xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 15a1769631ff0b2b3e830b03e51ae5f54f08a0ab)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeGPU.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/FileManager.h"
42 #include "clang/Basic/Module.h"
43 #include "clang/Basic/SourceManager.h"
44 #include "clang/Basic/TargetInfo.h"
45 #include "clang/Basic/Version.h"
46 #include "clang/CodeGen/BackendUtil.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 #include "llvm/Support/X86TargetParser.h"
67 
68 using namespace clang;
69 using namespace CodeGen;
70 
71 static llvm::cl::opt<bool> LimitedCoverage(
72     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
73     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
74     llvm::cl::init(false));
75 
76 static const char AnnotationSection[] = "llvm.metadata";
77 
78 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
79   switch (CGM.getContext().getCXXABIKind()) {
80   case TargetCXXABI::AppleARM64:
81   case TargetCXXABI::Fuchsia:
82   case TargetCXXABI::GenericAArch64:
83   case TargetCXXABI::GenericARM:
84   case TargetCXXABI::iOS:
85   case TargetCXXABI::WatchOS:
86   case TargetCXXABI::GenericMIPS:
87   case TargetCXXABI::GenericItanium:
88   case TargetCXXABI::WebAssembly:
89   case TargetCXXABI::XL:
90     return CreateItaniumCXXABI(CGM);
91   case TargetCXXABI::Microsoft:
92     return CreateMicrosoftCXXABI(CGM);
93   }
94 
95   llvm_unreachable("invalid C++ ABI kind");
96 }
97 
98 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
99                              const PreprocessorOptions &PPO,
100                              const CodeGenOptions &CGO, llvm::Module &M,
101                              DiagnosticsEngine &diags,
102                              CoverageSourceInfo *CoverageInfo)
103     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
104       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
105       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
106       VMContext(M.getContext()), Types(*this), VTables(*this),
107       SanitizerMD(new SanitizerMetadata(*this)) {
108 
109   // Initialize the type cache.
110   llvm::LLVMContext &LLVMContext = M.getContext();
111   VoidTy = llvm::Type::getVoidTy(LLVMContext);
112   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
113   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
114   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
115   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
116   HalfTy = llvm::Type::getHalfTy(LLVMContext);
117   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
118   FloatTy = llvm::Type::getFloatTy(LLVMContext);
119   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
120   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
121   PointerAlignInBytes =
122     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
123   SizeSizeInBytes =
124     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
125   IntAlignInBytes =
126     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
127   CharTy =
128     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
129   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
130   IntPtrTy = llvm::IntegerType::get(LLVMContext,
131     C.getTargetInfo().getMaxPointerWidth());
132   Int8PtrTy = Int8Ty->getPointerTo(0);
133   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
134   const llvm::DataLayout &DL = M.getDataLayout();
135   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
136   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
137   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
138 
139   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
140 
141   if (LangOpts.ObjC)
142     createObjCRuntime();
143   if (LangOpts.OpenCL)
144     createOpenCLRuntime();
145   if (LangOpts.OpenMP)
146     createOpenMPRuntime();
147   if (LangOpts.CUDA)
148     createCUDARuntime();
149 
150   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
151   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
152       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
153     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
154                                getCXXABI().getMangleContext()));
155 
156   // If debug info or coverage generation is enabled, create the CGDebugInfo
157   // object.
158   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
159       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
160     DebugInfo.reset(new CGDebugInfo(*this));
161 
162   Block.GlobalUniqueCount = 0;
163 
164   if (C.getLangOpts().ObjC)
165     ObjCData.reset(new ObjCEntrypoints());
166 
167   if (CodeGenOpts.hasProfileClangUse()) {
168     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
169         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
170     if (auto E = ReaderOrErr.takeError()) {
171       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
172                                               "Could not read profile %0: %1");
173       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
174         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
175                                   << EI.message();
176       });
177     } else
178       PGOReader = std::move(ReaderOrErr.get());
179   }
180 
181   // If coverage mapping generation is enabled, create the
182   // CoverageMappingModuleGen object.
183   if (CodeGenOpts.CoverageMapping)
184     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
185 
186   // Generate the module name hash here if needed.
187   if (CodeGenOpts.UniqueInternalLinkageNames &&
188       !getModule().getSourceFileName().empty()) {
189     std::string Path = getModule().getSourceFileName();
190     // Check if a path substitution is needed from the MacroPrefixMap.
191     for (const auto &Entry : LangOpts.MacroPrefixMap)
192       if (Path.rfind(Entry.first, 0) != std::string::npos) {
193         Path = Entry.second + Path.substr(Entry.first.size());
194         break;
195       }
196     llvm::MD5 Md5;
197     Md5.update(Path);
198     llvm::MD5::MD5Result R;
199     Md5.final(R);
200     SmallString<32> Str;
201     llvm::MD5::stringifyResult(R, Str);
202     // Convert MD5hash to Decimal. Demangler suffixes can either contain
203     // numbers or characters but not both.
204     llvm::APInt IntHash(128, Str.str(), 16);
205     // Prepend "__uniq" before the hash for tools like profilers to understand
206     // that this symbol is of internal linkage type.  The "__uniq" is the
207     // pre-determined prefix that is used to tell tools that this symbol was
208     // created with -funique-internal-linakge-symbols and the tools can strip or
209     // keep the prefix as needed.
210     ModuleNameHash = (Twine(".__uniq.") +
211         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
212   }
213 }
214 
215 CodeGenModule::~CodeGenModule() {}
216 
217 void CodeGenModule::createObjCRuntime() {
218   // This is just isGNUFamily(), but we want to force implementors of
219   // new ABIs to decide how best to do this.
220   switch (LangOpts.ObjCRuntime.getKind()) {
221   case ObjCRuntime::GNUstep:
222   case ObjCRuntime::GCC:
223   case ObjCRuntime::ObjFW:
224     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
225     return;
226 
227   case ObjCRuntime::FragileMacOSX:
228   case ObjCRuntime::MacOSX:
229   case ObjCRuntime::iOS:
230   case ObjCRuntime::WatchOS:
231     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
232     return;
233   }
234   llvm_unreachable("bad runtime kind");
235 }
236 
237 void CodeGenModule::createOpenCLRuntime() {
238   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
239 }
240 
241 void CodeGenModule::createOpenMPRuntime() {
242   // Select a specialized code generation class based on the target, if any.
243   // If it does not exist use the default implementation.
244   switch (getTriple().getArch()) {
245   case llvm::Triple::nvptx:
246   case llvm::Triple::nvptx64:
247   case llvm::Triple::amdgcn:
248     assert(getLangOpts().OpenMPIsDevice &&
249            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
250     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
251     break;
252   default:
253     if (LangOpts.OpenMPSimd)
254       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
255     else
256       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
257     break;
258   }
259 }
260 
261 void CodeGenModule::createCUDARuntime() {
262   CUDARuntime.reset(CreateNVCUDARuntime(*this));
263 }
264 
265 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
266   Replacements[Name] = C;
267 }
268 
269 void CodeGenModule::applyReplacements() {
270   for (auto &I : Replacements) {
271     StringRef MangledName = I.first();
272     llvm::Constant *Replacement = I.second;
273     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
274     if (!Entry)
275       continue;
276     auto *OldF = cast<llvm::Function>(Entry);
277     auto *NewF = dyn_cast<llvm::Function>(Replacement);
278     if (!NewF) {
279       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
280         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
281       } else {
282         auto *CE = cast<llvm::ConstantExpr>(Replacement);
283         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
284                CE->getOpcode() == llvm::Instruction::GetElementPtr);
285         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
286       }
287     }
288 
289     // Replace old with new, but keep the old order.
290     OldF->replaceAllUsesWith(Replacement);
291     if (NewF) {
292       NewF->removeFromParent();
293       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
294                                                        NewF);
295     }
296     OldF->eraseFromParent();
297   }
298 }
299 
300 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
301   GlobalValReplacements.push_back(std::make_pair(GV, C));
302 }
303 
304 void CodeGenModule::applyGlobalValReplacements() {
305   for (auto &I : GlobalValReplacements) {
306     llvm::GlobalValue *GV = I.first;
307     llvm::Constant *C = I.second;
308 
309     GV->replaceAllUsesWith(C);
310     GV->eraseFromParent();
311   }
312 }
313 
314 // This is only used in aliases that we created and we know they have a
315 // linear structure.
316 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
317   const llvm::Constant *C;
318   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
319     C = GA->getAliasee();
320   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
321     C = GI->getResolver();
322   else
323     return GV;
324 
325   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
326   if (!AliaseeGV)
327     return nullptr;
328 
329   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
330   if (FinalGV == GV)
331     return nullptr;
332 
333   return FinalGV;
334 }
335 
336 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
337                                SourceLocation Location, bool IsIFunc,
338                                const llvm::GlobalValue *Alias,
339                                const llvm::GlobalValue *&GV) {
340   GV = getAliasedGlobal(Alias);
341   if (!GV) {
342     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
343     return false;
344   }
345 
346   if (GV->isDeclaration()) {
347     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
348     return false;
349   }
350 
351   if (IsIFunc) {
352     // Check resolver function type.
353     const auto *F = dyn_cast<llvm::Function>(GV);
354     if (!F) {
355       Diags.Report(Location, diag::err_alias_to_undefined)
356           << IsIFunc << IsIFunc;
357       return false;
358     }
359 
360     llvm::FunctionType *FTy = F->getFunctionType();
361     if (!FTy->getReturnType()->isPointerTy()) {
362       Diags.Report(Location, diag::err_ifunc_resolver_return);
363       return false;
364     }
365   }
366 
367   return true;
368 }
369 
370 void CodeGenModule::checkAliases() {
371   // Check if the constructed aliases are well formed. It is really unfortunate
372   // that we have to do this in CodeGen, but we only construct mangled names
373   // and aliases during codegen.
374   bool Error = false;
375   DiagnosticsEngine &Diags = getDiags();
376   for (const GlobalDecl &GD : Aliases) {
377     const auto *D = cast<ValueDecl>(GD.getDecl());
378     SourceLocation Location;
379     bool IsIFunc = D->hasAttr<IFuncAttr>();
380     if (const Attr *A = D->getDefiningAttr())
381       Location = A->getLocation();
382     else
383       llvm_unreachable("Not an alias or ifunc?");
384 
385     StringRef MangledName = getMangledName(GD);
386     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
387     const llvm::GlobalValue *GV = nullptr;
388     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
389       Error = true;
390       continue;
391     }
392 
393     llvm::Constant *Aliasee =
394         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
395                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
396 
397     llvm::GlobalValue *AliaseeGV;
398     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
399       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
400     else
401       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
402 
403     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
404       StringRef AliasSection = SA->getName();
405       if (AliasSection != AliaseeGV->getSection())
406         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
407             << AliasSection << IsIFunc << IsIFunc;
408     }
409 
410     // We have to handle alias to weak aliases in here. LLVM itself disallows
411     // this since the object semantics would not match the IL one. For
412     // compatibility with gcc we implement it by just pointing the alias
413     // to its aliasee's aliasee. We also warn, since the user is probably
414     // expecting the link to be weak.
415     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
416       if (GA->isInterposable()) {
417         Diags.Report(Location, diag::warn_alias_to_weak_alias)
418             << GV->getName() << GA->getName() << IsIFunc;
419         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
420             GA->getAliasee(), Alias->getType());
421 
422         if (IsIFunc)
423           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
424         else
425           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
426       }
427     }
428   }
429   if (!Error)
430     return;
431 
432   for (const GlobalDecl &GD : Aliases) {
433     StringRef MangledName = getMangledName(GD);
434     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
435     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
436     Alias->eraseFromParent();
437   }
438 }
439 
440 void CodeGenModule::clear() {
441   DeferredDeclsToEmit.clear();
442   if (OpenMPRuntime)
443     OpenMPRuntime->clear();
444 }
445 
446 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
447                                        StringRef MainFile) {
448   if (!hasDiagnostics())
449     return;
450   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
451     if (MainFile.empty())
452       MainFile = "<stdin>";
453     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
454   } else {
455     if (Mismatched > 0)
456       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
457 
458     if (Missing > 0)
459       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
460   }
461 }
462 
463 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
464                                              llvm::Module &M) {
465   if (!LO.VisibilityFromDLLStorageClass)
466     return;
467 
468   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
469       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
470   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
471       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
472   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
473       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
474   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
475       CodeGenModule::GetLLVMVisibility(
476           LO.getExternDeclNoDLLStorageClassVisibility());
477 
478   for (llvm::GlobalValue &GV : M.global_values()) {
479     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
480       continue;
481 
482     // Reset DSO locality before setting the visibility. This removes
483     // any effects that visibility options and annotations may have
484     // had on the DSO locality. Setting the visibility will implicitly set
485     // appropriate globals to DSO Local; however, this will be pessimistic
486     // w.r.t. to the normal compiler IRGen.
487     GV.setDSOLocal(false);
488 
489     if (GV.isDeclarationForLinker()) {
490       GV.setVisibility(GV.getDLLStorageClass() ==
491                                llvm::GlobalValue::DLLImportStorageClass
492                            ? ExternDeclDLLImportVisibility
493                            : ExternDeclNoDLLStorageClassVisibility);
494     } else {
495       GV.setVisibility(GV.getDLLStorageClass() ==
496                                llvm::GlobalValue::DLLExportStorageClass
497                            ? DLLExportVisibility
498                            : NoDLLStorageClassVisibility);
499     }
500 
501     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
502   }
503 }
504 
505 void CodeGenModule::Release() {
506   EmitDeferred();
507   EmitVTablesOpportunistically();
508   applyGlobalValReplacements();
509   applyReplacements();
510   emitMultiVersionFunctions();
511   EmitCXXGlobalInitFunc();
512   EmitCXXGlobalCleanUpFunc();
513   registerGlobalDtorsWithAtExit();
514   EmitCXXThreadLocalInitFunc();
515   if (ObjCRuntime)
516     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
517       AddGlobalCtor(ObjCInitFunction);
518   if (Context.getLangOpts().CUDA && CUDARuntime) {
519     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
520       AddGlobalCtor(CudaCtorFunction);
521   }
522   if (OpenMPRuntime) {
523     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
524             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
525       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
526     }
527     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
528     OpenMPRuntime->clear();
529   }
530   if (PGOReader) {
531     getModule().setProfileSummary(
532         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
533         llvm::ProfileSummary::PSK_Instr);
534     if (PGOStats.hasDiagnostics())
535       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
536   }
537   EmitCtorList(GlobalCtors, "llvm.global_ctors");
538   EmitCtorList(GlobalDtors, "llvm.global_dtors");
539   EmitGlobalAnnotations();
540   EmitStaticExternCAliases();
541   checkAliases();
542   EmitDeferredUnusedCoverageMappings();
543   CodeGenPGO(*this).setValueProfilingFlag(getModule());
544   if (CoverageMapping)
545     CoverageMapping->emit();
546   if (CodeGenOpts.SanitizeCfiCrossDso) {
547     CodeGenFunction(*this).EmitCfiCheckFail();
548     CodeGenFunction(*this).EmitCfiCheckStub();
549   }
550   emitAtAvailableLinkGuard();
551   if (Context.getTargetInfo().getTriple().isWasm() &&
552       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
553     EmitMainVoidAlias();
554   }
555 
556   if (getTriple().isAMDGPU()) {
557     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
558     // preserve ASAN functions in bitcode libraries.
559     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
560       auto *FT = llvm::FunctionType::get(VoidTy, {});
561       auto *F = llvm::Function::Create(
562           FT, llvm::GlobalValue::ExternalLinkage,
563           "__amdgpu_device_library_preserve_asan_functions", &getModule());
564       auto *Var = new llvm::GlobalVariable(
565           getModule(), FT->getPointerTo(),
566           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
567           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
568           llvm::GlobalVariable::NotThreadLocal);
569       addCompilerUsedGlobal(Var);
570     }
571     // Emit amdgpu_code_object_version module flag, which is code object version
572     // times 100.
573     // ToDo: Enable module flag for all code object version when ROCm device
574     // library is ready.
575     if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) {
576       getModule().addModuleFlag(llvm::Module::Error,
577                                 "amdgpu_code_object_version",
578                                 getTarget().getTargetOpts().CodeObjectVersion);
579     }
580   }
581 
582   emitLLVMUsed();
583   if (SanStats)
584     SanStats->finish();
585 
586   if (CodeGenOpts.Autolink &&
587       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
588     EmitModuleLinkOptions();
589   }
590 
591   // On ELF we pass the dependent library specifiers directly to the linker
592   // without manipulating them. This is in contrast to other platforms where
593   // they are mapped to a specific linker option by the compiler. This
594   // difference is a result of the greater variety of ELF linkers and the fact
595   // that ELF linkers tend to handle libraries in a more complicated fashion
596   // than on other platforms. This forces us to defer handling the dependent
597   // libs to the linker.
598   //
599   // CUDA/HIP device and host libraries are different. Currently there is no
600   // way to differentiate dependent libraries for host or device. Existing
601   // usage of #pragma comment(lib, *) is intended for host libraries on
602   // Windows. Therefore emit llvm.dependent-libraries only for host.
603   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
604     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
605     for (auto *MD : ELFDependentLibraries)
606       NMD->addOperand(MD);
607   }
608 
609   // Record mregparm value now so it is visible through rest of codegen.
610   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
611     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
612                               CodeGenOpts.NumRegisterParameters);
613 
614   if (CodeGenOpts.DwarfVersion) {
615     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
616                               CodeGenOpts.DwarfVersion);
617   }
618 
619   if (CodeGenOpts.Dwarf64)
620     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
621 
622   if (Context.getLangOpts().SemanticInterposition)
623     // Require various optimization to respect semantic interposition.
624     getModule().setSemanticInterposition(true);
625 
626   if (CodeGenOpts.EmitCodeView) {
627     // Indicate that we want CodeView in the metadata.
628     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
629   }
630   if (CodeGenOpts.CodeViewGHash) {
631     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
632   }
633   if (CodeGenOpts.ControlFlowGuard) {
634     // Function ID tables and checks for Control Flow Guard (cfguard=2).
635     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
636   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
637     // Function ID tables for Control Flow Guard (cfguard=1).
638     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
639   }
640   if (CodeGenOpts.EHContGuard) {
641     // Function ID tables for EH Continuation Guard.
642     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
643   }
644   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
645     // We don't support LTO with 2 with different StrictVTablePointers
646     // FIXME: we could support it by stripping all the information introduced
647     // by StrictVTablePointers.
648 
649     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
650 
651     llvm::Metadata *Ops[2] = {
652               llvm::MDString::get(VMContext, "StrictVTablePointers"),
653               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
654                   llvm::Type::getInt32Ty(VMContext), 1))};
655 
656     getModule().addModuleFlag(llvm::Module::Require,
657                               "StrictVTablePointersRequirement",
658                               llvm::MDNode::get(VMContext, Ops));
659   }
660   if (getModuleDebugInfo())
661     // We support a single version in the linked module. The LLVM
662     // parser will drop debug info with a different version number
663     // (and warn about it, too).
664     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
665                               llvm::DEBUG_METADATA_VERSION);
666 
667   // We need to record the widths of enums and wchar_t, so that we can generate
668   // the correct build attributes in the ARM backend. wchar_size is also used by
669   // TargetLibraryInfo.
670   uint64_t WCharWidth =
671       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
672   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
673 
674   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
675   if (   Arch == llvm::Triple::arm
676       || Arch == llvm::Triple::armeb
677       || Arch == llvm::Triple::thumb
678       || Arch == llvm::Triple::thumbeb) {
679     // The minimum width of an enum in bytes
680     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
681     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
682   }
683 
684   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
685     StringRef ABIStr = Target.getABI();
686     llvm::LLVMContext &Ctx = TheModule.getContext();
687     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
688                               llvm::MDString::get(Ctx, ABIStr));
689   }
690 
691   if (CodeGenOpts.SanitizeCfiCrossDso) {
692     // Indicate that we want cross-DSO control flow integrity checks.
693     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
694   }
695 
696   if (CodeGenOpts.WholeProgramVTables) {
697     // Indicate whether VFE was enabled for this module, so that the
698     // vcall_visibility metadata added under whole program vtables is handled
699     // appropriately in the optimizer.
700     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
701                               CodeGenOpts.VirtualFunctionElimination);
702   }
703 
704   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
705     getModule().addModuleFlag(llvm::Module::Override,
706                               "CFI Canonical Jump Tables",
707                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
708   }
709 
710   if (CodeGenOpts.CFProtectionReturn &&
711       Target.checkCFProtectionReturnSupported(getDiags())) {
712     // Indicate that we want to instrument return control flow protection.
713     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
714                               1);
715   }
716 
717   if (CodeGenOpts.CFProtectionBranch &&
718       Target.checkCFProtectionBranchSupported(getDiags())) {
719     // Indicate that we want to instrument branch control flow protection.
720     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
721                               1);
722   }
723 
724   if (CodeGenOpts.IBTSeal)
725     getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1);
726 
727   // Add module metadata for return address signing (ignoring
728   // non-leaf/all) and stack tagging. These are actually turned on by function
729   // attributes, but we use module metadata to emit build attributes. This is
730   // needed for LTO, where the function attributes are inside bitcode
731   // serialised into a global variable by the time build attributes are
732   // emitted, so we can't access them.
733   if (Context.getTargetInfo().hasFeature("ptrauth") &&
734       LangOpts.getSignReturnAddressScope() !=
735           LangOptions::SignReturnAddressScopeKind::None)
736     getModule().addModuleFlag(llvm::Module::Override,
737                               "sign-return-address-buildattr", 1);
738   if (LangOpts.Sanitize.has(SanitizerKind::MemTag))
739     getModule().addModuleFlag(llvm::Module::Override,
740                               "tag-stack-memory-buildattr", 1);
741 
742   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
743       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
744       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
745       Arch == llvm::Triple::aarch64_be) {
746     getModule().addModuleFlag(llvm::Module::Error, "branch-target-enforcement",
747                               LangOpts.BranchTargetEnforcement);
748 
749     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
750                               LangOpts.hasSignReturnAddress());
751 
752     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
753                               LangOpts.isSignReturnAddressScopeAll());
754 
755     getModule().addModuleFlag(llvm::Module::Error,
756                               "sign-return-address-with-bkey",
757                               !LangOpts.isSignReturnAddressWithAKey());
758   }
759 
760   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
761     llvm::LLVMContext &Ctx = TheModule.getContext();
762     getModule().addModuleFlag(
763         llvm::Module::Error, "MemProfProfileFilename",
764         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
765   }
766 
767   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
768     // Indicate whether __nvvm_reflect should be configured to flush denormal
769     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
770     // property.)
771     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
772                               CodeGenOpts.FP32DenormalMode.Output !=
773                                   llvm::DenormalMode::IEEE);
774   }
775 
776   if (LangOpts.EHAsynch)
777     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
778 
779   // Indicate whether this Module was compiled with -fopenmp
780   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
781     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
782   if (getLangOpts().OpenMPIsDevice)
783     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
784                               LangOpts.OpenMP);
785 
786   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
787   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
788     EmitOpenCLMetadata();
789     // Emit SPIR version.
790     if (getTriple().isSPIR()) {
791       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
792       // opencl.spir.version named metadata.
793       // C++ for OpenCL has a distinct mapping for version compatibility with
794       // OpenCL.
795       auto Version = LangOpts.getOpenCLCompatibleVersion();
796       llvm::Metadata *SPIRVerElts[] = {
797           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
798               Int32Ty, Version / 100)),
799           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
800               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
801       llvm::NamedMDNode *SPIRVerMD =
802           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
803       llvm::LLVMContext &Ctx = TheModule.getContext();
804       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
805     }
806   }
807 
808   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
809     assert(PLevel < 3 && "Invalid PIC Level");
810     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
811     if (Context.getLangOpts().PIE)
812       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
813   }
814 
815   if (getCodeGenOpts().CodeModel.size() > 0) {
816     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
817                   .Case("tiny", llvm::CodeModel::Tiny)
818                   .Case("small", llvm::CodeModel::Small)
819                   .Case("kernel", llvm::CodeModel::Kernel)
820                   .Case("medium", llvm::CodeModel::Medium)
821                   .Case("large", llvm::CodeModel::Large)
822                   .Default(~0u);
823     if (CM != ~0u) {
824       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
825       getModule().setCodeModel(codeModel);
826     }
827   }
828 
829   if (CodeGenOpts.NoPLT)
830     getModule().setRtLibUseGOT();
831   if (CodeGenOpts.UnwindTables)
832     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
833 
834   switch (CodeGenOpts.getFramePointer()) {
835   case CodeGenOptions::FramePointerKind::None:
836     // 0 ("none") is the default.
837     break;
838   case CodeGenOptions::FramePointerKind::NonLeaf:
839     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
840     break;
841   case CodeGenOptions::FramePointerKind::All:
842     getModule().setFramePointer(llvm::FramePointerKind::All);
843     break;
844   }
845 
846   SimplifyPersonality();
847 
848   if (getCodeGenOpts().EmitDeclMetadata)
849     EmitDeclMetadata();
850 
851   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
852     EmitCoverageFile();
853 
854   if (CGDebugInfo *DI = getModuleDebugInfo())
855     DI->finalize();
856 
857   if (getCodeGenOpts().EmitVersionIdentMetadata)
858     EmitVersionIdentMetadata();
859 
860   if (!getCodeGenOpts().RecordCommandLine.empty())
861     EmitCommandLineMetadata();
862 
863   if (!getCodeGenOpts().StackProtectorGuard.empty())
864     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
865   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
866     getModule().setStackProtectorGuardReg(
867         getCodeGenOpts().StackProtectorGuardReg);
868   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
869     getModule().setStackProtectorGuardOffset(
870         getCodeGenOpts().StackProtectorGuardOffset);
871   if (getCodeGenOpts().StackAlignment)
872     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
873   if (getCodeGenOpts().SkipRaxSetup)
874     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
875 
876   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
877 
878   EmitBackendOptionsMetadata(getCodeGenOpts());
879 
880   // If there is device offloading code embed it in the host now.
881   EmbedObject(&getModule(), CodeGenOpts, getDiags());
882 
883   // Set visibility from DLL storage class
884   // We do this at the end of LLVM IR generation; after any operation
885   // that might affect the DLL storage class or the visibility, and
886   // before anything that might act on these.
887   setVisibilityFromDLLStorageClass(LangOpts, getModule());
888 }
889 
890 void CodeGenModule::EmitOpenCLMetadata() {
891   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
892   // opencl.ocl.version named metadata node.
