xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 148d90729e9fa132f170ba0627bcfb9ee90a0f38)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CharInfo.h"
42 #include "clang/Basic/CodeGenOptions.h"
43 #include "clang/Basic/Diagnostic.h"
44 #include "clang/Basic/FileManager.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/SourceManager.h"
47 #include "clang/Basic/TargetInfo.h"
48 #include "clang/Basic/Version.h"
49 #include "clang/CodeGen/BackendUtil.h"
50 #include "clang/CodeGen/ConstantInitBuilder.h"
51 #include "clang/Frontend/FrontendDiagnostic.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringSwitch.h"
55 #include "llvm/Analysis/TargetLibraryInfo.h"
56 #include "llvm/BinaryFormat/ELF.h"
57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
58 #include "llvm/IR/AttributeMask.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/ProfileSummary.h"
65 #include "llvm/ProfileData/InstrProfReader.h"
66 #include "llvm/ProfileData/SampleProf.h"
67 #include "llvm/Support/CRC.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ConvertUTF.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/Support/xxhash.h"
74 #include "llvm/TargetParser/RISCVISAInfo.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include "llvm/TargetParser/X86TargetParser.h"
77 #include "llvm/Transforms/Utils/BuildLibCalls.h"
78 #include <optional>
79 
80 using namespace clang;
81 using namespace CodeGen;
82 
83 static llvm::cl::opt<bool> LimitedCoverage(
84     "limited-coverage-experimental", llvm::cl::Hidden,
85     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
86 
87 static const char AnnotationSection[] = "llvm.metadata";
88 
89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
90   switch (CGM.getContext().getCXXABIKind()) {
91   case TargetCXXABI::AppleARM64:
92   case TargetCXXABI::Fuchsia:
93   case TargetCXXABI::GenericAArch64:
94   case TargetCXXABI::GenericARM:
95   case TargetCXXABI::iOS:
96   case TargetCXXABI::WatchOS:
97   case TargetCXXABI::GenericMIPS:
98   case TargetCXXABI::GenericItanium:
99   case TargetCXXABI::WebAssembly:
100   case TargetCXXABI::XL:
101     return CreateItaniumCXXABI(CGM);
102   case TargetCXXABI::Microsoft:
103     return CreateMicrosoftCXXABI(CGM);
104   }
105 
106   llvm_unreachable("invalid C++ ABI kind");
107 }
108 
109 static std::unique_ptr<TargetCodeGenInfo>
110 createTargetCodeGenInfo(CodeGenModule &CGM) {
111   const TargetInfo &Target = CGM.getTarget();
112   const llvm::Triple &Triple = Target.getTriple();
113   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
114 
115   switch (Triple.getArch()) {
116   default:
117     return createDefaultTargetCodeGenInfo(CGM);
118 
119   case llvm::Triple::m68k:
120     return createM68kTargetCodeGenInfo(CGM);
121   case llvm::Triple::mips:
122   case llvm::Triple::mipsel:
123     if (Triple.getOS() == llvm::Triple::NaCl)
124       return createPNaClTargetCodeGenInfo(CGM);
125     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
126 
127   case llvm::Triple::mips64:
128   case llvm::Triple::mips64el:
129     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
130 
131   case llvm::Triple::avr: {
132     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
133     // on avrtiny. For passing return value, R18~R25 are used on avr, and
134     // R22~R25 are used on avrtiny.
135     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
136     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
137     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
138   }
139 
140   case llvm::Triple::aarch64:
141   case llvm::Triple::aarch64_32:
142   case llvm::Triple::aarch64_be: {
143     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
144     if (Target.getABI() == "darwinpcs")
145       Kind = AArch64ABIKind::DarwinPCS;
146     else if (Triple.isOSWindows())
147       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
148     else if (Target.getABI() == "aapcs-soft")
149       Kind = AArch64ABIKind::AAPCSSoft;
150 
151     return createAArch64TargetCodeGenInfo(CGM, Kind);
152   }
153 
154   case llvm::Triple::wasm32:
155   case llvm::Triple::wasm64: {
156     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
157     if (Target.getABI() == "experimental-mv")
158       Kind = WebAssemblyABIKind::ExperimentalMV;
159     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
160   }
161 
162   case llvm::Triple::arm:
163   case llvm::Triple::armeb:
164   case llvm::Triple::thumb:
165   case llvm::Triple::thumbeb: {
166     if (Triple.getOS() == llvm::Triple::Win32)
167       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
168 
169     ARMABIKind Kind = ARMABIKind::AAPCS;
170     StringRef ABIStr = Target.getABI();
171     if (ABIStr == "apcs-gnu")
172       Kind = ARMABIKind::APCS;
173     else if (ABIStr == "aapcs16")
174       Kind = ARMABIKind::AAPCS16_VFP;
175     else if (CodeGenOpts.FloatABI == "hard" ||
176              (CodeGenOpts.FloatABI != "soft" &&
177               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
178                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
179                Triple.getEnvironment() == llvm::Triple::EABIHF)))
180       Kind = ARMABIKind::AAPCS_VFP;
181 
182     return createARMTargetCodeGenInfo(CGM, Kind);
183   }
184 
185   case llvm::Triple::ppc: {
186     if (Triple.isOSAIX())
187       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
188 
189     bool IsSoftFloat =
190         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
191     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
192   }
193   case llvm::Triple::ppcle: {
194     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
195     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
196   }
197   case llvm::Triple::ppc64:
198     if (Triple.isOSAIX())
199       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
200 
201     if (Triple.isOSBinFormatELF()) {
202       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
203       if (Target.getABI() == "elfv2")
204         Kind = PPC64_SVR4_ABIKind::ELFv2;
205       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
206 
207       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
208     }
209     return createPPC64TargetCodeGenInfo(CGM);
210   case llvm::Triple::ppc64le: {
211     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
212     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
213     if (Target.getABI() == "elfv1")
214       Kind = PPC64_SVR4_ABIKind::ELFv1;
215     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
216 
217     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
218   }
219 
220   case llvm::Triple::nvptx:
221   case llvm::Triple::nvptx64:
222     return createNVPTXTargetCodeGenInfo(CGM);
223 
224   case llvm::Triple::msp430:
225     return createMSP430TargetCodeGenInfo(CGM);
226 
227   case llvm::Triple::riscv32:
228   case llvm::Triple::riscv64: {
229     StringRef ABIStr = Target.getABI();
230     unsigned XLen = Target.getPointerWidth(LangAS::Default);
231     unsigned ABIFLen = 0;
232     if (ABIStr.ends_with("f"))
233       ABIFLen = 32;
234     else if (ABIStr.ends_with("d"))
235       ABIFLen = 64;
236     bool EABI = ABIStr.ends_with("e");
237     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
238   }
239 
240   case llvm::Triple::systemz: {
241     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
242     bool HasVector = !SoftFloat && Target.getABI() == "vector";
243     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
244   }
245 
246   case llvm::Triple::tce:
247   case llvm::Triple::tcele:
248     return createTCETargetCodeGenInfo(CGM);
249 
250   case llvm::Triple::x86: {
251     bool IsDarwinVectorABI = Triple.isOSDarwin();
252     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
253 
254     if (Triple.getOS() == llvm::Triple::Win32) {
255       return createWinX86_32TargetCodeGenInfo(
256           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
257           CodeGenOpts.NumRegisterParameters);
258     }
259     return createX86_32TargetCodeGenInfo(
260         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
261         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
262   }
263 
264   case llvm::Triple::x86_64: {
265     StringRef ABI = Target.getABI();
266     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
267                                : ABI == "avx"  ? X86AVXABILevel::AVX
268                                                : X86AVXABILevel::None);
269 
270     switch (Triple.getOS()) {
271     case llvm::Triple::Win32:
272       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
273     default:
274       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
275     }
276   }
277   case llvm::Triple::hexagon:
278     return createHexagonTargetCodeGenInfo(CGM);
279   case llvm::Triple::lanai:
280     return createLanaiTargetCodeGenInfo(CGM);
281   case llvm::Triple::r600:
282     return createAMDGPUTargetCodeGenInfo(CGM);
283   case llvm::Triple::amdgcn:
284     return createAMDGPUTargetCodeGenInfo(CGM);
285   case llvm::Triple::sparc:
286     return createSparcV8TargetCodeGenInfo(CGM);
287   case llvm::Triple::sparcv9:
288     return createSparcV9TargetCodeGenInfo(CGM);
289   case llvm::Triple::xcore:
290     return createXCoreTargetCodeGenInfo(CGM);
291   case llvm::Triple::arc:
292     return createARCTargetCodeGenInfo(CGM);
293   case llvm::Triple::spir:
294   case llvm::Triple::spir64:
295     return createCommonSPIRTargetCodeGenInfo(CGM);
296   case llvm::Triple::spirv32:
297   case llvm::Triple::spirv64:
298     return createSPIRVTargetCodeGenInfo(CGM);
299   case llvm::Triple::ve:
300     return createVETargetCodeGenInfo(CGM);
301   case llvm::Triple::csky: {
302     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
303     bool hasFP64 =
304         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
305     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
306                                             : hasFP64   ? 64
307                                                         : 32);
308   }
309   case llvm::Triple::bpfeb:
310   case llvm::Triple::bpfel:
311     return createBPFTargetCodeGenInfo(CGM);
312   case llvm::Triple::loongarch32:
313   case llvm::Triple::loongarch64: {
314     StringRef ABIStr = Target.getABI();
315     unsigned ABIFRLen = 0;
316     if (ABIStr.ends_with("f"))
317       ABIFRLen = 32;
318     else if (ABIStr.ends_with("d"))
319       ABIFRLen = 64;
320     return createLoongArchTargetCodeGenInfo(
321         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
322   }
323   }
324 }
325 
326 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
327   if (!TheTargetCodeGenInfo)
328     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
329   return *TheTargetCodeGenInfo;
330 }
331 
332 CodeGenModule::CodeGenModule(ASTContext &C,
333                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
334                              const HeaderSearchOptions &HSO,
335                              const PreprocessorOptions &PPO,
336                              const CodeGenOptions &CGO, llvm::Module &M,
337                              DiagnosticsEngine &diags,
338                              CoverageSourceInfo *CoverageInfo)
339     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
340       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
341       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
342       VMContext(M.getContext()), Types(*this), VTables(*this),
343       SanitizerMD(new SanitizerMetadata(*this)) {
344 
345   // Initialize the type cache.
346   llvm::LLVMContext &LLVMContext = M.getContext();
347   VoidTy = llvm::Type::getVoidTy(LLVMContext);
348   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
349   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
350   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
351   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
352   HalfTy = llvm::Type::getHalfTy(LLVMContext);
353   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
354   FloatTy = llvm::Type::getFloatTy(LLVMContext);
355   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
356   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
357   PointerAlignInBytes =
358       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
359           .getQuantity();
360   SizeSizeInBytes =
361     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
362   IntAlignInBytes =
363     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
364   CharTy =
365     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
366   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
367   IntPtrTy = llvm::IntegerType::get(LLVMContext,
368     C.getTargetInfo().getMaxPointerWidth());
369   Int8PtrTy = llvm::PointerType::get(LLVMContext,
370                                      C.getTargetAddressSpace(LangAS::Default));
371   const llvm::DataLayout &DL = M.getDataLayout();
372   AllocaInt8PtrTy =
373       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
374   GlobalsInt8PtrTy =
375       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
376   ConstGlobalsPtrTy = llvm::PointerType::get(
377       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
378   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
379 
380   // Build C++20 Module initializers.
381   // TODO: Add Microsoft here once we know the mangling required for the
382   // initializers.
383   CXX20ModuleInits =
384       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
385                                        ItaniumMangleContext::MK_Itanium;
386 
387   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
388 
389   if (LangOpts.ObjC)
390     createObjCRuntime();
391   if (LangOpts.OpenCL)
392     createOpenCLRuntime();
393   if (LangOpts.OpenMP)
394     createOpenMPRuntime();
395   if (LangOpts.CUDA)
396     createCUDARuntime();
397   if (LangOpts.HLSL)
398     createHLSLRuntime();
399 
400   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
401   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
402       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
403     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
404                                getLangOpts(), getCXXABI().getMangleContext()));
405 
406   // If debug info or coverage generation is enabled, create the CGDebugInfo
407   // object.
408   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
409       CodeGenOpts.CoverageNotesFile.size() ||
410       CodeGenOpts.CoverageDataFile.size())
411     DebugInfo.reset(new CGDebugInfo(*this));
412 
413   Block.GlobalUniqueCount = 0;
414 
415   if (C.getLangOpts().ObjC)
416     ObjCData.reset(new ObjCEntrypoints());
417 
418   if (CodeGenOpts.hasProfileClangUse()) {
419     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
420         CodeGenOpts.ProfileInstrumentUsePath, *FS,
421         CodeGenOpts.ProfileRemappingFile);
422     // We're checking for profile read errors in CompilerInvocation, so if
423     // there was an error it should've already been caught. If it hasn't been
424     // somehow, trip an assertion.
425     assert(ReaderOrErr);
426     PGOReader = std::move(ReaderOrErr.get());
427   }
428 
429   // If coverage mapping generation is enabled, create the
430   // CoverageMappingModuleGen object.
431   if (CodeGenOpts.CoverageMapping)
432     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
433 
434   // Generate the module name hash here if needed.
435   if (CodeGenOpts.UniqueInternalLinkageNames &&
436       !getModule().getSourceFileName().empty()) {
437     std::string Path = getModule().getSourceFileName();
438     // Check if a path substitution is needed from the MacroPrefixMap.
439     for (const auto &Entry : LangOpts.MacroPrefixMap)
440       if (Path.rfind(Entry.first, 0) != std::string::npos) {
441         Path = Entry.second + Path.substr(Entry.first.size());
442         break;
443       }
444     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
445   }
446 
447   // Record mregparm value now so it is visible through all of codegen.
448   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
449     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
450                               CodeGenOpts.NumRegisterParameters);
451 }
452 
453 CodeGenModule::~CodeGenModule() {}
454 
455 void CodeGenModule::createObjCRuntime() {
456   // This is just isGNUFamily(), but we want to force implementors of
457   // new ABIs to decide how best to do this.
458   switch (LangOpts.ObjCRuntime.getKind()) {
459   case ObjCRuntime::GNUstep:
460   case ObjCRuntime::GCC:
461   case ObjCRuntime::ObjFW:
462     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
463     return;
464 
465   case ObjCRuntime::FragileMacOSX:
466   case ObjCRuntime::MacOSX:
467   case ObjCRuntime::iOS:
468   case ObjCRuntime::WatchOS:
469     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
470     return;
471   }
472   llvm_unreachable("bad runtime kind");
473 }
474 
475 void CodeGenModule::createOpenCLRuntime() {
476   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
477 }
478 
479 void CodeGenModule::createOpenMPRuntime() {
480   // Select a specialized code generation class based on the target, if any.
481   // If it does not exist use the default implementation.
482   switch (getTriple().getArch()) {
483   case llvm::Triple::nvptx:
484   case llvm::Triple::nvptx64:
485   case llvm::Triple::amdgcn:
486     assert(getLangOpts().OpenMPIsTargetDevice &&
487            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
488     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
489     break;
490   default:
491     if (LangOpts.OpenMPSimd)
492       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
493     else
494       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
495     break;
496   }
497 }
498 
499 void CodeGenModule::createCUDARuntime() {
500   CUDARuntime.reset(CreateNVCUDARuntime(*this));
501 }
502 
503 void CodeGenModule::createHLSLRuntime() {
504   HLSLRuntime.reset(new CGHLSLRuntime(*this));
505 }
506 
507 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
508   Replacements[Name] = C;
509 }
510 
511 void CodeGenModule::applyReplacements() {
512   for (auto &I : Replacements) {
513     StringRef MangledName = I.first;
514     llvm::Constant *Replacement = I.second;
515     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
516     if (!Entry)
517       continue;
518     auto *OldF = cast<llvm::Function>(Entry);
519     auto *NewF = dyn_cast<llvm::Function>(Replacement);
520     if (!NewF) {
521       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
522         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
523       } else {
524         auto *CE = cast<llvm::ConstantExpr>(Replacement);
525         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
526                CE->getOpcode() == llvm::Instruction::GetElementPtr);
527         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
528       }
529     }
530 
531     // Replace old with new, but keep the old order.
