1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeGPU.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/FileManager.h" 42 #include "clang/Basic/Module.h" 43 #include "clang/Basic/SourceManager.h" 44 #include "clang/Basic/TargetInfo.h" 45 #include "clang/Basic/Version.h" 46 #include "clang/CodeGen/BackendUtil.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 #include "llvm/Support/X86TargetParser.h" 67 68 using namespace clang; 69 using namespace CodeGen; 70 71 static llvm::cl::opt<bool> LimitedCoverage( 72 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 73 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 74 llvm::cl::init(false)); 75 76 static const char AnnotationSection[] = "llvm.metadata"; 77 78 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 79 switch (CGM.getContext().getCXXABIKind()) { 80 case TargetCXXABI::AppleARM64: 81 case TargetCXXABI::Fuchsia: 82 case TargetCXXABI::GenericAArch64: 83 case TargetCXXABI::GenericARM: 84 case TargetCXXABI::iOS: 85 case TargetCXXABI::WatchOS: 86 case TargetCXXABI::GenericMIPS: 87 case TargetCXXABI::GenericItanium: 88 case TargetCXXABI::WebAssembly: 89 case TargetCXXABI::XL: 90 return CreateItaniumCXXABI(CGM); 91 case TargetCXXABI::Microsoft: 92 return CreateMicrosoftCXXABI(CGM); 93 } 94 95 llvm_unreachable("invalid C++ ABI kind"); 96 } 97 98 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 99 const PreprocessorOptions &PPO, 100 const CodeGenOptions &CGO, llvm::Module &M, 101 DiagnosticsEngine &diags, 102 CoverageSourceInfo *CoverageInfo) 103 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 104 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 105 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 106 VMContext(M.getContext()), Types(*this), VTables(*this), 107 SanitizerMD(new SanitizerMetadata(*this)) { 108 109 // Initialize the type cache. 110 llvm::LLVMContext &LLVMContext = M.getContext(); 111 VoidTy = llvm::Type::getVoidTy(LLVMContext); 112 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 113 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 114 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 115 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 116 HalfTy = llvm::Type::getHalfTy(LLVMContext); 117 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 118 FloatTy = llvm::Type::getFloatTy(LLVMContext); 119 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 120 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 121 PointerAlignInBytes = 122 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 123 SizeSizeInBytes = 124 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 125 IntAlignInBytes = 126 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 127 CharTy = 128 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 129 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 130 IntPtrTy = llvm::IntegerType::get(LLVMContext, 131 C.getTargetInfo().getMaxPointerWidth()); 132 Int8PtrTy = Int8Ty->getPointerTo(0); 133 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 134 const llvm::DataLayout &DL = M.getDataLayout(); 135 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 136 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 137 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 138 139 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 140 141 if (LangOpts.ObjC) 142 createObjCRuntime(); 143 if (LangOpts.OpenCL) 144 createOpenCLRuntime(); 145 if (LangOpts.OpenMP) 146 createOpenMPRuntime(); 147 if (LangOpts.CUDA) 148 createCUDARuntime(); 149 150 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 151 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 152 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 153 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 154 getCXXABI().getMangleContext())); 155 156 // If debug info or coverage generation is enabled, create the CGDebugInfo 157 // object. 158 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 159 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 160 DebugInfo.reset(new CGDebugInfo(*this)); 161 162 Block.GlobalUniqueCount = 0; 163 164 if (C.getLangOpts().ObjC) 165 ObjCData.reset(new ObjCEntrypoints()); 166 167 if (CodeGenOpts.hasProfileClangUse()) { 168 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 169 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 170 if (auto E = ReaderOrErr.takeError()) { 171 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 172 "Could not read profile %0: %1"); 173 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 174 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 175 << EI.message(); 176 }); 177 } else 178 PGOReader = std::move(ReaderOrErr.get()); 179 } 180 181 // If coverage mapping generation is enabled, create the 182 // CoverageMappingModuleGen object. 183 if (CodeGenOpts.CoverageMapping) 184 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 185 186 // Generate the module name hash here if needed. 187 if (CodeGenOpts.UniqueInternalLinkageNames && 188 !getModule().getSourceFileName().empty()) { 189 std::string Path = getModule().getSourceFileName(); 190 // Check if a path substitution is needed from the MacroPrefixMap. 191 for (const auto &Entry : LangOpts.MacroPrefixMap) 192 if (Path.rfind(Entry.first, 0) != std::string::npos) { 193 Path = Entry.second + Path.substr(Entry.first.size()); 194 break; 195 } 196 llvm::MD5 Md5; 197 Md5.update(Path); 198 llvm::MD5::MD5Result R; 199 Md5.final(R); 200 SmallString<32> Str; 201 llvm::MD5::stringifyResult(R, Str); 202 // Convert MD5hash to Decimal. Demangler suffixes can either contain 203 // numbers or characters but not both. 204 llvm::APInt IntHash(128, Str.str(), 16); 205 // Prepend "__uniq" before the hash for tools like profilers to understand 206 // that this symbol is of internal linkage type. The "__uniq" is the 207 // pre-determined prefix that is used to tell tools that this symbol was 208 // created with -funique-internal-linakge-symbols and the tools can strip or 209 // keep the prefix as needed. 210 ModuleNameHash = (Twine(".__uniq.") + 211 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str(); 212 } 213 } 214 215 CodeGenModule::~CodeGenModule() {} 216 217 void CodeGenModule::createObjCRuntime() { 218 // This is just isGNUFamily(), but we want to force implementors of 219 // new ABIs to decide how best to do this. 220 switch (LangOpts.ObjCRuntime.getKind()) { 221 case ObjCRuntime::GNUstep: 222 case ObjCRuntime::GCC: 223 case ObjCRuntime::ObjFW: 224 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 225 return; 226 227 case ObjCRuntime::FragileMacOSX: 228 case ObjCRuntime::MacOSX: 229 case ObjCRuntime::iOS: 230 case ObjCRuntime::WatchOS: 231 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 232 return; 233 } 234 llvm_unreachable("bad runtime kind"); 235 } 236 237 void CodeGenModule::createOpenCLRuntime() { 238 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 239 } 240 241 void CodeGenModule::createOpenMPRuntime() { 242 // Select a specialized code generation class based on the target, if any. 243 // If it does not exist use the default implementation. 244 switch (getTriple().getArch()) { 245 case llvm::Triple::nvptx: 246 case llvm::Triple::nvptx64: 247 case llvm::Triple::amdgcn: 248 assert(getLangOpts().OpenMPIsDevice && 249 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 250 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 251 break; 252 default: 253 if (LangOpts.OpenMPSimd) 254 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 255 else 256 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 257 break; 258 } 259 } 260 261 void CodeGenModule::createCUDARuntime() { 262 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 263 } 264 265 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 266 Replacements[Name] = C; 267 } 268 269 void CodeGenModule::applyReplacements() { 270 for (auto &I : Replacements) { 271 StringRef MangledName = I.first(); 272 llvm::Constant *Replacement = I.second; 273 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 274 if (!Entry) 275 continue; 276 auto *OldF = cast<llvm::Function>(Entry); 277 auto *NewF = dyn_cast<llvm::Function>(Replacement); 278 if (!NewF) { 279 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 280 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 281 } else { 282 auto *CE = cast<llvm::ConstantExpr>(Replacement); 283 assert(CE->getOpcode() == llvm::Instruction::BitCast || 284 CE->getOpcode() == llvm::Instruction::GetElementPtr); 285 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 286 } 287 } 288 289 // Replace old with new, but keep the old order. 290 OldF->replaceAllUsesWith(Replacement); 291 if (NewF) { 292 NewF->removeFromParent(); 293 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 294 NewF); 295 } 296 OldF->eraseFromParent(); 297 } 298 } 299 300 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 301 GlobalValReplacements.push_back(std::make_pair(GV, C)); 302 } 303 304 void CodeGenModule::applyGlobalValReplacements() { 305 for (auto &I : GlobalValReplacements) { 306 llvm::GlobalValue *GV = I.first; 307 llvm::Constant *C = I.second; 308 309 GV->replaceAllUsesWith(C); 310 GV->eraseFromParent(); 311 } 312 } 313 314 // This is only used in aliases that we created and we know they have a 315 // linear structure. 316 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 317 const llvm::Constant *C; 318 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 319 C = GA->getAliasee(); 320 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 321 C = GI->getResolver(); 322 else 323 return GV; 324 325 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 326 if (!AliaseeGV) 327 return nullptr; 328 329 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 330 if (FinalGV == GV) 331 return nullptr; 332 333 return FinalGV; 334 } 335 336 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 337 SourceLocation Location, bool IsIFunc, 338 const llvm::GlobalValue *Alias, 339 const llvm::GlobalValue *&GV) { 340 GV = getAliasedGlobal(Alias); 341 if (!GV) { 342 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 343 return false; 344 } 345 346 if (GV->isDeclaration()) { 347 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 348 return false; 349 } 350 351 if (IsIFunc) { 352 // Check resolver function type. 353 const auto *F = dyn_cast<llvm::Function>(GV); 354 if (!F) { 355 Diags.Report(Location, diag::err_alias_to_undefined) 356 << IsIFunc << IsIFunc; 357 return false; 358 } 359 360 llvm::FunctionType *FTy = F->getFunctionType(); 361 if (!FTy->getReturnType()->isPointerTy()) { 362 Diags.Report(Location, diag::err_ifunc_resolver_return); 363 return false; 364 } 365 } 366 367 return true; 368 } 369 370 void CodeGenModule::checkAliases() { 371 // Check if the constructed aliases are well formed. It is really unfortunate 372 // that we have to do this in CodeGen, but we only construct mangled names 373 // and aliases during codegen. 374 bool Error = false; 375 DiagnosticsEngine &Diags = getDiags(); 376 for (const GlobalDecl &GD : Aliases) { 377 const auto *D = cast<ValueDecl>(GD.getDecl()); 378 SourceLocation Location; 379 bool IsIFunc = D->hasAttr<IFuncAttr>(); 380 if (const Attr *A = D->getDefiningAttr()) 381 Location = A->getLocation(); 382 else 383 llvm_unreachable("Not an alias or ifunc?"); 384 385 StringRef MangledName = getMangledName(GD); 386 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 387 const llvm::GlobalValue *GV = nullptr; 388 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 389 Error = true; 390 continue; 391 } 392 393 llvm::Constant *Aliasee = 394 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 395 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 396 397 llvm::GlobalValue *AliaseeGV; 398 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 399 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 400 else 401 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 402 403 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 404 StringRef AliasSection = SA->getName(); 405 if (AliasSection != AliaseeGV->getSection()) 406 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 407 << AliasSection << IsIFunc << IsIFunc; 408 } 409 410 // We have to handle alias to weak aliases in here. LLVM itself disallows 411 // this since the object semantics would not match the IL one. For 412 // compatibility with gcc we implement it by just pointing the alias 413 // to its aliasee's aliasee. We also warn, since the user is probably 414 // expecting the link to be weak. 415 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 416 if (GA->isInterposable()) { 417 Diags.Report(Location, diag::warn_alias_to_weak_alias) 418 << GV->getName() << GA->getName() << IsIFunc; 419 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 420 GA->getAliasee(), Alias->getType()); 421 422 if (IsIFunc) 423 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 424 else 425 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 426 } 427 } 428 } 429 if (!Error) 430 return; 431 432 for (const GlobalDecl &GD : Aliases) { 433 StringRef MangledName = getMangledName(GD); 434 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 435 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 436 Alias->eraseFromParent(); 437 } 438 } 439 440 void CodeGenModule::clear() { 441 DeferredDeclsToEmit.clear(); 442 if (OpenMPRuntime) 443 OpenMPRuntime->clear(); 444 } 445 446 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 447 StringRef MainFile) { 448 if (!hasDiagnostics()) 449 return; 450 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 451 if (MainFile.empty()) 452 MainFile = "<stdin>"; 453 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 454 } else { 455 if (Mismatched > 0) 456 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 457 458 if (Missing > 0) 459 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 460 } 461 } 462 463 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 464 llvm::Module &M) { 465 if (!LO.VisibilityFromDLLStorageClass) 466 return; 467 468 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 469 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 470 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 471 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 472 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 473 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 474 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 475 CodeGenModule::GetLLVMVisibility( 476 LO.getExternDeclNoDLLStorageClassVisibility()); 477 478 for (llvm::GlobalValue &GV : M.global_values()) { 479 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 480 continue; 481 482 // Reset DSO locality before setting the visibility. This removes 483 // any effects that visibility options and annotations may have 484 // had on the DSO locality. Setting the visibility will implicitly set 485 // appropriate globals to DSO Local; however, this will be pessimistic 486 // w.r.t. to the normal compiler IRGen. 487 GV.setDSOLocal(false); 488 489 if (GV.isDeclarationForLinker()) { 490 GV.setVisibility(GV.getDLLStorageClass() == 491 llvm::GlobalValue::DLLImportStorageClass 492 ? ExternDeclDLLImportVisibility 493 : ExternDeclNoDLLStorageClassVisibility); 494 } else { 495 GV.setVisibility(GV.getDLLStorageClass() == 496 llvm::GlobalValue::DLLExportStorageClass 497 ? DLLExportVisibility 498 : NoDLLStorageClassVisibility); 499 } 500 501 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 502 } 503 } 504 505 void CodeGenModule::Release() { 506 EmitDeferred(); 507 EmitVTablesOpportunistically(); 508 applyGlobalValReplacements(); 509 applyReplacements(); 510 emitMultiVersionFunctions(); 511 EmitCXXGlobalInitFunc(); 512 EmitCXXGlobalCleanUpFunc(); 513 registerGlobalDtorsWithAtExit(); 514 EmitCXXThreadLocalInitFunc(); 515 if (ObjCRuntime) 516 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 517 AddGlobalCtor(ObjCInitFunction); 518 if (Context.getLangOpts().CUDA && CUDARuntime) { 519 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 520 AddGlobalCtor(CudaCtorFunction); 521 } 522 if (OpenMPRuntime) { 523 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 524 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 525 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 526 } 527 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 528 OpenMPRuntime->clear(); 529 } 530 if (PGOReader) { 531 getModule().setProfileSummary( 532 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 533 llvm::ProfileSummary::PSK_Instr); 534 if (PGOStats.hasDiagnostics()) 535 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 536 } 537 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 538 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 539 EmitGlobalAnnotations(); 540 EmitStaticExternCAliases(); 541 checkAliases(); 542 EmitDeferredUnusedCoverageMappings(); 543 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 544 if (CoverageMapping) 545 CoverageMapping->emit(); 546 if (CodeGenOpts.SanitizeCfiCrossDso) { 547 CodeGenFunction(*this).EmitCfiCheckFail(); 548 CodeGenFunction(*this).EmitCfiCheckStub(); 549 } 550 emitAtAvailableLinkGuard(); 551 if (Context.getTargetInfo().getTriple().isWasm() && 552 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 553 EmitMainVoidAlias(); 554 } 555 556 if (getTriple().isAMDGPU()) { 557 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 558 // preserve ASAN functions in bitcode libraries. 559 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 560 auto *FT = llvm::FunctionType::get(VoidTy, {}); 561 auto *F = llvm::Function::Create( 562 FT, llvm::GlobalValue::ExternalLinkage, 563 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 564 auto *Var = new llvm::GlobalVariable( 565 getModule(), FT->getPointerTo(), 566 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 567 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 568 llvm::GlobalVariable::NotThreadLocal); 569 addCompilerUsedGlobal(Var); 570 } 571 // Emit amdgpu_code_object_version module flag, which is code object version 572 // times 100. 573 // ToDo: Enable module flag for all code object version when ROCm device 574 // library is ready. 575 if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) { 576 getModule().addModuleFlag(llvm::Module::Error, 577 "amdgpu_code_object_version", 578 getTarget().getTargetOpts().CodeObjectVersion); 579 } 580 } 581 582 emitLLVMUsed(); 583 if (SanStats) 584 SanStats->finish(); 585 586 if (CodeGenOpts.Autolink && 587 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 588 EmitModuleLinkOptions(); 589 } 590 591 // On ELF we pass the dependent library specifiers directly to the linker 592 // without manipulating them. This is in contrast to other platforms where 593 // they are mapped to a specific linker option by the compiler. This 594 // difference is a result of the greater variety of ELF linkers and the fact 595 // that ELF linkers tend to handle libraries in a more complicated fashion 596 // than on other platforms. This forces us to defer handling the dependent 597 // libs to the linker. 598 // 599 // CUDA/HIP device and host libraries are different. Currently there is no 600 // way to differentiate dependent libraries for host or device. Existing 601 // usage of #pragma comment(lib, *) is intended for host libraries on 602 // Windows. Therefore emit llvm.dependent-libraries only for host. 603 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 604 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 605 for (auto *MD : ELFDependentLibraries) 606 NMD->addOperand(MD); 607 } 608 609 // Record mregparm value now so it is visible through rest of codegen. 610 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 611 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 612 CodeGenOpts.NumRegisterParameters); 613 614 if (CodeGenOpts.DwarfVersion) { 615 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 616 CodeGenOpts.DwarfVersion); 617 } 618 619 if (CodeGenOpts.Dwarf64) 620 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 621 622 if (Context.getLangOpts().SemanticInterposition) 623 // Require various optimization to respect semantic interposition. 624 getModule().setSemanticInterposition(true); 625 626 if (CodeGenOpts.EmitCodeView) { 627 // Indicate that we want CodeView in the metadata. 628 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 629 } 630 if (CodeGenOpts.CodeViewGHash) { 631 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 632 } 633 if (CodeGenOpts.ControlFlowGuard) { 634 // Function ID tables and checks for Control Flow Guard (cfguard=2). 635 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 636 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 637 // Function ID tables for Control Flow Guard (cfguard=1). 638 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 639 } 640 if (CodeGenOpts.EHContGuard) { 641 // Function ID tables for EH Continuation Guard. 642 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 643 } 644 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 645 // We don't support LTO with 2 with different StrictVTablePointers 646 // FIXME: we could support it by stripping all the information introduced 647 // by StrictVTablePointers. 648 649 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 650 651 llvm::Metadata *Ops[2] = { 652 llvm::MDString::get(VMContext, "StrictVTablePointers"), 653 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 654 llvm::Type::getInt32Ty(VMContext), 1))}; 655 656 getModule().addModuleFlag(llvm::Module::Require, 657 "StrictVTablePointersRequirement", 658 llvm::MDNode::get(VMContext, Ops)); 659 } 660 if (getModuleDebugInfo()) 661 // We support a single version in the linked module. The LLVM 662 // parser will drop debug info with a different version number 663 // (and warn about it, too). 664 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 665 llvm::DEBUG_METADATA_VERSION); 666 667 // We need to record the widths of enums and wchar_t, so that we can generate 668 // the correct build attributes in the ARM backend. wchar_size is also used by 669 // TargetLibraryInfo. 670 uint64_t WCharWidth = 671 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 672 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 673 674 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 675 if ( Arch == llvm::Triple::arm 676 || Arch == llvm::Triple::armeb 677 || Arch == llvm::Triple::thumb 678 || Arch == llvm::Triple::thumbeb) { 679 // The minimum width of an enum in bytes 680 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 681 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 682 } 683 684 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 685 StringRef ABIStr = Target.getABI(); 686 llvm::LLVMContext &Ctx = TheModule.getContext(); 687 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 688 llvm::MDString::get(Ctx, ABIStr)); 689 } 690 691 if (CodeGenOpts.SanitizeCfiCrossDso) { 692 // Indicate that we want cross-DSO control flow integrity checks. 693 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 694 } 695 696 if (CodeGenOpts.WholeProgramVTables) { 697 // Indicate whether VFE was enabled for this module, so that the 698 // vcall_visibility metadata added under whole program vtables is handled 699 // appropriately in the optimizer. 700 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 701 CodeGenOpts.VirtualFunctionElimination); 702 } 703 704 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 705 getModule().addModuleFlag(llvm::Module::Override, 706 "CFI Canonical Jump Tables", 707 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 708 } 709 710 if (CodeGenOpts.CFProtectionReturn && 711 Target.checkCFProtectionReturnSupported(getDiags())) { 712 // Indicate that we want to instrument return control flow protection. 713 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 714 1); 715 } 716 717 if (CodeGenOpts.CFProtectionBranch && 718 Target.checkCFProtectionBranchSupported(getDiags())) { 719 // Indicate that we want to instrument branch control flow protection. 720 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 721 1); 722 } 723 724 if (CodeGenOpts.IBTSeal) 725 getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1); 726 727 // Add module metadata for return address signing (ignoring 728 // non-leaf/all) and stack tagging. These are actually turned on by function 729 // attributes, but we use module metadata to emit build attributes. This is 730 // needed for LTO, where the function attributes are inside bitcode 731 // serialised into a global variable by the time build attributes are 732 // emitted, so we can't access them. 733 if (Context.getTargetInfo().hasFeature("ptrauth") && 734 LangOpts.getSignReturnAddressScope() != 735 LangOptions::SignReturnAddressScopeKind::None) 736 getModule().addModuleFlag(llvm::Module::Override, 737 "sign-return-address-buildattr", 1); 738 if (LangOpts.Sanitize.has(SanitizerKind::MemTag)) 739 getModule().addModuleFlag(llvm::Module::Override, 740 "tag-stack-memory-buildattr", 1); 741 742 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 743 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 744 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 745 Arch == llvm::Triple::aarch64_be) { 746 getModule().addModuleFlag(llvm::Module::Error, "branch-target-enforcement", 747 LangOpts.BranchTargetEnforcement); 748 749 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 750 LangOpts.hasSignReturnAddress()); 751 752 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 753 LangOpts.isSignReturnAddressScopeAll()); 754 755 getModule().addModuleFlag(llvm::Module::Error, 756 "sign-return-address-with-bkey", 757 !LangOpts.isSignReturnAddressWithAKey()); 758 } 759 760 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 761 llvm::LLVMContext &Ctx = TheModule.getContext(); 762 getModule().addModuleFlag( 763 llvm::Module::Error, "MemProfProfileFilename", 764 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 765 } 766 767 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 768 // Indicate whether __nvvm_reflect should be configured to flush denormal 769 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 770 // property.) 771 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 772 CodeGenOpts.FP32DenormalMode.Output != 773 llvm::DenormalMode::IEEE); 774 } 775 776 if (LangOpts.EHAsynch) 777 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 778 779 // Indicate whether this Module was compiled with -fopenmp 780 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 781 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 782 if (getLangOpts().OpenMPIsDevice) 783 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 784 LangOpts.OpenMP); 785 786 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 787 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 788 EmitOpenCLMetadata(); 789 // Emit SPIR version. 790 if (getTriple().isSPIR()) { 791 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 792 // opencl.spir.version named metadata. 793 // C++ for OpenCL has a distinct mapping for version compatibility with 794 // OpenCL. 795 auto Version = LangOpts.getOpenCLCompatibleVersion(); 796 llvm::Metadata *SPIRVerElts[] = { 797 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 798 Int32Ty, Version / 100)), 799 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 800 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 801 llvm::NamedMDNode *SPIRVerMD = 802 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 803 llvm::LLVMContext &Ctx = TheModule.getContext(); 804 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 805 } 806 } 807 808 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 809 assert(PLevel < 3 && "Invalid PIC Level"); 810 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 811 if (Context.getLangOpts().PIE) 812 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 813 } 814 815 if (getCodeGenOpts().CodeModel.size() > 0) { 816 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 817 .Case("tiny", llvm::CodeModel::Tiny) 818 .Case("small", llvm::CodeModel::Small) 819 .Case("kernel", llvm::CodeModel::Kernel) 820 .Case("medium", llvm::CodeModel::Medium) 821 .Case("large", llvm::CodeModel::Large) 822 .Default(~0u); 823 if (CM != ~0u) { 824 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 825 getModule().setCodeModel(codeModel); 826 } 827 } 828 829 if (CodeGenOpts.NoPLT) 830 getModule().setRtLibUseGOT(); 831 if (CodeGenOpts.UnwindTables) 832 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 833 834 switch (CodeGenOpts.getFramePointer()) { 835 case CodeGenOptions::FramePointerKind::None: 836 // 0 ("none") is the default. 837 break; 838 case CodeGenOptions::FramePointerKind::NonLeaf: 839 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 840 break; 841 case CodeGenOptions::FramePointerKind::All: 842 getModule().setFramePointer(llvm::FramePointerKind::All); 843 break; 844 } 845 846 SimplifyPersonality(); 847 848 if (getCodeGenOpts().EmitDeclMetadata) 849 EmitDeclMetadata(); 850 851 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 852 EmitCoverageFile(); 853 854 if (CGDebugInfo *DI = getModuleDebugInfo()) 855 DI->finalize(); 856 857 if (getCodeGenOpts().EmitVersionIdentMetadata) 858 EmitVersionIdentMetadata(); 859 860 if (!getCodeGenOpts().RecordCommandLine.empty()) 861 EmitCommandLineMetadata(); 862 863 if (!getCodeGenOpts().StackProtectorGuard.empty()) 864 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 865 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 866 getModule().setStackProtectorGuardReg( 867 getCodeGenOpts().StackProtectorGuardReg); 868 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 869 getModule().setStackProtectorGuardOffset( 870 getCodeGenOpts().StackProtectorGuardOffset); 871 if (getCodeGenOpts().StackAlignment) 872 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 873 if (getCodeGenOpts().SkipRaxSetup) 874 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 875 876 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 877 878 EmitBackendOptionsMetadata(getCodeGenOpts()); 879 880 // If there is device offloading code embed it in the host now. 881 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 882 883 // Set visibility from DLL storage class 884 // We do this at the end of LLVM IR generation; after any operation 885 // that might affect the DLL storage class or the visibility, and 886 // before anything that might act on these. 887 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 888 } 889 890 void CodeGenModule::EmitOpenCLMetadata() { 891 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 892 // opencl.ocl.version named metadata node. 893 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 894 auto Version = LangOpts.getOpenCLCompatibleVersion(); 895 llvm::Metadata *OCLVerElts[] = { 896 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 897 Int32Ty, Version / 100)), 898 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 899 Int32Ty, (Version % 100) / 10))}; 900 llvm::NamedMDNode *OCLVerMD = 901 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 902 llvm::LLVMContext &Ctx = TheModule.getContext(); 903 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 904 } 905 906 void CodeGenModule::EmitBackendOptionsMetadata( 907 const CodeGenOptions CodeGenOpts) { 908 switch (getTriple().getArch()) { 909 default: 910 break; 911 case llvm::Triple::riscv32: 912 case llvm::Triple::riscv64: 913 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 914 CodeGenOpts.SmallDataLimit); 915 break; 916 } 917 } 918 919 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 920 // Make sure that this type is translated. 