893   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
894   auto Version = LangOpts.getOpenCLCompatibleVersion();
895   llvm::Metadata *OCLVerElts[] = {
896       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
897           Int32Ty, Version / 100)),
898       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
899           Int32Ty, (Version % 100) / 10))};
900   llvm::NamedMDNode *OCLVerMD =
901       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
902   llvm::LLVMContext &Ctx = TheModule.getContext();
903   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
904 }
905 
906 void CodeGenModule::EmitBackendOptionsMetadata(
907     const CodeGenOptions CodeGenOpts) {
908   switch (getTriple().getArch()) {
909   default:
910     break;
911   case llvm::Triple::riscv32:
912   case llvm::Triple::riscv64:
913     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
914                               CodeGenOpts.SmallDataLimit);
915     break;
916   }
917 }
918 
919 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
920   // Make sure that this type is translated.
921   Types.UpdateCompletedType(TD);
922 }
923 
924 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
925   // Make sure that this type is translated.
926   Types.RefreshTypeCacheForClass(RD);
927 }
928 
929 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
930   if (!TBAA)
931     return nullptr;
932   return TBAA->getTypeInfo(QTy);
933 }
934 
935 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
936   if (!TBAA)
937     return TBAAAccessInfo();
938   if (getLangOpts().CUDAIsDevice) {
939     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
940     // access info.
941     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
942       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
943           nullptr)
944         return TBAAAccessInfo();
945     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
946       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
947           nullptr)
948         return TBAAAccessInfo();
949     }
950   }
951   return TBAA->getAccessInfo(AccessType);
952 }
953 
954 TBAAAccessInfo
955 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
956   if (!TBAA)
957     return TBAAAccessInfo();
958   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
959 }
960 
961 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
962   if (!TBAA)
963     return nullptr;
964   return TBAA->getTBAAStructInfo(QTy);
965 }
966 
967 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
968   if (!TBAA)
969     return nullptr;
970   return TBAA->getBaseTypeInfo(QTy);
971 }
972 
973 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
974   if (!TBAA)
975     return nullptr;
976   return TBAA->getAccessTagInfo(Info);
977 }
978 
979 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
980                                                    TBAAAccessInfo TargetInfo) {
981   if (!TBAA)
982     return TBAAAccessInfo();
983   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
984 }
985 
986 TBAAAccessInfo
987 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
988                                                    TBAAAccessInfo InfoB) {
989   if (!TBAA)
990     return TBAAAccessInfo();
991   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
992 }
993 
994 TBAAAccessInfo
995 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
996                                               TBAAAccessInfo SrcInfo) {
997   if (!TBAA)
998     return TBAAAccessInfo();
999   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1000 }
1001 
1002 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1003                                                 TBAAAccessInfo TBAAInfo) {
1004   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1005     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1006 }
1007 
1008 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1009     llvm::Instruction *I, const CXXRecordDecl *RD) {
1010   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1011                  llvm::MDNode::get(getLLVMContext(), {}));
1012 }
1013 
1014 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1015   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1016   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1017 }
1018 
1019 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1020 /// specified stmt yet.
1021 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1022   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1023                                                "cannot compile this %0 yet");
1024   std::string Msg = Type;
1025   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1026       << Msg << S->getSourceRange();
1027 }
1028 
1029 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1030 /// specified decl yet.
1031 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1032   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1033                                                "cannot compile this %0 yet");
1034   std::string Msg = Type;
1035   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1036 }
1037 
1038 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1039   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1040 }
1041 
1042 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1043                                         const NamedDecl *D) const {
1044   if (GV->hasDLLImportStorageClass())
1045     return;
1046   // Internal definitions always have default visibility.
1047   if (GV->hasLocalLinkage()) {
1048     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1049     return;
1050   }
1051   if (!D)
1052     return;
1053   // Set visibility for definitions, and for declarations if requested globally
1054   // or set explicitly.
1055   LinkageInfo LV = D->getLinkageAndVisibility();
1056   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1057       !GV->isDeclarationForLinker())
1058     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1059 }
1060 
1061 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1062                                  llvm::GlobalValue *GV) {
1063   if (GV->hasLocalLinkage())
1064     return true;
1065 
1066   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1067     return true;
1068 
1069   // DLLImport explicitly marks the GV as external.
1070   if (GV->hasDLLImportStorageClass())
1071     return false;
1072 
1073   const llvm::Triple &TT = CGM.getTriple();
1074   if (TT.isWindowsGNUEnvironment()) {
1075     // In MinGW, variables without DLLImport can still be automatically
1076     // imported from a DLL by the linker; don't mark variables that
1077     // potentially could come from another DLL as DSO local.
1078 
1079     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1080     // (and this actually happens in the public interface of libstdc++), so
1081     // such variables can't be marked as DSO local. (Native TLS variables
1082     // can't be dllimported at all, though.)
1083     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1084         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1085       return false;
1086   }
1087 
1088   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1089   // remain unresolved in the link, they can be resolved to zero, which is
1090   // outside the current DSO.
1091   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1092     return false;
1093 
1094   // Every other GV is local on COFF.
1095   // Make an exception for windows OS in the triple: Some firmware builds use
1096   // *-win32-macho triples. This (accidentally?) produced windows relocations
1097   // without GOT tables in older clang versions; Keep this behaviour.
1098   // FIXME: even thread local variables?
1099   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1100     return true;
1101 
1102   // Only handle COFF and ELF for now.
1103   if (!TT.isOSBinFormatELF())
1104     return false;
1105 
1106   // If this is not an executable, don't assume anything is local.
1107   const auto &CGOpts = CGM.getCodeGenOpts();
1108   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1109   const auto &LOpts = CGM.getLangOpts();
1110   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1111     // On ELF, if -fno-semantic-interposition is specified and the target
1112     // supports local aliases, there will be neither CC1
1113     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1114     // dso_local on the function if using a local alias is preferable (can avoid
1115     // PLT indirection).
1116     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1117       return false;
1118     return !(CGM.getLangOpts().SemanticInterposition ||
1119              CGM.getLangOpts().HalfNoSemanticInterposition);
1120   }
1121 
1122   // A definition cannot be preempted from an executable.
1123   if (!GV->isDeclarationForLinker())
1124     return true;
1125 
1126   // Most PIC code sequences that assume that a symbol is local cannot produce a
1127   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1128   // depended, it seems worth it to handle it here.
1129   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1130     return false;
1131 
1132   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1133   if (TT.isPPC64())
1134     return false;
1135 
1136   if (CGOpts.DirectAccessExternalData) {
1137     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1138     // for non-thread-local variables. If the symbol is not defined in the
1139     // executable, a copy relocation will be needed at link time. dso_local is
1140     // excluded for thread-local variables because they generally don't support
1141     // copy relocations.
1142     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1143       if (!Var->isThreadLocal())
1144         return true;
1145 
1146     // -fno-pic sets dso_local on a function declaration to allow direct
1147     // accesses when taking its address (similar to a data symbol). If the
1148     // function is not defined in the executable, a canonical PLT entry will be
1149     // needed at link time. -fno-direct-access-external-data can avoid the
1150     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1151     // it could just cause trouble without providing perceptible benefits.
1152     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1153       return true;
1154   }
1155 
1156   // If we can use copy relocations we can assume it is local.
1157 
1158   // Otherwise don't assume it is local.
1159   return false;
1160 }
1161 
1162 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1163   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1164 }
1165 
1166 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1167                                           GlobalDecl GD) const {
1168   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1169   // C++ destructors have a few C++ ABI specific special cases.
1170   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1171     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1172     return;
1173   }
1174   setDLLImportDLLExport(GV, D);
1175 }
1176 
1177 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1178                                           const NamedDecl *D) const {
1179   if (D && D->isExternallyVisible()) {
1180     if (D->hasAttr<DLLImportAttr>())
1181       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1182     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1183       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1184   }
1185 }
1186 
1187 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1188                                     GlobalDecl GD) const {
1189   setDLLImportDLLExport(GV, GD);
1190   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1191 }
1192 
1193 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1194                                     const NamedDecl *D) const {
1195   setDLLImportDLLExport(GV, D);
1196   setGVPropertiesAux(GV, D);
1197 }
1198 
1199 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1200                                        const NamedDecl *D) const {
1201   setGlobalVisibility(GV, D);
1202   setDSOLocal(GV);
1203   GV->setPartition(CodeGenOpts.SymbolPartition);
1204 }
1205 
1206 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1207   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1208       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1209       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1210       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1211       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1212 }
1213 
1214 llvm::GlobalVariable::ThreadLocalMode
1215 CodeGenModule::GetDefaultLLVMTLSModel() const {
1216   switch (CodeGenOpts.getDefaultTLSModel()) {
1217   case CodeGenOptions::GeneralDynamicTLSModel:
1218     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1219   case CodeGenOptions::LocalDynamicTLSModel:
1220     return llvm::GlobalVariable::LocalDynamicTLSModel;
1221   case CodeGenOptions::InitialExecTLSModel:
1222     return llvm::GlobalVariable::InitialExecTLSModel;
1223   case CodeGenOptions::LocalExecTLSModel:
1224     return llvm::GlobalVariable::LocalExecTLSModel;
1225   }
1226   llvm_unreachable("Invalid TLS model!");
1227 }
1228 
1229 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1230   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1231 
1232   llvm::GlobalValue::ThreadLocalMode TLM;
1233   TLM = GetDefaultLLVMTLSModel();
1234 
1235   // Override the TLS model if it is explicitly specified.
1236   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1237     TLM = GetLLVMTLSModel(Attr->getModel());
1238   }
1239 
1240   GV->setThreadLocalMode(TLM);
1241 }
1242 
1243 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1244                                           StringRef Name) {
1245   const TargetInfo &Target = CGM.getTarget();
1246   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1247 }
1248 
1249 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1250                                                  const CPUSpecificAttr *Attr,
1251                                                  unsigned CPUIndex,
1252                                                  raw_ostream &Out) {
1253   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1254   // supported.
1255   if (Attr)
1256     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1257   else if (CGM.getTarget().supportsIFunc())
1258     Out << ".resolver";
1259 }
1260 
1261 static void AppendTargetMangling(const CodeGenModule &CGM,
1262                                  const TargetAttr *Attr, raw_ostream &Out) {
1263   if (Attr->isDefaultVersion())
1264     return;
1265 
1266   Out << '.';
1267   const TargetInfo &Target = CGM.getTarget();
1268   ParsedTargetAttr Info =
1269       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1270         // Multiversioning doesn't allow "no-${feature}", so we can
1271         // only have "+" prefixes here.
1272         assert(LHS.startswith("+") && RHS.startswith("+") &&
1273                "Features should always have a prefix.");
1274         return Target.multiVersionSortPriority(LHS.substr(1)) >
1275                Target.multiVersionSortPriority(RHS.substr(1));
1276       });
1277 
1278   bool IsFirst = true;
1279 
1280   if (!Info.Architecture.empty()) {
1281     IsFirst = false;
1282     Out << "arch_" << Info.Architecture;
1283   }
1284 
1285   for (StringRef Feat : Info.Features) {
1286     if (!IsFirst)
1287       Out << '_';
1288     IsFirst = false;
1289     Out << Feat.substr(1);
1290   }
1291 }
1292 
1293 // Returns true if GD is a function decl with internal linkage and
1294 // needs a unique suffix after the mangled name.
1295 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1296                                         CodeGenModule &CGM) {
1297   const Decl *D = GD.getDecl();
1298   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1299          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1300 }
1301 
1302 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1303                                        const TargetClonesAttr *Attr,
1304                                        unsigned VersionIndex,
1305                                        raw_ostream &Out) {
1306   Out << '.';
1307   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1308   if (FeatureStr.startswith("arch="))
1309     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1310   else
1311     Out << FeatureStr;
1312 
1313   Out << '.' << Attr->getMangledIndex(VersionIndex);
1314 }
1315 
1316 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1317                                       const NamedDecl *ND,
1318                                       bool OmitMultiVersionMangling = false) {
1319   SmallString<256> Buffer;
1320   llvm::raw_svector_ostream Out(Buffer);
1321   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1322   if (!CGM.getModuleNameHash().empty())
1323     MC.needsUniqueInternalLinkageNames();
1324   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1325   if (ShouldMangle)
1326     MC.mangleName(GD.getWithDecl(ND), Out);
1327   else {
1328     IdentifierInfo *II = ND->getIdentifier();
1329     assert(II && "Attempt to mangle unnamed decl.");
1330     const auto *FD = dyn_cast<FunctionDecl>(ND);
1331 
1332     if (FD &&
1333         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1334       Out << "__regcall3__" << II->getName();
1335     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1336                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1337       Out << "__device_stub__" << II->getName();
1338     } else {
1339       Out << II->getName();
1340     }
1341   }
1342 
1343   // Check if the module name hash should be appended for internal linkage
1344   // symbols.   This should come before multi-version target suffixes are
1345   // appended. This is to keep the name and module hash suffix of the
1346   // internal linkage function together.  The unique suffix should only be
1347   // added when name mangling is done to make sure that the final name can
1348   // be properly demangled.  For example, for C functions without prototypes,
1349   // name mangling is not done and the unique suffix should not be appeneded
1350   // then.
1351   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1352     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1353            "Hash computed when not explicitly requested");
1354     Out << CGM.getModuleNameHash();
1355   }
1356 
1357   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1358     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1359       switch (FD->getMultiVersionKind()) {
1360       case MultiVersionKind::CPUDispatch:
1361       case MultiVersionKind::CPUSpecific:
1362         AppendCPUSpecificCPUDispatchMangling(CGM,
1363                                              FD->getAttr<CPUSpecificAttr>(),
1364                                              GD.getMultiVersionIndex(), Out);
1365         break;
1366       case MultiVersionKind::Target:
1367         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1368         break;
1369       case MultiVersionKind::TargetClones:
1370         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1371                                    GD.getMultiVersionIndex(), Out);
1372         break;
1373       case MultiVersionKind::None:
1374         llvm_unreachable("None multiversion type isn't valid here");
1375       }
1376     }
1377 
1378   // Make unique name for device side static file-scope variable for HIP.
1379   if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
1380       CGM.getLangOpts().GPURelocatableDeviceCode &&
1381       CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
1382     CGM.printPostfixForExternalizedStaticVar(Out);
1383   return std::string(Out.str());
1384 }
1385 
1386 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1387                                             const FunctionDecl *FD,
1388                                             StringRef &CurName) {
1389   if (!FD->isMultiVersion())
1390     return;
1391 
1392   // Get the name of what this would be without the 'target' attribute.  This
1393   // allows us to lookup the version that was emitted when this wasn't a
1394   // multiversion function.
1395   std::string NonTargetName =
1396       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1397   GlobalDecl OtherGD;
1398   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1399     assert(OtherGD.getCanonicalDecl()
1400                .getDecl()
1401                ->getAsFunction()
1402                ->isMultiVersion() &&
1403            "Other GD should now be a multiversioned function");
1404     // OtherFD is the version of this function that was mangled BEFORE
1405     // becoming a MultiVersion function.  It potentially needs to be updated.
1406     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1407                                       .getDecl()
1408                                       ->getAsFunction()
1409                                       ->getMostRecentDecl();
1410     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1411     // This is so that if the initial version was already the 'default'
1412     // version, we don't try to update it.
1413     if (OtherName != NonTargetName) {
1414       // Remove instead of erase, since others may have stored the StringRef
1415       // to this.
1416       const auto ExistingRecord = Manglings.find(NonTargetName);
1417       if (ExistingRecord != std::end(Manglings))
1418         Manglings.remove(&(*ExistingRecord));
1419       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1420       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1421           Result.first->first();
1422       // If this is the current decl is being created, make sure we update the name.
1423       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1424         CurName = OtherNameRef;
1425       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1426         Entry->setName(OtherName);
1427     }
1428   }
1429 }
1430 
1431 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1432   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1433 
1434   // Some ABIs don't have constructor variants.  Make sure that base and
1435   // complete constructors get mangled the same.
1436   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1437     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1438       CXXCtorType OrigCtorType = GD.getCtorType();
1439       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1440       if (OrigCtorType == Ctor_Base)
1441         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1442     }
1443   }
1444 
1445   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1446   // static device variable depends on whether the variable is referenced by
1447   // a host or device host function. Therefore the mangled name cannot be
1448   // cached.
1449   if (!LangOpts.CUDAIsDevice ||
1450       !getContext().mayExternalizeStaticVar(GD.getDecl())) {
1451     auto FoundName = MangledDeclNames.find(CanonicalGD);
1452     if (FoundName != MangledDeclNames.end())
1453       return FoundName->second;
1454   }
1455 
1456   // Keep the first result in the case of a mangling collision.
1457   const auto *ND = cast<NamedDecl>(GD.getDecl());
1458   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1459 
1460   // Ensure either we have different ABIs between host and device compilations,
1461   // says host compilation following MSVC ABI but device compilation follows
1462   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1463   // mangling should be the same after name stubbing. The later checking is
1464   // very important as the device kernel name being mangled in host-compilation
1465   // is used to resolve the device binaries to be executed. Inconsistent naming
1466   // result in undefined behavior. Even though we cannot check that naming
1467   // directly between host- and device-compilations, the host- and
1468   // device-mangling in host compilation could help catching certain ones.
1469   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1470          getLangOpts().CUDAIsDevice ||
1471          (getContext().getAuxTargetInfo() &&
1472           (getContext().getAuxTargetInfo()->getCXXABI() !=
1473            getContext().getTargetInfo().getCXXABI())) ||
1474          getCUDARuntime().getDeviceSideName(ND) ==
1475              getMangledNameImpl(
1476                  *this,
1477                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1478                  ND));
1479 
1480   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1481   return MangledDeclNames[CanonicalGD] = Result.first->first();
1482 }
1483 
1484 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1485                                              const BlockDecl *BD) {
1486   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1487   const Decl *D = GD.getDecl();
1488 
1489   SmallString<256> Buffer;
1490   llvm::raw_svector_ostream Out(Buffer);
1491   if (!D)
1492     MangleCtx.mangleGlobalBlock(BD,
1493       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1494   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1495     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1496   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1497     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1498   else
1499     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1500 
1501   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1502   return Result.first->first();
1503 }
1504 
1505 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1506   return getModule().getNamedValue(Name);
1507 }
1508 
1509 /// AddGlobalCtor - Add a function to the list that will be called before
1510 /// main() runs.
1511 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1512                                   llvm::Constant *AssociatedData) {
1513   // FIXME: Type coercion of void()* types.
1514   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1515 }
1516 
1517 /// AddGlobalDtor - Add a function to the list that will be called
1518 /// when the module is unloaded.
1519 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1520                                   bool IsDtorAttrFunc) {
1521   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1522       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1523     DtorsUsingAtExit[Priority].push_back(Dtor);
1524     return;
1525   }
1526 
1527   // FIXME: Type coercion of void()* types.
1528   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1529 }
1530 
1531 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1532   if (Fns.empty()) return;
1533 
1534   // Ctor function type is void()*.
1535   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1536   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1537       TheModule.getDataLayout().getProgramAddressSpace());
1538 
1539   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1540   llvm::StructType *CtorStructTy = llvm::StructType::get(
1541       Int32Ty, CtorPFTy, VoidPtrTy);
1542 
1543   // Construct the constructor and destructor arrays.
1544   ConstantInitBuilder builder(*this);
1545   auto ctors = builder.beginArray(CtorStructTy);
1546   for (const auto &I : Fns) {
1547     auto ctor = ctors.beginStruct(CtorStructTy);
1548     ctor.addInt(Int32Ty, I.Priority);
1549     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1550     if (I.AssociatedData)
1551       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1552     else
1553       ctor.addNullPointer(VoidPtrTy);
1554     ctor.finishAndAddTo(ctors);
1555   }
1556 
1557   auto list =
1558     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1559                                 /*constant*/ false,
1560                                 llvm::GlobalValue::AppendingLinkage);
1561 
1562   // The LTO linker doesn't seem to like it when we set an alignment
1563   // on appending variables.  Take it off as a workaround.
1564   list->setAlignment(llvm::None);
1565 
1566   Fns.clear();
1567 }
1568 
1569 llvm::GlobalValue::LinkageTypes
1570 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1571   const auto *D = cast<FunctionDecl>(GD.getDecl());
1572 
1573   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1574 
1575   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1576     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1577 
1578   if (isa<CXXConstructorDecl>(D) &&
1579       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1580       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1581     // Our approach to inheriting constructors is fundamentally different from
1582     // that used by the MS ABI, so keep our inheriting constructor thunks
1583     // internal rather than trying to pick an unambiguous mangling for them.
1584     return llvm::GlobalValue::InternalLinkage;
1585   }
1586 
1587   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1588 }
1589 
1590 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1591   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1592   if (!MDS) return nullptr;
1593 
1594   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1595 }
1596 
1597 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1598                                               const CGFunctionInfo &Info,
1599                                               llvm::Function *F, bool IsThunk) {
1600   unsigned CallingConv;
1601   llvm::AttributeList PAL;
1602   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1603                          /*AttrOnCallSite=*/false, IsThunk);
1604   F->setAttributes(PAL);
1605   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1606 }
1607 
1608 static void removeImageAccessQualifier(std::string& TyName) {
1609   std::string ReadOnlyQual("__read_only");
1610   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1611   if (ReadOnlyPos != std::string::npos)
1612     // "+ 1" for the space after access qualifier.
1613     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1614   else {
1615     std::string WriteOnlyQual("__write_only");
1616     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1617     if (WriteOnlyPos != std::string::npos)
1618       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1619     else {
1620       std::string ReadWriteQual("__read_write");
1621       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1622       if (ReadWritePos != std::string::npos)
1623         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1624     }
1625   }
1626 }
1627 
1628 // Returns the address space id that should be produced to the
1629 // kernel_arg_addr_space metadata. This is always fixed to the ids
1630 // as specified in the SPIR 2.0 specification in order to differentiate
1631 // for example in clGetKernelArgInfo() implementation between the address
1632 // spaces with targets without unique mapping to the OpenCL address spaces
1633 // (basically all single AS CPUs).
1634 static unsigned ArgInfoAddressSpace(LangAS AS) {
1635   switch (AS) {
1636   case LangAS::opencl_global:
1637     return 1;
1638   case LangAS::opencl_constant:
1639     return 2;
1640   case LangAS::opencl_local:
1641     return 3;
1642   case LangAS::opencl_generic:
1643     return 4; // Not in SPIR 2.0 specs.
1644   case LangAS::opencl_global_device:
1645     return 5;
1646   case LangAS::opencl_global_host:
1647     return 6;
1648   default:
1649     return 0; // Assume private.
1650   }
1651 }
1652 
1653 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1654                                          const FunctionDecl *FD,
1655                                          CodeGenFunction *CGF) {
1656   assert(((FD && CGF) || (!FD && !CGF)) &&
1657          "Incorrect use - FD and CGF should either be both null or not!");
1658   // Create MDNodes that represent the kernel arg metadata.
1659   // Each MDNode is a list in the form of "key", N number of values which is
1660   // the same number of values as their are kernel arguments.
1661 
1662   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1663 
1664   // MDNode for the kernel argument address space qualifiers.
1665   SmallVector<llvm::Metadata *, 8> addressQuals;
1666 
1667   // MDNode for the kernel argument access qualifiers (images only).
1668   SmallVector<llvm::Metadata *, 8> accessQuals;
1669 
1670   // MDNode for the kernel argument type names.
1671   SmallVector<llvm::Metadata *, 8> argTypeNames;
1672 
1673   // MDNode for the kernel argument base type names.
1674   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1675 
1676   // MDNode for the kernel argument type qualifiers.
1677   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1678 
1679   // MDNode for the kernel argument names.
1680   SmallVector<llvm::Metadata *, 8> argNames;
1681 
1682   if (FD && CGF)
1683     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1684       const ParmVarDecl *parm = FD->getParamDecl(i);
1685       QualType ty = parm->getType();
1686       std::string typeQuals;
1687 
1688       // Get image and pipe access qualifier:
1689       if (ty->isImageType() || ty->isPipeType()) {
1690         const Decl *PDecl = parm;
1691         if (auto *TD = dyn_cast<TypedefType>(ty))
1692           PDecl = TD->getDecl();
1693         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1694         if (A && A->isWriteOnly())
1695           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1696         else if (A && A->isReadWrite())
1697           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1698         else
1699           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1700       } else
1701         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1702 
1703       // Get argument name.
1704       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1705 
1706       auto getTypeSpelling = [&](QualType Ty) {
1707         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1708 
1709         if (Ty.isCanonical()) {
1710           StringRef typeNameRef = typeName;
1711           // Turn "unsigned type" to "utype"
1712           if (typeNameRef.consume_front("unsigned "))
1713             return std::string("u") + typeNameRef.str();
1714           if (typeNameRef.consume_front("signed "))
1715             return typeNameRef.str();
1716         }
1717 
1718         return typeName;
1719       };
1720 
1721       if (ty->isPointerType()) {
1722         QualType pointeeTy = ty->getPointeeType();
1723 
1724         // Get address qualifier.
1725         addressQuals.push_back(
1726             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1727                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1728 
1729         // Get argument type name.
1730         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1731         std::string baseTypeName =
1732             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1733         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1734         argBaseTypeNames.push_back(
1735             llvm::MDString::get(VMContext, baseTypeName));
1736 
1737         // Get argument type qualifiers:
1738         if (ty.isRestrictQualified())
1739           typeQuals = "restrict";
1740         if (pointeeTy.isConstQualified() ||
1741             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1742           typeQuals += typeQuals.empty() ? "const" : " const";
1743         if (pointeeTy.isVolatileQualified())
1744           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1745       } else {
1746         uint32_t AddrSpc = 0;
1747         bool isPipe = ty->isPipeType();
1748         if (ty->isImageType() || isPipe)
1749           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1750 
1751         addressQuals.push_back(
1752             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1753 
1754         // Get argument type name.