532     OldF->replaceAllUsesWith(Replacement);
533     if (NewF) {
534       NewF->removeFromParent();
535       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
536                                                        NewF);
537     }
538     OldF->eraseFromParent();
539   }
540 }
541 
542 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
543   GlobalValReplacements.push_back(std::make_pair(GV, C));
544 }
545 
546 void CodeGenModule::applyGlobalValReplacements() {
547   for (auto &I : GlobalValReplacements) {
548     llvm::GlobalValue *GV = I.first;
549     llvm::Constant *C = I.second;
550 
551     GV->replaceAllUsesWith(C);
552     GV->eraseFromParent();
553   }
554 }
555 
556 // This is only used in aliases that we created and we know they have a
557 // linear structure.
558 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
559   const llvm::Constant *C;
560   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
561     C = GA->getAliasee();
562   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
563     C = GI->getResolver();
564   else
565     return GV;
566 
567   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
568   if (!AliaseeGV)
569     return nullptr;
570 
571   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
572   if (FinalGV == GV)
573     return nullptr;
574 
575   return FinalGV;
576 }
577 
578 static bool checkAliasedGlobal(
579     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
580     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
581     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
582     SourceRange AliasRange) {
583   GV = getAliasedGlobal(Alias);
584   if (!GV) {
585     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
586     return false;
587   }
588 
589   if (GV->hasCommonLinkage()) {
590     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
591     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
592       Diags.Report(Location, diag::err_alias_to_common);
593       return false;
594     }
595   }
596 
597   if (GV->isDeclaration()) {
598     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
599     Diags.Report(Location, diag::note_alias_requires_mangled_name)
600         << IsIFunc << IsIFunc;
601     // Provide a note if the given function is not found and exists as a
602     // mangled name.
603     for (const auto &[Decl, Name] : MangledDeclNames) {
604       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
605         if (ND->getName() == GV->getName()) {
606           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
607               << Name
608               << FixItHint::CreateReplacement(
609                      AliasRange,
610                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
611                          .str());
612         }
613       }
614     }
615     return false;
616   }
617 
618   if (IsIFunc) {
619     // Check resolver function type.
620     const auto *F = dyn_cast<llvm::Function>(GV);
621     if (!F) {
622       Diags.Report(Location, diag::err_alias_to_undefined)
623           << IsIFunc << IsIFunc;
624       return false;
625     }
626 
627     llvm::FunctionType *FTy = F->getFunctionType();
628     if (!FTy->getReturnType()->isPointerTy()) {
629       Diags.Report(Location, diag::err_ifunc_resolver_return);
630       return false;
631     }
632   }
633 
634   return true;
635 }
636 
637 // Emit a warning if toc-data attribute is requested for global variables that
638 // have aliases and remove the toc-data attribute.
639 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
640                                  const CodeGenOptions &CodeGenOpts,
641                                  DiagnosticsEngine &Diags,
642                                  SourceLocation Location) {
643   if (GVar->hasAttribute("toc-data")) {
644     auto GVId = GVar->getName();
645     // Is this a global variable specified by the user as local?
646     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
647       Diags.Report(Location, diag::warn_toc_unsupported_type)
648           << GVId << "the variable has an alias";
649     }
650     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
651     llvm::AttributeSet NewAttributes =
652         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
653     GVar->setAttributes(NewAttributes);
654   }
655 }
656 
657 void CodeGenModule::checkAliases() {
658   // Check if the constructed aliases are well formed. It is really unfortunate
659   // that we have to do this in CodeGen, but we only construct mangled names
660   // and aliases during codegen.
661   bool Error = false;
662   DiagnosticsEngine &Diags = getDiags();
663   for (const GlobalDecl &GD : Aliases) {
664     const auto *D = cast<ValueDecl>(GD.getDecl());
665     SourceLocation Location;
666     SourceRange Range;
667     bool IsIFunc = D->hasAttr<IFuncAttr>();
668     if (const Attr *A = D->getDefiningAttr()) {
669       Location = A->getLocation();
670       Range = A->getRange();
671     } else
672       llvm_unreachable("Not an alias or ifunc?");
673 
674     StringRef MangledName = getMangledName(GD);
675     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
676     const llvm::GlobalValue *GV = nullptr;
677     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
678                             MangledDeclNames, Range)) {
679       Error = true;
680       continue;
681     }
682 
683     if (getContext().getTargetInfo().getTriple().isOSAIX())
684       if (const llvm::GlobalVariable *GVar =
685               dyn_cast<const llvm::GlobalVariable>(GV))
686         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
687                              getCodeGenOpts(), Diags, Location);
688 
689     llvm::Constant *Aliasee =
690         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
691                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
692 
693     llvm::GlobalValue *AliaseeGV;
694     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
695       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
696     else
697       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
698 
699     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
700       StringRef AliasSection = SA->getName();
701       if (AliasSection != AliaseeGV->getSection())
702         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
703             << AliasSection << IsIFunc << IsIFunc;
704     }
705 
706     // We have to handle alias to weak aliases in here. LLVM itself disallows
707     // this since the object semantics would not match the IL one. For
708     // compatibility with gcc we implement it by just pointing the alias
709     // to its aliasee's aliasee. We also warn, since the user is probably
710     // expecting the link to be weak.
711     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
712       if (GA->isInterposable()) {
713         Diags.Report(Location, diag::warn_alias_to_weak_alias)
714             << GV->getName() << GA->getName() << IsIFunc;
715         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
716             GA->getAliasee(), Alias->getType());
717 
718         if (IsIFunc)
719           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
720         else
721           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
722       }
723     }
724     // ifunc resolvers are usually implemented to run before sanitizer
725     // initialization. Disable instrumentation to prevent the ordering issue.
726     if (IsIFunc)
727       cast<llvm::Function>(Aliasee)->addFnAttr(
728           llvm::Attribute::DisableSanitizerInstrumentation);
729   }
730   if (!Error)
731     return;
732 
733   for (const GlobalDecl &GD : Aliases) {
734     StringRef MangledName = getMangledName(GD);
735     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
736     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
737     Alias->eraseFromParent();
738   }
739 }
740 
741 void CodeGenModule::clear() {
742   DeferredDeclsToEmit.clear();
743   EmittedDeferredDecls.clear();
744   DeferredAnnotations.clear();
745   if (OpenMPRuntime)
746     OpenMPRuntime->clear();
747 }
748 
749 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
750                                        StringRef MainFile) {
751   if (!hasDiagnostics())
752     return;
753   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
754     if (MainFile.empty())
755       MainFile = "<stdin>";
756     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
757   } else {
758     if (Mismatched > 0)
759       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
760 
761     if (Missing > 0)
762       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
763   }
764 }
765 
766 static std::optional<llvm::GlobalValue::VisibilityTypes>
767 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
768   // Map to LLVM visibility.
769   switch (K) {
770   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
771     return std::nullopt;
772   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
773     return llvm::GlobalValue::DefaultVisibility;
774   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
775     return llvm::GlobalValue::HiddenVisibility;
776   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
777     return llvm::GlobalValue::ProtectedVisibility;
778   }
779   llvm_unreachable("unknown option value!");
780 }
781 
782 void setLLVMVisibility(llvm::GlobalValue &GV,
783                        std::optional<llvm::GlobalValue::VisibilityTypes> V) {
784   if (!V)
785     return;
786 
787   // Reset DSO locality before setting the visibility. This removes
788   // any effects that visibility options and annotations may have
789   // had on the DSO locality. Setting the visibility will implicitly set
790   // appropriate globals to DSO Local; however, this will be pessimistic
791   // w.r.t. to the normal compiler IRGen.
792   GV.setDSOLocal(false);
793   GV.setVisibility(*V);
794 }
795 
796 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
797                                              llvm::Module &M) {
798   if (!LO.VisibilityFromDLLStorageClass)
799     return;
800 
801   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
802       getLLVMVisibility(LO.getDLLExportVisibility());
803 
804   std::optional<llvm::GlobalValue::VisibilityTypes>
805       NoDLLStorageClassVisibility =
806           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
807 
808   std::optional<llvm::GlobalValue::VisibilityTypes>
809       ExternDeclDLLImportVisibility =
810           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
811 
812   std::optional<llvm::GlobalValue::VisibilityTypes>
813       ExternDeclNoDLLStorageClassVisibility =
814           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
815 
816   for (llvm::GlobalValue &GV : M.global_values()) {
817     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
818       continue;
819 
820     if (GV.isDeclarationForLinker())
821       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
822                                     llvm::GlobalValue::DLLImportStorageClass
823                                 ? ExternDeclDLLImportVisibility
824                                 : ExternDeclNoDLLStorageClassVisibility);
825     else
826       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
827                                     llvm::GlobalValue::DLLExportStorageClass
828                                 ? DLLExportVisibility
829                                 : NoDLLStorageClassVisibility);
830 
831     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
832   }
833 }
834 
835 static bool isStackProtectorOn(const LangOptions &LangOpts,
836                                const llvm::Triple &Triple,
837                                clang::LangOptions::StackProtectorMode Mode) {
838   if (Triple.isAMDGPU() || Triple.isNVPTX())
839     return false;
840   return LangOpts.getStackProtector() == Mode;
841 }
842 
843 void CodeGenModule::Release() {
844   Module *Primary = getContext().getCurrentNamedModule();
845   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
846     EmitModuleInitializers(Primary);
847   EmitDeferred();
848   DeferredDecls.insert(EmittedDeferredDecls.begin(),
849                        EmittedDeferredDecls.end());
850   EmittedDeferredDecls.clear();
851   EmitVTablesOpportunistically();
852   applyGlobalValReplacements();
853   applyReplacements();
854   emitMultiVersionFunctions();
855 
856   if (Context.getLangOpts().IncrementalExtensions &&
857       GlobalTopLevelStmtBlockInFlight.first) {
858     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
859     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
860     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
861   }
862 
863   // Module implementations are initialized the same way as a regular TU that
864   // imports one or more modules.
865   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
866     EmitCXXModuleInitFunc(Primary);
867   else
868     EmitCXXGlobalInitFunc();
869   EmitCXXGlobalCleanUpFunc();
870   registerGlobalDtorsWithAtExit();
871   EmitCXXThreadLocalInitFunc();
872   if (ObjCRuntime)
873     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
874       AddGlobalCtor(ObjCInitFunction);
875   if (Context.getLangOpts().CUDA && CUDARuntime) {
876     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
877       AddGlobalCtor(CudaCtorFunction);
878   }
879   if (OpenMPRuntime) {
880     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
881     OpenMPRuntime->clear();
882   }
883   if (PGOReader) {
884     getModule().setProfileSummary(
885         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
886         llvm::ProfileSummary::PSK_Instr);
887     if (PGOStats.hasDiagnostics())
888       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
889   }
890   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
891     return L.LexOrder < R.LexOrder;
892   });
893   EmitCtorList(GlobalCtors, "llvm.global_ctors");
894   EmitCtorList(GlobalDtors, "llvm.global_dtors");
895   EmitGlobalAnnotations();
896   EmitStaticExternCAliases();
897   checkAliases();
898   EmitDeferredUnusedCoverageMappings();
899   CodeGenPGO(*this).setValueProfilingFlag(getModule());
900   CodeGenPGO(*this).setProfileVersion(getModule());
901   if (CoverageMapping)
902     CoverageMapping->emit();
903   if (CodeGenOpts.SanitizeCfiCrossDso) {
904     CodeGenFunction(*this).EmitCfiCheckFail();
905     CodeGenFunction(*this).EmitCfiCheckStub();
906   }
907   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
908     finalizeKCFITypes();
909   emitAtAvailableLinkGuard();
910   if (Context.getTargetInfo().getTriple().isWasm())
911     EmitMainVoidAlias();
912 
913   if (getTriple().isAMDGPU() ||
914       (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
915     // Emit amdhsa_code_object_version module flag, which is code object version
916     // times 100.
917     if (getTarget().getTargetOpts().CodeObjectVersion !=
918         llvm::CodeObjectVersionKind::COV_None) {
919       getModule().addModuleFlag(llvm::Module::Error,
920                                 "amdhsa_code_object_version",
921                                 getTarget().getTargetOpts().CodeObjectVersion);
922     }
923 
924     // Currently, "-mprintf-kind" option is only supported for HIP
925     if (LangOpts.HIP) {
926       auto *MDStr = llvm::MDString::get(
927           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
928                              TargetOptions::AMDGPUPrintfKind::Hostcall)
929                                 ? "hostcall"
930                                 : "buffered");
931       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
932                                 MDStr);
933     }
934   }
935 
936   // Emit a global array containing all external kernels or device variables
937   // used by host functions and mark it as used for CUDA/HIP. This is necessary
938   // to get kernels or device variables in archives linked in even if these
939   // kernels or device variables are only used in host functions.
940   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
941     SmallVector<llvm::Constant *, 8> UsedArray;
942     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
943       GlobalDecl GD;
944       if (auto *FD = dyn_cast<FunctionDecl>(D))
945         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
946       else
947         GD = GlobalDecl(D);
948       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
949           GetAddrOfGlobal(GD), Int8PtrTy));
950     }
951 
952     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
953 
954     auto *GV = new llvm::GlobalVariable(
955         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
956         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
957     addCompilerUsedGlobal(GV);
958   }
959   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
960     // Emit a unique ID so that host and device binaries from the same
961     // compilation unit can be associated.
962     auto *GV = new llvm::GlobalVariable(
963         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
964         llvm::Constant::getNullValue(Int8Ty),
965         "__hip_cuid_" + getContext().getCUIDHash());
966     addCompilerUsedGlobal(GV);
967   }
968   emitLLVMUsed();
969   if (SanStats)
970     SanStats->finish();
971 
972   if (CodeGenOpts.Autolink &&
973       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
974     EmitModuleLinkOptions();
975   }
976 
977   // On ELF we pass the dependent library specifiers directly to the linker
978   // without manipulating them. This is in contrast to other platforms where
979   // they are mapped to a specific linker option by the compiler. This
980   // difference is a result of the greater variety of ELF linkers and the fact
981   // that ELF linkers tend to handle libraries in a more complicated fashion
982   // than on other platforms. This forces us to defer handling the dependent
983   // libs to the linker.
984   //
985   // CUDA/HIP device and host libraries are different. Currently there is no
986   // way to differentiate dependent libraries for host or device. Existing
987   // usage of #pragma comment(lib, *) is intended for host libraries on
988   // Windows. Therefore emit llvm.dependent-libraries only for host.
989   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
990     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
991     for (auto *MD : ELFDependentLibraries)
992       NMD->addOperand(MD);
993   }
994 
995   if (CodeGenOpts.DwarfVersion) {
996     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
997                               CodeGenOpts.DwarfVersion);
998   }
999 
1000   if (CodeGenOpts.Dwarf64)
1001     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
1002 
1003   if (Context.getLangOpts().SemanticInterposition)
1004     // Require various optimization to respect semantic interposition.
1005     getModule().setSemanticInterposition(true);
1006 
1007   if (CodeGenOpts.EmitCodeView) {
1008     // Indicate that we want CodeView in the metadata.
1009     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1010   }
1011   if (CodeGenOpts.CodeViewGHash) {
1012     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1013   }
1014   if (CodeGenOpts.ControlFlowGuard) {
1015     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1016     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1017   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1018     // Function ID tables for Control Flow Guard (cfguard=1).
1019     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1020   }
1021   if (CodeGenOpts.EHContGuard) {
1022     // Function ID tables for EH Continuation Guard.
1023     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1024   }
1025   if (Context.getLangOpts().Kernel) {
1026     // Note if we are compiling with /kernel.
