1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CodeGenTBAA.h" 25 #include "TargetInfo.h" 26 #include "clang/AST/ASTContext.h" 27 #include "clang/AST/CharUnits.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclObjC.h" 30 #include "clang/AST/DeclTemplate.h" 31 #include "clang/AST/Mangle.h" 32 #include "clang/AST/RecordLayout.h" 33 #include "clang/AST/RecursiveASTVisitor.h" 34 #include "clang/Basic/Builtins.h" 35 #include "clang/Basic/CharInfo.h" 36 #include "clang/Basic/Diagnostic.h" 37 #include "clang/Basic/Module.h" 38 #include "clang/Basic/SourceManager.h" 39 #include "clang/Basic/TargetInfo.h" 40 #include "clang/Basic/Version.h" 41 #include "clang/Frontend/CodeGenOptions.h" 42 #include "clang/Sema/SemaDiagnostic.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/Triple.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/CallingConv.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/ProfileData/InstrProfReader.h" 52 #include "llvm/Support/ConvertUTF.h" 53 #include "llvm/Support/ErrorHandling.h" 54 55 using namespace clang; 56 using namespace CodeGen; 57 58 static const char AnnotationSection[] = "llvm.metadata"; 59 60 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 61 switch (CGM.getTarget().getCXXABI().getKind()) { 62 case TargetCXXABI::GenericAArch64: 63 case TargetCXXABI::GenericARM: 64 case TargetCXXABI::iOS: 65 case TargetCXXABI::iOS64: 66 case TargetCXXABI::GenericItanium: 67 return CreateItaniumCXXABI(CGM); 68 case TargetCXXABI::Microsoft: 69 return CreateMicrosoftCXXABI(CGM); 70 } 71 72 llvm_unreachable("invalid C++ ABI kind"); 73 } 74 75 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 76 llvm::Module &M, const llvm::DataLayout &TD, 77 DiagnosticsEngine &diags) 78 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 79 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 80 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 81 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 82 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 83 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 84 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 85 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 86 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 87 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 88 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 89 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 90 LifetimeEndFn(nullptr), SanitizerBL(llvm::SpecialCaseList::createOrDie( 91 CGO.SanitizerBlacklistFile)) { 92 93 // Initialize the type cache. 94 llvm::LLVMContext &LLVMContext = M.getContext(); 95 VoidTy = llvm::Type::getVoidTy(LLVMContext); 96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 97 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 100 FloatTy = llvm::Type::getFloatTy(LLVMContext); 101 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 105 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 106 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 107 Int8PtrTy = Int8Ty->getPointerTo(0); 108 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 109 110 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 111 112 if (LangOpts.ObjC1) 113 createObjCRuntime(); 114 if (LangOpts.OpenCL) 115 createOpenCLRuntime(); 116 if (LangOpts.OpenMP) 117 createOpenMPRuntime(); 118 if (LangOpts.CUDA) 119 createCUDARuntime(); 120 121 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 122 if (LangOpts.Sanitize.Thread || 123 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 124 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 125 getCXXABI().getMangleContext()); 126 127 // If debug info or coverage generation is enabled, create the CGDebugInfo 128 // object. 129 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 130 CodeGenOpts.EmitGcovArcs || 131 CodeGenOpts.EmitGcovNotes) 132 DebugInfo = new CGDebugInfo(*this); 133 134 Block.GlobalUniqueCount = 0; 135 136 if (C.getLangOpts().ObjCAutoRefCount) 137 ARCData = new ARCEntrypoints(); 138 RRData = new RREntrypoints(); 139 140 if (!CodeGenOpts.InstrProfileInput.empty()) { 141 if (std::error_code EC = llvm::IndexedInstrProfReader::create( 142 CodeGenOpts.InstrProfileInput, PGOReader)) { 143 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 144 "Could not read profile: %0"); 145 getDiags().Report(DiagID) << EC.message(); 146 } 147 } 148 } 149 150 CodeGenModule::~CodeGenModule() { 151 delete ObjCRuntime; 152 delete OpenCLRuntime; 153 delete OpenMPRuntime; 154 delete CUDARuntime; 155 delete TheTargetCodeGenInfo; 156 delete TBAA; 157 delete DebugInfo; 158 delete ARCData; 159 delete RRData; 160 } 161 162 void CodeGenModule::createObjCRuntime() { 163 // This is just isGNUFamily(), but we want to force implementors of 164 // new ABIs to decide how best to do this. 165 switch (LangOpts.ObjCRuntime.getKind()) { 166 case ObjCRuntime::GNUstep: 167 case ObjCRuntime::GCC: 168 case ObjCRuntime::ObjFW: 169 ObjCRuntime = CreateGNUObjCRuntime(*this); 170 return; 171 172 case ObjCRuntime::FragileMacOSX: 173 case ObjCRuntime::MacOSX: 174 case ObjCRuntime::iOS: 175 ObjCRuntime = CreateMacObjCRuntime(*this); 176 return; 177 } 178 llvm_unreachable("bad runtime kind"); 179 } 180 181 void CodeGenModule::createOpenCLRuntime() { 182 OpenCLRuntime = new CGOpenCLRuntime(*this); 183 } 184 185 void CodeGenModule::createOpenMPRuntime() { 186 OpenMPRuntime = new CGOpenMPRuntime(*this); 187 } 188 189 void CodeGenModule::createCUDARuntime() { 190 CUDARuntime = CreateNVCUDARuntime(*this); 191 } 192 193 void CodeGenModule::applyReplacements() { 194 for (ReplacementsTy::iterator I = Replacements.begin(), 195 E = Replacements.end(); 196 I != E; ++I) { 197 StringRef MangledName = I->first(); 198 llvm::Constant *Replacement = I->second; 199 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 200 if (!Entry) 201 continue; 202 auto *OldF = cast<llvm::Function>(Entry); 203 auto *NewF = dyn_cast<llvm::Function>(Replacement); 204 if (!NewF) { 205 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 206 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 207 } else { 208 auto *CE = cast<llvm::ConstantExpr>(Replacement); 209 assert(CE->getOpcode() == llvm::Instruction::BitCast || 210 CE->getOpcode() == llvm::Instruction::GetElementPtr); 211 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 212 } 213 } 214 215 // Replace old with new, but keep the old order. 216 OldF->replaceAllUsesWith(Replacement); 217 if (NewF) { 218 NewF->removeFromParent(); 219 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 220 } 221 OldF->eraseFromParent(); 222 } 223 } 224 225 // This is only used in aliases that we created and we know they have a 226 // linear structure. 227 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 228 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 229 const llvm::Constant *C = &GA; 230 for (;;) { 231 C = C->stripPointerCasts(); 232 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 233 return GO; 234 // stripPointerCasts will not walk over weak aliases. 235 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 236 if (!GA2) 237 return nullptr; 238 if (!Visited.insert(GA2)) 239 return nullptr; 240 C = GA2->getAliasee(); 241 } 242 } 243 244 void CodeGenModule::checkAliases() { 245 // Check if the constructed aliases are well formed. It is really unfortunate 246 // that we have to do this in CodeGen, but we only construct mangled names 247 // and aliases during codegen. 248 bool Error = false; 249 DiagnosticsEngine &Diags = getDiags(); 250 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 251 E = Aliases.end(); I != E; ++I) { 252 const GlobalDecl &GD = *I; 253 const auto *D = cast<ValueDecl>(GD.getDecl()); 254 const AliasAttr *AA = D->getAttr<AliasAttr>(); 255 StringRef MangledName = getMangledName(GD); 256 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 257 auto *Alias = cast<llvm::GlobalAlias>(Entry); 258 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 259 if (!GV) { 260 Error = true; 261 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 262 } else if (GV->isDeclaration()) { 263 Error = true; 264 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 265 } 266 267 llvm::Constant *Aliasee = Alias->getAliasee(); 268 llvm::GlobalValue *AliaseeGV; 269 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 270 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 271 else 272 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 273 274 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 275 StringRef AliasSection = SA->getName(); 276 if (AliasSection != AliaseeGV->getSection()) 277 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 278 << AliasSection; 279 } 280 281 // We have to handle alias to weak aliases in here. LLVM itself disallows 282 // this since the object semantics would not match the IL one. For 283 // compatibility with gcc we implement it by just pointing the alias 284 // to its aliasee's aliasee. We also warn, since the user is probably 285 // expecting the link to be weak. 286 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 287 if (GA->mayBeOverridden()) { 288 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 289 << GV->getName() << GA->getName(); 290 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 291 GA->getAliasee(), Alias->getType()); 292 Alias->setAliasee(Aliasee); 293 } 294 } 295 } 296 if (!Error) 297 return; 298 299 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 300 E = Aliases.end(); I != E; ++I) { 301 const GlobalDecl &GD = *I; 302 StringRef MangledName = getMangledName(GD); 303 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 304 auto *Alias = cast<llvm::GlobalAlias>(Entry); 305 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 306 Alias->eraseFromParent(); 307 } 308 } 309 310 void CodeGenModule::clear() { 311 DeferredDeclsToEmit.clear(); 312 } 313 314 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 315 StringRef MainFile) { 316 if (!hasDiagnostics()) 317 return; 318 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 319 if (MainFile.empty()) 320 MainFile = "<stdin>"; 321 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 322 } else 323 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 324 << Mismatched; 325 } 326 327 void CodeGenModule::Release() { 328 EmitDeferred(); 329 applyReplacements(); 330 checkAliases(); 331 EmitCXXGlobalInitFunc(); 332 EmitCXXGlobalDtorFunc(); 333 EmitCXXThreadLocalInitFunc(); 334 if (ObjCRuntime) 335 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 336 AddGlobalCtor(ObjCInitFunction); 337 if (getCodeGenOpts().ProfileInstrGenerate) 338 if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this)) 339 AddGlobalCtor(PGOInit, 0); 340 if (PGOReader && PGOStats.hasDiagnostics()) 341 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 342 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 343 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 344 EmitGlobalAnnotations(); 345 EmitStaticExternCAliases(); 346 emitLLVMUsed(); 347 348 if (CodeGenOpts.Autolink && 349 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 350 EmitModuleLinkOptions(); 351 } 352 if (CodeGenOpts.DwarfVersion) 353 // We actually want the latest version when there are conflicts. 354 // We can change from Warning to Latest if such mode is supported. 355 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 356 CodeGenOpts.DwarfVersion); 357 if (DebugInfo) 358 // We support a single version in the linked module. The LLVM 359 // parser will drop debug info with a different version number 360 // (and warn about it, too). 361 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 362 llvm::DEBUG_METADATA_VERSION); 363 364 // We need to record the widths of enums and wchar_t, so that we can generate 365 // the correct build attributes in the ARM backend. 366 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 367 if ( Arch == llvm::Triple::arm 368 || Arch == llvm::Triple::armeb 369 || Arch == llvm::Triple::thumb 370 || Arch == llvm::Triple::thumbeb) { 371 // Width of wchar_t in bytes 372 uint64_t WCharWidth = 373 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 374 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 375 376 // The minimum width of an enum in bytes 377 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 378 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 379 } 380 381 SimplifyPersonality(); 382 383 if (getCodeGenOpts().EmitDeclMetadata) 384 EmitDeclMetadata(); 385 386 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 387 EmitCoverageFile(); 388 389 if (DebugInfo) 390 DebugInfo->finalize(); 391 392 EmitVersionIdentMetadata(); 393 394 EmitTargetMetadata(); 395 } 396 397 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 398 // Make sure that this type is translated. 399 Types.UpdateCompletedType(TD); 400 } 401 402 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 403 if (!TBAA) 404 return nullptr; 405 return TBAA->getTBAAInfo(QTy); 406 } 407 408 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 409 if (!TBAA) 410 return nullptr; 411 return TBAA->getTBAAInfoForVTablePtr(); 412 } 413 414 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 415 if (!TBAA) 416 return nullptr; 417 return TBAA->getTBAAStructInfo(QTy); 418 } 419 420 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 421 if (!TBAA) 422 return nullptr; 423 return TBAA->getTBAAStructTypeInfo(QTy); 424 } 425 426 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 427 llvm::MDNode *AccessN, 428 uint64_t O) { 429 if (!TBAA) 430 return nullptr; 431 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 432 } 433 434 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 435 /// and struct-path aware TBAA, the tag has the same format: 436 /// base type, access type and offset. 437 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 438 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 439 llvm::MDNode *TBAAInfo, 440 bool ConvertTypeToTag) { 441 if (ConvertTypeToTag && TBAA) 442 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 443 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 444 else 445 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 446 } 447 448 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 449 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 450 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 451 } 452 453 /// ErrorUnsupported - Print out an error that codegen doesn't support the 454 /// specified stmt yet. 455 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 456 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 457 "cannot compile this %0 yet"); 458 std::string Msg = Type; 459 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 460 << Msg << S->getSourceRange(); 461 } 462 463 /// ErrorUnsupported - Print out an error that codegen doesn't support the 464 /// specified decl yet. 465 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 466 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 467 "cannot compile this %0 yet"); 468 std::string Msg = Type; 469 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 470 } 471 472 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 473 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 474 } 475 476 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 477 const NamedDecl *D) const { 478 // Internal definitions always have default visibility. 