1755         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1756         std::string typeName = getTypeSpelling(ty);
1757         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1758 
1759         // Remove access qualifiers on images
1760         // (as they are inseparable from type in clang implementation,
1761         // but OpenCL spec provides a special query to get access qualifier
1762         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1763         if (ty->isImageType()) {
1764           removeImageAccessQualifier(typeName);
1765           removeImageAccessQualifier(baseTypeName);
1766         }
1767 
1768         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1769         argBaseTypeNames.push_back(
1770             llvm::MDString::get(VMContext, baseTypeName));
1771 
1772         if (isPipe)
1773           typeQuals = "pipe";
1774       }
1775       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1776     }
1777 
1778   Fn->setMetadata("kernel_arg_addr_space",
1779                   llvm::MDNode::get(VMContext, addressQuals));
1780   Fn->setMetadata("kernel_arg_access_qual",
1781                   llvm::MDNode::get(VMContext, accessQuals));
1782   Fn->setMetadata("kernel_arg_type",
1783                   llvm::MDNode::get(VMContext, argTypeNames));
1784   Fn->setMetadata("kernel_arg_base_type",
1785                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1786   Fn->setMetadata("kernel_arg_type_qual",
1787                   llvm::MDNode::get(VMContext, argTypeQuals));
1788   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1789     Fn->setMetadata("kernel_arg_name",
1790                     llvm::MDNode::get(VMContext, argNames));
1791 }
1792 
1793 /// Determines whether the language options require us to model
1794 /// unwind exceptions.  We treat -fexceptions as mandating this
1795 /// except under the fragile ObjC ABI with only ObjC exceptions
1796 /// enabled.  This means, for example, that C with -fexceptions
1797 /// enables this.
1798 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1799   // If exceptions are completely disabled, obviously this is false.
1800   if (!LangOpts.Exceptions) return false;
1801 
1802   // If C++ exceptions are enabled, this is true.
1803   if (LangOpts.CXXExceptions) return true;
1804 
1805   // If ObjC exceptions are enabled, this depends on the ABI.
1806   if (LangOpts.ObjCExceptions) {
1807     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1808   }
1809 
1810   return true;
1811 }
1812 
1813 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1814                                                       const CXXMethodDecl *MD) {
1815   // Check that the type metadata can ever actually be used by a call.
1816   if (!CGM.getCodeGenOpts().LTOUnit ||
1817       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1818     return false;
1819 
1820   // Only functions whose address can be taken with a member function pointer
1821   // need this sort of type metadata.
1822   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1823          !isa<CXXDestructorDecl>(MD);
1824 }
1825 
1826 std::vector<const CXXRecordDecl *>
1827 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1828   llvm::SetVector<const CXXRecordDecl *> MostBases;
1829 
1830   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1831   CollectMostBases = [&](const CXXRecordDecl *RD) {
1832     if (RD->getNumBases() == 0)
1833       MostBases.insert(RD);
1834     for (const CXXBaseSpecifier &B : RD->bases())
1835       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1836   };
1837   CollectMostBases(RD);
1838   return MostBases.takeVector();
1839 }
1840 
1841 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1842                                                            llvm::Function *F) {
1843   llvm::AttrBuilder B(F->getContext());
1844 
1845   if (CodeGenOpts.UnwindTables)
1846     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1847 
1848   if (CodeGenOpts.StackClashProtector)
1849     B.addAttribute("probe-stack", "inline-asm");
1850 
1851   if (!hasUnwindExceptions(LangOpts))
1852     B.addAttribute(llvm::Attribute::NoUnwind);
1853 
1854   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1855     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1856       B.addAttribute(llvm::Attribute::StackProtect);
1857     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1858       B.addAttribute(llvm::Attribute::StackProtectStrong);
1859     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1860       B.addAttribute(llvm::Attribute::StackProtectReq);
1861   }
1862 
1863   if (!D) {
1864     // If we don't have a declaration to control inlining, the function isn't
1865     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1866     // disabled, mark the function as noinline.
1867     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1868         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1869       B.addAttribute(llvm::Attribute::NoInline);
1870 
1871     F->addFnAttrs(B);
1872     return;
1873   }
1874 
1875   // Track whether we need to add the optnone LLVM attribute,
1876   // starting with the default for this optimization level.
1877   bool ShouldAddOptNone =
1878       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1879   // We can't add optnone in the following cases, it won't pass the verifier.
1880   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1881   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1882 
1883   // Add optnone, but do so only if the function isn't always_inline.
1884   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1885       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1886     B.addAttribute(llvm::Attribute::OptimizeNone);
1887 
1888     // OptimizeNone implies noinline; we should not be inlining such functions.
1889     B.addAttribute(llvm::Attribute::NoInline);
1890 
1891     // We still need to handle naked functions even though optnone subsumes
1892     // much of their semantics.
1893     if (D->hasAttr<NakedAttr>())
1894       B.addAttribute(llvm::Attribute::Naked);
1895 
1896     // OptimizeNone wins over OptimizeForSize and MinSize.
1897     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1898     F->removeFnAttr(llvm::Attribute::MinSize);
1899   } else if (D->hasAttr<NakedAttr>()) {
1900     // Naked implies noinline: we should not be inlining such functions.
1901     B.addAttribute(llvm::Attribute::Naked);
1902     B.addAttribute(llvm::Attribute::NoInline);
1903   } else if (D->hasAttr<NoDuplicateAttr>()) {
1904     B.addAttribute(llvm::Attribute::NoDuplicate);
1905   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1906     // Add noinline if the function isn't always_inline.
1907     B.addAttribute(llvm::Attribute::NoInline);
1908   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1909              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1910     // (noinline wins over always_inline, and we can't specify both in IR)
1911     B.addAttribute(llvm::Attribute::AlwaysInline);
1912   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1913     // If we're not inlining, then force everything that isn't always_inline to
1914     // carry an explicit noinline attribute.
1915     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1916       B.addAttribute(llvm::Attribute::NoInline);
1917   } else {
1918     // Otherwise, propagate the inline hint attribute and potentially use its
1919     // absence to mark things as noinline.
1920     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1921       // Search function and template pattern redeclarations for inline.
1922       auto CheckForInline = [](const FunctionDecl *FD) {
1923         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1924           return Redecl->isInlineSpecified();
1925         };
1926         if (any_of(FD->redecls(), CheckRedeclForInline))
1927           return true;
1928         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1929         if (!Pattern)
1930           return false;
1931         return any_of(Pattern->redecls(), CheckRedeclForInline);
1932       };
1933       if (CheckForInline(FD)) {
1934         B.addAttribute(llvm::Attribute::InlineHint);
1935       } else if (CodeGenOpts.getInlining() ==
1936                      CodeGenOptions::OnlyHintInlining &&
1937                  !FD->isInlined() &&
1938                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1939         B.addAttribute(llvm::Attribute::NoInline);
1940       }
1941     }
1942   }
1943 
1944   // Add other optimization related attributes if we are optimizing this
1945   // function.
1946   if (!D->hasAttr<OptimizeNoneAttr>()) {
1947     if (D->hasAttr<ColdAttr>()) {
1948       if (!ShouldAddOptNone)
1949         B.addAttribute(llvm::Attribute::OptimizeForSize);
1950       B.addAttribute(llvm::Attribute::Cold);
1951     }
1952     if (D->hasAttr<HotAttr>())
1953       B.addAttribute(llvm::Attribute::Hot);
1954     if (D->hasAttr<MinSizeAttr>())
1955       B.addAttribute(llvm::Attribute::MinSize);
1956   }
1957 
1958   F->addFnAttrs(B);
1959 
1960   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1961   if (alignment)
1962     F->setAlignment(llvm::Align(alignment));
1963 
1964   if (!D->hasAttr<AlignedAttr>())
1965     if (LangOpts.FunctionAlignment)
1966       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1967 
1968   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1969   // reserve a bit for differentiating between virtual and non-virtual member
1970   // functions. If the current target's C++ ABI requires this and this is a
1971   // member function, set its alignment accordingly.
1972   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1973     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1974       F->setAlignment(llvm::Align(2));
1975   }
1976 
1977   // In the cross-dso CFI mode with canonical jump tables, we want !type
1978   // attributes on definitions only.
1979   if (CodeGenOpts.SanitizeCfiCrossDso &&
1980       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1981     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1982       // Skip available_externally functions. They won't be codegen'ed in the
1983       // current module anyway.
1984       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1985         CreateFunctionTypeMetadataForIcall(FD, F);
1986     }
1987   }
1988 
1989   // Emit type metadata on member functions for member function pointer checks.
1990   // These are only ever necessary on definitions; we're guaranteed that the
1991   // definition will be present in the LTO unit as a result of LTO visibility.
1992   auto *MD = dyn_cast<CXXMethodDecl>(D);
1993   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1994     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1995       llvm::Metadata *Id =
1996           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1997               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1998       F->addTypeMetadata(0, Id);
1999     }
2000   }
2001 }
2002 
2003 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2004                                                   llvm::Function *F) {
2005   if (D->hasAttr<StrictFPAttr>()) {
2006     llvm::AttrBuilder FuncAttrs(F->getContext());
2007     FuncAttrs.addAttribute("strictfp");
2008     F->addFnAttrs(FuncAttrs);
2009   }
2010 }
2011 
2012 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2013   const Decl *D = GD.getDecl();
2014   if (isa_and_nonnull<NamedDecl>(D))
2015     setGVProperties(GV, GD);
2016   else
2017     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2018 
2019   if (D && D->hasAttr<UsedAttr>())
2020     addUsedOrCompilerUsedGlobal(GV);
2021 
2022   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2023     const auto *VD = cast<VarDecl>(D);
2024     if (VD->getType().isConstQualified() &&
2025         VD->getStorageDuration() == SD_Static)
2026       addUsedOrCompilerUsedGlobal(GV);
2027   }
2028 }
2029 
2030 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2031                                                 llvm::AttrBuilder &Attrs) {
2032   // Add target-cpu and target-features attributes to functions. If
2033   // we have a decl for the function and it has a target attribute then
2034   // parse that and add it to the feature set.
2035   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2036   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2037   std::vector<std::string> Features;
2038   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2039   FD = FD ? FD->getMostRecentDecl() : FD;
2040   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2041   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2042   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2043   bool AddedAttr = false;
2044   if (TD || SD || TC) {
2045     llvm::StringMap<bool> FeatureMap;
2046     getContext().getFunctionFeatureMap(FeatureMap, GD);
2047 
2048     // Produce the canonical string for this set of features.
2049     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2050       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2051 
2052     // Now add the target-cpu and target-features to the function.
2053     // While we populated the feature map above, we still need to
2054     // get and parse the target attribute so we can get the cpu for
2055     // the function.
2056     if (TD) {
2057       ParsedTargetAttr ParsedAttr = TD->parse();
2058       if (!ParsedAttr.Architecture.empty() &&
2059           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2060         TargetCPU = ParsedAttr.Architecture;
2061         TuneCPU = ""; // Clear the tune CPU.
2062       }
2063       if (!ParsedAttr.Tune.empty() &&
2064           getTarget().isValidCPUName(ParsedAttr.Tune))
2065         TuneCPU = ParsedAttr.Tune;
2066     }
2067 
2068     if (SD) {
2069       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2070       // favor this processor.
2071       TuneCPU = getTarget().getCPUSpecificTuneName(
2072           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2073     }
2074   } else {
2075     // Otherwise just add the existing target cpu and target features to the
2076     // function.
2077     Features = getTarget().getTargetOpts().Features;
2078   }
2079 
2080   if (!TargetCPU.empty()) {
2081     Attrs.addAttribute("target-cpu", TargetCPU);
2082     AddedAttr = true;
2083   }
2084   if (!TuneCPU.empty()) {
2085     Attrs.addAttribute("tune-cpu", TuneCPU);
2086     AddedAttr = true;
2087   }
2088   if (!Features.empty()) {
2089     llvm::sort(Features);
2090     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2091     AddedAttr = true;
2092   }
2093 
2094   return AddedAttr;
2095 }
2096 
2097 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2098                                           llvm::GlobalObject *GO) {
2099   const Decl *D = GD.getDecl();
2100   SetCommonAttributes(GD, GO);
2101 
2102   if (D) {
2103     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2104       if (D->hasAttr<RetainAttr>())
2105         addUsedGlobal(GV);
2106       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2107         GV->addAttribute("bss-section", SA->getName());
2108       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2109         GV->addAttribute("data-section", SA->getName());
2110       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2111         GV->addAttribute("rodata-section", SA->getName());
2112       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2113         GV->addAttribute("relro-section", SA->getName());
2114     }
2115 
2116     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2117       if (D->hasAttr<RetainAttr>())
2118         addUsedGlobal(F);
2119       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2120         if (!D->getAttr<SectionAttr>())
2121           F->addFnAttr("implicit-section-name", SA->getName());
2122 
2123       llvm::AttrBuilder Attrs(F->getContext());
2124       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2125         // We know that GetCPUAndFeaturesAttributes will always have the
2126         // newest set, since it has the newest possible FunctionDecl, so the
2127         // new ones should replace the old.
2128         llvm::AttributeMask RemoveAttrs;
2129         RemoveAttrs.addAttribute("target-cpu");
2130         RemoveAttrs.addAttribute("target-features");
2131         RemoveAttrs.addAttribute("tune-cpu");
2132         F->removeFnAttrs(RemoveAttrs);
2133         F->addFnAttrs(Attrs);
2134       }
2135     }
2136 
2137     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2138       GO->setSection(CSA->getName());
2139     else if (const auto *SA = D->getAttr<SectionAttr>())
2140       GO->setSection(SA->getName());
2141   }
2142 
2143   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2144 }
2145 
2146 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2147                                                   llvm::Function *F,
2148                                                   const CGFunctionInfo &FI) {
2149   const Decl *D = GD.getDecl();
2150   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2151   SetLLVMFunctionAttributesForDefinition(D, F);
2152 
2153   F->setLinkage(llvm::Function::InternalLinkage);
2154 
2155   setNonAliasAttributes(GD, F);
2156 }
2157 
2158 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2159   // Set linkage and visibility in case we never see a definition.
2160   LinkageInfo LV = ND->getLinkageAndVisibility();
2161   // Don't set internal linkage on declarations.
2162   // "extern_weak" is overloaded in LLVM; we probably should have
2163   // separate linkage types for this.
2164   if (isExternallyVisible(LV.getLinkage()) &&
2165       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2166     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2167 }
2168 
2169 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2170                                                        llvm::Function *F) {
2171   // Only if we are checking indirect calls.
2172   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2173     return;
2174 
2175   // Non-static class methods are handled via vtable or member function pointer
2176   // checks elsewhere.
2177   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2178     return;
2179 
2180   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2181   F->addTypeMetadata(0, MD);
2182   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2183 
2184   // Emit a hash-based bit set entry for cross-DSO calls.
2185   if (CodeGenOpts.SanitizeCfiCrossDso)
2186     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2187       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2188 }
2189 
2190 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2191                                           bool IsIncompleteFunction,
2192                                           bool IsThunk) {
2193 
2194   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2195     // If this is an intrinsic function, set the function's attributes
2196     // to the intrinsic's attributes.
2197     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2198     return;
2199   }
2200 
2201   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2202 
2203   if (!IsIncompleteFunction)
2204     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2205                               IsThunk);
2206 
2207   // Add the Returned attribute for "this", except for iOS 5 and earlier
2208   // where substantial code, including the libstdc++ dylib, was compiled with
2209   // GCC and does not actually return "this".
2210   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2211       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2212     assert(!F->arg_empty() &&
2213            F->arg_begin()->getType()
2214              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2215            "unexpected this return");
2216     F->addParamAttr(0, llvm::Attribute::Returned);
2217   }
2218 
2219   // Only a few attributes are set on declarations; these may later be
2220   // overridden by a definition.
2221 
2222   setLinkageForGV(F, FD);
2223   setGVProperties(F, FD);
2224 
2225   // Setup target-specific attributes.
2226   if (!IsIncompleteFunction && F->isDeclaration())
2227     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2228 
2229   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2230     F->setSection(CSA->getName());
2231   else if (const auto *SA = FD->getAttr<SectionAttr>())
2232      F->setSection(SA->getName());
2233 
2234   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2235     if (EA->isError())
2236       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2237     else if (EA->isWarning())
2238       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2239   }
2240 
2241   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2242   if (FD->isInlineBuiltinDeclaration()) {
2243     const FunctionDecl *FDBody;
2244     bool HasBody = FD->hasBody(FDBody);
2245     (void)HasBody;
2246     assert(HasBody && "Inline builtin declarations should always have an "
2247                       "available body!");
2248     if (shouldEmitFunction(FDBody))
2249       F->addFnAttr(llvm::Attribute::NoBuiltin);
2250   }
2251 
2252   if (FD->isReplaceableGlobalAllocationFunction()) {
2253     // A replaceable global allocation function does not act like a builtin by
2254     // default, only if it is invoked by a new-expression or delete-expression.
2255     F->addFnAttr(llvm::Attribute::NoBuiltin);
2256   }
2257 
2258   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2259     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2260   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2261     if (MD->isVirtual())
2262       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2263 
2264   // Don't emit entries for function declarations in the cross-DSO mode. This
2265   // is handled with better precision by the receiving DSO. But if jump tables
2266   // are non-canonical then we need type metadata in order to produce the local
2267   // jump table.
2268   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2269       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2270     CreateFunctionTypeMetadataForIcall(FD, F);
2271 
2272   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2273     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2274 
2275   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2276     // Annotate the callback behavior as metadata:
2277     //  - The callback callee (as argument number).
2278     //  - The callback payloads (as argument numbers).
2279     llvm::LLVMContext &Ctx = F->getContext();
2280     llvm::MDBuilder MDB(Ctx);
2281 
2282     // The payload indices are all but the first one in the encoding. The first
2283     // identifies the callback callee.
2284     int CalleeIdx = *CB->encoding_begin();
2285     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2286     F->addMetadata(llvm::LLVMContext::MD_callback,
2287                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2288                                                CalleeIdx, PayloadIndices,
2289                                                /* VarArgsArePassed */ false)}));
2290   }
2291 }
2292 
2293 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2294   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2295          "Only globals with definition can force usage.");
2296   LLVMUsed.emplace_back(GV);
2297 }
2298 
2299 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2300   assert(!GV->isDeclaration() &&
2301          "Only globals with definition can force usage.");
2302   LLVMCompilerUsed.emplace_back(GV);
2303 }
2304 
2305 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2306   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2307          "Only globals with definition can force usage.");
2308   if (getTriple().isOSBinFormatELF())
2309     LLVMCompilerUsed.emplace_back(GV);
2310   else
2311     LLVMUsed.emplace_back(GV);
2312 }
2313 
2314 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2315                      std::vector<llvm::WeakTrackingVH> &List) {
2316   // Don't create llvm.used if there is no need.
2317   if (List.empty())
2318     return;
2319 
2320   // Convert List to what ConstantArray needs.
2321   SmallVector<llvm::Constant*, 8> UsedArray;
2322   UsedArray.resize(List.size());
2323   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2324     UsedArray[i] =
2325         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2326             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2327   }
2328 
2329   if (UsedArray.empty())
2330     return;
2331   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2332 
2333   auto *GV = new llvm::GlobalVariable(
2334       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2335       llvm::ConstantArray::get(ATy, UsedArray), Name);
2336 
2337   GV->setSection("llvm.metadata");
2338 }
2339 
2340 void CodeGenModule::emitLLVMUsed() {
2341   emitUsed(*this, "llvm.used", LLVMUsed);
2342   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2343 }
2344 
2345 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2346   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2347   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2348 }
2349 
2350 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2351   llvm::SmallString<32> Opt;
2352   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2353   if (Opt.empty())
2354     return;
2355   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2356   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2357 }
2358 
2359 void CodeGenModule::AddDependentLib(StringRef Lib) {
2360   auto &C = getLLVMContext();
2361   if (getTarget().getTriple().isOSBinFormatELF()) {
2362       ELFDependentLibraries.push_back(
2363         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2364     return;
2365   }
2366 
2367   llvm::SmallString<24> Opt;
2368   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2369   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2370   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2371 }
2372 
2373 /// Add link options implied by the given module, including modules
2374 /// it depends on, using a postorder walk.
2375 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2376                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2377                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2378   // Import this module's parent.
2379   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2380     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2381   }
2382 
2383   // Import this module's dependencies.
2384   for (Module *Import : llvm::reverse(Mod->Imports)) {
2385     if (Visited.insert(Import).second)
2386       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2387   }
2388 
2389   // Add linker options to link against the libraries/frameworks
2390   // described by this module.
2391   llvm::LLVMContext &Context = CGM.getLLVMContext();
2392   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2393 
2394   // For modules that use export_as for linking, use that module
2395   // name instead.
2396   if (Mod->UseExportAsModuleLinkName)
2397     return;
2398 
2399   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2400     // Link against a framework.  Frameworks are currently Darwin only, so we
2401     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2402     if (LL.IsFramework) {
2403       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2404                                  llvm::MDString::get(Context, LL.Library)};
2405 
2406       Metadata.push_back(llvm::MDNode::get(Context, Args));
2407       continue;
2408     }
2409 
2410     // Link against a library.
2411     if (IsELF) {
2412       llvm::Metadata *Args[2] = {
2413           llvm::MDString::get(Context, "lib"),
2414           llvm::MDString::get(Context, LL.Library),
2415       };
2416       Metadata.push_back(llvm::MDNode::get(Context, Args));
2417     } else {
2418       llvm::SmallString<24> Opt;
2419       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2420       auto *OptString = llvm::MDString::get(Context, Opt);
2421       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2422     }
2423   }
2424 }
2425 
2426 void CodeGenModule::EmitModuleLinkOptions() {
2427   // Collect the set of all of the modules we want to visit to emit link
2428   // options, which is essentially the imported modules and all of their
2429   // non-explicit child modules.
2430   llvm::SetVector<clang::Module *> LinkModules;
2431   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2432   SmallVector<clang::Module *, 16> Stack;
2433 
2434   // Seed the stack with imported modules.
2435   for (Module *M : ImportedModules) {
2436     // Do not add any link flags when an implementation TU of a module imports
2437     // a header of that same module.
2438     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2439         !getLangOpts().isCompilingModule())
2440       continue;
2441     if (Visited.insert(M).second)
2442       Stack.push_back(M);
2443   }
2444 
2445   // Find all of the modules to import, making a little effort to prune
2446   // non-leaf modules.
2447   while (!Stack.empty()) {
2448     clang::Module *Mod = Stack.pop_back_val();
2449 
2450     bool AnyChildren = false;
2451 
2452     // Visit the submodules of this module.
2453     for (const auto &SM : Mod->submodules()) {
2454       // Skip explicit children; they need to be explicitly imported to be
2455       // linked against.
2456       if (SM->IsExplicit)
2457         continue;
2458 
2459       if (Visited.insert(SM).second) {
2460         Stack.push_back(SM);
2461         AnyChildren = true;
2462       }
2463     }
2464 
2465     // We didn't find any children, so add this module to the list of
2466     // modules to link against.
2467     if (!AnyChildren) {
2468       LinkModules.insert(Mod);
2469     }
2470   }
2471 
2472   // Add link options for all of the imported modules in reverse topological
2473   // order.  We don't do anything to try to order import link flags with respect
2474   // to linker options inserted by things like #pragma comment().
2475   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2476   Visited.clear();
2477   for (Module *M : LinkModules)
2478     if (Visited.insert(M).second)
2479       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2480   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2481   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2482 
2483   // Add the linker options metadata flag.
2484   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2485   for (auto *MD : LinkerOptionsMetadata)
2486     NMD->addOperand(MD);
2487 }
2488 
2489 void CodeGenModule::EmitDeferred() {
2490   // Emit deferred declare target declarations.
2491   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2492     getOpenMPRuntime().emitDeferredTargetDecls();
2493 
2494   // Emit code for any potentially referenced deferred decls.  Since a
2495   // previously unused static decl may become used during the generation of code
2496   // for a static function, iterate until no changes are made.
2497 
2498   if (!DeferredVTables.empty()) {
2499     EmitDeferredVTables();
2500 
2501     // Emitting a vtable doesn't directly cause more vtables to
2502     // become deferred, although it can cause functions to be
2503     // emitted that then need those vtables.
2504     assert(DeferredVTables.empty());
2505   }
2506 
2507   // Emit CUDA/HIP static device variables referenced by host code only.
2508   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2509   // needed for further handling.
2510   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2511     llvm::append_range(DeferredDeclsToEmit,
2512                        getContext().CUDADeviceVarODRUsedByHost);
2513 
2514   // Stop if we're out of both deferred vtables and deferred declarations.
2515   if (DeferredDeclsToEmit.empty())
2516     return;
2517 
2518   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2519   // work, it will not interfere with this.
2520   std::vector<GlobalDecl> CurDeclsToEmit;
2521   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2522 
2523   for (GlobalDecl &D : CurDeclsToEmit) {
2524     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2525     // to get GlobalValue with exactly the type we need, not something that
2526     // might had been created for another decl with the same mangled name but
2527     // different type.
2528     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2529         GetAddrOfGlobal(D, ForDefinition));
2530 
2531     // In case of different address spaces, we may still get a cast, even with
2532     // IsForDefinition equal to true. Query mangled names table to get
2533     // GlobalValue.
2534     if (!GV)
2535       GV = GetGlobalValue(getMangledName(D));
2536 
2537     // Make sure GetGlobalValue returned non-null.
2538     assert(GV);
2539 
2540     // Check to see if we've already emitted this.  This is necessary
2541     // for a couple of reasons: first, decls can end up in the
2542     // deferred-decls queue multiple times, and second, decls can end
2543     // up with definitions in unusual ways (e.g. by an extern inline
2544     // function acquiring a strong function redefinition).  Just
2545     // ignore these cases.
2546     if (!GV->isDeclaration())
2547       continue;
2548 
2549     // If this is OpenMP, check if it is legal to emit this global normally.
2550     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2551       continue;
2552 
2553     // Otherwise, emit the definition and move on to the next one.
2554     EmitGlobalDefinition(D, GV);
2555 
2556     // If we found out that we need to emit more decls, do that recursively.
2557     // This has the advantage that the decls are emitted in a DFS and related
2558     // ones are close together, which is convenient for testing.
2559     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2560       EmitDeferred();
2561       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2562     }
2563   }
2564 }
2565 
2566 void CodeGenModule::EmitVTablesOpportunistically() {
2567   // Try to emit external vtables as available_externally if they have emitted
2568   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2569   // is not allowed to create new references to things that need to be emitted
2570   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2571 
2572   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2573          && "Only emit opportunistic vtables with optimizations");
2574 
2575   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2576     assert(getVTables().isVTableExternal(RD) &&
2577            "This queue should only contain external vtables");
2578     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2579       VTables.GenerateClassData(RD);
2580   }
2581   OpportunisticVTables.clear();
2582 }
2583 
2584 void CodeGenModule::EmitGlobalAnnotations() {
2585   if (Annotations.empty())
2586     return;
2587 
2588   // Create a new global variable for the ConstantStruct in the Module.