1027     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1028   }
1029   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1030     // We don't support LTO with 2 with different StrictVTablePointers
1031     // FIXME: we could support it by stripping all the information introduced
1032     // by StrictVTablePointers.
1033 
1034     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1035 
1036     llvm::Metadata *Ops[2] = {
1037               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1038               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1039                   llvm::Type::getInt32Ty(VMContext), 1))};
1040 
1041     getModule().addModuleFlag(llvm::Module::Require,
1042                               "StrictVTablePointersRequirement",
1043                               llvm::MDNode::get(VMContext, Ops));
1044   }
1045   if (getModuleDebugInfo())
1046     // We support a single version in the linked module. The LLVM
1047     // parser will drop debug info with a different version number
1048     // (and warn about it, too).
1049     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1050                               llvm::DEBUG_METADATA_VERSION);
1051 
1052   // We need to record the widths of enums and wchar_t, so that we can generate
1053   // the correct build attributes in the ARM backend. wchar_size is also used by
1054   // TargetLibraryInfo.
1055   uint64_t WCharWidth =
1056       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1057   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1058 
1059   if (getTriple().isOSzOS()) {
1060     getModule().addModuleFlag(llvm::Module::Warning,
1061                               "zos_product_major_version",
1062                               uint32_t(CLANG_VERSION_MAJOR));
1063     getModule().addModuleFlag(llvm::Module::Warning,
1064                               "zos_product_minor_version",
1065                               uint32_t(CLANG_VERSION_MINOR));
1066     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1067                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1068     std::string ProductId = getClangVendor() + "clang";
1069     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1070                               llvm::MDString::get(VMContext, ProductId));
1071 
1072     // Record the language because we need it for the PPA2.
1073     StringRef lang_str = languageToString(
1074         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1075     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1076                               llvm::MDString::get(VMContext, lang_str));
1077 
1078     time_t TT = PreprocessorOpts.SourceDateEpoch
1079                     ? *PreprocessorOpts.SourceDateEpoch
1080                     : std::time(nullptr);
1081     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1082                               static_cast<uint64_t>(TT));
1083 
1084     // Multiple modes will be supported here.
1085     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1086                               llvm::MDString::get(VMContext, "ascii"));
1087   }
1088 
1089   llvm::Triple T = Context.getTargetInfo().getTriple();
1090   if (T.isARM() || T.isThumb()) {
1091     // The minimum width of an enum in bytes
1092     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1093     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1094   }
1095 
1096   if (T.isRISCV()) {
1097     StringRef ABIStr = Target.getABI();
1098     llvm::LLVMContext &Ctx = TheModule.getContext();
1099     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1100                               llvm::MDString::get(Ctx, ABIStr));
1101 
1102     // Add the canonical ISA string as metadata so the backend can set the ELF
1103     // attributes correctly. We use AppendUnique so LTO will keep all of the
1104     // unique ISA strings that were linked together.
1105     const std::vector<std::string> &Features =
1106         getTarget().getTargetOpts().Features;
1107     auto ParseResult =
1108         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1109     if (!errorToBool(ParseResult.takeError()))
1110       getModule().addModuleFlag(
1111           llvm::Module::AppendUnique, "riscv-isa",
1112           llvm::MDNode::get(
1113               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1114   }
1115 
1116   if (CodeGenOpts.SanitizeCfiCrossDso) {
1117     // Indicate that we want cross-DSO control flow integrity checks.
1118     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1119   }
1120 
1121   if (CodeGenOpts.WholeProgramVTables) {
1122     // Indicate whether VFE was enabled for this module, so that the
1123     // vcall_visibility metadata added under whole program vtables is handled
1124     // appropriately in the optimizer.
1125     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1126                               CodeGenOpts.VirtualFunctionElimination);
1127   }
1128 
1129   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1130     getModule().addModuleFlag(llvm::Module::Override,
1131                               "CFI Canonical Jump Tables",
1132                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1133   }
1134 
1135   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1136     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1137     // KCFI assumes patchable-function-prefix is the same for all indirectly
1138     // called functions. Store the expected offset for code generation.
1139     if (CodeGenOpts.PatchableFunctionEntryOffset)
1140       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1141                                 CodeGenOpts.PatchableFunctionEntryOffset);
1142   }
1143 
1144   if (CodeGenOpts.CFProtectionReturn &&
1145       Target.checkCFProtectionReturnSupported(getDiags())) {
1146     // Indicate that we want to instrument return control flow protection.
1147     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1148                               1);
1149   }
1150 
1151   if (CodeGenOpts.CFProtectionBranch &&
1152       Target.checkCFProtectionBranchSupported(getDiags())) {
1153     // Indicate that we want to instrument branch control flow protection.
1154     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1155                               1);
1156   }
1157 
1158   if (CodeGenOpts.FunctionReturnThunks)
1159     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1160 
1161   if (CodeGenOpts.IndirectBranchCSPrefix)
1162     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1163 
1164   // Add module metadata for return address signing (ignoring
1165   // non-leaf/all) and stack tagging. These are actually turned on by function
1166   // attributes, but we use module metadata to emit build attributes. This is
1167   // needed for LTO, where the function attributes are inside bitcode
1168   // serialised into a global variable by the time build attributes are
1169   // emitted, so we can't access them. LTO objects could be compiled with
1170   // different flags therefore module flags are set to "Min" behavior to achieve
1171   // the same end result of the normal build where e.g BTI is off if any object
1172   // doesn't support it.
1173   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1174       LangOpts.getSignReturnAddressScope() !=
1175           LangOptions::SignReturnAddressScopeKind::None)
1176     getModule().addModuleFlag(llvm::Module::Override,
1177                               "sign-return-address-buildattr", 1);
1178   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1179     getModule().addModuleFlag(llvm::Module::Override,
1180                               "tag-stack-memory-buildattr", 1);
1181 
1182   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1183     if (LangOpts.BranchTargetEnforcement)
1184       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1185                                 1);
1186     if (LangOpts.BranchProtectionPAuthLR)
1187       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1188                                 1);
1189     if (LangOpts.GuardedControlStack)
1190       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1191     if (LangOpts.hasSignReturnAddress())
1192       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1193     if (LangOpts.isSignReturnAddressScopeAll())
1194       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1195                                 1);
1196     if (!LangOpts.isSignReturnAddressWithAKey())
1197       getModule().addModuleFlag(llvm::Module::Min,
1198                                 "sign-return-address-with-bkey", 1);
1199 
1200     if (getTriple().isOSLinux()) {
1201       assert(getTriple().isOSBinFormatELF());
1202       using namespace llvm::ELF;
1203       uint64_t PAuthABIVersion =
1204           (LangOpts.PointerAuthIntrinsics
1205            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1206           (LangOpts.PointerAuthCalls
1207            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1208           (LangOpts.PointerAuthReturns
1209            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1210           (LangOpts.PointerAuthAuthTraps
1211            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1212           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1213            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1214           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1215            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1216           (LangOpts.PointerAuthInitFini
1217            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI);
1218       static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI ==
1219                         AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1220                     "Update when new enum items are defined");
1221       if (PAuthABIVersion != 0) {
1222         getModule().addModuleFlag(llvm::Module::Error,
1223                                   "aarch64-elf-pauthabi-platform",
1224                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1225         getModule().addModuleFlag(llvm::Module::Error,
1226                                   "aarch64-elf-pauthabi-version",
1227                                   PAuthABIVersion);
1228       }
1229     }
1230   }
1231 
1232   if (CodeGenOpts.StackClashProtector)
1233     getModule().addModuleFlag(
1234         llvm::Module::Override, "probe-stack",
1235         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1236 
1237   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1238     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1239                               CodeGenOpts.StackProbeSize);
1240 
1241   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1242     llvm::LLVMContext &Ctx = TheModule.getContext();
1243     getModule().addModuleFlag(
1244         llvm::Module::Error, "MemProfProfileFilename",
1245         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1246   }
1247 
1248   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1249     // Indicate whether __nvvm_reflect should be configured to flush denormal
1250     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1251     // property.)
1252     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1253                               CodeGenOpts.FP32DenormalMode.Output !=
1254                                   llvm::DenormalMode::IEEE);
1255   }
1256 
1257   if (LangOpts.EHAsynch)
1258     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1259 
1260   // Indicate whether this Module was compiled with -fopenmp
1261   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1262     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1263   if (getLangOpts().OpenMPIsTargetDevice)
1264     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1265                               LangOpts.OpenMP);
1266 
1267   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1268   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1269     EmitOpenCLMetadata();
1270     // Emit SPIR version.
1271     if (getTriple().isSPIR()) {
1272       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1273       // opencl.spir.version named metadata.
1274       // C++ for OpenCL has a distinct mapping for version compatibility with
1275       // OpenCL.
1276       auto Version = LangOpts.getOpenCLCompatibleVersion();
1277       llvm::Metadata *SPIRVerElts[] = {
1278           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1279               Int32Ty, Version / 100)),
1280           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1281               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1282       llvm::NamedMDNode *SPIRVerMD =
1283           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1284       llvm::LLVMContext &Ctx = TheModule.getContext();
1285       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1286     }
1287   }
1288 
1289   // HLSL related end of code gen work items.
1290   if (LangOpts.HLSL)
1291     getHLSLRuntime().finishCodeGen();
1292 
1293   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1294     assert(PLevel < 3 && "Invalid PIC Level");
1295     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1296     if (Context.getLangOpts().PIE)
1297       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1298   }
1299 
1300   if (getCodeGenOpts().CodeModel.size() > 0) {
1301     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1302                   .Case("tiny", llvm::CodeModel::Tiny)
1303                   .Case("small", llvm::CodeModel::Small)
1304                   .Case("kernel", llvm::CodeModel::Kernel)
1305                   .Case("medium", llvm::CodeModel::Medium)
1306                   .Case("large", llvm::CodeModel::Large)
1307                   .Default(~0u);
1308     if (CM != ~0u) {
1309       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1310       getModule().setCodeModel(codeModel);
1311 
1312       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1313           Context.getTargetInfo().getTriple().getArch() ==
1314               llvm::Triple::x86_64) {
1315         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1316       }
1317     }
1318   }
1319 
1320   if (CodeGenOpts.NoPLT)
1321     getModule().setRtLibUseGOT();
1322   if (getTriple().isOSBinFormatELF() &&
1323       CodeGenOpts.DirectAccessExternalData !=
1324           getModule().getDirectAccessExternalData()) {
1325     getModule().setDirectAccessExternalData(
1326         CodeGenOpts.DirectAccessExternalData);
1327   }
1328   if (CodeGenOpts.UnwindTables)
1329     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1330 
1331   switch (CodeGenOpts.getFramePointer()) {
1332   case CodeGenOptions::FramePointerKind::None:
1333     // 0 ("none") is the default.
1334     break;
1335   case CodeGenOptions::FramePointerKind::Reserved:
1336     getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1337     break;
1338   case CodeGenOptions::FramePointerKind::NonLeaf:
1339     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1340     break;
1341   case CodeGenOptions::FramePointerKind::All:
1342     getModule().setFramePointer(llvm::FramePointerKind::All);
1343     break;
1344   }
1345 
1346   SimplifyPersonality();
1347 
1348   if (getCodeGenOpts().EmitDeclMetadata)
1349     EmitDeclMetadata();
1350 
1351   if (getCodeGenOpts().CoverageNotesFile.size() ||
1352       getCodeGenOpts().CoverageDataFile.size())
1353     EmitCoverageFile();
1354 
1355   if (CGDebugInfo *DI = getModuleDebugInfo())
1356     DI->finalize();
1357 
1358   if (getCodeGenOpts().EmitVersionIdentMetadata)
1359     EmitVersionIdentMetadata();
1360 
1361   if (!getCodeGenOpts().RecordCommandLine.empty())
1362     EmitCommandLineMetadata();
1363 
1364   if (!getCodeGenOpts().StackProtectorGuard.empty())
1365     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1366   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1367     getModule().setStackProtectorGuardReg(
1368         getCodeGenOpts().StackProtectorGuardReg);
1369   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1370     getModule().setStackProtectorGuardSymbol(
1371         getCodeGenOpts().StackProtectorGuardSymbol);
1372   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1373     getModule().setStackProtectorGuardOffset(
1374         getCodeGenOpts().StackProtectorGuardOffset);
1375   if (getCodeGenOpts().StackAlignment)
1376     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1377   if (getCodeGenOpts().SkipRaxSetup)
1378     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1379   if (getLangOpts().RegCall4)
1380     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1381 
1382   if (getContext().getTargetInfo().getMaxTLSAlign())
1383     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1384                               getContext().getTargetInfo().getMaxTLSAlign());
1385 
1386   getTargetCodeGenInfo().emitTargetGlobals(*this);
1387 
1388   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1389 
1390   EmitBackendOptionsMetadata(getCodeGenOpts());
1391 
1392   // If there is device offloading code embed it in the host now.
1393   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1394 
1395   // Set visibility from DLL storage class
1396   // We do this at the end of LLVM IR generation; after any operation
1397   // that might affect the DLL storage class or the visibility, and
1398   // before anything that might act on these.
1399   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1400 
1401   // Check the tail call symbols are truly undefined.
1402   if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) {
1403     for (auto &I : MustTailCallUndefinedGlobals) {
1404       if (!I.first->isDefined())
1405         getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1406       else {
1407         StringRef MangledName = getMangledName(GlobalDecl(I.first));
1408         llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1409         if (!Entry || Entry->isWeakForLinker() ||
1410             Entry->isDeclarationForLinker())
1411           getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1412       }
1413     }
1414   }
1415 }
1416 
1417 void CodeGenModule::EmitOpenCLMetadata() {
1418   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1419   // opencl.ocl.version named metadata node.
1420   // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1421   auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1422 
1423   auto EmitVersion = [this](StringRef MDName, int Version) {
1424     llvm::Metadata *OCLVerElts[] = {
1425         llvm::ConstantAsMetadata::get(
1426             llvm::ConstantInt::get(Int32Ty, Version / 100)),
1427         llvm::ConstantAsMetadata::get(
1428             llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1429     llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1430     llvm::LLVMContext &Ctx = TheModule.getContext();
1431     OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1432   };
1433 
1434   EmitVersion("opencl.ocl.version", CLVersion);
1435   if (LangOpts.OpenCLCPlusPlus) {
1436     // In addition to the OpenCL compatible version, emit the C++ version.
1437     EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1438   }
1439 }
1440 
1441 void CodeGenModule::EmitBackendOptionsMetadata(
1442     const CodeGenOptions &CodeGenOpts) {
1443   if (getTriple().isRISCV()) {
1444     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1445                               CodeGenOpts.SmallDataLimit);
1446   }
1447 }
1448 
1449 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1450   // Make sure that this type is translated.
1451   Types.UpdateCompletedType(TD);
1452 }
1453 
1454 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1455   // Make sure that this type is translated.
1456   Types.RefreshTypeCacheForClass(RD);
1457 }
1458 
1459 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1460   if (!TBAA)
1461     return nullptr;
1462   return TBAA->getTypeInfo(QTy);
1463 }
1464 
1465 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1466   if (!TBAA)
1467     return TBAAAccessInfo();
1468   if (getLangOpts().CUDAIsDevice) {
1469     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1470     // access info.
