xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 170429e2905b3ee19e06f5549960be72183a69ac)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static const char AnnotationSection[] = "llvm.metadata";
64 
65 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
66   switch (CGM.getTarget().getCXXABI().getKind()) {
67   case TargetCXXABI::GenericAArch64:
68   case TargetCXXABI::GenericARM:
69   case TargetCXXABI::iOS:
70   case TargetCXXABI::iOS64:
71   case TargetCXXABI::WatchOS:
72   case TargetCXXABI::GenericMIPS:
73   case TargetCXXABI::GenericItanium:
74   case TargetCXXABI::WebAssembly:
75     return CreateItaniumCXXABI(CGM);
76   case TargetCXXABI::Microsoft:
77     return CreateMicrosoftCXXABI(CGM);
78   }
79 
80   llvm_unreachable("invalid C++ ABI kind");
81 }
82 
83 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
84                              const PreprocessorOptions &PPO,
85                              const CodeGenOptions &CGO, llvm::Module &M,
86                              DiagnosticsEngine &diags,
87                              CoverageSourceInfo *CoverageInfo)
88     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
89       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
90       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
91       VMContext(M.getContext()), Types(*this), VTables(*this),
92       SanitizerMD(new SanitizerMetadata(*this)) {
93 
94   // Initialize the type cache.
95   llvm::LLVMContext &LLVMContext = M.getContext();
96   VoidTy = llvm::Type::getVoidTy(LLVMContext);
97   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
98   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
99   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101   FloatTy = llvm::Type::getFloatTy(LLVMContext);
102   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
103   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
104   PointerAlignInBytes =
105     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
106   SizeSizeInBytes =
107     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
108   IntAlignInBytes =
109     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
110   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
111   IntPtrTy = llvm::IntegerType::get(LLVMContext,
112     C.getTargetInfo().getMaxPointerWidth());
113   Int8PtrTy = Int8Ty->getPointerTo(0);
114   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
115   AllocaInt8PtrTy = Int8Ty->getPointerTo(
116       M.getDataLayout().getAllocaAddrSpace());
117   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
118 
119   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
120   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
121 
122   if (LangOpts.ObjC1)
123     createObjCRuntime();
124   if (LangOpts.OpenCL)
125     createOpenCLRuntime();
126   if (LangOpts.OpenMP)
127     createOpenMPRuntime();
128   if (LangOpts.CUDA)
129     createCUDARuntime();
130 
131   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
132   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
133       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
134     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
135                                getCXXABI().getMangleContext()));
136 
137   // If debug info or coverage generation is enabled, create the CGDebugInfo
138   // object.
139   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
140       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
141     DebugInfo.reset(new CGDebugInfo(*this));
142 
143   Block.GlobalUniqueCount = 0;
144 
145   if (C.getLangOpts().ObjC1)
146     ObjCData.reset(new ObjCEntrypoints());
147 
148   if (CodeGenOpts.hasProfileClangUse()) {
149     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
150         CodeGenOpts.ProfileInstrumentUsePath);
151     if (auto E = ReaderOrErr.takeError()) {
152       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
153                                               "Could not read profile %0: %1");
154       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
155         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
156                                   << EI.message();
157       });
158     } else
159       PGOReader = std::move(ReaderOrErr.get());
160   }
161 
162   // If coverage mapping generation is enabled, create the
163   // CoverageMappingModuleGen object.
164   if (CodeGenOpts.CoverageMapping)
165     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
166 }
167 
168 CodeGenModule::~CodeGenModule() {}
169 
170 void CodeGenModule::createObjCRuntime() {
171   // This is just isGNUFamily(), but we want to force implementors of
172   // new ABIs to decide how best to do this.
173   switch (LangOpts.ObjCRuntime.getKind()) {
174   case ObjCRuntime::GNUstep:
175   case ObjCRuntime::GCC:
176   case ObjCRuntime::ObjFW:
177     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
178     return;
179 
180   case ObjCRuntime::FragileMacOSX:
181   case ObjCRuntime::MacOSX:
182   case ObjCRuntime::iOS:
183   case ObjCRuntime::WatchOS:
184     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
185     return;
186   }
187   llvm_unreachable("bad runtime kind");
188 }
189 
190 void CodeGenModule::createOpenCLRuntime() {
191   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
192 }
193 
194 void CodeGenModule::createOpenMPRuntime() {
195   // Select a specialized code generation class based on the target, if any.
196   // If it does not exist use the default implementation.
197   switch (getTriple().getArch()) {
198   case llvm::Triple::nvptx:
199   case llvm::Triple::nvptx64:
200     assert(getLangOpts().OpenMPIsDevice &&
201            "OpenMP NVPTX is only prepared to deal with device code.");
202     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
203     break;
204   default:
205     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
206     break;
207   }
208 }
209 
210 void CodeGenModule::createCUDARuntime() {
211   CUDARuntime.reset(CreateNVCUDARuntime(*this));
212 }
213 
214 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
215   Replacements[Name] = C;
216 }
217 
218 void CodeGenModule::applyReplacements() {
219   for (auto &I : Replacements) {
220     StringRef MangledName = I.first();
221     llvm::Constant *Replacement = I.second;
222     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
223     if (!Entry)
224       continue;
225     auto *OldF = cast<llvm::Function>(Entry);
226     auto *NewF = dyn_cast<llvm::Function>(Replacement);
227     if (!NewF) {
228       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
229         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
230       } else {
231         auto *CE = cast<llvm::ConstantExpr>(Replacement);
232         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
233                CE->getOpcode() == llvm::Instruction::GetElementPtr);
234         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
235       }
236     }
237 
238     // Replace old with new, but keep the old order.
239     OldF->replaceAllUsesWith(Replacement);
240     if (NewF) {
241       NewF->removeFromParent();
242       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
243                                                        NewF);
244     }
245     OldF->eraseFromParent();
246   }
247 }
248 
249 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
250   GlobalValReplacements.push_back(std::make_pair(GV, C));
251 }
252 
253 void CodeGenModule::applyGlobalValReplacements() {
254   for (auto &I : GlobalValReplacements) {
255     llvm::GlobalValue *GV = I.first;
256     llvm::Constant *C = I.second;
257 
258     GV->replaceAllUsesWith(C);
259     GV->eraseFromParent();
260   }
261 }
262 
263 // This is only used in aliases that we created and we know they have a
264 // linear structure.
265 static const llvm::GlobalObject *getAliasedGlobal(
266     const llvm::GlobalIndirectSymbol &GIS) {
267   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
268   const llvm::Constant *C = &GIS;
269   for (;;) {
270     C = C->stripPointerCasts();
271     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
272       return GO;
273     // stripPointerCasts will not walk over weak aliases.
274     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
275     if (!GIS2)
276       return nullptr;
277     if (!Visited.insert(GIS2).second)
278       return nullptr;
279     C = GIS2->getIndirectSymbol();
280   }
281 }
282 
283 void CodeGenModule::checkAliases() {
284   // Check if the constructed aliases are well formed. It is really unfortunate
285   // that we have to do this in CodeGen, but we only construct mangled names
286   // and aliases during codegen.
287   bool Error = false;
288   DiagnosticsEngine &Diags = getDiags();
289   for (const GlobalDecl &GD : Aliases) {
290     const auto *D = cast<ValueDecl>(GD.getDecl());
291     SourceLocation Location;
292     bool IsIFunc = D->hasAttr<IFuncAttr>();
293     if (const Attr *A = D->getDefiningAttr())
294       Location = A->getLocation();
295     else
296       llvm_unreachable("Not an alias or ifunc?");
297     StringRef MangledName = getMangledName(GD);
298     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
299     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
300     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
301     if (!GV) {
302       Error = true;
303       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
304     } else if (GV->isDeclaration()) {
305       Error = true;
306       Diags.Report(Location, diag::err_alias_to_undefined)
307           << IsIFunc << IsIFunc;
308     } else if (IsIFunc) {
309       // Check resolver function type.
310       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
311           GV->getType()->getPointerElementType());
312       assert(FTy);
313       if (!FTy->getReturnType()->isPointerTy())
314         Diags.Report(Location, diag::err_ifunc_resolver_return);
315       if (FTy->getNumParams())
316         Diags.Report(Location, diag::err_ifunc_resolver_params);
317     }
318 
319     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
320     llvm::GlobalValue *AliaseeGV;
321     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
322       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
323     else
324       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
325 
326     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
327       StringRef AliasSection = SA->getName();
328       if (AliasSection != AliaseeGV->getSection())
329         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
330             << AliasSection << IsIFunc << IsIFunc;
331     }
332 
333     // We have to handle alias to weak aliases in here. LLVM itself disallows
334     // this since the object semantics would not match the IL one. For
335     // compatibility with gcc we implement it by just pointing the alias
336     // to its aliasee's aliasee. We also warn, since the user is probably
337     // expecting the link to be weak.
338     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
339       if (GA->isInterposable()) {
340         Diags.Report(Location, diag::warn_alias_to_weak_alias)
341             << GV->getName() << GA->getName() << IsIFunc;
342         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
343             GA->getIndirectSymbol(), Alias->getType());
344         Alias->setIndirectSymbol(Aliasee);
345       }
346     }
347   }
348   if (!Error)
349     return;
350 
351   for (const GlobalDecl &GD : Aliases) {
352     StringRef MangledName = getMangledName(GD);
353     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
354     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
355     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
356     Alias->eraseFromParent();
357   }
358 }
359 
360 void CodeGenModule::clear() {
361   DeferredDeclsToEmit.clear();
362   if (OpenMPRuntime)
363     OpenMPRuntime->clear();
364 }
365 
366 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
367                                        StringRef MainFile) {
368   if (!hasDiagnostics())
369     return;
370   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
371     if (MainFile.empty())
372       MainFile = "<stdin>";
373     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
374   } else {
375     if (Mismatched > 0)
376       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
377 
378     if (Missing > 0)
379       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
380   }
381 }
382 
383 void CodeGenModule::Release() {
384   EmitDeferred();
385   applyGlobalValReplacements();
386   applyReplacements();
387   checkAliases();
388   EmitCXXGlobalInitFunc();
389   EmitCXXGlobalDtorFunc();
390   EmitCXXThreadLocalInitFunc();
391   if (ObjCRuntime)
392     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
393       AddGlobalCtor(ObjCInitFunction);
394   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
395       CUDARuntime) {
396     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
397       AddGlobalCtor(CudaCtorFunction);
398     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
399       AddGlobalDtor(CudaDtorFunction);
400   }
401   if (OpenMPRuntime)
402     if (llvm::Function *OpenMPRegistrationFunction =
403             OpenMPRuntime->emitRegistrationFunction())
404       AddGlobalCtor(OpenMPRegistrationFunction, 0);
405   if (PGOReader) {
406     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
407     if (PGOStats.hasDiagnostics())
408       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
409   }
410   EmitCtorList(GlobalCtors, "llvm.global_ctors");
411   EmitCtorList(GlobalDtors, "llvm.global_dtors");
412   EmitGlobalAnnotations();
413   EmitStaticExternCAliases();
414   EmitDeferredUnusedCoverageMappings();
415   if (CoverageMapping)
416     CoverageMapping->emit();
417   if (CodeGenOpts.SanitizeCfiCrossDso) {
418     CodeGenFunction(*this).EmitCfiCheckFail();
419     CodeGenFunction(*this).EmitCfiCheckStub();
420   }
421   emitAtAvailableLinkGuard();
422   emitLLVMUsed();
423   if (SanStats)
424     SanStats->finish();
425 
426   if (CodeGenOpts.Autolink &&
427       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
428     EmitModuleLinkOptions();
429   }
430 
431   // Record mregparm value now so it is visible through rest of codegen.
432   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
433     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
434                               CodeGenOpts.NumRegisterParameters);
435 
436   if (CodeGenOpts.DwarfVersion) {
437     // We actually want the latest version when there are conflicts.
438     // We can change from Warning to Latest if such mode is supported.
439     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
440                               CodeGenOpts.DwarfVersion);
441   }
442   if (CodeGenOpts.EmitCodeView) {
443     // Indicate that we want CodeView in the metadata.
444     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
445   }
446   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
447     // We don't support LTO with 2 with different StrictVTablePointers
448     // FIXME: we could support it by stripping all the information introduced
449     // by StrictVTablePointers.
450 
451     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
452 
453     llvm::Metadata *Ops[2] = {
454               llvm::MDString::get(VMContext, "StrictVTablePointers"),
455               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
456                   llvm::Type::getInt32Ty(VMContext), 1))};
457 
458     getModule().addModuleFlag(llvm::Module::Require,
459                               "StrictVTablePointersRequirement",
460                               llvm::MDNode::get(VMContext, Ops));
461   }
462   if (DebugInfo)
463     // We support a single version in the linked module. The LLVM
464     // parser will drop debug info with a different version number
465     // (and warn about it, too).
466     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
467                               llvm::DEBUG_METADATA_VERSION);
468 
469   // Width of wchar_t in bytes
470   uint64_t WCharWidth =
471       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
472   assert(LangOpts.ShortWChar ||
473          llvm::TargetLibraryInfoImpl::getTargetWCharSize(Target.getTriple()) ==
474                  Target.getWCharWidth() / 8 &&
475              "LLVM wchar_t size out of sync");
476 
477   // We need to record the widths of enums and wchar_t, so that we can generate
478   // the correct build attributes in the ARM backend. wchar_size is also used by
479   // TargetLibraryInfo.
480   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
481 
482   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
483   if (   Arch == llvm::Triple::arm
484       || Arch == llvm::Triple::armeb
485       || Arch == llvm::Triple::thumb
486       || Arch == llvm::Triple::thumbeb) {
487     // The minimum width of an enum in bytes
488     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
489     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
490   }
491 
492   if (CodeGenOpts.SanitizeCfiCrossDso) {
493     // Indicate that we want cross-DSO control flow integrity checks.
494     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
495   }
496 
497   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
498     // Indicate whether __nvvm_reflect should be configured to flush denormal
499     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
500     // property.)
501     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
502                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
503   }
504 
505   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
506     assert(PLevel < 3 && "Invalid PIC Level");
507     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
508     if (Context.getLangOpts().PIE)
509       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
510   }
511 
512   SimplifyPersonality();
513 
514   if (getCodeGenOpts().EmitDeclMetadata)
515     EmitDeclMetadata();
516 
517   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
518     EmitCoverageFile();
519 
520   if (DebugInfo)
521     DebugInfo->finalize();
522 
523   EmitVersionIdentMetadata();
524 
525   EmitTargetMetadata();
526 }
527 
528 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
529   // Make sure that this type is translated.
530   Types.UpdateCompletedType(TD);
531 }
532 
533 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
534   // Make sure that this type is translated.
535   Types.RefreshTypeCacheForClass(RD);
536 }
537 
538 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
539   if (!TBAA)
540     return nullptr;
541   return TBAA->getTBAAInfo(QTy);
542 }
543 
544 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
545   if (!TBAA)
546     return nullptr;
547   return TBAA->getTBAAInfoForVTablePtr();
548 }
549 
550 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
551   if (!TBAA)
552     return nullptr;
553   return TBAA->getTBAAStructInfo(QTy);
554 }
555 
556 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
557                                                   llvm::MDNode *AccessN,
558                                                   uint64_t O) {
559   if (!TBAA)
560     return nullptr;
561   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
562 }
563 
564 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
565 /// and struct-path aware TBAA, the tag has the same format:
566 /// base type, access type and offset.
567 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
568 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
569                                                 llvm::MDNode *TBAAInfo,
570                                                 bool ConvertTypeToTag) {
571   if (ConvertTypeToTag && TBAA)
572     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
573                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
574   else
575     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
576 }
577 
578 void CodeGenModule::DecorateInstructionWithInvariantGroup(
579     llvm::Instruction *I, const CXXRecordDecl *RD) {
580   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
581                  llvm::MDNode::get(getLLVMContext(), {}));
582 }
583 
584 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
585   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
586   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
587 }
588 
589 /// ErrorUnsupported - Print out an error that codegen doesn't support the
590 /// specified stmt yet.
591 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
592   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
593                                                "cannot compile this %0 yet");
594   std::string Msg = Type;
595   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
596     << Msg << S->getSourceRange();
597 }
598 
599 /// ErrorUnsupported - Print out an error that codegen doesn't support the
600 /// specified decl yet.
601 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
602   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
603                                                "cannot compile this %0 yet");
604   std::string Msg = Type;
605   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
606 }
607 
608 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
609   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
610 }
611 
612 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
613                                         const NamedDecl *D) const {
614   // Internal definitions always have default visibility.
615   if (GV->hasLocalLinkage()) {
616     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
617     return;
618   }
619 
620   // Set visibility for definitions.