921 Types.UpdateCompletedType(TD); 922 } 923 924 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 925 // Make sure that this type is translated. 926 Types.RefreshTypeCacheForClass(RD); 927 } 928 929 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 930 if (!TBAA) 931 return nullptr; 932 return TBAA->getTypeInfo(QTy); 933 } 934 935 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 936 if (!TBAA) 937 return TBAAAccessInfo(); 938 if (getLangOpts().CUDAIsDevice) { 939 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 940 // access info. 941 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 942 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 943 nullptr) 944 return TBAAAccessInfo(); 945 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 946 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 947 nullptr) 948 return TBAAAccessInfo(); 949 } 950 } 951 return TBAA->getAccessInfo(AccessType); 952 } 953 954 TBAAAccessInfo 955 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 956 if (!TBAA) 957 return TBAAAccessInfo(); 958 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 959 } 960 961 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 962 if (!TBAA) 963 return nullptr; 964 return TBAA->getTBAAStructInfo(QTy); 965 } 966 967 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 968 if (!TBAA) 969 return nullptr; 970 return TBAA->getBaseTypeInfo(QTy); 971 } 972 973 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 974 if (!TBAA) 975 return nullptr; 976 return TBAA->getAccessTagInfo(Info); 977 } 978 979 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 980 TBAAAccessInfo TargetInfo) { 981 if (!TBAA) 982 return TBAAAccessInfo(); 983 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 984 } 985 986 TBAAAccessInfo 987 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 988 TBAAAccessInfo InfoB) { 989 if (!TBAA) 990 return TBAAAccessInfo(); 991 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 992 } 993 994 TBAAAccessInfo 995 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 996 TBAAAccessInfo SrcInfo) { 997 if (!TBAA) 998 return TBAAAccessInfo(); 999 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1000 } 1001 1002 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1003 TBAAAccessInfo TBAAInfo) { 1004 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1005 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1006 } 1007 1008 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1009 llvm::Instruction *I, const CXXRecordDecl *RD) { 1010 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1011 llvm::MDNode::get(getLLVMContext(), {})); 1012 } 1013 1014 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1015 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1016 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1017 } 1018 1019 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1020 /// specified stmt yet. 1021 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1022 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1023 "cannot compile this %0 yet"); 1024 std::string Msg = Type; 1025 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1026 << Msg << S->getSourceRange(); 1027 } 1028 1029 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1030 /// specified decl yet. 1031 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1032 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1033 "cannot compile this %0 yet"); 1034 std::string Msg = Type; 1035 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1036 } 1037 1038 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1039 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1040 } 1041 1042 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1043 const NamedDecl *D) const { 1044 if (GV->hasDLLImportStorageClass()) 1045 return; 1046 // Internal definitions always have default visibility. 1047 if (GV->hasLocalLinkage()) { 1048 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1049 return; 1050 } 1051 if (!D) 1052 return; 1053 // Set visibility for definitions, and for declarations if requested globally 1054 // or set explicitly. 1055 LinkageInfo LV = D->getLinkageAndVisibility(); 1056 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1057 !GV->isDeclarationForLinker()) 1058 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1059 } 1060 1061 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1062 llvm::GlobalValue *GV) { 1063 if (GV->hasLocalLinkage()) 1064 return true; 1065 1066 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1067 return true; 1068 1069 // DLLImport explicitly marks the GV as external. 1070 if (GV->hasDLLImportStorageClass()) 1071 return false; 1072 1073 const llvm::Triple &TT = CGM.getTriple(); 1074 if (TT.isWindowsGNUEnvironment()) { 1075 // In MinGW, variables without DLLImport can still be automatically 1076 // imported from a DLL by the linker; don't mark variables that 1077 // potentially could come from another DLL as DSO local. 1078 1079 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1080 // (and this actually happens in the public interface of libstdc++), so 1081 // such variables can't be marked as DSO local. (Native TLS variables 1082 // can't be dllimported at all, though.) 1083 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1084 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1085 return false; 1086 } 1087 1088 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1089 // remain unresolved in the link, they can be resolved to zero, which is 1090 // outside the current DSO. 1091 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1092 return false; 1093 1094 // Every other GV is local on COFF. 1095 // Make an exception for windows OS in the triple: Some firmware builds use 1096 // *-win32-macho triples. This (accidentally?) produced windows relocations 1097 // without GOT tables in older clang versions; Keep this behaviour. 1098 // FIXME: even thread local variables? 1099 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1100 return true; 1101 1102 // Only handle COFF and ELF for now. 1103 if (!TT.isOSBinFormatELF()) 1104 return false; 1105 1106 // If this is not an executable, don't assume anything is local. 1107 const auto &CGOpts = CGM.getCodeGenOpts(); 1108 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1109 const auto &LOpts = CGM.getLangOpts(); 1110 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1111 // On ELF, if -fno-semantic-interposition is specified and the target 1112 // supports local aliases, there will be neither CC1 1113 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1114 // dso_local on the function if using a local alias is preferable (can avoid 1115 // PLT indirection). 1116 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1117 return false; 1118 return !(CGM.getLangOpts().SemanticInterposition || 1119 CGM.getLangOpts().HalfNoSemanticInterposition); 1120 } 1121 1122 // A definition cannot be preempted from an executable. 1123 if (!GV->isDeclarationForLinker()) 1124 return true; 1125 1126 // Most PIC code sequences that assume that a symbol is local cannot produce a 1127 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1128 // depended, it seems worth it to handle it here. 1129 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1130 return false; 1131 1132 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1133 if (TT.isPPC64()) 1134 return false; 1135 1136 if (CGOpts.DirectAccessExternalData) { 1137 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1138 // for non-thread-local variables. If the symbol is not defined in the 1139 // executable, a copy relocation will be needed at link time. dso_local is 1140 // excluded for thread-local variables because they generally don't support 1141 // copy relocations. 1142 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1143 if (!Var->isThreadLocal()) 1144 return true; 1145 1146 // -fno-pic sets dso_local on a function declaration to allow direct 1147 // accesses when taking its address (similar to a data symbol). If the 1148 // function is not defined in the executable, a canonical PLT entry will be 1149 // needed at link time. -fno-direct-access-external-data can avoid the 1150 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1151 // it could just cause trouble without providing perceptible benefits. 1152 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1153 return true; 1154 } 1155 1156 // If we can use copy relocations we can assume it is local. 1157 1158 // Otherwise don't assume it is local. 1159 return false; 1160 } 1161 1162 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1163 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1164 } 1165 1166 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1167 GlobalDecl GD) const { 1168 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1169 // C++ destructors have a few C++ ABI specific special cases. 1170 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1171 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1172 return; 1173 } 1174 setDLLImportDLLExport(GV, D); 1175 } 1176 1177 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1178 const NamedDecl *D) const { 1179 if (D && D->isExternallyVisible()) { 1180 if (D->hasAttr<DLLImportAttr>()) 1181 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1182 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1183 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1184 } 1185 } 1186 1187 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1188 GlobalDecl GD) const { 1189 setDLLImportDLLExport(GV, GD); 1190 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1191 } 1192 1193 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1194 const NamedDecl *D) const { 1195 setDLLImportDLLExport(GV, D); 1196 setGVPropertiesAux(GV, D); 1197 } 1198 1199 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1200 const NamedDecl *D) const { 1201 setGlobalVisibility(GV, D); 1202 setDSOLocal(GV); 1203 GV->setPartition(CodeGenOpts.SymbolPartition); 1204 } 1205 1206 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1207 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1208 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1209 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1210 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1211 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1212 } 1213 1214 llvm::GlobalVariable::ThreadLocalMode 1215 CodeGenModule::GetDefaultLLVMTLSModel() const { 1216 switch (CodeGenOpts.getDefaultTLSModel()) { 1217 case CodeGenOptions::GeneralDynamicTLSModel: 1218 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1219 case CodeGenOptions::LocalDynamicTLSModel: 1220 return llvm::GlobalVariable::LocalDynamicTLSModel; 1221 case CodeGenOptions::InitialExecTLSModel: 1222 return llvm::GlobalVariable::InitialExecTLSModel; 1223 case CodeGenOptions::LocalExecTLSModel: 1224 return llvm::GlobalVariable::LocalExecTLSModel; 1225 } 1226 llvm_unreachable("Invalid TLS model!"); 1227 } 1228 1229 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1230 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1231 1232 llvm::GlobalValue::ThreadLocalMode TLM; 1233 TLM = GetDefaultLLVMTLSModel(); 1234 1235 // Override the TLS model if it is explicitly specified. 1236 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1237 TLM = GetLLVMTLSModel(Attr->getModel()); 1238 } 1239 1240 GV->setThreadLocalMode(TLM); 1241 } 1242 1243 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1244 StringRef Name) { 1245 const TargetInfo &Target = CGM.getTarget(); 1246 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1247 } 1248 1249 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1250 const CPUSpecificAttr *Attr, 1251 unsigned CPUIndex, 1252 raw_ostream &Out) { 1253 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1254 // supported. 1255 if (Attr) 1256 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1257 else if (CGM.getTarget().supportsIFunc()) 1258 Out << ".resolver"; 1259 } 1260 1261 static void AppendTargetMangling(const CodeGenModule &CGM, 1262 const TargetAttr *Attr, raw_ostream &Out) { 1263 if (Attr->isDefaultVersion()) 1264 return; 1265 1266 Out << '.'; 1267 const TargetInfo &Target = CGM.getTarget(); 1268 ParsedTargetAttr Info = 1269 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1270 // Multiversioning doesn't allow "no-${feature}", so we can 1271 // only have "+" prefixes here. 1272 assert(LHS.startswith("+") && RHS.startswith("+") && 1273 "Features should always have a prefix."); 1274 return Target.multiVersionSortPriority(LHS.substr(1)) > 1275 Target.multiVersionSortPriority(RHS.substr(1)); 1276 }); 1277 1278 bool IsFirst = true; 1279 1280 if (!Info.Architecture.empty()) { 1281 IsFirst = false; 1282 Out << "arch_" << Info.Architecture; 1283 } 1284 1285 for (StringRef Feat : Info.Features) { 1286 if (!IsFirst) 1287 Out << '_'; 1288 IsFirst = false; 1289 Out << Feat.substr(1); 1290 } 1291 } 1292 1293 // Returns true if GD is a function decl with internal linkage and 1294 // needs a unique suffix after the mangled name. 1295 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1296 CodeGenModule &CGM) { 1297 const Decl *D = GD.getDecl(); 1298 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1299 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1300 } 1301 1302 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1303 const TargetClonesAttr *Attr, 1304 unsigned VersionIndex, 1305 raw_ostream &Out) { 1306 Out << '.'; 1307 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1308 if (FeatureStr.startswith("arch=")) 1309 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1310 else 1311 Out << FeatureStr; 1312 1313 Out << '.' << Attr->getMangledIndex(VersionIndex); 1314 } 1315 1316 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1317 const NamedDecl *ND, 1318 bool OmitMultiVersionMangling = false) { 1319 SmallString<256> Buffer; 1320 llvm::raw_svector_ostream Out(Buffer); 1321 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1322 if (!CGM.getModuleNameHash().empty()) 1323 MC.needsUniqueInternalLinkageNames(); 1324 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1325 if (ShouldMangle) 1326 MC.mangleName(GD.getWithDecl(ND), Out); 1327 else { 1328 IdentifierInfo *II = ND->getIdentifier(); 1329 assert(II && "Attempt to mangle unnamed decl."); 1330 const auto *FD = dyn_cast<FunctionDecl>(ND); 1331 1332 if (FD && 1333 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1334 Out << "__regcall3__" << II->getName(); 1335 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1336 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1337 Out << "__device_stub__" << II->getName(); 1338 } else { 1339 Out << II->getName(); 1340 } 1341 } 1342 1343 // Check if the module name hash should be appended for internal linkage 1344 // symbols. This should come before multi-version target suffixes are 1345 // appended. This is to keep the name and module hash suffix of the 1346 // internal linkage function together. The unique suffix should only be 1347 // added when name mangling is done to make sure that the final name can 1348 // be properly demangled. For example, for C functions without prototypes, 1349 // name mangling is not done and the unique suffix should not be appeneded 1350 // then. 1351 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1352 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1353 "Hash computed when not explicitly requested"); 1354 Out << CGM.getModuleNameHash(); 1355 } 1356 1357 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1358 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1359 switch (FD->getMultiVersionKind()) { 1360 case MultiVersionKind::CPUDispatch: 1361 case MultiVersionKind::CPUSpecific: 1362 AppendCPUSpecificCPUDispatchMangling(CGM, 1363 FD->getAttr<CPUSpecificAttr>(), 1364 GD.getMultiVersionIndex(), Out); 1365 break; 1366 case MultiVersionKind::Target: 1367 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1368 break; 1369 case MultiVersionKind::TargetClones: 1370 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1371 GD.getMultiVersionIndex(), Out); 1372 break; 1373 case MultiVersionKind::None: 1374 llvm_unreachable("None multiversion type isn't valid here"); 1375 } 1376 } 1377 1378 // Make unique name for device side static file-scope variable for HIP. 1379 if (CGM.getContext().shouldExternalizeStaticVar(ND) && 1380 CGM.getLangOpts().GPURelocatableDeviceCode && 1381 CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty()) 1382 CGM.printPostfixForExternalizedStaticVar(Out); 1383 return std::string(Out.str()); 1384 } 1385 1386 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1387 const FunctionDecl *FD, 1388 StringRef &CurName) { 1389 if (!FD->isMultiVersion()) 1390 return; 1391 1392 // Get the name of what this would be without the 'target' attribute. This 1393 // allows us to lookup the version that was emitted when this wasn't a 1394 // multiversion function. 1395 std::string NonTargetName = 1396 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1397 GlobalDecl OtherGD; 1398 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1399 assert(OtherGD.getCanonicalDecl() 1400 .getDecl() 1401 ->getAsFunction() 1402 ->isMultiVersion() && 1403 "Other GD should now be a multiversioned function"); 1404 // OtherFD is the version of this function that was mangled BEFORE 1405 // becoming a MultiVersion function. It potentially needs to be updated. 1406 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1407 .getDecl() 1408 ->getAsFunction() 1409 ->getMostRecentDecl(); 1410 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1411 // This is so that if the initial version was already the 'default' 1412 // version, we don't try to update it. 1413 if (OtherName != NonTargetName) { 1414 // Remove instead of erase, since others may have stored the StringRef 1415 // to this. 1416 const auto ExistingRecord = Manglings.find(NonTargetName); 1417 if (ExistingRecord != std::end(Manglings)) 1418 Manglings.remove(&(*ExistingRecord)); 1419 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1420 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1421 Result.first->first(); 1422 // If this is the current decl is being created, make sure we update the name. 1423 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1424 CurName = OtherNameRef; 1425 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1426 Entry->setName(OtherName); 1427 } 1428 } 1429 } 1430 1431 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1432 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1433 1434 // Some ABIs don't have constructor variants. Make sure that base and 1435 // complete constructors get mangled the same. 1436 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1437 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1438 CXXCtorType OrigCtorType = GD.getCtorType(); 1439 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1440 if (OrigCtorType == Ctor_Base) 1441 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1442 } 1443 } 1444 1445 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1446 // static device variable depends on whether the variable is referenced by 1447 // a host or device host function. Therefore the mangled name cannot be 1448 // cached. 1449 if (!LangOpts.CUDAIsDevice || 1450 !getContext().mayExternalizeStaticVar(GD.getDecl())) { 1451 auto FoundName = MangledDeclNames.find(CanonicalGD); 1452 if (FoundName != MangledDeclNames.end()) 1453 return FoundName->second; 1454 } 1455 1456 // Keep the first result in the case of a mangling collision. 1457 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1458 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1459 1460 // Ensure either we have different ABIs between host and device compilations, 1461 // says host compilation following MSVC ABI but device compilation follows 1462 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1463 // mangling should be the same after name stubbing. The later checking is 1464 // very important as the device kernel name being mangled in host-compilation 1465 // is used to resolve the device binaries to be executed. Inconsistent naming 1466 // result in undefined behavior. Even though we cannot check that naming 1467 // directly between host- and device-compilations, the host- and 1468 // device-mangling in host compilation could help catching certain ones. 1469 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1470 getLangOpts().CUDAIsDevice || 1471 (getContext().getAuxTargetInfo() && 1472 (getContext().getAuxTargetInfo()->getCXXABI() != 1473 getContext().getTargetInfo().getCXXABI())) || 1474 getCUDARuntime().getDeviceSideName(ND) == 1475 getMangledNameImpl( 1476 *this, 1477 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1478 ND)); 1479 1480 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1481 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1482 } 1483 1484 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1485 const BlockDecl *BD) { 1486 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1487 const Decl *D = GD.getDecl(); 1488 1489 SmallString<256> Buffer; 1490 llvm::raw_svector_ostream Out(Buffer); 1491 if (!D) 1492 MangleCtx.mangleGlobalBlock(BD, 1493 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1494 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1495 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1496 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1497 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1498 else 1499 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1500 1501 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1502 return Result.first->first(); 1503 } 1504 1505 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1506 return getModule().getNamedValue(Name); 1507 } 1508 1509 /// AddGlobalCtor - Add a function to the list that will be called before 1510 /// main() runs. 1511 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1512 llvm::Constant *AssociatedData) { 1513 // FIXME: Type coercion of void()* types. 1514 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1515 } 1516 1517 /// AddGlobalDtor - Add a function to the list that will be called 1518 /// when the module is unloaded. 1519 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1520 bool IsDtorAttrFunc) { 1521 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1522 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1523 DtorsUsingAtExit[Priority].push_back(Dtor); 1524 return; 1525 } 1526 1527 // FIXME: Type coercion of void()* types. 1528 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1529 } 1530 1531 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1532 if (Fns.empty()) return; 1533 1534 // Ctor function type is void()*. 1535 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1536 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1537 TheModule.getDataLayout().getProgramAddressSpace()); 1538 1539 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1540 llvm::StructType *CtorStructTy = llvm::StructType::get( 1541 Int32Ty, CtorPFTy, VoidPtrTy); 1542 1543 // Construct the constructor and destructor arrays. 1544 ConstantInitBuilder builder(*this); 1545 auto ctors = builder.beginArray(CtorStructTy); 1546 for (const auto &I : Fns) { 1547 auto ctor = ctors.beginStruct(CtorStructTy); 1548 ctor.addInt(Int32Ty, I.Priority); 1549 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1550 if (I.AssociatedData) 1551 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1552 else 1553 ctor.addNullPointer(VoidPtrTy); 1554 ctor.finishAndAddTo(ctors); 1555 } 1556 1557 auto list = 1558 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1559 /*constant*/ false, 1560 llvm::GlobalValue::AppendingLinkage); 1561 1562 // The LTO linker doesn't seem to like it when we set an alignment 1563 // on appending variables. Take it off as a workaround. 1564 list->setAlignment(llvm::None); 1565 1566 Fns.clear(); 1567 } 1568 1569 llvm::GlobalValue::LinkageTypes 1570 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1571 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1572 1573 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1574 1575 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1576 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1577 1578 if (isa<CXXConstructorDecl>(D) && 1579 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1580 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1581 // Our approach to inheriting constructors is fundamentally different from 1582 // that used by the MS ABI, so keep our inheriting constructor thunks 1583 // internal rather than trying to pick an unambiguous mangling for them. 1584 return llvm::GlobalValue::InternalLinkage; 1585 } 1586 1587 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1588 } 1589 1590 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1591 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1592 if (!MDS) return nullptr; 1593 1594 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1595 } 1596 1597 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1598 const CGFunctionInfo &Info, 1599 llvm::Function *F, bool IsThunk) { 1600 unsigned CallingConv; 1601 llvm::AttributeList PAL; 1602 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1603 /*AttrOnCallSite=*/false, IsThunk); 1604 F->setAttributes(PAL); 1605 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1606 } 1607 1608 static void removeImageAccessQualifier(std::string& TyName) { 1609 std::string ReadOnlyQual("__read_only"); 1610 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1611 if (ReadOnlyPos != std::string::npos) 1612 // "+ 1" for the space after access qualifier. 1613 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1614 else { 1615 std::string WriteOnlyQual("__write_only"); 1616 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1617 if (WriteOnlyPos != std::string::npos) 1618 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1619 else { 1620 std::string ReadWriteQual("__read_write"); 1621 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1622 if (ReadWritePos != std::string::npos) 1623 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1624 } 1625 } 1626 } 1627 1628 // Returns the address space id that should be produced to the 1629 // kernel_arg_addr_space metadata. This is always fixed to the ids 1630 // as specified in the SPIR 2.0 specification in order to differentiate 1631 // for example in clGetKernelArgInfo() implementation between the address 1632 // spaces with targets without unique mapping to the OpenCL address spaces 1633 // (basically all single AS CPUs). 1634 static unsigned ArgInfoAddressSpace(LangAS AS) { 1635 switch (AS) { 1636 case LangAS::opencl_global: 1637 return 1; 1638 case LangAS::opencl_constant: 1639 return 2; 1640 case LangAS::opencl_local: 1641 return 3; 1642 case LangAS::opencl_generic: 1643 return 4; // Not in SPIR 2.0 specs. 1644 case LangAS::opencl_global_device: 1645 return 5; 1646 case LangAS::opencl_global_host: 1647 return 6; 1648 default: 1649 return 0; // Assume private. 1650 } 1651 } 1652 1653 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1654 const FunctionDecl *FD, 1655 CodeGenFunction *CGF) { 1656 assert(((FD && CGF) || (!FD && !CGF)) && 1657 "Incorrect use - FD and CGF should either be both null or not!"); 1658 // Create MDNodes that represent the kernel arg metadata. 1659 // Each MDNode is a list in the form of "key", N number of values which is 1660 // the same number of values as their are kernel arguments. 1661 1662 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1663 1664 // MDNode for the kernel argument address space qualifiers. 1665 SmallVector<llvm::Metadata *, 8> addressQuals; 1666 1667 // MDNode for the kernel argument access qualifiers (images only). 1668 SmallVector<llvm::Metadata *, 8> accessQuals; 1669 1670 // MDNode for the kernel argument type names. 1671 SmallVector<llvm::Metadata *, 8> argTypeNames; 1672 1673 // MDNode for the kernel argument base type names. 1674 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1675 1676 // MDNode for the kernel argument type qualifiers. 1677 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1678 1679 // MDNode for the kernel argument names. 1680 SmallVector<llvm::Metadata *, 8> argNames; 1681 1682 if (FD && CGF) 1683 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1684 const ParmVarDecl *parm = FD->getParamDecl(i); 1685 QualType ty = parm->getType(); 1686 std::string typeQuals; 1687 1688 // Get image and pipe access qualifier: 1689 if (ty->isImageType() || ty->isPipeType()) { 1690 const Decl *PDecl = parm; 1691 if (auto *TD = dyn_cast<TypedefType>(ty)) 1692 PDecl = TD->getDecl(); 1693 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1694 if (A && A->isWriteOnly()) 1695 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1696 else if (A && A->isReadWrite()) 1697 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1698 else 1699 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1700 } else 1701 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1702 1703 // Get argument name. 1704 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1705 1706 auto getTypeSpelling = [&](QualType Ty) { 1707 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1708 1709 if (Ty.isCanonical()) { 1710 StringRef typeNameRef = typeName; 1711 // Turn "unsigned type" to "utype" 1712 if (typeNameRef.consume_front("unsigned ")) 1713 return std::string("u") + typeNameRef.str(); 1714 if (typeNameRef.consume_front("signed ")) 1715 return typeNameRef.str(); 1716 } 1717 1718 return typeName; 1719 }; 1720 1721 if (ty->isPointerType()) { 1722 QualType pointeeTy = ty->getPointeeType(); 1723 1724 // Get address qualifier. 