2589   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2590     Annotations[0]->getType(), Annotations.size()), Annotations);
2591   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2592                                       llvm::GlobalValue::AppendingLinkage,
2593                                       Array, "llvm.global.annotations");
2594   gv->setSection(AnnotationSection);
2595 }
2596 
2597 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2598   llvm::Constant *&AStr = AnnotationStrings[Str];
2599   if (AStr)
2600     return AStr;
2601 
2602   // Not found yet, create a new global.
2603   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2604   auto *gv =
2605       new llvm::GlobalVariable(getModule(), s->getType(), true,
2606                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2607   gv->setSection(AnnotationSection);
2608   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2609   AStr = gv;
2610   return gv;
2611 }
2612 
2613 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2614   SourceManager &SM = getContext().getSourceManager();
2615   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2616   if (PLoc.isValid())
2617     return EmitAnnotationString(PLoc.getFilename());
2618   return EmitAnnotationString(SM.getBufferName(Loc));
2619 }
2620 
2621 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2622   SourceManager &SM = getContext().getSourceManager();
2623   PresumedLoc PLoc = SM.getPresumedLoc(L);
2624   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2625     SM.getExpansionLineNumber(L);
2626   return llvm::ConstantInt::get(Int32Ty, LineNo);
2627 }
2628 
2629 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2630   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2631   if (Exprs.empty())
2632     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2633 
2634   llvm::FoldingSetNodeID ID;
2635   for (Expr *E : Exprs) {
2636     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2637   }
2638   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2639   if (Lookup)
2640     return Lookup;
2641 
2642   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2643   LLVMArgs.reserve(Exprs.size());
2644   ConstantEmitter ConstEmiter(*this);
2645   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2646     const auto *CE = cast<clang::ConstantExpr>(E);
2647     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2648                                     CE->getType());
2649   });
2650   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2651   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2652                                       llvm::GlobalValue::PrivateLinkage, Struct,
2653                                       ".args");
2654   GV->setSection(AnnotationSection);
2655   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2656   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2657 
2658   Lookup = Bitcasted;
2659   return Bitcasted;
2660 }
2661 
2662 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2663                                                 const AnnotateAttr *AA,
2664                                                 SourceLocation L) {
2665   // Get the globals for file name, annotation, and the line number.
2666   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2667                  *UnitGV = EmitAnnotationUnit(L),
2668                  *LineNoCst = EmitAnnotationLineNo(L),
2669                  *Args = EmitAnnotationArgs(AA);
2670 
2671   llvm::Constant *GVInGlobalsAS = GV;
2672   if (GV->getAddressSpace() !=
2673       getDataLayout().getDefaultGlobalsAddressSpace()) {
2674     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2675         GV, GV->getValueType()->getPointerTo(
2676                 getDataLayout().getDefaultGlobalsAddressSpace()));
2677   }
2678 
2679   // Create the ConstantStruct for the global annotation.
2680   llvm::Constant *Fields[] = {
2681       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2682       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2683       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2684       LineNoCst,
2685       Args,
2686   };
2687   return llvm::ConstantStruct::getAnon(Fields);
2688 }
2689 
2690 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2691                                          llvm::GlobalValue *GV) {
2692   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2693   // Get the struct elements for these annotations.
2694   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2695     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2696 }
2697 
2698 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2699                                        SourceLocation Loc) const {
2700   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2701   // NoSanitize by function name.
2702   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2703     return true;
2704   // NoSanitize by location.
2705   if (Loc.isValid())
2706     return NoSanitizeL.containsLocation(Kind, Loc);
2707   // If location is unknown, this may be a compiler-generated function. Assume
2708   // it's located in the main file.
2709   auto &SM = Context.getSourceManager();
2710   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2711     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2712   }
2713   return false;
2714 }
2715 
2716 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2717                                        SourceLocation Loc, QualType Ty,
2718                                        StringRef Category) const {
2719   // For now globals can be ignored only in ASan and KASan.
2720   const SanitizerMask EnabledAsanMask =
2721       LangOpts.Sanitize.Mask &
2722       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2723        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2724        SanitizerKind::MemTag);
2725   if (!EnabledAsanMask)
2726     return false;
2727   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2728   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2729     return true;
2730   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2731     return true;
2732   // Check global type.
2733   if (!Ty.isNull()) {
2734     // Drill down the array types: if global variable of a fixed type is
2735     // not sanitized, we also don't instrument arrays of them.
2736     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2737       Ty = AT->getElementType();
2738     Ty = Ty.getCanonicalType().getUnqualifiedType();
2739     // Only record types (classes, structs etc.) are ignored.
2740     if (Ty->isRecordType()) {
2741       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2742       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2743         return true;
2744     }
2745   }
2746   return false;
2747 }
2748 
2749 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2750                                    StringRef Category) const {
2751   const auto &XRayFilter = getContext().getXRayFilter();
2752   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2753   auto Attr = ImbueAttr::NONE;
2754   if (Loc.isValid())
2755     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2756   if (Attr == ImbueAttr::NONE)
2757     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2758   switch (Attr) {
2759   case ImbueAttr::NONE:
2760     return false;
2761   case ImbueAttr::ALWAYS:
2762     Fn->addFnAttr("function-instrument", "xray-always");
2763     break;
2764   case ImbueAttr::ALWAYS_ARG1:
2765     Fn->addFnAttr("function-instrument", "xray-always");
2766     Fn->addFnAttr("xray-log-args", "1");
2767     break;
2768   case ImbueAttr::NEVER:
2769     Fn->addFnAttr("function-instrument", "xray-never");
2770     break;
2771   }
2772   return true;
2773 }
2774 
2775 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2776                                            SourceLocation Loc) const {
2777   const auto &ProfileList = getContext().getProfileList();
2778   // If the profile list is empty, then instrument everything.
2779   if (ProfileList.isEmpty())
2780     return false;
2781   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2782   // First, check the function name.
2783   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2784   if (V.hasValue())
2785     return *V;
2786   // Next, check the source location.
2787   if (Loc.isValid()) {
2788     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2789     if (V.hasValue())
2790       return *V;
2791   }
2792   // If location is unknown, this may be a compiler-generated function. Assume
2793   // it's located in the main file.
2794   auto &SM = Context.getSourceManager();
2795   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2796     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2797     if (V.hasValue())
2798       return *V;
2799   }
2800   return ProfileList.getDefault();
2801 }
2802 
2803 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2804   // Never defer when EmitAllDecls is specified.
2805   if (LangOpts.EmitAllDecls)
2806     return true;
2807 
2808   if (CodeGenOpts.KeepStaticConsts) {
2809     const auto *VD = dyn_cast<VarDecl>(Global);
2810     if (VD && VD->getType().isConstQualified() &&
2811         VD->getStorageDuration() == SD_Static)
2812       return true;
2813   }
2814 
2815   return getContext().DeclMustBeEmitted(Global);
2816 }
2817 
2818 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2819   // In OpenMP 5.0 variables and function may be marked as
2820   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2821   // that they must be emitted on the host/device. To be sure we need to have
2822   // seen a declare target with an explicit mentioning of the function, we know
2823   // we have if the level of the declare target attribute is -1. Note that we
2824   // check somewhere else if we should emit this at all.
2825   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2826     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2827         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2828     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2829       return false;
2830   }
2831 
2832   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2833     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2834       // Implicit template instantiations may change linkage if they are later
2835       // explicitly instantiated, so they should not be emitted eagerly.
2836       return false;
2837   }
2838   if (const auto *VD = dyn_cast<VarDecl>(Global))
2839     if (Context.getInlineVariableDefinitionKind(VD) ==
2840         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2841       // A definition of an inline constexpr static data member may change
2842       // linkage later if it's redeclared outside the class.
2843       return false;
2844   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2845   // codegen for global variables, because they may be marked as threadprivate.
2846   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2847       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2848       !isTypeConstant(Global->getType(), false) &&
2849       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2850     return false;
2851 
2852   return true;
2853 }
2854 
2855 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2856   StringRef Name = getMangledName(GD);
2857 
2858   // The UUID descriptor should be pointer aligned.
2859   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2860 
2861   // Look for an existing global.
2862   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2863     return ConstantAddress(GV, GV->getValueType(), Alignment);
2864 
2865   ConstantEmitter Emitter(*this);
2866   llvm::Constant *Init;
2867 
2868   APValue &V = GD->getAsAPValue();
2869   if (!V.isAbsent()) {
2870     // If possible, emit the APValue version of the initializer. In particular,
2871     // this gets the type of the constant right.
2872     Init = Emitter.emitForInitializer(
2873         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2874   } else {
2875     // As a fallback, directly construct the constant.
2876     // FIXME: This may get padding wrong under esoteric struct layout rules.
2877     // MSVC appears to create a complete type 'struct __s_GUID' that it
2878     // presumably uses to represent these constants.
2879     MSGuidDecl::Parts Parts = GD->getParts();
2880     llvm::Constant *Fields[4] = {
2881         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2882         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2883         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2884         llvm::ConstantDataArray::getRaw(
2885             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2886             Int8Ty)};
2887     Init = llvm::ConstantStruct::getAnon(Fields);
2888   }
2889 
2890   auto *GV = new llvm::GlobalVariable(
2891       getModule(), Init->getType(),
2892       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2893   if (supportsCOMDAT())
2894     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2895   setDSOLocal(GV);
2896 
2897   if (!V.isAbsent()) {
2898     Emitter.finalize(GV);
2899     return ConstantAddress(GV, GV->getValueType(), Alignment);
2900   }
2901 
2902   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2903   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
2904       GV, Ty->getPointerTo(GV->getAddressSpace()));
2905   return ConstantAddress(Addr, Ty, Alignment);
2906 }
2907 
2908 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
2909     const UnnamedGlobalConstantDecl *GCD) {
2910   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
2911 
2912   llvm::GlobalVariable **Entry = nullptr;
2913   Entry = &UnnamedGlobalConstantDeclMap[GCD];
2914   if (*Entry)
2915     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
2916 
2917   ConstantEmitter Emitter(*this);
2918   llvm::Constant *Init;
2919 
2920   const APValue &V = GCD->getValue();
2921 
2922   assert(!V.isAbsent());
2923   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
2924                                     GCD->getType());
2925 
2926   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
2927                                       /*isConstant=*/true,
2928                                       llvm::GlobalValue::PrivateLinkage, Init,
2929                                       ".constant");
2930   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2931   GV->setAlignment(Alignment.getAsAlign());
2932 
2933   Emitter.finalize(GV);
2934 
2935   *Entry = GV;
2936   return ConstantAddress(GV, GV->getValueType(), Alignment);
2937 }
2938 
2939 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2940     const TemplateParamObjectDecl *TPO) {
2941   StringRef Name = getMangledName(TPO);
2942   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2943 
2944   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2945     return ConstantAddress(GV, GV->getValueType(), Alignment);
2946 
2947   ConstantEmitter Emitter(*this);
2948   llvm::Constant *Init = Emitter.emitForInitializer(
2949         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2950 
2951   if (!Init) {
2952     ErrorUnsupported(TPO, "template parameter object");
2953     return ConstantAddress::invalid();
2954   }
2955 
2956   auto *GV = new llvm::GlobalVariable(
2957       getModule(), Init->getType(),
2958       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2959   if (supportsCOMDAT())
2960     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2961   Emitter.finalize(GV);
2962 
2963   return ConstantAddress(GV, GV->getValueType(), Alignment);
2964 }
2965 
2966 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2967   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2968   assert(AA && "No alias?");
2969 
2970   CharUnits Alignment = getContext().getDeclAlign(VD);
2971   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2972 
2973   // See if there is already something with the target's name in the module.
2974   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2975   if (Entry) {
2976     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2977     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2978     return ConstantAddress(Ptr, DeclTy, Alignment);
2979   }
2980 
2981   llvm::Constant *Aliasee;
2982   if (isa<llvm::FunctionType>(DeclTy))
2983     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2984                                       GlobalDecl(cast<FunctionDecl>(VD)),
2985                                       /*ForVTable=*/false);
2986   else
2987     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
2988                                     nullptr);
2989 
2990   auto *F = cast<llvm::GlobalValue>(Aliasee);
2991   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2992   WeakRefReferences.insert(F);
2993 
2994   return ConstantAddress(Aliasee, DeclTy, Alignment);
2995 }
2996 
2997 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2998   const auto *Global = cast<ValueDecl>(GD.getDecl());
2999 
3000   // Weak references don't produce any output by themselves.
3001   if (Global->hasAttr<WeakRefAttr>())
3002     return;
3003 
3004   // If this is an alias definition (which otherwise looks like a declaration)
3005   // emit it now.
3006   if (Global->hasAttr<AliasAttr>())
3007     return EmitAliasDefinition(GD);
3008 
3009   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3010   if (Global->hasAttr<IFuncAttr>())
3011     return emitIFuncDefinition(GD);
3012 
3013   // If this is a cpu_dispatch multiversion function, emit the resolver.
3014   if (Global->hasAttr<CPUDispatchAttr>())
3015     return emitCPUDispatchDefinition(GD);
3016 
3017   // If this is CUDA, be selective about which declarations we emit.
3018   if (LangOpts.CUDA) {
3019     if (LangOpts.CUDAIsDevice) {
3020       if (!Global->hasAttr<CUDADeviceAttr>() &&
3021           !Global->hasAttr<CUDAGlobalAttr>() &&
3022           !Global->hasAttr<CUDAConstantAttr>() &&
3023           !Global->hasAttr<CUDASharedAttr>() &&
3024           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3025           !Global->getType()->isCUDADeviceBuiltinTextureType())
3026         return;
3027     } else {
3028       // We need to emit host-side 'shadows' for all global
3029       // device-side variables because the CUDA runtime needs their
3030       // size and host-side address in order to provide access to
3031       // their device-side incarnations.
3032 
3033       // So device-only functions are the only things we skip.
3034       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3035           Global->hasAttr<CUDADeviceAttr>())
3036         return;
3037 
3038       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3039              "Expected Variable or Function");
3040     }
3041   }
3042 
3043   if (LangOpts.OpenMP) {
3044     // If this is OpenMP, check if it is legal to emit this global normally.
3045     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3046       return;
3047     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3048       if (MustBeEmitted(Global))
3049         EmitOMPDeclareReduction(DRD);
3050       return;
3051     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3052       if (MustBeEmitted(Global))
3053         EmitOMPDeclareMapper(DMD);
3054       return;
3055     }
3056   }
3057 
3058   // Ignore declarations, they will be emitted on their first use.
3059   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3060     // Forward declarations are emitted lazily on first use.
3061     if (!FD->doesThisDeclarationHaveABody()) {
3062       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3063         return;
3064 
3065       StringRef MangledName = getMangledName(GD);
3066 
3067       // Compute the function info and LLVM type.
3068       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3069       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3070 
3071       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3072                               /*DontDefer=*/false);
3073       return;
3074     }
3075   } else {
3076     const auto *VD = cast<VarDecl>(Global);
3077     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3078     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3079         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3080       if (LangOpts.OpenMP) {
3081         // Emit declaration of the must-be-emitted declare target variable.
3082         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3083                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3084           bool UnifiedMemoryEnabled =
3085               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3086           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3087               !UnifiedMemoryEnabled) {
3088             (void)GetAddrOfGlobalVar(VD);
3089           } else {
3090             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3091                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3092                      UnifiedMemoryEnabled)) &&
3093                    "Link clause or to clause with unified memory expected.");
3094             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3095           }
3096 
3097           return;
3098         }
3099       }
3100       // If this declaration may have caused an inline variable definition to
3101       // change linkage, make sure that it's emitted.
3102       if (Context.getInlineVariableDefinitionKind(VD) ==
3103           ASTContext::InlineVariableDefinitionKind::Strong)
3104         GetAddrOfGlobalVar(VD);
3105       return;
3106     }
3107   }
3108 
3109   // Defer code generation to first use when possible, e.g. if this is an inline
3110   // function. If the global must always be emitted, do it eagerly if possible
3111   // to benefit from cache locality.
3112   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3113     // Emit the definition if it can't be deferred.
3114     EmitGlobalDefinition(GD);
3115     return;
3116   }
3117 
3118   // If we're deferring emission of a C++ variable with an
3119   // initializer, remember the order in which it appeared in the file.
3120   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3121       cast<VarDecl>(Global)->hasInit()) {
3122     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3123     CXXGlobalInits.push_back(nullptr);
3124   }
3125 
3126   StringRef MangledName = getMangledName(GD);
3127   if (GetGlobalValue(MangledName) != nullptr) {
3128     // The value has already been used and should therefore be emitted.
3129     addDeferredDeclToEmit(GD);
3130   } else if (MustBeEmitted(Global)) {
3131     // The value must be emitted, but cannot be emitted eagerly.
3132     assert(!MayBeEmittedEagerly(Global));
3133     addDeferredDeclToEmit(GD);
3134   } else {
3135     // Otherwise, remember that we saw a deferred decl with this name.  The
3136     // first use of the mangled name will cause it to move into
3137     // DeferredDeclsToEmit.
3138     DeferredDecls[MangledName] = GD;
3139   }
3140 }
3141 
3142 // Check if T is a class type with a destructor that's not dllimport.
3143 static bool HasNonDllImportDtor(QualType T) {
3144   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3145     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3146       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3147         return true;
3148 
3149   return false;
3150 }
3151 
3152 namespace {
3153   struct FunctionIsDirectlyRecursive
3154       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3155     const StringRef Name;
3156     const Builtin::Context &BI;
3157     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3158         : Name(N), BI(C) {}
3159 
3160     bool VisitCallExpr(const CallExpr *E) {
3161       const FunctionDecl *FD = E->getDirectCallee();
3162       if (!FD)
3163         return false;
3164       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3165       if (Attr && Name == Attr->getLabel())
3166         return true;
3167       unsigned BuiltinID = FD->getBuiltinID();
3168       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3169         return false;
3170       StringRef BuiltinName = BI.getName(BuiltinID);
3171       if (BuiltinName.startswith("__builtin_") &&
3172           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3173         return true;
3174       }
3175       return false;
3176     }
3177 
3178     bool VisitStmt(const Stmt *S) {
3179       for (const Stmt *Child : S->children())
3180         if (Child && this->Visit(Child))
3181           return true;
3182       return false;
3183     }
3184   };
3185 
3186   // Make sure we're not referencing non-imported vars or functions.
3187   struct DLLImportFunctionVisitor
3188       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3189     bool SafeToInline = true;
3190 
3191     bool shouldVisitImplicitCode() const { return true; }
3192 
3193     bool VisitVarDecl(VarDecl *VD) {
3194       if (VD->getTLSKind()) {
3195         // A thread-local variable cannot be imported.
3196         SafeToInline = false;
3197         return SafeToInline;
3198       }
3199 
3200       // A variable definition might imply a destructor call.
3201       if (VD->isThisDeclarationADefinition())
3202         SafeToInline = !HasNonDllImportDtor(VD->getType());
3203 
3204       return SafeToInline;
3205     }
3206 
3207     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3208       if (const auto *D = E->getTemporary()->getDestructor())
3209         SafeToInline = D->hasAttr<DLLImportAttr>();
3210       return SafeToInline;
3211     }
3212 
3213     bool VisitDeclRefExpr(DeclRefExpr *E) {
3214       ValueDecl *VD = E->getDecl();
3215       if (isa<FunctionDecl>(VD))
3216         SafeToInline = VD->hasAttr<DLLImportAttr>();
3217       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3218         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3219       return SafeToInline;
3220     }
3221 
3222     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3223       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3224       return SafeToInline;
3225     }
3226 
3227     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3228       CXXMethodDecl *M = E->getMethodDecl();
3229       if (!M) {
3230         // Call through a pointer to member function. This is safe to inline.
3231         SafeToInline = true;
3232       } else {
3233         SafeToInline = M->hasAttr<DLLImportAttr>();
3234       }
3235       return SafeToInline;
3236     }
3237 
3238     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3239       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3240       return SafeToInline;
3241     }
3242 
3243     bool VisitCXXNewExpr(CXXNewExpr *E) {
3244       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3245       return SafeToInline;
3246     }
3247   };
3248 }
3249 
3250 // isTriviallyRecursive - Check if this function calls another
3251 // decl that, because of the asm attribute or the other decl being a builtin,
3252 // ends up pointing to itself.
3253 bool
3254 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3255   StringRef Name;
3256   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3257     // asm labels are a special kind of mangling we have to support.
3258     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3259     if (!Attr)
3260       return false;
3261     Name = Attr->getLabel();
3262   } else {
3263     Name = FD->getName();
3264   }
3265 
3266   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3267   const Stmt *Body = FD->getBody();
3268   return Body ? Walker.Visit(Body) : false;
3269 }
3270 
3271 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3272   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3273     return true;
3274   const auto *F = cast<FunctionDecl>(GD.getDecl());
3275   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3276     return false;
3277 
3278   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3279     // Check whether it would be safe to inline this dllimport function.
3280     DLLImportFunctionVisitor Visitor;
3281     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3282     if (!Visitor.SafeToInline)
3283       return false;
3284 
3285     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3286       // Implicit destructor invocations aren't captured in the AST, so the
3287       // check above can't see them. Check for them manually here.
3288       for (const Decl *Member : Dtor->getParent()->decls())
3289         if (isa<FieldDecl>(Member))
3290           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3291             return false;
3292       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3293         if (HasNonDllImportDtor(B.getType()))
3294           return false;
3295     }
3296   }
3297 
3298   // Inline builtins declaration must be emitted. They often are fortified
3299   // functions.
3300   if (F->isInlineBuiltinDeclaration())
3301     return true;
3302 
3303   // PR9614. Avoid cases where the source code is lying to us. An available
3304   // externally function should have an equivalent function somewhere else,
3305   // but a function that calls itself through asm label/`__builtin_` trickery is
3306   // clearly not equivalent to the real implementation.
3307   // This happens in glibc's btowc and in some configure checks.
3308   return !isTriviallyRecursive(F);
3309 }
3310 
3311 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3312   return CodeGenOpts.OptimizationLevel > 0;
3313 }
3314 
3315 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3316                                                        llvm::GlobalValue *GV) {
3317   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3318 
3319   if (FD->isCPUSpecificMultiVersion()) {
3320     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3321     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3322       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3323     // Requires multiple emits.
3324   } else if (FD->isTargetClonesMultiVersion()) {
3325     auto *Clone = FD->getAttr<TargetClonesAttr>();
3326     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3327       if (Clone->isFirstOfVersion(I))
3328         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3329     EmitTargetClonesResolver(GD);
3330   } else
3331     EmitGlobalFunctionDefinition(GD, GV);
3332 }
3333 
3334 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3335   const auto *D = cast<ValueDecl>(GD.getDecl());
3336 
3337   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3338                                  Context.getSourceManager(),
3339                                  "Generating code for declaration");
3340 
3341   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3342     // At -O0, don't generate IR for functions with available_externally
3343     // linkage.
3344     if (!shouldEmitFunction(GD))
3345       return;
3346 
3347     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3348       std::string Name;
3349       llvm::raw_string_ostream OS(Name);
3350       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3351                                /*Qualified=*/true);
3352       return Name;
3353     });
3354 
3355     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3356       // Make sure to emit the definition(s) before we emit the thunks.
3357       // This is necessary for the generation of certain thunks.
3358       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3359         ABI->emitCXXStructor(GD);
3360       else if (FD->isMultiVersion())
3361         EmitMultiVersionFunctionDefinition(GD, GV);
3362       else
3363         EmitGlobalFunctionDefinition(GD, GV);
3364 
3365       if (Method->isVirtual())
3366         getVTables().EmitThunks(GD);
3367 
3368       return;
3369     }
3370 
3371     if (FD->isMultiVersion())
3372       return EmitMultiVersionFunctionDefinition(GD, GV);
3373     return EmitGlobalFunctionDefinition(GD, GV);
3374   }
3375 
3376   if (const auto *VD = dyn_cast<VarDecl>(D))
3377     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3378 
3379   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3380 }
3381 
3382 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3383                                                       llvm::Function *NewFn);
3384 
3385 static unsigned
3386 TargetMVPriority(const TargetInfo &TI,
3387                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3388   unsigned Priority = 0;
3389   for (StringRef Feat : RO.Conditions.Features)
3390     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3391 
3392   if (!RO.Conditions.Architecture.empty())
3393     Priority = std::max(
3394         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3395   return Priority;
3396 }
3397 
3398 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3399 // TU can forward declare the function without causing problems.  Particularly
3400 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3401 // work with internal linkage functions, so that the same function name can be
3402 // used with internal linkage in multiple TUs.
