429 // When compiling with optimizations turned on, we emit all vtables, 1430 // even if the key function is not defined in the current translation 1431 // unit. If this is the case, use available_externally linkage. 1432 if (!Def && CodeGenOpts.OptimizationLevel) 1433 return llvm::GlobalVariable::AvailableExternallyLinkage; 1434 1435 if (KeyFunction->isInlined()) 1436 return !Context.getLangOpts().AppleKext ? 1437 llvm::GlobalVariable::LinkOnceODRLinkage : 1438 llvm::Function::InternalLinkage; 1439 1440 return llvm::GlobalVariable::ExternalLinkage; 1441 1442 case TSK_ImplicitInstantiation: 1443 return !Context.getLangOpts().AppleKext ? 1444 llvm::GlobalVariable::LinkOnceODRLinkage : 1445 llvm::Function::InternalLinkage; 1446 1447 case TSK_ExplicitInstantiationDefinition: 1448 return !Context.getLangOpts().AppleKext ? 1449 llvm::GlobalVariable::WeakODRLinkage : 1450 llvm::Function::InternalLinkage; 1451 1452 case TSK_ExplicitInstantiationDeclaration: 1453 // FIXME: Use available_externally linkage. However, this currently 1454 // breaks LLVM's build due to undefined symbols. 1455 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1456 return !Context.getLangOpts().AppleKext ? 1457 llvm::GlobalVariable::LinkOnceODRLinkage : 1458 llvm::Function::InternalLinkage; 1459 } 1460 } 1461 1462 if (Context.getLangOpts().AppleKext) 1463 return llvm::Function::InternalLinkage; 1464 1465 switch (RD->getTemplateSpecializationKind()) { 1466 case TSK_Undeclared: 1467 case TSK_ExplicitSpecialization: 1468 case TSK_ImplicitInstantiation: 1469 // FIXME: Use available_externally linkage. However, this currently 1470 // breaks LLVM's build due to undefined symbols. 1471 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1472 case TSK_ExplicitInstantiationDeclaration: 1473 return llvm::GlobalVariable::LinkOnceODRLinkage; 1474 1475 case TSK_ExplicitInstantiationDefinition: 1476 return llvm::GlobalVariable::WeakODRLinkage; 1477 } 1478 1479 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1480 } 1481 1482 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1483 return Context.toCharUnitsFromBits( 1484 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1485 } 1486 1487 llvm::Constant * 1488 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, 1489 const Expr *rawInit) { 1490 ArrayRef<ExprWithCleanups::CleanupObject> cleanups; 1491 if (const ExprWithCleanups *withCleanups = 1492 dyn_cast<ExprWithCleanups>(rawInit)) { 1493 cleanups = withCleanups->getObjects(); 1494 rawInit = withCleanups->getSubExpr(); 1495 } 1496 1497 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); 1498 if (!init || !init->initializesStdInitializerList() || 1499 init->getNumInits() == 0) 1500 return 0; 1501 1502 ASTContext &ctx = getContext(); 1503 unsigned numInits = init->getNumInits(); 1504 // FIXME: This check is here because we would otherwise silently miscompile 1505 // nested global std::initializer_lists. Better would be to have a real 1506 // implementation. 1507 for (unsigned i = 0; i < numInits; ++i) { 1508 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); 1509 if (inner && inner->initializesStdInitializerList()) { 1510 ErrorUnsupported(inner, "nested global std::initializer_list"); 1511 return 0; 1512 } 1513 } 1514 1515 // Synthesize a fake VarDecl for the array and initialize that. 1516 QualType elementType = init->getInit(0)->getType(); 1517 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); 1518 QualType arrayType = ctx.getConstantArrayType(elementType, numElements, 1519 ArrayType::Normal, 0); 1520 1521 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); 1522 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( 1523 arrayType, D->getLocation()); 1524 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( 1525 D->getDeclContext()), 1526 D->getLocStart(), D->getLocation(), 1527 name, arrayType, sourceInfo, 1528 SC_Static, SC_Static); 1529 1530 // Now clone the InitListExpr to initialize the array instead. 1531 // Incredible hack: we want to use the existing InitListExpr here, so we need 1532 // to tell it that it no longer initializes a std::initializer_list. 1533 ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(), 1534 init->getNumInits()); 1535 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits, 1536 init->getRBraceLoc()); 1537 arrayInit->setType(arrayType); 1538 1539 if (!cleanups.empty()) 1540 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); 1541 1542 backingArray->setInit(arrayInit); 1543 1544 // Emit the definition of the array. 1545 EmitGlobalVarDefinition(backingArray); 1546 1547 // Inspect the initializer list to validate it and determine its type. 1548 // FIXME: doing this every time is probably inefficient; caching would be nice 1549 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); 1550 RecordDecl::field_iterator field = record->field_begin(); 1551 if (field == record->field_end()) { 1552 ErrorUnsupported(D, "weird std::initializer_list"); 1553 return 0; 1554 } 1555 QualType elementPtr = ctx.getPointerType(elementType.withConst()); 1556 // Start pointer. 1557 if (!ctx.hasSameType(field->getType(), elementPtr)) { 1558 ErrorUnsupported(D, "weird std::initializer_list"); 1559 return 0; 1560 } 1561 ++field; 1562 if (field == record->field_end()) { 1563 ErrorUnsupported(D, "weird std::initializer_list"); 1564 return 0; 1565 } 1566 bool isStartEnd = false; 1567 if (ctx.hasSameType(field->getType(), elementPtr)) { 1568 // End pointer. 1569 isStartEnd = true; 1570 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { 1571 ErrorUnsupported(D, "weird std::initializer_list"); 1572 return 0; 1573 } 1574 1575 // Now build an APValue representing the std::initializer_list. 1576 APValue initListValue(APValue::UninitStruct(), 0, 2); 1577 APValue &startField = initListValue.getStructField(0); 1578 APValue::LValuePathEntry startOffsetPathEntry; 1579 startOffsetPathEntry.ArrayIndex = 0; 1580 startField = APValue(APValue::LValueBase(backingArray), 1581 CharUnits::fromQuantity(0), 1582 llvm::makeArrayRef(startOffsetPathEntry), 1583 /*IsOnePastTheEnd=*/false, 0); 1584 1585 if (isStartEnd) { 1586 APValue &endField = initListValue.getStructField(1); 1587 APValue::LValuePathEntry endOffsetPathEntry; 1588 endOffsetPathEntry.ArrayIndex = numInits; 1589 endField = APValue(APValue::LValueBase(backingArray), 1590 ctx.getTypeSizeInChars(elementType) * numInits, 1591 llvm::makeArrayRef(endOffsetPathEntry), 1592 /*IsOnePastTheEnd=*/true, 0); 1593 } else { 1594 APValue &sizeField = initListValue.getStructField(1); 1595 sizeField = APValue(llvm::APSInt(numElements)); 1596 } 1597 1598 // Emit the constant for the initializer_list. 1599 llvm::Constant *llvmInit = 1600 EmitConstantValueForMemory(initListValue, D->getType()); 1601 assert(llvmInit && "failed to initialize as constant"); 1602 return llvmInit; 1603 } 1604 1605 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1606 unsigned AddrSpace) { 1607 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1608 if (D->hasAttr<CUDAConstantAttr>()) 1609 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1610 else if (D->hasAttr<CUDASharedAttr>()) 1611 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1612 else 1613 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1614 } 1615 1616 return AddrSpace; 1617 } 1618 1619 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1620 llvm::Constant *Init = 0; 1621 QualType ASTTy = D->getType(); 1622 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1623 bool NeedsGlobalCtor = false; 1624 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1625 1626 const VarDecl *InitDecl; 1627 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1628 1629 if (!InitExpr) { 1630 // This is a tentative definition; tentative definitions are 1631 // implicitly initialized with { 0 }. 