1725 addressQuals.push_back( 1726 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1727 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1728 1729 // Get argument type name. 1730 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1731 std::string baseTypeName = 1732 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1733 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1734 argBaseTypeNames.push_back( 1735 llvm::MDString::get(VMContext, baseTypeName)); 1736 1737 // Get argument type qualifiers: 1738 if (ty.isRestrictQualified()) 1739 typeQuals = "restrict"; 1740 if (pointeeTy.isConstQualified() || 1741 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1742 typeQuals += typeQuals.empty() ? "const" : " const"; 1743 if (pointeeTy.isVolatileQualified()) 1744 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1745 } else { 1746 uint32_t AddrSpc = 0; 1747 bool isPipe = ty->isPipeType(); 1748 if (ty->isImageType() || isPipe) 1749 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1750 1751 addressQuals.push_back( 1752 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1753 1754 // Get argument type name. 1755 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1756 std::string typeName = getTypeSpelling(ty); 1757 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1758 1759 // Remove access qualifiers on images 1760 // (as they are inseparable from type in clang implementation, 1761 // but OpenCL spec provides a special query to get access qualifier 1762 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1763 if (ty->isImageType()) { 1764 removeImageAccessQualifier(typeName); 1765 removeImageAccessQualifier(baseTypeName); 1766 } 1767 1768 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1769 argBaseTypeNames.push_back( 1770 llvm::MDString::get(VMContext, baseTypeName)); 1771 1772 if (isPipe) 1773 typeQuals = "pipe"; 1774 } 1775 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1776 } 1777 1778 Fn->setMetadata("kernel_arg_addr_space", 1779 llvm::MDNode::get(VMContext, addressQuals)); 1780 Fn->setMetadata("kernel_arg_access_qual", 1781 llvm::MDNode::get(VMContext, accessQuals)); 1782 Fn->setMetadata("kernel_arg_type", 1783 llvm::MDNode::get(VMContext, argTypeNames)); 1784 Fn->setMetadata("kernel_arg_base_type", 1785 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1786 Fn->setMetadata("kernel_arg_type_qual", 1787 llvm::MDNode::get(VMContext, argTypeQuals)); 1788 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1789 Fn->setMetadata("kernel_arg_name", 1790 llvm::MDNode::get(VMContext, argNames)); 1791 } 1792 1793 /// Determines whether the language options require us to model 1794 /// unwind exceptions. We treat -fexceptions as mandating this 1795 /// except under the fragile ObjC ABI with only ObjC exceptions 1796 /// enabled. This means, for example, that C with -fexceptions 1797 /// enables this. 1798 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1799 // If exceptions are completely disabled, obviously this is false. 1800 if (!LangOpts.Exceptions) return false; 1801 1802 // If C++ exceptions are enabled, this is true. 1803 if (LangOpts.CXXExceptions) return true; 1804 1805 // If ObjC exceptions are enabled, this depends on the ABI. 1806 if (LangOpts.ObjCExceptions) { 1807 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1808 } 1809 1810 return true; 1811 } 1812 1813 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1814 const CXXMethodDecl *MD) { 1815 // Check that the type metadata can ever actually be used by a call. 1816 if (!CGM.getCodeGenOpts().LTOUnit || 1817 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1818 return false; 1819 1820 // Only functions whose address can be taken with a member function pointer 1821 // need this sort of type metadata. 1822 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1823 !isa<CXXDestructorDecl>(MD); 1824 } 1825 1826 std::vector<const CXXRecordDecl *> 1827 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1828 llvm::SetVector<const CXXRecordDecl *> MostBases; 1829 1830 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1831 CollectMostBases = [&](const CXXRecordDecl *RD) { 1832 if (RD->getNumBases() == 0) 1833 MostBases.insert(RD); 1834 for (const CXXBaseSpecifier &B : RD->bases()) 1835 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1836 }; 1837 CollectMostBases(RD); 1838 return MostBases.takeVector(); 1839 } 1840 1841 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1842 llvm::Function *F) { 1843 llvm::AttrBuilder B(F->getContext()); 1844 1845 if (CodeGenOpts.UnwindTables) 1846 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1847 1848 if (CodeGenOpts.StackClashProtector) 1849 B.addAttribute("probe-stack", "inline-asm"); 1850 1851 if (!hasUnwindExceptions(LangOpts)) 1852 B.addAttribute(llvm::Attribute::NoUnwind); 1853 1854 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1855 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1856 B.addAttribute(llvm::Attribute::StackProtect); 1857 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1858 B.addAttribute(llvm::Attribute::StackProtectStrong); 1859 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1860 B.addAttribute(llvm::Attribute::StackProtectReq); 1861 } 1862 1863 if (!D) { 1864 // If we don't have a declaration to control inlining, the function isn't 1865 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1866 // disabled, mark the function as noinline. 1867 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1868 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1869 B.addAttribute(llvm::Attribute::NoInline); 1870 1871 F->addFnAttrs(B); 1872 return; 1873 } 1874 1875 // Track whether we need to add the optnone LLVM attribute, 1876 // starting with the default for this optimization level. 1877 bool ShouldAddOptNone = 1878 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1879 // We can't add optnone in the following cases, it won't pass the verifier. 1880 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1881 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1882 1883 // Add optnone, but do so only if the function isn't always_inline. 1884 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1885 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1886 B.addAttribute(llvm::Attribute::OptimizeNone); 1887 1888 // OptimizeNone implies noinline; we should not be inlining such functions. 1889 B.addAttribute(llvm::Attribute::NoInline); 1890 1891 // We still need to handle naked functions even though optnone subsumes 1892 // much of their semantics. 1893 if (D->hasAttr<NakedAttr>()) 1894 B.addAttribute(llvm::Attribute::Naked); 1895 1896 // OptimizeNone wins over OptimizeForSize and MinSize. 1897 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1898 F->removeFnAttr(llvm::Attribute::MinSize); 1899 } else if (D->hasAttr<NakedAttr>()) { 1900 // Naked implies noinline: we should not be inlining such functions. 1901 B.addAttribute(llvm::Attribute::Naked); 1902 B.addAttribute(llvm::Attribute::NoInline); 1903 } else if (D->hasAttr<NoDuplicateAttr>()) { 1904 B.addAttribute(llvm::Attribute::NoDuplicate); 1905 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1906 // Add noinline if the function isn't always_inline. 1907 B.addAttribute(llvm::Attribute::NoInline); 1908 } else if (D->hasAttr<AlwaysInlineAttr>() && 1909 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1910 // (noinline wins over always_inline, and we can't specify both in IR) 1911 B.addAttribute(llvm::Attribute::AlwaysInline); 1912 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1913 // If we're not inlining, then force everything that isn't always_inline to 1914 // carry an explicit noinline attribute. 1915 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1916 B.addAttribute(llvm::Attribute::NoInline); 1917 } else { 1918 // Otherwise, propagate the inline hint attribute and potentially use its 1919 // absence to mark things as noinline. 1920 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1921 // Search function and template pattern redeclarations for inline. 1922 auto CheckForInline = [](const FunctionDecl *FD) { 1923 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1924 return Redecl->isInlineSpecified(); 1925 }; 1926 if (any_of(FD->redecls(), CheckRedeclForInline)) 1927 return true; 1928 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1929 if (!Pattern) 1930 return false; 1931 return any_of(Pattern->redecls(), CheckRedeclForInline); 1932 }; 1933 if (CheckForInline(FD)) { 1934 B.addAttribute(llvm::Attribute::InlineHint); 1935 } else if (CodeGenOpts.getInlining() == 1936 CodeGenOptions::OnlyHintInlining && 1937 !FD->isInlined() && 1938 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1939 B.addAttribute(llvm::Attribute::NoInline); 1940 } 1941 } 1942 } 1943 1944 // Add other optimization related attributes if we are optimizing this 1945 // function. 1946 if (!D->hasAttr<OptimizeNoneAttr>()) { 1947 if (D->hasAttr<ColdAttr>()) { 1948 if (!ShouldAddOptNone) 1949 B.addAttribute(llvm::Attribute::OptimizeForSize); 1950 B.addAttribute(llvm::Attribute::Cold); 1951 } 1952 if (D->hasAttr<HotAttr>()) 1953 B.addAttribute(llvm::Attribute::Hot); 1954 if (D->hasAttr<MinSizeAttr>()) 1955 B.addAttribute(llvm::Attribute::MinSize); 1956 } 1957 1958 F->addFnAttrs(B); 1959 1960 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1961 if (alignment) 1962 F->setAlignment(llvm::Align(alignment)); 1963 1964 if (!D->hasAttr<AlignedAttr>()) 1965 if (LangOpts.FunctionAlignment) 1966 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1967 1968 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1969 // reserve a bit for differentiating between virtual and non-virtual member 1970 // functions. If the current target's C++ ABI requires this and this is a 1971 // member function, set its alignment accordingly. 1972 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1973 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1974 F->setAlignment(llvm::Align(2)); 1975 } 1976 1977 // In the cross-dso CFI mode with canonical jump tables, we want !type 1978 // attributes on definitions only. 1979 if (CodeGenOpts.SanitizeCfiCrossDso && 1980 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1981 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1982 // Skip available_externally functions. They won't be codegen'ed in the 1983 // current module anyway. 1984 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1985 CreateFunctionTypeMetadataForIcall(FD, F); 1986 } 1987 } 1988 1989 // Emit type metadata on member functions for member function pointer checks. 1990 // These are only ever necessary on definitions; we're guaranteed that the 1991 // definition will be present in the LTO unit as a result of LTO visibility. 1992 auto *MD = dyn_cast<CXXMethodDecl>(D); 1993 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1994 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1995 llvm::Metadata *Id = 1996 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1997 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1998 F->addTypeMetadata(0, Id); 1999 } 2000 } 2001 } 2002 2003 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2004 llvm::Function *F) { 2005 if (D->hasAttr<StrictFPAttr>()) { 2006 llvm::AttrBuilder FuncAttrs(F->getContext()); 2007 FuncAttrs.addAttribute("strictfp"); 2008 F->addFnAttrs(FuncAttrs); 2009 } 2010 } 2011 2012 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2013 const Decl *D = GD.getDecl(); 2014 if (isa_and_nonnull<NamedDecl>(D)) 2015 setGVProperties(GV, GD); 2016 else 2017 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2018 2019 if (D && D->hasAttr<UsedAttr>()) 2020 addUsedOrCompilerUsedGlobal(GV); 2021 2022 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2023 const auto *VD = cast<VarDecl>(D); 2024 if (VD->getType().isConstQualified() && 2025 VD->getStorageDuration() == SD_Static) 2026 addUsedOrCompilerUsedGlobal(GV); 2027 } 2028 } 2029 2030 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2031 llvm::AttrBuilder &Attrs) { 2032 // Add target-cpu and target-features attributes to functions. If 2033 // we have a decl for the function and it has a target attribute then 2034 // parse that and add it to the feature set. 2035 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2036 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2037 std::vector<std::string> Features; 2038 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2039 FD = FD ? FD->getMostRecentDecl() : FD; 2040 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2041 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2042 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2043 bool AddedAttr = false; 2044 if (TD || SD || TC) { 2045 llvm::StringMap<bool> FeatureMap; 2046 getContext().getFunctionFeatureMap(FeatureMap, GD); 2047 2048 // Produce the canonical string for this set of features. 2049 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2050 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2051 2052 // Now add the target-cpu and target-features to the function. 2053 // While we populated the feature map above, we still need to 2054 // get and parse the target attribute so we can get the cpu for 2055 // the function. 2056 if (TD) { 2057 ParsedTargetAttr ParsedAttr = TD->parse(); 2058 if (!ParsedAttr.Architecture.empty() && 2059 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 2060 TargetCPU = ParsedAttr.Architecture; 2061 TuneCPU = ""; // Clear the tune CPU. 2062 } 2063 if (!ParsedAttr.Tune.empty() && 2064 getTarget().isValidCPUName(ParsedAttr.Tune)) 2065 TuneCPU = ParsedAttr.Tune; 2066 } 2067 2068 if (SD) { 2069 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2070 // favor this processor. 2071 TuneCPU = getTarget().getCPUSpecificTuneName( 2072 SD->getCPUName(GD.getMultiVersionIndex())->getName()); 2073 } 2074 } else { 2075 // Otherwise just add the existing target cpu and target features to the 2076 // function. 2077 Features = getTarget().getTargetOpts().Features; 2078 } 2079 2080 if (!TargetCPU.empty()) { 2081 Attrs.addAttribute("target-cpu", TargetCPU); 2082 AddedAttr = true; 2083 } 2084 if (!TuneCPU.empty()) { 2085 Attrs.addAttribute("tune-cpu", TuneCPU); 2086 AddedAttr = true; 2087 } 2088 if (!Features.empty()) { 2089 llvm::sort(Features); 2090 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2091 AddedAttr = true; 2092 } 2093 2094 return AddedAttr; 2095 } 2096 2097 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2098 llvm::GlobalObject *GO) { 2099 const Decl *D = GD.getDecl(); 2100 SetCommonAttributes(GD, GO); 2101 2102 if (D) { 2103 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2104 if (D->hasAttr<RetainAttr>()) 2105 addUsedGlobal(GV); 2106 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2107 GV->addAttribute("bss-section", SA->getName()); 2108 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2109 GV->addAttribute("data-section", SA->getName()); 2110 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2111 GV->addAttribute("rodata-section", SA->getName()); 2112 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2113 GV->addAttribute("relro-section", SA->getName()); 2114 } 2115 2116 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2117 if (D->hasAttr<RetainAttr>()) 2118 addUsedGlobal(F); 2119 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2120 if (!D->getAttr<SectionAttr>()) 2121 F->addFnAttr("implicit-section-name", SA->getName()); 2122 2123 llvm::AttrBuilder Attrs(F->getContext()); 2124 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2125 // We know that GetCPUAndFeaturesAttributes will always have the 2126 // newest set, since it has the newest possible FunctionDecl, so the 2127 // new ones should replace the old. 2128 llvm::AttributeMask RemoveAttrs; 2129 RemoveAttrs.addAttribute("target-cpu"); 2130 RemoveAttrs.addAttribute("target-features"); 2131 RemoveAttrs.addAttribute("tune-cpu"); 2132 F->removeFnAttrs(RemoveAttrs); 2133 F->addFnAttrs(Attrs); 2134 } 2135 } 2136 2137 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2138 GO->setSection(CSA->getName()); 2139 else if (const auto *SA = D->getAttr<SectionAttr>()) 2140 GO->setSection(SA->getName()); 2141 } 2142 2143 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2144 } 2145 2146 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2147 llvm::Function *F, 2148 const CGFunctionInfo &FI) { 2149 const Decl *D = GD.getDecl(); 2150 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2151 SetLLVMFunctionAttributesForDefinition(D, F); 2152 2153 F->setLinkage(llvm::Function::InternalLinkage); 2154 2155 setNonAliasAttributes(GD, F); 2156 } 2157 2158 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2159 // Set linkage and visibility in case we never see a definition. 2160 LinkageInfo LV = ND->getLinkageAndVisibility(); 2161 // Don't set internal linkage on declarations. 2162 // "extern_weak" is overloaded in LLVM; we probably should have 2163 // separate linkage types for this. 2164 if (isExternallyVisible(LV.getLinkage()) && 2165 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2166 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2167 } 2168 2169 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2170 llvm::Function *F) { 2171 // Only if we are checking indirect calls. 2172 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2173 return; 2174 2175 // Non-static class methods are handled via vtable or member function pointer 2176 // checks elsewhere. 2177 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2178 return; 2179 2180 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2181 F->addTypeMetadata(0, MD); 2182 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2183 2184 // Emit a hash-based bit set entry for cross-DSO calls. 2185 if (CodeGenOpts.SanitizeCfiCrossDso) 2186 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2187 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2188 } 2189 2190 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2191 bool IsIncompleteFunction, 2192 bool IsThunk) { 2193 2194 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2195 // If this is an intrinsic function, set the function's attributes 2196 // to the intrinsic's attributes. 2197 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2198 return; 2199 } 2200 2201 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2202 2203 if (!IsIncompleteFunction) 2204 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2205 IsThunk); 2206 2207 // Add the Returned attribute for "this", except for iOS 5 and earlier 2208 // where substantial code, including the libstdc++ dylib, was compiled with 2209 // GCC and does not actually return "this". 2210 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2211 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2212 assert(!F->arg_empty() && 2213 F->arg_begin()->getType() 2214 ->canLosslesslyBitCastTo(F->getReturnType()) && 2215 "unexpected this return"); 2216 F->addParamAttr(0, llvm::Attribute::Returned); 2217 } 2218 2219 // Only a few attributes are set on declarations; these may later be 2220 // overridden by a definition. 2221 2222 setLinkageForGV(F, FD); 2223 setGVProperties(F, FD); 2224 2225 // Setup target-specific attributes. 2226 if (!IsIncompleteFunction && F->isDeclaration()) 2227 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2228 2229 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2230 F->setSection(CSA->getName()); 2231 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2232 F->setSection(SA->getName()); 2233 2234 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2235 if (EA->isError()) 2236 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2237 else if (EA->isWarning()) 2238 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2239 } 2240 2241 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2242 if (FD->isInlineBuiltinDeclaration()) { 2243 const FunctionDecl *FDBody; 2244 bool HasBody = FD->hasBody(FDBody); 2245 (void)HasBody; 2246 assert(HasBody && "Inline builtin declarations should always have an " 2247 "available body!"); 2248 if (shouldEmitFunction(FDBody)) 2249 F->addFnAttr(llvm::Attribute::NoBuiltin); 2250 } 2251 2252 if (FD->isReplaceableGlobalAllocationFunction()) { 2253 // A replaceable global allocation function does not act like a builtin by 2254 // default, only if it is invoked by a new-expression or delete-expression. 2255 F->addFnAttr(llvm::Attribute::NoBuiltin); 2256 } 2257 2258 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2259 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2260 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2261 if (MD->isVirtual()) 2262 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2263 2264 // Don't emit entries for function declarations in the cross-DSO mode. This 2265 // is handled with better precision by the receiving DSO. But if jump tables 2266 // are non-canonical then we need type metadata in order to produce the local 2267 // jump table. 2268 if (!CodeGenOpts.SanitizeCfiCrossDso || 2269 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2270 CreateFunctionTypeMetadataForIcall(FD, F); 2271 2272 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2273 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2274 2275 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2276 // Annotate the callback behavior as metadata: 2277 // - The callback callee (as argument number). 2278 // - The callback payloads (as argument numbers). 2279 llvm::LLVMContext &Ctx = F->getContext(); 2280 llvm::MDBuilder MDB(Ctx); 2281 2282 // The payload indices are all but the first one in the encoding. The first 2283 // identifies the callback callee. 2284 int CalleeIdx = *CB->encoding_begin(); 2285 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2286 F->addMetadata(llvm::LLVMContext::MD_callback, 2287 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2288 CalleeIdx, PayloadIndices, 2289 /* VarArgsArePassed */ false)})); 2290 } 2291 } 2292 2293 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2294 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2295 "Only globals with definition can force usage."); 2296 LLVMUsed.emplace_back(GV); 2297 } 2298 2299 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2300 assert(!GV->isDeclaration() && 2301 "Only globals with definition can force usage."); 2302 LLVMCompilerUsed.emplace_back(GV); 2303 } 2304 2305 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2306 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2307 "Only globals with definition can force usage."); 2308 if (getTriple().isOSBinFormatELF()) 2309 LLVMCompilerUsed.emplace_back(GV); 2310 else 2311 LLVMUsed.emplace_back(GV); 2312 } 2313 2314 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2315 std::vector<llvm::WeakTrackingVH> &List) { 2316 // Don't create llvm.used if there is no need. 2317 if (List.empty()) 2318 return; 2319 2320 // Convert List to what ConstantArray needs. 2321 SmallVector<llvm::Constant*, 8> UsedArray; 2322 UsedArray.resize(List.size()); 2323 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2324 UsedArray[i] = 2325 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2326 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2327 } 2328 2329 if (UsedArray.empty()) 2330 return; 2331 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2332 2333 auto *GV = new llvm::GlobalVariable( 2334 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2335 llvm::ConstantArray::get(ATy, UsedArray), Name); 2336 2337 GV->setSection("llvm.metadata"); 2338 } 2339 2340 void CodeGenModule::emitLLVMUsed() { 2341 emitUsed(*this, "llvm.used", LLVMUsed); 2342 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2343 } 2344 2345 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2346 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2347 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2348 } 2349 2350 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2351 llvm::SmallString<32> Opt; 2352 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2353 if (Opt.empty()) 2354 return; 2355 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2356 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2357 } 2358 2359 void CodeGenModule::AddDependentLib(StringRef Lib) { 2360 auto &C = getLLVMContext(); 2361 if (getTarget().getTriple().isOSBinFormatELF()) { 2362 ELFDependentLibraries.push_back( 2363 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2364 return; 2365 } 2366 2367 llvm::SmallString<24> Opt; 2368 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2369 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2370 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2371 } 2372 2373 /// Add link options implied by the given module, including modules 2374 /// it depends on, using a postorder walk. 2375 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2376 SmallVectorImpl<llvm::MDNode *> &Metadata, 2377 llvm::SmallPtrSet<Module *, 16> &Visited) { 2378 // Import this module's parent. 2379 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2380 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2381 } 2382 2383 // Import this module's dependencies. 2384 for (Module *Import : llvm::reverse(Mod->Imports)) { 2385 if (Visited.insert(Import).second) 2386 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2387 } 2388 2389 // Add linker options to link against the libraries/frameworks 2390 // described by this module. 2391 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2392 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2393 2394 // For modules that use export_as for linking, use that module 2395 // name instead. 2396 if (Mod->UseExportAsModuleLinkName) 2397 return; 2398 2399 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2400 // Link against a framework. Frameworks are currently Darwin only, so we 2401 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2402 if (LL.IsFramework) { 2403 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2404 llvm::MDString::get(Context, LL.Library)}; 2405 2406 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2407 continue; 2408 } 2409 2410 // Link against a library. 2411 if (IsELF) { 2412 llvm::Metadata *Args[2] = { 2413 llvm::MDString::get(Context, "lib"), 2414 llvm::MDString::get(Context, LL.Library), 2415 }; 2416 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2417 } else { 2418 llvm::SmallString<24> Opt; 2419 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2420 auto *OptString = llvm::MDString::get(Context, Opt); 2421 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2422 } 2423 } 2424 } 2425 2426 void CodeGenModule::EmitModuleLinkOptions() { 2427 // Collect the set of all of the modules we want to visit to emit link 2428 // options, which is essentially the imported modules and all of their 2429 // non-explicit child modules. 2430 llvm::SetVector<clang::Module *> LinkModules; 2431 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2432 SmallVector<clang::Module *, 16> Stack; 2433 2434 // Seed the stack with imported modules. 2435 for (Module *M : ImportedModules) { 2436 // Do not add any link flags when an implementation TU of a module imports 2437 // a header of that same module. 2438 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2439 !getLangOpts().isCompilingModule()) 2440 continue; 2441 if (Visited.insert(M).second) 2442 Stack.push_back(M); 2443 } 2444 2445 // Find all of the modules to import, making a little effort to prune 2446 // non-leaf modules. 2447 while (!Stack.empty()) { 2448 clang::Module *Mod = Stack.pop_back_val(); 2449 2450 bool AnyChildren = false; 2451 2452 // Visit the submodules of this module. 2453 for (const auto &SM : Mod->submodules()) { 2454 // Skip explicit children; they need to be explicitly imported to be 2455 // linked against. 2456 if (SM->IsExplicit) 2457 continue; 2458 2459 if (Visited.insert(SM).second) { 2460 Stack.push_back(SM); 2461 AnyChildren = true; 2462 } 2463 } 2464 2465 // We didn't find any children, so add this module to the list of 2466 // modules to link against. 2467 if (!AnyChildren) { 2468 LinkModules.insert(Mod); 2469 } 2470 } 2471 2472 // Add link options for all of the imported modules in reverse topological 2473 // order. We don't do anything to try to order import link flags with respect 2474 // to linker options inserted by things like #pragma comment(). 2475 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2476 Visited.clear(); 2477 for (Module *M : LinkModules) 2478 if (Visited.insert(M).second) 2479 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2480 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2481 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2482 2483 // Add the linker options metadata flag. 2484 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2485 for (auto *MD : LinkerOptionsMetadata) 2486 NMD->addOperand(MD); 2487 } 2488 2489 void CodeGenModule::EmitDeferred() { 2490 // Emit deferred declare target declarations. 2491 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2492 getOpenMPRuntime().emitDeferredTargetDecls(); 2493 2494 // Emit code for any potentially referenced deferred decls. Since a 2495 // previously unused static decl may become used during the generation of code 2496 // for a static function, iterate until no changes are made. 2497 2498 if (!DeferredVTables.empty()) { 2499 EmitDeferredVTables(); 2500 2501 // Emitting a vtable doesn't directly cause more vtables to 2502 // become deferred, although it can cause functions to be 2503 // emitted that then need those vtables. 2504 assert(DeferredVTables.empty()); 2505 } 2506 2507 // Emit CUDA/HIP static device variables referenced by host code only. 2508 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2509 // needed for further handling. 2510 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2511 llvm::append_range(DeferredDeclsToEmit, 2512 getContext().CUDADeviceVarODRUsedByHost); 2513 2514 // Stop if we're out of both deferred vtables and deferred declarations. 2515 if (DeferredDeclsToEmit.empty()) 2516 return; 2517 2518 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2519 // work, it will not interfere with this. 2520 std::vector<GlobalDecl> CurDeclsToEmit; 2521 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2522 2523 for (GlobalDecl &D : CurDeclsToEmit) { 2524 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2525 // to get GlobalValue with exactly the type we need, not something that 2526 // might had been created for another decl with the same mangled name but 2527 // different type. 2528 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2529 GetAddrOfGlobal(D, ForDefinition)); 2530 2531 // In case of different address spaces, we may still get a cast, even with 2532 // IsForDefinition equal to true. Query mangled names table to get 2533 // GlobalValue. 2534 if (!GV) 2535 GV = GetGlobalValue(getMangledName(D)); 2536 2537 // Make sure GetGlobalValue returned non-null. 2538 assert(GV); 2539 2540 // Check to see if we've already emitted this. This is necessary 2541 // for a couple of reasons: first, decls can end up in the 2542 // deferred-decls queue multiple times, and second, decls can end 2543 // up with definitions in unusual ways (e.g. by an extern inline 2544 // function acquiring a strong function redefinition). Just 2545 // ignore these cases. 2546 if (!GV->isDeclaration()) 2547 continue; 2548 2549 // If this is OpenMP, check if it is legal to emit this global normally. 2550 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2551 continue; 2552 2553 // Otherwise, emit the definition and move on to the next one. 2554 EmitGlobalDefinition(D, GV); 2555 2556 // If we found out that we need to emit more decls, do that recursively. 2557 // This has the advantage that the decls are emitted in a DFS and related 2558 // ones are close together, which is convenient for testing. 