621   LinkageInfo LV = D->getLinkageAndVisibility();
622   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
623     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
624 }
625 
626 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
627   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
628       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
629       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
630       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
631       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
632 }
633 
634 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
635     CodeGenOptions::TLSModel M) {
636   switch (M) {
637   case CodeGenOptions::GeneralDynamicTLSModel:
638     return llvm::GlobalVariable::GeneralDynamicTLSModel;
639   case CodeGenOptions::LocalDynamicTLSModel:
640     return llvm::GlobalVariable::LocalDynamicTLSModel;
641   case CodeGenOptions::InitialExecTLSModel:
642     return llvm::GlobalVariable::InitialExecTLSModel;
643   case CodeGenOptions::LocalExecTLSModel:
644     return llvm::GlobalVariable::LocalExecTLSModel;
645   }
646   llvm_unreachable("Invalid TLS model!");
647 }
648 
649 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
650   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
651 
652   llvm::GlobalValue::ThreadLocalMode TLM;
653   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
654 
655   // Override the TLS model if it is explicitly specified.
656   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
657     TLM = GetLLVMTLSModel(Attr->getModel());
658   }
659 
660   GV->setThreadLocalMode(TLM);
661 }
662 
663 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
664   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
665 
666   // Some ABIs don't have constructor variants.  Make sure that base and
667   // complete constructors get mangled the same.
668   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
669     if (!getTarget().getCXXABI().hasConstructorVariants()) {
670       CXXCtorType OrigCtorType = GD.getCtorType();
671       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
672       if (OrigCtorType == Ctor_Base)
673         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
674     }
675   }
676 
677   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
678   if (!FoundStr.empty())
679     return FoundStr;
680 
681   const auto *ND = cast<NamedDecl>(GD.getDecl());
682   SmallString<256> Buffer;
683   StringRef Str;
684   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
685     llvm::raw_svector_ostream Out(Buffer);
686     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
687       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
688     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
689       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
690     else
691       getCXXABI().getMangleContext().mangleName(ND, Out);
692     Str = Out.str();
693   } else {
694     IdentifierInfo *II = ND->getIdentifier();
695     assert(II && "Attempt to mangle unnamed decl.");
696     const auto *FD = dyn_cast<FunctionDecl>(ND);
697 
698     if (FD &&
699         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
700       llvm::raw_svector_ostream Out(Buffer);
701       Out << "__regcall3__" << II->getName();
702       Str = Out.str();
703     } else {
704       Str = II->getName();
705     }
706   }
707 
708   // Keep the first result in the case of a mangling collision.
709   auto Result = Manglings.insert(std::make_pair(Str, GD));
710   return FoundStr = Result.first->first();
711 }
712 
713 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
714                                              const BlockDecl *BD) {
715   MangleContext &MangleCtx = getCXXABI().getMangleContext();
716   const Decl *D = GD.getDecl();
717 
718   SmallString<256> Buffer;
719   llvm::raw_svector_ostream Out(Buffer);
720   if (!D)
721     MangleCtx.mangleGlobalBlock(BD,
722       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
723   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
724     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
725   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
726     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
727   else
728     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
729 
730   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
731   return Result.first->first();
732 }
733 
734 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
735   return getModule().getNamedValue(Name);
736 }
737 
738 /// AddGlobalCtor - Add a function to the list that will be called before
739 /// main() runs.
740 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
741                                   llvm::Constant *AssociatedData) {
742   // FIXME: Type coercion of void()* types.
743   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
744 }
745 
746 /// AddGlobalDtor - Add a function to the list that will be called
747 /// when the module is unloaded.
748 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
749   // FIXME: Type coercion of void()* types.
750   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
751 }
752 
753 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
754   if (Fns.empty()) return;
755 
756   // Ctor function type is void()*.
757   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
758   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
759 
760   // Get the type of a ctor entry, { i32, void ()*, i8* }.
761   llvm::StructType *CtorStructTy = llvm::StructType::get(
762       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
763 
764   // Construct the constructor and destructor arrays.
765   ConstantInitBuilder builder(*this);
766   auto ctors = builder.beginArray(CtorStructTy);
767   for (const auto &I : Fns) {
768     auto ctor = ctors.beginStruct(CtorStructTy);
769     ctor.addInt(Int32Ty, I.Priority);
770     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
771     if (I.AssociatedData)
772       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
773     else
774       ctor.addNullPointer(VoidPtrTy);
775     ctor.finishAndAddTo(ctors);
776   }
777 
778   auto list =
779     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
780                                 /*constant*/ false,
781                                 llvm::GlobalValue::AppendingLinkage);
782 
783   // The LTO linker doesn't seem to like it when we set an alignment
784   // on appending variables.  Take it off as a workaround.
785   list->setAlignment(0);
786 
787   Fns.clear();
788 }
789 
790 llvm::GlobalValue::LinkageTypes
791 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
792   const auto *D = cast<FunctionDecl>(GD.getDecl());
793 
794   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
795 
796   if (isa<CXXDestructorDecl>(D) &&
797       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
798                                          GD.getDtorType())) {
799     // Destructor variants in the Microsoft C++ ABI are always internal or
800     // linkonce_odr thunks emitted on an as-needed basis.
801     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
802                                    : llvm::GlobalValue::LinkOnceODRLinkage;
803   }
804 
805   if (isa<CXXConstructorDecl>(D) &&
806       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
807       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
808     // Our approach to inheriting constructors is fundamentally different from
809     // that used by the MS ABI, so keep our inheriting constructor thunks
810     // internal rather than trying to pick an unambiguous mangling for them.
811     return llvm::GlobalValue::InternalLinkage;
812   }
813 
814   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
815 }
816 
817 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
818   const auto *FD = cast<FunctionDecl>(GD.getDecl());
819 
820   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
821     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
822       // Don't dllexport/import destructor thunks.
823       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
824       return;
825     }
826   }
827 
828   if (FD->hasAttr<DLLImportAttr>())
829     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
830   else if (FD->hasAttr<DLLExportAttr>())
831     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
832   else
833     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
834 }
835 
836 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
837   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
838   if (!MDS) return nullptr;
839 
840   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
841 }
842 
843 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
844                                                     llvm::Function *F) {
845   setNonAliasAttributes(D, F);
846 }
847 
848 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
849                                               const CGFunctionInfo &Info,
850                                               llvm::Function *F) {
851   unsigned CallingConv;
852   llvm::AttributeList PAL;
853   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
854   F->setAttributes(PAL);
855   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
856 }
857 
858 /// Determines whether the language options require us to model
859 /// unwind exceptions.  We treat -fexceptions as mandating this
860 /// except under the fragile ObjC ABI with only ObjC exceptions
861 /// enabled.  This means, for example, that C with -fexceptions
862 /// enables this.
863 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
864   // If exceptions are completely disabled, obviously this is false.
865   if (!LangOpts.Exceptions) return false;
866 
867   // If C++ exceptions are enabled, this is true.
868   if (LangOpts.CXXExceptions) return true;
869 
870   // If ObjC exceptions are enabled, this depends on the ABI.
871   if (LangOpts.ObjCExceptions) {
872     return LangOpts.ObjCRuntime.hasUnwindExceptions();
873   }
874 
875   return true;
876 }
877 
878 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
879                                                            llvm::Function *F) {
880   llvm::AttrBuilder B;
881 
882   if (CodeGenOpts.UnwindTables)
883     B.addAttribute(llvm::Attribute::UWTable);
884 
885   if (!hasUnwindExceptions(LangOpts))
886     B.addAttribute(llvm::Attribute::NoUnwind);
887 
888   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
889     B.addAttribute(llvm::Attribute::StackProtect);
890   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
891     B.addAttribute(llvm::Attribute::StackProtectStrong);
892   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
893     B.addAttribute(llvm::Attribute::StackProtectReq);
894 
895   if (!D) {
896     // If we don't have a declaration to control inlining, the function isn't
897     // explicitly marked as alwaysinline for semantic reasons, and inlining is
898     // disabled, mark the function as noinline.
899     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
900         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
901       B.addAttribute(llvm::Attribute::NoInline);
902 
903     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
904     return;
905   }
906 
907   if (D->hasAttr<OptimizeNoneAttr>()) {
908     B.addAttribute(llvm::Attribute::OptimizeNone);
909 
910     // OptimizeNone implies noinline; we should not be inlining such functions.
911     B.addAttribute(llvm::Attribute::NoInline);
912     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
913            "OptimizeNone and AlwaysInline on same function!");
914 
915     // We still need to handle naked functions even though optnone subsumes
916     // much of their semantics.
917     if (D->hasAttr<NakedAttr>())
918       B.addAttribute(llvm::Attribute::Naked);
919 
920     // OptimizeNone wins over OptimizeForSize and MinSize.
921     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
922     F->removeFnAttr(llvm::Attribute::MinSize);
923   } else if (D->hasAttr<NakedAttr>()) {
924     // Naked implies noinline: we should not be inlining such functions.
925     B.addAttribute(llvm::Attribute::Naked);
926     B.addAttribute(llvm::Attribute::NoInline);
927   } else if (D->hasAttr<NoDuplicateAttr>()) {
928     B.addAttribute(llvm::Attribute::NoDuplicate);
929   } else if (D->hasAttr<NoInlineAttr>()) {
930     B.addAttribute(llvm::Attribute::NoInline);
931   } else if (D->hasAttr<AlwaysInlineAttr>() &&
932              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
933     // (noinline wins over always_inline, and we can't specify both in IR)
934     B.addAttribute(llvm::Attribute::AlwaysInline);
935   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
936     // If we're not inlining, then force everything that isn't always_inline to
937     // carry an explicit noinline attribute.
938     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
939       B.addAttribute(llvm::Attribute::NoInline);
940   } else {
941     // Otherwise, propagate the inline hint attribute and potentially use its
942     // absence to mark things as noinline.
943     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
944       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
945             return Redecl->isInlineSpecified();
946           })) {
947         B.addAttribute(llvm::Attribute::InlineHint);
948       } else if (CodeGenOpts.getInlining() ==
949                      CodeGenOptions::OnlyHintInlining &&
950                  !FD->isInlined() &&
951                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
952         B.addAttribute(llvm::Attribute::NoInline);
953       }
954     }
955   }
956 
957   // Add other optimization related attributes if we are optimizing this
958   // function.
959   if (!D->hasAttr<OptimizeNoneAttr>()) {
960     if (D->hasAttr<ColdAttr>()) {
961       B.addAttribute(llvm::Attribute::OptimizeForSize);
962       B.addAttribute(llvm::Attribute::Cold);
963     }
964 
965     if (D->hasAttr<MinSizeAttr>())
966       B.addAttribute(llvm::Attribute::MinSize);
967   }
968 
969   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
970 
971   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
972   if (alignment)
973     F->setAlignment(alignment);
974 
975   // Some C++ ABIs require 2-byte alignment for member functions, in order to
976   // reserve a bit for differentiating between virtual and non-virtual member
977   // functions. If the current target's C++ ABI requires this and this is a
978   // member function, set its alignment accordingly.
979   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
980     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
981       F->setAlignment(2);
982   }
983 
984   // In the cross-dso CFI mode, we want !type attributes on definitions only.
985   if (CodeGenOpts.SanitizeCfiCrossDso)
986     if (auto *FD = dyn_cast<FunctionDecl>(D))
987       CreateFunctionTypeMetadata(FD, F);
988 }
989 
990 void CodeGenModule::SetCommonAttributes(const Decl *D,
991                                         llvm::GlobalValue *GV) {
992   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
993     setGlobalVisibility(GV, ND);
994   else
995     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
996 
997   if (D && D->hasAttr<UsedAttr>())
998     addUsedGlobal(GV);
999 }
1000 
1001 void CodeGenModule::setAliasAttributes(const Decl *D,
1002                                        llvm::GlobalValue *GV) {
1003   SetCommonAttributes(D, GV);
1004 
1005   // Process the dllexport attribute based on whether the original definition
1006   // (not necessarily the aliasee) was exported.
1007   if (D->hasAttr<DLLExportAttr>())
1008     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1009 }
1010 
1011 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1012                                           llvm::GlobalObject *GO) {
1013   SetCommonAttributes(D, GO);
1014 
1015   if (D)
1016     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1017       GO->setSection(SA->getName());
1018 
1019   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1020 }
1021 
1022 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1023                                                   llvm::Function *F,
1024                                                   const CGFunctionInfo &FI) {
1025   SetLLVMFunctionAttributes(D, FI, F);
1026   SetLLVMFunctionAttributesForDefinition(D, F);
1027 
1028   F->setLinkage(llvm::Function::InternalLinkage);
1029 
1030   setNonAliasAttributes(D, F);
1031 }
1032 
1033 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
1034                                          const NamedDecl *ND) {
1035   // Set linkage and visibility in case we never see a definition.
1036   LinkageInfo LV = ND->getLinkageAndVisibility();
1037   if (LV.getLinkage() != ExternalLinkage) {
1038     // Don't set internal linkage on declarations.
1039   } else {
1040     if (ND->hasAttr<DLLImportAttr>()) {
1041       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1042       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1043     } else if (ND->hasAttr<DLLExportAttr>()) {
1044       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1045     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1046       // "extern_weak" is overloaded in LLVM; we probably should have
1047       // separate linkage types for this.
1048       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1049     }
1050 
1051     // Set visibility on a declaration only if it's explicit.
1052     if (LV.isVisibilityExplicit())
1053       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
1054   }
1055 }
1056 
1057 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1058                                                llvm::Function *F) {
1059   // Only if we are checking indirect calls.
1060   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1061     return;
1062 
1063   // Non-static class methods are handled via vtable pointer checks elsewhere.
1064   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1065     return;
1066 
1067   // Additionally, if building with cross-DSO support...
1068   if (CodeGenOpts.SanitizeCfiCrossDso) {
1069     // Skip available_externally functions. They won't be codegen'ed in the
1070     // current module anyway.
1071     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1072       return;
1073   }
1074 
1075   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1076   F->addTypeMetadata(0, MD);
1077 
1078   // Emit a hash-based bit set entry for cross-DSO calls.
1079   if (CodeGenOpts.SanitizeCfiCrossDso)
1080     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1081       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1082 }
1083 
1084 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1085                                           bool IsIncompleteFunction,
1086                                           bool IsThunk) {
1087   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1088     // If this is an intrinsic function, set the function's attributes
1089     // to the intrinsic's attributes.
1090     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1091     return;
1092   }
1093 
1094   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1095 
1096   if (!IsIncompleteFunction)
1097     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1098 
1099   // Add the Returned attribute for "this", except for iOS 5 and earlier
1100   // where substantial code, including the libstdc++ dylib, was compiled with
1101   // GCC and does not actually return "this".
1102   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1103       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1104     assert(!F->arg_empty() &&
1105            F->arg_begin()->getType()
1106              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1107            "unexpected this return");
1108     F->addAttribute(1, llvm::Attribute::Returned);
1109   }
1110 
1111   // Only a few attributes are set on declarations; these may later be
1112   // overridden by a definition.
1113 
1114   setLinkageAndVisibilityForGV(F, FD);
1115 
1116   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1117     F->setSection(SA->getName());
1118 
1119   if (FD->isReplaceableGlobalAllocationFunction()) {
1120     // A replaceable global allocation function does not act like a builtin by
1121     // default, only if it is invoked by a new-expression or delete-expression.
1122     F->addAttribute(llvm::AttributeList::FunctionIndex,
1123                     llvm::Attribute::NoBuiltin);
1124 
1125     // A sane operator new returns a non-aliasing pointer.
1126     // FIXME: Also add NonNull attribute to the return value
1127     // for the non-nothrow forms?
1128     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1129     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1130         (Kind == OO_New || Kind == OO_Array_New))
1131       F->addAttribute(llvm::AttributeList::ReturnIndex,
1132                       llvm::Attribute::NoAlias);
1133   }
1134 
1135   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1136     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1137   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1138     if (MD->isVirtual())
1139       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1140 
1141   // Don't emit entries for function declarations in the cross-DSO mode. This
1142   // is handled with better precision by the receiving DSO.
1143   if (!CodeGenOpts.SanitizeCfiCrossDso)
1144     CreateFunctionTypeMetadata(FD, F);
1145 }
1146 
1147 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1148   assert(!GV->isDeclaration() &&
1149          "Only globals with definition can force usage.");
1150   LLVMUsed.emplace_back(GV);
1151 }
1152 
1153 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1154   assert(!GV->isDeclaration() &&
1155          "Only globals with definition can force usage.");
1156   LLVMCompilerUsed.emplace_back(GV);
1157 }
1158 
1159 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1160                      std::vector<llvm::WeakTrackingVH> &List) {
1161   // Don't create llvm.used if there is no need.
1162   if (List.empty())
1163     return;
1164 
1165   // Convert List to what ConstantArray needs.
1166   SmallVector<llvm::Constant*, 8> UsedArray;
1167   UsedArray.resize(List.size());
1168   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1169     UsedArray[i] =
1170         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1171             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1172   }
1173 
1174   if (UsedArray.empty())
1175     return;
1176   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1177 
1178   auto *GV = new llvm::GlobalVariable(
1179       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1180       llvm::ConstantArray::get(ATy, UsedArray), Name);
1181 
1182   GV->setSection("llvm.metadata");
1183 }
1184 
1185 void CodeGenModule::emitLLVMUsed() {
1186   emitUsed(*this, "llvm.used", LLVMUsed);
1187   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1188 }
1189 
1190 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1191   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1192   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1193 }
1194 
1195 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1196   llvm::SmallString<32> Opt;
1197   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1198   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1199   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1200 }
1201 
1202 void CodeGenModule::AddDependentLib(StringRef Lib) {
1203   llvm::SmallString<24> Opt;
1204   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1205   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1206   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1207 }
1208 
1209 /// \brief Add link options implied by the given module, including modules
1210 /// it depends on, using a postorder walk.