1632 // 1633 // Note that tentative definitions are only emitted at the end of 1634 // a translation unit, so they should never have incomplete 1635 // type. In addition, EmitTentativeDefinition makes sure that we 1636 // never attempt to emit a tentative definition if a real one 1637 // exists. A use may still exists, however, so we still may need 1638 // to do a RAUW. 1639 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1640 Init = EmitNullConstant(D->getType()); 1641 } else { 1642 // If this is a std::initializer_list, emit the special initializer. 1643 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); 1644 // An empty init list will perform zero-initialization, which happens 1645 // to be exactly what we want. 1646 // FIXME: It does so in a global constructor, which is *not* what we 1647 // want. 1648 1649 if (!Init) { 1650 initializedGlobalDecl = GlobalDecl(D); 1651 Init = EmitConstantInit(*InitDecl); 1652 } 1653 if (!Init) { 1654 QualType T = InitExpr->getType(); 1655 if (D->getType()->isReferenceType()) 1656 T = D->getType(); 1657 1658 if (getLangOpts().CPlusPlus) { 1659 Init = EmitNullConstant(T); 1660 NeedsGlobalCtor = true; 1661 } else { 1662 ErrorUnsupported(D, "static initializer"); 1663 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1664 } 1665 } else { 1666 // We don't need an initializer, so remove the entry for the delayed 1667 // initializer position (just in case this entry was delayed) if we 1668 // also don't need to register a destructor. 1669 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1670 DelayedCXXInitPosition.erase(D); 1671 } 1672 } 1673 1674 llvm::Type* InitType = Init->getType(); 1675 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1676 1677 // Strip off a bitcast if we got one back. 1678 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1679 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1680 // all zero index gep. 1681 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1682 Entry = CE->getOperand(0); 1683 } 1684 1685 // Entry is now either a Function or GlobalVariable. 1686 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1687 1688 // We have a definition after a declaration with the wrong type. 1689 // We must make a new GlobalVariable* and update everything that used OldGV 1690 // (a declaration or tentative definition) with the new GlobalVariable* 1691 // (which will be a definition). 1692 // 1693 // This happens if there is a prototype for a global (e.g. 1694 // "extern int x[];") and then a definition of a different type (e.g. 1695 // "int x[10];"). This also happens when an initializer has a different type 1696 // from the type of the global (this happens with unions). 1697 if (GV == 0 || 1698 GV->getType()->getElementType() != InitType || 1699 GV->getType()->getAddressSpace() != 1700 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1701 1702 // Move the old entry aside so that we'll create a new one. 1703 Entry->setName(StringRef()); 1704 1705 // Make a new global with the correct type, this is now guaranteed to work. 1706 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1707 1708 // Replace all uses of the old global with the new global 1709 llvm::Constant *NewPtrForOldDecl = 1710 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1711 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1712 1713 // Erase the old global, since it is no longer used. 1714 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1715 } 1716 1717 if (D->hasAttr<AnnotateAttr>()) 1718 AddGlobalAnnotations(D, GV); 1719 1720 GV->setInitializer(Init); 1721 1722 // If it is safe to mark the global 'constant', do so now. 1723 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1724 isTypeConstant(D->getType(), true)); 1725 1726 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1727 1728 // Set the llvm linkage type as appropriate. 1729 llvm::GlobalValue::LinkageTypes Linkage = 1730 GetLLVMLinkageVarDefinition(D, GV); 1731 GV->setLinkage(Linkage); 1732 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1733 // common vars aren't constant even if declared const. 1734 GV->setConstant(false); 1735 1736 SetCommonAttributes(D, GV); 1737 1738 // Emit the initializer function if necessary. 1739 if (NeedsGlobalCtor || NeedsGlobalDtor) 1740 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1741 1742 // If we are compiling with ASan, add metadata indicating dynamically 1743 // initialized globals. 1744 if (LangOpts.SanitizeAddress && NeedsGlobalCtor) { 1745 llvm::Module &M = getModule(); 1746 1747 llvm::NamedMDNode *DynamicInitializers = 1748 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1749 llvm::Value *GlobalToAdd[] = { GV }; 1750 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1751 DynamicInitializers->addOperand(ThisGlobal); 1752 } 1753 1754 // Emit global variable debug information. 1755 if (CGDebugInfo *DI = getModuleDebugInfo()) 1756 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1757 DI->EmitGlobalVariable(GV, D); 1758 } 1759 1760 llvm::GlobalValue::LinkageTypes 1761 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1762 llvm::GlobalVariable *GV) { 1763 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1764 if (Linkage == GVA_Internal) 1765 return llvm::Function::InternalLinkage; 1766 else if (D->hasAttr<DLLImportAttr>()) 1767 return llvm::Function::DLLImportLinkage; 1768 else if (D->hasAttr<DLLExportAttr>()) 1769 return llvm::Function::DLLExportLinkage; 1770 else if (D->hasAttr<WeakAttr>()) { 1771 if (GV->isConstant()) 1772 return llvm::GlobalVariable::WeakODRLinkage; 1773 else 1774 return llvm::GlobalVariable::WeakAnyLinkage; 1775 } else if (Linkage == GVA_TemplateInstantiation || 1776 Linkage == GVA_ExplicitTemplateInstantiation) 1777 return llvm::GlobalVariable::WeakODRLinkage; 1778 else if (!getLangOpts().CPlusPlus && 1779 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1780 D->getAttr<CommonAttr>()) && 1781 !D->hasExternalStorage() && !D->getInit() && 1782 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1783 !D->getAttr<WeakImportAttr>()) { 1784 // Thread local vars aren't considered common linkage. 