2559 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2560 EmitDeferred(); 2561 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2562 } 2563 } 2564 } 2565 2566 void CodeGenModule::EmitVTablesOpportunistically() { 2567 // Try to emit external vtables as available_externally if they have emitted 2568 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2569 // is not allowed to create new references to things that need to be emitted 2570 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2571 2572 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2573 && "Only emit opportunistic vtables with optimizations"); 2574 2575 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2576 assert(getVTables().isVTableExternal(RD) && 2577 "This queue should only contain external vtables"); 2578 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2579 VTables.GenerateClassData(RD); 2580 } 2581 OpportunisticVTables.clear(); 2582 } 2583 2584 void CodeGenModule::EmitGlobalAnnotations() { 2585 if (Annotations.empty()) 2586 return; 2587 2588 // Create a new global variable for the ConstantStruct in the Module. 2589 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2590 Annotations[0]->getType(), Annotations.size()), Annotations); 2591 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2592 llvm::GlobalValue::AppendingLinkage, 2593 Array, "llvm.global.annotations"); 2594 gv->setSection(AnnotationSection); 2595 } 2596 2597 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2598 llvm::Constant *&AStr = AnnotationStrings[Str]; 2599 if (AStr) 2600 return AStr; 2601 2602 // Not found yet, create a new global. 2603 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2604 auto *gv = 2605 new llvm::GlobalVariable(getModule(), s->getType(), true, 2606 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2607 gv->setSection(AnnotationSection); 2608 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2609 AStr = gv; 2610 return gv; 2611 } 2612 2613 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2614 SourceManager &SM = getContext().getSourceManager(); 2615 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2616 if (PLoc.isValid()) 2617 return EmitAnnotationString(PLoc.getFilename()); 2618 return EmitAnnotationString(SM.getBufferName(Loc)); 2619 } 2620 2621 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2622 SourceManager &SM = getContext().getSourceManager(); 2623 PresumedLoc PLoc = SM.getPresumedLoc(L); 2624 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2625 SM.getExpansionLineNumber(L); 2626 return llvm::ConstantInt::get(Int32Ty, LineNo); 2627 } 2628 2629 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2630 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2631 if (Exprs.empty()) 2632 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy); 2633 2634 llvm::FoldingSetNodeID ID; 2635 for (Expr *E : Exprs) { 2636 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2637 } 2638 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2639 if (Lookup) 2640 return Lookup; 2641 2642 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2643 LLVMArgs.reserve(Exprs.size()); 2644 ConstantEmitter ConstEmiter(*this); 2645 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2646 const auto *CE = cast<clang::ConstantExpr>(E); 2647 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2648 CE->getType()); 2649 }); 2650 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2651 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2652 llvm::GlobalValue::PrivateLinkage, Struct, 2653 ".args"); 2654 GV->setSection(AnnotationSection); 2655 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2656 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2657 2658 Lookup = Bitcasted; 2659 return Bitcasted; 2660 } 2661 2662 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2663 const AnnotateAttr *AA, 2664 SourceLocation L) { 2665 // Get the globals for file name, annotation, and the line number. 2666 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2667 *UnitGV = EmitAnnotationUnit(L), 2668 *LineNoCst = EmitAnnotationLineNo(L), 2669 *Args = EmitAnnotationArgs(AA); 2670 2671 llvm::Constant *GVInGlobalsAS = GV; 2672 if (GV->getAddressSpace() != 2673 getDataLayout().getDefaultGlobalsAddressSpace()) { 2674 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2675 GV, GV->getValueType()->getPointerTo( 2676 getDataLayout().getDefaultGlobalsAddressSpace())); 2677 } 2678 2679 // Create the ConstantStruct for the global annotation. 2680 llvm::Constant *Fields[] = { 2681 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2682 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy), 2683 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy), 2684 LineNoCst, 2685 Args, 2686 }; 2687 return llvm::ConstantStruct::getAnon(Fields); 2688 } 2689 2690 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2691 llvm::GlobalValue *GV) { 2692 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2693 // Get the struct elements for these annotations. 2694 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2695 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2696 } 2697 2698 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2699 SourceLocation Loc) const { 2700 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2701 // NoSanitize by function name. 2702 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2703 return true; 2704 // NoSanitize by location. 2705 if (Loc.isValid()) 2706 return NoSanitizeL.containsLocation(Kind, Loc); 2707 // If location is unknown, this may be a compiler-generated function. Assume 2708 // it's located in the main file. 2709 auto &SM = Context.getSourceManager(); 2710 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2711 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2712 } 2713 return false; 2714 } 2715 2716 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV, 2717 SourceLocation Loc, QualType Ty, 2718 StringRef Category) const { 2719 // For now globals can be ignored only in ASan and KASan. 2720 const SanitizerMask EnabledAsanMask = 2721 LangOpts.Sanitize.Mask & 2722 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2723 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2724 SanitizerKind::MemTag); 2725 if (!EnabledAsanMask) 2726 return false; 2727 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2728 if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category)) 2729 return true; 2730 if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category)) 2731 return true; 2732 // Check global type. 2733 if (!Ty.isNull()) { 2734 // Drill down the array types: if global variable of a fixed type is 2735 // not sanitized, we also don't instrument arrays of them. 2736 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2737 Ty = AT->getElementType(); 2738 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2739 // Only record types (classes, structs etc.) are ignored. 2740 if (Ty->isRecordType()) { 2741 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2742 if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category)) 2743 return true; 2744 } 2745 } 2746 return false; 2747 } 2748 2749 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2750 StringRef Category) const { 2751 const auto &XRayFilter = getContext().getXRayFilter(); 2752 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2753 auto Attr = ImbueAttr::NONE; 2754 if (Loc.isValid()) 2755 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2756 if (Attr == ImbueAttr::NONE) 2757 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2758 switch (Attr) { 2759 case ImbueAttr::NONE: 2760 return false; 2761 case ImbueAttr::ALWAYS: 2762 Fn->addFnAttr("function-instrument", "xray-always"); 2763 break; 2764 case ImbueAttr::ALWAYS_ARG1: 2765 Fn->addFnAttr("function-instrument", "xray-always"); 2766 Fn->addFnAttr("xray-log-args", "1"); 2767 break; 2768 case ImbueAttr::NEVER: 2769 Fn->addFnAttr("function-instrument", "xray-never"); 2770 break; 2771 } 2772 return true; 2773 } 2774 2775 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2776 SourceLocation Loc) const { 2777 const auto &ProfileList = getContext().getProfileList(); 2778 // If the profile list is empty, then instrument everything. 2779 if (ProfileList.isEmpty()) 2780 return false; 2781 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2782 // First, check the function name. 2783 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2784 if (V.hasValue()) 2785 return *V; 2786 // Next, check the source location. 2787 if (Loc.isValid()) { 2788 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2789 if (V.hasValue()) 2790 return *V; 2791 } 2792 // If location is unknown, this may be a compiler-generated function. Assume 2793 // it's located in the main file. 2794 auto &SM = Context.getSourceManager(); 2795 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2796 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2797 if (V.hasValue()) 2798 return *V; 2799 } 2800 return ProfileList.getDefault(); 2801 } 2802 2803 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2804 // Never defer when EmitAllDecls is specified. 2805 if (LangOpts.EmitAllDecls) 2806 return true; 2807 2808 if (CodeGenOpts.KeepStaticConsts) { 2809 const auto *VD = dyn_cast<VarDecl>(Global); 2810 if (VD && VD->getType().isConstQualified() && 2811 VD->getStorageDuration() == SD_Static) 2812 return true; 2813 } 2814 2815 return getContext().DeclMustBeEmitted(Global); 2816 } 2817 2818 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2819 // In OpenMP 5.0 variables and function may be marked as 2820 // device_type(host/nohost) and we should not emit them eagerly unless we sure 2821 // that they must be emitted on the host/device. To be sure we need to have 2822 // seen a declare target with an explicit mentioning of the function, we know 2823 // we have if the level of the declare target attribute is -1. Note that we 2824 // check somewhere else if we should emit this at all. 2825 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 2826 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 2827 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 2828 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 2829 return false; 2830 } 2831 2832 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2833 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2834 // Implicit template instantiations may change linkage if they are later 2835 // explicitly instantiated, so they should not be emitted eagerly. 2836 return false; 2837 } 2838 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2839 if (Context.getInlineVariableDefinitionKind(VD) == 2840 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2841 // A definition of an inline constexpr static data member may change 2842 // linkage later if it's redeclared outside the class. 2843 return false; 2844 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2845 // codegen for global variables, because they may be marked as threadprivate. 2846 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2847 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2848 !isTypeConstant(Global->getType(), false) && 2849 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2850 return false; 2851 2852 return true; 2853 } 2854 2855 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2856 StringRef Name = getMangledName(GD); 2857 2858 // The UUID descriptor should be pointer aligned. 2859 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2860 2861 // Look for an existing global. 2862 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2863 return ConstantAddress(GV, GV->getValueType(), Alignment); 2864 2865 ConstantEmitter Emitter(*this); 2866 llvm::Constant *Init; 2867 2868 APValue &V = GD->getAsAPValue(); 2869 if (!V.isAbsent()) { 2870 // If possible, emit the APValue version of the initializer. In particular, 2871 // this gets the type of the constant right. 2872 Init = Emitter.emitForInitializer( 2873 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2874 } else { 2875 // As a fallback, directly construct the constant. 2876 // FIXME: This may get padding wrong under esoteric struct layout rules. 2877 // MSVC appears to create a complete type 'struct __s_GUID' that it 2878 // presumably uses to represent these constants. 2879 MSGuidDecl::Parts Parts = GD->getParts(); 2880 llvm::Constant *Fields[4] = { 2881 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2882 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2883 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2884 llvm::ConstantDataArray::getRaw( 2885 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2886 Int8Ty)}; 2887 Init = llvm::ConstantStruct::getAnon(Fields); 2888 } 2889 2890 auto *GV = new llvm::GlobalVariable( 2891 getModule(), Init->getType(), 2892 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2893 if (supportsCOMDAT()) 2894 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2895 setDSOLocal(GV); 2896 2897 if (!V.isAbsent()) { 2898 Emitter.finalize(GV); 2899 return ConstantAddress(GV, GV->getValueType(), Alignment); 2900 } 2901 2902 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2903 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 2904 GV, Ty->getPointerTo(GV->getAddressSpace())); 2905 return ConstantAddress(Addr, Ty, Alignment); 2906 } 2907 2908 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 2909 const UnnamedGlobalConstantDecl *GCD) { 2910 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 2911 2912 llvm::GlobalVariable **Entry = nullptr; 2913 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 2914 if (*Entry) 2915 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 2916 2917 ConstantEmitter Emitter(*this); 2918 llvm::Constant *Init; 2919 2920 const APValue &V = GCD->getValue(); 2921 2922 assert(!V.isAbsent()); 2923 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 2924 GCD->getType()); 2925 2926 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 2927 /*isConstant=*/true, 2928 llvm::GlobalValue::PrivateLinkage, Init, 2929 ".constant"); 2930 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2931 GV->setAlignment(Alignment.getAsAlign()); 2932 2933 Emitter.finalize(GV); 2934 2935 *Entry = GV; 2936 return ConstantAddress(GV, GV->getValueType(), Alignment); 2937 } 2938 2939 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2940 const TemplateParamObjectDecl *TPO) { 2941 StringRef Name = getMangledName(TPO); 2942 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2943 2944 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2945 return ConstantAddress(GV, GV->getValueType(), Alignment); 2946 2947 ConstantEmitter Emitter(*this); 2948 llvm::Constant *Init = Emitter.emitForInitializer( 2949 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2950 2951 if (!Init) { 2952 ErrorUnsupported(TPO, "template parameter object"); 2953 return ConstantAddress::invalid(); 2954 } 2955 2956 auto *GV = new llvm::GlobalVariable( 2957 getModule(), Init->getType(), 2958 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2959 if (supportsCOMDAT()) 2960 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2961 Emitter.finalize(GV); 2962 2963 return ConstantAddress(GV, GV->getValueType(), Alignment); 2964 } 2965 2966 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2967 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2968 assert(AA && "No alias?"); 2969 2970 CharUnits Alignment = getContext().getDeclAlign(VD); 2971 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2972 2973 // See if there is already something with the target's name in the module. 2974 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2975 if (Entry) { 2976 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2977 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2978 return ConstantAddress(Ptr, DeclTy, Alignment); 2979 } 2980 2981 llvm::Constant *Aliasee; 2982 if (isa<llvm::FunctionType>(DeclTy)) 2983 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2984 GlobalDecl(cast<FunctionDecl>(VD)), 2985 /*ForVTable=*/false); 2986 else 2987 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 2988 nullptr); 2989 2990 auto *F = cast<llvm::GlobalValue>(Aliasee); 2991 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2992 WeakRefReferences.insert(F); 2993 2994 return ConstantAddress(Aliasee, DeclTy, Alignment); 2995 } 2996 2997 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2998 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2999 3000 // Weak references don't produce any output by themselves. 3001 if (Global->hasAttr<WeakRefAttr>()) 3002 return; 3003 3004 // If this is an alias definition (which otherwise looks like a declaration) 3005 // emit it now. 3006 if (Global->hasAttr<AliasAttr>()) 3007 return EmitAliasDefinition(GD); 3008 3009 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3010 if (Global->hasAttr<IFuncAttr>()) 3011 return emitIFuncDefinition(GD); 3012 3013 // If this is a cpu_dispatch multiversion function, emit the resolver. 3014 if (Global->hasAttr<CPUDispatchAttr>()) 3015 return emitCPUDispatchDefinition(GD); 3016 3017 // If this is CUDA, be selective about which declarations we emit. 3018 if (LangOpts.CUDA) { 3019 if (LangOpts.CUDAIsDevice) { 3020 if (!Global->hasAttr<CUDADeviceAttr>() && 3021 !Global->hasAttr<CUDAGlobalAttr>() && 3022 !Global->hasAttr<CUDAConstantAttr>() && 3023 !Global->hasAttr<CUDASharedAttr>() && 3024 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3025 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3026 return; 3027 } else { 3028 // We need to emit host-side 'shadows' for all global 3029 // device-side variables because the CUDA runtime needs their 3030 // size and host-side address in order to provide access to 3031 // their device-side incarnations. 3032 3033 // So device-only functions are the only things we skip. 3034 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3035 Global->hasAttr<CUDADeviceAttr>()) 3036 return; 3037 3038 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3039 "Expected Variable or Function"); 3040 } 3041 } 3042 3043 if (LangOpts.OpenMP) { 3044 // If this is OpenMP, check if it is legal to emit this global normally. 3045 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3046 return; 3047 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3048 if (MustBeEmitted(Global)) 3049 EmitOMPDeclareReduction(DRD); 3050 return; 3051 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3052 if (MustBeEmitted(Global)) 3053 EmitOMPDeclareMapper(DMD); 3054 return; 3055 } 3056 } 3057 3058 // Ignore declarations, they will be emitted on their first use. 3059 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3060 // Forward declarations are emitted lazily on first use. 3061 if (!FD->doesThisDeclarationHaveABody()) { 3062 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3063 return; 3064 3065 StringRef MangledName = getMangledName(GD); 3066 3067 // Compute the function info and LLVM type. 3068 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3069 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3070 3071 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3072 /*DontDefer=*/false); 3073 return; 3074 } 3075 } else { 3076 const auto *VD = cast<VarDecl>(Global); 3077 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3078 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3079 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3080 if (LangOpts.OpenMP) { 3081 // Emit declaration of the must-be-emitted declare target variable. 3082 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3083 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3084 bool UnifiedMemoryEnabled = 3085 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3086 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 3087 !UnifiedMemoryEnabled) { 3088 (void)GetAddrOfGlobalVar(VD); 3089 } else { 3090 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3091 (*Res == OMPDeclareTargetDeclAttr::MT_To && 3092 UnifiedMemoryEnabled)) && 3093 "Link clause or to clause with unified memory expected."); 3094 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3095 } 3096 3097 return; 3098 } 3099 } 3100 // If this declaration may have caused an inline variable definition to 3101 // change linkage, make sure that it's emitted. 3102 if (Context.getInlineVariableDefinitionKind(VD) == 3103 ASTContext::InlineVariableDefinitionKind::Strong) 3104 GetAddrOfGlobalVar(VD); 3105 return; 3106 } 3107 } 3108 3109 // Defer code generation to first use when possible, e.g. if this is an inline 3110 // function. If the global must always be emitted, do it eagerly if possible 3111 // to benefit from cache locality. 3112 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3113 // Emit the definition if it can't be deferred. 3114 EmitGlobalDefinition(GD); 3115 return; 3116 } 3117 3118 // If we're deferring emission of a C++ variable with an 3119 // initializer, remember the order in which it appeared in the file. 3120 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3121 cast<VarDecl>(Global)->hasInit()) { 3122 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3123 CXXGlobalInits.push_back(nullptr); 3124 } 3125 3126 StringRef MangledName = getMangledName(GD); 3127 if (GetGlobalValue(MangledName) != nullptr) { 3128 // The value has already been used and should therefore be emitted. 3129 addDeferredDeclToEmit(GD); 3130 } else if (MustBeEmitted(Global)) { 3131 // The value must be emitted, but cannot be emitted eagerly. 3132 assert(!MayBeEmittedEagerly(Global)); 3133 addDeferredDeclToEmit(GD); 3134 } else { 3135 // Otherwise, remember that we saw a deferred decl with this name. The 3136 // first use of the mangled name will cause it to move into 3137 // DeferredDeclsToEmit. 3138 DeferredDecls[MangledName] = GD; 3139 } 3140 } 3141 3142 // Check if T is a class type with a destructor that's not dllimport. 3143 static bool HasNonDllImportDtor(QualType T) { 3144 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3145 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3146 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3147 return true; 3148 3149 return false; 3150 } 3151 3152 namespace { 3153 struct FunctionIsDirectlyRecursive 3154 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3155 const StringRef Name; 3156 const Builtin::Context &BI; 3157 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3158 : Name(N), BI(C) {} 3159 3160 bool VisitCallExpr(const CallExpr *E) { 3161 const FunctionDecl *FD = E->getDirectCallee(); 3162 if (!FD) 3163 return false; 3164 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3165 if (Attr && Name == Attr->getLabel()) 3166 return true; 3167 unsigned BuiltinID = FD->getBuiltinID(); 3168 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3169 return false; 3170 StringRef BuiltinName = BI.getName(BuiltinID); 3171 if (BuiltinName.startswith("__builtin_") && 3172 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3173 return true; 3174 } 3175 return false; 3176 } 3177 3178 bool VisitStmt(const Stmt *S) { 3179 for (const Stmt *Child : S->children()) 3180 if (Child && this->Visit(Child)) 3181 return true; 3182 return false; 3183 } 3184 }; 3185 3186 // Make sure we're not referencing non-imported vars or functions. 3187 struct DLLImportFunctionVisitor 3188 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3189 bool SafeToInline = true; 3190 3191 bool shouldVisitImplicitCode() const { return true; } 3192 3193 bool VisitVarDecl(VarDecl *VD) { 3194 if (VD->getTLSKind()) { 3195 // A thread-local variable cannot be imported. 3196 SafeToInline = false; 3197 return SafeToInline; 3198 } 3199 3200 // A variable definition might imply a destructor call. 3201 if (VD->isThisDeclarationADefinition()) 3202 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3203 3204 return SafeToInline; 3205 } 3206 3207 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3208 if (const auto *D = E->getTemporary()->getDestructor()) 3209 SafeToInline = D->hasAttr<DLLImportAttr>(); 3210 return SafeToInline; 3211 } 3212 3213 bool VisitDeclRefExpr(DeclRefExpr *E) { 3214 ValueDecl *VD = E->getDecl(); 3215 if (isa<FunctionDecl>(VD)) 3216 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3217 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3218 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3219 return SafeToInline; 3220 } 3221 3222 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3223 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3224 return SafeToInline; 3225 } 3226 3227 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3228 CXXMethodDecl *M = E->getMethodDecl(); 3229 if (!M) { 3230 // Call through a pointer to member function. This is safe to inline. 3231 SafeToInline = true; 3232 } else { 3233 SafeToInline = M->hasAttr<DLLImportAttr>(); 3234 } 3235 return SafeToInline; 3236 } 3237 3238 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3239 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3240 return SafeToInline; 3241 } 3242 3243 bool VisitCXXNewExpr(CXXNewExpr *E) { 3244 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3245 return SafeToInline; 3246 } 3247 }; 3248 } 3249 3250 // isTriviallyRecursive - Check if this function calls another 3251 // decl that, because of the asm attribute or the other decl being a builtin, 3252 // ends up pointing to itself. 3253 bool 3254 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3255 StringRef Name; 3256 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3257 // asm labels are a special kind of mangling we have to support. 3258 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3259 if (!Attr) 3260 return false; 3261 Name = Attr->getLabel(); 3262 } else { 3263 Name = FD->getName(); 3264 } 3265 3266 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3267 const Stmt *Body = FD->getBody(); 3268 return Body ? Walker.Visit(Body) : false; 3269 } 3270 3271 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3272 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3273 return true; 3274 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3275 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3276 return false; 3277 3278 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3279 // Check whether it would be safe to inline this dllimport function. 3280 DLLImportFunctionVisitor Visitor; 3281 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3282 if (!Visitor.SafeToInline) 3283 return false; 3284 3285 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3286 // Implicit destructor invocations aren't captured in the AST, so the 3287 // check above can't see them. Check for them manually here. 3288 for (const Decl *Member : Dtor->getParent()->decls()) 3289 if (isa<FieldDecl>(Member)) 3290 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3291 return false; 3292 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3293 if (HasNonDllImportDtor(B.getType())) 3294 return false; 3295 } 3296 } 3297 3298 // Inline builtins declaration must be emitted. They often are fortified 3299 // functions. 3300 if (F->isInlineBuiltinDeclaration()) 3301 return true; 3302 3303 // PR9614. Avoid cases where the source code is lying to us. An available 3304 // externally function should have an equivalent function somewhere else, 3305 // but a function that calls itself through asm label/`__builtin_` trickery is 3306 // clearly not equivalent to the real implementation. 3307 // This happens in glibc's btowc and in some configure checks. 3308 return !isTriviallyRecursive(F); 3309 } 3310 3311 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3312 return CodeGenOpts.OptimizationLevel > 0; 3313 } 3314 3315 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3316 llvm::GlobalValue *GV) { 3317 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3318 3319 if (FD->isCPUSpecificMultiVersion()) { 3320 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3321 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3322 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3323 // Requires multiple emits. 3324 } else if (FD->isTargetClonesMultiVersion()) { 3325 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3326 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3327 if (Clone->isFirstOfVersion(I)) 3328 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3329 EmitTargetClonesResolver(GD); 3330 } else 3331 EmitGlobalFunctionDefinition(GD, GV); 3332 } 3333 3334 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3335 const auto *D = cast<ValueDecl>(GD.getDecl()); 3336 3337 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3338 Context.getSourceManager(), 3339 "Generating code for declaration"); 3340 3341 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3342 // At -O0, don't generate IR for functions with available_externally 3343 // linkage. 3344 if (!shouldEmitFunction(GD)) 3345 return; 3346 3347 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3348 std::string Name; 3349 llvm::raw_string_ostream OS(Name); 3350 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3351 /*Qualified=*/true); 3352 return Name; 3353 }); 3354 3355 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3356 // Make sure to emit the definition(s) before we emit the thunks. 3357 // This is necessary for the generation of certain thunks. 