479 if (GV->hasLocalLinkage()) { 480 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 481 return; 482 } 483 484 // Set visibility for definitions. 485 LinkageInfo LV = D->getLinkageAndVisibility(); 486 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 487 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 488 } 489 490 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 491 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 492 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 493 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 494 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 495 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 496 } 497 498 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 499 CodeGenOptions::TLSModel M) { 500 switch (M) { 501 case CodeGenOptions::GeneralDynamicTLSModel: 502 return llvm::GlobalVariable::GeneralDynamicTLSModel; 503 case CodeGenOptions::LocalDynamicTLSModel: 504 return llvm::GlobalVariable::LocalDynamicTLSModel; 505 case CodeGenOptions::InitialExecTLSModel: 506 return llvm::GlobalVariable::InitialExecTLSModel; 507 case CodeGenOptions::LocalExecTLSModel: 508 return llvm::GlobalVariable::LocalExecTLSModel; 509 } 510 llvm_unreachable("Invalid TLS model!"); 511 } 512 513 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 514 const VarDecl &D) const { 515 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 516 517 llvm::GlobalVariable::ThreadLocalMode TLM; 518 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 519 520 // Override the TLS model if it is explicitly specified. 521 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 522 TLM = GetLLVMTLSModel(Attr->getModel()); 523 } 524 525 GV->setThreadLocalMode(TLM); 526 } 527 528 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 529 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 530 if (!FoundStr.empty()) 531 return FoundStr; 532 533 const auto *ND = cast<NamedDecl>(GD.getDecl()); 534 SmallString<256> Buffer; 535 StringRef Str; 536 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 537 llvm::raw_svector_ostream Out(Buffer); 538 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 539 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 540 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 541 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 542 else 543 getCXXABI().getMangleContext().mangleName(ND, Out); 544 Str = Out.str(); 545 } else { 546 IdentifierInfo *II = ND->getIdentifier(); 547 assert(II && "Attempt to mangle unnamed decl."); 548 Str = II->getName(); 549 } 550 551 auto &Mangled = Manglings.GetOrCreateValue(Str); 552 Mangled.second = GD; 553 return FoundStr = Mangled.first(); 554 } 555 556 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 557 const BlockDecl *BD) { 558 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 559 const Decl *D = GD.getDecl(); 560 561 SmallString<256> Buffer; 562 llvm::raw_svector_ostream Out(Buffer); 563 if (!D) 564 MangleCtx.mangleGlobalBlock(BD, 565 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 566 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 567 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 568 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 569 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 570 else 571 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 572 573 auto &Mangled = Manglings.GetOrCreateValue(Out.str()); 574 Mangled.second = BD; 575 return Mangled.first(); 576 } 577 578 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 579 return getModule().getNamedValue(Name); 580 } 581 582 /// AddGlobalCtor - Add a function to the list that will be called before 583 /// main() runs. 584 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 585 llvm::Constant *AssociatedData) { 586 // FIXME: Type coercion of void()* types. 587 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 588 } 589 590 /// AddGlobalDtor - Add a function to the list that will be called 591 /// when the module is unloaded. 592 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 593 // FIXME: Type coercion of void()* types. 594 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 595 } 596 597 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 598 // Ctor function type is void()*. 599 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 600 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 601 602 // Get the type of a ctor entry, { i32, void ()*, i8* }. 603 llvm::StructType *CtorStructTy = llvm::StructType::get( 604 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, NULL); 605 606 // Construct the constructor and destructor arrays. 607 SmallVector<llvm::Constant*, 8> Ctors; 608 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 609 llvm::Constant *S[] = { 610 llvm::ConstantInt::get(Int32Ty, I->Priority, false), 611 llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy), 612 (I->AssociatedData 613 ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy) 614 : llvm::Constant::getNullValue(VoidPtrTy)) 615 }; 616 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 617 } 618 619 if (!Ctors.empty()) { 620 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 621 new llvm::GlobalVariable(TheModule, AT, false, 622 llvm::GlobalValue::AppendingLinkage, 623 llvm::ConstantArray::get(AT, Ctors), 624 GlobalName); 625 } 626 } 627 628 llvm::GlobalValue::LinkageTypes 629 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 630 const auto *D = cast<FunctionDecl>(GD.getDecl()); 631 632 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 633 634 if (isa<CXXDestructorDecl>(D) && 635 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 636 GD.getDtorType())) { 637 // Destructor variants in the Microsoft C++ ABI are always internal or 638 // linkonce_odr thunks emitted on an as-needed basis. 639 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 640 : llvm::GlobalValue::LinkOnceODRLinkage; 641 } 642 643 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 644 } 645 646 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 647 llvm::Function *F) { 648 setNonAliasAttributes(D, F); 649 } 650 651 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 652 const CGFunctionInfo &Info, 653 llvm::Function *F) { 654 unsigned CallingConv; 655 AttributeListType AttributeList; 656 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 657 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 658 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 659 } 660 661 /// Determines whether the language options require us to model 662 /// unwind exceptions. We treat -fexceptions as mandating this 663 /// except under the fragile ObjC ABI with only ObjC exceptions 664 /// enabled. This means, for example, that C with -fexceptions 665 /// enables this. 666 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 667 // If exceptions are completely disabled, obviously this is false. 668 if (!LangOpts.Exceptions) return false; 669 670 // If C++ exceptions are enabled, this is true. 671 if (LangOpts.CXXExceptions) return true; 672 673 // If ObjC exceptions are enabled, this depends on the ABI. 674 if (LangOpts.ObjCExceptions) { 675 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 676 } 677 678 return true; 679 } 680 681 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 682 llvm::Function *F) { 683 llvm::AttrBuilder B; 684 685 if (CodeGenOpts.UnwindTables) 686 B.addAttribute(llvm::Attribute::UWTable); 687 688 if (!hasUnwindExceptions(LangOpts)) 689 B.addAttribute(llvm::Attribute::NoUnwind); 690 691 if (D->hasAttr<NakedAttr>()) { 692 // Naked implies noinline: we should not be inlining such functions. 693 B.addAttribute(llvm::Attribute::Naked); 694 B.addAttribute(llvm::Attribute::NoInline); 695 } else if (D->hasAttr<OptimizeNoneAttr>()) { 696 // OptimizeNone implies noinline; we should not be inlining such functions. 697 B.addAttribute(llvm::Attribute::OptimizeNone); 698 B.addAttribute(llvm::Attribute::NoInline); 699 } else if (D->hasAttr<NoDuplicateAttr>()) { 700 B.addAttribute(llvm::Attribute::NoDuplicate); 701 } else if (D->hasAttr<NoInlineAttr>()) { 702 B.addAttribute(llvm::Attribute::NoInline); 703 } else if (D->hasAttr<AlwaysInlineAttr>() && 704 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 705 llvm::Attribute::NoInline)) { 706 // (noinline wins over always_inline, and we can't specify both in IR) 707 B.addAttribute(llvm::Attribute::AlwaysInline); 708 } 709 710 if (D->hasAttr<ColdAttr>()) { 711 B.addAttribute(llvm::Attribute::OptimizeForSize); 712 B.addAttribute(llvm::Attribute::Cold); 713 } 714 715 if (D->hasAttr<MinSizeAttr>()) 716 B.addAttribute(llvm::Attribute::MinSize); 717 718 if (D->hasAttr<OptimizeNoneAttr>()) { 719 // OptimizeNone wins over OptimizeForSize and MinSize. 720 B.removeAttribute(llvm::Attribute::OptimizeForSize); 721 B.removeAttribute(llvm::Attribute::MinSize); 722 } 723 724 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 725 B.addAttribute(llvm::Attribute::StackProtect); 726 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 727 B.addAttribute(llvm::Attribute::StackProtectStrong); 728 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 729 B.addAttribute(llvm::Attribute::StackProtectReq); 730 731 // Add sanitizer attributes if function is not blacklisted. 732 if (!SanitizerBL.isIn(*F)) { 733 // When AddressSanitizer is enabled, set SanitizeAddress attribute 734 // unless __attribute__((no_sanitize_address)) is used. 735 if (LangOpts.Sanitize.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 736 B.addAttribute(llvm::Attribute::SanitizeAddress); 737 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 738 if (LangOpts.Sanitize.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) 739 B.addAttribute(llvm::Attribute::SanitizeThread); 740 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 741 if (LangOpts.Sanitize.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 742 B.addAttribute(llvm::Attribute::SanitizeMemory); 743 } 744 745 F->addAttributes(llvm::AttributeSet::FunctionIndex, 746 llvm::AttributeSet::get( 747 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 748 749 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 750 F->setUnnamedAddr(true); 751 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 752 if (MD->isVirtual()) 753 F->setUnnamedAddr(true); 754 755 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 756 if (alignment) 757 F->setAlignment(alignment); 758 759 // C++ ABI requires 2-byte alignment for member functions. 760 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 761 F->setAlignment(2); 762 } 763 764 void CodeGenModule::SetCommonAttributes(const Decl *D, 765 llvm::GlobalValue *GV) { 766 if (const auto *ND = dyn_cast<NamedDecl>(D)) 767 setGlobalVisibility(GV, ND); 768 else 769 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 770 771 if (D->hasAttr<UsedAttr>()) 772 addUsedGlobal(GV); 773 } 774 775 void CodeGenModule::setNonAliasAttributes(const Decl *D, 776 llvm::GlobalObject *GO) { 777 SetCommonAttributes(D, GO); 778 779 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 780 GO->setSection(SA->getName()); 781 782 getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this); 783 } 784 785 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 786 llvm::Function *F, 787 const CGFunctionInfo &FI) { 788 SetLLVMFunctionAttributes(D, FI, F); 789 SetLLVMFunctionAttributesForDefinition(D, F); 790 791 F->setLinkage(llvm::Function::InternalLinkage); 792 793 setNonAliasAttributes(D, F); 794 } 795 796 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 797 const NamedDecl *ND) { 798 // Set linkage and visibility in case we never see a definition. 799 LinkageInfo LV = ND->getLinkageAndVisibility(); 800 if (LV.getLinkage() != ExternalLinkage) { 801 // Don't set internal linkage on declarations. 802 } else { 803 if (ND->hasAttr<DLLImportAttr>()) { 804 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 805 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 806 } else if (ND->hasAttr<DLLExportAttr>()) { 807 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 808 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 809 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 810 // "extern_weak" is overloaded in LLVM; we probably should have 811 // separate linkage types for this. 812 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 813 } 814 815 // Set visibility on a declaration only if it's explicit. 816 if (LV.isVisibilityExplicit()) 817 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 818 } 819 } 820 821 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 822 llvm::Function *F, 823 bool IsIncompleteFunction) { 824 if (unsigned IID = F->getIntrinsicID()) { 825 // If this is an intrinsic function, set the function's attributes 826 // to the intrinsic's attributes. 827 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 828 (llvm::Intrinsic::ID)IID)); 829 return; 830 } 831 832 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 833 834 if (!IsIncompleteFunction) 835 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 836 837 // Add the Returned attribute for "this", except for iOS 5 and earlier 838 // where substantial code, including the libstdc++ dylib, was compiled with 839 // GCC and does not actually return "this". 840 if (getCXXABI().HasThisReturn(GD) && 841 !(getTarget().getTriple().isiOS() && 842 getTarget().getTriple().isOSVersionLT(6))) { 843 assert(!F->arg_empty() && 844 F->arg_begin()->getType() 845 ->canLosslesslyBitCastTo(F->getReturnType()) && 846 "unexpected this return"); 847 F->addAttribute(1, llvm::Attribute::Returned); 848 } 849 850 // Only a few attributes are set on declarations; these may later be 851 // overridden by a definition. 852 853 setLinkageAndVisibilityForGV(F, FD); 854 855 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 856 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 857 // Don't dllexport/import destructor thunks. 858 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 859 } 860 } 861 862 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 863 F->setSection(SA->getName()); 864 865 // A replaceable global allocation function does not act like a builtin by 866 // default, only if it is invoked by a new-expression or delete-expression. 867 if (FD->isReplaceableGlobalAllocationFunction()) 868 F->addAttribute(llvm::AttributeSet::FunctionIndex, 869 llvm::Attribute::NoBuiltin); 870 } 871 872 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 873 assert(!GV->isDeclaration() && 874 "Only globals with definition can force usage."); 875 LLVMUsed.push_back(GV); 876 } 877 878 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 879 assert(!GV->isDeclaration() && 880 "Only globals with definition can force usage."); 881 LLVMCompilerUsed.push_back(GV); 882 } 883 884 static void emitUsed(CodeGenModule &CGM, StringRef Name, 885 std::vector<llvm::WeakVH> &List) { 886 // Don't create llvm.used if there is no need. 887 if (List.empty()) 888 return; 889 890 // Convert List to what ConstantArray needs. 