1785 return llvm::GlobalVariable::CommonLinkage; 1786 } 1787 return llvm::GlobalVariable::ExternalLinkage; 1788 } 1789 1790 /// Replace the uses of a function that was declared with a non-proto type. 1791 /// We want to silently drop extra arguments from call sites 1792 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 1793 llvm::Function *newFn) { 1794 // Fast path. 1795 if (old->use_empty()) return; 1796 1797 llvm::Type *newRetTy = newFn->getReturnType(); 1798 SmallVector<llvm::Value*, 4> newArgs; 1799 1800 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 1801 ui != ue; ) { 1802 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 1803 llvm::User *user = *use; 1804 1805 // Recognize and replace uses of bitcasts. Most calls to 1806 // unprototyped functions will use bitcasts. 1807 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 1808 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 1809 replaceUsesOfNonProtoConstant(bitcast, newFn); 1810 continue; 1811 } 1812 1813 // Recognize calls to the function. 1814 llvm::CallSite callSite(user); 1815 if (!callSite) continue; 1816 if (!callSite.isCallee(use)) continue; 1817 1818 // If the return types don't match exactly, then we can't 1819 // transform this call unless it's dead. 1820 if (callSite->getType() != newRetTy && !callSite->use_empty()) 1821 continue; 1822 1823 // Get the call site's attribute list. 1824 SmallVector<llvm::AttributeWithIndex, 8> newAttrs; 1825 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 1826 1827 // Collect any return attributes from the call. 1828 llvm::Attribute returnAttrs = oldAttrs.getRetAttributes(); 1829 if (returnAttrs.hasAttributes()) 1830 newAttrs.push_back(llvm::AttributeWithIndex::get( 1831 llvm::AttributeSet::ReturnIndex, returnAttrs)); 1832 1833 // If the function was passed too few arguments, don't transform. 1834 unsigned newNumArgs = newFn->arg_size(); 1835 if (callSite.arg_size() < newNumArgs) continue; 1836 1837 // If extra arguments were passed, we silently drop them. 1838 // If any of the types mismatch, we don't transform. 1839 unsigned argNo = 0; 1840 bool dontTransform = false; 1841 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 1842 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 1843 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 1844 dontTransform = true; 1845 break; 1846 } 1847 1848 // Add any parameter attributes. 1849 llvm::Attribute pAttrs = oldAttrs.getParamAttributes(argNo + 1); 1850 if (pAttrs.hasAttributes()) 1851 newAttrs.push_back(llvm::AttributeWithIndex::get(argNo + 1, pAttrs)); 1852 } 1853 if (dontTransform) 1854 continue; 1855 1856 llvm::Attribute fnAttrs = oldAttrs.getFnAttributes(); 1857 if (fnAttrs.hasAttributes()) 1858 newAttrs.push_back(llvm:: 1859 AttributeWithIndex::get(llvm::AttributeSet::FunctionIndex, 1860 fnAttrs)); 1861 1862 // Okay, we can transform this. Create the new call instruction and copy 1863 // over the required information. 1864 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 1865 1866 llvm::CallSite newCall; 1867 if (callSite.isCall()) { 1868 newCall = llvm::CallInst::Create(newFn, newArgs, "", 1869 callSite.getInstruction()); 1870 } else { 1871 llvm::InvokeInst *oldInvoke = 1872 cast<llvm::InvokeInst>(callSite.getInstruction()); 1873 newCall = llvm::InvokeInst::Create(newFn, 1874 oldInvoke->getNormalDest(), 1875 oldInvoke->getUnwindDest(), 1876 newArgs, "", 1877 callSite.getInstruction()); 1878 } 1879 newArgs.clear(); // for the next iteration 1880 1881 if (!newCall->getType()->isVoidTy()) 1882 newCall->takeName(callSite.getInstruction()); 1883 newCall.setAttributes( 1884 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 1885 newCall.setCallingConv(callSite.getCallingConv()); 1886 1887 // Finally, remove the old call, replacing any uses with the new one. 1888 if (!callSite->use_empty()) 1889 callSite->replaceAllUsesWith(newCall.getInstruction()); 1890 1891 // Copy debug location attached to CI. 1892 if (!callSite->getDebugLoc().isUnknown()) 1893 newCall->setDebugLoc(callSite->getDebugLoc()); 1894 callSite->eraseFromParent(); 1895 } 1896 } 1897 1898 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1899 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1900 /// existing call uses of the old function in the module, this adjusts them to 1901 /// call the new function directly. 1902 /// 1903 /// This is not just a cleanup: the always_inline pass requires direct calls to 1904 /// functions to be able to inline them. If there is a bitcast in the way, it 1905 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1906 /// run at -O0. 1907 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1908 llvm::Function *NewFn) { 1909 // If we're redefining a global as a function, don't transform it. 1910 if (!isa<llvm::Function>(Old)) return; 1911 1912 replaceUsesOfNonProtoConstant(Old, NewFn); 1913 } 1914 1915 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1916 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1917 // If we have a definition, this might be a deferred decl. If the 1918 // instantiation is explicit, make sure we emit it at the end. 1919 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1920 GetAddrOfGlobalVar(VD); 1921 } 1922 1923 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1924 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1925 1926 // Compute the function info and LLVM type. 1927 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1928 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1929 1930 // Get or create the prototype for the function. 1931 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1932 1933 // Strip off a bitcast if we got one back. 1934 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1935 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1936 Entry = CE->getOperand(0); 1937 } 1938 1939 1940 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1941 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1942 1943 // If the types mismatch then we have to rewrite the definition. 1944 assert(OldFn->isDeclaration() && 1945 "Shouldn't replace non-declaration"); 1946 1947 // F is the Function* for the one with the wrong type, we must make a new 1948 // Function* and update everything that used F (a declaration) with the new 1949 // Function* (which will be a definition). 1950 // 1951 // This happens if there is a prototype for a function 1952 // (e.g. "int f()") and then a definition of a different type 1953 // (e.g. "int f(int x)"). Move the old function aside so that it 1954 // doesn't interfere with GetAddrOfFunction. 1955 OldFn->setName(StringRef()); 1956 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1957 1958 // This might be an implementation of a function without a 1959 // prototype, in which case, try to do special replacement of 1960 // calls which match the new prototype. The really key thing here 1961 // is that we also potentially drop arguments from the call site 1962 // so as to make a direct call, which makes the inliner happier 1963 // and suppresses a number of optimizer warnings (!) about 1964 // dropping arguments. 