3358 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3359 ABI->emitCXXStructor(GD); 3360 else if (FD->isMultiVersion()) 3361 EmitMultiVersionFunctionDefinition(GD, GV); 3362 else 3363 EmitGlobalFunctionDefinition(GD, GV); 3364 3365 if (Method->isVirtual()) 3366 getVTables().EmitThunks(GD); 3367 3368 return; 3369 } 3370 3371 if (FD->isMultiVersion()) 3372 return EmitMultiVersionFunctionDefinition(GD, GV); 3373 return EmitGlobalFunctionDefinition(GD, GV); 3374 } 3375 3376 if (const auto *VD = dyn_cast<VarDecl>(D)) 3377 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3378 3379 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3380 } 3381 3382 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3383 llvm::Function *NewFn); 3384 3385 static unsigned 3386 TargetMVPriority(const TargetInfo &TI, 3387 const CodeGenFunction::MultiVersionResolverOption &RO) { 3388 unsigned Priority = 0; 3389 for (StringRef Feat : RO.Conditions.Features) 3390 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3391 3392 if (!RO.Conditions.Architecture.empty()) 3393 Priority = std::max( 3394 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3395 return Priority; 3396 } 3397 3398 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3399 // TU can forward declare the function without causing problems. Particularly 3400 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3401 // work with internal linkage functions, so that the same function name can be 3402 // used with internal linkage in multiple TUs. 3403 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3404 GlobalDecl GD) { 3405 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3406 if (FD->getFormalLinkage() == InternalLinkage) 3407 return llvm::GlobalValue::InternalLinkage; 3408 return llvm::GlobalValue::WeakODRLinkage; 3409 } 3410 3411 void CodeGenModule::EmitTargetClonesResolver(GlobalDecl GD) { 3412 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3413 assert(FD && "Not a FunctionDecl?"); 3414 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3415 assert(TC && "Not a target_clones Function?"); 3416 3417 QualType CanonTy = Context.getCanonicalType(FD->getType()); 3418 llvm::Type *DeclTy = getTypes().ConvertType(CanonTy); 3419 3420 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3421 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3422 DeclTy = getTypes().GetFunctionType(FInfo); 3423 } 3424 3425 llvm::Function *ResolverFunc; 3426 if (getTarget().supportsIFunc()) { 3427 auto *IFunc = cast<llvm::GlobalIFunc>( 3428 GetOrCreateMultiVersionResolver(GD, DeclTy, FD)); 3429 ResolverFunc = cast<llvm::Function>(IFunc->getResolver()); 3430 } else 3431 ResolverFunc = 3432 cast<llvm::Function>(GetOrCreateMultiVersionResolver(GD, DeclTy, FD)); 3433 3434 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3435 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3436 ++VersionIndex) { 3437 if (!TC->isFirstOfVersion(VersionIndex)) 3438 continue; 3439 StringRef Version = TC->getFeatureStr(VersionIndex); 3440 StringRef MangledName = 3441 getMangledName(GD.getWithMultiVersionIndex(VersionIndex)); 3442 llvm::Constant *Func = GetGlobalValue(MangledName); 3443 assert(Func && 3444 "Should have already been created before calling resolver emit"); 3445 3446 StringRef Architecture; 3447 llvm::SmallVector<StringRef, 1> Feature; 3448 3449 if (Version.startswith("arch=")) 3450 Architecture = Version.drop_front(sizeof("arch=") - 1); 3451 else if (Version != "default") 3452 Feature.push_back(Version); 3453 3454 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3455 } 3456 3457 if (supportsCOMDAT()) 3458 ResolverFunc->setComdat( 3459 getModule().getOrInsertComdat(ResolverFunc->getName())); 3460 3461 const TargetInfo &TI = getTarget(); 3462 std::stable_sort( 3463 Options.begin(), Options.end(), 3464 [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3465 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3466 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3467 }); 3468 CodeGenFunction CGF(*this); 3469 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3470 } 3471 3472 void CodeGenModule::emitMultiVersionFunctions() { 3473 std::vector<GlobalDecl> MVFuncsToEmit; 3474 MultiVersionFuncs.swap(MVFuncsToEmit); 3475 for (GlobalDecl GD : MVFuncsToEmit) { 3476 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3477 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3478 getContext().forEachMultiversionedFunctionVersion( 3479 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3480 GlobalDecl CurGD{ 3481 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3482 StringRef MangledName = getMangledName(CurGD); 3483 llvm::Constant *Func = GetGlobalValue(MangledName); 3484 if (!Func) { 3485 if (CurFD->isDefined()) { 3486 EmitGlobalFunctionDefinition(CurGD, nullptr); 3487 Func = GetGlobalValue(MangledName); 3488 } else { 3489 const CGFunctionInfo &FI = 3490 getTypes().arrangeGlobalDeclaration(GD); 3491 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3492 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3493 /*DontDefer=*/false, ForDefinition); 3494 } 3495 assert(Func && "This should have just been created"); 3496 } 3497 3498 const auto *TA = CurFD->getAttr<TargetAttr>(); 3499 llvm::SmallVector<StringRef, 8> Feats; 3500 TA->getAddedFeatures(Feats); 3501 3502 Options.emplace_back(cast<llvm::Function>(Func), 3503 TA->getArchitecture(), Feats); 3504 }); 3505 3506 llvm::Function *ResolverFunc; 3507 const TargetInfo &TI = getTarget(); 3508 3509 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3510 ResolverFunc = cast<llvm::Function>( 3511 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3512 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3513 } else { 3514 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3515 } 3516 3517 if (supportsCOMDAT()) 3518 ResolverFunc->setComdat( 3519 getModule().getOrInsertComdat(ResolverFunc->getName())); 3520 3521 llvm::stable_sort( 3522 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3523 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3524 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3525 }); 3526 CodeGenFunction CGF(*this); 3527 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3528 } 3529 3530 // Ensure that any additions to the deferred decls list caused by emitting a 3531 // variant are emitted. This can happen when the variant itself is inline and 3532 // calls a function without linkage. 3533 if (!MVFuncsToEmit.empty()) 3534 EmitDeferred(); 3535 3536 // Ensure that any additions to the multiversion funcs list from either the 3537 // deferred decls or the multiversion functions themselves are emitted. 3538 if (!MultiVersionFuncs.empty()) 3539 emitMultiVersionFunctions(); 3540 } 3541 3542 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3543 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3544 assert(FD && "Not a FunctionDecl?"); 3545 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3546 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3547 assert(DD && "Not a cpu_dispatch Function?"); 3548 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3549 3550 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3551 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3552 DeclTy = getTypes().GetFunctionType(FInfo); 3553 } 3554 3555 StringRef ResolverName = getMangledName(GD); 3556 UpdateMultiVersionNames(GD, FD, ResolverName); 3557 3558 llvm::Type *ResolverType; 3559 GlobalDecl ResolverGD; 3560 if (getTarget().supportsIFunc()) { 3561 ResolverType = llvm::FunctionType::get( 3562 llvm::PointerType::get(DeclTy, 3563 Context.getTargetAddressSpace(FD->getType())), 3564 false); 3565 } 3566 else { 3567 ResolverType = DeclTy; 3568 ResolverGD = GD; 3569 } 3570 3571 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3572 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3573 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3574 if (supportsCOMDAT()) 3575 ResolverFunc->setComdat( 3576 getModule().getOrInsertComdat(ResolverFunc->getName())); 3577 3578 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3579 const TargetInfo &Target = getTarget(); 3580 unsigned Index = 0; 3581 for (const IdentifierInfo *II : DD->cpus()) { 3582 // Get the name of the target function so we can look it up/create it. 3583 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3584 getCPUSpecificMangling(*this, II->getName()); 3585 3586 llvm::Constant *Func = GetGlobalValue(MangledName); 3587 3588 if (!Func) { 3589 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3590 if (ExistingDecl.getDecl() && 3591 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3592 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3593 Func = GetGlobalValue(MangledName); 3594 } else { 3595 if (!ExistingDecl.getDecl()) 3596 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3597 3598 Func = GetOrCreateLLVMFunction( 3599 MangledName, DeclTy, ExistingDecl, 3600 /*ForVTable=*/false, /*DontDefer=*/true, 3601 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3602 } 3603 } 3604 3605 llvm::SmallVector<StringRef, 32> Features; 3606 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3607 llvm::transform(Features, Features.begin(), 3608 [](StringRef Str) { return Str.substr(1); }); 3609 llvm::erase_if(Features, [&Target](StringRef Feat) { 3610 return !Target.validateCpuSupports(Feat); 3611 }); 3612 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3613 ++Index; 3614 } 3615 3616 llvm::stable_sort( 3617 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3618 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3619 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3620 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3621 }); 3622 3623 // If the list contains multiple 'default' versions, such as when it contains 3624 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3625 // always run on at least a 'pentium'). We do this by deleting the 'least 3626 // advanced' (read, lowest mangling letter). 3627 while (Options.size() > 1 && 3628 llvm::X86::getCpuSupportsMask( 3629 (Options.end() - 2)->Conditions.Features) == 0) { 3630 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3631 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3632 if (LHSName.compare(RHSName) < 0) 3633 Options.erase(Options.end() - 2); 3634 else 3635 Options.erase(Options.end() - 1); 3636 } 3637 3638 CodeGenFunction CGF(*this); 3639 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3640 3641 if (getTarget().supportsIFunc()) { 3642 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3643 auto *IFunc = cast<llvm::GlobalValue>( 3644 GetOrCreateMultiVersionResolver(GD, DeclTy, FD)); 3645 3646 // Fix up function declarations that were created for cpu_specific before 3647 // cpu_dispatch was known 3648 if (!dyn_cast<llvm::GlobalIFunc>(IFunc)) { 3649 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3650 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3651 &getModule()); 3652 GI->takeName(IFunc); 3653 IFunc->replaceAllUsesWith(GI); 3654 IFunc->eraseFromParent(); 3655 IFunc = GI; 3656 } 3657 3658 std::string AliasName = getMangledNameImpl( 3659 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3660 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3661 if (!AliasFunc) { 3662 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3663 &getModule()); 3664 SetCommonAttributes(GD, GA); 3665 } 3666 } 3667 } 3668 3669 /// If a dispatcher for the specified mangled name is not in the module, create 3670 /// and return an llvm Function with the specified type. 3671 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3672 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3673 std::string MangledName = 3674 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3675 3676 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3677 // a separate resolver). 3678 std::string ResolverName = MangledName; 3679 if (getTarget().supportsIFunc()) 3680 ResolverName += ".ifunc"; 3681 else if (FD->isTargetMultiVersion()) 3682 ResolverName += ".resolver"; 3683 3684 // If this already exists, just return that one. 3685 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3686 return ResolverGV; 3687 3688 // Since this is the first time we've created this IFunc, make sure 3689 // that we put this multiversioned function into the list to be 3690 // replaced later if necessary (target multiversioning only). 3691 if (FD->isTargetMultiVersion()) 3692 MultiVersionFuncs.push_back(GD); 3693 else if (FD->isTargetClonesMultiVersion()) { 3694 // In target_clones multiversioning, make sure we emit this if used. 3695 auto DDI = 3696 DeferredDecls.find(getMangledName(GD.getWithMultiVersionIndex(0))); 3697 if (DDI != DeferredDecls.end()) { 3698 addDeferredDeclToEmit(GD); 3699 DeferredDecls.erase(DDI); 3700 } else { 3701 // Emit the symbol of the 1st variant, so that the deferred decls know we 3702 // need it, otherwise the only global value will be the resolver/ifunc, 3703 // which end up getting broken if we search for them with GetGlobalValue'. 3704 GetOrCreateLLVMFunction( 3705 getMangledName(GD.getWithMultiVersionIndex(0)), DeclTy, FD, 3706 /*ForVTable=*/false, /*DontDefer=*/true, 3707 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3708 } 3709 } 3710 3711 // For cpu_specific, don't create an ifunc yet because we don't know if the 3712 // cpu_dispatch will be emitted in this translation unit. 3713 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 3714 llvm::Type *ResolverType = llvm::FunctionType::get( 3715 llvm::PointerType::get( 3716 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3717 false); 3718 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3719 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3720 /*ForVTable=*/false); 3721 llvm::GlobalIFunc *GIF = 3722 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3723 "", Resolver, &getModule()); 3724 GIF->setName(ResolverName); 3725 SetCommonAttributes(FD, GIF); 3726 3727 return GIF; 3728 } 3729 3730 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3731 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3732 assert(isa<llvm::GlobalValue>(Resolver) && 3733 "Resolver should be created for the first time"); 3734 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3735 return Resolver; 3736 } 3737 3738 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3739 /// module, create and return an llvm Function with the specified type. If there 3740 /// is something in the module with the specified name, return it potentially 3741 /// bitcasted to the right type. 3742 /// 3743 /// If D is non-null, it specifies a decl that correspond to this. This is used 3744 /// to set the attributes on the function when it is first created. 3745 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3746 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3747 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3748 ForDefinition_t IsForDefinition) { 3749 const Decl *D = GD.getDecl(); 3750 3751 // Any attempts to use a MultiVersion function should result in retrieving 3752 // the iFunc instead. Name Mangling will handle the rest of the changes. 3753 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3754 // For the device mark the function as one that should be emitted. 3755 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3756 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3757 !DontDefer && !IsForDefinition) { 3758 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3759 GlobalDecl GDDef; 3760 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3761 GDDef = GlobalDecl(CD, GD.getCtorType()); 3762 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3763 GDDef = GlobalDecl(DD, GD.getDtorType()); 3764 else 3765 GDDef = GlobalDecl(FDDef); 3766 EmitGlobal(GDDef); 3767 } 3768 } 3769 3770 if (FD->isMultiVersion()) { 3771 UpdateMultiVersionNames(GD, FD, MangledName); 3772 if (!IsForDefinition) 3773 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3774 } 3775 } 3776 3777 // Lookup the entry, lazily creating it if necessary. 3778 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3779 if (Entry) { 3780 if (WeakRefReferences.erase(Entry)) { 3781 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3782 if (FD && !FD->hasAttr<WeakAttr>()) 3783 Entry->setLinkage(llvm::Function::ExternalLinkage); 3784 } 3785 3786 // Handle dropped DLL attributes. 3787 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3788 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3789 setDSOLocal(Entry); 3790 } 3791 3792 // If there are two attempts to define the same mangled name, issue an 3793 // error. 3794 if (IsForDefinition && !Entry->isDeclaration()) { 3795 GlobalDecl OtherGD; 3796 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3797 // to make sure that we issue an error only once. 3798 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3799 (GD.getCanonicalDecl().getDecl() != 3800 OtherGD.getCanonicalDecl().getDecl()) && 3801 DiagnosedConflictingDefinitions.insert(GD).second) { 3802 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3803 << MangledName; 3804 getDiags().Report(OtherGD.getDecl()->getLocation(), 3805 diag::note_previous_definition); 3806 } 3807 } 3808 3809 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3810 (Entry->getValueType() == Ty)) { 3811 return Entry; 3812 } 3813 3814 // Make sure the result is of the correct type. 3815 // (If function is requested for a definition, we always need to create a new 3816 // function, not just return a bitcast.) 3817 if (!IsForDefinition) 3818 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3819 } 3820 3821 // This function doesn't have a complete type (for example, the return 3822 // type is an incomplete struct). Use a fake type instead, and make 3823 // sure not to try to set attributes. 3824 bool IsIncompleteFunction = false; 3825 3826 llvm::FunctionType *FTy; 3827 if (isa<llvm::FunctionType>(Ty)) { 3828 FTy = cast<llvm::FunctionType>(Ty); 3829 } else { 3830 FTy = llvm::FunctionType::get(VoidTy, false); 3831 IsIncompleteFunction = true; 3832 } 3833 3834 llvm::Function *F = 3835 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3836 Entry ? StringRef() : MangledName, &getModule()); 3837 3838 // If we already created a function with the same mangled name (but different 3839 // type) before, take its name and add it to the list of functions to be 3840 // replaced with F at the end of CodeGen. 3841 // 3842 // This happens if there is a prototype for a function (e.g. "int f()") and 3843 // then a definition of a different type (e.g. "int f(int x)"). 3844 if (Entry) { 3845 F->takeName(Entry); 3846 3847 // This might be an implementation of a function without a prototype, in 3848 // which case, try to do special replacement of calls which match the new 3849 // prototype. The really key thing here is that we also potentially drop 3850 // arguments from the call site so as to make a direct call, which makes the 3851 // inliner happier and suppresses a number of optimizer warnings (!) about 3852 // dropping arguments. 3853 if (!Entry->use_empty()) { 3854 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3855 Entry->removeDeadConstantUsers(); 3856 } 3857 3858 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3859 F, Entry->getValueType()->getPointerTo()); 3860 addGlobalValReplacement(Entry, BC); 3861 } 3862 3863 assert(F->getName() == MangledName && "name was uniqued!"); 3864 if (D) 3865 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3866 if (ExtraAttrs.hasFnAttrs()) { 3867 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 3868 F->addFnAttrs(B); 3869 } 3870 3871 if (!DontDefer) { 3872 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3873 // each other bottoming out with the base dtor. Therefore we emit non-base 3874 // dtors on usage, even if there is no dtor definition in the TU. 3875 if (D && isa<CXXDestructorDecl>(D) && 3876 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3877 GD.getDtorType())) 3878 addDeferredDeclToEmit(GD); 3879 3880 // This is the first use or definition of a mangled name. If there is a 3881 // deferred decl with this name, remember that we need to emit it at the end 3882 // of the file. 3883 auto DDI = DeferredDecls.find(MangledName); 3884 if (DDI != DeferredDecls.end()) { 3885 // Move the potentially referenced deferred decl to the 3886 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3887 // don't need it anymore). 3888 addDeferredDeclToEmit(DDI->second); 3889 DeferredDecls.erase(DDI); 3890 3891 // Otherwise, there are cases we have to worry about where we're 3892 // using a declaration for which we must emit a definition but where 3893 // we might not find a top-level definition: 3894 // - member functions defined inline in their classes 3895 // - friend functions defined inline in some class 3896 // - special member functions with implicit definitions 3897 // If we ever change our AST traversal to walk into class methods, 3898 // this will be unnecessary. 3899 // 3900 // We also don't emit a definition for a function if it's going to be an 3901 // entry in a vtable, unless it's already marked as used. 3902 } else if (getLangOpts().CPlusPlus && D) { 3903 // Look for a declaration that's lexically in a record. 3904 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3905 FD = FD->getPreviousDecl()) { 3906 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3907 if (FD->doesThisDeclarationHaveABody()) { 3908 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3909 break; 3910 } 3911 } 3912 } 3913 } 3914 } 3915 3916 // Make sure the result is of the requested type. 3917 if (!IsIncompleteFunction) { 3918 assert(F->getFunctionType() == Ty); 3919 return F; 3920 } 3921 3922 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3923 return llvm::ConstantExpr::getBitCast(F, PTy); 3924 } 3925 3926 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3927 /// non-null, then this function will use the specified type if it has to 3928 /// create it (this occurs when we see a definition of the function). 3929 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3930 llvm::Type *Ty, 3931 bool ForVTable, 3932 bool DontDefer, 3933 ForDefinition_t IsForDefinition) { 3934 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3935 "consteval function should never be emitted"); 3936 // If there was no specific requested type, just convert it now. 3937 if (!Ty) { 3938 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3939 Ty = getTypes().ConvertType(FD->getType()); 3940 } 3941 3942 // Devirtualized destructor calls may come through here instead of via 3943 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3944 // of the complete destructor when necessary. 3945 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3946 if (getTarget().getCXXABI().isMicrosoft() && 3947 GD.getDtorType() == Dtor_Complete && 3948 DD->getParent()->getNumVBases() == 0) 3949 GD = GlobalDecl(DD, Dtor_Base); 3950 } 3951 3952 StringRef MangledName = getMangledName(GD); 3953 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3954 /*IsThunk=*/false, llvm::AttributeList(), 3955 IsForDefinition); 3956 // Returns kernel handle for HIP kernel stub function. 3957 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 3958 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 3959 auto *Handle = getCUDARuntime().getKernelHandle( 3960 cast<llvm::Function>(F->stripPointerCasts()), GD); 3961 if (IsForDefinition) 3962 return F; 3963 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 3964 } 3965 return F; 3966 } 3967 3968 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 3969 llvm::GlobalValue *F = 3970 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 3971 3972 return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F), 3973 llvm::Type::getInt8PtrTy(VMContext)); 3974 } 3975 3976 static const FunctionDecl * 3977 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3978 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3979 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3980 3981 IdentifierInfo &CII = C.Idents.get(Name); 3982 for (const auto *Result : DC->lookup(&CII)) 3983 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3984 return FD; 3985 3986 if (!C.getLangOpts().CPlusPlus) 3987 return nullptr; 3988 3989 // Demangle the premangled name from getTerminateFn() 3990 IdentifierInfo &CXXII = 3991 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3992 ? C.Idents.get("terminate") 3993 : C.Idents.get(Name); 3994 3995 for (const auto &N : {"__cxxabiv1", "std"}) { 3996 IdentifierInfo &NS = C.Idents.get(N); 3997 for (const auto *Result : DC->lookup(&NS)) { 3998 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3999 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4000 for (const auto *Result : LSD->lookup(&NS)) 4001 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4002 break; 4003 4004 if (ND) 4005 for (const auto *Result : ND->lookup(&CXXII)) 4006 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4007 return FD; 4008 } 4009 } 4010 4011 return nullptr; 4012 } 4013 4014 /// CreateRuntimeFunction - Create a new runtime function with the specified 4015 /// type and name. 4016 llvm::FunctionCallee 4017 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4018 llvm::AttributeList ExtraAttrs, bool Local, 4019 bool AssumeConvergent) { 4020 if (AssumeConvergent) { 4021 ExtraAttrs = 4022 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4023 } 4024 4025 llvm::Constant *C = 4026 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4027 /*DontDefer=*/false, /*IsThunk=*/false, 4028 ExtraAttrs); 4029 4030 if (auto *F = dyn_cast<llvm::Function>(C)) { 4031 if (F->empty()) { 4032 F->setCallingConv(getRuntimeCC()); 4033 4034 // In Windows Itanium environments, try to mark runtime functions 4035 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4036 // will link their standard library statically or dynamically. Marking 4037 // functions imported when they are not imported can cause linker errors 4038 // and warnings. 4039 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4040 !getCodeGenOpts().LTOVisibilityPublicStd) { 4041 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4042 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4043 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4044 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4045 } 4046 } 4047 setDSOLocal(F); 4048 } 4049 } 4050 4051 return {FTy, C}; 4052 } 4053 4054 /// isTypeConstant - Determine whether an object of this type can be emitted 4055 /// as a constant. 4056 /// 4057 /// If ExcludeCtor is true, the duration when the object's constructor runs 4058 /// will not be considered. The caller will need to verify that the object is 4059 /// not written to during its construction. 4060 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4061 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4062 return false; 4063 4064 if (Context.getLangOpts().CPlusPlus) { 4065 if (const CXXRecordDecl *Record 4066 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4067 return ExcludeCtor && !Record->hasMutableFields() && 4068 Record->hasTrivialDestructor(); 4069 } 4070 4071 return true; 4072 } 4073 4074 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4075 /// create and return an llvm GlobalVariable with the specified type and address 4076 /// space. If there is something in the module with the specified name, return 4077 /// it potentially bitcasted to the right type. 4078 /// 4079 /// If D is non-null, it specifies a decl that correspond to this. This is used 4080 /// to set the attributes on the global when it is first created. 4081 /// 4082 /// If IsForDefinition is true, it is guaranteed that an actual global with 4083 /// type Ty will be returned, not conversion of a variable with the same 4084 /// mangled name but some other type. 4085 llvm::Constant * 4086 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4087 LangAS AddrSpace, const VarDecl *D, 4088 ForDefinition_t IsForDefinition) { 4089 // Lookup the entry, lazily creating it if necessary. 4090 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4091 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4092 if (Entry) { 4093 if (WeakRefReferences.erase(Entry)) { 4094 if (D && !D->hasAttr<WeakAttr>()) 4095 Entry->setLinkage(llvm::Function::ExternalLinkage); 4096 } 4097 4098 // Handle dropped DLL attributes. 4099 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 4100 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4101 4102 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4103 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4104 4105 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4106 return Entry; 4107 4108 // If there are two attempts to define the same mangled name, issue an 4109 // error. 4110 if (IsForDefinition && !Entry->isDeclaration()) { 4111 GlobalDecl OtherGD; 4112 const VarDecl *OtherD; 4113 4114 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4115 // to make sure that we issue an error only once. 4116 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4117 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4118 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4119 OtherD->hasInit() && 4120 DiagnosedConflictingDefinitions.insert(D).second) { 4121 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4122 << MangledName; 4123 getDiags().Report(OtherGD.getDecl()->getLocation(), 4124 diag::note_previous_definition); 4125 } 4126 } 4127 4128 // Make sure the result is of the correct type. 4129 if (Entry->getType()->getAddressSpace() != TargetAS) { 4130 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4131 Ty->getPointerTo(TargetAS)); 4132 } 4133 4134 // (If global is requested for a definition, we always need to create a new 4135 // global, not just return a bitcast.) 4136 if (!IsForDefinition) 4137 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4138 } 4139 4140 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4141 4142 auto *GV = new llvm::GlobalVariable( 4143 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4144 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4145 getContext().getTargetAddressSpace(DAddrSpace)); 4146 4147 // If we already created a global with the same mangled name (but different 4148 // type) before, take its name and remove it from its parent. 4149 if (Entry) { 4150 GV->takeName(Entry); 4151 4152 if (!Entry->use_empty()) { 4153 llvm::Constant *NewPtrForOldDecl = 4154 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4155 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4156 } 4157 4158 Entry->eraseFromParent(); 4159 } 4160 4161 // This is the first use or definition of a mangled name. If there is a 4162 // deferred decl with this name, remember that we need to emit it at the end 4163 // of the file. 4164 auto DDI = DeferredDecls.find(MangledName); 4165 if (DDI != DeferredDecls.end()) { 4166 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4167 // list, and remove it from DeferredDecls (since we don't need it anymore). 4168 addDeferredDeclToEmit(DDI->second); 4169 DeferredDecls.erase(DDI); 4170 } 4171 4172 // Handle things which are present even on external declarations. 4173 if (D) { 4174 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4175 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4176 4177 // FIXME: This code is overly simple and should be merged with other global 4178 // handling. 4179 GV->setConstant(isTypeConstant(D->getType(), false)); 4180 4181 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4182 4183 setLinkageForGV(GV, D); 4184 4185 if (D->getTLSKind()) { 4186 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4187 CXXThreadLocals.push_back(D); 4188 setTLSMode(GV, *D); 4189 } 4190 4191 setGVProperties(GV, D); 4192 4193 // If required by the ABI, treat declarations of static data members with 4194 // inline initializers as definitions. 4195 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4196 EmitGlobalVarDefinition(D); 4197 } 4198 4199 // Emit section information for extern variables. 4200 if (D->hasExternalStorage()) { 4201 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4202 GV->setSection(SA->getName()); 4203 } 4204 4205 // Handle XCore specific ABI requirements. 4206 if (getTriple().getArch() == llvm::Triple::xcore && 4207 D->getLanguageLinkage() == CLanguageLinkage && 4208 D->getType().isConstant(Context) && 4209 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4210 GV->setSection(".cp.rodata"); 4211 4212 // Check if we a have a const declaration with an initializer, we may be 4213 // able to emit it as available_externally to expose it's value to the 4214 // optimizer. 4215 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4216 D->getType().isConstQualified() && !GV->hasInitializer() && 4217 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4218 const auto *Record = 4219 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4220 bool HasMutableFields = Record && Record->hasMutableFields(); 4221 if (!HasMutableFields) { 4222 const VarDecl *InitDecl; 4223 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4224 if (InitExpr) { 4225 ConstantEmitter emitter(*this); 4226 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4227 if (Init) { 4228 auto *InitType = Init->getType(); 4229 if (GV->getValueType() != InitType) { 4230 // The type of the initializer does not match the definition. 4231 // This happens when an initializer has a different type from 4232 // the type of the global (because of padding at the end of a 4233 // structure for instance). 