891 SmallVector<llvm::Constant*, 8> UsedArray; 892 UsedArray.resize(List.size()); 893 for (unsigned i = 0, e = List.size(); i != e; ++i) { 894 UsedArray[i] = 895 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 896 CGM.Int8PtrTy); 897 } 898 899 if (UsedArray.empty()) 900 return; 901 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 902 903 auto *GV = new llvm::GlobalVariable( 904 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 905 llvm::ConstantArray::get(ATy, UsedArray), Name); 906 907 GV->setSection("llvm.metadata"); 908 } 909 910 void CodeGenModule::emitLLVMUsed() { 911 emitUsed(*this, "llvm.used", LLVMUsed); 912 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 913 } 914 915 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 916 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 917 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 918 } 919 920 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 921 llvm::SmallString<32> Opt; 922 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 923 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 924 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 925 } 926 927 void CodeGenModule::AddDependentLib(StringRef Lib) { 928 llvm::SmallString<24> Opt; 929 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 930 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 931 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 932 } 933 934 /// \brief Add link options implied by the given module, including modules 935 /// it depends on, using a postorder walk. 936 static void addLinkOptionsPostorder(CodeGenModule &CGM, 937 Module *Mod, 938 SmallVectorImpl<llvm::Value *> &Metadata, 939 llvm::SmallPtrSet<Module *, 16> &Visited) { 940 // Import this module's parent. 941 if (Mod->Parent && Visited.insert(Mod->Parent)) { 942 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 943 } 944 945 // Import this module's dependencies. 946 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 947 if (Visited.insert(Mod->Imports[I-1])) 948 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 949 } 950 951 // Add linker options to link against the libraries/frameworks 952 // described by this module. 953 llvm::LLVMContext &Context = CGM.getLLVMContext(); 954 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 955 // Link against a framework. Frameworks are currently Darwin only, so we 956 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 957 if (Mod->LinkLibraries[I-1].IsFramework) { 958 llvm::Value *Args[2] = { 959 llvm::MDString::get(Context, "-framework"), 960 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 961 }; 962 963 Metadata.push_back(llvm::MDNode::get(Context, Args)); 964 continue; 965 } 966 967 // Link against a library. 968 llvm::SmallString<24> Opt; 969 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 970 Mod->LinkLibraries[I-1].Library, Opt); 971 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 972 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 973 } 974 } 975 976 void CodeGenModule::EmitModuleLinkOptions() { 977 // Collect the set of all of the modules we want to visit to emit link 978 // options, which is essentially the imported modules and all of their 979 // non-explicit child modules. 980 llvm::SetVector<clang::Module *> LinkModules; 981 llvm::SmallPtrSet<clang::Module *, 16> Visited; 982 SmallVector<clang::Module *, 16> Stack; 983 984 // Seed the stack with imported modules. 985 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 986 MEnd = ImportedModules.end(); 987 M != MEnd; ++M) { 988 if (Visited.insert(*M)) 989 Stack.push_back(*M); 990 } 991 992 // Find all of the modules to import, making a little effort to prune 993 // non-leaf modules. 994 while (!Stack.empty()) { 995 clang::Module *Mod = Stack.pop_back_val(); 996 997 bool AnyChildren = false; 998 999 // Visit the submodules of this module. 1000 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1001 SubEnd = Mod->submodule_end(); 1002 Sub != SubEnd; ++Sub) { 1003 // Skip explicit children; they need to be explicitly imported to be 1004 // linked against. 1005 if ((*Sub)->IsExplicit) 1006 continue; 1007 1008 if (Visited.insert(*Sub)) { 1009 Stack.push_back(*Sub); 1010 AnyChildren = true; 1011 } 1012 } 1013 1014 // We didn't find any children, so add this module to the list of 1015 // modules to link against. 1016 if (!AnyChildren) { 1017 LinkModules.insert(Mod); 1018 } 1019 } 1020 1021 // Add link options for all of the imported modules in reverse topological 1022 // order. We don't do anything to try to order import link flags with respect 1023 // to linker options inserted by things like #pragma comment(). 1024 SmallVector<llvm::Value *, 16> MetadataArgs; 1025 Visited.clear(); 1026 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 1027 MEnd = LinkModules.end(); 1028 M != MEnd; ++M) { 1029 if (Visited.insert(*M)) 1030 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 1031 } 1032 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1033 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1034 1035 // Add the linker options metadata flag. 1036 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1037 llvm::MDNode::get(getLLVMContext(), 1038 LinkerOptionsMetadata)); 1039 } 1040 1041 void CodeGenModule::EmitDeferred() { 1042 // Emit code for any potentially referenced deferred decls. Since a 1043 // previously unused static decl may become used during the generation of code 1044 // for a static function, iterate until no changes are made. 1045 1046 while (true) { 1047 if (!DeferredVTables.empty()) { 1048 EmitDeferredVTables(); 1049 1050 // Emitting a v-table doesn't directly cause more v-tables to 1051 // become deferred, although it can cause functions to be 1052 // emitted that then need those v-tables. 1053 assert(DeferredVTables.empty()); 1054 } 1055 1056 // Stop if we're out of both deferred v-tables and deferred declarations. 1057 if (DeferredDeclsToEmit.empty()) break; 1058 1059 DeferredGlobal &G = DeferredDeclsToEmit.back(); 1060 GlobalDecl D = G.GD; 1061 llvm::GlobalValue *GV = G.GV; 1062 DeferredDeclsToEmit.pop_back(); 1063 1064 assert(GV == GetGlobalValue(getMangledName(D))); 1065 // Check to see if we've already emitted this. This is necessary 1066 // for a couple of reasons: first, decls can end up in the 1067 // deferred-decls queue multiple times, and second, decls can end 1068 // up with definitions in unusual ways (e.g. by an extern inline 1069 // function acquiring a strong function redefinition). Just 1070 // ignore these cases. 1071 if(!GV->isDeclaration()) 1072 continue; 1073 1074 // Otherwise, emit the definition and move on to the next one. 1075 EmitGlobalDefinition(D, GV); 1076 } 1077 } 1078 1079 void CodeGenModule::EmitGlobalAnnotations() { 1080 if (Annotations.empty()) 1081 return; 1082 1083 // Create a new global variable for the ConstantStruct in the Module. 1084 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1085 Annotations[0]->getType(), Annotations.size()), Annotations); 1086 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1087 llvm::GlobalValue::AppendingLinkage, 1088 Array, "llvm.global.annotations"); 1089 gv->setSection(AnnotationSection); 1090 } 1091 1092 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1093 llvm::Constant *&AStr = AnnotationStrings[Str]; 1094 if (AStr) 1095 return AStr; 1096 1097 // Not found yet, create a new global. 1098 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1099 auto *gv = 1100 new llvm::GlobalVariable(getModule(), s->getType(), true, 1101 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1102 gv->setSection(AnnotationSection); 1103 gv->setUnnamedAddr(true); 1104 AStr = gv; 1105 return gv; 1106 } 1107 1108 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1109 SourceManager &SM = getContext().getSourceManager(); 1110 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1111 if (PLoc.isValid()) 1112 return EmitAnnotationString(PLoc.getFilename()); 1113 return EmitAnnotationString(SM.getBufferName(Loc)); 1114 } 1115 1116 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1117 SourceManager &SM = getContext().getSourceManager(); 1118 PresumedLoc PLoc = SM.getPresumedLoc(L); 1119 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1120 SM.getExpansionLineNumber(L); 1121 return llvm::ConstantInt::get(Int32Ty, LineNo); 1122 } 1123 1124 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1125 const AnnotateAttr *AA, 1126 SourceLocation L) { 1127 // Get the globals for file name, annotation, and the line number. 1128 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1129 *UnitGV = EmitAnnotationUnit(L), 1130 *LineNoCst = EmitAnnotationLineNo(L); 1131 1132 // Create the ConstantStruct for the global annotation. 1133 llvm::Constant *Fields[4] = { 1134 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1135 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1136 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1137 LineNoCst 1138 }; 1139 return llvm::ConstantStruct::getAnon(Fields); 1140 } 1141 1142 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1143 llvm::GlobalValue *GV) { 1144 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1145 // Get the struct elements for these annotations. 1146 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1147 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1148 } 1149 1150 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1151 // Never defer when EmitAllDecls is specified. 1152 if (LangOpts.EmitAllDecls) 1153 return false; 1154 1155 return !getContext().DeclMustBeEmitted(Global); 1156 } 1157 1158 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1159 const CXXUuidofExpr* E) { 1160 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1161 // well-formed. 1162 StringRef Uuid = E->getUuidAsStringRef(Context); 1163 std::string Name = "_GUID_" + Uuid.lower(); 1164 std::replace(Name.begin(), Name.end(), '-', '_'); 1165 1166 // Look for an existing global. 1167 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1168 return GV; 1169 1170 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1171 assert(Init && "failed to initialize as constant"); 1172 1173 auto *GV = new llvm::GlobalVariable( 1174 getModule(), Init->getType(), 1175 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1176 return GV; 1177 } 1178 1179 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1180 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1181 assert(AA && "No alias?"); 1182 1183 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1184 1185 // See if there is already something with the target's name in the module. 1186 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1187 if (Entry) { 1188 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1189 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1190 } 1191 1192 llvm::Constant *Aliasee; 1193 if (isa<llvm::FunctionType>(DeclTy)) 1194 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1195 GlobalDecl(cast<FunctionDecl>(VD)), 1196 /*ForVTable=*/false); 1197 else 1198 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1199 llvm::PointerType::getUnqual(DeclTy), 1200 nullptr); 1201 1202 auto *F = cast<llvm::GlobalValue>(Aliasee); 1203 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1204 WeakRefReferences.insert(F); 1205 1206 return Aliasee; 1207 } 1208 1209 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1210 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1211 1212 // Weak references don't produce any output by themselves. 1213 if (Global->hasAttr<WeakRefAttr>()) 1214 return; 1215 1216 // If this is an alias definition (which otherwise looks like a declaration) 1217 // emit it now. 1218 if (Global->hasAttr<AliasAttr>()) 1219 return EmitAliasDefinition(GD); 1220 1221 // If this is CUDA, be selective about which declarations we emit. 1222 if (LangOpts.CUDA) { 1223 if (CodeGenOpts.CUDAIsDevice) { 1224 if (!Global->hasAttr<CUDADeviceAttr>() && 1225 !Global->hasAttr<CUDAGlobalAttr>() && 1226 !Global->hasAttr<CUDAConstantAttr>() && 1227 !Global->hasAttr<CUDASharedAttr>()) 1228 return; 1229 } else { 1230 if (!Global->hasAttr<CUDAHostAttr>() && ( 1231 Global->hasAttr<CUDADeviceAttr>() || 1232 Global->hasAttr<CUDAConstantAttr>() || 1233 Global->hasAttr<CUDASharedAttr>())) 1234 return; 1235 } 1236 } 1237 1238 // Ignore declarations, they will be emitted on their first use. 1239 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1240 // Forward declarations are emitted lazily on first use. 1241 if (!FD->doesThisDeclarationHaveABody()) { 1242 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1243 return; 1244 1245 StringRef MangledName = getMangledName(GD); 1246 1247 // Compute the function info and LLVM type. 1248 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1249 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1250 1251 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1252 /*DontDefer=*/false); 1253 return; 1254 } 1255 } else { 1256 const auto *VD = cast<VarDecl>(Global); 1257 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1258 1259 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1260 return; 1261 } 1262 1263 // Defer code generation when possible if this is a static definition, inline 1264 // function etc. These we only want to emit if they are used. 1265 if (!MayDeferGeneration(Global)) { 1266 // Emit the definition if it can't be deferred. 1267 EmitGlobalDefinition(GD); 1268 return; 1269 } 1270 1271 // If we're deferring emission of a C++ variable with an 1272 // initializer, remember the order in which it appeared in the file. 1273 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1274 cast<VarDecl>(Global)->hasInit()) { 1275 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1276 CXXGlobalInits.push_back(nullptr); 1277 } 1278 1279 // If the value has already been used, add it directly to the 1280 // DeferredDeclsToEmit list. 1281 StringRef MangledName = getMangledName(GD); 1282 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1283 addDeferredDeclToEmit(GV, GD); 1284 else { 1285 // Otherwise, remember that we saw a deferred decl with this name. The 1286 // first use of the mangled name will cause it to move into 1287 // DeferredDeclsToEmit. 1288 DeferredDecls[MangledName] = GD; 1289 } 1290 } 1291 1292 namespace { 1293 struct FunctionIsDirectlyRecursive : 1294 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1295 const StringRef Name; 1296 const Builtin::Context &BI; 1297 bool Result; 1298 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1299 Name(N), BI(C), Result(false) { 1300 } 1301 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1302 1303 bool TraverseCallExpr(CallExpr *E) { 1304 const FunctionDecl *FD = E->getDirectCallee(); 1305 if (!FD) 1306 return true; 1307 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1308 if (Attr && Name == Attr->getLabel()) { 1309 Result = true; 1310 return false; 1311 } 1312 unsigned BuiltinID = FD->getBuiltinID(); 1313 if (!BuiltinID) 1314 return true; 1315 StringRef BuiltinName = BI.GetName(BuiltinID); 1316 if (BuiltinName.startswith("__builtin_") && 1317 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1318 Result = true; 1319 return false; 1320 } 1321 return true; 1322 } 1323 }; 1324 } 1325 1326 // isTriviallyRecursive - Check if this function calls another 1327 // decl that, because of the asm attribute or the other decl being a builtin, 1328 // ends up pointing to itself. 