1965 if (!OldFn->use_empty()) { 1966 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1967 OldFn->removeDeadConstantUsers(); 1968 } 1969 1970 // Replace uses of F with the Function we will endow with a body. 1971 if (!Entry->use_empty()) { 1972 llvm::Constant *NewPtrForOldDecl = 1973 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1974 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1975 } 1976 1977 // Ok, delete the old function now, which is dead. 1978 OldFn->eraseFromParent(); 1979 1980 Entry = NewFn; 1981 } 1982 1983 // We need to set linkage and visibility on the function before 1984 // generating code for it because various parts of IR generation 1985 // want to propagate this information down (e.g. to local static 1986 // declarations). 1987 llvm::Function *Fn = cast<llvm::Function>(Entry); 1988 setFunctionLinkage(D, Fn); 1989 1990 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1991 setGlobalVisibility(Fn, D); 1992 1993 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1994 1995 SetFunctionDefinitionAttributes(D, Fn); 1996 SetLLVMFunctionAttributesForDefinition(D, Fn); 1997 1998 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1999 AddGlobalCtor(Fn, CA->getPriority()); 2000 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2001 AddGlobalDtor(Fn, DA->getPriority()); 2002 if (D->hasAttr<AnnotateAttr>()) 2003 AddGlobalAnnotations(D, Fn); 2004 } 2005 2006 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2007 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2008 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2009 assert(AA && "Not an alias?"); 2010 2011 StringRef MangledName = getMangledName(GD); 2012 2013 // If there is a definition in the module, then it wins over the alias. 2014 // This is dubious, but allow it to be safe. Just ignore the alias. 2015 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2016 if (Entry && !Entry->isDeclaration()) 2017 return; 2018 2019 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2020 2021 // Create a reference to the named value. This ensures that it is emitted 2022 // if a deferred decl. 2023 llvm::Constant *Aliasee; 2024 if (isa<llvm::FunctionType>(DeclTy)) 2025 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2026 /*ForVTable=*/false); 2027 else 2028 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2029 llvm::PointerType::getUnqual(DeclTy), 0); 2030 2031 // Create the new alias itself, but don't set a name yet. 2032 llvm::GlobalValue *GA = 2033 new llvm::GlobalAlias(Aliasee->getType(), 2034 llvm::Function::ExternalLinkage, 2035 "", Aliasee, &getModule()); 2036 2037 if (Entry) { 2038 assert(Entry->isDeclaration()); 2039 2040 // If there is a declaration in the module, then we had an extern followed 2041 // by the alias, as in: 2042 // extern int test6(); 2043 // ... 2044 // int test6() __attribute__((alias("test7"))); 2045 // 2046 // Remove it and replace uses of it with the alias. 2047 GA->takeName(Entry); 2048 2049 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2050 Entry->getType())); 2051 Entry->eraseFromParent(); 2052 } else { 2053 GA->setName(MangledName); 2054 } 2055 2056 // Set attributes which are particular to an alias; this is a 2057 // specialization of the attributes which may be set on a global 2058 // variable/function. 2059 if (D->hasAttr<DLLExportAttr>()) { 2060 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2061 // The dllexport attribute is ignored for undefined symbols. 2062 if (FD->hasBody()) 2063 GA->setLinkage(llvm::Function::DLLExportLinkage); 2064 } else { 2065 GA->setLinkage(llvm::Function::DLLExportLinkage); 2066 } 2067 } else if (D->hasAttr<WeakAttr>() || 2068 D->hasAttr<WeakRefAttr>() || 2069 D->isWeakImported()) { 2070 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2071 } 2072 2073 SetCommonAttributes(D, GA); 2074 } 2075 2076 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2077 ArrayRef<llvm::Type*> Tys) { 2078 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2079 Tys); 2080 } 2081 2082 static llvm::StringMapEntry<llvm::Constant*> & 2083 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2084 const StringLiteral *Literal, 2085 bool TargetIsLSB, 2086 bool &IsUTF16, 2087 unsigned &StringLength) { 2088 StringRef String = Literal->getString(); 2089 unsigned NumBytes = String.size(); 2090 2091 // Check for simple case. 2092 if (!Literal->containsNonAsciiOrNull()) { 2093 StringLength = NumBytes; 2094 return Map.GetOrCreateValue(String); 2095 } 2096 2097 // Otherwise, convert the UTF8 literals into a string of shorts. 2098 IsUTF16 = true; 2099 2100 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2101 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2102 UTF16 *ToPtr = &ToBuf[0]; 2103 2104 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2105 &ToPtr, ToPtr + NumBytes, 2106 strictConversion); 2107 2108 // ConvertUTF8toUTF16 returns the length in ToPtr. 2109 StringLength = ToPtr - &ToBuf[0]; 2110 2111 // Add an explicit null. 2112 *ToPtr = 0; 2113 return Map. 2114 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2115 (StringLength + 1) * 2)); 2116 } 2117 2118 static llvm::StringMapEntry<llvm::Constant*> & 2119 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2120 const StringLiteral *Literal, 2121 unsigned &StringLength) { 2122 StringRef String = Literal->getString(); 2123 StringLength = String.size(); 2124 return Map.GetOrCreateValue(String); 2125 } 2126 2127 llvm::Constant * 2128 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2129 unsigned StringLength = 0; 2130 bool isUTF16 = false; 2131 llvm::StringMapEntry<llvm::Constant*> &Entry = 2132 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2133 getDataLayout().isLittleEndian(), 2134 isUTF16, StringLength); 2135 2136 if (llvm::Constant *C = Entry.getValue()) 2137 return C; 2138 2139 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2140 llvm::Constant *Zeros[] = { Zero, Zero }; 2141 2142 // If we don't already have it, get __CFConstantStringClassReference. 2143 if (!CFConstantStringClassRef) { 2144 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2145 Ty = llvm::ArrayType::get(Ty, 0); 2146 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2147 "__CFConstantStringClassReference"); 2148 // Decay array -> ptr 2149 CFConstantStringClassRef = 2150 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2151 } 2152 2153 QualType CFTy = getContext().getCFConstantStringType(); 2154 2155 llvm::StructType *STy = 2156 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2157 2158 llvm::Constant *Fields[4]; 2159 2160 // Class pointer. 2161 Fields[0] = CFConstantStringClassRef; 2162 2163 // Flags. 2164 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2165 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2166 llvm::ConstantInt::get(Ty, 0x07C8); 2167 2168 // String pointer. 