1211 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1212                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1213                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1214   // Import this module's parent.
1215   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1216     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1217   }
1218 
1219   // Import this module's dependencies.
1220   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1221     if (Visited.insert(Mod->Imports[I - 1]).second)
1222       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1223   }
1224 
1225   // Add linker options to link against the libraries/frameworks
1226   // described by this module.
1227   llvm::LLVMContext &Context = CGM.getLLVMContext();
1228   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1229     // Link against a framework.  Frameworks are currently Darwin only, so we
1230     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1231     if (Mod->LinkLibraries[I-1].IsFramework) {
1232       llvm::Metadata *Args[2] = {
1233           llvm::MDString::get(Context, "-framework"),
1234           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1235 
1236       Metadata.push_back(llvm::MDNode::get(Context, Args));
1237       continue;
1238     }
1239 
1240     // Link against a library.
1241     llvm::SmallString<24> Opt;
1242     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1243       Mod->LinkLibraries[I-1].Library, Opt);
1244     auto *OptString = llvm::MDString::get(Context, Opt);
1245     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1246   }
1247 }
1248 
1249 void CodeGenModule::EmitModuleLinkOptions() {
1250   // Collect the set of all of the modules we want to visit to emit link
1251   // options, which is essentially the imported modules and all of their
1252   // non-explicit child modules.
1253   llvm::SetVector<clang::Module *> LinkModules;
1254   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1255   SmallVector<clang::Module *, 16> Stack;
1256 
1257   // Seed the stack with imported modules.
1258   for (Module *M : ImportedModules) {
1259     // Do not add any link flags when an implementation TU of a module imports
1260     // a header of that same module.
1261     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1262         !getLangOpts().isCompilingModule())
1263       continue;
1264     if (Visited.insert(M).second)
1265       Stack.push_back(M);
1266   }
1267 
1268   // Find all of the modules to import, making a little effort to prune
1269   // non-leaf modules.
1270   while (!Stack.empty()) {
1271     clang::Module *Mod = Stack.pop_back_val();
1272 
1273     bool AnyChildren = false;
1274 
1275     // Visit the submodules of this module.
1276     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1277                                         SubEnd = Mod->submodule_end();
1278          Sub != SubEnd; ++Sub) {
1279       // Skip explicit children; they need to be explicitly imported to be
1280       // linked against.
1281       if ((*Sub)->IsExplicit)
1282         continue;
1283 
1284       if (Visited.insert(*Sub).second) {
1285         Stack.push_back(*Sub);
1286         AnyChildren = true;
1287       }
1288     }
1289 
1290     // We didn't find any children, so add this module to the list of
1291     // modules to link against.
1292     if (!AnyChildren) {
1293       LinkModules.insert(Mod);
1294     }
1295   }
1296 
1297   // Add link options for all of the imported modules in reverse topological
1298   // order.  We don't do anything to try to order import link flags with respect
1299   // to linker options inserted by things like #pragma comment().
1300   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1301   Visited.clear();
1302   for (Module *M : LinkModules)
1303     if (Visited.insert(M).second)
1304       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1305   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1306   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1307 
1308   // Add the linker options metadata flag.
1309   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1310                             llvm::MDNode::get(getLLVMContext(),
1311                                               LinkerOptionsMetadata));
1312 }
1313 
1314 void CodeGenModule::EmitDeferred() {
1315   // Emit code for any potentially referenced deferred decls.  Since a
1316   // previously unused static decl may become used during the generation of code
1317   // for a static function, iterate until no changes are made.
1318 
1319   if (!DeferredVTables.empty()) {
1320     EmitDeferredVTables();
1321 
1322     // Emitting a vtable doesn't directly cause more vtables to
1323     // become deferred, although it can cause functions to be
1324     // emitted that then need those vtables.
1325     assert(DeferredVTables.empty());
1326   }
1327 
1328   // Stop if we're out of both deferred vtables and deferred declarations.
1329   if (DeferredDeclsToEmit.empty())
1330     return;
1331 
1332   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1333   // work, it will not interfere with this.
1334   std::vector<GlobalDecl> CurDeclsToEmit;
1335   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1336 
1337   for (GlobalDecl &D : CurDeclsToEmit) {
1338     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1339     // to get GlobalValue with exactly the type we need, not something that
1340     // might had been created for another decl with the same mangled name but
1341     // different type.
1342     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1343         GetAddrOfGlobal(D, ForDefinition));
1344 
1345     // In case of different address spaces, we may still get a cast, even with
1346     // IsForDefinition equal to true. Query mangled names table to get
1347     // GlobalValue.
1348     if (!GV)
1349       GV = GetGlobalValue(getMangledName(D));
1350 
1351     // Make sure GetGlobalValue returned non-null.
1352     assert(GV);
1353 
1354     // Check to see if we've already emitted this.  This is necessary
1355     // for a couple of reasons: first, decls can end up in the
1356     // deferred-decls queue multiple times, and second, decls can end
1357     // up with definitions in unusual ways (e.g. by an extern inline
1358     // function acquiring a strong function redefinition).  Just
1359     // ignore these cases.
1360     if (!GV->isDeclaration())
1361       continue;
1362 
1363     // Otherwise, emit the definition and move on to the next one.
1364     EmitGlobalDefinition(D, GV);
1365 
1366     // If we found out that we need to emit more decls, do that recursively.
1367     // This has the advantage that the decls are emitted in a DFS and related
1368     // ones are close together, which is convenient for testing.
1369     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1370       EmitDeferred();
1371       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1372     }
1373   }
1374 }
1375 
1376 void CodeGenModule::EmitGlobalAnnotations() {
1377   if (Annotations.empty())
1378     return;
1379 
1380   // Create a new global variable for the ConstantStruct in the Module.
1381   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1382     Annotations[0]->getType(), Annotations.size()), Annotations);
1383   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1384                                       llvm::GlobalValue::AppendingLinkage,
1385                                       Array, "llvm.global.annotations");
1386   gv->setSection(AnnotationSection);
1387 }
1388 
1389 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1390   llvm::Constant *&AStr = AnnotationStrings[Str];
1391   if (AStr)
1392     return AStr;
1393 
1394   // Not found yet, create a new global.
1395   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1396   auto *gv =
1397       new llvm::GlobalVariable(getModule(), s->getType(), true,
1398                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1399   gv->setSection(AnnotationSection);
1400   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1401   AStr = gv;
1402   return gv;
1403 }
1404 
1405 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1406   SourceManager &SM = getContext().getSourceManager();
1407   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1408   if (PLoc.isValid())
1409     return EmitAnnotationString(PLoc.getFilename());
1410   return EmitAnnotationString(SM.getBufferName(Loc));
1411 }
1412 
1413 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1414   SourceManager &SM = getContext().getSourceManager();
1415   PresumedLoc PLoc = SM.getPresumedLoc(L);
1416   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1417     SM.getExpansionLineNumber(L);
1418   return llvm::ConstantInt::get(Int32Ty, LineNo);
1419 }
1420 
1421 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1422                                                 const AnnotateAttr *AA,
1423                                                 SourceLocation L) {
1424   // Get the globals for file name, annotation, and the line number.
1425   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1426                  *UnitGV = EmitAnnotationUnit(L),
1427                  *LineNoCst = EmitAnnotationLineNo(L);
1428 
1429   // Create the ConstantStruct for the global annotation.
1430   llvm::Constant *Fields[4] = {
1431     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1432     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1433     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1434     LineNoCst
1435   };
1436   return llvm::ConstantStruct::getAnon(Fields);
1437 }
1438 
1439 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1440                                          llvm::GlobalValue *GV) {
1441   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1442   // Get the struct elements for these annotations.
1443   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1444     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1445 }
1446 
1447 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1448                                            SourceLocation Loc) const {
1449   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1450   // Blacklist by function name.
1451   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1452     return true;
1453   // Blacklist by location.
1454   if (Loc.isValid())
1455     return SanitizerBL.isBlacklistedLocation(Loc);
1456   // If location is unknown, this may be a compiler-generated function. Assume
1457   // it's located in the main file.
1458   auto &SM = Context.getSourceManager();
1459   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1460     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1461   }
1462   return false;
1463 }
1464 
1465 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1466                                            SourceLocation Loc, QualType Ty,
1467                                            StringRef Category) const {
1468   // For now globals can be blacklisted only in ASan and KASan.
1469   if (!LangOpts.Sanitize.hasOneOf(
1470           SanitizerKind::Address | SanitizerKind::KernelAddress))
1471     return false;
1472   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1473   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1474     return true;
1475   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1476     return true;
1477   // Check global type.
1478   if (!Ty.isNull()) {
1479     // Drill down the array types: if global variable of a fixed type is
1480     // blacklisted, we also don't instrument arrays of them.
1481     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1482       Ty = AT->getElementType();
1483     Ty = Ty.getCanonicalType().getUnqualifiedType();
1484     // We allow to blacklist only record types (classes, structs etc.)
1485     if (Ty->isRecordType()) {
1486       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1487       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1488         return true;
1489     }
1490   }
1491   return false;
1492 }
1493 
1494 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1495                                    StringRef Category) const {
1496   if (!LangOpts.XRayInstrument)
1497     return false;
1498   const auto &XRayFilter = getContext().getXRayFilter();
1499   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1500   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1501   if (Loc.isValid())
1502     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1503   if (Attr == ImbueAttr::NONE)
1504     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1505   switch (Attr) {
1506   case ImbueAttr::NONE:
1507     return false;
1508   case ImbueAttr::ALWAYS:
1509     Fn->addFnAttr("function-instrument", "xray-always");
1510     break;
1511   case ImbueAttr::ALWAYS_ARG1:
1512     Fn->addFnAttr("function-instrument", "xray-always");
1513     Fn->addFnAttr("xray-log-args", "1");
1514     break;
1515   case ImbueAttr::NEVER:
1516     Fn->addFnAttr("function-instrument", "xray-never");
1517     break;
1518   }
1519   return true;
1520 }
1521 
1522 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1523   // Never defer when EmitAllDecls is specified.
1524   if (LangOpts.EmitAllDecls)
1525     return true;
1526 
1527   return getContext().DeclMustBeEmitted(Global);
1528 }
1529 
1530 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1531   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1532     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1533       // Implicit template instantiations may change linkage if they are later
1534       // explicitly instantiated, so they should not be emitted eagerly.
1535       return false;
1536   if (const auto *VD = dyn_cast<VarDecl>(Global))
1537     if (Context.getInlineVariableDefinitionKind(VD) ==
1538         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1539       // A definition of an inline constexpr static data member may change
1540       // linkage later if it's redeclared outside the class.
1541       return false;
1542   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1543   // codegen for global variables, because they may be marked as threadprivate.
1544   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1545       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1546     return false;
1547 
1548   return true;
1549 }
1550 
1551 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1552     const CXXUuidofExpr* E) {
1553   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1554   // well-formed.
1555   StringRef Uuid = E->getUuidStr();
1556   std::string Name = "_GUID_" + Uuid.lower();
1557   std::replace(Name.begin(), Name.end(), '-', '_');
1558 
1559   // The UUID descriptor should be pointer aligned.
1560   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1561 
1562   // Look for an existing global.
1563   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1564     return ConstantAddress(GV, Alignment);
1565 
1566   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1567   assert(Init && "failed to initialize as constant");
1568 
1569   auto *GV = new llvm::GlobalVariable(
1570       getModule(), Init->getType(),
1571       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1572   if (supportsCOMDAT())
1573     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1574   return ConstantAddress(GV, Alignment);
1575 }
1576 
1577 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1578   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1579   assert(AA && "No alias?");
1580 
1581   CharUnits Alignment = getContext().getDeclAlign(VD);
1582   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1583 
1584   // See if there is already something with the target's name in the module.
1585   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1586   if (Entry) {
1587     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1588     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1589     return ConstantAddress(Ptr, Alignment);
1590   }
1591 
1592   llvm::Constant *Aliasee;
1593   if (isa<llvm::FunctionType>(DeclTy))
1594     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1595                                       GlobalDecl(cast<FunctionDecl>(VD)),
1596                                       /*ForVTable=*/false);
1597   else
1598     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1599                                     llvm::PointerType::getUnqual(DeclTy),
1600                                     nullptr);
1601 
1602   auto *F = cast<llvm::GlobalValue>(Aliasee);
1603   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1604   WeakRefReferences.insert(F);
1605 
1606   return ConstantAddress(Aliasee, Alignment);
1607 }
1608 
1609 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1610   const auto *Global = cast<ValueDecl>(GD.getDecl());
1611 
1612   // Weak references don't produce any output by themselves.
1613   if (Global->hasAttr<WeakRefAttr>())
1614     return;
1615 
1616   // If this is an alias definition (which otherwise looks like a declaration)
1617   // emit it now.
1618   if (Global->hasAttr<AliasAttr>())
1619     return EmitAliasDefinition(GD);
1620 
1621   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1622   if (Global->hasAttr<IFuncAttr>())
1623     return emitIFuncDefinition(GD);
1624 
1625   // If this is CUDA, be selective about which declarations we emit.
1626   if (LangOpts.CUDA) {
1627     if (LangOpts.CUDAIsDevice) {
1628       if (!Global->hasAttr<CUDADeviceAttr>() &&
1629           !Global->hasAttr<CUDAGlobalAttr>() &&
1630           !Global->hasAttr<CUDAConstantAttr>() &&
1631           !Global->hasAttr<CUDASharedAttr>())
1632         return;
1633     } else {
1634       // We need to emit host-side 'shadows' for all global
1635       // device-side variables because the CUDA runtime needs their
1636       // size and host-side address in order to provide access to
1637       // their device-side incarnations.
1638 
1639       // So device-only functions are the only things we skip.
1640       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1641           Global->hasAttr<CUDADeviceAttr>())
1642         return;
1643 
1644       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1645              "Expected Variable or Function");
1646     }
1647   }
1648 
1649   if (LangOpts.OpenMP) {
1650     // If this is OpenMP device, check if it is legal to emit this global
1651     // normally.
1652     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1653       return;
1654     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1655       if (MustBeEmitted(Global))
1656         EmitOMPDeclareReduction(DRD);
1657       return;
1658     }
1659   }
1660 
1661   // Ignore declarations, they will be emitted on their first use.
1662   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1663     // Forward declarations are emitted lazily on first use.
1664     if (!FD->doesThisDeclarationHaveABody()) {
1665       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1666         return;
1667 
1668       StringRef MangledName = getMangledName(GD);
1669 
1670       // Compute the function info and LLVM type.
1671       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1672       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1673 
1674       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1675                               /*DontDefer=*/false);
1676       return;
1677     }
1678   } else {
1679     const auto *VD = cast<VarDecl>(Global);
1680     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1681     // We need to emit device-side global CUDA variables even if a
1682     // variable does not have a definition -- we still need to define
1683     // host-side shadow for it.
1684     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1685                            !VD->hasDefinition() &&
1686                            (VD->hasAttr<CUDAConstantAttr>() ||
1687                             VD->hasAttr<CUDADeviceAttr>());
1688     if (!MustEmitForCuda &&
1689         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1690         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1691       // If this declaration may have caused an inline variable definition to
1692       // change linkage, make sure that it's emitted.
1693       if (Context.getInlineVariableDefinitionKind(VD) ==
1694           ASTContext::InlineVariableDefinitionKind::Strong)
1695         GetAddrOfGlobalVar(VD);
1696       return;
1697     }
1698   }
1699 
1700   // Defer code generation to first use when possible, e.g. if this is an inline
1701   // function. If the global must always be emitted, do it eagerly if possible
1702   // to benefit from cache locality.
1703   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1704     // Emit the definition if it can't be deferred.
1705     EmitGlobalDefinition(GD);
1706     return;
1707   }
1708 
1709   // If we're deferring emission of a C++ variable with an
1710   // initializer, remember the order in which it appeared in the file.
1711   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1712       cast<VarDecl>(Global)->hasInit()) {
1713     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1714     CXXGlobalInits.push_back(nullptr);
1715   }
1716 
1717   StringRef MangledName = getMangledName(GD);
1718   if (GetGlobalValue(MangledName) != nullptr) {
1719     // The value has already been used and should therefore be emitted.
1720     addDeferredDeclToEmit(GD);
1721   } else if (MustBeEmitted(Global)) {
1722     // The value must be emitted, but cannot be emitted eagerly.
1723     assert(!MayBeEmittedEagerly(Global));
1724     addDeferredDeclToEmit(GD);
1725   } else {
1726     // Otherwise, remember that we saw a deferred decl with this name.  The
1727     // first use of the mangled name will cause it to move into
1728     // DeferredDeclsToEmit.