1329 bool 1330 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1331 StringRef Name; 1332 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1333 // asm labels are a special kind of mangling we have to support. 1334 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1335 if (!Attr) 1336 return false; 1337 Name = Attr->getLabel(); 1338 } else { 1339 Name = FD->getName(); 1340 } 1341 1342 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1343 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1344 return Walker.Result; 1345 } 1346 1347 bool 1348 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1349 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1350 return true; 1351 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1352 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1353 return false; 1354 // PR9614. Avoid cases where the source code is lying to us. An available 1355 // externally function should have an equivalent function somewhere else, 1356 // but a function that calls itself is clearly not equivalent to the real 1357 // implementation. 1358 // This happens in glibc's btowc and in some configure checks. 1359 return !isTriviallyRecursive(F); 1360 } 1361 1362 /// If the type for the method's class was generated by 1363 /// CGDebugInfo::createContextChain(), the cache contains only a 1364 /// limited DIType without any declarations. Since EmitFunctionStart() 1365 /// needs to find the canonical declaration for each method, we need 1366 /// to construct the complete type prior to emitting the method. 1367 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1368 if (!D->isInstance()) 1369 return; 1370 1371 if (CGDebugInfo *DI = getModuleDebugInfo()) 1372 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1373 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1374 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1375 } 1376 } 1377 1378 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1379 const auto *D = cast<ValueDecl>(GD.getDecl()); 1380 1381 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1382 Context.getSourceManager(), 1383 "Generating code for declaration"); 1384 1385 if (isa<FunctionDecl>(D)) { 1386 // At -O0, don't generate IR for functions with available_externally 1387 // linkage. 1388 if (!shouldEmitFunction(GD)) 1389 return; 1390 1391 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1392 CompleteDIClassType(Method); 1393 // Make sure to emit the definition(s) before we emit the thunks. 1394 // This is necessary for the generation of certain thunks. 1395 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1396 EmitCXXConstructor(CD, GD.getCtorType()); 1397 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1398 EmitCXXDestructor(DD, GD.getDtorType()); 1399 else 1400 EmitGlobalFunctionDefinition(GD, GV); 1401 1402 if (Method->isVirtual()) 1403 getVTables().EmitThunks(GD); 1404 1405 return; 1406 } 1407 1408 return EmitGlobalFunctionDefinition(GD, GV); 1409 } 1410 1411 if (const auto *VD = dyn_cast<VarDecl>(D)) 1412 return EmitGlobalVarDefinition(VD); 1413 1414 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1415 } 1416 1417 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1418 /// module, create and return an llvm Function with the specified type. If there 1419 /// is something in the module with the specified name, return it potentially 1420 /// bitcasted to the right type. 1421 /// 1422 /// If D is non-null, it specifies a decl that correspond to this. This is used 1423 /// to set the attributes on the function when it is first created. 1424 llvm::Constant * 1425 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1426 llvm::Type *Ty, 1427 GlobalDecl GD, bool ForVTable, 1428 bool DontDefer, 1429 llvm::AttributeSet ExtraAttrs) { 1430 const Decl *D = GD.getDecl(); 1431 1432 // Lookup the entry, lazily creating it if necessary. 1433 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1434 if (Entry) { 1435 if (WeakRefReferences.erase(Entry)) { 1436 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1437 if (FD && !FD->hasAttr<WeakAttr>()) 1438 Entry->setLinkage(llvm::Function::ExternalLinkage); 1439 } 1440 1441 if (Entry->getType()->getElementType() == Ty) 1442 return Entry; 1443 1444 // Make sure the result is of the correct type. 1445 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1446 } 1447 1448 // This function doesn't have a complete type (for example, the return 1449 // type is an incomplete struct). Use a fake type instead, and make 1450 // sure not to try to set attributes. 1451 bool IsIncompleteFunction = false; 1452 1453 llvm::FunctionType *FTy; 1454 if (isa<llvm::FunctionType>(Ty)) { 1455 FTy = cast<llvm::FunctionType>(Ty); 1456 } else { 1457 FTy = llvm::FunctionType::get(VoidTy, false); 1458 IsIncompleteFunction = true; 1459 } 1460 1461 llvm::Function *F = llvm::Function::Create(FTy, 1462 llvm::Function::ExternalLinkage, 1463 MangledName, &getModule()); 1464 assert(F->getName() == MangledName && "name was uniqued!"); 1465 if (D) 1466 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1467 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1468 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1469 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1470 llvm::AttributeSet::get(VMContext, 1471 llvm::AttributeSet::FunctionIndex, 1472 B)); 1473 } 1474 1475 if (!DontDefer) { 1476 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1477 // each other bottoming out with the base dtor. Therefore we emit non-base 1478 // dtors on usage, even if there is no dtor definition in the TU. 1479 if (D && isa<CXXDestructorDecl>(D) && 1480 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1481 GD.getDtorType())) 1482 addDeferredDeclToEmit(F, GD); 1483 1484 // This is the first use or definition of a mangled name. If there is a 1485 // deferred decl with this name, remember that we need to emit it at the end 1486 // of the file. 1487 auto DDI = DeferredDecls.find(MangledName); 1488 if (DDI != DeferredDecls.end()) { 1489 // Move the potentially referenced deferred decl to the 1490 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1491 // don't need it anymore). 1492 addDeferredDeclToEmit(F, DDI->second); 1493 DeferredDecls.erase(DDI); 1494 1495 // Otherwise, if this is a sized deallocation function, emit a weak 1496 // definition 1497 // for it at the end of the translation unit. 1498 } else if (D && cast<FunctionDecl>(D) 1499 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1500 addDeferredDeclToEmit(F, GD); 1501 1502 // Otherwise, there are cases we have to worry about where we're 1503 // using a declaration for which we must emit a definition but where 1504 // we might not find a top-level definition: 1505 // - member functions defined inline in their classes 1506 // - friend functions defined inline in some class 1507 // - special member functions with implicit definitions 1508 // If we ever change our AST traversal to walk into class methods, 1509 // this will be unnecessary. 1510 // 1511 // We also don't emit a definition for a function if it's going to be an 1512 // entry 1513 // in a vtable, unless it's already marked as used. 1514 } else if (getLangOpts().CPlusPlus && D) { 1515 // Look for a declaration that's lexically in a record. 1516 const auto *FD = cast<FunctionDecl>(D); 1517 FD = FD->getMostRecentDecl(); 1518 do { 1519 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1520 if (FD->isImplicit() && !ForVTable) { 1521 assert(FD->isUsed() && 1522 "Sema didn't mark implicit function as used!"); 1523 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1524 break; 1525 } else if (FD->doesThisDeclarationHaveABody()) { 1526 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1527 break; 1528 } 1529 } 1530 FD = FD->getPreviousDecl(); 1531 } while (FD); 1532 } 1533 } 1534 1535 // Make sure the result is of the requested type. 1536 if (!IsIncompleteFunction) { 1537 assert(F->getType()->getElementType() == Ty); 1538 return F; 1539 } 1540 1541 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1542 return llvm::ConstantExpr::getBitCast(F, PTy); 1543 } 1544 1545 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1546 /// non-null, then this function will use the specified type if it has to 1547 /// create it (this occurs when we see a definition of the function). 1548 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1549 llvm::Type *Ty, 1550 bool ForVTable, 1551 bool DontDefer) { 1552 // If there was no specific requested type, just convert it now. 1553 if (!Ty) 1554 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1555 1556 StringRef MangledName = getMangledName(GD); 1557 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1558 } 1559 1560 /// CreateRuntimeFunction - Create a new runtime function with the specified 1561 /// type and name. 1562 llvm::Constant * 1563 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1564 StringRef Name, 1565 llvm::AttributeSet ExtraAttrs) { 1566 llvm::Constant *C = 1567 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1568 /*DontDefer=*/false, ExtraAttrs); 1569 if (auto *F = dyn_cast<llvm::Function>(C)) 1570 if (F->empty()) 1571 F->setCallingConv(getRuntimeCC()); 1572 return C; 1573 } 1574 1575 /// isTypeConstant - Determine whether an object of this type can be emitted 1576 /// as a constant. 1577 /// 1578 /// If ExcludeCtor is true, the duration when the object's constructor runs 1579 /// will not be considered. The caller will need to verify that the object is 1580 /// not written to during its construction. 1581 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1582 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1583 return false; 1584 1585 if (Context.getLangOpts().CPlusPlus) { 1586 if (const CXXRecordDecl *Record 1587 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1588 return ExcludeCtor && !Record->hasMutableFields() && 1589 Record->hasTrivialDestructor(); 1590 } 1591 1592 return true; 1593 } 1594 1595 static bool isVarDeclInlineInitializedStaticDataMember(const VarDecl *VD) { 1596 if (!VD->isStaticDataMember()) 1597 return false; 1598 const VarDecl *InitDecl; 1599 const Expr *InitExpr = VD->getAnyInitializer(InitDecl); 1600 if (!InitExpr) 1601 return false; 1602 if (InitDecl->isThisDeclarationADefinition()) 1603 return false; 1604 return true; 1605 } 1606 1607 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1608 /// create and return an llvm GlobalVariable with the specified type. If there 1609 /// is something in the module with the specified name, return it potentially 1610 /// bitcasted to the right type. 1611 /// 1612 /// If D is non-null, it specifies a decl that correspond to this. This is used 1613 /// to set the attributes on the global when it is first created. 1614 llvm::Constant * 1615 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1616 llvm::PointerType *Ty, 1617 const VarDecl *D) { 1618 // Lookup the entry, lazily creating it if necessary. 1619 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1620 if (Entry) { 1621 if (WeakRefReferences.erase(Entry)) { 1622 if (D && !D->hasAttr<WeakAttr>()) 1623 Entry->setLinkage(llvm::Function::ExternalLinkage); 1624 } 1625 1626 if (Entry->getType() == Ty) 1627 return Entry; 1628 1629 // Make sure the result is of the correct type. 1630 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1631 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1632 1633 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1634 } 1635 1636 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1637 auto *GV = new llvm::GlobalVariable( 1638 getModule(), Ty->getElementType(), false, 1639 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1640 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1641 1642 // This is the first use or definition of a mangled name. If there is a 1643 // deferred decl with this name, remember that we need to emit it at the end 1644 // of the file. 1645 auto DDI = DeferredDecls.find(MangledName); 1646 if (DDI != DeferredDecls.end()) { 1647 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1648 // list, and remove it from DeferredDecls (since we don't need it anymore). 1649 addDeferredDeclToEmit(GV, DDI->second); 1650 DeferredDecls.erase(DDI); 1651 } 1652 1653 // Handle things which are present even on external declarations. 1654 if (D) { 1655 // FIXME: This code is overly simple and should be merged with other global 1656 // handling. 1657 GV->setConstant(isTypeConstant(D->getType(), false)); 1658 1659 setLinkageAndVisibilityForGV(GV, D); 1660 1661 if (D->getTLSKind()) { 1662 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1663 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1664 setTLSMode(GV, *D); 1665 } 1666 1667 // If required by the ABI, treat declarations of static data members with 1668 // inline initializers as definitions. 1669 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1670 isVarDeclInlineInitializedStaticDataMember(D)) 1671 EmitGlobalVarDefinition(D); 1672 1673 // Handle XCore specific ABI requirements. 1674 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1675 D->getLanguageLinkage() == CLanguageLinkage && 1676 D->getType().isConstant(Context) && 1677 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1678 GV->setSection(".cp.rodata"); 1679 } 1680 1681 if (AddrSpace != Ty->getAddressSpace()) 1682 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1683 1684 return GV; 1685 } 1686 1687 1688 llvm::GlobalVariable * 1689 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1690 llvm::Type *Ty, 1691 llvm::GlobalValue::LinkageTypes Linkage) { 1692 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1693 llvm::GlobalVariable *OldGV = nullptr; 1694 1695 if (GV) { 1696 // Check if the variable has the right type. 1697 if (GV->getType()->getElementType() == Ty) 1698 return GV; 1699 1700 // Because C++ name mangling, the only way we can end up with an already 1701 // existing global with the same name is if it has been declared extern "C". 1702 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1703 OldGV = GV; 1704 } 1705 1706 // Create a new variable. 1707 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1708 Linkage, nullptr, Name); 1709 1710 if (OldGV) { 1711 // Replace occurrences of the old variable if needed. 1712 GV->takeName(OldGV); 1713 1714 if (!OldGV->use_empty()) { 1715 llvm::Constant *NewPtrForOldDecl = 1716 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1717 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1718 } 1719 1720 OldGV->eraseFromParent(); 1721 } 1722 1723 return GV; 1724 } 1725 1726 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1727 /// given global variable. If Ty is non-null and if the global doesn't exist, 1728 /// then it will be created with the specified type instead of whatever the 1729 /// normal requested type would be. 1730 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1731 llvm::Type *Ty) { 1732 assert(D->hasGlobalStorage() && "Not a global variable"); 1733 QualType ASTTy = D->getType(); 1734 if (!Ty) 1735 Ty = getTypes().ConvertTypeForMem(ASTTy); 1736 1737 llvm::PointerType *PTy = 1738 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1739 1740 StringRef MangledName = getMangledName(D); 1741 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1742 } 1743 1744 /// CreateRuntimeVariable - Create a new runtime global variable with the 1745 /// specified type and name. 1746 llvm::Constant * 1747 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1748 StringRef Name) { 1749 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1750 } 1751 1752 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1753 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1754 1755 if (MayDeferGeneration(D)) { 1756 // If we have not seen a reference to this variable yet, place it 1757 // into the deferred declarations table to be emitted if needed 1758 // later. 