3403 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3404                                                        GlobalDecl GD) {
3405   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3406   if (FD->getFormalLinkage() == InternalLinkage)
3407     return llvm::GlobalValue::InternalLinkage;
3408   return llvm::GlobalValue::WeakODRLinkage;
3409 }
3410 
3411 void CodeGenModule::EmitTargetClonesResolver(GlobalDecl GD) {
3412   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3413   assert(FD && "Not a FunctionDecl?");
3414   const auto *TC = FD->getAttr<TargetClonesAttr>();
3415   assert(TC && "Not a target_clones Function?");
3416 
3417   QualType CanonTy = Context.getCanonicalType(FD->getType());
3418   llvm::Type *DeclTy = getTypes().ConvertType(CanonTy);
3419 
3420   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3421     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3422     DeclTy = getTypes().GetFunctionType(FInfo);
3423   }
3424 
3425   llvm::Function *ResolverFunc;
3426   if (getTarget().supportsIFunc()) {
3427     auto *IFunc = cast<llvm::GlobalIFunc>(
3428         GetOrCreateMultiVersionResolver(GD, DeclTy, FD));
3429     ResolverFunc = cast<llvm::Function>(IFunc->getResolver());
3430   } else
3431     ResolverFunc =
3432         cast<llvm::Function>(GetOrCreateMultiVersionResolver(GD, DeclTy, FD));
3433 
3434   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3435   for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3436        ++VersionIndex) {
3437     if (!TC->isFirstOfVersion(VersionIndex))
3438       continue;
3439     StringRef Version = TC->getFeatureStr(VersionIndex);
3440     StringRef MangledName =
3441         getMangledName(GD.getWithMultiVersionIndex(VersionIndex));
3442     llvm::Constant *Func = GetGlobalValue(MangledName);
3443     assert(Func &&
3444            "Should have already been created before calling resolver emit");
3445 
3446     StringRef Architecture;
3447     llvm::SmallVector<StringRef, 1> Feature;
3448 
3449     if (Version.startswith("arch="))
3450       Architecture = Version.drop_front(sizeof("arch=") - 1);
3451     else if (Version != "default")
3452       Feature.push_back(Version);
3453 
3454     Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3455   }
3456 
3457   if (supportsCOMDAT())
3458     ResolverFunc->setComdat(
3459         getModule().getOrInsertComdat(ResolverFunc->getName()));
3460 
3461   const TargetInfo &TI = getTarget();
3462   std::stable_sort(
3463       Options.begin(), Options.end(),
3464       [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3465             const CodeGenFunction::MultiVersionResolverOption &RHS) {
3466         return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3467       });
3468   CodeGenFunction CGF(*this);
3469   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3470 }
3471 
3472 void CodeGenModule::emitMultiVersionFunctions() {
3473   std::vector<GlobalDecl> MVFuncsToEmit;
3474   MultiVersionFuncs.swap(MVFuncsToEmit);
3475   for (GlobalDecl GD : MVFuncsToEmit) {
3476     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3477     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3478     getContext().forEachMultiversionedFunctionVersion(
3479         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3480           GlobalDecl CurGD{
3481               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3482           StringRef MangledName = getMangledName(CurGD);
3483           llvm::Constant *Func = GetGlobalValue(MangledName);
3484           if (!Func) {
3485             if (CurFD->isDefined()) {
3486               EmitGlobalFunctionDefinition(CurGD, nullptr);
3487               Func = GetGlobalValue(MangledName);
3488             } else {
3489               const CGFunctionInfo &FI =
3490                   getTypes().arrangeGlobalDeclaration(GD);
3491               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3492               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3493                                        /*DontDefer=*/false, ForDefinition);
3494             }
3495             assert(Func && "This should have just been created");
3496           }
3497 
3498           const auto *TA = CurFD->getAttr<TargetAttr>();
3499           llvm::SmallVector<StringRef, 8> Feats;
3500           TA->getAddedFeatures(Feats);
3501 
3502           Options.emplace_back(cast<llvm::Function>(Func),
3503                                TA->getArchitecture(), Feats);
3504         });
3505 
3506     llvm::Function *ResolverFunc;
3507     const TargetInfo &TI = getTarget();
3508 
3509     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3510       ResolverFunc = cast<llvm::Function>(
3511           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3512       ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3513     } else {
3514       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3515     }
3516 
3517     if (supportsCOMDAT())
3518       ResolverFunc->setComdat(
3519           getModule().getOrInsertComdat(ResolverFunc->getName()));
3520 
3521     llvm::stable_sort(
3522         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3523                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3524           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3525         });
3526     CodeGenFunction CGF(*this);
3527     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3528   }
3529 
3530   // Ensure that any additions to the deferred decls list caused by emitting a
3531   // variant are emitted.  This can happen when the variant itself is inline and
3532   // calls a function without linkage.
3533   if (!MVFuncsToEmit.empty())
3534     EmitDeferred();
3535 
3536   // Ensure that any additions to the multiversion funcs list from either the
3537   // deferred decls or the multiversion functions themselves are emitted.
3538   if (!MultiVersionFuncs.empty())
3539     emitMultiVersionFunctions();
3540 }
3541 
3542 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3543   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3544   assert(FD && "Not a FunctionDecl?");
3545   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3546   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3547   assert(DD && "Not a cpu_dispatch Function?");
3548   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3549 
3550   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3551     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3552     DeclTy = getTypes().GetFunctionType(FInfo);
3553   }
3554 
3555   StringRef ResolverName = getMangledName(GD);
3556   UpdateMultiVersionNames(GD, FD, ResolverName);
3557 
3558   llvm::Type *ResolverType;
3559   GlobalDecl ResolverGD;
3560   if (getTarget().supportsIFunc()) {
3561     ResolverType = llvm::FunctionType::get(
3562         llvm::PointerType::get(DeclTy,
3563                                Context.getTargetAddressSpace(FD->getType())),
3564         false);
3565   }
3566   else {
3567     ResolverType = DeclTy;
3568     ResolverGD = GD;
3569   }
3570 
3571   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3572       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3573   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3574   if (supportsCOMDAT())
3575     ResolverFunc->setComdat(
3576         getModule().getOrInsertComdat(ResolverFunc->getName()));
3577 
3578   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3579   const TargetInfo &Target = getTarget();
3580   unsigned Index = 0;
3581   for (const IdentifierInfo *II : DD->cpus()) {
3582     // Get the name of the target function so we can look it up/create it.
3583     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3584                               getCPUSpecificMangling(*this, II->getName());
3585 
3586     llvm::Constant *Func = GetGlobalValue(MangledName);
3587 
3588     if (!Func) {
3589       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3590       if (ExistingDecl.getDecl() &&
3591           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3592         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3593         Func = GetGlobalValue(MangledName);
3594       } else {
3595         if (!ExistingDecl.getDecl())
3596           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3597 
3598       Func = GetOrCreateLLVMFunction(
3599           MangledName, DeclTy, ExistingDecl,
3600           /*ForVTable=*/false, /*DontDefer=*/true,
3601           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3602       }
3603     }
3604 
3605     llvm::SmallVector<StringRef, 32> Features;
3606     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3607     llvm::transform(Features, Features.begin(),
3608                     [](StringRef Str) { return Str.substr(1); });
3609     llvm::erase_if(Features, [&Target](StringRef Feat) {
3610       return !Target.validateCpuSupports(Feat);
3611     });
3612     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3613     ++Index;
3614   }
3615 
3616   llvm::stable_sort(
3617       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3618                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3619         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3620                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3621       });
3622 
3623   // If the list contains multiple 'default' versions, such as when it contains
3624   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3625   // always run on at least a 'pentium'). We do this by deleting the 'least
3626   // advanced' (read, lowest mangling letter).
3627   while (Options.size() > 1 &&
3628          llvm::X86::getCpuSupportsMask(
3629              (Options.end() - 2)->Conditions.Features) == 0) {
3630     StringRef LHSName = (Options.end() - 2)->Function->getName();
3631     StringRef RHSName = (Options.end() - 1)->Function->getName();
3632     if (LHSName.compare(RHSName) < 0)
3633       Options.erase(Options.end() - 2);
3634     else
3635       Options.erase(Options.end() - 1);
3636   }
3637 
3638   CodeGenFunction CGF(*this);
3639   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3640 
3641   if (getTarget().supportsIFunc()) {
3642     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3643     auto *IFunc = cast<llvm::GlobalValue>(
3644         GetOrCreateMultiVersionResolver(GD, DeclTy, FD));
3645 
3646     // Fix up function declarations that were created for cpu_specific before
3647     // cpu_dispatch was known
3648     if (!dyn_cast<llvm::GlobalIFunc>(IFunc)) {
3649       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3650       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3651                                            &getModule());
3652       GI->takeName(IFunc);
3653       IFunc->replaceAllUsesWith(GI);
3654       IFunc->eraseFromParent();
3655       IFunc = GI;
3656     }
3657 
3658     std::string AliasName = getMangledNameImpl(
3659         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3660     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3661     if (!AliasFunc) {
3662       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3663                                            &getModule());
3664       SetCommonAttributes(GD, GA);
3665     }
3666   }
3667 }
3668 
3669 /// If a dispatcher for the specified mangled name is not in the module, create
3670 /// and return an llvm Function with the specified type.
3671 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3672     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3673   std::string MangledName =
3674       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3675 
3676   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3677   // a separate resolver).
3678   std::string ResolverName = MangledName;
3679   if (getTarget().supportsIFunc())
3680     ResolverName += ".ifunc";
3681   else if (FD->isTargetMultiVersion())
3682     ResolverName += ".resolver";
3683 
3684   // If this already exists, just return that one.
3685   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3686     return ResolverGV;
3687 
3688   // Since this is the first time we've created this IFunc, make sure
3689   // that we put this multiversioned function into the list to be
3690   // replaced later if necessary (target multiversioning only).
3691   if (FD->isTargetMultiVersion())
3692     MultiVersionFuncs.push_back(GD);
3693   else if (FD->isTargetClonesMultiVersion()) {
3694     // In target_clones multiversioning, make sure we emit this if used.
3695     auto DDI =
3696         DeferredDecls.find(getMangledName(GD.getWithMultiVersionIndex(0)));
3697     if (DDI != DeferredDecls.end()) {
3698       addDeferredDeclToEmit(GD);
3699       DeferredDecls.erase(DDI);
3700     } else {
3701       // Emit the symbol of the 1st variant, so that the deferred decls know we
3702       // need it, otherwise the only global value will be the resolver/ifunc,
3703       // which end up getting broken if we search for them with GetGlobalValue'.
3704       GetOrCreateLLVMFunction(
3705           getMangledName(GD.getWithMultiVersionIndex(0)), DeclTy, FD,
3706           /*ForVTable=*/false, /*DontDefer=*/true,
3707           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3708     }
3709   }
3710 
3711   // For cpu_specific, don't create an ifunc yet because we don't know if the
3712   // cpu_dispatch will be emitted in this translation unit.
3713   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3714     llvm::Type *ResolverType = llvm::FunctionType::get(
3715         llvm::PointerType::get(
3716             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3717         false);
3718     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3719         MangledName + ".resolver", ResolverType, GlobalDecl{},
3720         /*ForVTable=*/false);
3721     llvm::GlobalIFunc *GIF =
3722         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3723                                   "", Resolver, &getModule());
3724     GIF->setName(ResolverName);
3725     SetCommonAttributes(FD, GIF);
3726 
3727     return GIF;
3728   }
3729 
3730   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3731       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3732   assert(isa<llvm::GlobalValue>(Resolver) &&
3733          "Resolver should be created for the first time");
3734   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3735   return Resolver;
3736 }
3737 
3738 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3739 /// module, create and return an llvm Function with the specified type. If there
3740 /// is something in the module with the specified name, return it potentially
3741 /// bitcasted to the right type.
3742 ///
3743 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3744 /// to set the attributes on the function when it is first created.
3745 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3746     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3747     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3748     ForDefinition_t IsForDefinition) {
3749   const Decl *D = GD.getDecl();
3750 
3751   // Any attempts to use a MultiVersion function should result in retrieving
3752   // the iFunc instead. Name Mangling will handle the rest of the changes.
3753   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3754     // For the device mark the function as one that should be emitted.
3755     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3756         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3757         !DontDefer && !IsForDefinition) {
3758       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3759         GlobalDecl GDDef;
3760         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3761           GDDef = GlobalDecl(CD, GD.getCtorType());
3762         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3763           GDDef = GlobalDecl(DD, GD.getDtorType());
3764         else
3765           GDDef = GlobalDecl(FDDef);
3766         EmitGlobal(GDDef);
3767       }
3768     }
3769 
3770     if (FD->isMultiVersion()) {
3771         UpdateMultiVersionNames(GD, FD, MangledName);
3772       if (!IsForDefinition)
3773         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3774     }
3775   }
3776 
3777   // Lookup the entry, lazily creating it if necessary.
3778   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3779   if (Entry) {
3780     if (WeakRefReferences.erase(Entry)) {
3781       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3782       if (FD && !FD->hasAttr<WeakAttr>())
3783         Entry->setLinkage(llvm::Function::ExternalLinkage);
3784     }
3785 
3786     // Handle dropped DLL attributes.
3787     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3788       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3789       setDSOLocal(Entry);
3790     }
3791 
3792     // If there are two attempts to define the same mangled name, issue an
3793     // error.
3794     if (IsForDefinition && !Entry->isDeclaration()) {
3795       GlobalDecl OtherGD;
3796       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3797       // to make sure that we issue an error only once.
3798       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3799           (GD.getCanonicalDecl().getDecl() !=
3800            OtherGD.getCanonicalDecl().getDecl()) &&
3801           DiagnosedConflictingDefinitions.insert(GD).second) {
3802         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3803             << MangledName;
3804         getDiags().Report(OtherGD.getDecl()->getLocation(),
3805                           diag::note_previous_definition);
3806       }
3807     }
3808 
3809     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3810         (Entry->getValueType() == Ty)) {
3811       return Entry;
3812     }
3813 
3814     // Make sure the result is of the correct type.
3815     // (If function is requested for a definition, we always need to create a new
3816     // function, not just return a bitcast.)
3817     if (!IsForDefinition)
3818       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3819   }
3820 
3821   // This function doesn't have a complete type (for example, the return
3822   // type is an incomplete struct). Use a fake type instead, and make
3823   // sure not to try to set attributes.
3824   bool IsIncompleteFunction = false;
3825 
3826   llvm::FunctionType *FTy;
3827   if (isa<llvm::FunctionType>(Ty)) {
3828     FTy = cast<llvm::FunctionType>(Ty);
3829   } else {
3830     FTy = llvm::FunctionType::get(VoidTy, false);
3831     IsIncompleteFunction = true;
3832   }
3833 
3834   llvm::Function *F =
3835       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3836                              Entry ? StringRef() : MangledName, &getModule());
3837 
3838   // If we already created a function with the same mangled name (but different
3839   // type) before, take its name and add it to the list of functions to be
3840   // replaced with F at the end of CodeGen.
3841   //
3842   // This happens if there is a prototype for a function (e.g. "int f()") and
3843   // then a definition of a different type (e.g. "int f(int x)").
3844   if (Entry) {
3845     F->takeName(Entry);
3846 
3847     // This might be an implementation of a function without a prototype, in
3848     // which case, try to do special replacement of calls which match the new
3849     // prototype.  The really key thing here is that we also potentially drop
3850     // arguments from the call site so as to make a direct call, which makes the
3851     // inliner happier and suppresses a number of optimizer warnings (!) about
3852     // dropping arguments.
3853     if (!Entry->use_empty()) {
3854       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3855       Entry->removeDeadConstantUsers();
3856     }
3857 
3858     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3859         F, Entry->getValueType()->getPointerTo());
3860     addGlobalValReplacement(Entry, BC);
3861   }
3862 
3863   assert(F->getName() == MangledName && "name was uniqued!");
3864   if (D)
3865     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3866   if (ExtraAttrs.hasFnAttrs()) {
3867     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
3868     F->addFnAttrs(B);
3869   }
3870 
3871   if (!DontDefer) {
3872     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3873     // each other bottoming out with the base dtor.  Therefore we emit non-base
3874     // dtors on usage, even if there is no dtor definition in the TU.
3875     if (D && isa<CXXDestructorDecl>(D) &&
3876         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3877                                            GD.getDtorType()))
3878       addDeferredDeclToEmit(GD);
3879 
3880     // This is the first use or definition of a mangled name.  If there is a
3881     // deferred decl with this name, remember that we need to emit it at the end
3882     // of the file.
3883     auto DDI = DeferredDecls.find(MangledName);
3884     if (DDI != DeferredDecls.end()) {
3885       // Move the potentially referenced deferred decl to the
3886       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3887       // don't need it anymore).
3888       addDeferredDeclToEmit(DDI->second);
3889       DeferredDecls.erase(DDI);
3890 
3891       // Otherwise, there are cases we have to worry about where we're
3892       // using a declaration for which we must emit a definition but where
3893       // we might not find a top-level definition:
3894       //   - member functions defined inline in their classes
3895       //   - friend functions defined inline in some class
3896       //   - special member functions with implicit definitions
3897       // If we ever change our AST traversal to walk into class methods,
3898       // this will be unnecessary.
3899       //
3900       // We also don't emit a definition for a function if it's going to be an
3901       // entry in a vtable, unless it's already marked as used.
3902     } else if (getLangOpts().CPlusPlus && D) {
3903       // Look for a declaration that's lexically in a record.
3904       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3905            FD = FD->getPreviousDecl()) {
3906         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3907           if (FD->doesThisDeclarationHaveABody()) {
3908             addDeferredDeclToEmit(GD.getWithDecl(FD));
3909             break;
3910           }
3911         }
3912       }
3913     }
3914   }
3915 
3916   // Make sure the result is of the requested type.
3917   if (!IsIncompleteFunction) {
3918     assert(F->getFunctionType() == Ty);
3919     return F;
3920   }
3921 
3922   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3923   return llvm::ConstantExpr::getBitCast(F, PTy);
3924 }
3925 
3926 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3927 /// non-null, then this function will use the specified type if it has to
3928 /// create it (this occurs when we see a definition of the function).
3929 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3930                                                  llvm::Type *Ty,
3931                                                  bool ForVTable,
3932                                                  bool DontDefer,
3933                                               ForDefinition_t IsForDefinition) {
3934   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3935          "consteval function should never be emitted");
3936   // If there was no specific requested type, just convert it now.
3937   if (!Ty) {
3938     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3939     Ty = getTypes().ConvertType(FD->getType());
3940   }
3941 
3942   // Devirtualized destructor calls may come through here instead of via
3943   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3944   // of the complete destructor when necessary.
3945   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3946     if (getTarget().getCXXABI().isMicrosoft() &&
3947         GD.getDtorType() == Dtor_Complete &&
3948         DD->getParent()->getNumVBases() == 0)
3949       GD = GlobalDecl(DD, Dtor_Base);
3950   }
3951 
3952   StringRef MangledName = getMangledName(GD);
3953   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3954                                     /*IsThunk=*/false, llvm::AttributeList(),
3955                                     IsForDefinition);
3956   // Returns kernel handle for HIP kernel stub function.
3957   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3958       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3959     auto *Handle = getCUDARuntime().getKernelHandle(
3960         cast<llvm::Function>(F->stripPointerCasts()), GD);
3961     if (IsForDefinition)
3962       return F;
3963     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3964   }
3965   return F;
3966 }
3967 
3968 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
3969   llvm::GlobalValue *F =
3970       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
3971 
3972   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
3973                                         llvm::Type::getInt8PtrTy(VMContext));
3974 }
3975 
3976 static const FunctionDecl *
3977 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3978   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3979   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3980 
3981   IdentifierInfo &CII = C.Idents.get(Name);
3982   for (const auto *Result : DC->lookup(&CII))
3983     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3984       return FD;
3985 
3986   if (!C.getLangOpts().CPlusPlus)
3987     return nullptr;
3988 
3989   // Demangle the premangled name from getTerminateFn()
3990   IdentifierInfo &CXXII =
3991       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3992           ? C.Idents.get("terminate")
3993           : C.Idents.get(Name);
3994 
3995   for (const auto &N : {"__cxxabiv1", "std"}) {
3996     IdentifierInfo &NS = C.Idents.get(N);
3997     for (const auto *Result : DC->lookup(&NS)) {
3998       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3999       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4000         for (const auto *Result : LSD->lookup(&NS))
4001           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4002             break;
4003 
4004       if (ND)
4005         for (const auto *Result : ND->lookup(&CXXII))
4006           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4007             return FD;
4008     }
4009   }
4010 
4011   return nullptr;
4012 }
4013 
4014 /// CreateRuntimeFunction - Create a new runtime function with the specified
4015 /// type and name.
4016 llvm::FunctionCallee
4017 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4018                                      llvm::AttributeList ExtraAttrs, bool Local,
4019                                      bool AssumeConvergent) {
4020   if (AssumeConvergent) {
4021     ExtraAttrs =
4022         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4023   }
4024 
4025   llvm::Constant *C =
4026       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4027                               /*DontDefer=*/false, /*IsThunk=*/false,
4028                               ExtraAttrs);
4029 
4030   if (auto *F = dyn_cast<llvm::Function>(C)) {
4031     if (F->empty()) {
4032       F->setCallingConv(getRuntimeCC());
4033 
4034       // In Windows Itanium environments, try to mark runtime functions
4035       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4036       // will link their standard library statically or dynamically. Marking
4037       // functions imported when they are not imported can cause linker errors
4038       // and warnings.
4039       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4040           !getCodeGenOpts().LTOVisibilityPublicStd) {
4041         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4042         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4043           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4044           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4045         }
4046       }
4047       setDSOLocal(F);
4048     }
4049   }
4050 
4051   return {FTy, C};
4052 }
4053 
4054 /// isTypeConstant - Determine whether an object of this type can be emitted
4055 /// as a constant.
4056 ///
4057 /// If ExcludeCtor is true, the duration when the object's constructor runs
4058 /// will not be considered. The caller will need to verify that the object is
4059 /// not written to during its construction.
4060 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4061   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4062     return false;
4063 
4064   if (Context.getLangOpts().CPlusPlus) {
4065     if (const CXXRecordDecl *Record
4066           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4067       return ExcludeCtor && !Record->hasMutableFields() &&
4068              Record->hasTrivialDestructor();
4069   }
4070 
4071   return true;
4072 }
4073 
4074 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4075 /// create and return an llvm GlobalVariable with the specified type and address
4076 /// space. If there is something in the module with the specified name, return
4077 /// it potentially bitcasted to the right type.
4078 ///
4079 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4080 /// to set the attributes on the global when it is first created.
4081 ///
4082 /// If IsForDefinition is true, it is guaranteed that an actual global with
4083 /// type Ty will be returned, not conversion of a variable with the same
4084 /// mangled name but some other type.
4085 llvm::Constant *
4086 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4087                                      LangAS AddrSpace, const VarDecl *D,
4088                                      ForDefinition_t IsForDefinition) {
4089   // Lookup the entry, lazily creating it if necessary.
4090   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4091   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4092   if (Entry) {
4093     if (WeakRefReferences.erase(Entry)) {
4094       if (D && !D->hasAttr<WeakAttr>())
4095         Entry->setLinkage(llvm::Function::ExternalLinkage);
4096     }
4097 
4098     // Handle dropped DLL attributes.
4099     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
4100       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4101 
4102     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4103       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4104 
4105     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4106       return Entry;
4107 
4108     // If there are two attempts to define the same mangled name, issue an
4109     // error.
4110     if (IsForDefinition && !Entry->isDeclaration()) {
4111       GlobalDecl OtherGD;
4112       const VarDecl *OtherD;
4113 
4114       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4115       // to make sure that we issue an error only once.
4116       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4117           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4118           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4119           OtherD->hasInit() &&
4120           DiagnosedConflictingDefinitions.insert(D).second) {
4121         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4122             << MangledName;
4123         getDiags().Report(OtherGD.getDecl()->getLocation(),
4124                           diag::note_previous_definition);
4125       }
4126     }
4127 
4128     // Make sure the result is of the correct type.
4129     if (Entry->getType()->getAddressSpace() != TargetAS) {
4130       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4131                                                   Ty->getPointerTo(TargetAS));
4132     }
4133 
4134     // (If global is requested for a definition, we always need to create a new
4135     // global, not just return a bitcast.)
4136     if (!IsForDefinition)
4137       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4138   }
4139 
4140   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4141 
4142   auto *GV = new llvm::GlobalVariable(
4143       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4144       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4145       getContext().getTargetAddressSpace(DAddrSpace));
4146 
4147   // If we already created a global with the same mangled name (but different
4148   // type) before, take its name and remove it from its parent.
4149   if (Entry) {
4150     GV->takeName(Entry);
4151 
4152     if (!Entry->use_empty()) {
4153       llvm::Constant *NewPtrForOldDecl =
4154           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4155       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4156     }
4157 
4158     Entry->eraseFromParent();
4159   }
4160 
4161   // This is the first use or definition of a mangled name.  If there is a
4162   // deferred decl with this name, remember that we need to emit it at the end
4163   // of the file.
4164   auto DDI = DeferredDecls.find(MangledName);
4165   if (DDI != DeferredDecls.end()) {
4166     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4167     // list, and remove it from DeferredDecls (since we don't need it anymore).
4168     addDeferredDeclToEmit(DDI->second);
4169     DeferredDecls.erase(DDI);
4170   }
4171 
4172   // Handle things which are present even on external declarations.
4173   if (D) {
4174     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4175       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4176 
4177     // FIXME: This code is overly simple and should be merged with other global
4178     // handling.
4179     GV->setConstant(isTypeConstant(D->getType(), false));
4180 
4181     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4182 
4183     setLinkageForGV(GV, D);
4184 
4185     if (D->getTLSKind()) {
4186       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4187         CXXThreadLocals.push_back(D);
4188       setTLSMode(GV, *D);
4189     }
4190 
4191     setGVProperties(GV, D);
4192 
4193     // If required by the ABI, treat declarations of static data members with
4194     // inline initializers as definitions.
4195     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4196       EmitGlobalVarDefinition(D);
4197     }
4198 
4199     // Emit section information for extern variables.
4200     if (D->hasExternalStorage()) {
4201       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4202         GV->setSection(SA->getName());
4203     }
4204 
4205     // Handle XCore specific ABI requirements.
4206     if (getTriple().getArch() == llvm::Triple::xcore &&
4207         D->getLanguageLinkage() == CLanguageLinkage &&
4208         D->getType().isConstant(Context) &&
4209         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4210       GV->setSection(".cp.rodata");
4211 
4212     // Check if we a have a const declaration with an initializer, we may be
4213     // able to emit it as available_externally to expose it's value to the
4214     // optimizer.
4215     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4216         D->getType().isConstQualified() && !GV->hasInitializer() &&
4217         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4218       const auto *Record =
4219           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4220       bool HasMutableFields = Record && Record->hasMutableFields();
4221       if (!HasMutableFields) {
4222         const VarDecl *InitDecl;
4223         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4224         if (InitExpr) {
4225           ConstantEmitter emitter(*this);
4226           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4227           if (Init) {
4228             auto *InitType = Init->getType();
4229             if (GV->getValueType() != InitType) {
4230               // The type of the initializer does not match the definition.
4231               // This happens when an initializer has a different type from
4232               // the type of the global (because of padding at the end of a
4233               // structure for instance).
4234               GV->setName(StringRef());
4235               // Make a new global with the correct type, this is now guaranteed
4236               // to work.
4237               auto *NewGV = cast<llvm::GlobalVariable>(
4238                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4239                       ->stripPointerCasts());
4240 
4241               // Erase the old global, since it is no longer used.
4242               GV->eraseFromParent();
4243               GV = NewGV;
4244             } else {
4245               GV->setInitializer(Init);
4246               GV->setConstant(true);
4247               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4248             }
4249             emitter.finalize(GV);
4250           }
4251         }
4252       }
4253     }
4254   }
4255 
4256   if (GV->isDeclaration()) {
4257     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4258     // External HIP managed variables needed to be recorded for transformation
4259     // in both device and host compilations.