1729     DeferredDecls[MangledName] = GD;
1730   }
1731 }
1732 
1733 // Check if T is a class type with a destructor that's not dllimport.
1734 static bool HasNonDllImportDtor(QualType T) {
1735   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
1736     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1737       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1738         return true;
1739 
1740   return false;
1741 }
1742 
1743 namespace {
1744   struct FunctionIsDirectlyRecursive :
1745     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1746     const StringRef Name;
1747     const Builtin::Context &BI;
1748     bool Result;
1749     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1750       Name(N), BI(C), Result(false) {
1751     }
1752     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1753 
1754     bool TraverseCallExpr(CallExpr *E) {
1755       const FunctionDecl *FD = E->getDirectCallee();
1756       if (!FD)
1757         return true;
1758       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1759       if (Attr && Name == Attr->getLabel()) {
1760         Result = true;
1761         return false;
1762       }
1763       unsigned BuiltinID = FD->getBuiltinID();
1764       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1765         return true;
1766       StringRef BuiltinName = BI.getName(BuiltinID);
1767       if (BuiltinName.startswith("__builtin_") &&
1768           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1769         Result = true;
1770         return false;
1771       }
1772       return true;
1773     }
1774   };
1775 
1776   // Make sure we're not referencing non-imported vars or functions.
1777   struct DLLImportFunctionVisitor
1778       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1779     bool SafeToInline = true;
1780 
1781     bool shouldVisitImplicitCode() const { return true; }
1782 
1783     bool VisitVarDecl(VarDecl *VD) {
1784       if (VD->getTLSKind()) {
1785         // A thread-local variable cannot be imported.
1786         SafeToInline = false;
1787         return SafeToInline;
1788       }
1789 
1790       // A variable definition might imply a destructor call.
1791       if (VD->isThisDeclarationADefinition())
1792         SafeToInline = !HasNonDllImportDtor(VD->getType());
1793 
1794       return SafeToInline;
1795     }
1796 
1797     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1798       if (const auto *D = E->getTemporary()->getDestructor())
1799         SafeToInline = D->hasAttr<DLLImportAttr>();
1800       return SafeToInline;
1801     }
1802 
1803     bool VisitDeclRefExpr(DeclRefExpr *E) {
1804       ValueDecl *VD = E->getDecl();
1805       if (isa<FunctionDecl>(VD))
1806         SafeToInline = VD->hasAttr<DLLImportAttr>();
1807       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1808         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1809       return SafeToInline;
1810     }
1811 
1812     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
1813       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
1814       return SafeToInline;
1815     }
1816 
1817     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1818       CXXMethodDecl *M = E->getMethodDecl();
1819       if (!M) {
1820         // Call through a pointer to member function. This is safe to inline.
1821         SafeToInline = true;
1822       } else {
1823         SafeToInline = M->hasAttr<DLLImportAttr>();
1824       }
1825       return SafeToInline;
1826     }
1827 
1828     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1829       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1830       return SafeToInline;
1831     }
1832 
1833     bool VisitCXXNewExpr(CXXNewExpr *E) {
1834       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1835       return SafeToInline;
1836     }
1837   };
1838 }
1839 
1840 // isTriviallyRecursive - Check if this function calls another
1841 // decl that, because of the asm attribute or the other decl being a builtin,
1842 // ends up pointing to itself.
1843 bool
1844 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1845   StringRef Name;
1846   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1847     // asm labels are a special kind of mangling we have to support.
1848     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1849     if (!Attr)
1850       return false;
1851     Name = Attr->getLabel();
1852   } else {
1853     Name = FD->getName();
1854   }
1855 
1856   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1857   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1858   return Walker.Result;
1859 }
1860 
1861 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1862   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1863     return true;
1864   const auto *F = cast<FunctionDecl>(GD.getDecl());
1865   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1866     return false;
1867 
1868   if (F->hasAttr<DLLImportAttr>()) {
1869     // Check whether it would be safe to inline this dllimport function.
1870     DLLImportFunctionVisitor Visitor;
1871     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1872     if (!Visitor.SafeToInline)
1873       return false;
1874 
1875     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
1876       // Implicit destructor invocations aren't captured in the AST, so the
1877       // check above can't see them. Check for them manually here.
1878       for (const Decl *Member : Dtor->getParent()->decls())
1879         if (isa<FieldDecl>(Member))
1880           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
1881             return false;
1882       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
1883         if (HasNonDllImportDtor(B.getType()))
1884           return false;
1885     }
1886   }
1887 
1888   // PR9614. Avoid cases where the source code is lying to us. An available
1889   // externally function should have an equivalent function somewhere else,
1890   // but a function that calls itself is clearly not equivalent to the real
1891   // implementation.
1892   // This happens in glibc's btowc and in some configure checks.
1893   return !isTriviallyRecursive(F);
1894 }
1895 
1896 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1897   const auto *D = cast<ValueDecl>(GD.getDecl());
1898 
1899   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1900                                  Context.getSourceManager(),
1901                                  "Generating code for declaration");
1902 
1903   if (isa<FunctionDecl>(D)) {
1904     // At -O0, don't generate IR for functions with available_externally
1905     // linkage.
1906     if (!shouldEmitFunction(GD))
1907       return;
1908 
1909     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1910       // Make sure to emit the definition(s) before we emit the thunks.
1911       // This is necessary for the generation of certain thunks.
1912       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1913         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1914       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1915         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1916       else
1917         EmitGlobalFunctionDefinition(GD, GV);
1918 
1919       if (Method->isVirtual())
1920         getVTables().EmitThunks(GD);
1921 
1922       return;
1923     }
1924 
1925     return EmitGlobalFunctionDefinition(GD, GV);
1926   }
1927 
1928   if (const auto *VD = dyn_cast<VarDecl>(D))
1929     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1930 
1931   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1932 }
1933 
1934 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1935                                                       llvm::Function *NewFn);
1936 
1937 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1938 /// module, create and return an llvm Function with the specified type. If there
1939 /// is something in the module with the specified name, return it potentially
1940 /// bitcasted to the right type.
1941 ///
1942 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1943 /// to set the attributes on the function when it is first created.
1944 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
1945     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
1946     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
1947     ForDefinition_t IsForDefinition) {
1948   const Decl *D = GD.getDecl();
1949 
1950   // Lookup the entry, lazily creating it if necessary.
1951   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1952   if (Entry) {
1953     if (WeakRefReferences.erase(Entry)) {
1954       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1955       if (FD && !FD->hasAttr<WeakAttr>())
1956         Entry->setLinkage(llvm::Function::ExternalLinkage);
1957     }
1958 
1959     // Handle dropped DLL attributes.
1960     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1961       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1962 
1963     // If there are two attempts to define the same mangled name, issue an
1964     // error.
1965     if (IsForDefinition && !Entry->isDeclaration()) {
1966       GlobalDecl OtherGD;
1967       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1968       // to make sure that we issue an error only once.
1969       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1970           (GD.getCanonicalDecl().getDecl() !=
1971            OtherGD.getCanonicalDecl().getDecl()) &&
1972           DiagnosedConflictingDefinitions.insert(GD).second) {
1973         getDiags().Report(D->getLocation(),
1974                           diag::err_duplicate_mangled_name);
1975         getDiags().Report(OtherGD.getDecl()->getLocation(),
1976                           diag::note_previous_definition);
1977       }
1978     }
1979 
1980     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1981         (Entry->getType()->getElementType() == Ty)) {
1982       return Entry;
1983     }
1984 
1985     // Make sure the result is of the correct type.
1986     // (If function is requested for a definition, we always need to create a new
1987     // function, not just return a bitcast.)
1988     if (!IsForDefinition)
1989       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1990   }
1991 
1992   // This function doesn't have a complete type (for example, the return
1993   // type is an incomplete struct). Use a fake type instead, and make
1994   // sure not to try to set attributes.
1995   bool IsIncompleteFunction = false;
1996 
1997   llvm::FunctionType *FTy;
1998   if (isa<llvm::FunctionType>(Ty)) {
1999     FTy = cast<llvm::FunctionType>(Ty);
2000   } else {
2001     FTy = llvm::FunctionType::get(VoidTy, false);
2002     IsIncompleteFunction = true;
2003   }
2004 
2005   llvm::Function *F =
2006       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2007                              Entry ? StringRef() : MangledName, &getModule());
2008 
2009   // If we already created a function with the same mangled name (but different
2010   // type) before, take its name and add it to the list of functions to be
2011   // replaced with F at the end of CodeGen.
2012   //
2013   // This happens if there is a prototype for a function (e.g. "int f()") and
2014   // then a definition of a different type (e.g. "int f(int x)").
2015   if (Entry) {
2016     F->takeName(Entry);
2017 
2018     // This might be an implementation of a function without a prototype, in
2019     // which case, try to do special replacement of calls which match the new
2020     // prototype.  The really key thing here is that we also potentially drop
2021     // arguments from the call site so as to make a direct call, which makes the
2022     // inliner happier and suppresses a number of optimizer warnings (!) about
2023     // dropping arguments.
2024     if (!Entry->use_empty()) {
2025       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2026       Entry->removeDeadConstantUsers();
2027     }
2028 
2029     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2030         F, Entry->getType()->getElementType()->getPointerTo());
2031     addGlobalValReplacement(Entry, BC);
2032   }
2033 
2034   assert(F->getName() == MangledName && "name was uniqued!");
2035   if (D)
2036     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2037   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2038     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2039     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2040   }
2041 
2042   if (!DontDefer) {
2043     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2044     // each other bottoming out with the base dtor.  Therefore we emit non-base
2045     // dtors on usage, even if there is no dtor definition in the TU.
2046     if (D && isa<CXXDestructorDecl>(D) &&
2047         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2048                                            GD.getDtorType()))
2049       addDeferredDeclToEmit(GD);
2050 
2051     // This is the first use or definition of a mangled name.  If there is a
2052     // deferred decl with this name, remember that we need to emit it at the end
2053     // of the file.
2054     auto DDI = DeferredDecls.find(MangledName);
2055     if (DDI != DeferredDecls.end()) {
2056       // Move the potentially referenced deferred decl to the
2057       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2058       // don't need it anymore).
2059       addDeferredDeclToEmit(DDI->second);
2060       DeferredDecls.erase(DDI);
2061 
2062       // Otherwise, there are cases we have to worry about where we're
2063       // using a declaration for which we must emit a definition but where
2064       // we might not find a top-level definition:
2065       //   - member functions defined inline in their classes
2066       //   - friend functions defined inline in some class
2067       //   - special member functions with implicit definitions
2068       // If we ever change our AST traversal to walk into class methods,
2069       // this will be unnecessary.
2070       //
2071       // We also don't emit a definition for a function if it's going to be an
2072       // entry in a vtable, unless it's already marked as used.
2073     } else if (getLangOpts().CPlusPlus && D) {
2074       // Look for a declaration that's lexically in a record.
2075       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2076            FD = FD->getPreviousDecl()) {
2077         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2078           if (FD->doesThisDeclarationHaveABody()) {
2079             addDeferredDeclToEmit(GD.getWithDecl(FD));
2080             break;
2081           }
2082         }
2083       }
2084     }
2085   }
2086 
2087   // Make sure the result is of the requested type.
2088   if (!IsIncompleteFunction) {
2089     assert(F->getType()->getElementType() == Ty);
2090     return F;
2091   }
2092 
2093   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2094   return llvm::ConstantExpr::getBitCast(F, PTy);
2095 }
2096 
2097 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2098 /// non-null, then this function will use the specified type if it has to
2099 /// create it (this occurs when we see a definition of the function).
2100 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2101                                                  llvm::Type *Ty,
2102                                                  bool ForVTable,
2103                                                  bool DontDefer,
2104                                               ForDefinition_t IsForDefinition) {
2105   // If there was no specific requested type, just convert it now.
2106   if (!Ty) {
2107     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2108     auto CanonTy = Context.getCanonicalType(FD->getType());
2109     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2110   }
2111 
2112   StringRef MangledName = getMangledName(GD);
2113   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2114                                  /*IsThunk=*/false, llvm::AttributeList(),
2115                                  IsForDefinition);
2116 }
2117 
2118 static const FunctionDecl *
2119 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2120   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2121   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2122 
2123   IdentifierInfo &CII = C.Idents.get(Name);
2124   for (const auto &Result : DC->lookup(&CII))
2125     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2126       return FD;
2127 
2128   if (!C.getLangOpts().CPlusPlus)
2129     return nullptr;
2130 
2131   // Demangle the premangled name from getTerminateFn()
2132   IdentifierInfo &CXXII =
2133       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2134           ? C.Idents.get("terminate")
2135           : C.Idents.get(Name);
2136 
2137   for (const auto &N : {"__cxxabiv1", "std"}) {
2138     IdentifierInfo &NS = C.Idents.get(N);
2139     for (const auto &Result : DC->lookup(&NS)) {
2140       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2141       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2142         for (const auto &Result : LSD->lookup(&NS))
2143           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2144             break;
2145 
2146       if (ND)
2147         for (const auto &Result : ND->lookup(&CXXII))
2148           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2149             return FD;
2150     }
2151   }
2152 
2153   return nullptr;
2154 }
2155 
2156 /// CreateRuntimeFunction - Create a new runtime function with the specified
2157 /// type and name.
2158 llvm::Constant *
2159 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2160                                      llvm::AttributeList ExtraAttrs,
2161                                      bool Local) {
2162   llvm::Constant *C =
2163       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2164                               /*DontDefer=*/false, /*IsThunk=*/false,
2165                               ExtraAttrs);
2166 
2167   if (auto *F = dyn_cast<llvm::Function>(C)) {
2168     if (F->empty()) {
2169       F->setCallingConv(getRuntimeCC());
2170 
2171       if (!Local && getTriple().isOSBinFormatCOFF() &&
2172           !getCodeGenOpts().LTOVisibilityPublicStd) {
2173         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2174         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2175           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2176           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2177         }
2178       }
2179     }
2180   }
2181 
2182   return C;
2183 }
2184 
2185 /// CreateBuiltinFunction - Create a new builtin function with the specified
2186 /// type and name.
2187 llvm::Constant *
2188 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2189                                      llvm::AttributeList ExtraAttrs) {
2190   llvm::Constant *C =
2191       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2192                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2193   if (auto *F = dyn_cast<llvm::Function>(C))
2194     if (F->empty())
2195       F->setCallingConv(getBuiltinCC());
2196   return C;
2197 }
2198 
2199 /// isTypeConstant - Determine whether an object of this type can be emitted
2200 /// as a constant.
2201 ///
2202 /// If ExcludeCtor is true, the duration when the object's constructor runs
2203 /// will not be considered. The caller will need to verify that the object is
2204 /// not written to during its construction.
2205 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2206   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2207     return false;
2208 
2209   if (Context.getLangOpts().CPlusPlus) {
2210     if (const CXXRecordDecl *Record
2211           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2212       return ExcludeCtor && !Record->hasMutableFields() &&
2213              Record->hasTrivialDestructor();
2214   }
2215 
2216   return true;
2217 }
2218 
2219 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2220 /// create and return an llvm GlobalVariable with the specified type.  If there
2221 /// is something in the module with the specified name, return it potentially
2222 /// bitcasted to the right type.
2223 ///
2224 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2225 /// to set the attributes on the global when it is first created.
2226 ///
2227 /// If IsForDefinition is true, it is guranteed that an actual global with
2228 /// type Ty will be returned, not conversion of a variable with the same
2229 /// mangled name but some other type.
2230 llvm::Constant *
2231 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2232                                      llvm::PointerType *Ty,
2233                                      const VarDecl *D,
2234                                      ForDefinition_t IsForDefinition) {
2235   // Lookup the entry, lazily creating it if necessary.
2236   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2237   if (Entry) {
2238     if (WeakRefReferences.erase(Entry)) {
2239       if (D && !D->hasAttr<WeakAttr>())
2240         Entry->setLinkage(llvm::Function::ExternalLinkage);
2241     }
2242 
2243     // Handle dropped DLL attributes.
2244     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2245       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2246 
2247     if (Entry->getType() == Ty)
2248       return Entry;
2249 
2250     // If there are two attempts to define the same mangled name, issue an
2251     // error.
2252     if (IsForDefinition && !Entry->isDeclaration()) {
2253       GlobalDecl OtherGD;
2254       const VarDecl *OtherD;
2255 
2256       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2257       // to make sure that we issue an error only once.
2258       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2259           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2260           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2261           OtherD->hasInit() &&
2262           DiagnosedConflictingDefinitions.insert(D).second) {
2263         getDiags().Report(D->getLocation(),
2264                           diag::err_duplicate_mangled_name);
2265         getDiags().Report(OtherGD.getDecl()->getLocation(),
2266                           diag::note_previous_definition);
2267       }
2268     }
2269 
2270     // Make sure the result is of the correct type.
2271     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2272       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2273 
2274     // (If global is requested for a definition, we always need to create a new
2275     // global, not just return a bitcast.)