1759 StringRef MangledName = getMangledName(D); 1760 if (!GetGlobalValue(MangledName)) { 1761 DeferredDecls[MangledName] = D; 1762 return; 1763 } 1764 } 1765 1766 // The tentative definition is the only definition. 1767 EmitGlobalVarDefinition(D); 1768 } 1769 1770 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1771 return Context.toCharUnitsFromBits( 1772 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1773 } 1774 1775 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1776 unsigned AddrSpace) { 1777 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1778 if (D->hasAttr<CUDAConstantAttr>()) 1779 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1780 else if (D->hasAttr<CUDASharedAttr>()) 1781 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1782 else 1783 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1784 } 1785 1786 return AddrSpace; 1787 } 1788 1789 template<typename SomeDecl> 1790 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1791 llvm::GlobalValue *GV) { 1792 if (!getLangOpts().CPlusPlus) 1793 return; 1794 1795 // Must have 'used' attribute, or else inline assembly can't rely on 1796 // the name existing. 1797 if (!D->template hasAttr<UsedAttr>()) 1798 return; 1799 1800 // Must have internal linkage and an ordinary name. 1801 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1802 return; 1803 1804 // Must be in an extern "C" context. Entities declared directly within 1805 // a record are not extern "C" even if the record is in such a context. 1806 const SomeDecl *First = D->getFirstDecl(); 1807 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1808 return; 1809 1810 // OK, this is an internal linkage entity inside an extern "C" linkage 1811 // specification. Make a note of that so we can give it the "expected" 1812 // mangled name if nothing else is using that name. 1813 std::pair<StaticExternCMap::iterator, bool> R = 1814 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1815 1816 // If we have multiple internal linkage entities with the same name 1817 // in extern "C" regions, none of them gets that name. 1818 if (!R.second) 1819 R.first->second = nullptr; 1820 } 1821 1822 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1823 llvm::Constant *Init = nullptr; 1824 QualType ASTTy = D->getType(); 1825 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1826 bool NeedsGlobalCtor = false; 1827 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1828 1829 const VarDecl *InitDecl; 1830 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1831 1832 if (!InitExpr) { 1833 // This is a tentative definition; tentative definitions are 1834 // implicitly initialized with { 0 }. 1835 // 1836 // Note that tentative definitions are only emitted at the end of 1837 // a translation unit, so they should never have incomplete 1838 // type. In addition, EmitTentativeDefinition makes sure that we 1839 // never attempt to emit a tentative definition if a real one 1840 // exists. A use may still exists, however, so we still may need 1841 // to do a RAUW. 1842 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1843 Init = EmitNullConstant(D->getType()); 1844 } else { 1845 initializedGlobalDecl = GlobalDecl(D); 1846 Init = EmitConstantInit(*InitDecl); 1847 1848 if (!Init) { 1849 QualType T = InitExpr->getType(); 1850 if (D->getType()->isReferenceType()) 1851 T = D->getType(); 1852 1853 if (getLangOpts().CPlusPlus) { 1854 Init = EmitNullConstant(T); 1855 NeedsGlobalCtor = true; 1856 } else { 1857 ErrorUnsupported(D, "static initializer"); 1858 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1859 } 1860 } else { 1861 // We don't need an initializer, so remove the entry for the delayed 1862 // initializer position (just in case this entry was delayed) if we 1863 // also don't need to register a destructor. 1864 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1865 DelayedCXXInitPosition.erase(D); 1866 } 1867 } 1868 1869 llvm::Type* InitType = Init->getType(); 1870 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1871 1872 // Strip off a bitcast if we got one back. 1873 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1874 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1875 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1876 // All zero index gep. 1877 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1878 Entry = CE->getOperand(0); 1879 } 1880 1881 // Entry is now either a Function or GlobalVariable. 1882 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1883 1884 // We have a definition after a declaration with the wrong type. 1885 // We must make a new GlobalVariable* and update everything that used OldGV 1886 // (a declaration or tentative definition) with the new GlobalVariable* 1887 // (which will be a definition). 1888 // 1889 // This happens if there is a prototype for a global (e.g. 1890 // "extern int x[];") and then a definition of a different type (e.g. 1891 // "int x[10];"). This also happens when an initializer has a different type 1892 // from the type of the global (this happens with unions). 1893 if (!GV || 1894 GV->getType()->getElementType() != InitType || 1895 GV->getType()->getAddressSpace() != 1896 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1897 1898 // Move the old entry aside so that we'll create a new one. 1899 Entry->setName(StringRef()); 1900 1901 // Make a new global with the correct type, this is now guaranteed to work. 1902 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1903 1904 // Replace all uses of the old global with the new global 1905 llvm::Constant *NewPtrForOldDecl = 1906 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1907 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1908 1909 // Erase the old global, since it is no longer used. 1910 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1911 } 1912 1913 MaybeHandleStaticInExternC(D, GV); 1914 1915 if (D->hasAttr<AnnotateAttr>()) 1916 AddGlobalAnnotations(D, GV); 1917 1918 GV->setInitializer(Init); 1919 1920 // If it is safe to mark the global 'constant', do so now. 1921 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1922 isTypeConstant(D->getType(), true)); 1923 1924 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1925 1926 // Set the llvm linkage type as appropriate. 1927 llvm::GlobalValue::LinkageTypes Linkage = 1928 getLLVMLinkageVarDefinition(D, GV->isConstant()); 1929 1930 // On Darwin, the backing variable for a C++11 thread_local variable always 1931 // has internal linkage; all accesses should just be calls to the 1932 // Itanium-specified entry point, which has the normal linkage of the 1933 // variable. 1934 if (const auto *VD = dyn_cast<VarDecl>(D)) 1935 if (!VD->isStaticLocal() && VD->getTLSKind() == VarDecl::TLS_Dynamic && 1936 Context.getTargetInfo().getTriple().isMacOSX()) 1937 Linkage = llvm::GlobalValue::InternalLinkage; 1938 1939 GV->setLinkage(Linkage); 1940 if (D->hasAttr<DLLImportAttr>()) 1941 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1942 else if (D->hasAttr<DLLExportAttr>()) 1943 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1944 1945 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1946 // common vars aren't constant even if declared const. 1947 GV->setConstant(false); 1948 1949 setNonAliasAttributes(D, GV); 1950 1951 // Emit the initializer function if necessary. 1952 if (NeedsGlobalCtor || NeedsGlobalDtor) 1953 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1954 1955 reportGlobalToASan(GV, *D, NeedsGlobalCtor); 1956 1957 // Emit global variable debug information. 1958 if (CGDebugInfo *DI = getModuleDebugInfo()) 1959 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1960 DI->EmitGlobalVariable(GV, D); 1961 } 1962 1963 void CodeGenModule::reportGlobalToASan(llvm::GlobalVariable *GV, 1964 SourceLocation Loc, StringRef Name, 1965 bool IsDynInit) { 1966 if (!LangOpts.Sanitize.Address) 1967 return; 1968 IsDynInit &= !SanitizerBL.isIn(*GV, "init"); 1969 bool IsBlacklisted = SanitizerBL.isIn(*GV); 1970 1971 llvm::GlobalVariable *LocDescr = nullptr; 1972 llvm::GlobalVariable *GlobalName = nullptr; 1973 if (!IsBlacklisted) { 1974 // Don't generate source location and global name if it is blacklisted - 1975 // it won't be instrumented anyway. 1976 PresumedLoc PLoc = Context.getSourceManager().getPresumedLoc(Loc); 1977 if (PLoc.isValid()) { 1978 llvm::Constant *LocData[] = { 1979 GetAddrOfConstantCString(PLoc.getFilename()), 1980 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1981 PLoc.getLine()), 1982 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1983 PLoc.getColumn()), 1984 }; 1985 auto LocStruct = llvm::ConstantStruct::getAnon(LocData); 1986 LocDescr = new llvm::GlobalVariable(TheModule, LocStruct->getType(), true, 1987 llvm::GlobalValue::PrivateLinkage, 1988 LocStruct, ".asan_loc_descr"); 1989 LocDescr->setUnnamedAddr(true); 1990 // Add LocDescr to llvm.compiler.used, so that it won't be removed by 1991 // the optimizer before the ASan instrumentation pass. 1992 addCompilerUsedGlobal(LocDescr); 1993 } 1994 if (!Name.empty()) { 1995 GlobalName = GetAddrOfConstantCString(Name); 1996 // GlobalName shouldn't be removed by the optimizer. 1997 addCompilerUsedGlobal(GlobalName); 1998 } 1999 } 2000 2001 llvm::Value *GlobalMetadata[] = { 2002 GV, LocDescr, GlobalName, 2003 llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), IsDynInit), 2004 llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), IsBlacklisted)}; 2005 2006 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalMetadata); 2007 llvm::NamedMDNode *AsanGlobals = 2008 TheModule.getOrInsertNamedMetadata("llvm.asan.globals"); 2009 AsanGlobals->addOperand(ThisGlobal); 2010 } 2011 2012 void CodeGenModule::reportGlobalToASan(llvm::GlobalVariable *GV, 2013 const VarDecl &D, bool IsDynInit) { 2014 if (!LangOpts.Sanitize.Address) 2015 return; 2016 std::string QualName; 2017 llvm::raw_string_ostream OS(QualName); 2018 D.printQualifiedName(OS); 2019 reportGlobalToASan(GV, D.getLocation(), OS.str(), IsDynInit); 2020 } 2021 2022 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) { 2023 // Don't give variables common linkage if -fno-common was specified unless it 2024 // was overridden by a NoCommon attribute. 2025 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2026 return true; 2027 2028 // C11 6.9.2/2: 2029 // A declaration of an identifier for an object that has file scope without 2030 // an initializer, and without a storage-class specifier or with the 2031 // storage-class specifier static, constitutes a tentative definition. 2032 if (D->getInit() || D->hasExternalStorage()) 2033 return true; 2034 2035 // A variable cannot be both common and exist in a section. 2036 if (D->hasAttr<SectionAttr>()) 2037 return true; 2038 2039 // Thread local vars aren't considered common linkage. 2040 if (D->getTLSKind()) 2041 return true; 2042 2043 // Tentative definitions marked with WeakImportAttr are true definitions. 2044 if (D->hasAttr<WeakImportAttr>()) 2045 return true; 2046 2047 return false; 2048 } 2049 2050 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2051 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2052 if (Linkage == GVA_Internal) 2053 return llvm::Function::InternalLinkage; 2054 2055 if (D->hasAttr<WeakAttr>()) { 2056 if (IsConstantVariable) 2057 return llvm::GlobalVariable::WeakODRLinkage; 2058 else 2059 return llvm::GlobalVariable::WeakAnyLinkage; 2060 } 2061 2062 // We are guaranteed to have a strong definition somewhere else, 2063 // so we can use available_externally linkage. 2064 if (Linkage == GVA_AvailableExternally) 2065 return llvm::Function::AvailableExternallyLinkage; 2066 2067 // Note that Apple's kernel linker doesn't support symbol 2068 // coalescing, so we need to avoid linkonce and weak linkages there. 2069 // Normally, this means we just map to internal, but for explicit 2070 // instantiations we'll map to external. 2071 2072 // In C++, the compiler has to emit a definition in every translation unit 2073 // that references the function. We should use linkonce_odr because 2074 // a) if all references in this translation unit are optimized away, we 2075 // don't need to codegen it. b) if the function persists, it needs to be 2076 // merged with other definitions. c) C++ has the ODR, so we know the 2077 // definition is dependable. 2078 if (Linkage == GVA_DiscardableODR) 2079 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2080 : llvm::Function::InternalLinkage; 2081 2082 // An explicit instantiation of a template has weak linkage, since 2083 // explicit instantiations can occur in multiple translation units 2084 // and must all be equivalent. However, we are not allowed to 2085 // throw away these explicit instantiations. 2086 if (Linkage == GVA_StrongODR) 2087 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2088 : llvm::Function::ExternalLinkage; 2089 2090 // If required by the ABI, give definitions of static data members with inline 2091 // initializers at least linkonce_odr linkage. 2092 auto const VD = dyn_cast<VarDecl>(D); 2093 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 2094 VD && isVarDeclInlineInitializedStaticDataMember(VD)) { 2095 if (VD->hasAttr<DLLImportAttr>()) 2096 return llvm::GlobalValue::AvailableExternallyLinkage; 2097 if (VD->hasAttr<DLLExportAttr>()) 2098 return llvm::GlobalValue::WeakODRLinkage; 2099 return llvm::GlobalValue::LinkOnceODRLinkage; 2100 } 2101 2102 // C++ doesn't have tentative definitions and thus cannot have common 2103 // linkage. 2104 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2105 !isVarDeclStrongDefinition(cast<VarDecl>(D), CodeGenOpts.NoCommon)) 2106 return llvm::GlobalVariable::CommonLinkage; 2107 2108 // selectany symbols are externally visible, so use weak instead of 2109 // linkonce. MSVC optimizes away references to const selectany globals, so 2110 // all definitions should be the same and ODR linkage should be used. 2111 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2112 if (D->hasAttr<SelectAnyAttr>()) 2113 return llvm::GlobalVariable::WeakODRLinkage; 2114 2115 // Otherwise, we have strong external linkage. 