4260     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4261         D->hasExternalStorage())
4262       getCUDARuntime().handleVarRegistration(D, *GV);
4263   }
4264 
4265   LangAS ExpectedAS =
4266       D ? D->getType().getAddressSpace()
4267         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4268   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4269   if (DAddrSpace != ExpectedAS) {
4270     return getTargetCodeGenInfo().performAddrSpaceCast(
4271         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4272   }
4273 
4274   return GV;
4275 }
4276 
4277 llvm::Constant *
4278 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4279   const Decl *D = GD.getDecl();
4280 
4281   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4282     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4283                                 /*DontDefer=*/false, IsForDefinition);
4284 
4285   if (isa<CXXMethodDecl>(D)) {
4286     auto FInfo =
4287         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4288     auto Ty = getTypes().GetFunctionType(*FInfo);
4289     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4290                              IsForDefinition);
4291   }
4292 
4293   if (isa<FunctionDecl>(D)) {
4294     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4295     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4296     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4297                              IsForDefinition);
4298   }
4299 
4300   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4301 }
4302 
4303 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4304     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4305     unsigned Alignment) {
4306   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4307   llvm::GlobalVariable *OldGV = nullptr;
4308 
4309   if (GV) {
4310     // Check if the variable has the right type.
4311     if (GV->getValueType() == Ty)
4312       return GV;
4313 
4314     // Because C++ name mangling, the only way we can end up with an already
4315     // existing global with the same name is if it has been declared extern "C".
4316     assert(GV->isDeclaration() && "Declaration has wrong type!");
4317     OldGV = GV;
4318   }
4319 
4320   // Create a new variable.
4321   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4322                                 Linkage, nullptr, Name);
4323 
4324   if (OldGV) {
4325     // Replace occurrences of the old variable if needed.
4326     GV->takeName(OldGV);
4327 
4328     if (!OldGV->use_empty()) {
4329       llvm::Constant *NewPtrForOldDecl =
4330       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4331       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4332     }
4333 
4334     OldGV->eraseFromParent();
4335   }
4336 
4337   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4338       !GV->hasAvailableExternallyLinkage())
4339     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4340 
4341   GV->setAlignment(llvm::MaybeAlign(Alignment));
4342 
4343   return GV;
4344 }
4345 
4346 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4347 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4348 /// then it will be created with the specified type instead of whatever the
4349 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4350 /// that an actual global with type Ty will be returned, not conversion of a
4351 /// variable with the same mangled name but some other type.
4352 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4353                                                   llvm::Type *Ty,
4354                                            ForDefinition_t IsForDefinition) {
4355   assert(D->hasGlobalStorage() && "Not a global variable");
4356   QualType ASTTy = D->getType();
4357   if (!Ty)
4358     Ty = getTypes().ConvertTypeForMem(ASTTy);
4359 
4360   StringRef MangledName = getMangledName(D);
4361   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4362                                IsForDefinition);
4363 }
4364 
4365 /// CreateRuntimeVariable - Create a new runtime global variable with the
4366 /// specified type and name.
4367 llvm::Constant *
4368 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4369                                      StringRef Name) {
4370   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4371                                                        : LangAS::Default;
4372   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4373   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4374   return Ret;
4375 }
4376 
4377 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4378   assert(!D->getInit() && "Cannot emit definite definitions here!");
4379 
4380   StringRef MangledName = getMangledName(D);
4381   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4382 
4383   // We already have a definition, not declaration, with the same mangled name.
4384   // Emitting of declaration is not required (and actually overwrites emitted
4385   // definition).
4386   if (GV && !GV->isDeclaration())
4387     return;
4388 
4389   // If we have not seen a reference to this variable yet, place it into the
4390   // deferred declarations table to be emitted if needed later.
4391   if (!MustBeEmitted(D) && !GV) {
4392       DeferredDecls[MangledName] = D;
4393       return;
4394   }
4395 
4396   // The tentative definition is the only definition.
4397   EmitGlobalVarDefinition(D);
4398 }
4399 
4400 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4401   EmitExternalVarDeclaration(D);
4402 }
4403 
4404 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4405   return Context.toCharUnitsFromBits(
4406       getDataLayout().getTypeStoreSizeInBits(Ty));
4407 }
4408 
4409 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4410   if (LangOpts.OpenCL) {
4411     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4412     assert(AS == LangAS::opencl_global ||
4413            AS == LangAS::opencl_global_device ||
4414            AS == LangAS::opencl_global_host ||
4415            AS == LangAS::opencl_constant ||
4416            AS == LangAS::opencl_local ||
4417            AS >= LangAS::FirstTargetAddressSpace);
4418     return AS;
4419   }
4420 
4421   if (LangOpts.SYCLIsDevice &&
4422       (!D || D->getType().getAddressSpace() == LangAS::Default))
4423     return LangAS::sycl_global;
4424 
4425   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4426     if (D && D->hasAttr<CUDAConstantAttr>())
4427       return LangAS::cuda_constant;
4428     else if (D && D->hasAttr<CUDASharedAttr>())
4429       return LangAS::cuda_shared;
4430     else if (D && D->hasAttr<CUDADeviceAttr>())
4431       return LangAS::cuda_device;
4432     else if (D && D->getType().isConstQualified())
4433       return LangAS::cuda_constant;
4434     else
4435       return LangAS::cuda_device;
4436   }
4437 
4438   if (LangOpts.OpenMP) {
4439     LangAS AS;
4440     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4441       return AS;
4442   }
4443   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4444 }
4445 
4446 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4447   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4448   if (LangOpts.OpenCL)
4449     return LangAS::opencl_constant;
4450   if (LangOpts.SYCLIsDevice)
4451     return LangAS::sycl_global;
4452   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4453     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4454     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4455     // with OpVariable instructions with Generic storage class which is not
4456     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4457     // UniformConstant storage class is not viable as pointers to it may not be
4458     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4459     return LangAS::cuda_device;
4460   if (auto AS = getTarget().getConstantAddressSpace())
4461     return AS.getValue();
4462   return LangAS::Default;
4463 }
4464 
4465 // In address space agnostic languages, string literals are in default address
4466 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4467 // emitted in constant address space in LLVM IR. To be consistent with other
4468 // parts of AST, string literal global variables in constant address space
4469 // need to be casted to default address space before being put into address
4470 // map and referenced by other part of CodeGen.
4471 // In OpenCL, string literals are in constant address space in AST, therefore
4472 // they should not be casted to default address space.
4473 static llvm::Constant *
4474 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4475                                        llvm::GlobalVariable *GV) {
4476   llvm::Constant *Cast = GV;
4477   if (!CGM.getLangOpts().OpenCL) {
4478     auto AS = CGM.GetGlobalConstantAddressSpace();
4479     if (AS != LangAS::Default)
4480       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4481           CGM, GV, AS, LangAS::Default,
4482           GV->getValueType()->getPointerTo(
4483               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4484   }
4485   return Cast;
4486 }
4487 
4488 template<typename SomeDecl>
4489 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4490                                                llvm::GlobalValue *GV) {
4491   if (!getLangOpts().CPlusPlus)
4492     return;
4493 
4494   // Must have 'used' attribute, or else inline assembly can't rely on
4495   // the name existing.
4496   if (!D->template hasAttr<UsedAttr>())
4497     return;
4498 
4499   // Must have internal linkage and an ordinary name.
4500   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4501     return;
4502 
4503   // Must be in an extern "C" context. Entities declared directly within
4504   // a record are not extern "C" even if the record is in such a context.
4505   const SomeDecl *First = D->getFirstDecl();
4506   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4507     return;
4508 
4509   // OK, this is an internal linkage entity inside an extern "C" linkage
4510   // specification. Make a note of that so we can give it the "expected"
4511   // mangled name if nothing else is using that name.
4512   std::pair<StaticExternCMap::iterator, bool> R =
4513       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4514 
4515   // If we have multiple internal linkage entities with the same name
4516   // in extern "C" regions, none of them gets that name.
4517   if (!R.second)
4518     R.first->second = nullptr;
4519 }
4520 
4521 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4522   if (!CGM.supportsCOMDAT())
4523     return false;
4524 
4525   if (D.hasAttr<SelectAnyAttr>())
4526     return true;
4527 
4528   GVALinkage Linkage;
4529   if (auto *VD = dyn_cast<VarDecl>(&D))
4530     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4531   else
4532     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4533 
4534   switch (Linkage) {
4535   case GVA_Internal:
4536   case GVA_AvailableExternally:
4537   case GVA_StrongExternal:
4538     return false;
4539   case GVA_DiscardableODR:
4540   case GVA_StrongODR:
4541     return true;
4542   }
4543   llvm_unreachable("No such linkage");
4544 }
4545 
4546 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4547                                           llvm::GlobalObject &GO) {
4548   if (!shouldBeInCOMDAT(*this, D))
4549     return;
4550   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4551 }
4552 
4553 /// Pass IsTentative as true if you want to create a tentative definition.
4554 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4555                                             bool IsTentative) {
4556   // OpenCL global variables of sampler type are translated to function calls,
4557   // therefore no need to be translated.
4558   QualType ASTTy = D->getType();
4559   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4560     return;
4561 
4562   // If this is OpenMP device, check if it is legal to emit this global
4563   // normally.
4564   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4565       OpenMPRuntime->emitTargetGlobalVariable(D))
4566     return;
4567 
4568   llvm::TrackingVH<llvm::Constant> Init;
4569   bool NeedsGlobalCtor = false;
4570   bool NeedsGlobalDtor =
4571       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4572 
4573   const VarDecl *InitDecl;
4574   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4575 
4576   Optional<ConstantEmitter> emitter;
4577 
4578   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4579   // as part of their declaration."  Sema has already checked for
4580   // error cases, so we just need to set Init to UndefValue.
4581   bool IsCUDASharedVar =
4582       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4583   // Shadows of initialized device-side global variables are also left
4584   // undefined.
4585   // Managed Variables should be initialized on both host side and device side.
4586   bool IsCUDAShadowVar =
4587       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4588       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4589        D->hasAttr<CUDASharedAttr>());
4590   bool IsCUDADeviceShadowVar =
4591       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4592       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4593        D->getType()->isCUDADeviceBuiltinTextureType());
4594   if (getLangOpts().CUDA &&
4595       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4596     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4597   else if (D->hasAttr<LoaderUninitializedAttr>())
4598     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4599   else if (!InitExpr) {
4600     // This is a tentative definition; tentative definitions are
4601     // implicitly initialized with { 0 }.
4602     //
4603     // Note that tentative definitions are only emitted at the end of
4604     // a translation unit, so they should never have incomplete
4605     // type. In addition, EmitTentativeDefinition makes sure that we
4606     // never attempt to emit a tentative definition if a real one
4607     // exists. A use may still exists, however, so we still may need
4608     // to do a RAUW.
4609     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4610     Init = EmitNullConstant(D->getType());
4611   } else {
4612     initializedGlobalDecl = GlobalDecl(D);
4613     emitter.emplace(*this);
4614     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4615     if (!Initializer) {
4616       QualType T = InitExpr->getType();
4617       if (D->getType()->isReferenceType())
4618         T = D->getType();
4619 
4620       if (getLangOpts().CPlusPlus) {
4621         Init = EmitNullConstant(T);
4622         NeedsGlobalCtor = true;
4623       } else {
4624         ErrorUnsupported(D, "static initializer");
4625         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4626       }
4627     } else {
4628       Init = Initializer;
4629       // We don't need an initializer, so remove the entry for the delayed
4630       // initializer position (just in case this entry was delayed) if we
4631       // also don't need to register a destructor.
4632       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4633         DelayedCXXInitPosition.erase(D);
4634     }
4635   }
4636 
4637   llvm::Type* InitType = Init->getType();
4638   llvm::Constant *Entry =
4639       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4640 
4641   // Strip off pointer casts if we got them.
4642   Entry = Entry->stripPointerCasts();
4643 
4644   // Entry is now either a Function or GlobalVariable.
4645   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4646 
4647   // We have a definition after a declaration with the wrong type.
4648   // We must make a new GlobalVariable* and update everything that used OldGV
4649   // (a declaration or tentative definition) with the new GlobalVariable*
4650   // (which will be a definition).
4651   //
4652   // This happens if there is a prototype for a global (e.g.
4653   // "extern int x[];") and then a definition of a different type (e.g.
4654   // "int x[10];"). This also happens when an initializer has a different type
4655   // from the type of the global (this happens with unions).
4656   if (!GV || GV->getValueType() != InitType ||
4657       GV->getType()->getAddressSpace() !=
4658           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4659 
4660     // Move the old entry aside so that we'll create a new one.
4661     Entry->setName(StringRef());
4662 
4663     // Make a new global with the correct type, this is now guaranteed to work.
4664     GV = cast<llvm::GlobalVariable>(
4665         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4666             ->stripPointerCasts());
4667 
4668     // Replace all uses of the old global with the new global
4669     llvm::Constant *NewPtrForOldDecl =
4670         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4671                                                              Entry->getType());
4672     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4673 
4674     // Erase the old global, since it is no longer used.
4675     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4676   }
4677 
4678   MaybeHandleStaticInExternC(D, GV);
4679 
4680   if (D->hasAttr<AnnotateAttr>())
4681     AddGlobalAnnotations(D, GV);
4682 
4683   // Set the llvm linkage type as appropriate.
4684   llvm::GlobalValue::LinkageTypes Linkage =
4685       getLLVMLinkageVarDefinition(D, GV->isConstant());
4686 
4687   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4688   // the device. [...]"
4689   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4690   // __device__, declares a variable that: [...]
4691   // Is accessible from all the threads within the grid and from the host
4692   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4693   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4694   if (GV && LangOpts.CUDA) {
4695     if (LangOpts.CUDAIsDevice) {
4696       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4697           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4698            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4699            D->getType()->isCUDADeviceBuiltinTextureType()))
4700         GV->setExternallyInitialized(true);
4701     } else {
4702       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4703     }
4704     getCUDARuntime().handleVarRegistration(D, *GV);
4705   }
4706 
4707   GV->setInitializer(Init);
4708   if (emitter)
4709     emitter->finalize(GV);
4710 
4711   // If it is safe to mark the global 'constant', do so now.
4712   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4713                   isTypeConstant(D->getType(), true));
4714 
4715   // If it is in a read-only section, mark it 'constant'.
4716   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4717     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4718     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4719       GV->setConstant(true);
4720   }
4721 
4722   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4723 
4724   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4725   // function is only defined alongside the variable, not also alongside
4726   // callers. Normally, all accesses to a thread_local go through the
4727   // thread-wrapper in order to ensure initialization has occurred, underlying
4728   // variable will never be used other than the thread-wrapper, so it can be
4729   // converted to internal linkage.
4730   //
4731   // However, if the variable has the 'constinit' attribute, it _can_ be
4732   // referenced directly, without calling the thread-wrapper, so the linkage
4733   // must not be changed.
4734   //
4735   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4736   // weak or linkonce, the de-duplication semantics are important to preserve,
4737   // so we don't change the linkage.
4738   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4739       Linkage == llvm::GlobalValue::ExternalLinkage &&
4740       Context.getTargetInfo().getTriple().isOSDarwin() &&
4741       !D->hasAttr<ConstInitAttr>())
4742     Linkage = llvm::GlobalValue::InternalLinkage;
4743 
4744   GV->setLinkage(Linkage);
4745   if (D->hasAttr<DLLImportAttr>())
4746     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4747   else if (D->hasAttr<DLLExportAttr>())
4748     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4749   else
4750     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4751 
4752   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4753     // common vars aren't constant even if declared const.
4754     GV->setConstant(false);
4755     // Tentative definition of global variables may be initialized with
4756     // non-zero null pointers. In this case they should have weak linkage
4757     // since common linkage must have zero initializer and must not have
4758     // explicit section therefore cannot have non-zero initial value.
4759     if (!GV->getInitializer()->isNullValue())
4760       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4761   }
4762 
4763   setNonAliasAttributes(D, GV);
4764 
4765   if (D->getTLSKind() && !GV->isThreadLocal()) {
4766     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4767       CXXThreadLocals.push_back(D);
4768     setTLSMode(GV, *D);
4769   }
4770 
4771   maybeSetTrivialComdat(*D, *GV);
4772 
4773   // Emit the initializer function if necessary.
4774   if (NeedsGlobalCtor || NeedsGlobalDtor)
4775     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4776 
4777   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4778 
4779   // Emit global variable debug information.
4780   if (CGDebugInfo *DI = getModuleDebugInfo())
4781     if (getCodeGenOpts().hasReducedDebugInfo())
4782       DI->EmitGlobalVariable(GV, D);
4783 }
4784 
4785 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4786   if (CGDebugInfo *DI = getModuleDebugInfo())
4787     if (getCodeGenOpts().hasReducedDebugInfo()) {
4788       QualType ASTTy = D->getType();
4789       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4790       llvm::Constant *GV =
4791           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4792       DI->EmitExternalVariable(
4793           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4794     }
4795 }
4796 
4797 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4798                                       CodeGenModule &CGM, const VarDecl *D,
4799                                       bool NoCommon) {
4800   // Don't give variables common linkage if -fno-common was specified unless it
4801   // was overridden by a NoCommon attribute.
4802   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4803     return true;
4804 
4805   // C11 6.9.2/2:
4806   //   A declaration of an identifier for an object that has file scope without
4807   //   an initializer, and without a storage-class specifier or with the
4808   //   storage-class specifier static, constitutes a tentative definition.
4809   if (D->getInit() || D->hasExternalStorage())
4810     return true;
4811 
4812   // A variable cannot be both common and exist in a section.
4813   if (D->hasAttr<SectionAttr>())
4814     return true;
4815 
4816   // A variable cannot be both common and exist in a section.
4817   // We don't try to determine which is the right section in the front-end.
4818   // If no specialized section name is applicable, it will resort to default.
4819   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4820       D->hasAttr<PragmaClangDataSectionAttr>() ||
4821       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4822       D->hasAttr<PragmaClangRodataSectionAttr>())
4823     return true;
4824 
4825   // Thread local vars aren't considered common linkage.
4826   if (D->getTLSKind())
4827     return true;
4828 
4829   // Tentative definitions marked with WeakImportAttr are true definitions.
4830   if (D->hasAttr<WeakImportAttr>())
4831     return true;
4832 
4833   // A variable cannot be both common and exist in a comdat.
4834   if (shouldBeInCOMDAT(CGM, *D))
4835     return true;
4836 
4837   // Declarations with a required alignment do not have common linkage in MSVC
4838   // mode.
4839   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4840     if (D->hasAttr<AlignedAttr>())
4841       return true;
4842     QualType VarType = D->getType();
4843     if (Context.isAlignmentRequired(VarType))
4844       return true;
4845 
4846     if (const auto *RT = VarType->getAs<RecordType>()) {
4847       const RecordDecl *RD = RT->getDecl();
4848       for (const FieldDecl *FD : RD->fields()) {
4849         if (FD->isBitField())
4850           continue;
4851         if (FD->hasAttr<AlignedAttr>())
4852           return true;
4853         if (Context.isAlignmentRequired(FD->getType()))
4854           return true;
4855       }
4856     }
4857   }
4858 
4859   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4860   // common symbols, so symbols with greater alignment requirements cannot be
4861   // common.
4862   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4863   // alignments for common symbols via the aligncomm directive, so this
4864   // restriction only applies to MSVC environments.
4865   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4866       Context.getTypeAlignIfKnown(D->getType()) >
4867           Context.toBits(CharUnits::fromQuantity(32)))
4868     return true;
4869 
4870   return false;
4871 }
4872 
4873 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4874     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4875   if (Linkage == GVA_Internal)
4876     return llvm::Function::InternalLinkage;
4877 
4878   if (D->hasAttr<WeakAttr>()) {
4879     if (IsConstantVariable)
4880       return llvm::GlobalVariable::WeakODRLinkage;
4881     else
4882       return llvm::GlobalVariable::WeakAnyLinkage;
4883   }
4884 
4885   if (const auto *FD = D->getAsFunction())
4886     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4887       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4888 
4889   // We are guaranteed to have a strong definition somewhere else,
4890   // so we can use available_externally linkage.
4891   if (Linkage == GVA_AvailableExternally)
4892     return llvm::GlobalValue::AvailableExternallyLinkage;
4893 
4894   // Note that Apple's kernel linker doesn't support symbol
4895   // coalescing, so we need to avoid linkonce and weak linkages there.
4896   // Normally, this means we just map to internal, but for explicit
4897   // instantiations we'll map to external.
4898 
4899   // In C++, the compiler has to emit a definition in every translation unit
4900   // that references the function.  We should use linkonce_odr because
4901   // a) if all references in this translation unit are optimized away, we
4902   // don't need to codegen it.  b) if the function persists, it needs to be
4903   // merged with other definitions. c) C++ has the ODR, so we know the
4904   // definition is dependable.
4905   if (Linkage == GVA_DiscardableODR)
4906     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4907                                             : llvm::Function::InternalLinkage;
4908 
4909   // An explicit instantiation of a template has weak linkage, since
4910   // explicit instantiations can occur in multiple translation units
4911   // and must all be equivalent. However, we are not allowed to
4912   // throw away these explicit instantiations.
4913   //
4914   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4915   // so say that CUDA templates are either external (for kernels) or internal.
4916   // This lets llvm perform aggressive inter-procedural optimizations. For
4917   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4918   // therefore we need to follow the normal linkage paradigm.
4919   if (Linkage == GVA_StrongODR) {
4920     if (getLangOpts().AppleKext)
4921       return llvm::Function::ExternalLinkage;
4922     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4923         !getLangOpts().GPURelocatableDeviceCode)
4924       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4925                                           : llvm::Function::InternalLinkage;
4926     return llvm::Function::WeakODRLinkage;
4927   }
4928 
4929   // C++ doesn't have tentative definitions and thus cannot have common
4930   // linkage.
4931   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4932       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4933                                  CodeGenOpts.NoCommon))
4934     return llvm::GlobalVariable::CommonLinkage;
4935 
4936   // selectany symbols are externally visible, so use weak instead of
4937   // linkonce.  MSVC optimizes away references to const selectany globals, so
4938   // all definitions should be the same and ODR linkage should be used.
4939   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4940   if (D->hasAttr<SelectAnyAttr>())
4941     return llvm::GlobalVariable::WeakODRLinkage;
4942 
4943   // Otherwise, we have strong external linkage.
4944   assert(Linkage == GVA_StrongExternal);
4945   return llvm::GlobalVariable::ExternalLinkage;
4946 }
4947 
4948 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4949     const VarDecl *VD, bool IsConstant) {
4950   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4951   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4952 }
4953 
4954 /// Replace the uses of a function that was declared with a non-proto type.
4955 /// We want to silently drop extra arguments from call sites
4956 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4957                                           llvm::Function *newFn) {
4958   // Fast path.
4959   if (old->use_empty()) return;
4960 
4961   llvm::Type *newRetTy = newFn->getReturnType();
4962   SmallVector<llvm::Value*, 4> newArgs;
4963 
4964   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4965          ui != ue; ) {
4966     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4967     llvm::User *user = use->getUser();
4968 
4969     // Recognize and replace uses of bitcasts.  Most calls to
4970     // unprototyped functions will use bitcasts.
4971     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4972       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4973         replaceUsesOfNonProtoConstant(bitcast, newFn);
4974       continue;
4975     }
4976 
4977     // Recognize calls to the function.
4978     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4979     if (!callSite) continue;
4980     if (!callSite->isCallee(&*use))
4981       continue;
4982 
4983     // If the return types don't match exactly, then we can't
4984     // transform this call unless it's dead.
4985     if (callSite->getType() != newRetTy && !callSite->use_empty())
4986       continue;
4987 
4988     // Get the call site's attribute list.
4989     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4990     llvm::AttributeList oldAttrs = callSite->getAttributes();
4991 
4992     // If the function was passed too few arguments, don't transform.
4993     unsigned newNumArgs = newFn->arg_size();
4994     if (callSite->arg_size() < newNumArgs)
4995       continue;
4996 
4997     // If extra arguments were passed, we silently drop them.
4998     // If any of the types mismatch, we don't transform.
4999     unsigned argNo = 0;
5000     bool dontTransform = false;
5001     for (llvm::Argument &A : newFn->args()) {
5002       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5003         dontTransform = true;
5004         break;
5005       }
5006 
5007       // Add any parameter attributes.
5008       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5009       argNo++;
5010     }
5011     if (dontTransform)
5012       continue;
5013 
5014     // Okay, we can transform this.  Create the new call instruction and copy
5015     // over the required information.
5016     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5017 
5018     // Copy over any operand bundles.
5019     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5020     callSite->getOperandBundlesAsDefs(newBundles);
5021 
5022     llvm::CallBase *newCall;
5023     if (isa<llvm::CallInst>(callSite)) {
5024       newCall =
5025           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5026     } else {
5027       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5028       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5029                                          oldInvoke->getUnwindDest(), newArgs,
5030                                          newBundles, "", callSite);
5031     }
5032     newArgs.clear(); // for the next iteration
5033 
5034     if (!newCall->getType()->isVoidTy())
5035       newCall->takeName(callSite);
5036     newCall->setAttributes(
5037         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5038                                  oldAttrs.getRetAttrs(), newArgAttrs));
5039     newCall->setCallingConv(callSite->getCallingConv());
5040 
5041     // Finally, remove the old call, replacing any uses with the new one.
5042     if (!callSite->use_empty())
5043       callSite->replaceAllUsesWith(newCall);
5044 
5045     // Copy debug location attached to CI.
5046     if (callSite->getDebugLoc())
5047       newCall->setDebugLoc(callSite->getDebugLoc());
5048 
5049     callSite->eraseFromParent();
5050   }
5051 }
5052 
5053 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5054 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5055 /// existing call uses of the old function in the module, this adjusts them to
5056 /// call the new function directly.
5057 ///
5058 /// This is not just a cleanup: the always_inline pass requires direct calls to
5059 /// functions to be able to inline them.  If there is a bitcast in the way, it
5060 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5061 /// run at -O0.
5062 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5063                                                       llvm::Function *NewFn) {
5064   // If we're redefining a global as a function, don't transform it.
5065   if (!isa<llvm::Function>(Old)) return;
5066 
5067   replaceUsesOfNonProtoConstant(Old, NewFn);
5068 }
5069 
5070 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5071   auto DK = VD->isThisDeclarationADefinition();
5072   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5073     return;
5074 
5075   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5076   // If we have a definition, this might be a deferred decl. If the
5077   // instantiation is explicit, make sure we emit it at the end.