4234 GV->setName(StringRef()); 4235 // Make a new global with the correct type, this is now guaranteed 4236 // to work. 4237 auto *NewGV = cast<llvm::GlobalVariable>( 4238 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4239 ->stripPointerCasts()); 4240 4241 // Erase the old global, since it is no longer used. 4242 GV->eraseFromParent(); 4243 GV = NewGV; 4244 } else { 4245 GV->setInitializer(Init); 4246 GV->setConstant(true); 4247 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4248 } 4249 emitter.finalize(GV); 4250 } 4251 } 4252 } 4253 } 4254 } 4255 4256 if (GV->isDeclaration()) { 4257 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4258 // External HIP managed variables needed to be recorded for transformation 4259 // in both device and host compilations. 4260 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4261 D->hasExternalStorage()) 4262 getCUDARuntime().handleVarRegistration(D, *GV); 4263 } 4264 4265 LangAS ExpectedAS = 4266 D ? D->getType().getAddressSpace() 4267 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4268 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4269 if (DAddrSpace != ExpectedAS) { 4270 return getTargetCodeGenInfo().performAddrSpaceCast( 4271 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4272 } 4273 4274 return GV; 4275 } 4276 4277 llvm::Constant * 4278 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4279 const Decl *D = GD.getDecl(); 4280 4281 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4282 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4283 /*DontDefer=*/false, IsForDefinition); 4284 4285 if (isa<CXXMethodDecl>(D)) { 4286 auto FInfo = 4287 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4288 auto Ty = getTypes().GetFunctionType(*FInfo); 4289 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4290 IsForDefinition); 4291 } 4292 4293 if (isa<FunctionDecl>(D)) { 4294 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4295 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4296 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4297 IsForDefinition); 4298 } 4299 4300 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4301 } 4302 4303 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4304 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4305 unsigned Alignment) { 4306 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4307 llvm::GlobalVariable *OldGV = nullptr; 4308 4309 if (GV) { 4310 // Check if the variable has the right type. 4311 if (GV->getValueType() == Ty) 4312 return GV; 4313 4314 // Because C++ name mangling, the only way we can end up with an already 4315 // existing global with the same name is if it has been declared extern "C". 4316 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4317 OldGV = GV; 4318 } 4319 4320 // Create a new variable. 4321 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4322 Linkage, nullptr, Name); 4323 4324 if (OldGV) { 4325 // Replace occurrences of the old variable if needed. 4326 GV->takeName(OldGV); 4327 4328 if (!OldGV->use_empty()) { 4329 llvm::Constant *NewPtrForOldDecl = 4330 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4331 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4332 } 4333 4334 OldGV->eraseFromParent(); 4335 } 4336 4337 if (supportsCOMDAT() && GV->isWeakForLinker() && 4338 !GV->hasAvailableExternallyLinkage()) 4339 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4340 4341 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4342 4343 return GV; 4344 } 4345 4346 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4347 /// given global variable. If Ty is non-null and if the global doesn't exist, 4348 /// then it will be created with the specified type instead of whatever the 4349 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4350 /// that an actual global with type Ty will be returned, not conversion of a 4351 /// variable with the same mangled name but some other type. 4352 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4353 llvm::Type *Ty, 4354 ForDefinition_t IsForDefinition) { 4355 assert(D->hasGlobalStorage() && "Not a global variable"); 4356 QualType ASTTy = D->getType(); 4357 if (!Ty) 4358 Ty = getTypes().ConvertTypeForMem(ASTTy); 4359 4360 StringRef MangledName = getMangledName(D); 4361 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4362 IsForDefinition); 4363 } 4364 4365 /// CreateRuntimeVariable - Create a new runtime global variable with the 4366 /// specified type and name. 4367 llvm::Constant * 4368 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4369 StringRef Name) { 4370 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4371 : LangAS::Default; 4372 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4373 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4374 return Ret; 4375 } 4376 4377 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4378 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4379 4380 StringRef MangledName = getMangledName(D); 4381 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4382 4383 // We already have a definition, not declaration, with the same mangled name. 4384 // Emitting of declaration is not required (and actually overwrites emitted 4385 // definition). 4386 if (GV && !GV->isDeclaration()) 4387 return; 4388 4389 // If we have not seen a reference to this variable yet, place it into the 4390 // deferred declarations table to be emitted if needed later. 4391 if (!MustBeEmitted(D) && !GV) { 4392 DeferredDecls[MangledName] = D; 4393 return; 4394 } 4395 4396 // The tentative definition is the only definition. 4397 EmitGlobalVarDefinition(D); 4398 } 4399 4400 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4401 EmitExternalVarDeclaration(D); 4402 } 4403 4404 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4405 return Context.toCharUnitsFromBits( 4406 getDataLayout().getTypeStoreSizeInBits(Ty)); 4407 } 4408 4409 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4410 if (LangOpts.OpenCL) { 4411 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4412 assert(AS == LangAS::opencl_global || 4413 AS == LangAS::opencl_global_device || 4414 AS == LangAS::opencl_global_host || 4415 AS == LangAS::opencl_constant || 4416 AS == LangAS::opencl_local || 4417 AS >= LangAS::FirstTargetAddressSpace); 4418 return AS; 4419 } 4420 4421 if (LangOpts.SYCLIsDevice && 4422 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4423 return LangAS::sycl_global; 4424 4425 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4426 if (D && D->hasAttr<CUDAConstantAttr>()) 4427 return LangAS::cuda_constant; 4428 else if (D && D->hasAttr<CUDASharedAttr>()) 4429 return LangAS::cuda_shared; 4430 else if (D && D->hasAttr<CUDADeviceAttr>()) 4431 return LangAS::cuda_device; 4432 else if (D && D->getType().isConstQualified()) 4433 return LangAS::cuda_constant; 4434 else 4435 return LangAS::cuda_device; 4436 } 4437 4438 if (LangOpts.OpenMP) { 4439 LangAS AS; 4440 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4441 return AS; 4442 } 4443 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4444 } 4445 4446 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4447 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4448 if (LangOpts.OpenCL) 4449 return LangAS::opencl_constant; 4450 if (LangOpts.SYCLIsDevice) 4451 return LangAS::sycl_global; 4452 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4453 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4454 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4455 // with OpVariable instructions with Generic storage class which is not 4456 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4457 // UniformConstant storage class is not viable as pointers to it may not be 4458 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4459 return LangAS::cuda_device; 4460 if (auto AS = getTarget().getConstantAddressSpace()) 4461 return AS.getValue(); 4462 return LangAS::Default; 4463 } 4464 4465 // In address space agnostic languages, string literals are in default address 4466 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4467 // emitted in constant address space in LLVM IR. To be consistent with other 4468 // parts of AST, string literal global variables in constant address space 4469 // need to be casted to default address space before being put into address 4470 // map and referenced by other part of CodeGen. 4471 // In OpenCL, string literals are in constant address space in AST, therefore 4472 // they should not be casted to default address space. 4473 static llvm::Constant * 4474 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4475 llvm::GlobalVariable *GV) { 4476 llvm::Constant *Cast = GV; 4477 if (!CGM.getLangOpts().OpenCL) { 4478 auto AS = CGM.GetGlobalConstantAddressSpace(); 4479 if (AS != LangAS::Default) 4480 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4481 CGM, GV, AS, LangAS::Default, 4482 GV->getValueType()->getPointerTo( 4483 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4484 } 4485 return Cast; 4486 } 4487 4488 template<typename SomeDecl> 4489 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4490 llvm::GlobalValue *GV) { 4491 if (!getLangOpts().CPlusPlus) 4492 return; 4493 4494 // Must have 'used' attribute, or else inline assembly can't rely on 4495 // the name existing. 4496 if (!D->template hasAttr<UsedAttr>()) 4497 return; 4498 4499 // Must have internal linkage and an ordinary name. 4500 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4501 return; 4502 4503 // Must be in an extern "C" context. Entities declared directly within 4504 // a record are not extern "C" even if the record is in such a context. 4505 const SomeDecl *First = D->getFirstDecl(); 4506 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4507 return; 4508 4509 // OK, this is an internal linkage entity inside an extern "C" linkage 4510 // specification. Make a note of that so we can give it the "expected" 4511 // mangled name if nothing else is using that name. 4512 std::pair<StaticExternCMap::iterator, bool> R = 4513 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4514 4515 // If we have multiple internal linkage entities with the same name 4516 // in extern "C" regions, none of them gets that name. 4517 if (!R.second) 4518 R.first->second = nullptr; 4519 } 4520 4521 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4522 if (!CGM.supportsCOMDAT()) 4523 return false; 4524 4525 if (D.hasAttr<SelectAnyAttr>()) 4526 return true; 4527 4528 GVALinkage Linkage; 4529 if (auto *VD = dyn_cast<VarDecl>(&D)) 4530 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4531 else 4532 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4533 4534 switch (Linkage) { 4535 case GVA_Internal: 4536 case GVA_AvailableExternally: 4537 case GVA_StrongExternal: 4538 return false; 4539 case GVA_DiscardableODR: 4540 case GVA_StrongODR: 4541 return true; 4542 } 4543 llvm_unreachable("No such linkage"); 4544 } 4545 4546 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4547 llvm::GlobalObject &GO) { 4548 if (!shouldBeInCOMDAT(*this, D)) 4549 return; 4550 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4551 } 4552 4553 /// Pass IsTentative as true if you want to create a tentative definition. 4554 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4555 bool IsTentative) { 4556 // OpenCL global variables of sampler type are translated to function calls, 4557 // therefore no need to be translated. 4558 QualType ASTTy = D->getType(); 4559 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4560 return; 4561 4562 // If this is OpenMP device, check if it is legal to emit this global 4563 // normally. 4564 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4565 OpenMPRuntime->emitTargetGlobalVariable(D)) 4566 return; 4567 4568 llvm::TrackingVH<llvm::Constant> Init; 4569 bool NeedsGlobalCtor = false; 4570 bool NeedsGlobalDtor = 4571 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4572 4573 const VarDecl *InitDecl; 4574 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4575 4576 Optional<ConstantEmitter> emitter; 4577 4578 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4579 // as part of their declaration." Sema has already checked for 4580 // error cases, so we just need to set Init to UndefValue. 4581 bool IsCUDASharedVar = 4582 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4583 // Shadows of initialized device-side global variables are also left 4584 // undefined. 4585 // Managed Variables should be initialized on both host side and device side. 4586 bool IsCUDAShadowVar = 4587 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4588 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4589 D->hasAttr<CUDASharedAttr>()); 4590 bool IsCUDADeviceShadowVar = 4591 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4592 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4593 D->getType()->isCUDADeviceBuiltinTextureType()); 4594 if (getLangOpts().CUDA && 4595 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4596 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4597 else if (D->hasAttr<LoaderUninitializedAttr>()) 4598 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4599 else if (!InitExpr) { 4600 // This is a tentative definition; tentative definitions are 4601 // implicitly initialized with { 0 }. 4602 // 4603 // Note that tentative definitions are only emitted at the end of 4604 // a translation unit, so they should never have incomplete 4605 // type. In addition, EmitTentativeDefinition makes sure that we 4606 // never attempt to emit a tentative definition if a real one 4607 // exists. A use may still exists, however, so we still may need 4608 // to do a RAUW. 4609 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4610 Init = EmitNullConstant(D->getType()); 4611 } else { 4612 initializedGlobalDecl = GlobalDecl(D); 4613 emitter.emplace(*this); 4614 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4615 if (!Initializer) { 4616 QualType T = InitExpr->getType(); 4617 if (D->getType()->isReferenceType()) 4618 T = D->getType(); 4619 4620 if (getLangOpts().CPlusPlus) { 4621 Init = EmitNullConstant(T); 4622 NeedsGlobalCtor = true; 4623 } else { 4624 ErrorUnsupported(D, "static initializer"); 4625 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4626 } 4627 } else { 4628 Init = Initializer; 4629 // We don't need an initializer, so remove the entry for the delayed 4630 // initializer position (just in case this entry was delayed) if we 4631 // also don't need to register a destructor. 4632 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4633 DelayedCXXInitPosition.erase(D); 4634 } 4635 } 4636 4637 llvm::Type* InitType = Init->getType(); 4638 llvm::Constant *Entry = 4639 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4640 4641 // Strip off pointer casts if we got them. 4642 Entry = Entry->stripPointerCasts(); 4643 4644 // Entry is now either a Function or GlobalVariable. 4645 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4646 4647 // We have a definition after a declaration with the wrong type. 4648 // We must make a new GlobalVariable* and update everything that used OldGV 4649 // (a declaration or tentative definition) with the new GlobalVariable* 4650 // (which will be a definition). 4651 // 4652 // This happens if there is a prototype for a global (e.g. 4653 // "extern int x[];") and then a definition of a different type (e.g. 4654 // "int x[10];"). This also happens when an initializer has a different type 4655 // from the type of the global (this happens with unions). 4656 if (!GV || GV->getValueType() != InitType || 4657 GV->getType()->getAddressSpace() != 4658 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4659 4660 // Move the old entry aside so that we'll create a new one. 4661 Entry->setName(StringRef()); 4662 4663 // Make a new global with the correct type, this is now guaranteed to work. 4664 GV = cast<llvm::GlobalVariable>( 4665 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4666 ->stripPointerCasts()); 4667 4668 // Replace all uses of the old global with the new global 4669 llvm::Constant *NewPtrForOldDecl = 4670 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4671 Entry->getType()); 4672 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4673 4674 // Erase the old global, since it is no longer used. 4675 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4676 } 4677 4678 MaybeHandleStaticInExternC(D, GV); 4679 4680 if (D->hasAttr<AnnotateAttr>()) 4681 AddGlobalAnnotations(D, GV); 4682 4683 // Set the llvm linkage type as appropriate. 4684 llvm::GlobalValue::LinkageTypes Linkage = 4685 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4686 4687 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4688 // the device. [...]" 4689 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4690 // __device__, declares a variable that: [...] 4691 // Is accessible from all the threads within the grid and from the host 4692 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4693 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4694 if (GV && LangOpts.CUDA) { 4695 if (LangOpts.CUDAIsDevice) { 4696 if (Linkage != llvm::GlobalValue::InternalLinkage && 4697 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4698 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4699 D->getType()->isCUDADeviceBuiltinTextureType())) 4700 GV->setExternallyInitialized(true); 4701 } else { 4702 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4703 } 4704 getCUDARuntime().handleVarRegistration(D, *GV); 4705 } 4706 4707 GV->setInitializer(Init); 4708 if (emitter) 4709 emitter->finalize(GV); 4710 4711 // If it is safe to mark the global 'constant', do so now. 4712 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4713 isTypeConstant(D->getType(), true)); 4714 4715 // If it is in a read-only section, mark it 'constant'. 4716 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4717 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4718 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4719 GV->setConstant(true); 4720 } 4721 4722 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4723 4724 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4725 // function is only defined alongside the variable, not also alongside 4726 // callers. Normally, all accesses to a thread_local go through the 4727 // thread-wrapper in order to ensure initialization has occurred, underlying 4728 // variable will never be used other than the thread-wrapper, so it can be 4729 // converted to internal linkage. 4730 // 4731 // However, if the variable has the 'constinit' attribute, it _can_ be 4732 // referenced directly, without calling the thread-wrapper, so the linkage 4733 // must not be changed. 4734 // 4735 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4736 // weak or linkonce, the de-duplication semantics are important to preserve, 4737 // so we don't change the linkage. 4738 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4739 Linkage == llvm::GlobalValue::ExternalLinkage && 4740 Context.getTargetInfo().getTriple().isOSDarwin() && 4741 !D->hasAttr<ConstInitAttr>()) 4742 Linkage = llvm::GlobalValue::InternalLinkage; 4743 4744 GV->setLinkage(Linkage); 4745 if (D->hasAttr<DLLImportAttr>()) 4746 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4747 else if (D->hasAttr<DLLExportAttr>()) 4748 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4749 else 4750 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4751 4752 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4753 // common vars aren't constant even if declared const. 4754 GV->setConstant(false); 4755 // Tentative definition of global variables may be initialized with 4756 // non-zero null pointers. In this case they should have weak linkage 4757 // since common linkage must have zero initializer and must not have 4758 // explicit section therefore cannot have non-zero initial value. 4759 if (!GV->getInitializer()->isNullValue()) 4760 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4761 } 4762 4763 setNonAliasAttributes(D, GV); 4764 4765 if (D->getTLSKind() && !GV->isThreadLocal()) { 4766 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4767 CXXThreadLocals.push_back(D); 4768 setTLSMode(GV, *D); 4769 } 4770 4771 maybeSetTrivialComdat(*D, *GV); 4772 4773 // Emit the initializer function if necessary. 4774 if (NeedsGlobalCtor || NeedsGlobalDtor) 4775 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4776 4777 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4778 4779 // Emit global variable debug information. 4780 if (CGDebugInfo *DI = getModuleDebugInfo()) 4781 if (getCodeGenOpts().hasReducedDebugInfo()) 4782 DI->EmitGlobalVariable(GV, D); 4783 } 4784 4785 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4786 if (CGDebugInfo *DI = getModuleDebugInfo()) 4787 if (getCodeGenOpts().hasReducedDebugInfo()) { 4788 QualType ASTTy = D->getType(); 4789 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4790 llvm::Constant *GV = 4791 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 4792 DI->EmitExternalVariable( 4793 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4794 } 4795 } 4796 4797 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4798 CodeGenModule &CGM, const VarDecl *D, 4799 bool NoCommon) { 4800 // Don't give variables common linkage if -fno-common was specified unless it 4801 // was overridden by a NoCommon attribute. 4802 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4803 return true; 4804 4805 // C11 6.9.2/2: 4806 // A declaration of an identifier for an object that has file scope without 4807 // an initializer, and without a storage-class specifier or with the 4808 // storage-class specifier static, constitutes a tentative definition. 4809 if (D->getInit() || D->hasExternalStorage()) 4810 return true; 4811 4812 // A variable cannot be both common and exist in a section. 4813 if (D->hasAttr<SectionAttr>()) 4814 return true; 4815 4816 // A variable cannot be both common and exist in a section. 4817 // We don't try to determine which is the right section in the front-end. 4818 // If no specialized section name is applicable, it will resort to default. 4819 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4820 D->hasAttr<PragmaClangDataSectionAttr>() || 4821 D->hasAttr<PragmaClangRelroSectionAttr>() || 4822 D->hasAttr<PragmaClangRodataSectionAttr>()) 4823 return true; 4824 4825 // Thread local vars aren't considered common linkage. 4826 if (D->getTLSKind()) 4827 return true; 4828 4829 // Tentative definitions marked with WeakImportAttr are true definitions. 4830 if (D->hasAttr<WeakImportAttr>()) 4831 return true; 4832 4833 // A variable cannot be both common and exist in a comdat. 4834 if (shouldBeInCOMDAT(CGM, *D)) 4835 return true; 4836 4837 // Declarations with a required alignment do not have common linkage in MSVC 4838 // mode. 4839 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4840 if (D->hasAttr<AlignedAttr>()) 4841 return true; 4842 QualType VarType = D->getType(); 4843 if (Context.isAlignmentRequired(VarType)) 4844 return true; 4845 4846 if (const auto *RT = VarType->getAs<RecordType>()) { 4847 const RecordDecl *RD = RT->getDecl(); 4848 for (const FieldDecl *FD : RD->fields()) { 4849 if (FD->isBitField()) 4850 continue; 4851 if (FD->hasAttr<AlignedAttr>()) 4852 return true; 4853 if (Context.isAlignmentRequired(FD->getType())) 4854 return true; 4855 } 4856 } 4857 } 4858 4859 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4860 // common symbols, so symbols with greater alignment requirements cannot be 4861 // common. 4862 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4863 // alignments for common symbols via the aligncomm directive, so this 4864 // restriction only applies to MSVC environments. 4865 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4866 Context.getTypeAlignIfKnown(D->getType()) > 4867 Context.toBits(CharUnits::fromQuantity(32))) 4868 return true; 4869 4870 return false; 4871 } 4872 4873 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4874 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4875 if (Linkage == GVA_Internal) 4876 return llvm::Function::InternalLinkage; 4877 4878 if (D->hasAttr<WeakAttr>()) { 4879 if (IsConstantVariable) 4880 return llvm::GlobalVariable::WeakODRLinkage; 4881 else 4882 return llvm::GlobalVariable::WeakAnyLinkage; 4883 } 4884 4885 if (const auto *FD = D->getAsFunction()) 4886 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4887 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4888 4889 // We are guaranteed to have a strong definition somewhere else, 4890 // so we can use available_externally linkage. 4891 if (Linkage == GVA_AvailableExternally) 4892 return llvm::GlobalValue::AvailableExternallyLinkage; 4893 4894 // Note that Apple's kernel linker doesn't support symbol 4895 // coalescing, so we need to avoid linkonce and weak linkages there. 4896 // Normally, this means we just map to internal, but for explicit 4897 // instantiations we'll map to external. 4898 4899 // In C++, the compiler has to emit a definition in every translation unit 4900 // that references the function. We should use linkonce_odr because 4901 // a) if all references in this translation unit are optimized away, we 4902 // don't need to codegen it. b) if the function persists, it needs to be 4903 // merged with other definitions. c) C++ has the ODR, so we know the 4904 // definition is dependable. 4905 if (Linkage == GVA_DiscardableODR) 4906 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4907 : llvm::Function::InternalLinkage; 4908 4909 // An explicit instantiation of a template has weak linkage, since 4910 // explicit instantiations can occur in multiple translation units 4911 // and must all be equivalent. However, we are not allowed to 4912 // throw away these explicit instantiations. 4913 // 4914 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4915 // so say that CUDA templates are either external (for kernels) or internal. 4916 // This lets llvm perform aggressive inter-procedural optimizations. For 4917 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4918 // therefore we need to follow the normal linkage paradigm. 4919 if (Linkage == GVA_StrongODR) { 4920 if (getLangOpts().AppleKext) 4921 return llvm::Function::ExternalLinkage; 4922 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4923 !getLangOpts().GPURelocatableDeviceCode) 4924 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4925 : llvm::Function::InternalLinkage; 4926 return llvm::Function::WeakODRLinkage; 4927 } 4928 4929 // C++ doesn't have tentative definitions and thus cannot have common 4930 // linkage. 4931 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4932 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4933 CodeGenOpts.NoCommon)) 4934 return llvm::GlobalVariable::CommonLinkage; 4935 4936 // selectany symbols are externally visible, so use weak instead of 4937 // linkonce. MSVC optimizes away references to const selectany globals, so 4938 // all definitions should be the same and ODR linkage should be used. 4939 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4940 if (D->hasAttr<SelectAnyAttr>()) 4941 return llvm::GlobalVariable::WeakODRLinkage; 4942 4943 // Otherwise, we have strong external linkage. 4944 assert(Linkage == GVA_StrongExternal); 4945 return llvm::GlobalVariable::ExternalLinkage; 4946 } 4947 4948 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4949 const VarDecl *VD, bool IsConstant) { 4950 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4951 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4952 } 4953 4954 /// Replace the uses of a function that was declared with a non-proto type. 4955 /// We want to silently drop extra arguments from call sites 4956 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4957 llvm::Function *newFn) { 4958 // Fast path. 4959 if (old->use_empty()) return; 4960 4961 llvm::Type *newRetTy = newFn->getReturnType(); 4962 SmallVector<llvm::Value*, 4> newArgs; 4963 4964 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4965 ui != ue; ) { 4966 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4967 llvm::User *user = use->getUser(); 4968 4969 // Recognize and replace uses of bitcasts. Most calls to 4970 // unprototyped functions will use bitcasts. 4971 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4972 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4973 replaceUsesOfNonProtoConstant(bitcast, newFn); 4974 continue; 4975 } 4976 4977 // Recognize calls to the function. 4978 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4979 if (!callSite) continue; 4980 if (!callSite->isCallee(&*use)) 4981 continue; 4982 4983 // If the return types don't match exactly, then we can't 4984 // transform this call unless it's dead. 4985 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4986 continue; 4987 4988 // Get the call site's attribute list. 4989 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4990 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4991 4992 // If the function was passed too few arguments, don't transform. 4993 unsigned newNumArgs = newFn->arg_size(); 4994 if (callSite->arg_size() < newNumArgs) 4995 continue; 4996 4997 // If extra arguments were passed, we silently drop them. 4998 // If any of the types mismatch, we don't transform. 4999 unsigned argNo = 0; 5000 bool dontTransform = false; 5001 for (llvm::Argument &A : newFn->args()) { 5002 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5003 dontTransform = true; 5004 break; 5005 } 5006 5007 // Add any parameter attributes. 5008 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5009 argNo++; 5010 } 5011 if (dontTransform) 5012 continue; 5013 5014 // Okay, we can transform this. Create the new call instruction and copy 5015 // over the required information. 5016 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5017 5018 // Copy over any operand bundles. 5019 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5020 callSite->getOperandBundlesAsDefs(newBundles); 5021 5022 llvm::CallBase *newCall; 5023 if (isa<llvm::CallInst>(callSite)) { 5024 newCall = 5025 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5026 } else { 5027 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5028 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5029 oldInvoke->getUnwindDest(), newArgs, 5030 newBundles, "", callSite); 5031 } 5032 newArgs.clear(); // for the next iteration 5033 5034 if (!newCall->getType()->isVoidTy()) 5035 newCall->takeName(callSite); 5036 newCall->setAttributes( 5037 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5038 oldAttrs.getRetAttrs(), newArgAttrs)); 5039 newCall->setCallingConv(callSite->getCallingConv()); 5040 5041 // Finally, remove the old call, replacing any uses with the new one. 5042 if (!callSite->use_empty()) 5043 callSite->replaceAllUsesWith(newCall); 5044 5045 // Copy debug location attached to CI. 5046 if (callSite->getDebugLoc()) 5047 newCall->setDebugLoc(callSite->getDebugLoc()); 5048 5049 callSite->eraseFromParent(); 5050 } 5051 } 5052 5053 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5054 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5055 /// existing call uses of the old function in the module, this adjusts them to 5056 /// call the new function directly. 