2276     if (!IsForDefinition)
2277       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2278   }
2279 
2280   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2281   auto *GV = new llvm::GlobalVariable(
2282       getModule(), Ty->getElementType(), false,
2283       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2284       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2285 
2286   // If we already created a global with the same mangled name (but different
2287   // type) before, take its name and remove it from its parent.
2288   if (Entry) {
2289     GV->takeName(Entry);
2290 
2291     if (!Entry->use_empty()) {
2292       llvm::Constant *NewPtrForOldDecl =
2293           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2294       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2295     }
2296 
2297     Entry->eraseFromParent();
2298   }
2299 
2300   // This is the first use or definition of a mangled name.  If there is a
2301   // deferred decl with this name, remember that we need to emit it at the end
2302   // of the file.
2303   auto DDI = DeferredDecls.find(MangledName);
2304   if (DDI != DeferredDecls.end()) {
2305     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2306     // list, and remove it from DeferredDecls (since we don't need it anymore).
2307     addDeferredDeclToEmit(DDI->second);
2308     DeferredDecls.erase(DDI);
2309   }
2310 
2311   // Handle things which are present even on external declarations.
2312   if (D) {
2313     // FIXME: This code is overly simple and should be merged with other global
2314     // handling.
2315     GV->setConstant(isTypeConstant(D->getType(), false));
2316 
2317     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2318 
2319     setLinkageAndVisibilityForGV(GV, D);
2320 
2321     if (D->getTLSKind()) {
2322       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2323         CXXThreadLocals.push_back(D);
2324       setTLSMode(GV, *D);
2325     }
2326 
2327     // If required by the ABI, treat declarations of static data members with
2328     // inline initializers as definitions.
2329     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2330       EmitGlobalVarDefinition(D);
2331     }
2332 
2333     // Handle XCore specific ABI requirements.
2334     if (getTriple().getArch() == llvm::Triple::xcore &&
2335         D->getLanguageLinkage() == CLanguageLinkage &&
2336         D->getType().isConstant(Context) &&
2337         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2338       GV->setSection(".cp.rodata");
2339   }
2340 
2341   if (AddrSpace != Ty->getAddressSpace())
2342     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2343 
2344   return GV;
2345 }
2346 
2347 llvm::Constant *
2348 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2349                                ForDefinition_t IsForDefinition) {
2350   const Decl *D = GD.getDecl();
2351   if (isa<CXXConstructorDecl>(D))
2352     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2353                                 getFromCtorType(GD.getCtorType()),
2354                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2355                                 /*DontDefer=*/false, IsForDefinition);
2356   else if (isa<CXXDestructorDecl>(D))
2357     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2358                                 getFromDtorType(GD.getDtorType()),
2359                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2360                                 /*DontDefer=*/false, IsForDefinition);
2361   else if (isa<CXXMethodDecl>(D)) {
2362     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2363         cast<CXXMethodDecl>(D));
2364     auto Ty = getTypes().GetFunctionType(*FInfo);
2365     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2366                              IsForDefinition);
2367   } else if (isa<FunctionDecl>(D)) {
2368     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2369     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2370     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2371                              IsForDefinition);
2372   } else
2373     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2374                               IsForDefinition);
2375 }
2376 
2377 llvm::GlobalVariable *
2378 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2379                                       llvm::Type *Ty,
2380                                       llvm::GlobalValue::LinkageTypes Linkage) {
2381   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2382   llvm::GlobalVariable *OldGV = nullptr;
2383 
2384   if (GV) {
2385     // Check if the variable has the right type.
2386     if (GV->getType()->getElementType() == Ty)
2387       return GV;
2388 
2389     // Because C++ name mangling, the only way we can end up with an already
2390     // existing global with the same name is if it has been declared extern "C".
2391     assert(GV->isDeclaration() && "Declaration has wrong type!");
2392     OldGV = GV;
2393   }
2394 
2395   // Create a new variable.
2396   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2397                                 Linkage, nullptr, Name);
2398 
2399   if (OldGV) {
2400     // Replace occurrences of the old variable if needed.
2401     GV->takeName(OldGV);
2402 
2403     if (!OldGV->use_empty()) {
2404       llvm::Constant *NewPtrForOldDecl =
2405       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2406       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2407     }
2408 
2409     OldGV->eraseFromParent();
2410   }
2411 
2412   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2413       !GV->hasAvailableExternallyLinkage())
2414     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2415 
2416   return GV;
2417 }
2418 
2419 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2420 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2421 /// then it will be created with the specified type instead of whatever the
2422 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2423 /// that an actual global with type Ty will be returned, not conversion of a
2424 /// variable with the same mangled name but some other type.
2425 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2426                                                   llvm::Type *Ty,
2427                                            ForDefinition_t IsForDefinition) {
2428   assert(D->hasGlobalStorage() && "Not a global variable");
2429   QualType ASTTy = D->getType();
2430   if (!Ty)
2431     Ty = getTypes().ConvertTypeForMem(ASTTy);
2432 
2433   llvm::PointerType *PTy =
2434     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2435 
2436   StringRef MangledName = getMangledName(D);
2437   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2438 }
2439 
2440 /// CreateRuntimeVariable - Create a new runtime global variable with the
2441 /// specified type and name.
2442 llvm::Constant *
2443 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2444                                      StringRef Name) {
2445   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2446 }
2447 
2448 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2449   assert(!D->getInit() && "Cannot emit definite definitions here!");
2450 
2451   StringRef MangledName = getMangledName(D);
2452   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2453 
2454   // We already have a definition, not declaration, with the same mangled name.
2455   // Emitting of declaration is not required (and actually overwrites emitted
2456   // definition).
2457   if (GV && !GV->isDeclaration())
2458     return;
2459 
2460   // If we have not seen a reference to this variable yet, place it into the
2461   // deferred declarations table to be emitted if needed later.
2462   if (!MustBeEmitted(D) && !GV) {
2463       DeferredDecls[MangledName] = D;
2464       return;
2465   }
2466 
2467   // The tentative definition is the only definition.
2468   EmitGlobalVarDefinition(D);
2469 }
2470 
2471 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2472   return Context.toCharUnitsFromBits(
2473       getDataLayout().getTypeStoreSizeInBits(Ty));
2474 }
2475 
2476 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2477                                                  unsigned AddrSpace) {
2478   if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2479     if (D->hasAttr<CUDAConstantAttr>())
2480       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2481     else if (D->hasAttr<CUDASharedAttr>())
2482       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2483     else
2484       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2485   }
2486 
2487   return AddrSpace;
2488 }
2489 
2490 template<typename SomeDecl>
2491 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2492                                                llvm::GlobalValue *GV) {
2493   if (!getLangOpts().CPlusPlus)
2494     return;
2495 
2496   // Must have 'used' attribute, or else inline assembly can't rely on
2497   // the name existing.
2498   if (!D->template hasAttr<UsedAttr>())
2499     return;
2500 
2501   // Must have internal linkage and an ordinary name.
2502   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2503     return;
2504 
2505   // Must be in an extern "C" context. Entities declared directly within
2506   // a record are not extern "C" even if the record is in such a context.
2507   const SomeDecl *First = D->getFirstDecl();
2508   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2509     return;
2510 
2511   // OK, this is an internal linkage entity inside an extern "C" linkage
2512   // specification. Make a note of that so we can give it the "expected"
2513   // mangled name if nothing else is using that name.
2514   std::pair<StaticExternCMap::iterator, bool> R =
2515       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2516 
2517   // If we have multiple internal linkage entities with the same name
2518   // in extern "C" regions, none of them gets that name.
2519   if (!R.second)
2520     R.first->second = nullptr;
2521 }
2522 
2523 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2524   if (!CGM.supportsCOMDAT())
2525     return false;
2526 
2527   if (D.hasAttr<SelectAnyAttr>())
2528     return true;
2529 
2530   GVALinkage Linkage;
2531   if (auto *VD = dyn_cast<VarDecl>(&D))
2532     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2533   else
2534     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2535 
2536   switch (Linkage) {
2537   case GVA_Internal:
2538   case GVA_AvailableExternally:
2539   case GVA_StrongExternal:
2540     return false;
2541   case GVA_DiscardableODR:
2542   case GVA_StrongODR:
2543     return true;
2544   }
2545   llvm_unreachable("No such linkage");
2546 }
2547 
2548 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2549                                           llvm::GlobalObject &GO) {
2550   if (!shouldBeInCOMDAT(*this, D))
2551     return;
2552   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2553 }
2554 
2555 /// Pass IsTentative as true if you want to create a tentative definition.
2556 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2557                                             bool IsTentative) {
2558   // OpenCL global variables of sampler type are translated to function calls,
2559   // therefore no need to be translated.
2560   QualType ASTTy = D->getType();
2561   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2562     return;
2563 
2564   llvm::Constant *Init = nullptr;
2565   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2566   bool NeedsGlobalCtor = false;
2567   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2568 
2569   const VarDecl *InitDecl;
2570   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2571 
2572   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2573   // as part of their declaration."  Sema has already checked for
2574   // error cases, so we just need to set Init to UndefValue.
2575   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2576       D->hasAttr<CUDASharedAttr>())
2577     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2578   else if (!InitExpr) {
2579     // This is a tentative definition; tentative definitions are
2580     // implicitly initialized with { 0 }.
2581     //
2582     // Note that tentative definitions are only emitted at the end of
2583     // a translation unit, so they should never have incomplete
2584     // type. In addition, EmitTentativeDefinition makes sure that we
2585     // never attempt to emit a tentative definition if a real one
2586     // exists. A use may still exists, however, so we still may need
2587     // to do a RAUW.
2588     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2589     Init = EmitNullConstant(D->getType());
2590   } else {
2591     initializedGlobalDecl = GlobalDecl(D);
2592     Init = EmitConstantInit(*InitDecl);
2593 
2594     if (!Init) {
2595       QualType T = InitExpr->getType();
2596       if (D->getType()->isReferenceType())
2597         T = D->getType();
2598 
2599       if (getLangOpts().CPlusPlus) {
2600         Init = EmitNullConstant(T);
2601         NeedsGlobalCtor = true;
2602       } else {
2603         ErrorUnsupported(D, "static initializer");
2604         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2605       }
2606     } else {
2607       // We don't need an initializer, so remove the entry for the delayed
2608       // initializer position (just in case this entry was delayed) if we
2609       // also don't need to register a destructor.
2610       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2611         DelayedCXXInitPosition.erase(D);
2612     }
2613   }
2614 
2615   llvm::Type* InitType = Init->getType();
2616   llvm::Constant *Entry =
2617       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
2618 
2619   // Strip off a bitcast if we got one back.
2620   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2621     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2622            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2623            // All zero index gep.
2624            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2625     Entry = CE->getOperand(0);
2626   }
2627 
2628   // Entry is now either a Function or GlobalVariable.
2629   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2630 
2631   // We have a definition after a declaration with the wrong type.
2632   // We must make a new GlobalVariable* and update everything that used OldGV
2633   // (a declaration or tentative definition) with the new GlobalVariable*
2634   // (which will be a definition).
2635   //
2636   // This happens if there is a prototype for a global (e.g.
2637   // "extern int x[];") and then a definition of a different type (e.g.
2638   // "int x[10];"). This also happens when an initializer has a different type
2639   // from the type of the global (this happens with unions).
2640   if (!GV ||
2641       GV->getType()->getElementType() != InitType ||
2642       GV->getType()->getAddressSpace() !=
2643        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2644 
2645     // Move the old entry aside so that we'll create a new one.
2646     Entry->setName(StringRef());
2647 
2648     // Make a new global with the correct type, this is now guaranteed to work.
2649     GV = cast<llvm::GlobalVariable>(
2650         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
2651 
2652     // Replace all uses of the old global with the new global
2653     llvm::Constant *NewPtrForOldDecl =
2654         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2655     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2656 
2657     // Erase the old global, since it is no longer used.
2658     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2659   }
2660 
2661   MaybeHandleStaticInExternC(D, GV);
2662 
2663   if (D->hasAttr<AnnotateAttr>())
2664     AddGlobalAnnotations(D, GV);
2665 
2666   // Set the llvm linkage type as appropriate.
2667   llvm::GlobalValue::LinkageTypes Linkage =
2668       getLLVMLinkageVarDefinition(D, GV->isConstant());
2669 
2670   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2671   // the device. [...]"
2672   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2673   // __device__, declares a variable that: [...]
2674   // Is accessible from all the threads within the grid and from the host
2675   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2676   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2677   if (GV && LangOpts.CUDA) {
2678     if (LangOpts.CUDAIsDevice) {
2679       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2680         GV->setExternallyInitialized(true);
2681     } else {
2682       // Host-side shadows of external declarations of device-side
2683       // global variables become internal definitions. These have to
2684       // be internal in order to prevent name conflicts with global
2685       // host variables with the same name in a different TUs.
2686       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2687         Linkage = llvm::GlobalValue::InternalLinkage;
2688 
2689         // Shadow variables and their properties must be registered
2690         // with CUDA runtime.
2691         unsigned Flags = 0;
2692         if (!D->hasDefinition())
2693           Flags |= CGCUDARuntime::ExternDeviceVar;
2694         if (D->hasAttr<CUDAConstantAttr>())
2695           Flags |= CGCUDARuntime::ConstantDeviceVar;
2696         getCUDARuntime().registerDeviceVar(*GV, Flags);
2697       } else if (D->hasAttr<CUDASharedAttr>())
2698         // __shared__ variables are odd. Shadows do get created, but
2699         // they are not registered with the CUDA runtime, so they
2700         // can't really be used to access their device-side
2701         // counterparts. It's not clear yet whether it's nvcc's bug or
2702         // a feature, but we've got to do the same for compatibility.
2703         Linkage = llvm::GlobalValue::InternalLinkage;
2704     }
2705   }
2706   GV->setInitializer(Init);
2707 
2708   // If it is safe to mark the global 'constant', do so now.
2709   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2710                   isTypeConstant(D->getType(), true));
2711 
2712   // If it is in a read-only section, mark it 'constant'.
2713   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2714     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2715     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2716       GV->setConstant(true);
2717   }
2718 
2719   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2720 
2721 
2722   // On Darwin, if the normal linkage of a C++ thread_local variable is
2723   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2724   // copies within a linkage unit; otherwise, the backing variable has
2725   // internal linkage and all accesses should just be calls to the
2726   // Itanium-specified entry point, which has the normal linkage of the
2727   // variable. This is to preserve the ability to change the implementation
2728   // behind the scenes.
2729   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2730       Context.getTargetInfo().getTriple().isOSDarwin() &&
2731       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2732       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2733     Linkage = llvm::GlobalValue::InternalLinkage;
2734 
2735   GV->setLinkage(Linkage);
2736   if (D->hasAttr<DLLImportAttr>())
2737     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2738   else if (D->hasAttr<DLLExportAttr>())
2739     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2740   else
2741     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2742 
2743   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
2744     // common vars aren't constant even if declared const.
2745     GV->setConstant(false);
2746     // Tentative definition of global variables may be initialized with
2747     // non-zero null pointers. In this case they should have weak linkage
2748     // since common linkage must have zero initializer and must not have
2749     // explicit section therefore cannot have non-zero initial value.
2750     if (!GV->getInitializer()->isNullValue())
2751       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
2752   }
2753 
2754   setNonAliasAttributes(D, GV);
2755 
2756   if (D->getTLSKind() && !GV->isThreadLocal()) {
2757     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2758       CXXThreadLocals.push_back(D);
2759     setTLSMode(GV, *D);
2760   }
2761 
2762   maybeSetTrivialComdat(*D, *GV);
2763 
2764   // Emit the initializer function if necessary.
2765   if (NeedsGlobalCtor || NeedsGlobalDtor)
2766     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2767 
2768   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2769 
2770   // Emit global variable debug information.
2771   if (CGDebugInfo *DI = getModuleDebugInfo())
2772     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2773       DI->EmitGlobalVariable(GV, D);
2774 }
2775 
2776 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2777                                       CodeGenModule &CGM, const VarDecl *D,
2778                                       bool NoCommon) {
2779   // Don't give variables common linkage if -fno-common was specified unless it
2780   // was overridden by a NoCommon attribute.
2781   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2782     return true;
2783 
2784   // C11 6.9.2/2:
2785   //   A declaration of an identifier for an object that has file scope without
2786   //   an initializer, and without a storage-class specifier or with the
2787   //   storage-class specifier static, constitutes a tentative definition.
2788   if (D->getInit() || D->hasExternalStorage())
2789     return true;
2790 
2791   // A variable cannot be both common and exist in a section.
2792   if (D->hasAttr<SectionAttr>())
2793     return true;
2794 
2795   // Thread local vars aren't considered common linkage.
2796   if (D->getTLSKind())
2797     return true;
2798 
2799   // Tentative definitions marked with WeakImportAttr are true definitions.
2800   if (D->hasAttr<WeakImportAttr>())
2801     return true;
2802 
2803   // A variable cannot be both common and exist in a comdat.