2116 assert(Linkage == GVA_StrongExternal); 2117 return llvm::GlobalVariable::ExternalLinkage; 2118 } 2119 2120 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2121 const VarDecl *VD, bool IsConstant) { 2122 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2123 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2124 } 2125 2126 /// Replace the uses of a function that was declared with a non-proto type. 2127 /// We want to silently drop extra arguments from call sites 2128 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2129 llvm::Function *newFn) { 2130 // Fast path. 2131 if (old->use_empty()) return; 2132 2133 llvm::Type *newRetTy = newFn->getReturnType(); 2134 SmallVector<llvm::Value*, 4> newArgs; 2135 2136 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2137 ui != ue; ) { 2138 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2139 llvm::User *user = use->getUser(); 2140 2141 // Recognize and replace uses of bitcasts. Most calls to 2142 // unprototyped functions will use bitcasts. 2143 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2144 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2145 replaceUsesOfNonProtoConstant(bitcast, newFn); 2146 continue; 2147 } 2148 2149 // Recognize calls to the function. 2150 llvm::CallSite callSite(user); 2151 if (!callSite) continue; 2152 if (!callSite.isCallee(&*use)) continue; 2153 2154 // If the return types don't match exactly, then we can't 2155 // transform this call unless it's dead. 2156 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2157 continue; 2158 2159 // Get the call site's attribute list. 2160 SmallVector<llvm::AttributeSet, 8> newAttrs; 2161 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2162 2163 // Collect any return attributes from the call. 2164 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2165 newAttrs.push_back( 2166 llvm::AttributeSet::get(newFn->getContext(), 2167 oldAttrs.getRetAttributes())); 2168 2169 // If the function was passed too few arguments, don't transform. 2170 unsigned newNumArgs = newFn->arg_size(); 2171 if (callSite.arg_size() < newNumArgs) continue; 2172 2173 // If extra arguments were passed, we silently drop them. 2174 // If any of the types mismatch, we don't transform. 2175 unsigned argNo = 0; 2176 bool dontTransform = false; 2177 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2178 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2179 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2180 dontTransform = true; 2181 break; 2182 } 2183 2184 // Add any parameter attributes. 2185 if (oldAttrs.hasAttributes(argNo + 1)) 2186 newAttrs. 2187 push_back(llvm:: 2188 AttributeSet::get(newFn->getContext(), 2189 oldAttrs.getParamAttributes(argNo + 1))); 2190 } 2191 if (dontTransform) 2192 continue; 2193 2194 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2195 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2196 oldAttrs.getFnAttributes())); 2197 2198 // Okay, we can transform this. Create the new call instruction and copy 2199 // over the required information. 2200 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2201 2202 llvm::CallSite newCall; 2203 if (callSite.isCall()) { 2204 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2205 callSite.getInstruction()); 2206 } else { 2207 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2208 newCall = llvm::InvokeInst::Create(newFn, 2209 oldInvoke->getNormalDest(), 2210 oldInvoke->getUnwindDest(), 2211 newArgs, "", 2212 callSite.getInstruction()); 2213 } 2214 newArgs.clear(); // for the next iteration 2215 2216 if (!newCall->getType()->isVoidTy()) 2217 newCall->takeName(callSite.getInstruction()); 2218 newCall.setAttributes( 2219 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2220 newCall.setCallingConv(callSite.getCallingConv()); 2221 2222 // Finally, remove the old call, replacing any uses with the new one. 2223 if (!callSite->use_empty()) 2224 callSite->replaceAllUsesWith(newCall.getInstruction()); 2225 2226 // Copy debug location attached to CI. 2227 if (!callSite->getDebugLoc().isUnknown()) 2228 newCall->setDebugLoc(callSite->getDebugLoc()); 2229 callSite->eraseFromParent(); 2230 } 2231 } 2232 2233 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2234 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2235 /// existing call uses of the old function in the module, this adjusts them to 2236 /// call the new function directly. 2237 /// 2238 /// This is not just a cleanup: the always_inline pass requires direct calls to 2239 /// functions to be able to inline them. If there is a bitcast in the way, it 2240 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2241 /// run at -O0. 2242 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2243 llvm::Function *NewFn) { 2244 // If we're redefining a global as a function, don't transform it. 2245 if (!isa<llvm::Function>(Old)) return; 2246 2247 replaceUsesOfNonProtoConstant(Old, NewFn); 2248 } 2249 2250 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2251 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2252 // If we have a definition, this might be a deferred decl. If the 2253 // instantiation is explicit, make sure we emit it at the end. 2254 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2255 GetAddrOfGlobalVar(VD); 2256 2257 EmitTopLevelDecl(VD); 2258 } 2259 2260 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2261 llvm::GlobalValue *GV) { 2262 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2263 2264 // Compute the function info and LLVM type. 2265 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2266 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2267 2268 // Get or create the prototype for the function. 2269 if (!GV) { 2270 llvm::Constant *C = 2271 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2272 2273 // Strip off a bitcast if we got one back. 2274 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2275 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2276 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2277 } else { 2278 GV = cast<llvm::GlobalValue>(C); 2279 } 2280 } 2281 2282 if (!GV->isDeclaration()) { 2283 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2284 return; 2285 } 2286 2287 if (GV->getType()->getElementType() != Ty) { 2288 // If the types mismatch then we have to rewrite the definition. 2289 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2290 2291 // F is the Function* for the one with the wrong type, we must make a new 2292 // Function* and update everything that used F (a declaration) with the new 2293 // Function* (which will be a definition). 2294 // 2295 // This happens if there is a prototype for a function 2296 // (e.g. "int f()") and then a definition of a different type 2297 // (e.g. "int f(int x)"). Move the old function aside so that it 2298 // doesn't interfere with GetAddrOfFunction. 2299 GV->setName(StringRef()); 2300 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2301 2302 // This might be an implementation of a function without a 2303 // prototype, in which case, try to do special replacement of 2304 // calls which match the new prototype. The really key thing here 2305 // is that we also potentially drop arguments from the call site 2306 // so as to make a direct call, which makes the inliner happier 2307 // and suppresses a number of optimizer warnings (!) about 2308 // dropping arguments. 2309 if (!GV->use_empty()) { 2310 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2311 GV->removeDeadConstantUsers(); 2312 } 2313 2314 // Replace uses of F with the Function we will endow with a body. 2315 if (!GV->use_empty()) { 2316 llvm::Constant *NewPtrForOldDecl = 2317 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2318 GV->replaceAllUsesWith(NewPtrForOldDecl); 2319 } 2320 2321 // Ok, delete the old function now, which is dead. 2322 GV->eraseFromParent(); 2323 2324 GV = NewFn; 2325 } 2326 2327 // We need to set linkage and visibility on the function before 2328 // generating code for it because various parts of IR generation 2329 // want to propagate this information down (e.g. to local static 2330 // declarations). 2331 auto *Fn = cast<llvm::Function>(GV); 2332 setFunctionLinkage(GD, Fn); 2333 2334 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2335 setGlobalVisibility(Fn, D); 2336 2337 MaybeHandleStaticInExternC(D, Fn); 2338 2339 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2340 2341 setFunctionDefinitionAttributes(D, Fn); 2342 SetLLVMFunctionAttributesForDefinition(D, Fn); 2343 2344 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2345 AddGlobalCtor(Fn, CA->getPriority()); 2346 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2347 AddGlobalDtor(Fn, DA->getPriority()); 2348 if (D->hasAttr<AnnotateAttr>()) 2349 AddGlobalAnnotations(D, Fn); 2350 } 2351 2352 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2353 const auto *D = cast<ValueDecl>(GD.getDecl()); 2354 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2355 assert(AA && "Not an alias?"); 2356 2357 StringRef MangledName = getMangledName(GD); 2358 2359 // If there is a definition in the module, then it wins over the alias. 2360 // This is dubious, but allow it to be safe. Just ignore the alias. 2361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2362 if (Entry && !Entry->isDeclaration()) 2363 return; 2364 2365 Aliases.push_back(GD); 2366 2367 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2368 2369 // Create a reference to the named value. This ensures that it is emitted 2370 // if a deferred decl. 2371 llvm::Constant *Aliasee; 2372 if (isa<llvm::FunctionType>(DeclTy)) 2373 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2374 /*ForVTable=*/false); 2375 else 2376 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2377 llvm::PointerType::getUnqual(DeclTy), 2378 nullptr); 2379 2380 // Create the new alias itself, but don't set a name yet. 2381 auto *GA = llvm::GlobalAlias::create( 2382 cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0, 2383 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2384 2385 if (Entry) { 2386 if (GA->getAliasee() == Entry) { 2387 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2388 return; 2389 } 2390 2391 assert(Entry->isDeclaration()); 2392 2393 // If there is a declaration in the module, then we had an extern followed 2394 // by the alias, as in: 2395 // extern int test6(); 2396 // ... 2397 // int test6() __attribute__((alias("test7"))); 2398 // 2399 // Remove it and replace uses of it with the alias. 2400 GA->takeName(Entry); 2401 2402 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2403 Entry->getType())); 2404 Entry->eraseFromParent(); 2405 } else { 2406 GA->setName(MangledName); 2407 } 2408 2409 // Set attributes which are particular to an alias; this is a 2410 // specialization of the attributes which may be set on a global 2411 // variable/function. 2412 if (D->hasAttr<DLLExportAttr>()) { 2413 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2414 // The dllexport attribute is ignored for undefined symbols. 2415 if (FD->hasBody()) 2416 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2417 } else { 2418 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2419 } 2420 } else if (D->hasAttr<WeakAttr>() || 2421 D->hasAttr<WeakRefAttr>() || 2422 D->isWeakImported()) { 2423 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2424 } 2425 2426 SetCommonAttributes(D, GA); 2427 } 2428 2429 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2430 ArrayRef<llvm::Type*> Tys) { 2431 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2432 Tys); 2433 } 2434 2435 static llvm::StringMapEntry<llvm::Constant*> & 2436 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2437 const StringLiteral *Literal, 2438 bool TargetIsLSB, 2439 bool &IsUTF16, 2440 unsigned &StringLength) { 2441 StringRef String = Literal->getString(); 2442 unsigned NumBytes = String.size(); 2443 2444 // Check for simple case. 2445 if (!Literal->containsNonAsciiOrNull()) { 2446 StringLength = NumBytes; 2447 return Map.GetOrCreateValue(String); 2448 } 2449 2450 // Otherwise, convert the UTF8 literals into a string of shorts. 2451 IsUTF16 = true; 2452 2453 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2454 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2455 UTF16 *ToPtr = &ToBuf[0]; 2456 2457 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2458 &ToPtr, ToPtr + NumBytes, 2459 strictConversion); 2460 2461 // ConvertUTF8toUTF16 returns the length in ToPtr. 2462 StringLength = ToPtr - &ToBuf[0]; 2463 2464 // Add an explicit null. 2465 *ToPtr = 0; 2466 return Map. 2467 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2468 (StringLength + 1) * 2)); 2469 } 2470 2471 static llvm::StringMapEntry<llvm::Constant*> & 2472 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2473 const StringLiteral *Literal, 2474 unsigned &StringLength) { 2475 StringRef String = Literal->getString(); 2476 StringLength = String.size(); 2477 return Map.GetOrCreateValue(String); 2478 } 2479 2480 llvm::Constant * 2481 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2482 unsigned StringLength = 0; 2483 bool isUTF16 = false; 2484 llvm::StringMapEntry<llvm::Constant*> &Entry = 2485 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2486 getDataLayout().isLittleEndian(), 2487 isUTF16, StringLength); 2488 2489 if (llvm::Constant *C = Entry.getValue()) 2490 return C; 2491 2492 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2493 llvm::Constant *Zeros[] = { Zero, Zero }; 2494 llvm::Value *V; 2495 2496 // If we don't already have it, get __CFConstantStringClassReference. 2497 if (!CFConstantStringClassRef) { 2498 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2499 Ty = llvm::ArrayType::get(Ty, 0); 2500 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2501 "__CFConstantStringClassReference"); 2502 // Decay array -> ptr 2503 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2504 CFConstantStringClassRef = V; 2505 } 2506 else 2507 V = CFConstantStringClassRef; 2508 2509 QualType CFTy = getContext().getCFConstantStringType(); 2510 2511 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2512 2513 llvm::Constant *Fields[4]; 2514 2515 // Class pointer. 2516 Fields[0] = cast<llvm::ConstantExpr>(V); 2517 2518 // Flags. 2519 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2520 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2521 llvm::ConstantInt::get(Ty, 0x07C8); 2522 2523 // String pointer. 2524 llvm::Constant *C = nullptr; 2525 if (isUTF16) { 2526 ArrayRef<uint16_t> Arr = 2527 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2528 const_cast<char *>(Entry.getKey().data())), 2529 Entry.getKey().size() / 2); 2530 C = llvm::ConstantDataArray::get(VMContext, Arr); 2531 } else { 2532 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2533 } 2534 2535 // Note: -fwritable-strings doesn't make the backing store strings of 2536 // CFStrings writable. (See <rdar://problem/10657500>) 2537 auto *GV = 2538 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2539 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2540 GV->setUnnamedAddr(true); 2541 // Don't enforce the target's minimum global alignment, since the only use 2542 // of the string is via this class initializer. 2543 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2544 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2545 // that changes the section it ends in, which surprises ld64. 2546 if (isUTF16) { 2547 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2548 GV->setAlignment(Align.getQuantity()); 2549 GV->setSection("__TEXT,__ustring"); 2550 } else { 2551 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2552 GV->setAlignment(Align.getQuantity()); 2553 GV->setSection("__TEXT,__cstring,cstring_literals"); 2554 } 2555 2556 // String. 