1471     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1472       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1473           nullptr)
1474         return TBAAAccessInfo();
1475     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1476       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1477           nullptr)
1478         return TBAAAccessInfo();
1479     }
1480   }
1481   return TBAA->getAccessInfo(AccessType);
1482 }
1483 
1484 TBAAAccessInfo
1485 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1486   if (!TBAA)
1487     return TBAAAccessInfo();
1488   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1489 }
1490 
1491 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1492   if (!TBAA)
1493     return nullptr;
1494   return TBAA->getTBAAStructInfo(QTy);
1495 }
1496 
1497 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1498   if (!TBAA)
1499     return nullptr;
1500   return TBAA->getBaseTypeInfo(QTy);
1501 }
1502 
1503 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1504   if (!TBAA)
1505     return nullptr;
1506   return TBAA->getAccessTagInfo(Info);
1507 }
1508 
1509 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1510                                                    TBAAAccessInfo TargetInfo) {
1511   if (!TBAA)
1512     return TBAAAccessInfo();
1513   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1514 }
1515 
1516 TBAAAccessInfo
1517 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1518                                                    TBAAAccessInfo InfoB) {
1519   if (!TBAA)
1520     return TBAAAccessInfo();
1521   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1522 }
1523 
1524 TBAAAccessInfo
1525 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1526                                               TBAAAccessInfo SrcInfo) {
1527   if (!TBAA)
1528     return TBAAAccessInfo();
1529   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1530 }
1531 
1532 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1533                                                 TBAAAccessInfo TBAAInfo) {
1534   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1535     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1536 }
1537 
1538 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1539     llvm::Instruction *I, const CXXRecordDecl *RD) {
1540   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1541                  llvm::MDNode::get(getLLVMContext(), {}));
1542 }
1543 
1544 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1545   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1546   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1547 }
1548 
1549 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1550 /// specified stmt yet.
1551 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1552   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1553                                                "cannot compile this %0 yet");
1554   std::string Msg = Type;
1555   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1556       << Msg << S->getSourceRange();
1557 }
1558 
1559 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1560 /// specified decl yet.
1561 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1562   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1563                                                "cannot compile this %0 yet");
1564   std::string Msg = Type;
1565   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1566 }
1567 
1568 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1569   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1570 }
1571 
1572 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1573                                         const NamedDecl *D) const {
1574   // Internal definitions always have default visibility.
1575   if (GV->hasLocalLinkage()) {
1576     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1577     return;
1578   }
1579   if (!D)
1580     return;
1581 
1582   // Set visibility for definitions, and for declarations if requested globally
1583   // or set explicitly.
1584   LinkageInfo LV = D->getLinkageAndVisibility();
1585 
1586   // OpenMP declare target variables must be visible to the host so they can
1587   // be registered. We require protected visibility unless the variable has
1588   // the DT_nohost modifier and does not need to be registered.
1589   if (Context.getLangOpts().OpenMP &&
1590       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1591       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1592       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1593           OMPDeclareTargetDeclAttr::DT_NoHost &&
1594       LV.getVisibility() == HiddenVisibility) {
1595     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1596     return;
1597   }
1598 
1599   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1600     // Reject incompatible dlllstorage and visibility annotations.
1601     if (!LV.isVisibilityExplicit())
1602       return;
1603     if (GV->hasDLLExportStorageClass()) {
1604       if (LV.getVisibility() == HiddenVisibility)
1605         getDiags().Report(D->getLocation(),
1606                           diag::err_hidden_visibility_dllexport);
1607     } else if (LV.getVisibility() != DefaultVisibility) {
1608       getDiags().Report(D->getLocation(),
1609                         diag::err_non_default_visibility_dllimport);
1610     }
1611     return;
1612   }
1613 
1614   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1615       !GV->isDeclarationForLinker())
1616     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1617 }
1618 
1619 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1620                                  llvm::GlobalValue *GV) {
1621   if (GV->hasLocalLinkage())
1622     return true;
1623 
1624   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1625     return true;
1626 
1627   // DLLImport explicitly marks the GV as external.
1628   if (GV->hasDLLImportStorageClass())
1629     return false;
1630 
1631   const llvm::Triple &TT = CGM.getTriple();
1632   const auto &CGOpts = CGM.getCodeGenOpts();
1633   if (TT.isWindowsGNUEnvironment()) {
1634     // In MinGW, variables without DLLImport can still be automatically
1635     // imported from a DLL by the linker; don't mark variables that
1636     // potentially could come from another DLL as DSO local.
1637 
1638     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1639     // (and this actually happens in the public interface of libstdc++), so
1640     // such variables can't be marked as DSO local. (Native TLS variables
1641     // can't be dllimported at all, though.)
1642     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1643         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1644         CGOpts.AutoImport)
1645       return false;
1646   }
1647 
1648   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1649   // remain unresolved in the link, they can be resolved to zero, which is
1650   // outside the current DSO.
1651   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1652     return false;
1653 
1654   // Every other GV is local on COFF.
1655   // Make an exception for windows OS in the triple: Some firmware builds use
1656   // *-win32-macho triples. This (accidentally?) produced windows relocations
1657   // without GOT tables in older clang versions; Keep this behaviour.
1658   // FIXME: even thread local variables?
1659   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1660     return true;
1661 
1662   // Only handle COFF and ELF for now.
1663   if (!TT.isOSBinFormatELF())
1664     return false;
1665 
1666   // If this is not an executable, don't assume anything is local.
1667   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1668   const auto &LOpts = CGM.getLangOpts();
1669   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1670     // On ELF, if -fno-semantic-interposition is specified and the target
1671     // supports local aliases, there will be neither CC1
1672     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1673     // dso_local on the function if using a local alias is preferable (can avoid
1674     // PLT indirection).
1675     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1676       return false;
1677     return !(CGM.getLangOpts().SemanticInterposition ||
1678              CGM.getLangOpts().HalfNoSemanticInterposition);
1679   }
1680 
1681   // A definition cannot be preempted from an executable.
1682   if (!GV->isDeclarationForLinker())
1683     return true;
1684 
1685   // Most PIC code sequences that assume that a symbol is local cannot produce a
1686   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1687   // depended, it seems worth it to handle it here.
1688   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1689     return false;
1690 
1691   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1692   if (TT.isPPC64())
1693     return false;
1694 
1695   if (CGOpts.DirectAccessExternalData) {
1696     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1697     // for non-thread-local variables. If the symbol is not defined in the
1698     // executable, a copy relocation will be needed at link time. dso_local is
1699     // excluded for thread-local variables because they generally don't support
1700     // copy relocations.
1701     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1702       if (!Var->isThreadLocal())
1703         return true;
1704 
1705     // -fno-pic sets dso_local on a function declaration to allow direct
1706     // accesses when taking its address (similar to a data symbol). If the
1707     // function is not defined in the executable, a canonical PLT entry will be
1708     // needed at link time. -fno-direct-access-external-data can avoid the
1709     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1710     // it could just cause trouble without providing perceptible benefits.
1711     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1712       return true;
1713   }
1714 
1715   // If we can use copy relocations we can assume it is local.
1716 
1717   // Otherwise don't assume it is local.
1718   return false;
1719 }
1720 
1721 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1722   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1723 }
1724 
1725 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1726                                           GlobalDecl GD) const {
1727   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1728   // C++ destructors have a few C++ ABI specific special cases.
1729   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1730     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1731     return;
1732   }
1733   setDLLImportDLLExport(GV, D);
1734 }
1735 
1736 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1737                                           const NamedDecl *D) const {
1738   if (D && D->isExternallyVisible()) {
1739     if (D->hasAttr<DLLImportAttr>())
1740       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1741     else if ((D->hasAttr<DLLExportAttr>() ||
1742               shouldMapVisibilityToDLLExport(D)) &&
1743              !GV->isDeclarationForLinker())
1744       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1745   }
1746 }
1747 
1748 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1749                                     GlobalDecl GD) const {
1750   setDLLImportDLLExport(GV, GD);
1751   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1752 }
1753 
1754 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1755                                     const NamedDecl *D) const {
1756   setDLLImportDLLExport(GV, D);
1757   setGVPropertiesAux(GV, D);
1758 }
1759 
1760 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1761                                        const NamedDecl *D) const {
1762   setGlobalVisibility(GV, D);
1763   setDSOLocal(GV);
1764   GV->setPartition(CodeGenOpts.SymbolPartition);
1765 }
1766 
1767 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1768   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1769       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1770       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1771       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1772       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1773 }
1774 
1775 llvm::GlobalVariable::ThreadLocalMode
1776 CodeGenModule::GetDefaultLLVMTLSModel() const {
1777   switch (CodeGenOpts.getDefaultTLSModel()) {
1778   case CodeGenOptions::GeneralDynamicTLSModel:
1779     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1780   case CodeGenOptions::LocalDynamicTLSModel:
1781     return llvm::GlobalVariable::LocalDynamicTLSModel;
1782   case CodeGenOptions::InitialExecTLSModel:
1783     return llvm::GlobalVariable::InitialExecTLSModel;
1784   case CodeGenOptions::LocalExecTLSModel:
1785     return llvm::GlobalVariable::LocalExecTLSModel;
1786   }
1787   llvm_unreachable("Invalid TLS model!");
1788 }
1789 
1790 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1791   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1792 
1793   llvm::GlobalValue::ThreadLocalMode TLM;
1794   TLM = GetDefaultLLVMTLSModel();
1795 
1796   // Override the TLS model if it is explicitly specified.
1797   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1798     TLM = GetLLVMTLSModel(Attr->getModel());
1799   }
1800 
1801   GV->setThreadLocalMode(TLM);
1802 }
1803 
1804 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1805                                           StringRef Name) {
1806   const TargetInfo &Target = CGM.getTarget();
1807   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1808 }
1809 
1810 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1811                                                  const CPUSpecificAttr *Attr,
1812                                                  unsigned CPUIndex,
1813                                                  raw_ostream &Out) {
1814   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1815   // supported.
1816   if (Attr)
1817     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1818   else if (CGM.getTarget().supportsIFunc())
1819     Out << ".resolver";
1820 }
1821 
1822 // Returns true if GD is a function decl with internal linkage and
1823 // needs a unique suffix after the mangled name.
1824 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1825                                         CodeGenModule &CGM) {
1826   const Decl *D = GD.getDecl();
1827   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1828          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1829 }
1830 
1831 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1832                                       const NamedDecl *ND,
1833                                       bool OmitMultiVersionMangling = false) {
1834   SmallString<256> Buffer;
1835   llvm::raw_svector_ostream Out(Buffer);
1836   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1837   if (!CGM.getModuleNameHash().empty())
1838     MC.needsUniqueInternalLinkageNames();
1839   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1840   if (ShouldMangle)
1841     MC.mangleName(GD.getWithDecl(ND), Out);
1842   else {
1843     IdentifierInfo *II = ND->getIdentifier();
1844     assert(II && "Attempt to mangle unnamed decl.");
1845     const auto *FD = dyn_cast<FunctionDecl>(ND);
1846 
1847     if (FD &&
1848         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1849       if (CGM.getLangOpts().RegCall4)
1850         Out << "__regcall4__" << II->getName();
1851       else
1852         Out << "__regcall3__" << II->getName();
1853     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1854                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1855       Out << "__device_stub__" << II->getName();
1856     } else {
1857       Out << II->getName();
1858     }
1859   }
1860 
1861   // Check if the module name hash should be appended for internal linkage
1862   // symbols.   This should come before multi-version target suffixes are
1863   // appended. This is to keep the name and module hash suffix of the
1864   // internal linkage function together.  The unique suffix should only be
1865   // added when name mangling is done to make sure that the final name can
1866   // be properly demangled.  For example, for C functions without prototypes,
1867   // name mangling is not done and the unique suffix should not be appeneded
1868   // then.
1869   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1870     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1871            "Hash computed when not explicitly requested");
1872     Out << CGM.getModuleNameHash();
1873   }
1874 
1875   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1876     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1877       switch (FD->getMultiVersionKind()) {
1878       case MultiVersionKind::CPUDispatch:
1879       case MultiVersionKind::CPUSpecific:
1880         AppendCPUSpecificCPUDispatchMangling(CGM,
1881                                              FD->getAttr<CPUSpecificAttr>(),
1882                                              GD.getMultiVersionIndex(), Out);
1883         break;
1884       case MultiVersionKind::Target: {
1885         auto *Attr = FD->getAttr<TargetAttr>();
1886         assert(Attr && "Expected TargetAttr to be present "
1887                        "for attribute mangling");
1888         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1889         Info.appendAttributeMangling(Attr, Out);
1890         break;
1891       }
1892       case MultiVersionKind::TargetVersion: {
1893         auto *Attr = FD->getAttr<TargetVersionAttr>();
1894         assert(Attr && "Expected TargetVersionAttr to be present "
1895                        "for attribute mangling");
1896         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1897         Info.appendAttributeMangling(Attr, Out);
1898         break;
1899       }
1900       case MultiVersionKind::TargetClones: {
1901         auto *Attr = FD->getAttr<TargetClonesAttr>();
1902         assert(Attr && "Expected TargetClonesAttr to be present "
1903                        "for attribute mangling");
1904         unsigned Index = GD.getMultiVersionIndex();
1905         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1906         Info.appendAttributeMangling(Attr, Index, Out);
1907         break;
1908       }
1909       case MultiVersionKind::None:
1910         llvm_unreachable("None multiversion type isn't valid here");
1911       }
1912     }
1913 
1914   // Make unique name for device side static file-scope variable for HIP.
1915   if (CGM.getContext().shouldExternalize(ND) &&
1916       CGM.getLangOpts().GPURelocatableDeviceCode &&
1917       CGM.getLangOpts().CUDAIsDevice)
1918     CGM.printPostfixForExternalizedDecl(Out, ND);
1919 
1920   return std::string(Out.str());
1921 }
1922 
1923 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1924                                             const FunctionDecl *FD,
1925                                             StringRef &CurName) {
1926   if (!FD->isMultiVersion())
1927     return;
1928 
1929   // Get the name of what this would be without the 'target' attribute.  This
1930   // allows us to lookup the version that was emitted when this wasn't a
1931   // multiversion function.
1932   std::string NonTargetName =
1933       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1934   GlobalDecl OtherGD;
1935   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1936     assert(OtherGD.getCanonicalDecl()
1937                .getDecl()
1938                ->getAsFunction()
1939                ->isMultiVersion() &&
1940            "Other GD should now be a multiversioned function");
1941     // OtherFD is the version of this function that was mangled BEFORE
1942     // becoming a MultiVersion function.  It potentially needs to be updated.
1943     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1944                                       .getDecl()
1945                                       ->getAsFunction()
1946                                       ->getMostRecentDecl();
1947     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1948     // This is so that if the initial version was already the 'default'
1949     // version, we don't try to update it.
1950     if (OtherName != NonTargetName) {
1951       // Remove instead of erase, since others may have stored the StringRef
1952       // to this.
1953       const auto ExistingRecord = Manglings.find(NonTargetName);
1954       if (ExistingRecord != std::end(Manglings))
1955         Manglings.remove(&(*ExistingRecord));
1956       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1957       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1958           Result.first->first();
1959       // If this is the current decl is being created, make sure we update the name.
1960       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1961         CurName = OtherNameRef;
1962       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1963         Entry->setName(OtherName);
1964     }
1965   }
1966 }
1967 
1968 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1969   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1970 
1971   // Some ABIs don't have constructor variants.  Make sure that base and
1972   // complete constructors get mangled the same.
1973   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1974     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1975       CXXCtorType OrigCtorType = GD.getCtorType();
1976       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1977       if (OrigCtorType == Ctor_Base)
1978         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1979     }
1980   }
1981 
1982   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1983   // static device variable depends on whether the variable is referenced by
1984   // a host or device host function. Therefore the mangled name cannot be
1985   // cached.
1986   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1987     auto FoundName = MangledDeclNames.find(CanonicalGD);
1988     if (FoundName != MangledDeclNames.end())
1989       return FoundName->second;
1990   }
1991 
1992   // Keep the first result in the case of a mangling collision.
1993   const auto *ND = cast<NamedDecl>(GD.getDecl());
1994   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1995 
1996   // Ensure either we have different ABIs between host and device compilations,
1997   // says host compilation following MSVC ABI but device compilation follows
1998   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1999   // mangling should be the same after name stubbing. The later checking is
2000   // very important as the device kernel name being mangled in host-compilation
2001   // is used to resolve the device binaries to be executed. Inconsistent naming
2002   // result in undefined behavior. Even though we cannot check that naming
2003   // directly between host- and device-compilations, the host- and
2004   // device-mangling in host compilation could help catching certain ones.