2804   if (shouldBeInCOMDAT(CGM, *D))
2805     return true;
2806 
2807   // Declarations with a required alignment do not have common linkage in MSVC
2808   // mode.
2809   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2810     if (D->hasAttr<AlignedAttr>())
2811       return true;
2812     QualType VarType = D->getType();
2813     if (Context.isAlignmentRequired(VarType))
2814       return true;
2815 
2816     if (const auto *RT = VarType->getAs<RecordType>()) {
2817       const RecordDecl *RD = RT->getDecl();
2818       for (const FieldDecl *FD : RD->fields()) {
2819         if (FD->isBitField())
2820           continue;
2821         if (FD->hasAttr<AlignedAttr>())
2822           return true;
2823         if (Context.isAlignmentRequired(FD->getType()))
2824           return true;
2825       }
2826     }
2827   }
2828 
2829   return false;
2830 }
2831 
2832 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2833     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2834   if (Linkage == GVA_Internal)
2835     return llvm::Function::InternalLinkage;
2836 
2837   if (D->hasAttr<WeakAttr>()) {
2838     if (IsConstantVariable)
2839       return llvm::GlobalVariable::WeakODRLinkage;
2840     else
2841       return llvm::GlobalVariable::WeakAnyLinkage;
2842   }
2843 
2844   // We are guaranteed to have a strong definition somewhere else,
2845   // so we can use available_externally linkage.
2846   if (Linkage == GVA_AvailableExternally)
2847     return llvm::GlobalValue::AvailableExternallyLinkage;
2848 
2849   // Note that Apple's kernel linker doesn't support symbol
2850   // coalescing, so we need to avoid linkonce and weak linkages there.
2851   // Normally, this means we just map to internal, but for explicit
2852   // instantiations we'll map to external.
2853 
2854   // In C++, the compiler has to emit a definition in every translation unit
2855   // that references the function.  We should use linkonce_odr because
2856   // a) if all references in this translation unit are optimized away, we
2857   // don't need to codegen it.  b) if the function persists, it needs to be
2858   // merged with other definitions. c) C++ has the ODR, so we know the
2859   // definition is dependable.
2860   if (Linkage == GVA_DiscardableODR)
2861     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2862                                             : llvm::Function::InternalLinkage;
2863 
2864   // An explicit instantiation of a template has weak linkage, since
2865   // explicit instantiations can occur in multiple translation units
2866   // and must all be equivalent. However, we are not allowed to
2867   // throw away these explicit instantiations.
2868   //
2869   // We don't currently support CUDA device code spread out across multiple TUs,
2870   // so say that CUDA templates are either external (for kernels) or internal.
2871   // This lets llvm perform aggressive inter-procedural optimizations.
2872   if (Linkage == GVA_StrongODR) {
2873     if (Context.getLangOpts().AppleKext)
2874       return llvm::Function::ExternalLinkage;
2875     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
2876       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
2877                                           : llvm::Function::InternalLinkage;
2878     return llvm::Function::WeakODRLinkage;
2879   }
2880 
2881   // C++ doesn't have tentative definitions and thus cannot have common
2882   // linkage.
2883   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2884       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2885                                  CodeGenOpts.NoCommon))
2886     return llvm::GlobalVariable::CommonLinkage;
2887 
2888   // selectany symbols are externally visible, so use weak instead of
2889   // linkonce.  MSVC optimizes away references to const selectany globals, so
2890   // all definitions should be the same and ODR linkage should be used.
2891   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2892   if (D->hasAttr<SelectAnyAttr>())
2893     return llvm::GlobalVariable::WeakODRLinkage;
2894 
2895   // Otherwise, we have strong external linkage.
2896   assert(Linkage == GVA_StrongExternal);
2897   return llvm::GlobalVariable::ExternalLinkage;
2898 }
2899 
2900 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2901     const VarDecl *VD, bool IsConstant) {
2902   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2903   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2904 }
2905 
2906 /// Replace the uses of a function that was declared with a non-proto type.
2907 /// We want to silently drop extra arguments from call sites
2908 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2909                                           llvm::Function *newFn) {
2910   // Fast path.
2911   if (old->use_empty()) return;
2912 
2913   llvm::Type *newRetTy = newFn->getReturnType();
2914   SmallVector<llvm::Value*, 4> newArgs;
2915   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2916 
2917   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2918          ui != ue; ) {
2919     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2920     llvm::User *user = use->getUser();
2921 
2922     // Recognize and replace uses of bitcasts.  Most calls to
2923     // unprototyped functions will use bitcasts.
2924     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2925       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2926         replaceUsesOfNonProtoConstant(bitcast, newFn);
2927       continue;
2928     }
2929 
2930     // Recognize calls to the function.
2931     llvm::CallSite callSite(user);
2932     if (!callSite) continue;
2933     if (!callSite.isCallee(&*use)) continue;
2934 
2935     // If the return types don't match exactly, then we can't
2936     // transform this call unless it's dead.
2937     if (callSite->getType() != newRetTy && !callSite->use_empty())
2938       continue;
2939 
2940     // Get the call site's attribute list.
2941     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
2942     llvm::AttributeList oldAttrs = callSite.getAttributes();
2943 
2944     // If the function was passed too few arguments, don't transform.
2945     unsigned newNumArgs = newFn->arg_size();
2946     if (callSite.arg_size() < newNumArgs) continue;
2947 
2948     // If extra arguments were passed, we silently drop them.
2949     // If any of the types mismatch, we don't transform.
2950     unsigned argNo = 0;
2951     bool dontTransform = false;
2952     for (llvm::Argument &A : newFn->args()) {
2953       if (callSite.getArgument(argNo)->getType() != A.getType()) {
2954         dontTransform = true;
2955         break;
2956       }
2957 
2958       // Add any parameter attributes.
2959       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
2960       argNo++;
2961     }
2962     if (dontTransform)
2963       continue;
2964 
2965     // Okay, we can transform this.  Create the new call instruction and copy
2966     // over the required information.
2967     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2968 
2969     // Copy over any operand bundles.
2970     callSite.getOperandBundlesAsDefs(newBundles);
2971 
2972     llvm::CallSite newCall;
2973     if (callSite.isCall()) {
2974       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2975                                        callSite.getInstruction());
2976     } else {
2977       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2978       newCall = llvm::InvokeInst::Create(newFn,
2979                                          oldInvoke->getNormalDest(),
2980                                          oldInvoke->getUnwindDest(),
2981                                          newArgs, newBundles, "",
2982                                          callSite.getInstruction());
2983     }
2984     newArgs.clear(); // for the next iteration
2985 
2986     if (!newCall->getType()->isVoidTy())
2987       newCall->takeName(callSite.getInstruction());
2988     newCall.setAttributes(llvm::AttributeList::get(
2989         newFn->getContext(), oldAttrs.getFnAttributes(),
2990         oldAttrs.getRetAttributes(), newArgAttrs));
2991     newCall.setCallingConv(callSite.getCallingConv());
2992 
2993     // Finally, remove the old call, replacing any uses with the new one.
2994     if (!callSite->use_empty())
2995       callSite->replaceAllUsesWith(newCall.getInstruction());
2996 
2997     // Copy debug location attached to CI.
2998     if (callSite->getDebugLoc())
2999       newCall->setDebugLoc(callSite->getDebugLoc());
3000 
3001     callSite->eraseFromParent();
3002   }
3003 }
3004 
3005 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3006 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3007 /// existing call uses of the old function in the module, this adjusts them to
3008 /// call the new function directly.
3009 ///
3010 /// This is not just a cleanup: the always_inline pass requires direct calls to
3011 /// functions to be able to inline them.  If there is a bitcast in the way, it
3012 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3013 /// run at -O0.
3014 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3015                                                       llvm::Function *NewFn) {
3016   // If we're redefining a global as a function, don't transform it.
3017   if (!isa<llvm::Function>(Old)) return;
3018 
3019   replaceUsesOfNonProtoConstant(Old, NewFn);
3020 }
3021 
3022 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3023   auto DK = VD->isThisDeclarationADefinition();
3024   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3025     return;
3026 
3027   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3028   // If we have a definition, this might be a deferred decl. If the
3029   // instantiation is explicit, make sure we emit it at the end.
3030   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3031     GetAddrOfGlobalVar(VD);
3032 
3033   EmitTopLevelDecl(VD);
3034 }
3035 
3036 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3037                                                  llvm::GlobalValue *GV) {
3038   const auto *D = cast<FunctionDecl>(GD.getDecl());
3039 
3040   // Compute the function info and LLVM type.
3041   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3042   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3043 
3044   // Get or create the prototype for the function.
3045   if (!GV || (GV->getType()->getElementType() != Ty))
3046     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3047                                                    /*DontDefer=*/true,
3048                                                    ForDefinition));
3049 
3050   // Already emitted.
3051   if (!GV->isDeclaration())
3052     return;
3053 
3054   // We need to set linkage and visibility on the function before
3055   // generating code for it because various parts of IR generation
3056   // want to propagate this information down (e.g. to local static
3057   // declarations).
3058   auto *Fn = cast<llvm::Function>(GV);
3059   setFunctionLinkage(GD, Fn);
3060   setFunctionDLLStorageClass(GD, Fn);
3061 
3062   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3063   setGlobalVisibility(Fn, D);
3064 
3065   MaybeHandleStaticInExternC(D, Fn);
3066 
3067   maybeSetTrivialComdat(*D, *Fn);
3068 
3069   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3070 
3071   setFunctionDefinitionAttributes(D, Fn);
3072   SetLLVMFunctionAttributesForDefinition(D, Fn);
3073 
3074   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3075     AddGlobalCtor(Fn, CA->getPriority());
3076   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3077     AddGlobalDtor(Fn, DA->getPriority());
3078   if (D->hasAttr<AnnotateAttr>())
3079     AddGlobalAnnotations(D, Fn);
3080 }
3081 
3082 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3083   const auto *D = cast<ValueDecl>(GD.getDecl());
3084   const AliasAttr *AA = D->getAttr<AliasAttr>();
3085   assert(AA && "Not an alias?");
3086 
3087   StringRef MangledName = getMangledName(GD);
3088 
3089   if (AA->getAliasee() == MangledName) {
3090     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3091     return;
3092   }
3093 
3094   // If there is a definition in the module, then it wins over the alias.
3095   // This is dubious, but allow it to be safe.  Just ignore the alias.
3096   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3097   if (Entry && !Entry->isDeclaration())
3098     return;
3099 
3100   Aliases.push_back(GD);
3101 
3102   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3103 
3104   // Create a reference to the named value.  This ensures that it is emitted
3105   // if a deferred decl.
3106   llvm::Constant *Aliasee;
3107   if (isa<llvm::FunctionType>(DeclTy))
3108     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3109                                       /*ForVTable=*/false);
3110   else
3111     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3112                                     llvm::PointerType::getUnqual(DeclTy),
3113                                     /*D=*/nullptr);
3114 
3115   // Create the new alias itself, but don't set a name yet.
3116   auto *GA = llvm::GlobalAlias::create(
3117       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3118 
3119   if (Entry) {
3120     if (GA->getAliasee() == Entry) {
3121       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3122       return;
3123     }
3124 
3125     assert(Entry->isDeclaration());
3126 
3127     // If there is a declaration in the module, then we had an extern followed
3128     // by the alias, as in:
3129     //   extern int test6();
3130     //   ...
3131     //   int test6() __attribute__((alias("test7")));
3132     //
3133     // Remove it and replace uses of it with the alias.
3134     GA->takeName(Entry);
3135 
3136     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3137                                                           Entry->getType()));
3138     Entry->eraseFromParent();
3139   } else {
3140     GA->setName(MangledName);
3141   }
3142 
3143   // Set attributes which are particular to an alias; this is a
3144   // specialization of the attributes which may be set on a global
3145   // variable/function.
3146   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3147       D->isWeakImported()) {
3148     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3149   }
3150 
3151   if (const auto *VD = dyn_cast<VarDecl>(D))
3152     if (VD->getTLSKind())
3153       setTLSMode(GA, *VD);
3154 
3155   setAliasAttributes(D, GA);
3156 }
3157 
3158 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3159   const auto *D = cast<ValueDecl>(GD.getDecl());
3160   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3161   assert(IFA && "Not an ifunc?");
3162 
3163   StringRef MangledName = getMangledName(GD);
3164 
3165   if (IFA->getResolver() == MangledName) {
3166     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3167     return;
3168   }
3169 
3170   // Report an error if some definition overrides ifunc.
3171   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3172   if (Entry && !Entry->isDeclaration()) {
3173     GlobalDecl OtherGD;
3174     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3175         DiagnosedConflictingDefinitions.insert(GD).second) {
3176       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3177       Diags.Report(OtherGD.getDecl()->getLocation(),
3178                    diag::note_previous_definition);
3179     }
3180     return;
3181   }
3182 
3183   Aliases.push_back(GD);
3184 
3185   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3186   llvm::Constant *Resolver =
3187       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3188                               /*ForVTable=*/false);
3189   llvm::GlobalIFunc *GIF =
3190       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3191                                 "", Resolver, &getModule());
3192   if (Entry) {
3193     if (GIF->getResolver() == Entry) {
3194       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3195       return;
3196     }
3197     assert(Entry->isDeclaration());
3198 
3199     // If there is a declaration in the module, then we had an extern followed
3200     // by the ifunc, as in:
3201     //   extern int test();
3202     //   ...
3203     //   int test() __attribute__((ifunc("resolver")));
3204     //
3205     // Remove it and replace uses of it with the ifunc.
3206     GIF->takeName(Entry);
3207 
3208     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3209                                                           Entry->getType()));
3210     Entry->eraseFromParent();
3211   } else
3212     GIF->setName(MangledName);
3213 
3214   SetCommonAttributes(D, GIF);
3215 }
3216 
3217 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3218                                             ArrayRef<llvm::Type*> Tys) {
3219   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3220                                          Tys);
3221 }
3222 
3223 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3224 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3225                          const StringLiteral *Literal, bool TargetIsLSB,
3226                          bool &IsUTF16, unsigned &StringLength) {
3227   StringRef String = Literal->getString();
3228   unsigned NumBytes = String.size();
3229 
3230   // Check for simple case.
3231   if (!Literal->containsNonAsciiOrNull()) {
3232     StringLength = NumBytes;
3233     return *Map.insert(std::make_pair(String, nullptr)).first;
3234   }
3235 
3236   // Otherwise, convert the UTF8 literals into a string of shorts.
3237   IsUTF16 = true;
3238 
3239   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3240   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3241   llvm::UTF16 *ToPtr = &ToBuf[0];
3242 
3243   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3244                                  ToPtr + NumBytes, llvm::strictConversion);
3245 
3246   // ConvertUTF8toUTF16 returns the length in ToPtr.
3247   StringLength = ToPtr - &ToBuf[0];
3248 
3249   // Add an explicit null.
3250   *ToPtr = 0;
3251   return *Map.insert(std::make_pair(
3252                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3253                                    (StringLength + 1) * 2),
3254                          nullptr)).first;
3255 }
3256 
3257 ConstantAddress
3258 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3259   unsigned StringLength = 0;
3260   bool isUTF16 = false;
3261   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3262       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3263                                getDataLayout().isLittleEndian(), isUTF16,
3264                                StringLength);
3265 
3266   if (auto *C = Entry.second)
3267     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3268 
3269   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3270   llvm::Constant *Zeros[] = { Zero, Zero };
3271 
3272   // If we don't already have it, get __CFConstantStringClassReference.
3273   if (!CFConstantStringClassRef) {
3274     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3275     Ty = llvm::ArrayType::get(Ty, 0);
3276     llvm::Constant *GV =
3277         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3278 
3279     if (getTriple().isOSBinFormatCOFF()) {
3280       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3281       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3282       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3283       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3284 
3285       const VarDecl *VD = nullptr;
3286       for (const auto &Result : DC->lookup(&II))
3287         if ((VD = dyn_cast<VarDecl>(Result)))
3288           break;
3289 
3290       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3291         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3292         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3293       } else {
3294         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3295         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3296       }
3297     }
3298 
3299     // Decay array -> ptr
3300     CFConstantStringClassRef =
3301         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3302   }
3303 
3304   QualType CFTy = getContext().getCFConstantStringType();
3305 
3306   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3307 
3308   ConstantInitBuilder Builder(*this);
3309   auto Fields = Builder.beginStruct(STy);
3310 
3311   // Class pointer.
3312   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3313 
3314   // Flags.
3315   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3316 
3317   // String pointer.
3318   llvm::Constant *C = nullptr;
3319   if (isUTF16) {
3320     auto Arr = llvm::makeArrayRef(
3321         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3322         Entry.first().size() / 2);
3323     C = llvm::ConstantDataArray::get(VMContext, Arr);
3324   } else {
3325     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3326   }
3327 
3328   // Note: -fwritable-strings doesn't make the backing store strings of
3329   // CFStrings writable. (See <rdar://problem/10657500>)
3330   auto *GV =
3331       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3332                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3333   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3334   // Don't enforce the target's minimum global alignment, since the only use
3335   // of the string is via this class initializer.