5057 /// 5058 /// This is not just a cleanup: the always_inline pass requires direct calls to 5059 /// functions to be able to inline them. If there is a bitcast in the way, it 5060 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5061 /// run at -O0. 5062 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5063 llvm::Function *NewFn) { 5064 // If we're redefining a global as a function, don't transform it. 5065 if (!isa<llvm::Function>(Old)) return; 5066 5067 replaceUsesOfNonProtoConstant(Old, NewFn); 5068 } 5069 5070 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5071 auto DK = VD->isThisDeclarationADefinition(); 5072 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5073 return; 5074 5075 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5076 // If we have a definition, this might be a deferred decl. If the 5077 // instantiation is explicit, make sure we emit it at the end. 5078 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5079 GetAddrOfGlobalVar(VD); 5080 5081 EmitTopLevelDecl(VD); 5082 } 5083 5084 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5085 llvm::GlobalValue *GV) { 5086 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5087 5088 // Compute the function info and LLVM type. 5089 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5090 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5091 5092 // Get or create the prototype for the function. 5093 if (!GV || (GV->getValueType() != Ty)) 5094 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5095 /*DontDefer=*/true, 5096 ForDefinition)); 5097 5098 // Already emitted. 5099 if (!GV->isDeclaration()) 5100 return; 5101 5102 // We need to set linkage and visibility on the function before 5103 // generating code for it because various parts of IR generation 5104 // want to propagate this information down (e.g. to local static 5105 // declarations). 5106 auto *Fn = cast<llvm::Function>(GV); 5107 setFunctionLinkage(GD, Fn); 5108 5109 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5110 setGVProperties(Fn, GD); 5111 5112 MaybeHandleStaticInExternC(D, Fn); 5113 5114 maybeSetTrivialComdat(*D, *Fn); 5115 5116 // Set CodeGen attributes that represent floating point environment. 5117 setLLVMFunctionFEnvAttributes(D, Fn); 5118 5119 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5120 5121 setNonAliasAttributes(GD, Fn); 5122 SetLLVMFunctionAttributesForDefinition(D, Fn); 5123 5124 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5125 AddGlobalCtor(Fn, CA->getPriority()); 5126 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5127 AddGlobalDtor(Fn, DA->getPriority(), true); 5128 if (D->hasAttr<AnnotateAttr>()) 5129 AddGlobalAnnotations(D, Fn); 5130 } 5131 5132 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5133 const auto *D = cast<ValueDecl>(GD.getDecl()); 5134 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5135 assert(AA && "Not an alias?"); 5136 5137 StringRef MangledName = getMangledName(GD); 5138 5139 if (AA->getAliasee() == MangledName) { 5140 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5141 return; 5142 } 5143 5144 // If there is a definition in the module, then it wins over the alias. 5145 // This is dubious, but allow it to be safe. Just ignore the alias. 5146 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5147 if (Entry && !Entry->isDeclaration()) 5148 return; 5149 5150 Aliases.push_back(GD); 5151 5152 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5153 5154 // Create a reference to the named value. This ensures that it is emitted 5155 // if a deferred decl. 5156 llvm::Constant *Aliasee; 5157 llvm::GlobalValue::LinkageTypes LT; 5158 if (isa<llvm::FunctionType>(DeclTy)) { 5159 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5160 /*ForVTable=*/false); 5161 LT = getFunctionLinkage(GD); 5162 } else { 5163 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5164 /*D=*/nullptr); 5165 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5166 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5167 else 5168 LT = getFunctionLinkage(GD); 5169 } 5170 5171 // Create the new alias itself, but don't set a name yet. 5172 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5173 auto *GA = 5174 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5175 5176 if (Entry) { 5177 if (GA->getAliasee() == Entry) { 5178 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5179 return; 5180 } 5181 5182 assert(Entry->isDeclaration()); 5183 5184 // If there is a declaration in the module, then we had an extern followed 5185 // by the alias, as in: 5186 // extern int test6(); 5187 // ... 5188 // int test6() __attribute__((alias("test7"))); 5189 // 5190 // Remove it and replace uses of it with the alias. 5191 GA->takeName(Entry); 5192 5193 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5194 Entry->getType())); 5195 Entry->eraseFromParent(); 5196 } else { 5197 GA->setName(MangledName); 5198 } 5199 5200 // Set attributes which are particular to an alias; this is a 5201 // specialization of the attributes which may be set on a global 5202 // variable/function. 5203 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5204 D->isWeakImported()) { 5205 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5206 } 5207 5208 if (const auto *VD = dyn_cast<VarDecl>(D)) 5209 if (VD->getTLSKind()) 5210 setTLSMode(GA, *VD); 5211 5212 SetCommonAttributes(GD, GA); 5213 } 5214 5215 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5216 const auto *D = cast<ValueDecl>(GD.getDecl()); 5217 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5218 assert(IFA && "Not an ifunc?"); 5219 5220 StringRef MangledName = getMangledName(GD); 5221 5222 if (IFA->getResolver() == MangledName) { 5223 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5224 return; 5225 } 5226 5227 // Report an error if some definition overrides ifunc. 5228 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5229 if (Entry && !Entry->isDeclaration()) { 5230 GlobalDecl OtherGD; 5231 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5232 DiagnosedConflictingDefinitions.insert(GD).second) { 5233 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5234 << MangledName; 5235 Diags.Report(OtherGD.getDecl()->getLocation(), 5236 diag::note_previous_definition); 5237 } 5238 return; 5239 } 5240 5241 Aliases.push_back(GD); 5242 5243 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5244 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5245 llvm::Constant *Resolver = 5246 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5247 /*ForVTable=*/false); 5248 llvm::GlobalIFunc *GIF = 5249 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5250 "", Resolver, &getModule()); 5251 if (Entry) { 5252 if (GIF->getResolver() == Entry) { 5253 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5254 return; 5255 } 5256 assert(Entry->isDeclaration()); 5257 5258 // If there is a declaration in the module, then we had an extern followed 5259 // by the ifunc, as in: 5260 // extern int test(); 5261 // ... 5262 // int test() __attribute__((ifunc("resolver"))); 5263 // 5264 // Remove it and replace uses of it with the ifunc. 5265 GIF->takeName(Entry); 5266 5267 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5268 Entry->getType())); 5269 Entry->eraseFromParent(); 5270 } else 5271 GIF->setName(MangledName); 5272 5273 SetCommonAttributes(GD, GIF); 5274 } 5275 5276 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5277 ArrayRef<llvm::Type*> Tys) { 5278 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5279 Tys); 5280 } 5281 5282 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5283 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5284 const StringLiteral *Literal, bool TargetIsLSB, 5285 bool &IsUTF16, unsigned &StringLength) { 5286 StringRef String = Literal->getString(); 5287 unsigned NumBytes = String.size(); 5288 5289 // Check for simple case. 5290 if (!Literal->containsNonAsciiOrNull()) { 5291 StringLength = NumBytes; 5292 return *Map.insert(std::make_pair(String, nullptr)).first; 5293 } 5294 5295 // Otherwise, convert the UTF8 literals into a string of shorts. 5296 IsUTF16 = true; 5297 5298 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5299 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5300 llvm::UTF16 *ToPtr = &ToBuf[0]; 5301 5302 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5303 ToPtr + NumBytes, llvm::strictConversion); 5304 5305 // ConvertUTF8toUTF16 returns the length in ToPtr. 5306 StringLength = ToPtr - &ToBuf[0]; 5307 5308 // Add an explicit null. 5309 *ToPtr = 0; 5310 return *Map.insert(std::make_pair( 5311 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5312 (StringLength + 1) * 2), 5313 nullptr)).first; 5314 } 5315 5316 ConstantAddress 5317 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5318 unsigned StringLength = 0; 5319 bool isUTF16 = false; 5320 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5321 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5322 getDataLayout().isLittleEndian(), isUTF16, 5323 StringLength); 5324 5325 if (auto *C = Entry.second) 5326 return ConstantAddress( 5327 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5328 5329 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5330 llvm::Constant *Zeros[] = { Zero, Zero }; 5331 5332 const ASTContext &Context = getContext(); 5333 const llvm::Triple &Triple = getTriple(); 5334 5335 const auto CFRuntime = getLangOpts().CFRuntime; 5336 const bool IsSwiftABI = 5337 static_cast<unsigned>(CFRuntime) >= 5338 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5339 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5340 5341 // If we don't already have it, get __CFConstantStringClassReference. 5342 if (!CFConstantStringClassRef) { 5343 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5344 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5345 Ty = llvm::ArrayType::get(Ty, 0); 5346 5347 switch (CFRuntime) { 5348 default: break; 5349 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5350 case LangOptions::CoreFoundationABI::Swift5_0: 5351 CFConstantStringClassName = 5352 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5353 : "$s10Foundation19_NSCFConstantStringCN"; 5354 Ty = IntPtrTy; 5355 break; 5356 case LangOptions::CoreFoundationABI::Swift4_2: 5357 CFConstantStringClassName = 5358 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5359 : "$S10Foundation19_NSCFConstantStringCN"; 5360 Ty = IntPtrTy; 5361 break; 5362 case LangOptions::CoreFoundationABI::Swift4_1: 5363 CFConstantStringClassName = 5364 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5365 : "__T010Foundation19_NSCFConstantStringCN"; 5366 Ty = IntPtrTy; 5367 break; 5368 } 5369 5370 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5371 5372 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5373 llvm::GlobalValue *GV = nullptr; 5374 5375 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5376 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5377 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5378 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5379 5380 const VarDecl *VD = nullptr; 5381 for (const auto *Result : DC->lookup(&II)) 5382 if ((VD = dyn_cast<VarDecl>(Result))) 5383 break; 5384 5385 if (Triple.isOSBinFormatELF()) { 5386 if (!VD) 5387 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5388 } else { 5389 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5390 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5391 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5392 else 5393 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5394 } 5395 5396 setDSOLocal(GV); 5397 } 5398 } 5399 5400 // Decay array -> ptr 5401 CFConstantStringClassRef = 5402 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5403 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5404 } 5405 5406 QualType CFTy = Context.getCFConstantStringType(); 5407 5408 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5409 5410 ConstantInitBuilder Builder(*this); 5411 auto Fields = Builder.beginStruct(STy); 5412 5413 // Class pointer. 5414 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5415 5416 // Flags. 5417 if (IsSwiftABI) { 5418 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5419 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5420 } else { 5421 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5422 } 5423 5424 // String pointer. 5425 llvm::Constant *C = nullptr; 5426 if (isUTF16) { 5427 auto Arr = llvm::makeArrayRef( 5428 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5429 Entry.first().size() / 2); 5430 C = llvm::ConstantDataArray::get(VMContext, Arr); 5431 } else { 5432 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5433 } 5434 5435 // Note: -fwritable-strings doesn't make the backing store strings of 5436 // CFStrings writable. (See <rdar://problem/10657500>) 5437 auto *GV = 5438 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5439 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5440 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5441 // Don't enforce the target's minimum global alignment, since the only use 5442 // of the string is via this class initializer. 5443 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5444 : Context.getTypeAlignInChars(Context.CharTy); 5445 GV->setAlignment(Align.getAsAlign()); 5446 5447 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5448 // Without it LLVM can merge the string with a non unnamed_addr one during 5449 // LTO. Doing that changes the section it ends in, which surprises ld64. 5450 if (Triple.isOSBinFormatMachO()) 5451 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5452 : "__TEXT,__cstring,cstring_literals"); 5453 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5454 // the static linker to adjust permissions to read-only later on. 5455 else if (Triple.isOSBinFormatELF()) 5456 GV->setSection(".rodata"); 5457 5458 // String. 5459 llvm::Constant *Str = 5460 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5461 5462 if (isUTF16) 5463 // Cast the UTF16 string to the correct type. 5464 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5465 Fields.add(Str); 5466 5467 // String length. 5468 llvm::IntegerType *LengthTy = 5469 llvm::IntegerType::get(getModule().getContext(), 5470 Context.getTargetInfo().getLongWidth()); 5471 if (IsSwiftABI) { 5472 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5473 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5474 LengthTy = Int32Ty; 5475 else 5476 LengthTy = IntPtrTy; 5477 } 5478 Fields.addInt(LengthTy, StringLength); 5479 5480 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5481 // properly aligned on 32-bit platforms. 5482 CharUnits Alignment = 5483 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5484 5485 // The struct. 5486 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5487 /*isConstant=*/false, 5488 llvm::GlobalVariable::PrivateLinkage); 5489 GV->addAttribute("objc_arc_inert"); 5490 switch (Triple.getObjectFormat()) { 5491 case llvm::Triple::UnknownObjectFormat: 5492 llvm_unreachable("unknown file format"); 5493 case llvm::Triple::GOFF: 5494 llvm_unreachable("GOFF is not yet implemented"); 5495 case llvm::Triple::XCOFF: 5496 llvm_unreachable("XCOFF is not yet implemented"); 5497 case llvm::Triple::DXContainer: 5498 llvm_unreachable("DXContainer is not yet implemented"); 5499 case llvm::Triple::COFF: 5500 case llvm::Triple::ELF: 5501 case llvm::Triple::Wasm: 5502 GV->setSection("cfstring"); 5503 break; 5504 case llvm::Triple::MachO: 5505 GV->setSection("__DATA,__cfstring"); 5506 break; 5507 } 5508 Entry.second = GV; 5509 5510 return ConstantAddress(GV, GV->getValueType(), Alignment); 5511 } 5512 5513 bool CodeGenModule::getExpressionLocationsEnabled() const { 5514 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5515 } 5516 5517 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5518 if (ObjCFastEnumerationStateType.isNull()) { 5519 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5520 D->startDefinition(); 5521 5522 QualType FieldTypes[] = { 5523 Context.UnsignedLongTy, 5524 Context.getPointerType(Context.getObjCIdType()), 5525 Context.getPointerType(Context.UnsignedLongTy), 5526 Context.getConstantArrayType(Context.UnsignedLongTy, 5527 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5528 }; 5529 5530 for (size_t i = 0; i < 4; ++i) { 5531 FieldDecl *Field = FieldDecl::Create(Context, 5532 D, 5533 SourceLocation(), 5534 SourceLocation(), nullptr, 5535 FieldTypes[i], /*TInfo=*/nullptr, 5536 /*BitWidth=*/nullptr, 5537 /*Mutable=*/false, 5538 ICIS_NoInit); 5539 Field->setAccess(AS_public); 5540 D->addDecl(Field); 5541 } 5542 5543 D->completeDefinition(); 5544 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5545 } 5546 5547 return ObjCFastEnumerationStateType; 5548 } 5549 5550 llvm::Constant * 5551 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5552 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5553 5554 // Don't emit it as the address of the string, emit the string data itself 5555 // as an inline array. 5556 if (E->getCharByteWidth() == 1) { 5557 SmallString<64> Str(E->getString()); 5558 5559 // Resize the string to the right size, which is indicated by its type. 5560 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5561 Str.resize(CAT->getSize().getZExtValue()); 5562 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5563 } 5564 5565 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5566 llvm::Type *ElemTy = AType->getElementType(); 5567 unsigned NumElements = AType->getNumElements(); 5568 5569 // Wide strings have either 2-byte or 4-byte elements. 5570 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5571 SmallVector<uint16_t, 32> Elements; 5572 Elements.reserve(NumElements); 5573 5574 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5575 Elements.push_back(E->getCodeUnit(i)); 5576 Elements.resize(NumElements); 5577 return llvm::ConstantDataArray::get(VMContext, Elements); 5578 } 5579 5580 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5581 SmallVector<uint32_t, 32> Elements; 5582 Elements.reserve(NumElements); 5583 5584 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5585 Elements.push_back(E->getCodeUnit(i)); 5586 Elements.resize(NumElements); 5587 return llvm::ConstantDataArray::get(VMContext, Elements); 5588 } 5589 5590 static llvm::GlobalVariable * 5591 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5592 CodeGenModule &CGM, StringRef GlobalName, 5593 CharUnits Alignment) { 5594 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5595 CGM.GetGlobalConstantAddressSpace()); 5596 5597 llvm::Module &M = CGM.getModule(); 5598 // Create a global variable for this string 5599 auto *GV = new llvm::GlobalVariable( 5600 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5601 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5602 GV->setAlignment(Alignment.getAsAlign()); 5603 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5604 if (GV->isWeakForLinker()) { 5605 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5606 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5607 } 5608 CGM.setDSOLocal(GV); 5609 5610 return GV; 5611 } 5612 5613 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5614 /// constant array for the given string literal. 5615 ConstantAddress 5616 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5617 StringRef Name) { 5618 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5619 5620 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5621 llvm::GlobalVariable **Entry = nullptr; 5622 if (!LangOpts.WritableStrings) { 5623 Entry = &ConstantStringMap[C]; 5624 if (auto GV = *Entry) { 5625 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5626 GV->setAlignment(Alignment.getAsAlign()); 5627 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5628 GV->getValueType(), Alignment); 5629 } 5630 } 5631 5632 SmallString<256> MangledNameBuffer; 5633 StringRef GlobalVariableName; 5634 llvm::GlobalValue::LinkageTypes LT; 5635 5636 // Mangle the string literal if that's how the ABI merges duplicate strings. 5637 // Don't do it if they are writable, since we don't want writes in one TU to 5638 // affect strings in another. 5639 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5640 !LangOpts.WritableStrings) { 5641 llvm::raw_svector_ostream Out(MangledNameBuffer); 5642 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5643 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5644 GlobalVariableName = MangledNameBuffer; 5645 } else { 5646 LT = llvm::GlobalValue::PrivateLinkage; 5647 GlobalVariableName = Name; 5648 } 5649 5650 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5651 if (Entry) 5652 *Entry = GV; 5653 5654 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5655 QualType()); 5656 5657 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5658 GV->getValueType(), Alignment); 5659 } 5660 5661 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5662 /// array for the given ObjCEncodeExpr node. 5663 ConstantAddress 5664 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5665 std::string Str; 5666 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5667 5668 return GetAddrOfConstantCString(Str); 5669 } 5670 5671 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5672 /// the literal and a terminating '\0' character. 5673 /// The result has pointer to array type. 5674 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5675 const std::string &Str, const char *GlobalName) { 5676 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5677 CharUnits Alignment = 5678 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5679 5680 llvm::Constant *C = 5681 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5682 5683 // Don't share any string literals if strings aren't constant. 5684 llvm::GlobalVariable **Entry = nullptr; 5685 if (!LangOpts.WritableStrings) { 5686 Entry = &ConstantStringMap[C]; 5687 if (auto GV = *Entry) { 5688 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5689 GV->setAlignment(Alignment.getAsAlign()); 5690 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5691 GV->getValueType(), Alignment); 5692 } 5693 } 5694 5695 // Get the default prefix if a name wasn't specified. 5696 if (!GlobalName) 5697 GlobalName = ".str"; 5698 // Create a global variable for this. 5699 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5700 GlobalName, Alignment); 5701 if (Entry) 5702 *Entry = GV; 5703 5704 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5705 GV->getValueType(), Alignment); 5706 } 5707 5708 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5709 const MaterializeTemporaryExpr *E, const Expr *Init) { 5710 assert((E->getStorageDuration() == SD_Static || 5711 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5712 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5713 5714 // If we're not materializing a subobject of the temporary, keep the 5715 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5716 QualType MaterializedType = Init->getType(); 5717 if (Init == E->getSubExpr()) 5718 MaterializedType = E->getType(); 5719 5720 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5721 5722 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5723 if (!InsertResult.second) { 5724 // We've seen this before: either we already created it or we're in the 5725 // process of doing so. 5726 if (!InsertResult.first->second) { 5727 // We recursively re-entered this function, probably during emission of 5728 // the initializer. Create a placeholder. We'll clean this up in the 5729 // outer call, at the end of this function. 5730 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5731 InsertResult.first->second = new llvm::GlobalVariable( 5732 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5733 nullptr); 5734 } 5735 return ConstantAddress(InsertResult.first->second, 5736 llvm::cast<llvm::GlobalVariable>( 5737 InsertResult.first->second->stripPointerCasts()) 5738 ->getValueType(), 5739 Align); 5740 } 5741 5742 // FIXME: If an externally-visible declaration extends multiple temporaries, 5743 // we need to give each temporary the same name in every translation unit (and 5744 // we also need to make the temporaries externally-visible). 5745 SmallString<256> Name; 5746 llvm::raw_svector_ostream Out(Name); 5747 getCXXABI().getMangleContext().mangleReferenceTemporary( 5748 VD, E->getManglingNumber(), Out); 5749 5750 APValue *Value = nullptr; 5751 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5752 // If the initializer of the extending declaration is a constant 5753 // initializer, we should have a cached constant initializer for this 5754 // temporary. Note that this might have a different value from the value 5755 // computed by evaluating the initializer if the surrounding constant 5756 // expression modifies the temporary. 5757 Value = E->getOrCreateValue(false); 5758 } 5759 5760 // Try evaluating it now, it might have a constant initializer. 5761 Expr::EvalResult EvalResult; 5762 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5763 !EvalResult.hasSideEffects()) 5764 Value = &EvalResult.Val; 5765 5766 LangAS AddrSpace = 5767 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5768 5769 Optional<ConstantEmitter> emitter; 5770 llvm::Constant *InitialValue = nullptr; 5771 bool Constant = false; 5772 llvm::Type *Type; 5773 if (Value) { 5774 // The temporary has a constant initializer, use it. 5775 emitter.emplace(*this); 5776 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5777 MaterializedType); 5778 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5779 Type = InitialValue->getType(); 5780 } else { 5781 // No initializer, the initialization will be provided when we 5782 // initialize the declaration which performed lifetime extension. 5783 Type = getTypes().ConvertTypeForMem(MaterializedType); 5784 } 5785 5786 // Create a global variable for this lifetime-extended temporary. 5787 llvm::GlobalValue::LinkageTypes Linkage = 5788 getLLVMLinkageVarDefinition(VD, Constant); 5789 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5790 const VarDecl *InitVD; 5791 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5792 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5793 // Temporaries defined inside a class get linkonce_odr linkage because the 5794 // class can be defined in multiple translation units. 5795 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5796 } else { 5797 // There is no need for this temporary to have external linkage if the 5798 // VarDecl has external linkage. 5799 Linkage = llvm::GlobalVariable::InternalLinkage; 5800 } 5801 } 5802 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5803 auto *GV = new llvm::GlobalVariable( 5804 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5805 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5806 if (emitter) emitter->finalize(GV); 5807 setGVProperties(GV, VD); 5808 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 5809 // The reference temporary should never be dllexport. 5810 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5811 GV->setAlignment(Align.getAsAlign()); 5812 if (supportsCOMDAT() && GV->isWeakForLinker()) 5813 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5814 if (VD->getTLSKind()) 5815 setTLSMode(GV, *VD); 5816 llvm::Constant *CV = GV; 5817 if (AddrSpace != LangAS::Default) 5818 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5819 *this, GV, AddrSpace, LangAS::Default, 5820 Type->getPointerTo( 5821 getContext().getTargetAddressSpace(LangAS::Default))); 5822 5823 // Update the map with the new temporary. If we created a placeholder above, 5824 // replace it with the new global now. 5825 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5826 if (Entry) { 5827 Entry->replaceAllUsesWith( 5828 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5829 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5830 } 5831 Entry = CV; 5832 5833 return ConstantAddress(CV, Type, Align); 5834 } 5835 5836 /// EmitObjCPropertyImplementations - Emit information for synthesized 5837 /// properties for an implementation. 5838 void CodeGenModule::EmitObjCPropertyImplementations(const 5839 ObjCImplementationDecl *D) { 5840 for (const auto *PID : D->property_impls()) { 5841 // Dynamic is just for type-checking. 5842 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5843 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5844 5845 // Determine which methods need to be implemented, some may have 5846 // been overridden. Note that ::isPropertyAccessor is not the method 5847 // we want, that just indicates if the decl came from a 5848 // property. What we want to know is if the method is defined in 5849 // this implementation. 5850 auto *Getter = PID->getGetterMethodDecl(); 5851 if (!Getter || Getter->isSynthesizedAccessorStub()) 5852 CodeGenFunction(*this).GenerateObjCGetter( 5853 const_cast<ObjCImplementationDecl *>(D), PID); 5854 auto *Setter = PID->getSetterMethodDecl(); 5855 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5856 CodeGenFunction(*this).GenerateObjCSetter( 5857 const_cast<ObjCImplementationDecl *>(D), PID); 5858 } 5859 } 5860 } 5861 5862 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5863 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5864 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5865 ivar; ivar = ivar->getNextIvar()) 5866 if (ivar->getType().isDestructedType()) 5867 return true; 5868 5869 return false; 5870 } 5871 5872 static bool AllTrivialInitializers(CodeGenModule &CGM, 5873 ObjCImplementationDecl *D) { 5874 CodeGenFunction CGF(CGM); 5875 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5876 E = D->init_end(); B != E; ++B) { 5877 CXXCtorInitializer *CtorInitExp = *B; 5878 Expr *Init = CtorInitExp->getInit(); 5879 if (!CGF.isTrivialInitializer(Init)) 5880 return false; 5881 } 5882 return true; 5883 } 5884 5885 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5886 /// for an implementation. 5887 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5888 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5889 if (needsDestructMethod(D)) { 5890 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5891 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5892 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5893 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5894 getContext().VoidTy, nullptr, D, 5895 /*isInstance=*/true, /*isVariadic=*/false, 5896 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5897 /*isImplicitlyDeclared=*/true, 5898 /*isDefined=*/false, ObjCMethodDecl::Required); 5899 D->addInstanceMethod(DTORMethod); 5900 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5901 D->setHasDestructors(true); 5902 } 5903 5904 // If the implementation doesn't have any ivar initializers, we don't need 5905 // a .cxx_construct. 5906 if (D->getNumIvarInitializers() == 0 || 5907 AllTrivialInitializers(*this, D)) 5908 return; 5909 5910 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5911 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5912 // The constructor returns 'self'. 