2005   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
2006          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
2007          (getContext().getAuxTargetInfo() &&
2008           (getContext().getAuxTargetInfo()->getCXXABI() !=
2009            getContext().getTargetInfo().getCXXABI())) ||
2010          getCUDARuntime().getDeviceSideName(ND) ==
2011              getMangledNameImpl(
2012                  *this,
2013                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
2014                  ND));
2015 
2016   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
2017   return MangledDeclNames[CanonicalGD] = Result.first->first();
2018 }
2019 
2020 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2021                                              const BlockDecl *BD) {
2022   MangleContext &MangleCtx = getCXXABI().getMangleContext();
2023   const Decl *D = GD.getDecl();
2024 
2025   SmallString<256> Buffer;
2026   llvm::raw_svector_ostream Out(Buffer);
2027   if (!D)
2028     MangleCtx.mangleGlobalBlock(BD,
2029       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2030   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2031     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2032   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2033     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2034   else
2035     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2036 
2037   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2038   return Result.first->first();
2039 }
2040 
2041 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2042   auto it = MangledDeclNames.begin();
2043   while (it != MangledDeclNames.end()) {
2044     if (it->second == Name)
2045       return it->first;
2046     it++;
2047   }
2048   return GlobalDecl();
2049 }
2050 
2051 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2052   return getModule().getNamedValue(Name);
2053 }
2054 
2055 /// AddGlobalCtor - Add a function to the list that will be called before
2056 /// main() runs.
2057 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2058                                   unsigned LexOrder,
2059                                   llvm::Constant *AssociatedData) {
2060   // FIXME: Type coercion of void()* types.
2061   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2062 }
2063 
2064 /// AddGlobalDtor - Add a function to the list that will be called
2065 /// when the module is unloaded.
2066 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2067                                   bool IsDtorAttrFunc) {
2068   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2069       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2070     DtorsUsingAtExit[Priority].push_back(Dtor);
2071     return;
2072   }
2073 
2074   // FIXME: Type coercion of void()* types.
2075   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2076 }
2077 
2078 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2079   if (Fns.empty()) return;
2080 
2081   // Ctor function type is void()*.
2082   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
2083   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
2084       TheModule.getDataLayout().getProgramAddressSpace());
2085 
2086   // Get the type of a ctor entry, { i32, void ()*, i8* }.
2087   llvm::StructType *CtorStructTy = llvm::StructType::get(
2088       Int32Ty, CtorPFTy, VoidPtrTy);
2089 
2090   // Construct the constructor and destructor arrays.
2091   ConstantInitBuilder builder(*this);
2092   auto ctors = builder.beginArray(CtorStructTy);
2093   for (const auto &I : Fns) {
2094     auto ctor = ctors.beginStruct(CtorStructTy);
2095     ctor.addInt(Int32Ty, I.Priority);
2096     ctor.add(I.Initializer);
2097     if (I.AssociatedData)
2098       ctor.add(I.AssociatedData);
2099     else
2100       ctor.addNullPointer(VoidPtrTy);
2101     ctor.finishAndAddTo(ctors);
2102   }
2103 
2104   auto list =
2105     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2106                                 /*constant*/ false,
2107                                 llvm::GlobalValue::AppendingLinkage);
2108 
2109   // The LTO linker doesn't seem to like it when we set an alignment
2110   // on appending variables.  Take it off as a workaround.
2111   list->setAlignment(std::nullopt);
2112 
2113   Fns.clear();
2114 }
2115 
2116 llvm::GlobalValue::LinkageTypes
2117 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2118   const auto *D = cast<FunctionDecl>(GD.getDecl());
2119 
2120   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2121 
2122   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2123     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2124 
2125   return getLLVMLinkageForDeclarator(D, Linkage);
2126 }
2127 
2128 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2129   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2130   if (!MDS) return nullptr;
2131 
2132   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2133 }
2134 
2135 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2136   if (auto *FnType = T->getAs<FunctionProtoType>())
2137     T = getContext().getFunctionType(
2138         FnType->getReturnType(), FnType->getParamTypes(),
2139         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2140 
2141   std::string OutName;
2142   llvm::raw_string_ostream Out(OutName);
2143   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2144       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2145 
2146   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2147     Out << ".normalized";
2148 
2149   return llvm::ConstantInt::get(Int32Ty,
2150                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2151 }
2152 
2153 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2154                                               const CGFunctionInfo &Info,
2155                                               llvm::Function *F, bool IsThunk) {
2156   unsigned CallingConv;
2157   llvm::AttributeList PAL;
2158   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2159                          /*AttrOnCallSite=*/false, IsThunk);
2160   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2161       getTarget().getTriple().isWindowsArm64EC()) {
2162     SourceLocation Loc;
2163     if (const Decl *D = GD.getDecl())
2164       Loc = D->getLocation();
2165 
2166     Error(Loc, "__vectorcall calling convention is not currently supported");
2167   }
2168   F->setAttributes(PAL);
2169   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2170 }
2171 
2172 static void removeImageAccessQualifier(std::string& TyName) {
2173   std::string ReadOnlyQual("__read_only");
2174   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2175   if (ReadOnlyPos != std::string::npos)
2176     // "+ 1" for the space after access qualifier.
2177     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2178   else {
2179     std::string WriteOnlyQual("__write_only");
2180     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2181     if (WriteOnlyPos != std::string::npos)
2182       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2183     else {
2184       std::string ReadWriteQual("__read_write");
2185       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2186       if (ReadWritePos != std::string::npos)
2187         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2188     }
2189   }
2190 }
2191 
2192 // Returns the address space id that should be produced to the
2193 // kernel_arg_addr_space metadata. This is always fixed to the ids
2194 // as specified in the SPIR 2.0 specification in order to differentiate
2195 // for example in clGetKernelArgInfo() implementation between the address
2196 // spaces with targets without unique mapping to the OpenCL address spaces
2197 // (basically all single AS CPUs).
2198 static unsigned ArgInfoAddressSpace(LangAS AS) {
2199   switch (AS) {
2200   case LangAS::opencl_global:
2201     return 1;
2202   case LangAS::opencl_constant:
2203     return 2;
2204   case LangAS::opencl_local:
2205     return 3;
2206   case LangAS::opencl_generic:
2207     return 4; // Not in SPIR 2.0 specs.
2208   case LangAS::opencl_global_device:
2209     return 5;
2210   case LangAS::opencl_global_host:
2211     return 6;
2212   default:
2213     return 0; // Assume private.
2214   }
2215 }
2216 
2217 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2218                                          const FunctionDecl *FD,
2219                                          CodeGenFunction *CGF) {
2220   assert(((FD && CGF) || (!FD && !CGF)) &&
2221          "Incorrect use - FD and CGF should either be both null or not!");
2222   // Create MDNodes that represent the kernel arg metadata.
2223   // Each MDNode is a list in the form of "key", N number of values which is
2224   // the same number of values as their are kernel arguments.
2225 
2226   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2227 
2228   // MDNode for the kernel argument address space qualifiers.
2229   SmallVector<llvm::Metadata *, 8> addressQuals;
2230 
2231   // MDNode for the kernel argument access qualifiers (images only).
2232   SmallVector<llvm::Metadata *, 8> accessQuals;
2233 
2234   // MDNode for the kernel argument type names.
2235   SmallVector<llvm::Metadata *, 8> argTypeNames;
2236 
2237   // MDNode for the kernel argument base type names.
2238   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2239 
2240   // MDNode for the kernel argument type qualifiers.
2241   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2242 
2243   // MDNode for the kernel argument names.
2244   SmallVector<llvm::Metadata *, 8> argNames;
2245 
2246   if (FD && CGF)
2247     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2248       const ParmVarDecl *parm = FD->getParamDecl(i);
2249       // Get argument name.
2250       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2251 
2252       if (!getLangOpts().OpenCL)
2253         continue;
2254       QualType ty = parm->getType();
2255       std::string typeQuals;
2256 
2257       // Get image and pipe access qualifier:
2258       if (ty->isImageType() || ty->isPipeType()) {
2259         const Decl *PDecl = parm;
2260         if (const auto *TD = ty->getAs<TypedefType>())
2261           PDecl = TD->getDecl();
2262         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2263         if (A && A->isWriteOnly())
2264           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2265         else if (A && A->isReadWrite())
2266           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2267         else
2268           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2269       } else
2270         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2271 
2272       auto getTypeSpelling = [&](QualType Ty) {
2273         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2274 
2275         if (Ty.isCanonical()) {
2276           StringRef typeNameRef = typeName;
2277           // Turn "unsigned type" to "utype"
2278           if (typeNameRef.consume_front("unsigned "))
2279             return std::string("u") + typeNameRef.str();
2280           if (typeNameRef.consume_front("signed "))
2281             return typeNameRef.str();
2282         }
2283 
2284         return typeName;
2285       };
2286 
2287       if (ty->isPointerType()) {
2288         QualType pointeeTy = ty->getPointeeType();
2289 
2290         // Get address qualifier.
2291         addressQuals.push_back(
2292             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2293                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2294 
2295         // Get argument type name.
2296         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2297         std::string baseTypeName =
2298             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2299         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2300         argBaseTypeNames.push_back(
2301             llvm::MDString::get(VMContext, baseTypeName));
2302 
2303         // Get argument type qualifiers:
2304         if (ty.isRestrictQualified())
2305           typeQuals = "restrict";
2306         if (pointeeTy.isConstQualified() ||
2307             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2308           typeQuals += typeQuals.empty() ? "const" : " const";
2309         if (pointeeTy.isVolatileQualified())
2310           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2311       } else {
2312         uint32_t AddrSpc = 0;
2313         bool isPipe = ty->isPipeType();
2314         if (ty->isImageType() || isPipe)
2315           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2316 
2317         addressQuals.push_back(
2318             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2319 
2320         // Get argument type name.
2321         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2322         std::string typeName = getTypeSpelling(ty);
2323         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2324 
2325         // Remove access qualifiers on images
2326         // (as they are inseparable from type in clang implementation,
2327         // but OpenCL spec provides a special query to get access qualifier
2328         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2329         if (ty->isImageType()) {
2330           removeImageAccessQualifier(typeName);
2331           removeImageAccessQualifier(baseTypeName);
2332         }
2333 
2334         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2335         argBaseTypeNames.push_back(
2336             llvm::MDString::get(VMContext, baseTypeName));
2337 
2338         if (isPipe)
2339           typeQuals = "pipe";
2340       }
2341       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2342     }
2343 
2344   if (getLangOpts().OpenCL) {
2345     Fn->setMetadata("kernel_arg_addr_space",
2346                     llvm::MDNode::get(VMContext, addressQuals));
2347     Fn->setMetadata("kernel_arg_access_qual",
2348                     llvm::MDNode::get(VMContext, accessQuals));
2349     Fn->setMetadata("kernel_arg_type",
2350                     llvm::MDNode::get(VMContext, argTypeNames));
2351     Fn->setMetadata("kernel_arg_base_type",
2352                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2353     Fn->setMetadata("kernel_arg_type_qual",
2354                     llvm::MDNode::get(VMContext, argTypeQuals));
2355   }
2356   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2357       getCodeGenOpts().HIPSaveKernelArgName)
2358     Fn->setMetadata("kernel_arg_name",
2359                     llvm::MDNode::get(VMContext, argNames));
2360 }
2361 
2362 /// Determines whether the language options require us to model
2363 /// unwind exceptions.  We treat -fexceptions as mandating this
2364 /// except under the fragile ObjC ABI with only ObjC exceptions
2365 /// enabled.  This means, for example, that C with -fexceptions
2366 /// enables this.
2367 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2368   // If exceptions are completely disabled, obviously this is false.
2369   if (!LangOpts.Exceptions) return false;
2370 
2371   // If C++ exceptions are enabled, this is true.
2372   if (LangOpts.CXXExceptions) return true;
2373 
2374   // If ObjC exceptions are enabled, this depends on the ABI.
2375   if (LangOpts.ObjCExceptions) {
2376     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2377   }
2378 
2379   return true;
2380 }
2381 
2382 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2383                                                       const CXXMethodDecl *MD) {
2384   // Check that the type metadata can ever actually be used by a call.
2385   if (!CGM.getCodeGenOpts().LTOUnit ||
2386       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2387     return false;
2388 
2389   // Only functions whose address can be taken with a member function pointer
2390   // need this sort of type metadata.
2391   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2392          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2393 }
2394 
2395 SmallVector<const CXXRecordDecl *, 0>
2396 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2397   llvm::SetVector<const CXXRecordDecl *> MostBases;
2398 
2399   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2400   CollectMostBases = [&](const CXXRecordDecl *RD) {
2401     if (RD->getNumBases() == 0)
2402       MostBases.insert(RD);
2403     for (const CXXBaseSpecifier &B : RD->bases())
2404       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2405   };
2406   CollectMostBases(RD);
2407   return MostBases.takeVector();
2408 }
2409 
2410 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2411                                                            llvm::Function *F) {
2412   llvm::AttrBuilder B(F->getContext());
2413 
2414   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2415     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2416 
2417   if (CodeGenOpts.StackClashProtector)
2418     B.addAttribute("probe-stack", "inline-asm");
2419 
2420   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2421     B.addAttribute("stack-probe-size",
2422                    std::to_string(CodeGenOpts.StackProbeSize));
2423 
2424   if (!hasUnwindExceptions(LangOpts))
2425     B.addAttribute(llvm::Attribute::NoUnwind);
2426 
2427   if (D && D->hasAttr<NoStackProtectorAttr>())
2428     ; // Do nothing.
2429   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2430            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2431     B.addAttribute(llvm::Attribute::StackProtectStrong);
2432   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2433     B.addAttribute(llvm::Attribute::StackProtect);
2434   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2435     B.addAttribute(llvm::Attribute::StackProtectStrong);
2436   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2437     B.addAttribute(llvm::Attribute::StackProtectReq);
2438 
2439   if (!D) {
2440     // If we don't have a declaration to control inlining, the function isn't
2441     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2442     // disabled, mark the function as noinline.
2443     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2444         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2445       B.addAttribute(llvm::Attribute::NoInline);
2446 
2447     F->addFnAttrs(B);
2448     return;
2449   }
2450 
2451   // Handle SME attributes that apply to function definitions,
2452   // rather than to function prototypes.
2453   if (D->hasAttr<ArmLocallyStreamingAttr>())
2454     B.addAttribute("aarch64_pstate_sm_body");
2455 
2456   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2457     if (Attr->isNewZA())
2458       B.addAttribute("aarch64_new_za");
2459     if (Attr->isNewZT0())
2460       B.addAttribute("aarch64_new_zt0");
2461   }
2462 
2463   // Track whether we need to add the optnone LLVM attribute,
2464   // starting with the default for this optimization level.
2465   bool ShouldAddOptNone =
2466       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2467   // We can't add optnone in the following cases, it won't pass the verifier.
2468   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2469   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2470 
2471   // Add optnone, but do so only if the function isn't always_inline.
2472   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2473       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2474     B.addAttribute(llvm::Attribute::OptimizeNone);
2475 
2476     // OptimizeNone implies noinline; we should not be inlining such functions.
2477     B.addAttribute(llvm::Attribute::NoInline);
2478 
2479     // We still need to handle naked functions even though optnone subsumes
2480     // much of their semantics.
2481     if (D->hasAttr<NakedAttr>())
2482       B.addAttribute(llvm::Attribute::Naked);
2483 
2484     // OptimizeNone wins over OptimizeForSize and MinSize.
2485     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2486     F->removeFnAttr(llvm::Attribute::MinSize);
2487   } else if (D->hasAttr<NakedAttr>()) {
2488     // Naked implies noinline: we should not be inlining such functions.
2489     B.addAttribute(llvm::Attribute::Naked);
2490     B.addAttribute(llvm::Attribute::NoInline);
2491   } else if (D->hasAttr<NoDuplicateAttr>()) {
2492     B.addAttribute(llvm::Attribute::NoDuplicate);
2493   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2494     // Add noinline if the function isn't always_inline.