5078   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5079     GetAddrOfGlobalVar(VD);
5080 
5081   EmitTopLevelDecl(VD);
5082 }
5083 
5084 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5085                                                  llvm::GlobalValue *GV) {
5086   const auto *D = cast<FunctionDecl>(GD.getDecl());
5087 
5088   // Compute the function info and LLVM type.
5089   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5090   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5091 
5092   // Get or create the prototype for the function.
5093   if (!GV || (GV->getValueType() != Ty))
5094     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5095                                                    /*DontDefer=*/true,
5096                                                    ForDefinition));
5097 
5098   // Already emitted.
5099   if (!GV->isDeclaration())
5100     return;
5101 
5102   // We need to set linkage and visibility on the function before
5103   // generating code for it because various parts of IR generation
5104   // want to propagate this information down (e.g. to local static
5105   // declarations).
5106   auto *Fn = cast<llvm::Function>(GV);
5107   setFunctionLinkage(GD, Fn);
5108 
5109   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5110   setGVProperties(Fn, GD);
5111 
5112   MaybeHandleStaticInExternC(D, Fn);
5113 
5114   maybeSetTrivialComdat(*D, *Fn);
5115 
5116   // Set CodeGen attributes that represent floating point environment.
5117   setLLVMFunctionFEnvAttributes(D, Fn);
5118 
5119   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5120 
5121   setNonAliasAttributes(GD, Fn);
5122   SetLLVMFunctionAttributesForDefinition(D, Fn);
5123 
5124   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5125     AddGlobalCtor(Fn, CA->getPriority());
5126   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5127     AddGlobalDtor(Fn, DA->getPriority(), true);
5128   if (D->hasAttr<AnnotateAttr>())
5129     AddGlobalAnnotations(D, Fn);
5130 }
5131 
5132 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5133   const auto *D = cast<ValueDecl>(GD.getDecl());
5134   const AliasAttr *AA = D->getAttr<AliasAttr>();
5135   assert(AA && "Not an alias?");
5136 
5137   StringRef MangledName = getMangledName(GD);
5138 
5139   if (AA->getAliasee() == MangledName) {
5140     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5141     return;
5142   }
5143 
5144   // If there is a definition in the module, then it wins over the alias.
5145   // This is dubious, but allow it to be safe.  Just ignore the alias.
5146   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5147   if (Entry && !Entry->isDeclaration())
5148     return;
5149 
5150   Aliases.push_back(GD);
5151 
5152   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5153 
5154   // Create a reference to the named value.  This ensures that it is emitted
5155   // if a deferred decl.
5156   llvm::Constant *Aliasee;
5157   llvm::GlobalValue::LinkageTypes LT;
5158   if (isa<llvm::FunctionType>(DeclTy)) {
5159     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5160                                       /*ForVTable=*/false);
5161     LT = getFunctionLinkage(GD);
5162   } else {
5163     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5164                                     /*D=*/nullptr);
5165     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5166       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5167     else
5168       LT = getFunctionLinkage(GD);
5169   }
5170 
5171   // Create the new alias itself, but don't set a name yet.
5172   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5173   auto *GA =
5174       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5175 
5176   if (Entry) {
5177     if (GA->getAliasee() == Entry) {
5178       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5179       return;
5180     }
5181 
5182     assert(Entry->isDeclaration());
5183 
5184     // If there is a declaration in the module, then we had an extern followed
5185     // by the alias, as in:
5186     //   extern int test6();
5187     //   ...
5188     //   int test6() __attribute__((alias("test7")));
5189     //
5190     // Remove it and replace uses of it with the alias.
5191     GA->takeName(Entry);
5192 
5193     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5194                                                           Entry->getType()));
5195     Entry->eraseFromParent();
5196   } else {
5197     GA->setName(MangledName);
5198   }
5199 
5200   // Set attributes which are particular to an alias; this is a
5201   // specialization of the attributes which may be set on a global
5202   // variable/function.
5203   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5204       D->isWeakImported()) {
5205     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5206   }
5207 
5208   if (const auto *VD = dyn_cast<VarDecl>(D))
5209     if (VD->getTLSKind())
5210       setTLSMode(GA, *VD);
5211 
5212   SetCommonAttributes(GD, GA);
5213 }
5214 
5215 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5216   const auto *D = cast<ValueDecl>(GD.getDecl());
5217   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5218   assert(IFA && "Not an ifunc?");
5219 
5220   StringRef MangledName = getMangledName(GD);
5221 
5222   if (IFA->getResolver() == MangledName) {
5223     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5224     return;
5225   }
5226 
5227   // Report an error if some definition overrides ifunc.
5228   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5229   if (Entry && !Entry->isDeclaration()) {
5230     GlobalDecl OtherGD;
5231     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5232         DiagnosedConflictingDefinitions.insert(GD).second) {
5233       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5234           << MangledName;
5235       Diags.Report(OtherGD.getDecl()->getLocation(),
5236                    diag::note_previous_definition);
5237     }
5238     return;
5239   }
5240 
5241   Aliases.push_back(GD);
5242 
5243   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5244   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5245   llvm::Constant *Resolver =
5246       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5247                               /*ForVTable=*/false);
5248   llvm::GlobalIFunc *GIF =
5249       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5250                                 "", Resolver, &getModule());
5251   if (Entry) {
5252     if (GIF->getResolver() == Entry) {
5253       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5254       return;
5255     }
5256     assert(Entry->isDeclaration());
5257 
5258     // If there is a declaration in the module, then we had an extern followed
5259     // by the ifunc, as in:
5260     //   extern int test();
5261     //   ...
5262     //   int test() __attribute__((ifunc("resolver")));
5263     //
5264     // Remove it and replace uses of it with the ifunc.
5265     GIF->takeName(Entry);
5266 
5267     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5268                                                           Entry->getType()));
5269     Entry->eraseFromParent();
5270   } else
5271     GIF->setName(MangledName);
5272 
5273   SetCommonAttributes(GD, GIF);
5274 }
5275 
5276 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5277                                             ArrayRef<llvm::Type*> Tys) {
5278   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5279                                          Tys);
5280 }
5281 
5282 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5283 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5284                          const StringLiteral *Literal, bool TargetIsLSB,
5285                          bool &IsUTF16, unsigned &StringLength) {
5286   StringRef String = Literal->getString();
5287   unsigned NumBytes = String.size();
5288 
5289   // Check for simple case.
5290   if (!Literal->containsNonAsciiOrNull()) {
5291     StringLength = NumBytes;
5292     return *Map.insert(std::make_pair(String, nullptr)).first;
5293   }
5294 
5295   // Otherwise, convert the UTF8 literals into a string of shorts.
5296   IsUTF16 = true;
5297 
5298   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5299   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5300   llvm::UTF16 *ToPtr = &ToBuf[0];
5301 
5302   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5303                                  ToPtr + NumBytes, llvm::strictConversion);
5304 
5305   // ConvertUTF8toUTF16 returns the length in ToPtr.
5306   StringLength = ToPtr - &ToBuf[0];
5307 
5308   // Add an explicit null.
5309   *ToPtr = 0;
5310   return *Map.insert(std::make_pair(
5311                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5312                                    (StringLength + 1) * 2),
5313                          nullptr)).first;
5314 }
5315 
5316 ConstantAddress
5317 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5318   unsigned StringLength = 0;
5319   bool isUTF16 = false;
5320   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5321       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5322                                getDataLayout().isLittleEndian(), isUTF16,
5323                                StringLength);
5324 
5325   if (auto *C = Entry.second)
5326     return ConstantAddress(
5327         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5328 
5329   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5330   llvm::Constant *Zeros[] = { Zero, Zero };
5331 
5332   const ASTContext &Context = getContext();
5333   const llvm::Triple &Triple = getTriple();
5334 
5335   const auto CFRuntime = getLangOpts().CFRuntime;
5336   const bool IsSwiftABI =
5337       static_cast<unsigned>(CFRuntime) >=
5338       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5339   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5340 
5341   // If we don't already have it, get __CFConstantStringClassReference.
5342   if (!CFConstantStringClassRef) {
5343     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5344     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5345     Ty = llvm::ArrayType::get(Ty, 0);
5346 
5347     switch (CFRuntime) {
5348     default: break;
5349     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5350     case LangOptions::CoreFoundationABI::Swift5_0:
5351       CFConstantStringClassName =
5352           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5353                               : "$s10Foundation19_NSCFConstantStringCN";
5354       Ty = IntPtrTy;
5355       break;
5356     case LangOptions::CoreFoundationABI::Swift4_2:
5357       CFConstantStringClassName =
5358           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5359                               : "$S10Foundation19_NSCFConstantStringCN";
5360       Ty = IntPtrTy;
5361       break;
5362     case LangOptions::CoreFoundationABI::Swift4_1:
5363       CFConstantStringClassName =
5364           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5365                               : "__T010Foundation19_NSCFConstantStringCN";
5366       Ty = IntPtrTy;
5367       break;
5368     }
5369 
5370     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5371 
5372     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5373       llvm::GlobalValue *GV = nullptr;
5374 
5375       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5376         IdentifierInfo &II = Context.Idents.get(GV->getName());
5377         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5378         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5379 
5380         const VarDecl *VD = nullptr;
5381         for (const auto *Result : DC->lookup(&II))
5382           if ((VD = dyn_cast<VarDecl>(Result)))
5383             break;
5384 
5385         if (Triple.isOSBinFormatELF()) {
5386           if (!VD)
5387             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5388         } else {
5389           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5390           if (!VD || !VD->hasAttr<DLLExportAttr>())
5391             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5392           else
5393             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5394         }
5395 
5396         setDSOLocal(GV);
5397       }
5398     }
5399 
5400     // Decay array -> ptr
5401     CFConstantStringClassRef =
5402         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5403                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5404   }
5405 
5406   QualType CFTy = Context.getCFConstantStringType();
5407 
5408   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5409 
5410   ConstantInitBuilder Builder(*this);
5411   auto Fields = Builder.beginStruct(STy);
5412 
5413   // Class pointer.
5414   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5415 
5416   // Flags.
5417   if (IsSwiftABI) {
5418     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5419     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5420   } else {
5421     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5422   }
5423 
5424   // String pointer.
5425   llvm::Constant *C = nullptr;
5426   if (isUTF16) {
5427     auto Arr = llvm::makeArrayRef(
5428         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5429         Entry.first().size() / 2);
5430     C = llvm::ConstantDataArray::get(VMContext, Arr);
5431   } else {
5432     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5433   }
5434 
5435   // Note: -fwritable-strings doesn't make the backing store strings of
5436   // CFStrings writable. (See <rdar://problem/10657500>)
5437   auto *GV =
5438       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5439                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5440   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5441   // Don't enforce the target's minimum global alignment, since the only use
5442   // of the string is via this class initializer.
5443   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5444                             : Context.getTypeAlignInChars(Context.CharTy);
5445   GV->setAlignment(Align.getAsAlign());
5446 
5447   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5448   // Without it LLVM can merge the string with a non unnamed_addr one during
5449   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5450   if (Triple.isOSBinFormatMachO())
5451     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5452                            : "__TEXT,__cstring,cstring_literals");
5453   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5454   // the static linker to adjust permissions to read-only later on.
5455   else if (Triple.isOSBinFormatELF())
5456     GV->setSection(".rodata");
5457 
5458   // String.
5459   llvm::Constant *Str =
5460       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5461 
5462   if (isUTF16)
5463     // Cast the UTF16 string to the correct type.
5464     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5465   Fields.add(Str);
5466 
5467   // String length.
5468   llvm::IntegerType *LengthTy =
5469       llvm::IntegerType::get(getModule().getContext(),
5470                              Context.getTargetInfo().getLongWidth());
5471   if (IsSwiftABI) {
5472     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5473         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5474       LengthTy = Int32Ty;
5475     else
5476       LengthTy = IntPtrTy;
5477   }
5478   Fields.addInt(LengthTy, StringLength);
5479 
5480   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5481   // properly aligned on 32-bit platforms.
5482   CharUnits Alignment =
5483       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5484 
5485   // The struct.
5486   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5487                                     /*isConstant=*/false,
5488                                     llvm::GlobalVariable::PrivateLinkage);
5489   GV->addAttribute("objc_arc_inert");
5490   switch (Triple.getObjectFormat()) {
5491   case llvm::Triple::UnknownObjectFormat:
5492     llvm_unreachable("unknown file format");
5493   case llvm::Triple::GOFF:
5494     llvm_unreachable("GOFF is not yet implemented");
5495   case llvm::Triple::XCOFF:
5496     llvm_unreachable("XCOFF is not yet implemented");
5497   case llvm::Triple::DXContainer:
5498     llvm_unreachable("DXContainer is not yet implemented");
5499   case llvm::Triple::COFF:
5500   case llvm::Triple::ELF:
5501   case llvm::Triple::Wasm:
5502     GV->setSection("cfstring");
5503     break;
5504   case llvm::Triple::MachO:
5505     GV->setSection("__DATA,__cfstring");
5506     break;
5507   }
5508   Entry.second = GV;
5509 
5510   return ConstantAddress(GV, GV->getValueType(), Alignment);
5511 }
5512 
5513 bool CodeGenModule::getExpressionLocationsEnabled() const {
5514   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5515 }
5516 
5517 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5518   if (ObjCFastEnumerationStateType.isNull()) {
5519     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5520     D->startDefinition();
5521 
5522     QualType FieldTypes[] = {
5523       Context.UnsignedLongTy,
5524       Context.getPointerType(Context.getObjCIdType()),
5525       Context.getPointerType(Context.UnsignedLongTy),
5526       Context.getConstantArrayType(Context.UnsignedLongTy,
5527                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5528     };
5529 
5530     for (size_t i = 0; i < 4; ++i) {
5531       FieldDecl *Field = FieldDecl::Create(Context,
5532                                            D,
5533                                            SourceLocation(),
5534                                            SourceLocation(), nullptr,
5535                                            FieldTypes[i], /*TInfo=*/nullptr,
5536                                            /*BitWidth=*/nullptr,
5537                                            /*Mutable=*/false,
5538                                            ICIS_NoInit);
5539       Field->setAccess(AS_public);
5540       D->addDecl(Field);
5541     }
5542 
5543     D->completeDefinition();
5544     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5545   }
5546 
5547   return ObjCFastEnumerationStateType;
5548 }
5549 
5550 llvm::Constant *
5551 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5552   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5553 
5554   // Don't emit it as the address of the string, emit the string data itself
5555   // as an inline array.
5556   if (E->getCharByteWidth() == 1) {
5557     SmallString<64> Str(E->getString());
5558 
5559     // Resize the string to the right size, which is indicated by its type.
5560     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5561     Str.resize(CAT->getSize().getZExtValue());
5562     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5563   }
5564 
5565   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5566   llvm::Type *ElemTy = AType->getElementType();
5567   unsigned NumElements = AType->getNumElements();
5568 
5569   // Wide strings have either 2-byte or 4-byte elements.
5570   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5571     SmallVector<uint16_t, 32> Elements;
5572     Elements.reserve(NumElements);
5573 
5574     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5575       Elements.push_back(E->getCodeUnit(i));
5576     Elements.resize(NumElements);
5577     return llvm::ConstantDataArray::get(VMContext, Elements);
5578   }
5579 
5580   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5581   SmallVector<uint32_t, 32> Elements;
5582   Elements.reserve(NumElements);
5583 
5584   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5585     Elements.push_back(E->getCodeUnit(i));
5586   Elements.resize(NumElements);
5587   return llvm::ConstantDataArray::get(VMContext, Elements);
5588 }
5589 
5590 static llvm::GlobalVariable *
5591 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5592                       CodeGenModule &CGM, StringRef GlobalName,
5593                       CharUnits Alignment) {
5594   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5595       CGM.GetGlobalConstantAddressSpace());
5596 
5597   llvm::Module &M = CGM.getModule();
5598   // Create a global variable for this string
5599   auto *GV = new llvm::GlobalVariable(
5600       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5601       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5602   GV->setAlignment(Alignment.getAsAlign());
5603   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5604   if (GV->isWeakForLinker()) {
5605     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5606     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5607   }
5608   CGM.setDSOLocal(GV);
5609 
5610   return GV;
5611 }
5612 
5613 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5614 /// constant array for the given string literal.
5615 ConstantAddress
5616 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5617                                                   StringRef Name) {
5618   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5619 
5620   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5621   llvm::GlobalVariable **Entry = nullptr;
5622   if (!LangOpts.WritableStrings) {
5623     Entry = &ConstantStringMap[C];
5624     if (auto GV = *Entry) {
5625       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5626         GV->setAlignment(Alignment.getAsAlign());
5627       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5628                              GV->getValueType(), Alignment);
5629     }
5630   }
5631 
5632   SmallString<256> MangledNameBuffer;
5633   StringRef GlobalVariableName;
5634   llvm::GlobalValue::LinkageTypes LT;
5635 
5636   // Mangle the string literal if that's how the ABI merges duplicate strings.
5637   // Don't do it if they are writable, since we don't want writes in one TU to
5638   // affect strings in another.
5639   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5640       !LangOpts.WritableStrings) {
5641     llvm::raw_svector_ostream Out(MangledNameBuffer);
5642     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5643     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5644     GlobalVariableName = MangledNameBuffer;
5645   } else {
5646     LT = llvm::GlobalValue::PrivateLinkage;
5647     GlobalVariableName = Name;
5648   }
5649 
5650   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5651   if (Entry)
5652     *Entry = GV;
5653 
5654   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5655                                   QualType());
5656 
5657   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5658                          GV->getValueType(), Alignment);
5659 }
5660 
5661 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5662 /// array for the given ObjCEncodeExpr node.
5663 ConstantAddress
5664 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5665   std::string Str;
5666   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5667 
5668   return GetAddrOfConstantCString(Str);
5669 }
5670 
5671 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5672 /// the literal and a terminating '\0' character.
5673 /// The result has pointer to array type.
5674 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5675     const std::string &Str, const char *GlobalName) {
5676   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5677   CharUnits Alignment =
5678     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5679 
5680   llvm::Constant *C =
5681       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5682 
5683   // Don't share any string literals if strings aren't constant.
5684   llvm::GlobalVariable **Entry = nullptr;
5685   if (!LangOpts.WritableStrings) {
5686     Entry = &ConstantStringMap[C];
5687     if (auto GV = *Entry) {
5688       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5689         GV->setAlignment(Alignment.getAsAlign());
5690       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5691                              GV->getValueType(), Alignment);
5692     }
5693   }
5694 
5695   // Get the default prefix if a name wasn't specified.
5696   if (!GlobalName)
5697     GlobalName = ".str";
5698   // Create a global variable for this.
5699   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5700                                   GlobalName, Alignment);
5701   if (Entry)
5702     *Entry = GV;
5703 
5704   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5705                          GV->getValueType(), Alignment);
5706 }
5707 
5708 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5709     const MaterializeTemporaryExpr *E, const Expr *Init) {
5710   assert((E->getStorageDuration() == SD_Static ||
5711           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5712   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5713 
5714   // If we're not materializing a subobject of the temporary, keep the
5715   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5716   QualType MaterializedType = Init->getType();
5717   if (Init == E->getSubExpr())
5718     MaterializedType = E->getType();
5719 
5720   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5721 
5722   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5723   if (!InsertResult.second) {
5724     // We've seen this before: either we already created it or we're in the
5725     // process of doing so.
5726     if (!InsertResult.first->second) {
5727       // We recursively re-entered this function, probably during emission of
5728       // the initializer. Create a placeholder. We'll clean this up in the
5729       // outer call, at the end of this function.
5730       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5731       InsertResult.first->second = new llvm::GlobalVariable(
5732           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5733           nullptr);
5734     }
5735     return ConstantAddress(InsertResult.first->second,
5736                            llvm::cast<llvm::GlobalVariable>(
5737                                InsertResult.first->second->stripPointerCasts())
5738                                ->getValueType(),
5739                            Align);
5740   }
5741 
5742   // FIXME: If an externally-visible declaration extends multiple temporaries,
5743   // we need to give each temporary the same name in every translation unit (and
5744   // we also need to make the temporaries externally-visible).
5745   SmallString<256> Name;
5746   llvm::raw_svector_ostream Out(Name);
5747   getCXXABI().getMangleContext().mangleReferenceTemporary(
5748       VD, E->getManglingNumber(), Out);
5749 
5750   APValue *Value = nullptr;
5751   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5752     // If the initializer of the extending declaration is a constant
5753     // initializer, we should have a cached constant initializer for this
5754     // temporary. Note that this might have a different value from the value
5755     // computed by evaluating the initializer if the surrounding constant
5756     // expression modifies the temporary.
5757     Value = E->getOrCreateValue(false);
5758   }
5759 
5760   // Try evaluating it now, it might have a constant initializer.
5761   Expr::EvalResult EvalResult;
5762   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5763       !EvalResult.hasSideEffects())
5764     Value = &EvalResult.Val;
5765 
5766   LangAS AddrSpace =
5767       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5768 
5769   Optional<ConstantEmitter> emitter;
5770   llvm::Constant *InitialValue = nullptr;
5771   bool Constant = false;
5772   llvm::Type *Type;
5773   if (Value) {
5774     // The temporary has a constant initializer, use it.
5775     emitter.emplace(*this);
5776     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5777                                                MaterializedType);
5778     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5779     Type = InitialValue->getType();
5780   } else {
5781     // No initializer, the initialization will be provided when we
5782     // initialize the declaration which performed lifetime extension.
5783     Type = getTypes().ConvertTypeForMem(MaterializedType);
5784   }
5785 
5786   // Create a global variable for this lifetime-extended temporary.
5787   llvm::GlobalValue::LinkageTypes Linkage =
5788       getLLVMLinkageVarDefinition(VD, Constant);
5789   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5790     const VarDecl *InitVD;
5791     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5792         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5793       // Temporaries defined inside a class get linkonce_odr linkage because the
5794       // class can be defined in multiple translation units.
5795       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5796     } else {
5797       // There is no need for this temporary to have external linkage if the
5798       // VarDecl has external linkage.
5799       Linkage = llvm::GlobalVariable::InternalLinkage;
5800     }
5801   }
5802   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5803   auto *GV = new llvm::GlobalVariable(
5804       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5805       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5806   if (emitter) emitter->finalize(GV);
5807   setGVProperties(GV, VD);
5808   if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
5809     // The reference temporary should never be dllexport.
5810     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5811   GV->setAlignment(Align.getAsAlign());
5812   if (supportsCOMDAT() && GV->isWeakForLinker())
5813     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5814   if (VD->getTLSKind())
5815     setTLSMode(GV, *VD);
5816   llvm::Constant *CV = GV;
5817   if (AddrSpace != LangAS::Default)
5818     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5819         *this, GV, AddrSpace, LangAS::Default,
5820         Type->getPointerTo(
5821             getContext().getTargetAddressSpace(LangAS::Default)));
5822 
5823   // Update the map with the new temporary. If we created a placeholder above,
5824   // replace it with the new global now.
5825   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5826   if (Entry) {
5827     Entry->replaceAllUsesWith(
5828         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5829     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5830   }
5831   Entry = CV;
5832 
5833   return ConstantAddress(CV, Type, Align);
5834 }
5835 
5836 /// EmitObjCPropertyImplementations - Emit information for synthesized
5837 /// properties for an implementation.
5838 void CodeGenModule::EmitObjCPropertyImplementations(const
5839                                                     ObjCImplementationDecl *D) {
5840   for (const auto *PID : D->property_impls()) {
5841     // Dynamic is just for type-checking.
5842     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5843       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5844 
5845       // Determine which methods need to be implemented, some may have
5846       // been overridden. Note that ::isPropertyAccessor is not the method
5847       // we want, that just indicates if the decl came from a
5848       // property. What we want to know is if the method is defined in
5849       // this implementation.
5850       auto *Getter = PID->getGetterMethodDecl();
5851       if (!Getter || Getter->isSynthesizedAccessorStub())
5852         CodeGenFunction(*this).GenerateObjCGetter(
5853             const_cast<ObjCImplementationDecl *>(D), PID);
5854       auto *Setter = PID->getSetterMethodDecl();
5855       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5856         CodeGenFunction(*this).GenerateObjCSetter(
5857                                  const_cast<ObjCImplementationDecl *>(D), PID);
5858     }
5859   }
5860 }
5861 
5862 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5863   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5864   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5865        ivar; ivar = ivar->getNextIvar())
5866     if (ivar->getType().isDestructedType())
5867       return true;
5868 
5869   return false;
5870 }
5871 
5872 static bool AllTrivialInitializers(CodeGenModule &CGM,
5873                                    ObjCImplementationDecl *D) {
5874   CodeGenFunction CGF(CGM);
5875   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5876        E = D->init_end(); B != E; ++B) {
5877     CXXCtorInitializer *CtorInitExp = *B;
5878     Expr *Init = CtorInitExp->getInit();
5879     if (!CGF.isTrivialInitializer(Init))
5880       return false;
5881   }
5882   return true;
5883 }
5884 
5885 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5886 /// for an implementation.
5887 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5888   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5889   if (needsDestructMethod(D)) {
5890     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5891     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5892     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5893         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5894         getContext().VoidTy, nullptr, D,
5895         /*isInstance=*/true, /*isVariadic=*/false,
5896         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5897         /*isImplicitlyDeclared=*/true,
5898         /*isDefined=*/false, ObjCMethodDecl::Required);
5899     D->addInstanceMethod(DTORMethod);
5900     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5901     D->setHasDestructors(true);
5902   }
5903 
5904   // If the implementation doesn't have any ivar initializers, we don't need
5905   // a .cxx_construct.
5906   if (D->getNumIvarInitializers() == 0 ||
5907       AllTrivialInitializers(*this, D))
5908     return;
5909 
5910   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5911   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5912   // The constructor returns 'self'.
5913   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5914       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5915       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5916       /*isVariadic=*/false,
5917       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5918       /*isImplicitlyDeclared=*/true,
5919       /*isDefined=*/false, ObjCMethodDecl::Required);
5920   D->addInstanceMethod(CTORMethod);
5921   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5922   D->setHasNonZeroConstructors(true);
5923 }
5924 
5925 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5926 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5927   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5928       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5929     ErrorUnsupported(LSD, "linkage spec");
5930     return;
5931   }
5932 
5933   EmitDeclContext(LSD);
5934 }
5935 
5936 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5937   for (auto *I : DC->decls()) {
5938     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5939     // are themselves considered "top-level", so EmitTopLevelDecl on an
5940     // ObjCImplDecl does not recursively visit them. We need to do that in
5941     // case they're nested inside another construct (LinkageSpecDecl /
5942     // ExportDecl) that does stop them from being considered "top-level".