2557 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2558 2559 if (isUTF16) 2560 // Cast the UTF16 string to the correct type. 2561 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2562 2563 // String length. 2564 Ty = getTypes().ConvertType(getContext().LongTy); 2565 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2566 2567 // The struct. 2568 C = llvm::ConstantStruct::get(STy, Fields); 2569 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2570 llvm::GlobalVariable::PrivateLinkage, C, 2571 "_unnamed_cfstring_"); 2572 GV->setSection("__DATA,__cfstring"); 2573 Entry.setValue(GV); 2574 2575 return GV; 2576 } 2577 2578 llvm::Constant * 2579 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2580 unsigned StringLength = 0; 2581 llvm::StringMapEntry<llvm::Constant*> &Entry = 2582 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2583 2584 if (llvm::Constant *C = Entry.getValue()) 2585 return C; 2586 2587 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2588 llvm::Constant *Zeros[] = { Zero, Zero }; 2589 llvm::Value *V; 2590 // If we don't already have it, get _NSConstantStringClassReference. 2591 if (!ConstantStringClassRef) { 2592 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2593 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2594 llvm::Constant *GV; 2595 if (LangOpts.ObjCRuntime.isNonFragile()) { 2596 std::string str = 2597 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2598 : "OBJC_CLASS_$_" + StringClass; 2599 GV = getObjCRuntime().GetClassGlobal(str); 2600 // Make sure the result is of the correct type. 2601 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2602 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2603 ConstantStringClassRef = V; 2604 } else { 2605 std::string str = 2606 StringClass.empty() ? "_NSConstantStringClassReference" 2607 : "_" + StringClass + "ClassReference"; 2608 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2609 GV = CreateRuntimeVariable(PTy, str); 2610 // Decay array -> ptr 2611 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2612 ConstantStringClassRef = V; 2613 } 2614 } 2615 else 2616 V = ConstantStringClassRef; 2617 2618 if (!NSConstantStringType) { 2619 // Construct the type for a constant NSString. 2620 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2621 D->startDefinition(); 2622 2623 QualType FieldTypes[3]; 2624 2625 // const int *isa; 2626 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2627 // const char *str; 2628 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2629 // unsigned int length; 2630 FieldTypes[2] = Context.UnsignedIntTy; 2631 2632 // Create fields 2633 for (unsigned i = 0; i < 3; ++i) { 2634 FieldDecl *Field = FieldDecl::Create(Context, D, 2635 SourceLocation(), 2636 SourceLocation(), nullptr, 2637 FieldTypes[i], /*TInfo=*/nullptr, 2638 /*BitWidth=*/nullptr, 2639 /*Mutable=*/false, 2640 ICIS_NoInit); 2641 Field->setAccess(AS_public); 2642 D->addDecl(Field); 2643 } 2644 2645 D->completeDefinition(); 2646 QualType NSTy = Context.getTagDeclType(D); 2647 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2648 } 2649 2650 llvm::Constant *Fields[3]; 2651 2652 // Class pointer. 2653 Fields[0] = cast<llvm::ConstantExpr>(V); 2654 2655 // String pointer. 2656 llvm::Constant *C = 2657 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2658 2659 llvm::GlobalValue::LinkageTypes Linkage; 2660 bool isConstant; 2661 Linkage = llvm::GlobalValue::PrivateLinkage; 2662 isConstant = !LangOpts.WritableStrings; 2663 2664 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2665 Linkage, C, ".str"); 2666 GV->setUnnamedAddr(true); 2667 // Don't enforce the target's minimum global alignment, since the only use 2668 // of the string is via this class initializer. 2669 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2670 GV->setAlignment(Align.getQuantity()); 2671 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2672 2673 // String length. 2674 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2675 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2676 2677 // The struct. 2678 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2679 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2680 llvm::GlobalVariable::PrivateLinkage, C, 2681 "_unnamed_nsstring_"); 2682 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2683 const char *NSStringNonFragileABISection = 2684 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2685 // FIXME. Fix section. 2686 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2687 ? NSStringNonFragileABISection 2688 : NSStringSection); 2689 Entry.setValue(GV); 2690 2691 return GV; 2692 } 2693 2694 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2695 if (ObjCFastEnumerationStateType.isNull()) { 2696 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2697 D->startDefinition(); 2698 2699 QualType FieldTypes[] = { 2700 Context.UnsignedLongTy, 2701 Context.getPointerType(Context.getObjCIdType()), 2702 Context.getPointerType(Context.UnsignedLongTy), 2703 Context.getConstantArrayType(Context.UnsignedLongTy, 2704 llvm::APInt(32, 5), ArrayType::Normal, 0) 2705 }; 2706 2707 for (size_t i = 0; i < 4; ++i) { 2708 FieldDecl *Field = FieldDecl::Create(Context, 2709 D, 2710 SourceLocation(), 2711 SourceLocation(), nullptr, 2712 FieldTypes[i], /*TInfo=*/nullptr, 2713 /*BitWidth=*/nullptr, 2714 /*Mutable=*/false, 2715 ICIS_NoInit); 2716 Field->setAccess(AS_public); 2717 D->addDecl(Field); 2718 } 2719 2720 D->completeDefinition(); 2721 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2722 } 2723 2724 return ObjCFastEnumerationStateType; 2725 } 2726 2727 llvm::Constant * 2728 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2729 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2730 2731 // Don't emit it as the address of the string, emit the string data itself 2732 // as an inline array. 2733 if (E->getCharByteWidth() == 1) { 2734 SmallString<64> Str(E->getString()); 2735 2736 // Resize the string to the right size, which is indicated by its type. 2737 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2738 Str.resize(CAT->getSize().getZExtValue()); 2739 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2740 } 2741 2742 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2743 llvm::Type *ElemTy = AType->getElementType(); 2744 unsigned NumElements = AType->getNumElements(); 2745 2746 // Wide strings have either 2-byte or 4-byte elements. 2747 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2748 SmallVector<uint16_t, 32> Elements; 2749 Elements.reserve(NumElements); 2750 2751 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2752 Elements.push_back(E->getCodeUnit(i)); 2753 Elements.resize(NumElements); 2754 return llvm::ConstantDataArray::get(VMContext, Elements); 2755 } 2756 2757 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2758 SmallVector<uint32_t, 32> Elements; 2759 Elements.reserve(NumElements); 2760 2761 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2762 Elements.push_back(E->getCodeUnit(i)); 2763 Elements.resize(NumElements); 2764 return llvm::ConstantDataArray::get(VMContext, Elements); 2765 } 2766 2767 static llvm::GlobalVariable * 2768 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2769 CodeGenModule &CGM, StringRef GlobalName, 2770 unsigned Alignment) { 2771 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2772 unsigned AddrSpace = 0; 2773 if (CGM.getLangOpts().OpenCL) 2774 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2775 2776 // Create a global variable for this string 2777 auto *GV = new llvm::GlobalVariable( 2778 CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, 2779 GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2780 GV->setAlignment(Alignment); 2781 GV->setUnnamedAddr(true); 2782 return GV; 2783 } 2784 2785 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2786 /// constant array for the given string literal. 2787 llvm::GlobalVariable * 2788 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2789 auto Alignment = 2790 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2791 2792 llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr; 2793 if (!LangOpts.WritableStrings) { 2794 Entry = getConstantStringMapEntry(S->getBytes(), S->getCharByteWidth()); 2795 if (auto GV = Entry->getValue()) { 2796 if (Alignment > GV->getAlignment()) 2797 GV->setAlignment(Alignment); 2798 return GV; 2799 } 2800 } 2801 2802 SmallString<256> MangledNameBuffer; 2803 StringRef GlobalVariableName; 2804 llvm::GlobalValue::LinkageTypes LT; 2805 2806 // Mangle the string literal if the ABI allows for it. However, we cannot 2807 // do this if we are compiling with ASan or -fwritable-strings because they 2808 // rely on strings having normal linkage. 2809 if (!LangOpts.WritableStrings && !LangOpts.Sanitize.Address && 2810 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2811 llvm::raw_svector_ostream Out(MangledNameBuffer); 2812 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2813 Out.flush(); 2814 2815 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2816 GlobalVariableName = MangledNameBuffer; 2817 } else { 2818 LT = llvm::GlobalValue::PrivateLinkage; 2819 GlobalVariableName = ".str"; 2820 } 2821 2822 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2823 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2824 if (Entry) 2825 Entry->setValue(GV); 2826 2827 reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>"); 2828 return GV; 2829 } 2830 2831 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2832 /// array for the given ObjCEncodeExpr node. 2833 llvm::GlobalVariable * 2834 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2835 std::string Str; 2836 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2837 2838 return GetAddrOfConstantCString(Str); 2839 } 2840 2841 2842 llvm::StringMapEntry<llvm::GlobalVariable *> *CodeGenModule::getConstantStringMapEntry( 2843 StringRef Str, int CharByteWidth) { 2844 llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr; 2845 switch (CharByteWidth) { 2846 case 1: 2847 ConstantStringMap = &Constant1ByteStringMap; 2848 break; 2849 case 2: 2850 ConstantStringMap = &Constant2ByteStringMap; 2851 break; 2852 case 4: 2853 ConstantStringMap = &Constant4ByteStringMap; 2854 break; 2855 default: 2856 llvm_unreachable("unhandled byte width!"); 2857 } 2858 return &ConstantStringMap->GetOrCreateValue(Str); 2859 } 2860 2861 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2862 /// the literal and a terminating '\0' character. 2863 /// The result has pointer to array type. 2864 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 2865 const std::string &Str, const char *GlobalName, unsigned Alignment) { 2866 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2867 if (Alignment == 0) { 2868 Alignment = getContext() 2869 .getAlignOfGlobalVarInChars(getContext().CharTy) 2870 .getQuantity(); 2871 } 2872 2873 // Don't share any string literals if strings aren't constant. 2874 llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr; 2875 if (!LangOpts.WritableStrings) { 2876 Entry = getConstantStringMapEntry(StrWithNull, 1); 2877 if (auto GV = Entry->getValue()) { 2878 if (Alignment > GV->getAlignment()) 2879 GV->setAlignment(Alignment); 2880 return GV; 2881 } 2882 } 2883 2884 llvm::Constant *C = 2885 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 2886 // Get the default prefix if a name wasn't specified. 2887 if (!GlobalName) 2888 GlobalName = ".str"; 2889 // Create a global variable for this. 2890 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 2891 GlobalName, Alignment); 2892 if (Entry) 2893 Entry->setValue(GV); 2894 return GV; 2895 } 2896 2897 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2898 const MaterializeTemporaryExpr *E, const Expr *Init) { 2899 assert((E->getStorageDuration() == SD_Static || 2900 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2901 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 2902 2903 // If we're not materializing a subobject of the temporary, keep the 2904 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2905 QualType MaterializedType = Init->getType(); 2906 if (Init == E->GetTemporaryExpr()) 2907 MaterializedType = E->getType(); 2908 2909 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2910 if (Slot) 2911 return Slot; 2912 2913 // FIXME: If an externally-visible declaration extends multiple temporaries, 2914 // we need to give each temporary the same name in every translation unit (and 2915 // we also need to make the temporaries externally-visible). 2916 SmallString<256> Name; 2917 llvm::raw_svector_ostream Out(Name); 2918 getCXXABI().getMangleContext().mangleReferenceTemporary( 2919 VD, E->getManglingNumber(), Out); 2920 Out.flush(); 2921 2922 APValue *Value = nullptr; 2923 if (E->getStorageDuration() == SD_Static) { 2924 // We might have a cached constant initializer for this temporary. Note 2925 // that this might have a different value from the value computed by 2926 // evaluating the initializer if the surrounding constant expression 2927 // modifies the temporary. 2928 Value = getContext().getMaterializedTemporaryValue(E, false); 2929 if (Value && Value->isUninit()) 2930 Value = nullptr; 2931 } 2932 2933 // Try evaluating it now, it might have a constant initializer. 2934 Expr::EvalResult EvalResult; 2935 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2936 !EvalResult.hasSideEffects()) 2937 Value = &EvalResult.Val; 2938 2939 llvm::Constant *InitialValue = nullptr; 2940 bool Constant = false; 2941 llvm::Type *Type; 2942 if (Value) { 2943 // The temporary has a constant initializer, use it. 2944 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 2945 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2946 Type = InitialValue->getType(); 2947 } else { 2948 // No initializer, the initialization will be provided when we 2949 // initialize the declaration which performed lifetime extension. 2950 Type = getTypes().ConvertTypeForMem(MaterializedType); 2951 } 2952 2953 // Create a global variable for this lifetime-extended temporary. 2954 llvm::GlobalValue::LinkageTypes Linkage = 2955 getLLVMLinkageVarDefinition(VD, Constant); 2956 // There is no need for this temporary to have global linkage if the global 2957 // variable has external linkage. 2958 if (Linkage == llvm::GlobalVariable::ExternalLinkage) 2959 Linkage = llvm::GlobalVariable::PrivateLinkage; 2960 unsigned AddrSpace = GetGlobalVarAddressSpace( 2961 VD, getContext().getTargetAddressSpace(MaterializedType)); 2962 auto *GV = new llvm::GlobalVariable( 2963 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 2964 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2965 AddrSpace); 2966 setGlobalVisibility(GV, VD); 2967 GV->setAlignment( 2968 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2969 if (VD->getTLSKind()) 2970 setTLSMode(GV, *VD); 2971 Slot = GV; 2972 return GV; 2973 } 2974 2975 /// EmitObjCPropertyImplementations - Emit information for synthesized 2976 /// properties for an implementation. 2977 void CodeGenModule::EmitObjCPropertyImplementations(const 2978 ObjCImplementationDecl *D) { 2979 for (const auto *PID : D->property_impls()) { 2980 // Dynamic is just for type-checking. 