2169 llvm::Constant *C = 0; 2170 if (isUTF16) { 2171 ArrayRef<uint16_t> Arr = 2172 llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(), 2173 Entry.getKey().size() / 2); 2174 C = llvm::ConstantDataArray::get(VMContext, Arr); 2175 } else { 2176 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2177 } 2178 2179 llvm::GlobalValue::LinkageTypes Linkage; 2180 if (isUTF16) 2181 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2182 Linkage = llvm::GlobalValue::InternalLinkage; 2183 else 2184 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2185 // when using private linkage. It is not clear if this is a bug in ld 2186 // or a reasonable new restriction. 2187 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2188 2189 // Note: -fwritable-strings doesn't make the backing store strings of 2190 // CFStrings writable. (See <rdar://problem/10657500>) 2191 llvm::GlobalVariable *GV = 2192 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2193 Linkage, C, ".str"); 2194 GV->setUnnamedAddr(true); 2195 if (isUTF16) { 2196 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2197 GV->setAlignment(Align.getQuantity()); 2198 } else { 2199 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2200 GV->setAlignment(Align.getQuantity()); 2201 } 2202 2203 // String. 2204 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2205 2206 if (isUTF16) 2207 // Cast the UTF16 string to the correct type. 2208 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2209 2210 // String length. 2211 Ty = getTypes().ConvertType(getContext().LongTy); 2212 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2213 2214 // The struct. 2215 C = llvm::ConstantStruct::get(STy, Fields); 2216 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2217 llvm::GlobalVariable::PrivateLinkage, C, 2218 "_unnamed_cfstring_"); 2219 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 2220 GV->setSection(Sect); 2221 Entry.setValue(GV); 2222 2223 return GV; 2224 } 2225 2226 static RecordDecl * 2227 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2228 DeclContext *DC, IdentifierInfo *Id) { 2229 SourceLocation Loc; 2230 if (Ctx.getLangOpts().CPlusPlus) 2231 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2232 else 2233 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2234 } 2235 2236 llvm::Constant * 2237 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2238 unsigned StringLength = 0; 2239 llvm::StringMapEntry<llvm::Constant*> &Entry = 2240 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2241 2242 if (llvm::Constant *C = Entry.getValue()) 2243 return C; 2244 2245 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2246 llvm::Constant *Zeros[] = { Zero, Zero }; 2247 2248 // If we don't already have it, get _NSConstantStringClassReference. 2249 if (!ConstantStringClassRef) { 2250 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2251 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2252 llvm::Constant *GV; 2253 if (LangOpts.ObjCRuntime.isNonFragile()) { 2254 std::string str = 2255 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2256 : "OBJC_CLASS_$_" + StringClass; 2257 GV = getObjCRuntime().GetClassGlobal(str); 2258 // Make sure the result is of the correct type. 2259 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2260 ConstantStringClassRef = 2261 llvm::ConstantExpr::getBitCast(GV, PTy); 2262 } else { 2263 std::string str = 2264 StringClass.empty() ? "_NSConstantStringClassReference" 2265 : "_" + StringClass + "ClassReference"; 2266 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2267 GV = CreateRuntimeVariable(PTy, str); 2268 // Decay array -> ptr 2269 ConstantStringClassRef = 2270 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2271 } 2272 } 2273 2274 if (!NSConstantStringType) { 2275 // Construct the type for a constant NSString. 2276 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2277 Context.getTranslationUnitDecl(), 2278 &Context.Idents.get("__builtin_NSString")); 2279 D->startDefinition(); 2280 2281 QualType FieldTypes[3]; 2282 2283 // const int *isa; 2284 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2285 // const char *str; 2286 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2287 // unsigned int length; 2288 FieldTypes[2] = Context.UnsignedIntTy; 2289 2290 // Create fields 2291 for (unsigned i = 0; i < 3; ++i) { 2292 FieldDecl *Field = FieldDecl::Create(Context, D, 2293 SourceLocation(), 2294 SourceLocation(), 0, 2295 FieldTypes[i], /*TInfo=*/0, 2296 /*BitWidth=*/0, 2297 /*Mutable=*/false, 2298 ICIS_NoInit); 2299 Field->setAccess(AS_public); 2300 D->addDecl(Field); 2301 } 2302 2303 D->completeDefinition(); 2304 QualType NSTy = Context.getTagDeclType(D); 2305 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2306 } 2307 2308 llvm::Constant *Fields[3]; 2309 2310 // Class pointer. 2311 Fields[0] = ConstantStringClassRef; 2312 2313 // String pointer. 2314 llvm::Constant *C = 2315 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2316 2317 llvm::GlobalValue::LinkageTypes Linkage; 2318 bool isConstant; 2319 Linkage = llvm::GlobalValue::PrivateLinkage; 2320 isConstant = !LangOpts.WritableStrings; 2321 2322 llvm::GlobalVariable *GV = 2323 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2324 ".str"); 2325 GV->setUnnamedAddr(true); 2326 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2327 GV->setAlignment(Align.getQuantity()); 2328 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2329 2330 // String length. 2331 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2332 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2333 2334 // The struct. 2335 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2336 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2337 llvm::GlobalVariable::PrivateLinkage, C, 2338 "_unnamed_nsstring_"); 2339 // FIXME. Fix section. 2340 if (const char *Sect = 2341 LangOpts.ObjCRuntime.isNonFragile() 2342 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2343 : getContext().getTargetInfo().getNSStringSection()) 2344 GV->setSection(Sect); 2345 Entry.setValue(GV); 2346 2347 return GV; 2348 } 2349 2350 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2351 if (ObjCFastEnumerationStateType.isNull()) { 2352 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2353 Context.getTranslationUnitDecl(), 2354 &Context.Idents.get("__objcFastEnumerationState")); 2355 D->startDefinition(); 2356 2357 QualType FieldTypes[] = { 2358 Context.UnsignedLongTy, 2359 Context.getPointerType(Context.getObjCIdType()), 2360 Context.getPointerType(Context.UnsignedLongTy), 2361 Context.getConstantArrayType(Context.UnsignedLongTy, 2362 llvm::APInt(32, 5), ArrayType::Normal, 0) 2363 }; 2364 2365 for (size_t i = 0; i < 4; ++i) { 2366 FieldDecl *Field = FieldDecl::Create(Context, 2367 D, 2368 SourceLocation(), 2369 SourceLocation(), 0, 2370 FieldTypes[i], /*TInfo=*/0, 2371 /*BitWidth=*/0, 2372 /*Mutable=*/false, 2373 ICIS_NoInit); 2374 Field->setAccess(AS_public); 2375 D->addDecl(Field); 2376 } 2377 2378 D->completeDefinition(); 2379 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2380 } 2381 2382 return ObjCFastEnumerationStateType; 2383 } 2384 2385 llvm::Constant * 2386 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2387 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2388 2389 // Don't emit it as the address of the string, emit the string data itself 2390 // as an inline array. 