2495     B.addAttribute(llvm::Attribute::NoInline);
2496   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2497              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2498     // (noinline wins over always_inline, and we can't specify both in IR)
2499     B.addAttribute(llvm::Attribute::AlwaysInline);
2500   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2501     // If we're not inlining, then force everything that isn't always_inline to
2502     // carry an explicit noinline attribute.
2503     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2504       B.addAttribute(llvm::Attribute::NoInline);
2505   } else {
2506     // Otherwise, propagate the inline hint attribute and potentially use its
2507     // absence to mark things as noinline.
2508     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2509       // Search function and template pattern redeclarations for inline.
2510       auto CheckForInline = [](const FunctionDecl *FD) {
2511         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2512           return Redecl->isInlineSpecified();
2513         };
2514         if (any_of(FD->redecls(), CheckRedeclForInline))
2515           return true;
2516         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2517         if (!Pattern)
2518           return false;
2519         return any_of(Pattern->redecls(), CheckRedeclForInline);
2520       };
2521       if (CheckForInline(FD)) {
2522         B.addAttribute(llvm::Attribute::InlineHint);
2523       } else if (CodeGenOpts.getInlining() ==
2524                      CodeGenOptions::OnlyHintInlining &&
2525                  !FD->isInlined() &&
2526                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2527         B.addAttribute(llvm::Attribute::NoInline);
2528       }
2529     }
2530   }
2531 
2532   // Add other optimization related attributes if we are optimizing this
2533   // function.
2534   if (!D->hasAttr<OptimizeNoneAttr>()) {
2535     if (D->hasAttr<ColdAttr>()) {
2536       if (!ShouldAddOptNone)
2537         B.addAttribute(llvm::Attribute::OptimizeForSize);
2538       B.addAttribute(llvm::Attribute::Cold);
2539     }
2540     if (D->hasAttr<HotAttr>())
2541       B.addAttribute(llvm::Attribute::Hot);
2542     if (D->hasAttr<MinSizeAttr>())
2543       B.addAttribute(llvm::Attribute::MinSize);
2544   }
2545 
2546   F->addFnAttrs(B);
2547 
2548   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2549   if (alignment)
2550     F->setAlignment(llvm::Align(alignment));
2551 
2552   if (!D->hasAttr<AlignedAttr>())
2553     if (LangOpts.FunctionAlignment)
2554       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2555 
2556   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2557   // reserve a bit for differentiating between virtual and non-virtual member
2558   // functions. If the current target's C++ ABI requires this and this is a
2559   // member function, set its alignment accordingly.
2560   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2561     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2562       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2563   }
2564 
2565   // In the cross-dso CFI mode with canonical jump tables, we want !type
2566   // attributes on definitions only.
2567   if (CodeGenOpts.SanitizeCfiCrossDso &&
2568       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2569     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2570       // Skip available_externally functions. They won't be codegen'ed in the
2571       // current module anyway.
2572       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2573         CreateFunctionTypeMetadataForIcall(FD, F);
2574     }
2575   }
2576 
2577   // Emit type metadata on member functions for member function pointer checks.
2578   // These are only ever necessary on definitions; we're guaranteed that the
2579   // definition will be present in the LTO unit as a result of LTO visibility.
2580   auto *MD = dyn_cast<CXXMethodDecl>(D);
2581   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2582     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2583       llvm::Metadata *Id =
2584           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2585               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2586       F->addTypeMetadata(0, Id);
2587     }
2588   }
2589 }
2590 
2591 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2592   const Decl *D = GD.getDecl();
2593   if (isa_and_nonnull<NamedDecl>(D))
2594     setGVProperties(GV, GD);
2595   else
2596     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2597 
2598   if (D && D->hasAttr<UsedAttr>())
2599     addUsedOrCompilerUsedGlobal(GV);
2600 
2601   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2602       VD &&
2603       ((CodeGenOpts.KeepPersistentStorageVariables &&
2604         (VD->getStorageDuration() == SD_Static ||
2605          VD->getStorageDuration() == SD_Thread)) ||
2606        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2607         VD->getType().isConstQualified())))
2608     addUsedOrCompilerUsedGlobal(GV);
2609 }
2610 
2611 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2612                                                 llvm::AttrBuilder &Attrs,
2613                                                 bool SetTargetFeatures) {
2614   // Add target-cpu and target-features attributes to functions. If
2615   // we have a decl for the function and it has a target attribute then
2616   // parse that and add it to the feature set.
2617   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2618   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2619   std::vector<std::string> Features;
2620   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2621   FD = FD ? FD->getMostRecentDecl() : FD;
2622   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2623   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2624   assert((!TD || !TV) && "both target_version and target specified");
2625   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2626   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2627   bool AddedAttr = false;
2628   if (TD || TV || SD || TC) {
2629     llvm::StringMap<bool> FeatureMap;
2630     getContext().getFunctionFeatureMap(FeatureMap, GD);
2631 
2632     // Produce the canonical string for this set of features.
2633     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2634       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2635 
2636     // Now add the target-cpu and target-features to the function.
2637     // While we populated the feature map above, we still need to
2638     // get and parse the target attribute so we can get the cpu for
2639     // the function.
2640     if (TD) {
2641       ParsedTargetAttr ParsedAttr =
2642           Target.parseTargetAttr(TD->getFeaturesStr());
2643       if (!ParsedAttr.CPU.empty() &&
2644           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2645         TargetCPU = ParsedAttr.CPU;
2646         TuneCPU = ""; // Clear the tune CPU.
2647       }
2648       if (!ParsedAttr.Tune.empty() &&
2649           getTarget().isValidCPUName(ParsedAttr.Tune))
2650         TuneCPU = ParsedAttr.Tune;
2651     }
2652 
2653     if (SD) {
2654       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2655       // favor this processor.
2656       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2657     }
2658   } else {
2659     // Otherwise just add the existing target cpu and target features to the
2660     // function.
2661     Features = getTarget().getTargetOpts().Features;
2662   }
2663 
2664   if (!TargetCPU.empty()) {
2665     Attrs.addAttribute("target-cpu", TargetCPU);
2666     AddedAttr = true;
2667   }
2668   if (!TuneCPU.empty()) {
2669     Attrs.addAttribute("tune-cpu", TuneCPU);
2670     AddedAttr = true;
2671   }
2672   if (!Features.empty() && SetTargetFeatures) {
2673     llvm::erase_if(Features, [&](const std::string& F) {
2674        return getTarget().isReadOnlyFeature(F.substr(1));
2675     });
2676     llvm::sort(Features);
2677     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2678     AddedAttr = true;
2679   }
2680 
2681   return AddedAttr;
2682 }
2683 
2684 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2685                                           llvm::GlobalObject *GO) {
2686   const Decl *D = GD.getDecl();
2687   SetCommonAttributes(GD, GO);
2688 
2689   if (D) {
2690     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2691       if (D->hasAttr<RetainAttr>())
2692         addUsedGlobal(GV);
2693       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2694         GV->addAttribute("bss-section", SA->getName());
2695       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2696         GV->addAttribute("data-section", SA->getName());
2697       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2698         GV->addAttribute("rodata-section", SA->getName());
2699       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2700         GV->addAttribute("relro-section", SA->getName());
2701     }
2702 
2703     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2704       if (D->hasAttr<RetainAttr>())
2705         addUsedGlobal(F);
2706       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2707         if (!D->getAttr<SectionAttr>())
2708           F->setSection(SA->getName());
2709 
2710       llvm::AttrBuilder Attrs(F->getContext());
2711       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2712         // We know that GetCPUAndFeaturesAttributes will always have the
2713         // newest set, since it has the newest possible FunctionDecl, so the
2714         // new ones should replace the old.
2715         llvm::AttributeMask RemoveAttrs;
2716         RemoveAttrs.addAttribute("target-cpu");
2717         RemoveAttrs.addAttribute("target-features");
2718         RemoveAttrs.addAttribute("tune-cpu");
2719         F->removeFnAttrs(RemoveAttrs);
2720         F->addFnAttrs(Attrs);
2721       }
2722     }
2723 
2724     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2725       GO->setSection(CSA->getName());
2726     else if (const auto *SA = D->getAttr<SectionAttr>())
2727       GO->setSection(SA->getName());
2728   }
2729 
2730   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2731 }
2732 
2733 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2734                                                   llvm::Function *F,
2735                                                   const CGFunctionInfo &FI) {
2736   const Decl *D = GD.getDecl();
2737   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2738   SetLLVMFunctionAttributesForDefinition(D, F);
2739 
2740   F->setLinkage(llvm::Function::InternalLinkage);
2741 
2742   setNonAliasAttributes(GD, F);
2743 }
2744 
2745 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2746   // Set linkage and visibility in case we never see a definition.
2747   LinkageInfo LV = ND->getLinkageAndVisibility();
2748   // Don't set internal linkage on declarations.
2749   // "extern_weak" is overloaded in LLVM; we probably should have
2750   // separate linkage types for this.
2751   if (isExternallyVisible(LV.getLinkage()) &&
2752       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2753     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2754 }
2755 
2756 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2757                                                        llvm::Function *F) {
2758   // Only if we are checking indirect calls.
2759   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2760     return;
2761 
2762   // Non-static class methods are handled via vtable or member function pointer
2763   // checks elsewhere.
2764   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2765     return;
2766 
2767   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2768   F->addTypeMetadata(0, MD);
2769   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2770 
2771   // Emit a hash-based bit set entry for cross-DSO calls.
2772   if (CodeGenOpts.SanitizeCfiCrossDso)
2773     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2774       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2775 }
2776 
2777 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2778   llvm::LLVMContext &Ctx = F->getContext();
2779   llvm::MDBuilder MDB(Ctx);
2780   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2781                  llvm::MDNode::get(
2782                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2783 }
2784 
2785 static bool allowKCFIIdentifier(StringRef Name) {
2786   // KCFI type identifier constants are only necessary for external assembly
2787   // functions, which means it's safe to skip unusual names. Subset of
2788   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2789   return llvm::all_of(Name, [](const char &C) {
2790     return llvm::isAlnum(C) || C == '_' || C == '.';
2791   });
2792 }
2793 
2794 void CodeGenModule::finalizeKCFITypes() {
2795   llvm::Module &M = getModule();
2796   for (auto &F : M.functions()) {
2797     // Remove KCFI type metadata from non-address-taken local functions.
2798     bool AddressTaken = F.hasAddressTaken();
2799     if (!AddressTaken && F.hasLocalLinkage())
2800       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2801 
2802     // Generate a constant with the expected KCFI type identifier for all
2803     // address-taken function declarations to support annotating indirectly
2804     // called assembly functions.
2805     if (!AddressTaken || !F.isDeclaration())
2806       continue;
2807 
2808     const llvm::ConstantInt *Type;
2809     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2810       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2811     else
2812       continue;
2813 
2814     StringRef Name = F.getName();
2815     if (!allowKCFIIdentifier(Name))
2816       continue;
2817 
2818     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2819                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2820                           .str();
2821     M.appendModuleInlineAsm(Asm);
2822   }
2823 }
2824 
2825 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2826                                           bool IsIncompleteFunction,
2827                                           bool IsThunk) {
2828 
2829   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2830     // If this is an intrinsic function, set the function's attributes
2831     // to the intrinsic's attributes.
2832     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2833     return;
2834   }
2835 
2836   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2837 
2838   if (!IsIncompleteFunction)
2839     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2840                               IsThunk);
2841 
2842   // Add the Returned attribute for "this", except for iOS 5 and earlier
2843   // where substantial code, including the libstdc++ dylib, was compiled with
2844   // GCC and does not actually return "this".
2845   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2846       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2847     assert(!F->arg_empty() &&
2848            F->arg_begin()->getType()
2849              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2850            "unexpected this return");
2851     F->addParamAttr(0, llvm::Attribute::Returned);
2852   }
2853 
2854   // Only a few attributes are set on declarations; these may later be
2855   // overridden by a definition.
2856 
2857   setLinkageForGV(F, FD);
2858   setGVProperties(F, FD);
2859 
2860   // Setup target-specific attributes.
2861   if (!IsIncompleteFunction && F->isDeclaration())
2862     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2863 
2864   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2865     F->setSection(CSA->getName());
2866   else if (const auto *SA = FD->getAttr<SectionAttr>())
2867      F->setSection(SA->getName());
2868 
2869   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2870     if (EA->isError())
2871       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2872     else if (EA->isWarning())
2873       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2874   }
2875 
2876   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2877   if (FD->isInlineBuiltinDeclaration()) {
2878     const FunctionDecl *FDBody;
2879     bool HasBody = FD->hasBody(FDBody);
2880     (void)HasBody;
2881     assert(HasBody && "Inline builtin declarations should always have an "
2882                       "available body!");
2883     if (shouldEmitFunction(FDBody))
2884       F->addFnAttr(llvm::Attribute::NoBuiltin);
2885   }
2886 
2887   if (FD->isReplaceableGlobalAllocationFunction()) {
2888     // A replaceable global allocation function does not act like a builtin by
2889     // default, only if it is invoked by a new-expression or delete-expression.
2890     F->addFnAttr(llvm::Attribute::NoBuiltin);
2891   }
2892 
2893   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2894     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2895   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2896     if (MD->isVirtual())
2897       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2898 
2899   // Don't emit entries for function declarations in the cross-DSO mode. This
2900   // is handled with better precision by the receiving DSO. But if jump tables
2901   // are non-canonical then we need type metadata in order to produce the local
2902   // jump table.
2903   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2904       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2905     CreateFunctionTypeMetadataForIcall(FD, F);
2906 
2907   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2908     setKCFIType(FD, F);
2909 
2910   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2911     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2912 
2913   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2914     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2915 
2916   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2917     // Annotate the callback behavior as metadata:
2918     //  - The callback callee (as argument number).
2919     //  - The callback payloads (as argument numbers).
2920     llvm::LLVMContext &Ctx = F->getContext();
2921     llvm::MDBuilder MDB(Ctx);
2922 
2923     // The payload indices are all but the first one in the encoding. The first
2924     // identifies the callback callee.
2925     int CalleeIdx = *CB->encoding_begin();
2926     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2927     F->addMetadata(llvm::LLVMContext::MD_callback,
2928                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2929                                                CalleeIdx, PayloadIndices,
2930                                                /* VarArgsArePassed */ false)}));
2931   }
2932 }
2933 
2934 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2935   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2936          "Only globals with definition can force usage.");
2937   LLVMUsed.emplace_back(GV);
2938 }
2939 
2940 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2941   assert(!GV->isDeclaration() &&
2942          "Only globals with definition can force usage.");
2943   LLVMCompilerUsed.emplace_back(GV);
2944 }
2945 
2946 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2947   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2948          "Only globals with definition can force usage.");
2949   if (getTriple().isOSBinFormatELF())
2950     LLVMCompilerUsed.emplace_back(GV);
2951   else
2952     LLVMUsed.emplace_back(GV);
2953 }
2954 
2955 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2956                      std::vector<llvm::WeakTrackingVH> &List) {
2957   // Don't create llvm.used if there is no need.
2958   if (List.empty())
2959     return;
2960 
2961   // Convert List to what ConstantArray needs.
2962   SmallVector<llvm::Constant*, 8> UsedArray;
2963   UsedArray.resize(List.size());
2964   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2965     UsedArray[i] =
2966         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2967             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2968   }
2969 
2970   if (UsedArray.empty())
2971     return;
2972   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2973 
2974   auto *GV = new llvm::GlobalVariable(
2975       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2976       llvm::ConstantArray::get(ATy, UsedArray), Name);
2977 
2978   GV->setSection("llvm.metadata");
2979 }
2980 
2981 void CodeGenModule::emitLLVMUsed() {
2982   emitUsed(*this, "llvm.used", LLVMUsed);
2983   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2984 }
2985 
2986 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2987   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2988   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2989 }
2990 
2991 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2992   llvm::SmallString<32> Opt;
2993   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2994   if (Opt.empty())
2995     return;
2996   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2997   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2998 }
2999 
3000 void CodeGenModule::AddDependentLib(StringRef Lib) {
3001   auto &C = getLLVMContext();
3002   if (getTarget().getTriple().isOSBinFormatELF()) {
3003       ELFDependentLibraries.push_back(
3004         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
3005     return;
3006   }
3007 
3008   llvm::SmallString<24> Opt;
3009   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
3010   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3011   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
3012 }
3013 
3014 /// Add link options implied by the given module, including modules
3015 /// it depends on, using a postorder walk.