5943     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5944       for (auto *M : OID->methods())
5945         EmitTopLevelDecl(M);
5946     }
5947 
5948     EmitTopLevelDecl(I);
5949   }
5950 }
5951 
5952 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5953 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5954   // Ignore dependent declarations.
5955   if (D->isTemplated())
5956     return;
5957 
5958   // Consteval function shouldn't be emitted.
5959   if (auto *FD = dyn_cast<FunctionDecl>(D))
5960     if (FD->isConsteval())
5961       return;
5962 
5963   switch (D->getKind()) {
5964   case Decl::CXXConversion:
5965   case Decl::CXXMethod:
5966   case Decl::Function:
5967     EmitGlobal(cast<FunctionDecl>(D));
5968     // Always provide some coverage mapping
5969     // even for the functions that aren't emitted.
5970     AddDeferredUnusedCoverageMapping(D);
5971     break;
5972 
5973   case Decl::CXXDeductionGuide:
5974     // Function-like, but does not result in code emission.
5975     break;
5976 
5977   case Decl::Var:
5978   case Decl::Decomposition:
5979   case Decl::VarTemplateSpecialization:
5980     EmitGlobal(cast<VarDecl>(D));
5981     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5982       for (auto *B : DD->bindings())
5983         if (auto *HD = B->getHoldingVar())
5984           EmitGlobal(HD);
5985     break;
5986 
5987   // Indirect fields from global anonymous structs and unions can be
5988   // ignored; only the actual variable requires IR gen support.
5989   case Decl::IndirectField:
5990     break;
5991 
5992   // C++ Decls
5993   case Decl::Namespace:
5994     EmitDeclContext(cast<NamespaceDecl>(D));
5995     break;
5996   case Decl::ClassTemplateSpecialization: {
5997     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5998     if (CGDebugInfo *DI = getModuleDebugInfo())
5999       if (Spec->getSpecializationKind() ==
6000               TSK_ExplicitInstantiationDefinition &&
6001           Spec->hasDefinition())
6002         DI->completeTemplateDefinition(*Spec);
6003   } LLVM_FALLTHROUGH;
6004   case Decl::CXXRecord: {
6005     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6006     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6007       if (CRD->hasDefinition())
6008         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6009       if (auto *ES = D->getASTContext().getExternalSource())
6010         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6011           DI->completeUnusedClass(*CRD);
6012     }
6013     // Emit any static data members, they may be definitions.
6014     for (auto *I : CRD->decls())
6015       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6016         EmitTopLevelDecl(I);
6017     break;
6018   }
6019     // No code generation needed.
6020   case Decl::UsingShadow:
6021   case Decl::ClassTemplate:
6022   case Decl::VarTemplate:
6023   case Decl::Concept:
6024   case Decl::VarTemplatePartialSpecialization:
6025   case Decl::FunctionTemplate:
6026   case Decl::TypeAliasTemplate:
6027   case Decl::Block:
6028   case Decl::Empty:
6029   case Decl::Binding:
6030     break;
6031   case Decl::Using:          // using X; [C++]
6032     if (CGDebugInfo *DI = getModuleDebugInfo())
6033         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6034     break;
6035   case Decl::UsingEnum: // using enum X; [C++]
6036     if (CGDebugInfo *DI = getModuleDebugInfo())
6037       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6038     break;
6039   case Decl::NamespaceAlias:
6040     if (CGDebugInfo *DI = getModuleDebugInfo())
6041         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6042     break;
6043   case Decl::UsingDirective: // using namespace X; [C++]
6044     if (CGDebugInfo *DI = getModuleDebugInfo())
6045       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6046     break;
6047   case Decl::CXXConstructor:
6048     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6049     break;
6050   case Decl::CXXDestructor:
6051     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6052     break;
6053 
6054   case Decl::StaticAssert:
6055     // Nothing to do.
6056     break;
6057 
6058   // Objective-C Decls
6059 
6060   // Forward declarations, no (immediate) code generation.
6061   case Decl::ObjCInterface:
6062   case Decl::ObjCCategory:
6063     break;
6064 
6065   case Decl::ObjCProtocol: {
6066     auto *Proto = cast<ObjCProtocolDecl>(D);
6067     if (Proto->isThisDeclarationADefinition())
6068       ObjCRuntime->GenerateProtocol(Proto);
6069     break;
6070   }
6071 
6072   case Decl::ObjCCategoryImpl:
6073     // Categories have properties but don't support synthesize so we
6074     // can ignore them here.
6075     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6076     break;
6077 
6078   case Decl::ObjCImplementation: {
6079     auto *OMD = cast<ObjCImplementationDecl>(D);
6080     EmitObjCPropertyImplementations(OMD);
6081     EmitObjCIvarInitializations(OMD);
6082     ObjCRuntime->GenerateClass(OMD);
6083     // Emit global variable debug information.
6084     if (CGDebugInfo *DI = getModuleDebugInfo())
6085       if (getCodeGenOpts().hasReducedDebugInfo())
6086         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6087             OMD->getClassInterface()), OMD->getLocation());
6088     break;
6089   }
6090   case Decl::ObjCMethod: {
6091     auto *OMD = cast<ObjCMethodDecl>(D);
6092     // If this is not a prototype, emit the body.
6093     if (OMD->getBody())
6094       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6095     break;
6096   }
6097   case Decl::ObjCCompatibleAlias:
6098     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6099     break;
6100 
6101   case Decl::PragmaComment: {
6102     const auto *PCD = cast<PragmaCommentDecl>(D);
6103     switch (PCD->getCommentKind()) {
6104     case PCK_Unknown:
6105       llvm_unreachable("unexpected pragma comment kind");
6106     case PCK_Linker:
6107       AppendLinkerOptions(PCD->getArg());
6108       break;
6109     case PCK_Lib:
6110         AddDependentLib(PCD->getArg());
6111       break;
6112     case PCK_Compiler:
6113     case PCK_ExeStr:
6114     case PCK_User:
6115       break; // We ignore all of these.
6116     }
6117     break;
6118   }
6119 
6120   case Decl::PragmaDetectMismatch: {
6121     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6122     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6123     break;
6124   }
6125 
6126   case Decl::LinkageSpec:
6127     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6128     break;
6129 
6130   case Decl::FileScopeAsm: {
6131     // File-scope asm is ignored during device-side CUDA compilation.
6132     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6133       break;
6134     // File-scope asm is ignored during device-side OpenMP compilation.
6135     if (LangOpts.OpenMPIsDevice)
6136       break;
6137     // File-scope asm is ignored during device-side SYCL compilation.
6138     if (LangOpts.SYCLIsDevice)
6139       break;
6140     auto *AD = cast<FileScopeAsmDecl>(D);
6141     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6142     break;
6143   }
6144 
6145   case Decl::Import: {
6146     auto *Import = cast<ImportDecl>(D);
6147 
6148     // If we've already imported this module, we're done.
6149     if (!ImportedModules.insert(Import->getImportedModule()))
6150       break;
6151 
6152     // Emit debug information for direct imports.
6153     if (!Import->getImportedOwningModule()) {
6154       if (CGDebugInfo *DI = getModuleDebugInfo())
6155         DI->EmitImportDecl(*Import);
6156     }
6157 
6158     // Find all of the submodules and emit the module initializers.
6159     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6160     SmallVector<clang::Module *, 16> Stack;
6161     Visited.insert(Import->getImportedModule());
6162     Stack.push_back(Import->getImportedModule());
6163 
6164     while (!Stack.empty()) {
6165       clang::Module *Mod = Stack.pop_back_val();
6166       if (!EmittedModuleInitializers.insert(Mod).second)
6167         continue;
6168 
6169       for (auto *D : Context.getModuleInitializers(Mod))
6170         EmitTopLevelDecl(D);
6171 
6172       // Visit the submodules of this module.
6173       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6174                                              SubEnd = Mod->submodule_end();
6175            Sub != SubEnd; ++Sub) {
6176         // Skip explicit children; they need to be explicitly imported to emit
6177         // the initializers.
6178         if ((*Sub)->IsExplicit)
6179           continue;
6180 
6181         if (Visited.insert(*Sub).second)
6182           Stack.push_back(*Sub);
6183       }
6184     }
6185     break;
6186   }
6187 
6188   case Decl::Export:
6189     EmitDeclContext(cast<ExportDecl>(D));
6190     break;
6191 
6192   case Decl::OMPThreadPrivate:
6193     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6194     break;
6195 
6196   case Decl::OMPAllocate:
6197     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6198     break;
6199 
6200   case Decl::OMPDeclareReduction:
6201     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6202     break;
6203 
6204   case Decl::OMPDeclareMapper:
6205     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6206     break;
6207 
6208   case Decl::OMPRequires:
6209     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6210     break;
6211 
6212   case Decl::Typedef:
6213   case Decl::TypeAlias: // using foo = bar; [C++11]
6214     if (CGDebugInfo *DI = getModuleDebugInfo())
6215       DI->EmitAndRetainType(
6216           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6217     break;
6218 
6219   case Decl::Record:
6220     if (CGDebugInfo *DI = getModuleDebugInfo())
6221       if (cast<RecordDecl>(D)->getDefinition())
6222         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6223     break;
6224 
6225   case Decl::Enum:
6226     if (CGDebugInfo *DI = getModuleDebugInfo())
6227       if (cast<EnumDecl>(D)->getDefinition())
6228         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6229     break;
6230 
6231   default:
6232     // Make sure we handled everything we should, every other kind is a
6233     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6234     // function. Need to recode Decl::Kind to do that easily.
6235     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6236     break;
6237   }
6238 }
6239 
6240 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6241   // Do we need to generate coverage mapping?
6242   if (!CodeGenOpts.CoverageMapping)
6243     return;
6244   switch (D->getKind()) {
6245   case Decl::CXXConversion:
6246   case Decl::CXXMethod:
6247   case Decl::Function:
6248   case Decl::ObjCMethod:
6249   case Decl::CXXConstructor:
6250   case Decl::CXXDestructor: {
6251     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6252       break;
6253     SourceManager &SM = getContext().getSourceManager();
6254     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6255       break;
6256     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6257     if (I == DeferredEmptyCoverageMappingDecls.end())
6258       DeferredEmptyCoverageMappingDecls[D] = true;
6259     break;
6260   }
6261   default:
6262     break;
6263   };
6264 }
6265 
6266 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6267   // Do we need to generate coverage mapping?
6268   if (!CodeGenOpts.CoverageMapping)
6269     return;
6270   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6271     if (Fn->isTemplateInstantiation())
6272       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6273   }
6274   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6275   if (I == DeferredEmptyCoverageMappingDecls.end())
6276     DeferredEmptyCoverageMappingDecls[D] = false;
6277   else
6278     I->second = false;
6279 }
6280 
6281 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6282   // We call takeVector() here to avoid use-after-free.
6283   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6284   // we deserialize function bodies to emit coverage info for them, and that
6285   // deserializes more declarations. How should we handle that case?
6286   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6287     if (!Entry.second)
6288       continue;
6289     const Decl *D = Entry.first;
6290     switch (D->getKind()) {
6291     case Decl::CXXConversion:
6292     case Decl::CXXMethod:
6293     case Decl::Function:
6294     case Decl::ObjCMethod: {
6295       CodeGenPGO PGO(*this);
6296       GlobalDecl GD(cast<FunctionDecl>(D));
6297       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6298                                   getFunctionLinkage(GD));
6299       break;
6300     }
6301     case Decl::CXXConstructor: {
6302       CodeGenPGO PGO(*this);
6303       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6304       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6305                                   getFunctionLinkage(GD));
6306       break;
6307     }
6308     case Decl::CXXDestructor: {
6309       CodeGenPGO PGO(*this);
6310       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6311       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6312                                   getFunctionLinkage(GD));
6313       break;
6314     }
6315     default:
6316       break;
6317     };
6318   }
6319 }
6320 
6321 void CodeGenModule::EmitMainVoidAlias() {
6322   // In order to transition away from "__original_main" gracefully, emit an
6323   // alias for "main" in the no-argument case so that libc can detect when
6324   // new-style no-argument main is in used.
6325   if (llvm::Function *F = getModule().getFunction("main")) {
6326     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6327         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
6328       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
6329   }
6330 }
6331 
6332 /// Turns the given pointer into a constant.
6333 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6334                                           const void *Ptr) {
6335   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6336   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6337   return llvm::ConstantInt::get(i64, PtrInt);
6338 }
6339 
6340 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6341                                    llvm::NamedMDNode *&GlobalMetadata,
6342                                    GlobalDecl D,
6343                                    llvm::GlobalValue *Addr) {
6344   if (!GlobalMetadata)
6345     GlobalMetadata =
6346       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6347 
6348   // TODO: should we report variant information for ctors/dtors?
6349   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6350                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6351                                CGM.getLLVMContext(), D.getDecl()))};
6352   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6353 }
6354 
6355 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6356                                                  llvm::GlobalValue *CppFunc) {
6357   // Store the list of ifuncs we need to replace uses in.
6358   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6359   // List of ConstantExprs that we should be able to delete when we're done
6360   // here.
6361   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6362 
6363   // First make sure that all users of this are ifuncs (or ifuncs via a
6364   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6365   // later.
6366   for (llvm::User *User : Elem->users()) {
6367     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6368     // ifunc directly. In any other case, just give up, as we don't know what we
6369     // could break by changing those.
6370     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6371       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6372         return false;
6373 
6374       for (llvm::User *CEUser : ConstExpr->users()) {
6375         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6376           IFuncs.push_back(IFunc);
6377         } else {
6378           return false;
6379         }
6380       }
6381       CEs.push_back(ConstExpr);
6382     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6383       IFuncs.push_back(IFunc);
6384     } else {
6385       // This user is one we don't know how to handle, so fail redirection. This
6386       // will result in an ifunc retaining a resolver name that will ultimately
6387       // fail to be resolved to a defined function.
6388       return false;
6389     }
6390   }
6391 
6392   // Now we know this is a valid case where we can do this alias replacement, we
6393   // need to remove all of the references to Elem (and the bitcasts!) so we can
6394   // delete it.
6395   for (llvm::GlobalIFunc *IFunc : IFuncs)
6396     IFunc->setResolver(nullptr);
6397   for (llvm::ConstantExpr *ConstExpr : CEs)
6398     ConstExpr->destroyConstant();
6399 
6400   // We should now be out of uses for the 'old' version of this function, so we
6401   // can erase it as well.
6402   Elem->eraseFromParent();
6403 
6404   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6405     // The type of the resolver is always just a function-type that returns the
6406     // type of the IFunc, so create that here. If the type of the actual
6407     // resolver doesn't match, it just gets bitcast to the right thing.
6408     auto *ResolverTy =
6409         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6410     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6411         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6412     IFunc->setResolver(Resolver);
6413   }
6414   return true;
6415 }
6416 
6417 /// For each function which is declared within an extern "C" region and marked
6418 /// as 'used', but has internal linkage, create an alias from the unmangled
6419 /// name to the mangled name if possible. People expect to be able to refer
6420 /// to such functions with an unmangled name from inline assembly within the
6421 /// same translation unit.
6422 void CodeGenModule::EmitStaticExternCAliases() {
6423   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6424     return;
6425   for (auto &I : StaticExternCValues) {
6426     IdentifierInfo *Name = I.first;
6427     llvm::GlobalValue *Val = I.second;
6428 
6429     // If Val is null, that implies there were multiple declarations that each
6430     // had a claim to the unmangled name. In this case, generation of the alias
6431     // is suppressed. See CodeGenModule::MaybeHandleStaticInExterC.
6432     if (!Val)
6433       break;
6434 
6435     llvm::GlobalValue *ExistingElem =
6436         getModule().getNamedValue(Name->getName());
6437 
6438     // If there is either not something already by this name, or we were able to
6439     // replace all uses from IFuncs, create the alias.
6440     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6441       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6442   }
6443 }
6444 
6445 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6446                                              GlobalDecl &Result) const {
6447   auto Res = Manglings.find(MangledName);
6448   if (Res == Manglings.end())
6449     return false;
6450   Result = Res->getValue();
6451   return true;
6452 }
6453 
6454 /// Emits metadata nodes associating all the global values in the
6455 /// current module with the Decls they came from.  This is useful for
6456 /// projects using IR gen as a subroutine.
6457 ///
6458 /// Since there's currently no way to associate an MDNode directly
6459 /// with an llvm::GlobalValue, we create a global named metadata
6460 /// with the name 'clang.global.decl.ptrs'.
6461 void CodeGenModule::EmitDeclMetadata() {
6462   llvm::NamedMDNode *GlobalMetadata = nullptr;
6463 
6464   for (auto &I : MangledDeclNames) {
6465     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6466     // Some mangled names don't necessarily have an associated GlobalValue
6467     // in this module, e.g. if we mangled it for DebugInfo.
6468     if (Addr)
6469       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6470   }
6471 }
6472 
6473 /// Emits metadata nodes for all the local variables in the current
6474 /// function.
6475 void CodeGenFunction::EmitDeclMetadata() {
6476   if (LocalDeclMap.empty()) return;
6477 
6478   llvm::LLVMContext &Context = getLLVMContext();
6479 
6480   // Find the unique metadata ID for this name.
6481   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6482 
6483   llvm::NamedMDNode *GlobalMetadata = nullptr;
6484 
6485   for (auto &I : LocalDeclMap) {
6486     const Decl *D = I.first;
6487     llvm::Value *Addr = I.second.getPointer();
6488     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6489       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6490       Alloca->setMetadata(
6491           DeclPtrKind, llvm::MDNode::get(
6492                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6493     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6494       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6495       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6496     }
6497   }
6498 }
6499 
6500 void CodeGenModule::EmitVersionIdentMetadata() {
6501   llvm::NamedMDNode *IdentMetadata =
6502     TheModule.getOrInsertNamedMetadata("llvm.ident");
6503   std::string Version = getClangFullVersion();
6504   llvm::LLVMContext &Ctx = TheModule.getContext();
6505 
6506   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6507   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6508 }
6509 
6510 void CodeGenModule::EmitCommandLineMetadata() {
6511   llvm::NamedMDNode *CommandLineMetadata =
6512     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6513   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6514   llvm::LLVMContext &Ctx = TheModule.getContext();
6515 
6516   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6517   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6518 }
6519 
6520 void CodeGenModule::EmitCoverageFile() {
6521   if (getCodeGenOpts().CoverageDataFile.empty() &&
6522       getCodeGenOpts().CoverageNotesFile.empty())
6523     return;
6524 
6525   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6526   if (!CUNode)
6527     return;
6528 
6529   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6530   llvm::LLVMContext &Ctx = TheModule.getContext();
6531   auto *CoverageDataFile =
6532       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6533   auto *CoverageNotesFile =
6534       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6535   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6536     llvm::MDNode *CU = CUNode->getOperand(i);
6537     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6538     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6539   }
6540 }
6541 
6542 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6543                                                        bool ForEH) {
6544   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6545   // FIXME: should we even be calling this method if RTTI is disabled
6546   // and it's not for EH?
6547   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6548       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6549        getTriple().isNVPTX()))
6550     return llvm::Constant::getNullValue(Int8PtrTy);
6551 
6552   if (ForEH && Ty->isObjCObjectPointerType() &&
6553       LangOpts.ObjCRuntime.isGNUFamily())
6554     return ObjCRuntime->GetEHType(Ty);
6555 
6556   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6557 }
6558 
6559 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6560   // Do not emit threadprivates in simd-only mode.
6561   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6562     return;
6563   for (auto RefExpr : D->varlists()) {
6564     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6565     bool PerformInit =
6566         VD->getAnyInitializer() &&
6567         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6568                                                         /*ForRef=*/false);
6569 
6570     Address Addr(GetAddrOfGlobalVar(VD),
6571                  getTypes().ConvertTypeForMem(VD->getType()),
6572                  getContext().getDeclAlign(VD));
6573     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6574             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6575       CXXGlobalInits.push_back(InitFunction);
6576   }
6577 }
6578 
6579 llvm::Metadata *
6580 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6581                                             StringRef Suffix) {
6582   if (auto *FnType = T->getAs<FunctionProtoType>())
6583     T = getContext().getFunctionType(
6584         FnType->getReturnType(), FnType->getParamTypes(),
6585         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6586 
6587   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6588   if (InternalId)
6589     return InternalId;
6590 
6591   if (isExternallyVisible(T->getLinkage())) {
6592     std::string OutName;
6593     llvm::raw_string_ostream Out(OutName);
6594     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6595     Out << Suffix;
6596 
6597     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6598   } else {
6599     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6600                                            llvm::ArrayRef<llvm::Metadata *>());
6601   }
6602 
6603   return InternalId;
6604 }
6605 
6606 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6607   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6608 }
6609 
6610 llvm::Metadata *
6611 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6612   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6613 }
6614 
6615 // Generalize pointer types to a void pointer with the qualifiers of the
6616 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6617 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6618 // 'void *'.
6619 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6620   if (!Ty->isPointerType())
6621     return Ty;
6622 
6623   return Ctx.getPointerType(
6624       QualType(Ctx.VoidTy).withCVRQualifiers(
6625           Ty->getPointeeType().getCVRQualifiers()));
6626 }
6627 
6628 // Apply type generalization to a FunctionType's return and argument types
6629 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6630   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6631     SmallVector<QualType, 8> GeneralizedParams;
6632     for (auto &Param : FnType->param_types())
6633       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6634 
6635     return Ctx.getFunctionType(
6636         GeneralizeType(Ctx, FnType->getReturnType()),
6637         GeneralizedParams, FnType->getExtProtoInfo());
6638   }
6639 
6640   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6641     return Ctx.getFunctionNoProtoType(
6642         GeneralizeType(Ctx, FnType->getReturnType()));
6643 
6644   llvm_unreachable("Encountered unknown FunctionType");
6645 }
6646 
6647 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6648   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6649                                       GeneralizedMetadataIdMap, ".generalized");
6650 }
6651 
6652 /// Returns whether this module needs the "all-vtables" type identifier.
6653 bool CodeGenModule::NeedAllVtablesTypeId() const {
6654   // Returns true if at least one of vtable-based CFI checkers is enabled and
6655   // is not in the trapping mode.
6656   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6657            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6658           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6659            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6660           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6661            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6662           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6663            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6664 }
6665 
6666 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6667                                           CharUnits Offset,
6668                                           const CXXRecordDecl *RD) {
6669   llvm::Metadata *MD =
6670       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6671   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6672 
6673   if (CodeGenOpts.SanitizeCfiCrossDso)
6674     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6675       VTable->addTypeMetadata(Offset.getQuantity(),
6676                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6677 
6678   if (NeedAllVtablesTypeId()) {
6679     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6680     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6681   }
6682 }
6683 
6684 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6685   if (!SanStats)
6686     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6687 
6688   return *SanStats;
6689 }
6690 
6691 llvm::Value *
6692 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6693                                                   CodeGenFunction &CGF) {
6694   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6695   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6696   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6697   auto *Call = CGF.EmitRuntimeCall(
6698       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6699   return Call;
6700 }
6701 
6702 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6703     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6704   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6705                                  /* forPointeeType= */ true);
6706 }
6707 
6708 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6709                                                  LValueBaseInfo *BaseInfo,
6710                                                  TBAAAccessInfo *TBAAInfo,
6711                                                  bool forPointeeType) {
6712   if (TBAAInfo)
6713     *TBAAInfo = getTBAAAccessInfo(T);
6714 
6715   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6716   // that doesn't return the information we need to compute BaseInfo.
6717 
6718   // Honor alignment typedef attributes even on incomplete types.
6719   // We also honor them straight for C++ class types, even as pointees;
6720   // there's an expressivity gap here.
6721   if (auto TT = T->getAs<TypedefType>()) {
6722     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6723       if (BaseInfo)
6724         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6725       return getContext().toCharUnitsFromBits(Align);
6726     }
6727   }
6728 
6729   bool AlignForArray = T->isArrayType();
6730 
6731   // Analyze the base element type, so we don't get confused by incomplete
6732   // array types.
6733   T = getContext().getBaseElementType(T);
6734 
6735   if (T->isIncompleteType()) {
6736     // We could try to replicate the logic from
6737     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6738     // type is incomplete, so it's impossible to test. We could try to reuse
6739     // getTypeAlignIfKnown, but that doesn't return the information we need
6740     // to set BaseInfo.  So just ignore the possibility that the alignment is
6741     // greater than one.
6742     if (BaseInfo)
6743       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6744     return CharUnits::One();
6745   }
6746 
6747   if (BaseInfo)
6748     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6749 
6750   CharUnits Alignment;
6751   const CXXRecordDecl *RD;
6752   if (T.getQualifiers().hasUnaligned()) {
6753     Alignment = CharUnits::One();
6754   } else if (forPointeeType && !AlignForArray &&
6755              (RD = T->getAsCXXRecordDecl())) {
6756     // For C++ class pointees, we don't know whether we're pointing at a
6757     // base or a complete object, so we generally need to use the
6758     // non-virtual alignment.
6759     Alignment = getClassPointerAlignment(RD);
6760   } else {
6761     Alignment = getContext().getTypeAlignInChars(T);
6762   }
6763 
6764   // Cap to the global maximum type alignment unless the alignment
6765   // was somehow explicit on the type.
6766   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6767     if (Alignment.getQuantity() > MaxAlign &&
6768         !getContext().isAlignmentRequired(T))
6769       Alignment = CharUnits::fromQuantity(MaxAlign);
6770   }
6771   return Alignment;
6772 }
6773 
6774 bool CodeGenModule::stopAutoInit() {
6775   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6776   if (StopAfter) {
6777     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6778     // used
6779     if (NumAutoVarInit >= StopAfter) {
6780       return true;
6781     }
6782     if (!NumAutoVarInit) {
6783       unsigned DiagID = getDiags().getCustomDiagID(
6784           DiagnosticsEngine::Warning,
6785           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6786           "number of times ftrivial-auto-var-init=%1 gets applied.");
6787       getDiags().Report(DiagID)
6788           << StopAfter
6789           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6790                       LangOptions::TrivialAutoVarInitKind::Zero
6791                   ? "zero"
6792                   : "pattern");
6793     }
6794     ++NumAutoVarInit;
6795   }
6796   return false;
6797 }
6798 
6799 void CodeGenModule::printPostfixForExternalizedStaticVar(
6800     llvm::raw_ostream &OS) const {
6801   OS << "__static__" << getContext().getCUIDHash();
6802 }
6803