2981 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2982 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2983 2984 // Determine which methods need to be implemented, some may have 2985 // been overridden. Note that ::isPropertyAccessor is not the method 2986 // we want, that just indicates if the decl came from a 2987 // property. What we want to know is if the method is defined in 2988 // this implementation. 2989 if (!D->getInstanceMethod(PD->getGetterName())) 2990 CodeGenFunction(*this).GenerateObjCGetter( 2991 const_cast<ObjCImplementationDecl *>(D), PID); 2992 if (!PD->isReadOnly() && 2993 !D->getInstanceMethod(PD->getSetterName())) 2994 CodeGenFunction(*this).GenerateObjCSetter( 2995 const_cast<ObjCImplementationDecl *>(D), PID); 2996 } 2997 } 2998 } 2999 3000 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3001 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3002 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3003 ivar; ivar = ivar->getNextIvar()) 3004 if (ivar->getType().isDestructedType()) 3005 return true; 3006 3007 return false; 3008 } 3009 3010 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3011 /// for an implementation. 3012 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3013 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3014 if (needsDestructMethod(D)) { 3015 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3016 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3017 ObjCMethodDecl *DTORMethod = 3018 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3019 cxxSelector, getContext().VoidTy, nullptr, D, 3020 /*isInstance=*/true, /*isVariadic=*/false, 3021 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3022 /*isDefined=*/false, ObjCMethodDecl::Required); 3023 D->addInstanceMethod(DTORMethod); 3024 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3025 D->setHasDestructors(true); 3026 } 3027 3028 // If the implementation doesn't have any ivar initializers, we don't need 3029 // a .cxx_construct. 3030 if (D->getNumIvarInitializers() == 0) 3031 return; 3032 3033 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3034 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3035 // The constructor returns 'self'. 3036 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3037 D->getLocation(), 3038 D->getLocation(), 3039 cxxSelector, 3040 getContext().getObjCIdType(), 3041 nullptr, D, /*isInstance=*/true, 3042 /*isVariadic=*/false, 3043 /*isPropertyAccessor=*/true, 3044 /*isImplicitlyDeclared=*/true, 3045 /*isDefined=*/false, 3046 ObjCMethodDecl::Required); 3047 D->addInstanceMethod(CTORMethod); 3048 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3049 D->setHasNonZeroConstructors(true); 3050 } 3051 3052 /// EmitNamespace - Emit all declarations in a namespace. 3053 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3054 for (auto *I : ND->decls()) { 3055 if (const auto *VD = dyn_cast<VarDecl>(I)) 3056 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3057 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3058 continue; 3059 EmitTopLevelDecl(I); 3060 } 3061 } 3062 3063 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3064 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3065 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3066 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3067 ErrorUnsupported(LSD, "linkage spec"); 3068 return; 3069 } 3070 3071 for (auto *I : LSD->decls()) { 3072 // Meta-data for ObjC class includes references to implemented methods. 3073 // Generate class's method definitions first. 3074 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3075 for (auto *M : OID->methods()) 3076 EmitTopLevelDecl(M); 3077 } 3078 EmitTopLevelDecl(I); 3079 } 3080 } 3081 3082 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3083 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3084 // Ignore dependent declarations. 3085 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3086 return; 3087 3088 switch (D->getKind()) { 3089 case Decl::CXXConversion: 3090 case Decl::CXXMethod: 3091 case Decl::Function: 3092 // Skip function templates 3093 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3094 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3095 return; 3096 3097 EmitGlobal(cast<FunctionDecl>(D)); 3098 break; 3099 3100 case Decl::Var: 3101 // Skip variable templates 3102 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3103 return; 3104 case Decl::VarTemplateSpecialization: 3105 EmitGlobal(cast<VarDecl>(D)); 3106 break; 3107 3108 // Indirect fields from global anonymous structs and unions can be 3109 // ignored; only the actual variable requires IR gen support. 3110 case Decl::IndirectField: 3111 break; 3112 3113 // C++ Decls 3114 case Decl::Namespace: 3115 EmitNamespace(cast<NamespaceDecl>(D)); 3116 break; 3117 // No code generation needed. 3118 case Decl::UsingShadow: 3119 case Decl::ClassTemplate: 3120 case Decl::VarTemplate: 3121 case Decl::VarTemplatePartialSpecialization: 3122 case Decl::FunctionTemplate: 3123 case Decl::TypeAliasTemplate: 3124 case Decl::Block: 3125 case Decl::Empty: 3126 break; 3127 case Decl::Using: // using X; [C++] 3128 if (CGDebugInfo *DI = getModuleDebugInfo()) 3129 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3130 return; 3131 case Decl::NamespaceAlias: 3132 if (CGDebugInfo *DI = getModuleDebugInfo()) 3133 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3134 return; 3135 case Decl::UsingDirective: // using namespace X; [C++] 3136 if (CGDebugInfo *DI = getModuleDebugInfo()) 3137 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3138 return; 3139 case Decl::CXXConstructor: 3140 // Skip function templates 3141 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3142 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3143 return; 3144 3145 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3146 break; 3147 case Decl::CXXDestructor: 3148 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3149 return; 3150 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3151 break; 3152 3153 case Decl::StaticAssert: 3154 // Nothing to do. 3155 break; 3156 3157 // Objective-C Decls 3158 3159 // Forward declarations, no (immediate) code generation. 3160 case Decl::ObjCInterface: 3161 case Decl::ObjCCategory: 3162 break; 3163 3164 case Decl::ObjCProtocol: { 3165 auto *Proto = cast<ObjCProtocolDecl>(D); 3166 if (Proto->isThisDeclarationADefinition()) 3167 ObjCRuntime->GenerateProtocol(Proto); 3168 break; 3169 } 3170 3171 case Decl::ObjCCategoryImpl: 3172 // Categories have properties but don't support synthesize so we 3173 // can ignore them here. 3174 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3175 break; 3176 3177 case Decl::ObjCImplementation: { 3178 auto *OMD = cast<ObjCImplementationDecl>(D); 3179 EmitObjCPropertyImplementations(OMD); 3180 EmitObjCIvarInitializations(OMD); 3181 ObjCRuntime->GenerateClass(OMD); 3182 // Emit global variable debug information. 3183 if (CGDebugInfo *DI = getModuleDebugInfo()) 3184 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3185 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3186 OMD->getClassInterface()), OMD->getLocation()); 3187 break; 3188 } 3189 case Decl::ObjCMethod: { 3190 auto *OMD = cast<ObjCMethodDecl>(D); 3191 // If this is not a prototype, emit the body. 3192 if (OMD->getBody()) 3193 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3194 break; 3195 } 3196 case Decl::ObjCCompatibleAlias: 3197 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3198 break; 3199 3200 case Decl::LinkageSpec: 3201 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3202 break; 3203 3204 case Decl::FileScopeAsm: { 3205 auto *AD = cast<FileScopeAsmDecl>(D); 3206 StringRef AsmString = AD->getAsmString()->getString(); 3207 3208 const std::string &S = getModule().getModuleInlineAsm(); 3209 if (S.empty()) 3210 getModule().setModuleInlineAsm(AsmString); 3211 else if (S.end()[-1] == '\n') 3212 getModule().setModuleInlineAsm(S + AsmString.str()); 3213 else 3214 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3215 break; 3216 } 3217 3218 case Decl::Import: { 3219 auto *Import = cast<ImportDecl>(D); 3220 3221 // Ignore import declarations that come from imported modules. 3222 if (clang::Module *Owner = Import->getOwningModule()) { 3223 if (getLangOpts().CurrentModule.empty() || 3224 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3225 break; 3226 } 3227 3228 ImportedModules.insert(Import->getImportedModule()); 3229 break; 3230 } 3231 3232 case Decl::ClassTemplateSpecialization: { 3233 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3234 if (DebugInfo && 3235 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3236 DebugInfo->completeTemplateDefinition(*Spec); 3237 } 3238 3239 default: 3240 // Make sure we handled everything we should, every other kind is a 3241 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3242 // function. Need to recode Decl::Kind to do that easily. 3243 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3244 } 3245 } 3246 3247 /// Turns the given pointer into a constant. 3248 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3249 const void *Ptr) { 3250 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3251 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3252 return llvm::ConstantInt::get(i64, PtrInt); 3253 } 3254 3255 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3256 llvm::NamedMDNode *&GlobalMetadata, 3257 GlobalDecl D, 3258 llvm::GlobalValue *Addr) { 3259 if (!GlobalMetadata) 3260 GlobalMetadata = 3261 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3262 3263 // TODO: should we report variant information for ctors/dtors? 3264 llvm::Value *Ops[] = { 3265 Addr, 3266 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3267 }; 3268 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3269 } 3270 3271 /// For each function which is declared within an extern "C" region and marked 3272 /// as 'used', but has internal linkage, create an alias from the unmangled 3273 /// name to the mangled name if possible. People expect to be able to refer 3274 /// to such functions with an unmangled name from inline assembly within the 3275 /// same translation unit. 3276 void CodeGenModule::EmitStaticExternCAliases() { 3277 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3278 E = StaticExternCValues.end(); 3279 I != E; ++I) { 3280 IdentifierInfo *Name = I->first; 3281 llvm::GlobalValue *Val = I->second; 3282 if (Val && !getModule().getNamedValue(Name->getName())) 3283 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3284 } 3285 } 3286 3287 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3288 GlobalDecl &Result) const { 3289 auto Res = Manglings.find(MangledName); 3290 if (Res == Manglings.end()) 3291 return false; 3292 Result = Res->getValue(); 3293 return true; 3294 } 3295 3296 /// Emits metadata nodes associating all the global values in the 3297 /// current module with the Decls they came from. This is useful for 3298 /// projects using IR gen as a subroutine. 3299 /// 3300 /// Since there's currently no way to associate an MDNode directly 3301 /// with an llvm::GlobalValue, we create a global named metadata 3302 /// with the name 'clang.global.decl.ptrs'. 3303 void CodeGenModule::EmitDeclMetadata() { 3304 llvm::NamedMDNode *GlobalMetadata = nullptr; 3305 3306 // StaticLocalDeclMap 3307 for (auto &I : MangledDeclNames) { 3308 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3309 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3310 } 3311 } 3312 3313 /// Emits metadata nodes for all the local variables in the current 3314 /// function. 3315 void CodeGenFunction::EmitDeclMetadata() { 3316 if (LocalDeclMap.empty()) return; 3317 3318 llvm::LLVMContext &Context = getLLVMContext(); 3319 3320 // Find the unique metadata ID for this name. 3321 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3322 3323 llvm::NamedMDNode *GlobalMetadata = nullptr; 3324 3325 for (auto &I : LocalDeclMap) { 3326 const Decl *D = I.first; 3327 llvm::Value *Addr = I.second; 3328 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3329 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3330 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3331 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3332 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3333 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3334 } 3335 } 3336 } 3337 3338 void CodeGenModule::EmitVersionIdentMetadata() { 3339 llvm::NamedMDNode *IdentMetadata = 3340 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3341 std::string Version = getClangFullVersion(); 3342 llvm::LLVMContext &Ctx = TheModule.getContext(); 3343 3344 llvm::Value *IdentNode[] = { 3345 llvm::MDString::get(Ctx, Version) 3346 }; 3347 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3348 } 3349 3350 void CodeGenModule::EmitTargetMetadata() { 3351 for (auto &I : MangledDeclNames) { 3352 const Decl *D = I.first.getDecl()->getMostRecentDecl(); 3353 llvm::GlobalValue *GV = GetGlobalValue(I.second); 3354 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3355 } 3356 } 3357 3358 void CodeGenModule::EmitCoverageFile() { 3359 if (!getCodeGenOpts().CoverageFile.empty()) { 3360 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3361 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3362 llvm::LLVMContext &Ctx = TheModule.getContext(); 3363 llvm::MDString *CoverageFile = 3364 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3365 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3366 llvm::MDNode *CU = CUNode->getOperand(i); 3367 llvm::Value *node[] = { CoverageFile, CU }; 3368 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3369 GCov->addOperand(N); 3370 } 3371 } 3372 } 3373 } 3374 3375 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3376 QualType GuidType) { 3377 // Sema has checked that all uuid strings are of the form 3378 // "12345678-1234-1234-1234-1234567890ab". 3379 assert(Uuid.size() == 36); 3380 for (unsigned i = 0; i < 36; ++i) { 3381 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3382 else assert(isHexDigit(Uuid[i])); 3383 } 3384 3385 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3386 3387 llvm::Constant *Field3[8]; 3388 for (unsigned Idx = 0; Idx < 8; ++Idx) 3389 Field3[Idx] = llvm::ConstantInt::get( 3390 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3391 3392 llvm::Constant *Fields[4] = { 3393 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3394 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3395 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3396 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3397 }; 3398 3399 return llvm::ConstantStruct::getAnon(Fields); 3400 } 3401 3402 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3403 bool ForEH) { 3404 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3405 // FIXME: should we even be calling this method if RTTI is disabled 3406 // and it's not for EH? 3407 if (!ForEH && !getLangOpts().RTTI) 3408 return llvm::Constant::getNullValue(Int8PtrTy); 3409 3410 if (ForEH && Ty->isObjCObjectPointerType() && 3411 LangOpts.ObjCRuntime.isGNUFamily()) 3412 return ObjCRuntime->GetEHType(Ty); 3413 3414 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3415 } 3416 3417