3016 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
3017                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
3018                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
3019   // Import this module's parent.
3020   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3021     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3022   }
3023 
3024   // Import this module's dependencies.
3025   for (Module *Import : llvm::reverse(Mod->Imports)) {
3026     if (Visited.insert(Import).second)
3027       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3028   }
3029 
3030   // Add linker options to link against the libraries/frameworks
3031   // described by this module.
3032   llvm::LLVMContext &Context = CGM.getLLVMContext();
3033   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3034 
3035   // For modules that use export_as for linking, use that module
3036   // name instead.
3037   if (Mod->UseExportAsModuleLinkName)
3038     return;
3039 
3040   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3041     // Link against a framework.  Frameworks are currently Darwin only, so we
3042     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3043     if (LL.IsFramework) {
3044       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3045                                  llvm::MDString::get(Context, LL.Library)};
3046 
3047       Metadata.push_back(llvm::MDNode::get(Context, Args));
3048       continue;
3049     }
3050 
3051     // Link against a library.
3052     if (IsELF) {
3053       llvm::Metadata *Args[2] = {
3054           llvm::MDString::get(Context, "lib"),
3055           llvm::MDString::get(Context, LL.Library),
3056       };
3057       Metadata.push_back(llvm::MDNode::get(Context, Args));
3058     } else {
3059       llvm::SmallString<24> Opt;
3060       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3061       auto *OptString = llvm::MDString::get(Context, Opt);
3062       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3063     }
3064   }
3065 }
3066 
3067 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3068   assert(Primary->isNamedModuleUnit() &&
3069          "We should only emit module initializers for named modules.");
3070 
3071   // Emit the initializers in the order that sub-modules appear in the
3072   // source, first Global Module Fragments, if present.
3073   if (auto GMF = Primary->getGlobalModuleFragment()) {
3074     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3075       if (isa<ImportDecl>(D))
3076         continue;
3077       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3078       EmitTopLevelDecl(D);
3079     }
3080   }
3081   // Second any associated with the module, itself.
3082   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3083     // Skip import decls, the inits for those are called explicitly.
3084     if (isa<ImportDecl>(D))
3085       continue;
3086     EmitTopLevelDecl(D);
3087   }
3088   // Third any associated with the Privat eMOdule Fragment, if present.
3089   if (auto PMF = Primary->getPrivateModuleFragment()) {
3090     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3091       // Skip import decls, the inits for those are called explicitly.
3092       if (isa<ImportDecl>(D))
3093         continue;
3094       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3095       EmitTopLevelDecl(D);
3096     }
3097   }
3098 }
3099 
3100 void CodeGenModule::EmitModuleLinkOptions() {
3101   // Collect the set of all of the modules we want to visit to emit link
3102   // options, which is essentially the imported modules and all of their
3103   // non-explicit child modules.
3104   llvm::SetVector<clang::Module *> LinkModules;
3105   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3106   SmallVector<clang::Module *, 16> Stack;
3107 
3108   // Seed the stack with imported modules.
3109   for (Module *M : ImportedModules) {
3110     // Do not add any link flags when an implementation TU of a module imports
3111     // a header of that same module.
3112     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3113         !getLangOpts().isCompilingModule())
3114       continue;
3115     if (Visited.insert(M).second)
3116       Stack.push_back(M);
3117   }
3118 
3119   // Find all of the modules to import, making a little effort to prune
3120   // non-leaf modules.
3121   while (!Stack.empty()) {
3122     clang::Module *Mod = Stack.pop_back_val();
3123 
3124     bool AnyChildren = false;
3125 
3126     // Visit the submodules of this module.
3127     for (const auto &SM : Mod->submodules()) {
3128       // Skip explicit children; they need to be explicitly imported to be
3129       // linked against.
3130       if (SM->IsExplicit)
3131         continue;
3132 
3133       if (Visited.insert(SM).second) {
3134         Stack.push_back(SM);
3135         AnyChildren = true;
3136       }
3137     }
3138 
3139     // We didn't find any children, so add this module to the list of
3140     // modules to link against.
3141     if (!AnyChildren) {
3142       LinkModules.insert(Mod);
3143     }
3144   }
3145 
3146   // Add link options for all of the imported modules in reverse topological
3147   // order.  We don't do anything to try to order import link flags with respect
3148   // to linker options inserted by things like #pragma comment().
3149   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3150   Visited.clear();
3151   for (Module *M : LinkModules)
3152     if (Visited.insert(M).second)
3153       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3154   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3155   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3156 
3157   // Add the linker options metadata flag.
3158   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3159   for (auto *MD : LinkerOptionsMetadata)
3160     NMD->addOperand(MD);
3161 }
3162 
3163 void CodeGenModule::EmitDeferred() {
3164   // Emit deferred declare target declarations.
3165   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3166     getOpenMPRuntime().emitDeferredTargetDecls();
3167 
3168   // Emit code for any potentially referenced deferred decls.  Since a
3169   // previously unused static decl may become used during the generation of code
3170   // for a static function, iterate until no changes are made.
3171 
3172   if (!DeferredVTables.empty()) {
3173     EmitDeferredVTables();
3174 
3175     // Emitting a vtable doesn't directly cause more vtables to
3176     // become deferred, although it can cause functions to be
3177     // emitted that then need those vtables.
3178     assert(DeferredVTables.empty());
3179   }
3180 
3181   // Emit CUDA/HIP static device variables referenced by host code only.
3182   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3183   // needed for further handling.
3184   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3185     llvm::append_range(DeferredDeclsToEmit,
3186                        getContext().CUDADeviceVarODRUsedByHost);
3187 
3188   // Stop if we're out of both deferred vtables and deferred declarations.
3189   if (DeferredDeclsToEmit.empty())
3190     return;
3191 
3192   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3193   // work, it will not interfere with this.
3194   std::vector<GlobalDecl> CurDeclsToEmit;
3195   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3196 
3197   for (GlobalDecl &D : CurDeclsToEmit) {
3198     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3199     // to get GlobalValue with exactly the type we need, not something that
3200     // might had been created for another decl with the same mangled name but
3201     // different type.
3202     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3203         GetAddrOfGlobal(D, ForDefinition));
3204 
3205     // In case of different address spaces, we may still get a cast, even with
3206     // IsForDefinition equal to true. Query mangled names table to get
3207     // GlobalValue.
3208     if (!GV)
3209       GV = GetGlobalValue(getMangledName(D));
3210 
3211     // Make sure GetGlobalValue returned non-null.
3212     assert(GV);
3213 
3214     // Check to see if we've already emitted this.  This is necessary
3215     // for a couple of reasons: first, decls can end up in the
3216     // deferred-decls queue multiple times, and second, decls can end
3217     // up with definitions in unusual ways (e.g. by an extern inline
3218     // function acquiring a strong function redefinition).  Just
3219     // ignore these cases.
3220     if (!GV->isDeclaration())
3221       continue;
3222 
3223     // If this is OpenMP, check if it is legal to emit this global normally.
3224     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3225       continue;
3226 
3227     // Otherwise, emit the definition and move on to the next one.
3228     EmitGlobalDefinition(D, GV);
3229 
3230     // If we found out that we need to emit more decls, do that recursively.
3231     // This has the advantage that the decls are emitted in a DFS and related
3232     // ones are close together, which is convenient for testing.
3233     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3234       EmitDeferred();
3235       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3236     }
3237   }
3238 }
3239 
3240 void CodeGenModule::EmitVTablesOpportunistically() {
3241   // Try to emit external vtables as available_externally if they have emitted
3242   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3243   // is not allowed to create new references to things that need to be emitted
3244   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3245 
3246   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3247          && "Only emit opportunistic vtables with optimizations");
3248 
3249   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3250     assert(getVTables().isVTableExternal(RD) &&
3251            "This queue should only contain external vtables");
3252     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3253       VTables.GenerateClassData(RD);
3254   }
3255   OpportunisticVTables.clear();
3256 }
3257 
3258 void CodeGenModule::EmitGlobalAnnotations() {
3259   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3260     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3261     if (GV)
3262       AddGlobalAnnotations(VD, GV);
3263   }
3264   DeferredAnnotations.clear();
3265 
3266   if (Annotations.empty())
3267     return;
3268 
3269   // Create a new global variable for the ConstantStruct in the Module.
3270   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3271     Annotations[0]->getType(), Annotations.size()), Annotations);
3272   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3273                                       llvm::GlobalValue::AppendingLinkage,
3274                                       Array, "llvm.global.annotations");
3275   gv->setSection(AnnotationSection);
3276 }
3277 
3278 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3279   llvm::Constant *&AStr = AnnotationStrings[Str];
3280   if (AStr)
3281     return AStr;
3282 
3283   // Not found yet, create a new global.
3284   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3285   auto *gv = new llvm::GlobalVariable(
3286       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3287       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3288       ConstGlobalsPtrTy->getAddressSpace());
3289   gv->setSection(AnnotationSection);
3290   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3291   AStr = gv;
3292   return gv;
3293 }
3294 
3295 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3296   SourceManager &SM = getContext().getSourceManager();
3297   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3298   if (PLoc.isValid())
3299     return EmitAnnotationString(PLoc.getFilename());
3300   return EmitAnnotationString(SM.getBufferName(Loc));
3301 }
3302 
3303 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3304   SourceManager &SM = getContext().getSourceManager();
3305   PresumedLoc PLoc = SM.getPresumedLoc(L);
3306   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3307     SM.getExpansionLineNumber(L);
3308   return llvm::ConstantInt::get(Int32Ty, LineNo);
3309 }
3310 
3311 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3312   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3313   if (Exprs.empty())
3314     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3315 
3316   llvm::FoldingSetNodeID ID;
3317   for (Expr *E : Exprs) {
3318     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3319   }
3320   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3321   if (Lookup)
3322     return Lookup;
3323 
3324   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3325   LLVMArgs.reserve(Exprs.size());
3326   ConstantEmitter ConstEmiter(*this);
3327   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3328     const auto *CE = cast<clang::ConstantExpr>(E);
3329     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3330                                     CE->getType());
3331   });
3332   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3333   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3334                                       llvm::GlobalValue::PrivateLinkage, Struct,
3335                                       ".args");
3336   GV->setSection(AnnotationSection);
3337   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3338 
3339   Lookup = GV;
3340   return GV;
3341 }
3342 
3343 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3344                                                 const AnnotateAttr *AA,
3345                                                 SourceLocation L) {
3346   // Get the globals for file name, annotation, and the line number.
3347   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3348                  *UnitGV = EmitAnnotationUnit(L),
3349                  *LineNoCst = EmitAnnotationLineNo(L),
3350                  *Args = EmitAnnotationArgs(AA);
3351 
3352   llvm::Constant *GVInGlobalsAS = GV;
3353   if (GV->getAddressSpace() !=
3354       getDataLayout().getDefaultGlobalsAddressSpace()) {
3355     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3356         GV,
3357         llvm::PointerType::get(
3358             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3359   }
3360 
3361   // Create the ConstantStruct for the global annotation.
3362   llvm::Constant *Fields[] = {
3363       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3364   };
3365   return llvm::ConstantStruct::getAnon(Fields);
3366 }
3367 
3368 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3369                                          llvm::GlobalValue *GV) {
3370   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3371   // Get the struct elements for these annotations.
3372   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3373     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3374 }
3375 
3376 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3377                                        SourceLocation Loc) const {
3378   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3379   // NoSanitize by function name.
3380   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3381     return true;
3382   // NoSanitize by location. Check "mainfile" prefix.
3383   auto &SM = Context.getSourceManager();
3384   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3385   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3386     return true;
3387 
3388   // Check "src" prefix.
3389   if (Loc.isValid())
3390     return NoSanitizeL.containsLocation(Kind, Loc);
3391   // If location is unknown, this may be a compiler-generated function. Assume
3392   // it's located in the main file.
3393   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3394 }
3395 
3396 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3397                                        llvm::GlobalVariable *GV,
3398                                        SourceLocation Loc, QualType Ty,
3399                                        StringRef Category) const {
3400   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3401   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3402     return true;
3403   auto &SM = Context.getSourceManager();
3404   if (NoSanitizeL.containsMainFile(
3405           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3406           Category))
3407     return true;
3408   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3409     return true;
3410 
3411   // Check global type.
3412   if (!Ty.isNull()) {
3413     // Drill down the array types: if global variable of a fixed type is
3414     // not sanitized, we also don't instrument arrays of them.
3415     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3416       Ty = AT->getElementType();
3417     Ty = Ty.getCanonicalType().getUnqualifiedType();
3418     // Only record types (classes, structs etc.) are ignored.
3419     if (Ty->isRecordType()) {
3420       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3421       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3422         return true;
3423     }
3424   }
3425   return false;
3426 }
3427 
3428 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3429                                    StringRef Category) const {
3430   const auto &XRayFilter = getContext().getXRayFilter();
3431   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3432   auto Attr = ImbueAttr::NONE;
3433   if (Loc.isValid())
3434     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3435   if (Attr == ImbueAttr::NONE)
3436     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3437   switch (Attr) {
3438   case ImbueAttr::NONE:
3439     return false;
3440   case ImbueAttr::ALWAYS:
3441     Fn->addFnAttr("function-instrument", "xray-always");
3442     break;
3443   case ImbueAttr::ALWAYS_ARG1:
3444     Fn->addFnAttr("function-instrument", "xray-always");
3445     Fn->addFnAttr("xray-log-args", "1");
3446     break;
3447   case ImbueAttr::NEVER:
3448     Fn->addFnAttr("function-instrument", "xray-never");
3449     break;
3450   }
3451   return true;
3452 }
3453 
3454 ProfileList::ExclusionType
3455 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3456                                               SourceLocation Loc) const {
3457   const auto &ProfileList = getContext().getProfileList();
3458   // If the profile list is empty, then instrument everything.
3459   if (ProfileList.isEmpty())
3460     return ProfileList::Allow;
3461   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3462   // First, check the function name.
3463   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3464     return *V;
3465   // Next, check the source location.
3466   if (Loc.isValid())
3467     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3468       return *V;
3469   // If location is unknown, this may be a compiler-generated function. Assume
3470   // it's located in the main file.
3471   auto &SM = Context.getSourceManager();
3472   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3473     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3474       return *V;
3475   return ProfileList.getDefault(Kind);
3476 }
3477 
3478 ProfileList::ExclusionType
3479 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3480                                                  SourceLocation Loc) const {
3481   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3482   if (V != ProfileList::Allow)
3483     return V;
3484 
3485   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3486   if (NumGroups > 1) {
3487     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3488     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3489       return ProfileList::Skip;
3490   }
3491   return ProfileList::Allow;
3492 }
3493 
3494 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3495   // Never defer when EmitAllDecls is specified.
3496   if (LangOpts.EmitAllDecls)
3497     return true;
3498 
3499   const auto *VD = dyn_cast<VarDecl>(Global);
3500   if (VD &&
3501       ((CodeGenOpts.KeepPersistentStorageVariables &&
3502         (VD->getStorageDuration() == SD_Static ||
3503          VD->getStorageDuration() == SD_Thread)) ||
3504        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3505         VD->getType().isConstQualified())))
3506     return true;
3507 
3508   return getContext().DeclMustBeEmitted(Global);
3509 }
3510 
3511 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3512   // In OpenMP 5.0 variables and function may be marked as
3513   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3514   // that they must be emitted on the host/device. To be sure we need to have
3515   // seen a declare target with an explicit mentioning of the function, we know
3516   // we have if the level of the declare target attribute is -1. Note that we
3517   // check somewhere else if we should emit this at all.