2391 if (E->getCharByteWidth() == 1) { 2392 SmallString<64> Str(E->getString()); 2393 2394 // Resize the string to the right size, which is indicated by its type. 2395 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2396 Str.resize(CAT->getSize().getZExtValue()); 2397 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2398 } 2399 2400 llvm::ArrayType *AType = 2401 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2402 llvm::Type *ElemTy = AType->getElementType(); 2403 unsigned NumElements = AType->getNumElements(); 2404 2405 // Wide strings have either 2-byte or 4-byte elements. 2406 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2407 SmallVector<uint16_t, 32> Elements; 2408 Elements.reserve(NumElements); 2409 2410 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2411 Elements.push_back(E->getCodeUnit(i)); 2412 Elements.resize(NumElements); 2413 return llvm::ConstantDataArray::get(VMContext, Elements); 2414 } 2415 2416 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2417 SmallVector<uint32_t, 32> Elements; 2418 Elements.reserve(NumElements); 2419 2420 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2421 Elements.push_back(E->getCodeUnit(i)); 2422 Elements.resize(NumElements); 2423 return llvm::ConstantDataArray::get(VMContext, Elements); 2424 } 2425 2426 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2427 /// constant array for the given string literal. 2428 llvm::Constant * 2429 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2430 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2431 if (S->isAscii() || S->isUTF8()) { 2432 SmallString<64> Str(S->getString()); 2433 2434 // Resize the string to the right size, which is indicated by its type. 2435 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2436 Str.resize(CAT->getSize().getZExtValue()); 2437 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2438 } 2439 2440 // FIXME: the following does not memoize wide strings. 2441 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2442 llvm::GlobalVariable *GV = 2443 new llvm::GlobalVariable(getModule(),C->getType(), 2444 !LangOpts.WritableStrings, 2445 llvm::GlobalValue::PrivateLinkage, 2446 C,".str"); 2447 2448 GV->setAlignment(Align.getQuantity()); 2449 GV->setUnnamedAddr(true); 2450 return GV; 2451 } 2452 2453 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2454 /// array for the given ObjCEncodeExpr node. 2455 llvm::Constant * 2456 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2457 std::string Str; 2458 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2459 2460 return GetAddrOfConstantCString(Str); 2461 } 2462 2463 2464 /// GenerateWritableString -- Creates storage for a string literal. 2465 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2466 bool constant, 2467 CodeGenModule &CGM, 2468 const char *GlobalName, 2469 unsigned Alignment) { 2470 // Create Constant for this string literal. Don't add a '\0'. 2471 llvm::Constant *C = 2472 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2473 2474 // Create a global variable for this string 2475 llvm::GlobalVariable *GV = 2476 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2477 llvm::GlobalValue::PrivateLinkage, 2478 C, GlobalName); 2479 GV->setAlignment(Alignment); 2480 GV->setUnnamedAddr(true); 2481 return GV; 2482 } 2483 2484 /// GetAddrOfConstantString - Returns a pointer to a character array 2485 /// containing the literal. This contents are exactly that of the 2486 /// given string, i.e. it will not be null terminated automatically; 2487 /// see GetAddrOfConstantCString. Note that whether the result is 2488 /// actually a pointer to an LLVM constant depends on 2489 /// Feature.WriteableStrings. 2490 /// 2491 /// The result has pointer to array type. 2492 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2493 const char *GlobalName, 2494 unsigned Alignment) { 2495 // Get the default prefix if a name wasn't specified. 2496 if (!GlobalName) 2497 GlobalName = ".str"; 2498 2499 // Don't share any string literals if strings aren't constant. 2500 if (LangOpts.WritableStrings) 2501 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2502 2503 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2504 ConstantStringMap.GetOrCreateValue(Str); 2505 2506 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2507 if (Alignment > GV->getAlignment()) { 2508 GV->setAlignment(Alignment); 2509 } 2510 return GV; 2511 } 2512 2513 // Create a global variable for this. 2514 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2515 Alignment); 2516 Entry.setValue(GV); 2517 return GV; 2518 } 2519 2520 /// GetAddrOfConstantCString - Returns a pointer to a character 2521 /// array containing the literal and a terminating '\0' 2522 /// character. The result has pointer to array type. 2523 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2524 const char *GlobalName, 2525 unsigned Alignment) { 2526 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2527 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2528 } 2529 2530 /// EmitObjCPropertyImplementations - Emit information for synthesized 2531 /// properties for an implementation. 2532 void CodeGenModule::EmitObjCPropertyImplementations(const 2533 ObjCImplementationDecl *D) { 2534 for (ObjCImplementationDecl::propimpl_iterator 2535 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2536 ObjCPropertyImplDecl *PID = *i; 2537 2538 // Dynamic is just for type-checking. 2539 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2540 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2541 2542 // Determine which methods need to be implemented, some may have 2543 // been overridden. Note that ::isPropertyAccessor is not the method 2544 // we want, that just indicates if the decl came from a 2545 // property. What we want to know is if the method is defined in 2546 // this implementation. 2547 if (!D->getInstanceMethod(PD->getGetterName())) 2548 CodeGenFunction(*this).GenerateObjCGetter( 2549 const_cast<ObjCImplementationDecl *>(D), PID); 2550 if (!PD->isReadOnly() && 2551 !D->getInstanceMethod(PD->getSetterName())) 2552 CodeGenFunction(*this).GenerateObjCSetter( 2553 const_cast<ObjCImplementationDecl *>(D), PID); 2554 } 2555 } 2556 } 2557 2558 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2559 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2560 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2561 ivar; ivar = ivar->getNextIvar()) 2562 if (ivar->getType().isDestructedType()) 2563 return true; 2564 2565 return false; 2566 } 2567 2568 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2569 /// for an implementation. 