5913 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5914 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5915 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5916 /*isVariadic=*/false, 5917 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5918 /*isImplicitlyDeclared=*/true, 5919 /*isDefined=*/false, ObjCMethodDecl::Required); 5920 D->addInstanceMethod(CTORMethod); 5921 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5922 D->setHasNonZeroConstructors(true); 5923 } 5924 5925 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5926 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5927 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5928 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5929 ErrorUnsupported(LSD, "linkage spec"); 5930 return; 5931 } 5932 5933 EmitDeclContext(LSD); 5934 } 5935 5936 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5937 for (auto *I : DC->decls()) { 5938 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5939 // are themselves considered "top-level", so EmitTopLevelDecl on an 5940 // ObjCImplDecl does not recursively visit them. We need to do that in 5941 // case they're nested inside another construct (LinkageSpecDecl / 5942 // ExportDecl) that does stop them from being considered "top-level". 5943 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5944 for (auto *M : OID->methods()) 5945 EmitTopLevelDecl(M); 5946 } 5947 5948 EmitTopLevelDecl(I); 5949 } 5950 } 5951 5952 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5953 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5954 // Ignore dependent declarations. 5955 if (D->isTemplated()) 5956 return; 5957 5958 // Consteval function shouldn't be emitted. 5959 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5960 if (FD->isConsteval()) 5961 return; 5962 5963 switch (D->getKind()) { 5964 case Decl::CXXConversion: 5965 case Decl::CXXMethod: 5966 case Decl::Function: 5967 EmitGlobal(cast<FunctionDecl>(D)); 5968 // Always provide some coverage mapping 5969 // even for the functions that aren't emitted. 5970 AddDeferredUnusedCoverageMapping(D); 5971 break; 5972 5973 case Decl::CXXDeductionGuide: 5974 // Function-like, but does not result in code emission. 5975 break; 5976 5977 case Decl::Var: 5978 case Decl::Decomposition: 5979 case Decl::VarTemplateSpecialization: 5980 EmitGlobal(cast<VarDecl>(D)); 5981 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5982 for (auto *B : DD->bindings()) 5983 if (auto *HD = B->getHoldingVar()) 5984 EmitGlobal(HD); 5985 break; 5986 5987 // Indirect fields from global anonymous structs and unions can be 5988 // ignored; only the actual variable requires IR gen support. 5989 case Decl::IndirectField: 5990 break; 5991 5992 // C++ Decls 5993 case Decl::Namespace: 5994 EmitDeclContext(cast<NamespaceDecl>(D)); 5995 break; 5996 case Decl::ClassTemplateSpecialization: { 5997 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5998 if (CGDebugInfo *DI = getModuleDebugInfo()) 5999 if (Spec->getSpecializationKind() == 6000 TSK_ExplicitInstantiationDefinition && 6001 Spec->hasDefinition()) 6002 DI->completeTemplateDefinition(*Spec); 6003 } LLVM_FALLTHROUGH; 6004 case Decl::CXXRecord: { 6005 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6006 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6007 if (CRD->hasDefinition()) 6008 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6009 if (auto *ES = D->getASTContext().getExternalSource()) 6010 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6011 DI->completeUnusedClass(*CRD); 6012 } 6013 // Emit any static data members, they may be definitions. 6014 for (auto *I : CRD->decls()) 6015 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6016 EmitTopLevelDecl(I); 6017 break; 6018 } 6019 // No code generation needed. 6020 case Decl::UsingShadow: 6021 case Decl::ClassTemplate: 6022 case Decl::VarTemplate: 6023 case Decl::Concept: 6024 case Decl::VarTemplatePartialSpecialization: 6025 case Decl::FunctionTemplate: 6026 case Decl::TypeAliasTemplate: 6027 case Decl::Block: 6028 case Decl::Empty: 6029 case Decl::Binding: 6030 break; 6031 case Decl::Using: // using X; [C++] 6032 if (CGDebugInfo *DI = getModuleDebugInfo()) 6033 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6034 break; 6035 case Decl::UsingEnum: // using enum X; [C++] 6036 if (CGDebugInfo *DI = getModuleDebugInfo()) 6037 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6038 break; 6039 case Decl::NamespaceAlias: 6040 if (CGDebugInfo *DI = getModuleDebugInfo()) 6041 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6042 break; 6043 case Decl::UsingDirective: // using namespace X; [C++] 6044 if (CGDebugInfo *DI = getModuleDebugInfo()) 6045 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6046 break; 6047 case Decl::CXXConstructor: 6048 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6049 break; 6050 case Decl::CXXDestructor: 6051 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6052 break; 6053 6054 case Decl::StaticAssert: 6055 // Nothing to do. 6056 break; 6057 6058 // Objective-C Decls 6059 6060 // Forward declarations, no (immediate) code generation. 6061 case Decl::ObjCInterface: 6062 case Decl::ObjCCategory: 6063 break; 6064 6065 case Decl::ObjCProtocol: { 6066 auto *Proto = cast<ObjCProtocolDecl>(D); 6067 if (Proto->isThisDeclarationADefinition()) 6068 ObjCRuntime->GenerateProtocol(Proto); 6069 break; 6070 } 6071 6072 case Decl::ObjCCategoryImpl: 6073 // Categories have properties but don't support synthesize so we 6074 // can ignore them here. 6075 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6076 break; 6077 6078 case Decl::ObjCImplementation: { 6079 auto *OMD = cast<ObjCImplementationDecl>(D); 6080 EmitObjCPropertyImplementations(OMD); 6081 EmitObjCIvarInitializations(OMD); 6082 ObjCRuntime->GenerateClass(OMD); 6083 // Emit global variable debug information. 6084 if (CGDebugInfo *DI = getModuleDebugInfo()) 6085 if (getCodeGenOpts().hasReducedDebugInfo()) 6086 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6087 OMD->getClassInterface()), OMD->getLocation()); 6088 break; 6089 } 6090 case Decl::ObjCMethod: { 6091 auto *OMD = cast<ObjCMethodDecl>(D); 6092 // If this is not a prototype, emit the body. 6093 if (OMD->getBody()) 6094 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6095 break; 6096 } 6097 case Decl::ObjCCompatibleAlias: 6098 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6099 break; 6100 6101 case Decl::PragmaComment: { 6102 const auto *PCD = cast<PragmaCommentDecl>(D); 6103 switch (PCD->getCommentKind()) { 6104 case PCK_Unknown: 6105 llvm_unreachable("unexpected pragma comment kind"); 6106 case PCK_Linker: 6107 AppendLinkerOptions(PCD->getArg()); 6108 break; 6109 case PCK_Lib: 6110 AddDependentLib(PCD->getArg()); 6111 break; 6112 case PCK_Compiler: 6113 case PCK_ExeStr: 6114 case PCK_User: 6115 break; // We ignore all of these. 6116 } 6117 break; 6118 } 6119 6120 case Decl::PragmaDetectMismatch: { 6121 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6122 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6123 break; 6124 } 6125 6126 case Decl::LinkageSpec: 6127 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6128 break; 6129 6130 case Decl::FileScopeAsm: { 6131 // File-scope asm is ignored during device-side CUDA compilation. 6132 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6133 break; 6134 // File-scope asm is ignored during device-side OpenMP compilation. 6135 if (LangOpts.OpenMPIsDevice) 6136 break; 6137 // File-scope asm is ignored during device-side SYCL compilation. 6138 if (LangOpts.SYCLIsDevice) 6139 break; 6140 auto *AD = cast<FileScopeAsmDecl>(D); 6141 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6142 break; 6143 } 6144 6145 case Decl::Import: { 6146 auto *Import = cast<ImportDecl>(D); 6147 6148 // If we've already imported this module, we're done. 6149 if (!ImportedModules.insert(Import->getImportedModule())) 6150 break; 6151 6152 // Emit debug information for direct imports. 6153 if (!Import->getImportedOwningModule()) { 6154 if (CGDebugInfo *DI = getModuleDebugInfo()) 6155 DI->EmitImportDecl(*Import); 6156 } 6157 6158 // Find all of the submodules and emit the module initializers. 6159 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6160 SmallVector<clang::Module *, 16> Stack; 6161 Visited.insert(Import->getImportedModule()); 6162 Stack.push_back(Import->getImportedModule()); 6163 6164 while (!Stack.empty()) { 6165 clang::Module *Mod = Stack.pop_back_val(); 6166 if (!EmittedModuleInitializers.insert(Mod).second) 6167 continue; 6168 6169 for (auto *D : Context.getModuleInitializers(Mod)) 6170 EmitTopLevelDecl(D); 6171 6172 // Visit the submodules of this module. 6173 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6174 SubEnd = Mod->submodule_end(); 6175 Sub != SubEnd; ++Sub) { 6176 // Skip explicit children; they need to be explicitly imported to emit 6177 // the initializers. 6178 if ((*Sub)->IsExplicit) 6179 continue; 6180 6181 if (Visited.insert(*Sub).second) 6182 Stack.push_back(*Sub); 6183 } 6184 } 6185 break; 6186 } 6187 6188 case Decl::Export: 6189 EmitDeclContext(cast<ExportDecl>(D)); 6190 break; 6191 6192 case Decl::OMPThreadPrivate: 6193 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6194 break; 6195 6196 case Decl::OMPAllocate: 6197 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6198 break; 6199 6200 case Decl::OMPDeclareReduction: 6201 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6202 break; 6203 6204 case Decl::OMPDeclareMapper: 6205 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6206 break; 6207 6208 case Decl::OMPRequires: 6209 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6210 break; 6211 6212 case Decl::Typedef: 6213 case Decl::TypeAlias: // using foo = bar; [C++11] 6214 if (CGDebugInfo *DI = getModuleDebugInfo()) 6215 DI->EmitAndRetainType( 6216 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6217 break; 6218 6219 case Decl::Record: 6220 if (CGDebugInfo *DI = getModuleDebugInfo()) 6221 if (cast<RecordDecl>(D)->getDefinition()) 6222 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6223 break; 6224 6225 case Decl::Enum: 6226 if (CGDebugInfo *DI = getModuleDebugInfo()) 6227 if (cast<EnumDecl>(D)->getDefinition()) 6228 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6229 break; 6230 6231 default: 6232 // Make sure we handled everything we should, every other kind is a 6233 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6234 // function. Need to recode Decl::Kind to do that easily. 6235 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6236 break; 6237 } 6238 } 6239 6240 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6241 // Do we need to generate coverage mapping? 6242 if (!CodeGenOpts.CoverageMapping) 6243 return; 6244 switch (D->getKind()) { 6245 case Decl::CXXConversion: 6246 case Decl::CXXMethod: 6247 case Decl::Function: 6248 case Decl::ObjCMethod: 6249 case Decl::CXXConstructor: 6250 case Decl::CXXDestructor: { 6251 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6252 break; 6253 SourceManager &SM = getContext().getSourceManager(); 6254 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6255 break; 6256 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6257 if (I == DeferredEmptyCoverageMappingDecls.end()) 6258 DeferredEmptyCoverageMappingDecls[D] = true; 6259 break; 6260 } 6261 default: 6262 break; 6263 }; 6264 } 6265 6266 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6267 // Do we need to generate coverage mapping? 6268 if (!CodeGenOpts.CoverageMapping) 6269 return; 6270 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6271 if (Fn->isTemplateInstantiation()) 6272 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6273 } 6274 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6275 if (I == DeferredEmptyCoverageMappingDecls.end()) 6276 DeferredEmptyCoverageMappingDecls[D] = false; 6277 else 6278 I->second = false; 6279 } 6280 6281 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6282 // We call takeVector() here to avoid use-after-free. 6283 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6284 // we deserialize function bodies to emit coverage info for them, and that 6285 // deserializes more declarations. How should we handle that case? 6286 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6287 if (!Entry.second) 6288 continue; 6289 const Decl *D = Entry.first; 6290 switch (D->getKind()) { 6291 case Decl::CXXConversion: 6292 case Decl::CXXMethod: 6293 case Decl::Function: 6294 case Decl::ObjCMethod: { 6295 CodeGenPGO PGO(*this); 6296 GlobalDecl GD(cast<FunctionDecl>(D)); 6297 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6298 getFunctionLinkage(GD)); 6299 break; 6300 } 6301 case Decl::CXXConstructor: { 6302 CodeGenPGO PGO(*this); 6303 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6304 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6305 getFunctionLinkage(GD)); 6306 break; 6307 } 6308 case Decl::CXXDestructor: { 6309 CodeGenPGO PGO(*this); 6310 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6311 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6312 getFunctionLinkage(GD)); 6313 break; 6314 } 6315 default: 6316 break; 6317 }; 6318 } 6319 } 6320 6321 void CodeGenModule::EmitMainVoidAlias() { 6322 // In order to transition away from "__original_main" gracefully, emit an 6323 // alias for "main" in the no-argument case so that libc can detect when 6324 // new-style no-argument main is in used. 6325 if (llvm::Function *F = getModule().getFunction("main")) { 6326 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6327 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 6328 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 6329 } 6330 } 6331 6332 /// Turns the given pointer into a constant. 6333 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6334 const void *Ptr) { 6335 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6336 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6337 return llvm::ConstantInt::get(i64, PtrInt); 6338 } 6339 6340 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6341 llvm::NamedMDNode *&GlobalMetadata, 6342 GlobalDecl D, 6343 llvm::GlobalValue *Addr) { 6344 if (!GlobalMetadata) 6345 GlobalMetadata = 6346 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6347 6348 // TODO: should we report variant information for ctors/dtors? 6349 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6350 llvm::ConstantAsMetadata::get(GetPointerConstant( 6351 CGM.getLLVMContext(), D.getDecl()))}; 6352 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6353 } 6354 6355 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6356 llvm::GlobalValue *CppFunc) { 6357 // Store the list of ifuncs we need to replace uses in. 6358 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6359 // List of ConstantExprs that we should be able to delete when we're done 6360 // here. 6361 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6362 6363 // First make sure that all users of this are ifuncs (or ifuncs via a 6364 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6365 // later. 6366 for (llvm::User *User : Elem->users()) { 6367 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6368 // ifunc directly. In any other case, just give up, as we don't know what we 6369 // could break by changing those. 6370 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6371 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6372 return false; 6373 6374 for (llvm::User *CEUser : ConstExpr->users()) { 6375 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6376 IFuncs.push_back(IFunc); 6377 } else { 6378 return false; 6379 } 6380 } 6381 CEs.push_back(ConstExpr); 6382 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6383 IFuncs.push_back(IFunc); 6384 } else { 6385 // This user is one we don't know how to handle, so fail redirection. This 6386 // will result in an ifunc retaining a resolver name that will ultimately 6387 // fail to be resolved to a defined function. 6388 return false; 6389 } 6390 } 6391 6392 // Now we know this is a valid case where we can do this alias replacement, we 6393 // need to remove all of the references to Elem (and the bitcasts!) so we can 6394 // delete it. 6395 for (llvm::GlobalIFunc *IFunc : IFuncs) 6396 IFunc->setResolver(nullptr); 6397 for (llvm::ConstantExpr *ConstExpr : CEs) 6398 ConstExpr->destroyConstant(); 6399 6400 // We should now be out of uses for the 'old' version of this function, so we 6401 // can erase it as well. 6402 Elem->eraseFromParent(); 6403 6404 for (llvm::GlobalIFunc *IFunc : IFuncs) { 6405 // The type of the resolver is always just a function-type that returns the 6406 // type of the IFunc, so create that here. If the type of the actual 6407 // resolver doesn't match, it just gets bitcast to the right thing. 6408 auto *ResolverTy = 6409 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 6410 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 6411 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 6412 IFunc->setResolver(Resolver); 6413 } 6414 return true; 6415 } 6416 6417 /// For each function which is declared within an extern "C" region and marked 6418 /// as 'used', but has internal linkage, create an alias from the unmangled 6419 /// name to the mangled name if possible. People expect to be able to refer 6420 /// to such functions with an unmangled name from inline assembly within the 6421 /// same translation unit. 6422 void CodeGenModule::EmitStaticExternCAliases() { 6423 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6424 return; 6425 for (auto &I : StaticExternCValues) { 6426 IdentifierInfo *Name = I.first; 6427 llvm::GlobalValue *Val = I.second; 6428 6429 // If Val is null, that implies there were multiple declarations that each 6430 // had a claim to the unmangled name. In this case, generation of the alias 6431 // is suppressed. See CodeGenModule::MaybeHandleStaticInExterC. 6432 if (!Val) 6433 break; 6434 6435 llvm::GlobalValue *ExistingElem = 6436 getModule().getNamedValue(Name->getName()); 6437 6438 // If there is either not something already by this name, or we were able to 6439 // replace all uses from IFuncs, create the alias. 6440 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 6441 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6442 } 6443 } 6444 6445 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6446 GlobalDecl &Result) const { 6447 auto Res = Manglings.find(MangledName); 6448 if (Res == Manglings.end()) 6449 return false; 6450 Result = Res->getValue(); 6451 return true; 6452 } 6453 6454 /// Emits metadata nodes associating all the global values in the 6455 /// current module with the Decls they came from. This is useful for 6456 /// projects using IR gen as a subroutine. 6457 /// 6458 /// Since there's currently no way to associate an MDNode directly 6459 /// with an llvm::GlobalValue, we create a global named metadata 6460 /// with the name 'clang.global.decl.ptrs'. 6461 void CodeGenModule::EmitDeclMetadata() { 6462 llvm::NamedMDNode *GlobalMetadata = nullptr; 6463 6464 for (auto &I : MangledDeclNames) { 6465 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6466 // Some mangled names don't necessarily have an associated GlobalValue 6467 // in this module, e.g. if we mangled it for DebugInfo. 6468 if (Addr) 6469 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6470 } 6471 } 6472 6473 /// Emits metadata nodes for all the local variables in the current 6474 /// function. 6475 void CodeGenFunction::EmitDeclMetadata() { 6476 if (LocalDeclMap.empty()) return; 6477 6478 llvm::LLVMContext &Context = getLLVMContext(); 6479 6480 // Find the unique metadata ID for this name. 6481 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6482 6483 llvm::NamedMDNode *GlobalMetadata = nullptr; 6484 6485 for (auto &I : LocalDeclMap) { 6486 const Decl *D = I.first; 6487 llvm::Value *Addr = I.second.getPointer(); 6488 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6489 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6490 Alloca->setMetadata( 6491 DeclPtrKind, llvm::MDNode::get( 6492 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6493 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6494 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6495 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6496 } 6497 } 6498 } 6499 6500 void CodeGenModule::EmitVersionIdentMetadata() { 6501 llvm::NamedMDNode *IdentMetadata = 6502 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6503 std::string Version = getClangFullVersion(); 6504 llvm::LLVMContext &Ctx = TheModule.getContext(); 6505 6506 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6507 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6508 } 6509 6510 void CodeGenModule::EmitCommandLineMetadata() { 6511 llvm::NamedMDNode *CommandLineMetadata = 6512 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6513 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6514 llvm::LLVMContext &Ctx = TheModule.getContext(); 6515 6516 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6517 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6518 } 6519 6520 void CodeGenModule::EmitCoverageFile() { 6521 if (getCodeGenOpts().CoverageDataFile.empty() && 6522 getCodeGenOpts().CoverageNotesFile.empty()) 6523 return; 6524 6525 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6526 if (!CUNode) 6527 return; 6528 6529 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6530 llvm::LLVMContext &Ctx = TheModule.getContext(); 6531 auto *CoverageDataFile = 6532 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6533 auto *CoverageNotesFile = 6534 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6535 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6536 llvm::MDNode *CU = CUNode->getOperand(i); 6537 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6538 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6539 } 6540 } 6541 6542 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6543 bool ForEH) { 6544 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6545 // FIXME: should we even be calling this method if RTTI is disabled 6546 // and it's not for EH? 6547 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6548 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6549 getTriple().isNVPTX())) 6550 return llvm::Constant::getNullValue(Int8PtrTy); 6551 6552 if (ForEH && Ty->isObjCObjectPointerType() && 6553 LangOpts.ObjCRuntime.isGNUFamily()) 6554 return ObjCRuntime->GetEHType(Ty); 6555 6556 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6557 } 6558 6559 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6560 // Do not emit threadprivates in simd-only mode. 6561 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6562 return; 6563 for (auto RefExpr : D->varlists()) { 6564 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6565 bool PerformInit = 6566 VD->getAnyInitializer() && 6567 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6568 /*ForRef=*/false); 6569 6570 Address Addr(GetAddrOfGlobalVar(VD), 6571 getTypes().ConvertTypeForMem(VD->getType()), 6572 getContext().getDeclAlign(VD)); 6573 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6574 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6575 CXXGlobalInits.push_back(InitFunction); 6576 } 6577 } 6578 6579 llvm::Metadata * 6580 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6581 StringRef Suffix) { 6582 if (auto *FnType = T->getAs<FunctionProtoType>()) 6583 T = getContext().getFunctionType( 6584 FnType->getReturnType(), FnType->getParamTypes(), 6585 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6586 6587 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6588 if (InternalId) 6589 return InternalId; 6590 6591 if (isExternallyVisible(T->getLinkage())) { 6592 std::string OutName; 6593 llvm::raw_string_ostream Out(OutName); 6594 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6595 Out << Suffix; 6596 6597 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6598 } else { 6599 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6600 llvm::ArrayRef<llvm::Metadata *>()); 6601 } 6602 6603 return InternalId; 6604 } 6605 6606 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6607 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6608 } 6609 6610 llvm::Metadata * 6611 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6612 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6613 } 6614 6615 // Generalize pointer types to a void pointer with the qualifiers of the 6616 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6617 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6618 // 'void *'. 6619 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6620 if (!Ty->isPointerType()) 6621 return Ty; 6622 6623 return Ctx.getPointerType( 6624 QualType(Ctx.VoidTy).withCVRQualifiers( 6625 Ty->getPointeeType().getCVRQualifiers())); 6626 } 6627 6628 // Apply type generalization to a FunctionType's return and argument types 6629 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6630 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6631 SmallVector<QualType, 8> GeneralizedParams; 6632 for (auto &Param : FnType->param_types()) 6633 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6634 6635 return Ctx.getFunctionType( 6636 GeneralizeType(Ctx, FnType->getReturnType()), 6637 GeneralizedParams, FnType->getExtProtoInfo()); 6638 } 6639 6640 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6641 return Ctx.getFunctionNoProtoType( 6642 GeneralizeType(Ctx, FnType->getReturnType())); 6643 6644 llvm_unreachable("Encountered unknown FunctionType"); 6645 } 6646 6647 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6648 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6649 GeneralizedMetadataIdMap, ".generalized"); 6650 } 6651 6652 /// Returns whether this module needs the "all-vtables" type identifier. 6653 bool CodeGenModule::NeedAllVtablesTypeId() const { 6654 // Returns true if at least one of vtable-based CFI checkers is enabled and 6655 // is not in the trapping mode. 6656 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6657 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6658 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6659 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6660 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6661 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6662 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6663 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6664 } 6665 6666 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6667 CharUnits Offset, 6668 const CXXRecordDecl *RD) { 6669 llvm::Metadata *MD = 6670 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6671 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6672 6673 if (CodeGenOpts.SanitizeCfiCrossDso) 6674 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6675 VTable->addTypeMetadata(Offset.getQuantity(), 6676 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6677 6678 if (NeedAllVtablesTypeId()) { 6679 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6680 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6681 } 6682 } 6683 6684 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6685 if (!SanStats) 6686 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6687 6688 return *SanStats; 6689 } 6690 6691 llvm::Value * 6692 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6693 CodeGenFunction &CGF) { 6694 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6695 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6696 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6697 auto *Call = CGF.EmitRuntimeCall( 6698 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6699 return Call; 6700 } 6701 6702 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6703 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6704 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6705 /* forPointeeType= */ true); 6706 } 6707 6708 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6709 LValueBaseInfo *BaseInfo, 6710 TBAAAccessInfo *TBAAInfo, 6711 bool forPointeeType) { 6712 if (TBAAInfo) 6713 *TBAAInfo = getTBAAAccessInfo(T); 6714 6715 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6716 // that doesn't return the information we need to compute BaseInfo. 6717 6718 // Honor alignment typedef attributes even on incomplete types. 6719 // We also honor them straight for C++ class types, even as pointees; 6720 // there's an expressivity gap here. 6721 if (auto TT = T->getAs<TypedefType>()) { 6722 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6723 if (BaseInfo) 6724 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6725 return getContext().toCharUnitsFromBits(Align); 6726 } 6727 } 6728 6729 bool AlignForArray = T->isArrayType(); 6730 6731 // Analyze the base element type, so we don't get confused by incomplete 6732 // array types. 6733 T = getContext().getBaseElementType(T); 6734 6735 if (T->isIncompleteType()) { 6736 // We could try to replicate the logic from 6737 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6738 // type is incomplete, so it's impossible to test. We could try to reuse 6739 // getTypeAlignIfKnown, but that doesn't return the information we need 6740 // to set BaseInfo. So just ignore the possibility that the alignment is 6741 // greater than one. 6742 if (BaseInfo) 6743 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6744 return CharUnits::One(); 6745 } 6746 6747 if (BaseInfo) 6748 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6749 6750 CharUnits Alignment; 6751 const CXXRecordDecl *RD; 6752 if (T.getQualifiers().hasUnaligned()) { 6753 Alignment = CharUnits::One(); 6754 } else if (forPointeeType && !AlignForArray && 6755 (RD = T->getAsCXXRecordDecl())) { 6756 // For C++ class pointees, we don't know whether we're pointing at a 6757 // base or a complete object, so we generally need to use the 6758 // non-virtual alignment. 6759 Alignment = getClassPointerAlignment(RD); 6760 } else { 6761 Alignment = getContext().getTypeAlignInChars(T); 6762 } 6763 6764 // Cap to the global maximum type alignment unless the alignment 6765 // was somehow explicit on the type. 6766 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6767 if (Alignment.getQuantity() > MaxAlign && 6768 !getContext().isAlignmentRequired(T)) 6769 Alignment = CharUnits::fromQuantity(MaxAlign); 6770 } 6771 return Alignment; 6772 } 6773 6774 bool CodeGenModule::stopAutoInit() { 6775 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6776 if (StopAfter) { 6777 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6778 // used 6779 if (NumAutoVarInit >= StopAfter) { 6780 return true; 6781 } 6782 if (!NumAutoVarInit) { 6783 unsigned DiagID = getDiags().getCustomDiagID( 6784 DiagnosticsEngine::Warning, 6785 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6786 "number of times ftrivial-auto-var-init=%1 gets applied."); 6787 getDiags().Report(DiagID) 6788 << StopAfter 6789 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6790 LangOptions::TrivialAutoVarInitKind::Zero 6791 ? "zero" 6792 : "pattern"); 6793 } 6794 ++NumAutoVarInit; 6795 } 6796 return false; 6797 } 6798 6799 void CodeGenModule::printPostfixForExternalizedStaticVar( 6800 llvm::raw_ostream &OS) const { 6801 OS << "__static__" << getContext().getCUIDHash(); 6802 } 6803