3336   CharUnits Align = isUTF16
3337                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3338                         : getContext().getTypeAlignInChars(getContext().CharTy);
3339   GV->setAlignment(Align.getQuantity());
3340 
3341   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3342   // Without it LLVM can merge the string with a non unnamed_addr one during
3343   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3344   if (getTriple().isOSBinFormatMachO())
3345     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3346                            : "__TEXT,__cstring,cstring_literals");
3347 
3348   // String.
3349   llvm::Constant *Str =
3350       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3351 
3352   if (isUTF16)
3353     // Cast the UTF16 string to the correct type.
3354     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3355   Fields.add(Str);
3356 
3357   // String length.
3358   auto Ty = getTypes().ConvertType(getContext().LongTy);
3359   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3360 
3361   CharUnits Alignment = getPointerAlign();
3362 
3363   // The struct.
3364   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3365                                     /*isConstant=*/false,
3366                                     llvm::GlobalVariable::PrivateLinkage);
3367   switch (getTriple().getObjectFormat()) {
3368   case llvm::Triple::UnknownObjectFormat:
3369     llvm_unreachable("unknown file format");
3370   case llvm::Triple::COFF:
3371   case llvm::Triple::ELF:
3372   case llvm::Triple::Wasm:
3373     GV->setSection("cfstring");
3374     break;
3375   case llvm::Triple::MachO:
3376     GV->setSection("__DATA,__cfstring");
3377     break;
3378   }
3379   Entry.second = GV;
3380 
3381   return ConstantAddress(GV, Alignment);
3382 }
3383 
3384 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3385   if (ObjCFastEnumerationStateType.isNull()) {
3386     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3387     D->startDefinition();
3388 
3389     QualType FieldTypes[] = {
3390       Context.UnsignedLongTy,
3391       Context.getPointerType(Context.getObjCIdType()),
3392       Context.getPointerType(Context.UnsignedLongTy),
3393       Context.getConstantArrayType(Context.UnsignedLongTy,
3394                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3395     };
3396 
3397     for (size_t i = 0; i < 4; ++i) {
3398       FieldDecl *Field = FieldDecl::Create(Context,
3399                                            D,
3400                                            SourceLocation(),
3401                                            SourceLocation(), nullptr,
3402                                            FieldTypes[i], /*TInfo=*/nullptr,
3403                                            /*BitWidth=*/nullptr,
3404                                            /*Mutable=*/false,
3405                                            ICIS_NoInit);
3406       Field->setAccess(AS_public);
3407       D->addDecl(Field);
3408     }
3409 
3410     D->completeDefinition();
3411     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3412   }
3413 
3414   return ObjCFastEnumerationStateType;
3415 }
3416 
3417 llvm::Constant *
3418 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3419   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3420 
3421   // Don't emit it as the address of the string, emit the string data itself
3422   // as an inline array.
3423   if (E->getCharByteWidth() == 1) {
3424     SmallString<64> Str(E->getString());
3425 
3426     // Resize the string to the right size, which is indicated by its type.
3427     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3428     Str.resize(CAT->getSize().getZExtValue());
3429     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3430   }
3431 
3432   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3433   llvm::Type *ElemTy = AType->getElementType();
3434   unsigned NumElements = AType->getNumElements();
3435 
3436   // Wide strings have either 2-byte or 4-byte elements.
3437   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3438     SmallVector<uint16_t, 32> Elements;
3439     Elements.reserve(NumElements);
3440 
3441     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3442       Elements.push_back(E->getCodeUnit(i));
3443     Elements.resize(NumElements);
3444     return llvm::ConstantDataArray::get(VMContext, Elements);
3445   }
3446 
3447   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3448   SmallVector<uint32_t, 32> Elements;
3449   Elements.reserve(NumElements);
3450 
3451   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3452     Elements.push_back(E->getCodeUnit(i));
3453   Elements.resize(NumElements);
3454   return llvm::ConstantDataArray::get(VMContext, Elements);
3455 }
3456 
3457 static llvm::GlobalVariable *
3458 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3459                       CodeGenModule &CGM, StringRef GlobalName,
3460                       CharUnits Alignment) {
3461   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3462   unsigned AddrSpace = 0;
3463   if (CGM.getLangOpts().OpenCL)
3464     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3465 
3466   llvm::Module &M = CGM.getModule();
3467   // Create a global variable for this string
3468   auto *GV = new llvm::GlobalVariable(
3469       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3470       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3471   GV->setAlignment(Alignment.getQuantity());
3472   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3473   if (GV->isWeakForLinker()) {
3474     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3475     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3476   }
3477 
3478   return GV;
3479 }
3480 
3481 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3482 /// constant array for the given string literal.
3483 ConstantAddress
3484 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3485                                                   StringRef Name) {
3486   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3487 
3488   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3489   llvm::GlobalVariable **Entry = nullptr;
3490   if (!LangOpts.WritableStrings) {
3491     Entry = &ConstantStringMap[C];
3492     if (auto GV = *Entry) {
3493       if (Alignment.getQuantity() > GV->getAlignment())
3494         GV->setAlignment(Alignment.getQuantity());
3495       return ConstantAddress(GV, Alignment);
3496     }
3497   }
3498 
3499   SmallString<256> MangledNameBuffer;
3500   StringRef GlobalVariableName;
3501   llvm::GlobalValue::LinkageTypes LT;
3502 
3503   // Mangle the string literal if the ABI allows for it.  However, we cannot
3504   // do this if  we are compiling with ASan or -fwritable-strings because they
3505   // rely on strings having normal linkage.
3506   if (!LangOpts.WritableStrings &&
3507       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3508       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3509     llvm::raw_svector_ostream Out(MangledNameBuffer);
3510     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3511 
3512     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3513     GlobalVariableName = MangledNameBuffer;
3514   } else {
3515     LT = llvm::GlobalValue::PrivateLinkage;
3516     GlobalVariableName = Name;
3517   }
3518 
3519   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3520   if (Entry)
3521     *Entry = GV;
3522 
3523   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3524                                   QualType());
3525   return ConstantAddress(GV, Alignment);
3526 }
3527 
3528 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3529 /// array for the given ObjCEncodeExpr node.
3530 ConstantAddress
3531 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3532   std::string Str;
3533   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3534 
3535   return GetAddrOfConstantCString(Str);
3536 }
3537 
3538 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3539 /// the literal and a terminating '\0' character.
3540 /// The result has pointer to array type.
3541 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3542     const std::string &Str, const char *GlobalName) {
3543   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3544   CharUnits Alignment =
3545     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3546 
3547   llvm::Constant *C =
3548       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3549 
3550   // Don't share any string literals if strings aren't constant.
3551   llvm::GlobalVariable **Entry = nullptr;
3552   if (!LangOpts.WritableStrings) {
3553     Entry = &ConstantStringMap[C];
3554     if (auto GV = *Entry) {
3555       if (Alignment.getQuantity() > GV->getAlignment())
3556         GV->setAlignment(Alignment.getQuantity());
3557       return ConstantAddress(GV, Alignment);
3558     }
3559   }
3560 
3561   // Get the default prefix if a name wasn't specified.
3562   if (!GlobalName)
3563     GlobalName = ".str";
3564   // Create a global variable for this.
3565   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3566                                   GlobalName, Alignment);
3567   if (Entry)
3568     *Entry = GV;
3569   return ConstantAddress(GV, Alignment);
3570 }
3571 
3572 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3573     const MaterializeTemporaryExpr *E, const Expr *Init) {
3574   assert((E->getStorageDuration() == SD_Static ||
3575           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3576   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3577 
3578   // If we're not materializing a subobject of the temporary, keep the
3579   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3580   QualType MaterializedType = Init->getType();
3581   if (Init == E->GetTemporaryExpr())
3582     MaterializedType = E->getType();
3583 
3584   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3585 
3586   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3587     return ConstantAddress(Slot, Align);
3588 
3589   // FIXME: If an externally-visible declaration extends multiple temporaries,
3590   // we need to give each temporary the same name in every translation unit (and
3591   // we also need to make the temporaries externally-visible).
3592   SmallString<256> Name;
3593   llvm::raw_svector_ostream Out(Name);
3594   getCXXABI().getMangleContext().mangleReferenceTemporary(
3595       VD, E->getManglingNumber(), Out);
3596 
3597   APValue *Value = nullptr;
3598   if (E->getStorageDuration() == SD_Static) {
3599     // We might have a cached constant initializer for this temporary. Note
3600     // that this might have a different value from the value computed by
3601     // evaluating the initializer if the surrounding constant expression
3602     // modifies the temporary.
3603     Value = getContext().getMaterializedTemporaryValue(E, false);
3604     if (Value && Value->isUninit())
3605       Value = nullptr;
3606   }
3607 
3608   // Try evaluating it now, it might have a constant initializer.
3609   Expr::EvalResult EvalResult;
3610   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3611       !EvalResult.hasSideEffects())
3612     Value = &EvalResult.Val;
3613 
3614   llvm::Constant *InitialValue = nullptr;
3615   bool Constant = false;
3616   llvm::Type *Type;
3617   if (Value) {
3618     // The temporary has a constant initializer, use it.
3619     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3620     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3621     Type = InitialValue->getType();
3622   } else {
3623     // No initializer, the initialization will be provided when we
3624     // initialize the declaration which performed lifetime extension.
3625     Type = getTypes().ConvertTypeForMem(MaterializedType);
3626   }
3627 
3628   // Create a global variable for this lifetime-extended temporary.
3629   llvm::GlobalValue::LinkageTypes Linkage =
3630       getLLVMLinkageVarDefinition(VD, Constant);
3631   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3632     const VarDecl *InitVD;
3633     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3634         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3635       // Temporaries defined inside a class get linkonce_odr linkage because the
3636       // class can be defined in multipe translation units.
3637       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3638     } else {
3639       // There is no need for this temporary to have external linkage if the
3640       // VarDecl has external linkage.
3641       Linkage = llvm::GlobalVariable::InternalLinkage;
3642     }
3643   }
3644   unsigned AddrSpace = GetGlobalVarAddressSpace(
3645       VD, getContext().getTargetAddressSpace(MaterializedType));
3646   auto *GV = new llvm::GlobalVariable(
3647       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3648       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3649       AddrSpace);
3650   setGlobalVisibility(GV, VD);
3651   GV->setAlignment(Align.getQuantity());
3652   if (supportsCOMDAT() && GV->isWeakForLinker())
3653     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3654   if (VD->getTLSKind())
3655     setTLSMode(GV, *VD);
3656   MaterializedGlobalTemporaryMap[E] = GV;
3657   return ConstantAddress(GV, Align);
3658 }
3659 
3660 /// EmitObjCPropertyImplementations - Emit information for synthesized
3661 /// properties for an implementation.
3662 void CodeGenModule::EmitObjCPropertyImplementations(const
3663                                                     ObjCImplementationDecl *D) {
3664   for (const auto *PID : D->property_impls()) {
3665     // Dynamic is just for type-checking.
3666     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3667       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3668 
3669       // Determine which methods need to be implemented, some may have
3670       // been overridden. Note that ::isPropertyAccessor is not the method
3671       // we want, that just indicates if the decl came from a
3672       // property. What we want to know is if the method is defined in
3673       // this implementation.
3674       if (!D->getInstanceMethod(PD->getGetterName()))
3675         CodeGenFunction(*this).GenerateObjCGetter(
3676                                  const_cast<ObjCImplementationDecl *>(D), PID);
3677       if (!PD->isReadOnly() &&
3678           !D->getInstanceMethod(PD->getSetterName()))
3679         CodeGenFunction(*this).GenerateObjCSetter(
3680                                  const_cast<ObjCImplementationDecl *>(D), PID);
3681     }
3682   }
3683 }
3684 
3685 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3686   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3687   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3688        ivar; ivar = ivar->getNextIvar())
3689     if (ivar->getType().isDestructedType())
3690       return true;
3691 
3692   return false;
3693 }
3694 
3695 static bool AllTrivialInitializers(CodeGenModule &CGM,
3696                                    ObjCImplementationDecl *D) {
3697   CodeGenFunction CGF(CGM);
3698   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3699        E = D->init_end(); B != E; ++B) {
3700     CXXCtorInitializer *CtorInitExp = *B;
3701     Expr *Init = CtorInitExp->getInit();
3702     if (!CGF.isTrivialInitializer(Init))
3703       return false;
3704   }
3705   return true;
3706 }
3707 
3708 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3709 /// for an implementation.
3710 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3711   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3712   if (needsDestructMethod(D)) {
3713     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3714     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3715     ObjCMethodDecl *DTORMethod =
3716       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3717                              cxxSelector, getContext().VoidTy, nullptr, D,
3718                              /*isInstance=*/true, /*isVariadic=*/false,
3719                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3720                              /*isDefined=*/false, ObjCMethodDecl::Required);
3721     D->addInstanceMethod(DTORMethod);
3722     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3723     D->setHasDestructors(true);
3724   }
3725 
3726   // If the implementation doesn't have any ivar initializers, we don't need
3727   // a .cxx_construct.
3728   if (D->getNumIvarInitializers() == 0 ||
3729       AllTrivialInitializers(*this, D))
3730     return;
3731 
3732   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3733   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3734   // The constructor returns 'self'.
3735   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3736                                                 D->getLocation(),
3737                                                 D->getLocation(),
3738                                                 cxxSelector,
3739                                                 getContext().getObjCIdType(),
3740                                                 nullptr, D, /*isInstance=*/true,
3741                                                 /*isVariadic=*/false,
3742                                                 /*isPropertyAccessor=*/true,
3743                                                 /*isImplicitlyDeclared=*/true,
3744                                                 /*isDefined=*/false,
3745                                                 ObjCMethodDecl::Required);
3746   D->addInstanceMethod(CTORMethod);
3747   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3748   D->setHasNonZeroConstructors(true);
3749 }
3750 
3751 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3752 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3753   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3754       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3755     ErrorUnsupported(LSD, "linkage spec");
3756     return;
3757   }
3758 
3759   EmitDeclContext(LSD);
3760 }
3761 
3762 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
3763   for (auto *I : DC->decls()) {
3764     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
3765     // are themselves considered "top-level", so EmitTopLevelDecl on an
3766     // ObjCImplDecl does not recursively visit them. We need to do that in
3767     // case they're nested inside another construct (LinkageSpecDecl /
3768     // ExportDecl) that does stop them from being considered "top-level".
3769     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3770       for (auto *M : OID->methods())
3771         EmitTopLevelDecl(M);
3772     }
3773 
3774     EmitTopLevelDecl(I);
3775   }
3776 }
3777 
3778 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3779 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3780   // Ignore dependent declarations.
3781   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3782     return;
3783 
3784   switch (D->getKind()) {
3785   case Decl::CXXConversion:
3786   case Decl::CXXMethod:
3787   case Decl::Function:
3788     // Skip function templates
3789     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3790         cast<FunctionDecl>(D)->isLateTemplateParsed())
3791       return;
3792 
3793     EmitGlobal(cast<FunctionDecl>(D));
3794     // Always provide some coverage mapping
3795     // even for the functions that aren't emitted.
3796     AddDeferredUnusedCoverageMapping(D);
3797     break;
3798 
3799   case Decl::CXXDeductionGuide:
3800     // Function-like, but does not result in code emission.
3801     break;
3802 
3803   case Decl::Var:
3804   case Decl::Decomposition:
3805     // Skip variable templates
3806     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3807       return;
3808   case Decl::VarTemplateSpecialization:
3809     EmitGlobal(cast<VarDecl>(D));
3810     if (auto *DD = dyn_cast<DecompositionDecl>(D))
3811       for (auto *B : DD->bindings())
3812         if (auto *HD = B->getHoldingVar())
3813           EmitGlobal(HD);
3814     break;
3815 
3816   // Indirect fields from global anonymous structs and unions can be
3817   // ignored; only the actual variable requires IR gen support.
3818   case Decl::IndirectField:
3819     break;
3820 
3821   // C++ Decls
3822   case Decl::Namespace:
3823     EmitDeclContext(cast<NamespaceDecl>(D));
3824     break;
3825   case Decl::CXXRecord:
3826     if (DebugInfo) {
3827       if (auto *ES = D->getASTContext().getExternalSource())
3828         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
3829           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
3830     }
3831     // Emit any static data members, they may be definitions.
3832     for (auto *I : cast<CXXRecordDecl>(D)->decls())
3833       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
3834         EmitTopLevelDecl(I);
3835     break;
3836     // No code generation needed.
3837   case Decl::UsingShadow:
3838   case Decl::ClassTemplate:
3839   case Decl::VarTemplate:
3840   case Decl::VarTemplatePartialSpecialization:
3841   case Decl::FunctionTemplate:
3842   case Decl::TypeAliasTemplate:
3843   case Decl::Block:
3844   case Decl::Empty:
3845     break;
3846   case Decl::Using:          // using X; [C++]
3847     if (CGDebugInfo *DI = getModuleDebugInfo())
3848         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3849     return;
3850   case Decl::NamespaceAlias:
3851     if (CGDebugInfo *DI = getModuleDebugInfo())
3852         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3853     return;
3854   case Decl::UsingDirective: // using namespace X; [C++]
3855     if (CGDebugInfo *DI = getModuleDebugInfo())
3856       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3857     return;
3858   case Decl::CXXConstructor:
3859     // Skip function templates
3860     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3861         cast<FunctionDecl>(D)->isLateTemplateParsed())
3862       return;
3863 
3864     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3865     break;
3866   case Decl::CXXDestructor:
3867     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3868       return;
3869     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3870     break;
3871 
3872   case Decl::StaticAssert:
3873     // Nothing to do.