2570 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2571 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2572 if (needsDestructMethod(D)) { 2573 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2574 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2575 ObjCMethodDecl *DTORMethod = 2576 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2577 cxxSelector, getContext().VoidTy, 0, D, 2578 /*isInstance=*/true, /*isVariadic=*/false, 2579 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2580 /*isDefined=*/false, ObjCMethodDecl::Required); 2581 D->addInstanceMethod(DTORMethod); 2582 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2583 D->setHasDestructors(true); 2584 } 2585 2586 // If the implementation doesn't have any ivar initializers, we don't need 2587 // a .cxx_construct. 2588 if (D->getNumIvarInitializers() == 0) 2589 return; 2590 2591 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2592 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2593 // The constructor returns 'self'. 2594 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2595 D->getLocation(), 2596 D->getLocation(), 2597 cxxSelector, 2598 getContext().getObjCIdType(), 0, 2599 D, /*isInstance=*/true, 2600 /*isVariadic=*/false, 2601 /*isPropertyAccessor=*/true, 2602 /*isImplicitlyDeclared=*/true, 2603 /*isDefined=*/false, 2604 ObjCMethodDecl::Required); 2605 D->addInstanceMethod(CTORMethod); 2606 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2607 D->setHasNonZeroConstructors(true); 2608 } 2609 2610 /// EmitNamespace - Emit all declarations in a namespace. 2611 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2612 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2613 I != E; ++I) 2614 EmitTopLevelDecl(*I); 2615 } 2616 2617 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2618 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2619 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2620 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2621 ErrorUnsupported(LSD, "linkage spec"); 2622 return; 2623 } 2624 2625 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2626 I != E; ++I) { 2627 // Meta-data for ObjC class includes references to implemented methods. 2628 // Generate class's method definitions first. 2629 if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) { 2630 for (ObjCContainerDecl::method_iterator M = OID->meth_begin(), 2631 MEnd = OID->meth_end(); 2632 M != MEnd; ++M) 2633 EmitTopLevelDecl(*M); 2634 } 2635 EmitTopLevelDecl(*I); 2636 } 2637 } 2638 2639 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2640 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2641 // If an error has occurred, stop code generation, but continue 2642 // parsing and semantic analysis (to ensure all warnings and errors 2643 // are emitted). 2644 if (Diags.hasErrorOccurred()) 2645 return; 2646 2647 // Ignore dependent declarations. 2648 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2649 return; 2650 2651 switch (D->getKind()) { 2652 case Decl::CXXConversion: 2653 case Decl::CXXMethod: 2654 case Decl::Function: 2655 // Skip function templates 2656 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2657 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2658 return; 2659 2660 EmitGlobal(cast<FunctionDecl>(D)); 2661 break; 2662 2663 case Decl::Var: 2664 EmitGlobal(cast<VarDecl>(D)); 2665 break; 2666 2667 // Indirect fields from global anonymous structs and unions can be 2668 // ignored; only the actual variable requires IR gen support. 2669 case Decl::IndirectField: 2670 break; 2671 2672 // C++ Decls 2673 case Decl::Namespace: 2674 EmitNamespace(cast<NamespaceDecl>(D)); 2675 break; 2676 // No code generation needed. 2677 case Decl::UsingShadow: 2678 case Decl::Using: 2679 case Decl::UsingDirective: 2680 case Decl::ClassTemplate: 2681 case Decl::FunctionTemplate: 2682 case Decl::TypeAliasTemplate: 2683 case Decl::NamespaceAlias: 2684 case Decl::Block: 2685 break; 2686 case Decl::CXXConstructor: 2687 // Skip function templates 2688 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2689 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2690 return; 2691 2692 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2693 break; 2694 case Decl::CXXDestructor: 2695 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2696 return; 2697 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2698 break; 2699 2700 case Decl::StaticAssert: 2701 // Nothing to do. 2702 break; 2703 2704 // Objective-C Decls 2705 2706 // Forward declarations, no (immediate) code generation. 2707 case Decl::ObjCInterface: 2708 case Decl::ObjCCategory: 2709 break; 2710 2711 case Decl::ObjCProtocol: { 2712 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2713 if (Proto->isThisDeclarationADefinition()) 2714 ObjCRuntime->GenerateProtocol(Proto); 2715 break; 2716 } 2717 2718 case Decl::ObjCCategoryImpl: 2719 // Categories have properties but don't support synthesize so we 2720 // can ignore them here. 2721 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2722 break; 2723 2724 case Decl::ObjCImplementation: { 2725 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2726 EmitObjCPropertyImplementations(OMD); 2727 EmitObjCIvarInitializations(OMD); 2728 ObjCRuntime->GenerateClass(OMD); 2729 // Emit global variable debug information. 2730 if (CGDebugInfo *DI = getModuleDebugInfo()) 2731 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2732 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 2733 OMD->getClassInterface()), OMD->getLocation()); 2734 break; 2735 } 2736 case Decl::ObjCMethod: { 2737 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2738 // If this is not a prototype, emit the body. 2739 if (OMD->getBody()) 2740 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2741 break; 2742 } 2743 case Decl::ObjCCompatibleAlias: 2744 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2745 break; 2746 2747 case Decl::LinkageSpec: 2748 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2749 break; 2750 2751 case Decl::FileScopeAsm: { 2752 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2753 StringRef AsmString = AD->getAsmString()->getString(); 2754 2755 const std::string &S = getModule().getModuleInlineAsm(); 2756 if (S.empty()) 2757 getModule().setModuleInlineAsm(AsmString); 2758 else if (S.end()[-1] == '\n') 2759 getModule().setModuleInlineAsm(S + AsmString.str()); 2760 else 2761 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2762 break; 2763 } 2764 2765 case Decl::Import: { 2766 ImportDecl *Import = cast<ImportDecl>(D); 2767 2768 // Ignore import declarations that come from imported modules. 2769 if (clang::Module *Owner = Import->getOwningModule()) { 2770 if (getLangOpts().CurrentModule.empty() || 2771 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 2772 break; 2773 } 2774 2775 // Walk from this module up to its top-level module; we'll import all of 2776 // these modules and their non-explicit child modules. 