3874     break;
3875 
3876   // Objective-C Decls
3877 
3878   // Forward declarations, no (immediate) code generation.
3879   case Decl::ObjCInterface:
3880   case Decl::ObjCCategory:
3881     break;
3882 
3883   case Decl::ObjCProtocol: {
3884     auto *Proto = cast<ObjCProtocolDecl>(D);
3885     if (Proto->isThisDeclarationADefinition())
3886       ObjCRuntime->GenerateProtocol(Proto);
3887     break;
3888   }
3889 
3890   case Decl::ObjCCategoryImpl:
3891     // Categories have properties but don't support synthesize so we
3892     // can ignore them here.
3893     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3894     break;
3895 
3896   case Decl::ObjCImplementation: {
3897     auto *OMD = cast<ObjCImplementationDecl>(D);
3898     EmitObjCPropertyImplementations(OMD);
3899     EmitObjCIvarInitializations(OMD);
3900     ObjCRuntime->GenerateClass(OMD);
3901     // Emit global variable debug information.
3902     if (CGDebugInfo *DI = getModuleDebugInfo())
3903       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3904         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3905             OMD->getClassInterface()), OMD->getLocation());
3906     break;
3907   }
3908   case Decl::ObjCMethod: {
3909     auto *OMD = cast<ObjCMethodDecl>(D);
3910     // If this is not a prototype, emit the body.
3911     if (OMD->getBody())
3912       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3913     break;
3914   }
3915   case Decl::ObjCCompatibleAlias:
3916     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3917     break;
3918 
3919   case Decl::PragmaComment: {
3920     const auto *PCD = cast<PragmaCommentDecl>(D);
3921     switch (PCD->getCommentKind()) {
3922     case PCK_Unknown:
3923       llvm_unreachable("unexpected pragma comment kind");
3924     case PCK_Linker:
3925       AppendLinkerOptions(PCD->getArg());
3926       break;
3927     case PCK_Lib:
3928       AddDependentLib(PCD->getArg());
3929       break;
3930     case PCK_Compiler:
3931     case PCK_ExeStr:
3932     case PCK_User:
3933       break; // We ignore all of these.
3934     }
3935     break;
3936   }
3937 
3938   case Decl::PragmaDetectMismatch: {
3939     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3940     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3941     break;
3942   }
3943 
3944   case Decl::LinkageSpec:
3945     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3946     break;
3947 
3948   case Decl::FileScopeAsm: {
3949     // File-scope asm is ignored during device-side CUDA compilation.
3950     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3951       break;
3952     // File-scope asm is ignored during device-side OpenMP compilation.
3953     if (LangOpts.OpenMPIsDevice)
3954       break;
3955     auto *AD = cast<FileScopeAsmDecl>(D);
3956     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3957     break;
3958   }
3959 
3960   case Decl::Import: {
3961     auto *Import = cast<ImportDecl>(D);
3962 
3963     // If we've already imported this module, we're done.
3964     if (!ImportedModules.insert(Import->getImportedModule()))
3965       break;
3966 
3967     // Emit debug information for direct imports.
3968     if (!Import->getImportedOwningModule()) {
3969       if (CGDebugInfo *DI = getModuleDebugInfo())
3970         DI->EmitImportDecl(*Import);
3971     }
3972 
3973     // Find all of the submodules and emit the module initializers.
3974     llvm::SmallPtrSet<clang::Module *, 16> Visited;
3975     SmallVector<clang::Module *, 16> Stack;
3976     Visited.insert(Import->getImportedModule());
3977     Stack.push_back(Import->getImportedModule());
3978 
3979     while (!Stack.empty()) {
3980       clang::Module *Mod = Stack.pop_back_val();
3981       if (!EmittedModuleInitializers.insert(Mod).second)
3982         continue;
3983 
3984       for (auto *D : Context.getModuleInitializers(Mod))
3985         EmitTopLevelDecl(D);
3986 
3987       // Visit the submodules of this module.
3988       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
3989                                              SubEnd = Mod->submodule_end();
3990            Sub != SubEnd; ++Sub) {
3991         // Skip explicit children; they need to be explicitly imported to emit
3992         // the initializers.
3993         if ((*Sub)->IsExplicit)
3994           continue;
3995 
3996         if (Visited.insert(*Sub).second)
3997           Stack.push_back(*Sub);
3998       }
3999     }
4000     break;
4001   }
4002 
4003   case Decl::Export:
4004     EmitDeclContext(cast<ExportDecl>(D));
4005     break;
4006 
4007   case Decl::OMPThreadPrivate:
4008     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4009     break;
4010 
4011   case Decl::ClassTemplateSpecialization: {
4012     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4013     if (DebugInfo &&
4014         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4015         Spec->hasDefinition())
4016       DebugInfo->completeTemplateDefinition(*Spec);
4017     break;
4018   }
4019 
4020   case Decl::OMPDeclareReduction:
4021     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4022     break;
4023 
4024   default:
4025     // Make sure we handled everything we should, every other kind is a
4026     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4027     // function. Need to recode Decl::Kind to do that easily.
4028     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4029     break;
4030   }
4031 }
4032 
4033 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4034   // Do we need to generate coverage mapping?
4035   if (!CodeGenOpts.CoverageMapping)
4036     return;
4037   switch (D->getKind()) {
4038   case Decl::CXXConversion:
4039   case Decl::CXXMethod:
4040   case Decl::Function:
4041   case Decl::ObjCMethod:
4042   case Decl::CXXConstructor:
4043   case Decl::CXXDestructor: {
4044     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4045       return;
4046     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4047     if (I == DeferredEmptyCoverageMappingDecls.end())
4048       DeferredEmptyCoverageMappingDecls[D] = true;
4049     break;
4050   }
4051   default:
4052     break;
4053   };
4054 }
4055 
4056 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4057   // Do we need to generate coverage mapping?
4058   if (!CodeGenOpts.CoverageMapping)
4059     return;
4060   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4061     if (Fn->isTemplateInstantiation())
4062       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4063   }
4064   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4065   if (I == DeferredEmptyCoverageMappingDecls.end())
4066     DeferredEmptyCoverageMappingDecls[D] = false;
4067   else
4068     I->second = false;
4069 }
4070 
4071 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4072   std::vector<const Decl *> DeferredDecls;
4073   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
4074     if (!I.second)
4075       continue;
4076     DeferredDecls.push_back(I.first);
4077   }
4078   // Sort the declarations by their location to make sure that the tests get a
4079   // predictable order for the coverage mapping for the unused declarations.
4080   if (CodeGenOpts.DumpCoverageMapping)
4081     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
4082               [] (const Decl *LHS, const Decl *RHS) {
4083       return LHS->getLocStart() < RHS->getLocStart();
4084     });
4085   for (const auto *D : DeferredDecls) {
4086     switch (D->getKind()) {
4087     case Decl::CXXConversion:
4088     case Decl::CXXMethod:
4089     case Decl::Function:
4090     case Decl::ObjCMethod: {
4091       CodeGenPGO PGO(*this);
4092       GlobalDecl GD(cast<FunctionDecl>(D));
4093       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4094                                   getFunctionLinkage(GD));
4095       break;
4096     }
4097     case Decl::CXXConstructor: {
4098       CodeGenPGO PGO(*this);
4099       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4100       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4101                                   getFunctionLinkage(GD));
4102       break;
4103     }
4104     case Decl::CXXDestructor: {
4105       CodeGenPGO PGO(*this);
4106       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4107       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4108                                   getFunctionLinkage(GD));
4109       break;
4110     }
4111     default:
4112       break;
4113     };
4114   }
4115 }
4116 
4117 /// Turns the given pointer into a constant.
4118 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4119                                           const void *Ptr) {
4120   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4121   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4122   return llvm::ConstantInt::get(i64, PtrInt);
4123 }
4124 
4125 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4126                                    llvm::NamedMDNode *&GlobalMetadata,
4127                                    GlobalDecl D,
4128                                    llvm::GlobalValue *Addr) {
4129   if (!GlobalMetadata)
4130     GlobalMetadata =
4131       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4132 
4133   // TODO: should we report variant information for ctors/dtors?
4134   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4135                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4136                                CGM.getLLVMContext(), D.getDecl()))};
4137   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4138 }
4139 
4140 /// For each function which is declared within an extern "C" region and marked
4141 /// as 'used', but has internal linkage, create an alias from the unmangled
4142 /// name to the mangled name if possible. People expect to be able to refer
4143 /// to such functions with an unmangled name from inline assembly within the
4144 /// same translation unit.
4145 void CodeGenModule::EmitStaticExternCAliases() {
4146   // Don't do anything if we're generating CUDA device code -- the NVPTX
4147   // assembly target doesn't support aliases.
4148   if (Context.getTargetInfo().getTriple().isNVPTX())
4149     return;
4150   for (auto &I : StaticExternCValues) {
4151     IdentifierInfo *Name = I.first;
4152     llvm::GlobalValue *Val = I.second;
4153     if (Val && !getModule().getNamedValue(Name->getName()))
4154       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4155   }
4156 }
4157 
4158 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4159                                              GlobalDecl &Result) const {
4160   auto Res = Manglings.find(MangledName);
4161   if (Res == Manglings.end())
4162     return false;
4163   Result = Res->getValue();
4164   return true;
4165 }
4166 
4167 /// Emits metadata nodes associating all the global values in the
4168 /// current module with the Decls they came from.  This is useful for
4169 /// projects using IR gen as a subroutine.
4170 ///
4171 /// Since there's currently no way to associate an MDNode directly
4172 /// with an llvm::GlobalValue, we create a global named metadata
4173 /// with the name 'clang.global.decl.ptrs'.
4174 void CodeGenModule::EmitDeclMetadata() {
4175   llvm::NamedMDNode *GlobalMetadata = nullptr;
4176 
4177   for (auto &I : MangledDeclNames) {
4178     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4179     // Some mangled names don't necessarily have an associated GlobalValue
4180     // in this module, e.g. if we mangled it for DebugInfo.
4181     if (Addr)
4182       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4183   }
4184 }
4185 
4186 /// Emits metadata nodes for all the local variables in the current
4187 /// function.
4188 void CodeGenFunction::EmitDeclMetadata() {
4189   if (LocalDeclMap.empty()) return;
4190 
4191   llvm::LLVMContext &Context = getLLVMContext();
4192 
4193   // Find the unique metadata ID for this name.
4194   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4195 
4196   llvm::NamedMDNode *GlobalMetadata = nullptr;
4197 
4198   for (auto &I : LocalDeclMap) {
4199     const Decl *D = I.first;
4200     llvm::Value *Addr = I.second.getPointer();
4201     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4202       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4203       Alloca->setMetadata(
4204           DeclPtrKind, llvm::MDNode::get(
4205                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4206     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4207       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4208       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4209     }
4210   }
4211 }
4212 
4213 void CodeGenModule::EmitVersionIdentMetadata() {
4214   llvm::NamedMDNode *IdentMetadata =
4215     TheModule.getOrInsertNamedMetadata("llvm.ident");
4216   std::string Version = getClangFullVersion();
4217   llvm::LLVMContext &Ctx = TheModule.getContext();
4218 
4219   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4220   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4221 }
4222 
4223 void CodeGenModule::EmitTargetMetadata() {
4224   // Warning, new MangledDeclNames may be appended within this loop.
4225   // We rely on MapVector insertions adding new elements to the end
4226   // of the container.
4227   // FIXME: Move this loop into the one target that needs it, and only
4228   // loop over those declarations for which we couldn't emit the target
4229   // metadata when we emitted the declaration.
4230   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4231     auto Val = *(MangledDeclNames.begin() + I);
4232     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4233     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4234     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4235   }
4236 }
4237 
4238 void CodeGenModule::EmitCoverageFile() {
4239   if (getCodeGenOpts().CoverageDataFile.empty() &&
4240       getCodeGenOpts().CoverageNotesFile.empty())
4241     return;
4242 
4243   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4244   if (!CUNode)
4245     return;
4246 
4247   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4248   llvm::LLVMContext &Ctx = TheModule.getContext();
4249   auto *CoverageDataFile =
4250       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4251   auto *CoverageNotesFile =
4252       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4253   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4254     llvm::MDNode *CU = CUNode->getOperand(i);
4255     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4256     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4257   }
4258 }
4259 
4260 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4261   // Sema has checked that all uuid strings are of the form
4262   // "12345678-1234-1234-1234-1234567890ab".
4263   assert(Uuid.size() == 36);
4264   for (unsigned i = 0; i < 36; ++i) {
4265     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4266     else                                         assert(isHexDigit(Uuid[i]));
4267   }
4268 
4269   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4270   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4271 
4272   llvm::Constant *Field3[8];
4273   for (unsigned Idx = 0; Idx < 8; ++Idx)
4274     Field3[Idx] = llvm::ConstantInt::get(
4275         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4276 
4277   llvm::Constant *Fields[4] = {
4278     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4279     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4280     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4281     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4282   };
4283 
4284   return llvm::ConstantStruct::getAnon(Fields);
4285 }
4286 
4287 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4288                                                        bool ForEH) {
4289   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4290   // FIXME: should we even be calling this method if RTTI is disabled
4291   // and it's not for EH?
4292   if (!ForEH && !getLangOpts().RTTI)
4293     return llvm::Constant::getNullValue(Int8PtrTy);
4294 
4295   if (ForEH && Ty->isObjCObjectPointerType() &&
4296       LangOpts.ObjCRuntime.isGNUFamily())
4297     return ObjCRuntime->GetEHType(Ty);
4298 
4299   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4300 }
4301 
4302 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4303   for (auto RefExpr : D->varlists()) {
4304     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4305     bool PerformInit =
4306         VD->getAnyInitializer() &&
4307         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4308                                                         /*ForRef=*/false);
4309 
4310     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4311     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4312             VD, Addr, RefExpr->getLocStart(), PerformInit))
4313       CXXGlobalInits.push_back(InitFunction);
4314   }
4315 }
4316 
4317 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4318   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4319   if (InternalId)
4320     return InternalId;
4321 
4322   if (isExternallyVisible(T->getLinkage())) {
4323     std::string OutName;
4324     llvm::raw_string_ostream Out(OutName);
4325     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4326 
4327     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4328   } else {
4329     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4330                                            llvm::ArrayRef<llvm::Metadata *>());
4331   }
4332 
4333   return InternalId;
4334 }
4335 
4336 /// Returns whether this module needs the "all-vtables" type identifier.
4337 bool CodeGenModule::NeedAllVtablesTypeId() const {
4338   // Returns true if at least one of vtable-based CFI checkers is enabled and
4339   // is not in the trapping mode.
4340   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4341            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4342           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4343            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4344           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4345            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4346           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4347            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4348 }
4349 
4350 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4351                                           CharUnits Offset,
4352                                           const CXXRecordDecl *RD) {
4353   llvm::Metadata *MD =
4354       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4355   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4356 
4357   if (CodeGenOpts.SanitizeCfiCrossDso)
4358     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4359       VTable->addTypeMetadata(Offset.getQuantity(),
4360                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4361 
4362   if (NeedAllVtablesTypeId()) {
4363     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4364     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4365   }
4366 }
4367 
4368 // Fills in the supplied string map with the set of target features for the
4369 // passed in function.
4370 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4371                                           const FunctionDecl *FD) {
4372   StringRef TargetCPU = Target.getTargetOpts().CPU;
4373   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4374     // If we have a TargetAttr build up the feature map based on that.
4375     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4376 
4377     // Make a copy of the features as passed on the command line into the
4378     // beginning of the additional features from the function to override.
4379     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4380                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4381                             Target.getTargetOpts().FeaturesAsWritten.end());
4382 
4383     if (ParsedAttr.second != "")
4384       TargetCPU = ParsedAttr.second;
4385 
4386     // Now populate the feature map, first with the TargetCPU which is either
4387     // the default or a new one from the target attribute string. Then we'll use
4388     // the passed in features (FeaturesAsWritten) along with the new ones from
4389     // the attribute.
4390     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4391   } else {
4392     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4393                           Target.getTargetOpts().Features);
4394   }
4395 }
4396 
4397 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4398   if (!SanStats)
4399     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4400 
4401   return *SanStats;
4402 }
4403 llvm::Value *
4404 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4405                                                   CodeGenFunction &CGF) {
4406   llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF);
4407   auto SamplerT = getOpenCLRuntime().getSamplerType();
4408   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4409   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4410                                 "__translate_sampler_initializer"),
4411                                 {C});
4412 }
4413