2777 llvm::SmallVector<clang::Module *, 2> Stack; 2778 for (clang::Module *Mod = Import->getImportedModule(); Mod; 2779 Mod = Mod->Parent) { 2780 if (!ImportedModules.insert(Mod)) 2781 break; 2782 2783 Stack.push_back(Mod); 2784 } 2785 2786 if (Stack.empty()) 2787 break; 2788 2789 // Get/create metadata for the link options. 2790 llvm::NamedMDNode *Metadata 2791 = getModule().getOrInsertNamedMetadata("llvm.module.linkoptions"); 2792 2793 // Find all of the non-explicit submodules of the modules we've imported and 2794 // import them. 2795 while (!Stack.empty()) { 2796 clang::Module *Mod = Stack.back(); 2797 Stack.pop_back(); 2798 2799 // Add linker options to link against the libraries/frameworks 2800 // described by this module. 2801 for (unsigned I = 0, N = Mod->LinkLibraries.size(); I != N; ++I) { 2802 // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric. 2803 // We need to know more about the linker to know how to encode these 2804 // options propertly. 2805 2806 // Link against a framework. 2807 if (Mod->LinkLibraries[I].IsFramework) { 2808 llvm::Value *Args[2] = { 2809 llvm::MDString::get(getLLVMContext(), "-framework"), 2810 llvm::MDString::get(getLLVMContext(), 2811 Mod->LinkLibraries[I].Library) 2812 }; 2813 2814 Metadata->addOperand(llvm::MDNode::get(getLLVMContext(), Args)); 2815 continue; 2816 } 2817 2818 // Link against a library. 2819 llvm::Value *OptString 2820 = llvm::MDString::get(getLLVMContext(), 2821 "-l" + Mod->LinkLibraries[I].Library); 2822 Metadata->addOperand(llvm::MDNode::get(getLLVMContext(), OptString)); 2823 } 2824 2825 // Import this module's (non-explicit) submodules. 2826 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 2827 SubEnd = Mod->submodule_end(); 2828 Sub != SubEnd; ++Sub) { 2829 if ((*Sub)->IsExplicit) 2830 continue; 2831 2832 if (ImportedModules.insert(*Sub)) 2833 Stack.push_back(*Sub); 2834 } 2835 2836 // Import this module's dependencies. 2837 for (unsigned I = 0, N = Mod->Imports.size(); I != N; ++I) { 2838 if (ImportedModules.insert(Mod->Imports[I])) 2839 Stack.push_back(Mod->Imports[I]); 2840 } 2841 } 2842 break; 2843 } 2844 2845 default: 2846 // Make sure we handled everything we should, every other kind is a 2847 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2848 // function. Need to recode Decl::Kind to do that easily. 2849 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2850 } 2851 } 2852 2853 /// Turns the given pointer into a constant. 2854 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2855 const void *Ptr) { 2856 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2857 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2858 return llvm::ConstantInt::get(i64, PtrInt); 2859 } 2860 2861 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2862 llvm::NamedMDNode *&GlobalMetadata, 2863 GlobalDecl D, 2864 llvm::GlobalValue *Addr) { 2865 if (!GlobalMetadata) 2866 GlobalMetadata = 2867 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2868 2869 // TODO: should we report variant information for ctors/dtors? 2870 llvm::Value *Ops[] = { 2871 Addr, 2872 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2873 }; 2874 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2875 } 2876 2877 /// Emits metadata nodes associating all the global values in the 2878 /// current module with the Decls they came from. This is useful for 2879 /// projects using IR gen as a subroutine. 2880 /// 2881 /// Since there's currently no way to associate an MDNode directly 2882 /// with an llvm::GlobalValue, we create a global named metadata 2883 /// with the name 'clang.global.decl.ptrs'. 2884 void CodeGenModule::EmitDeclMetadata() { 2885 llvm::NamedMDNode *GlobalMetadata = 0; 2886 2887 // StaticLocalDeclMap 2888 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2889 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2890 I != E; ++I) { 2891 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2892 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2893 } 2894 } 2895 2896 /// Emits metadata nodes for all the local variables in the current 2897 /// function. 2898 void CodeGenFunction::EmitDeclMetadata() { 2899 if (LocalDeclMap.empty()) return; 2900 2901 llvm::LLVMContext &Context = getLLVMContext(); 2902 2903 // Find the unique metadata ID for this name. 2904 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2905 2906 llvm::NamedMDNode *GlobalMetadata = 0; 2907 2908 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2909 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2910 const Decl *D = I->first; 2911 llvm::Value *Addr = I->second; 2912 2913 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2914 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2915 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2916 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2917 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2918 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2919 } 2920 } 2921 } 2922 2923 void CodeGenModule::EmitCoverageFile() { 2924 if (!getCodeGenOpts().CoverageFile.empty()) { 2925 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2926 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2927 llvm::LLVMContext &Ctx = TheModule.getContext(); 2928 llvm::MDString *CoverageFile = 2929 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2930 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2931 llvm::MDNode *CU = CUNode->getOperand(i); 2932 llvm::Value *node[] = { CoverageFile, CU }; 2933 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2934 GCov->addOperand(N); 2935 } 2936 } 2937 } 2938 } 2939 2940 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 2941 QualType GuidType) { 2942 // Sema has checked that all uuid strings are of the form 2943 // "12345678-1234-1234-1234-1234567890ab". 2944 assert(Uuid.size() == 36); 2945 const char *Uuidstr = Uuid.data(); 2946 for (int i = 0; i < 36; ++i) { 2947 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-'); 2948 else assert(isxdigit(Uuidstr[i])); 2949 } 2950 2951 llvm::APInt Field0(32, StringRef(Uuidstr , 8), 16); 2952 llvm::APInt Field1(16, StringRef(Uuidstr + 9, 4), 16); 2953 llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16); 2954 static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 2955 2956 APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4); 2957 InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0)); 2958 InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1)); 2959 InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2)); 2960 APValue& Arr = InitStruct.getStructField(3); 2961 Arr = APValue(APValue::UninitArray(), 8, 8); 2962 for (int t = 0; t < 8; ++t) 2963 Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt( 2964 llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16))); 2965 2966 return EmitConstantValue(InitStruct, GuidType); 2967 } 2968