3518   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3519     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3520         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3521     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3522       return false;
3523   }
3524 
3525   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3526     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3527       // Implicit template instantiations may change linkage if they are later
3528       // explicitly instantiated, so they should not be emitted eagerly.
3529       return false;
3530     // Defer until all versions have been semantically checked.
3531     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3532       return false;
3533   }
3534   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3535     if (Context.getInlineVariableDefinitionKind(VD) ==
3536         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3537       // A definition of an inline constexpr static data member may change
3538       // linkage later if it's redeclared outside the class.
3539       return false;
3540     if (CXX20ModuleInits && VD->getOwningModule() &&
3541         !VD->getOwningModule()->isModuleMapModule()) {
3542       // For CXX20, module-owned initializers need to be deferred, since it is
3543       // not known at this point if they will be run for the current module or
3544       // as part of the initializer for an imported one.
3545       return false;
3546     }
3547   }
3548   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3549   // codegen for global variables, because they may be marked as threadprivate.
3550   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3551       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3552       !Global->getType().isConstantStorage(getContext(), false, false) &&
3553       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3554     return false;
3555 
3556   return true;
3557 }
3558 
3559 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3560   StringRef Name = getMangledName(GD);
3561 
3562   // The UUID descriptor should be pointer aligned.
3563   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3564 
3565   // Look for an existing global.
3566   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3567     return ConstantAddress(GV, GV->getValueType(), Alignment);
3568 
3569   ConstantEmitter Emitter(*this);
3570   llvm::Constant *Init;
3571 
3572   APValue &V = GD->getAsAPValue();
3573   if (!V.isAbsent()) {
3574     // If possible, emit the APValue version of the initializer. In particular,
3575     // this gets the type of the constant right.
3576     Init = Emitter.emitForInitializer(
3577         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3578   } else {
3579     // As a fallback, directly construct the constant.
3580     // FIXME: This may get padding wrong under esoteric struct layout rules.
3581     // MSVC appears to create a complete type 'struct __s_GUID' that it
3582     // presumably uses to represent these constants.
3583     MSGuidDecl::Parts Parts = GD->getParts();
3584     llvm::Constant *Fields[4] = {
3585         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3586         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3587         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3588         llvm::ConstantDataArray::getRaw(
3589             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3590             Int8Ty)};
3591     Init = llvm::ConstantStruct::getAnon(Fields);
3592   }
3593 
3594   auto *GV = new llvm::GlobalVariable(
3595       getModule(), Init->getType(),
3596       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3597   if (supportsCOMDAT())
3598     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3599   setDSOLocal(GV);
3600 
3601   if (!V.isAbsent()) {
3602     Emitter.finalize(GV);
3603     return ConstantAddress(GV, GV->getValueType(), Alignment);
3604   }
3605 
3606   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3607   return ConstantAddress(GV, Ty, Alignment);
3608 }
3609 
3610 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3611     const UnnamedGlobalConstantDecl *GCD) {
3612   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3613 
3614   llvm::GlobalVariable **Entry = nullptr;
3615   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3616   if (*Entry)
3617     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3618 
3619   ConstantEmitter Emitter(*this);
3620   llvm::Constant *Init;
3621 
3622   const APValue &V = GCD->getValue();
3623 
3624   assert(!V.isAbsent());
3625   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3626                                     GCD->getType());
3627 
3628   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3629                                       /*isConstant=*/true,
3630                                       llvm::GlobalValue::PrivateLinkage, Init,
3631                                       ".constant");
3632   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3633   GV->setAlignment(Alignment.getAsAlign());
3634 
3635   Emitter.finalize(GV);
3636 
3637   *Entry = GV;
3638   return ConstantAddress(GV, GV->getValueType(), Alignment);
3639 }
3640 
3641 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3642     const TemplateParamObjectDecl *TPO) {
3643   StringRef Name = getMangledName(TPO);
3644   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3645 
3646   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3647     return ConstantAddress(GV, GV->getValueType(), Alignment);
3648 
3649   ConstantEmitter Emitter(*this);
3650   llvm::Constant *Init = Emitter.emitForInitializer(
3651         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3652 
3653   if (!Init) {
3654     ErrorUnsupported(TPO, "template parameter object");
3655     return ConstantAddress::invalid();
3656   }
3657 
3658   llvm::GlobalValue::LinkageTypes Linkage =
3659       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3660           ? llvm::GlobalValue::LinkOnceODRLinkage
3661           : llvm::GlobalValue::InternalLinkage;
3662   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3663                                       /*isConstant=*/true, Linkage, Init, Name);
3664   setGVProperties(GV, TPO);
3665   if (supportsCOMDAT())
3666     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3667   Emitter.finalize(GV);
3668 
3669     return ConstantAddress(GV, GV->getValueType(), Alignment);
3670 }
3671 
3672 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3673   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3674   assert(AA && "No alias?");
3675 
3676   CharUnits Alignment = getContext().getDeclAlign(VD);
3677   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3678 
3679   // See if there is already something with the target's name in the module.
3680   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3681   if (Entry)
3682     return ConstantAddress(Entry, DeclTy, Alignment);
3683 
3684   llvm::Constant *Aliasee;
3685   if (isa<llvm::FunctionType>(DeclTy))
3686     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3687                                       GlobalDecl(cast<FunctionDecl>(VD)),
3688                                       /*ForVTable=*/false);
3689   else
3690     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3691                                     nullptr);
3692 
3693   auto *F = cast<llvm::GlobalValue>(Aliasee);
3694   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3695   WeakRefReferences.insert(F);
3696 
3697   return ConstantAddress(Aliasee, DeclTy, Alignment);
3698 }
3699 
3700 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3701   if (!D)
3702     return false;
3703   if (auto *A = D->getAttr<AttrT>())
3704     return A->isImplicit();
3705   return D->isImplicit();
3706 }
3707 
3708 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const {
3709   assert(LangOpts.CUDA && "Should not be called by non-CUDA languages");
3710   // We need to emit host-side 'shadows' for all global
3711   // device-side variables because the CUDA runtime needs their
3712   // size and host-side address in order to provide access to
3713   // their device-side incarnations.
3714   return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() ||
3715          Global->hasAttr<CUDAConstantAttr>() ||
3716          Global->hasAttr<CUDASharedAttr>() ||
3717          Global->getType()->isCUDADeviceBuiltinSurfaceType() ||
3718          Global->getType()->isCUDADeviceBuiltinTextureType();
3719 }
3720 
3721 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3722   const auto *Global = cast<ValueDecl>(GD.getDecl());
3723 
3724   // Weak references don't produce any output by themselves.
3725   if (Global->hasAttr<WeakRefAttr>())
3726     return;
3727 
3728   // If this is an alias definition (which otherwise looks like a declaration)
3729   // emit it now.
3730   if (Global->hasAttr<AliasAttr>())
3731     return EmitAliasDefinition(GD);
3732 
3733   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3734   if (Global->hasAttr<IFuncAttr>())
3735     return emitIFuncDefinition(GD);
3736 
3737   // If this is a cpu_dispatch multiversion function, emit the resolver.
3738   if (Global->hasAttr<CPUDispatchAttr>())
3739     return emitCPUDispatchDefinition(GD);
3740 
3741   // If this is CUDA, be selective about which declarations we emit.
3742   // Non-constexpr non-lambda implicit host device functions are not emitted
3743   // unless they are used on device side.
3744   if (LangOpts.CUDA) {
3745     assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3746            "Expected Variable or Function");
3747     if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3748       if (!shouldEmitCUDAGlobalVar(VD))
3749         return;
3750     } else if (LangOpts.CUDAIsDevice) {
3751       const auto *FD = dyn_cast<FunctionDecl>(Global);
3752       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3753            (LangOpts.OffloadImplicitHostDeviceTemplates &&
3754             hasImplicitAttr<CUDAHostAttr>(FD) &&
3755             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3756             !isLambdaCallOperator(FD) &&
3757             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3758           !Global->hasAttr<CUDAGlobalAttr>() &&
3759           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3760             !Global->hasAttr<CUDAHostAttr>()))
3761         return;
3762       // Device-only functions are the only things we skip.
3763     } else if (!Global->hasAttr<CUDAHostAttr>() &&
3764                Global->hasAttr<CUDADeviceAttr>())
3765       return;
3766   }
3767 
3768   if (LangOpts.OpenMP) {
3769     // If this is OpenMP, check if it is legal to emit this global normally.
3770     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3771       return;
3772     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3773       if (MustBeEmitted(Global))
3774         EmitOMPDeclareReduction(DRD);
3775       return;
3776     }
3777     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3778       if (MustBeEmitted(Global))
3779         EmitOMPDeclareMapper(DMD);
3780       return;
3781     }
3782   }
3783 
3784   // Ignore declarations, they will be emitted on their first use.
3785   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3786     // Update deferred annotations with the latest declaration if the function
3787     // function was already used or defined.
3788     if (FD->hasAttr<AnnotateAttr>()) {
3789       StringRef MangledName = getMangledName(GD);
3790       if (GetGlobalValue(MangledName))
3791         DeferredAnnotations[MangledName] = FD;
3792     }
3793 
3794     // Forward declarations are emitted lazily on first use.
3795     if (!FD->doesThisDeclarationHaveABody()) {
3796       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3797           (!FD->isMultiVersion() ||
3798            !FD->getASTContext().getTargetInfo().getTriple().isAArch64()))
3799         return;
3800 
3801       StringRef MangledName = getMangledName(GD);
3802 
3803       // Compute the function info and LLVM type.
3804       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3805       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3806 
3807       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3808                               /*DontDefer=*/false);
3809       return;
3810     }
3811   } else {
3812     const auto *VD = cast<VarDecl>(Global);
3813     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3814     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3815         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3816       if (LangOpts.OpenMP) {
3817         // Emit declaration of the must-be-emitted declare target variable.
3818         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3819                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3820 
3821           // If this variable has external storage and doesn't require special
3822           // link handling we defer to its canonical definition.
3823           if (VD->hasExternalStorage() &&
3824               Res != OMPDeclareTargetDeclAttr::MT_Link)
3825             return;
3826 
3827           bool UnifiedMemoryEnabled =
3828               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3829           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3830                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3831               !UnifiedMemoryEnabled) {
3832             (void)GetAddrOfGlobalVar(VD);
3833           } else {
3834             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3835                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3836                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3837                      UnifiedMemoryEnabled)) &&
3838                    "Link clause or to clause with unified memory expected.");
3839             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3840           }
3841 
3842           return;
3843         }
3844       }
3845       // If this declaration may have caused an inline variable definition to
3846       // change linkage, make sure that it's emitted.
3847       if (Context.getInlineVariableDefinitionKind(VD) ==
3848           ASTContext::InlineVariableDefinitionKind::Strong)
3849         GetAddrOfGlobalVar(VD);
3850       return;
3851     }
3852   }
3853 
3854   // Defer code generation to first use when possible, e.g. if this is an inline
3855   // function. If the global must always be emitted, do it eagerly if possible
3856   // to benefit from cache locality.
3857   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3858     // Emit the definition if it can't be deferred.
3859     EmitGlobalDefinition(GD);
3860     addEmittedDeferredDecl(GD);
3861     return;
3862   }
3863 
3864   // If we're deferring emission of a C++ variable with an
3865   // initializer, remember the order in which it appeared in the file.
3866   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3867       cast<VarDecl>(Global)->hasInit()) {
3868     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3869     CXXGlobalInits.push_back(nullptr);
3870   }
3871 
3872   StringRef MangledName = getMangledName(GD);
3873   if (GetGlobalValue(MangledName) != nullptr) {
3874     // The value has already been used and should therefore be emitted.
3875     addDeferredDeclToEmit(GD);
3876   } else if (MustBeEmitted(Global)) {
3877     // The value must be emitted, but cannot be emitted eagerly.
3878     assert(!MayBeEmittedEagerly(Global));
3879     addDeferredDeclToEmit(GD);
3880   } else {
3881     // Otherwise, remember that we saw a deferred decl with this name.  The
3882     // first use of the mangled name will cause it to move into
3883     // DeferredDeclsToEmit.
3884     DeferredDecls[MangledName] = GD;
3885   }
3886 }
3887 
3888 // Check if T is a class type with a destructor that's not dllimport.
3889 static bool HasNonDllImportDtor(QualType T) {
3890   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3891     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3892       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3893         return true;
3894 
3895   return false;
3896 }
3897 
3898 namespace {
3899   struct FunctionIsDirectlyRecursive
3900       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3901     const StringRef Name;
3902     const Builtin::Context &BI;
3903     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3904         : Name(N), BI(C) {}
3905 
3906     bool VisitCallExpr(const CallExpr *E) {
3907       const FunctionDecl *FD = E->getDirectCallee();
3908       if (!FD)
3909         return false;
3910       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3911       if (Attr && Name == Attr->getLabel())
3912         return true;
3913       unsigned BuiltinID = FD->getBuiltinID();
3914       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3915         return false;
3916       StringRef BuiltinName = BI.getName(BuiltinID);
3917       if (BuiltinName.starts_with("__builtin_") &&
3918           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3919         return true;
3920       }
3921       return false;
3922     }
3923 
3924     bool VisitStmt(const Stmt *S) {
3925       for (const Stmt *Child : S->children())
3926         if (Child && this->Visit(Child))
3927           return true;
3928       return false;
3929     }
3930   };
3931 
3932   // Make sure we're not referencing non-imported vars or functions.
3933   struct DLLImportFunctionVisitor
3934       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3935     bool SafeToInline = true;
3936 
3937     bool shouldVisitImplicitCode() const { return true; }
3938 
3939     bool VisitVarDecl(VarDecl *VD) {
3940       if (VD->getTLSKind()) {
3941         // A thread-local variable cannot be imported.
3942         SafeToInline = false;
3943         return SafeToInline;
3944       }
3945 
3946       // A variable definition might imply a destructor call.
3947       if (VD->isThisDeclarationADefinition())
3948         SafeToInline = !HasNonDllImportDtor(VD->getType());
3949 
3950       return SafeToInline;
3951     }
3952 
3953     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3954       if (const auto *D = E->getTemporary()->getDestructor())
3955         SafeToInline = D->hasAttr<DLLImportAttr>();
3956       return SafeToInline;
3957     }
3958 
3959     bool VisitDeclRefExpr(DeclRefExpr *E) {
3960       ValueDecl *VD = E->getDecl();
3961       if (isa<FunctionDecl>(VD))
3962         SafeToInline = VD->hasAttr<DLLImportAttr>();
3963       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3964         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3965       return SafeToInline;
3966     }
3967 
3968     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3969       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3970       return SafeToInline;
3971     }
3972 
3973     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3974       CXXMethodDecl *M = E->getMethodDecl();
3975       if (!M) {
3976         // Call through a pointer to member function. This is safe to inline.
3977         SafeToInline = true;
3978       } else {
3979         SafeToInline = M->hasAttr<DLLImportAttr>();
3980       }
3981       return SafeToInline;
3982     }
3983 
3984     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3985       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3986       return SafeToInline;
3987     }
3988 
3989     bool VisitCXXNewExpr(CXXNewExpr *E) {
3990       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3991       return SafeToInline;
3992     }
3993   };
3994 }
3995 
3996 // isTriviallyRecursive - Check if this function calls another
3997 // decl that, because of the asm attribute or the other decl being a builtin,
3998 // ends up pointing to itself.
3999 bool
4000 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
4001   StringRef Name;
4002   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
4003     // asm labels are a special kind of mangling we have to support.
4004     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
4005     if (!Attr)
4006       return false;
4007     Name = Attr->getLabel();
4008   } else {
4009     Name = FD->getName();
4010   }
4011 
4012   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
4013   const Stmt *Body = FD->getBody();
4014   return Body ? Walker.Visit(Body) : false;
4015 }
4016 
4017 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
4018   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
4019     return true;
4020 
4021   const auto *F = cast<FunctionDecl>(GD.getDecl());
4022   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4023     return false;
4024 
4025   // We don't import function bodies from other named module units since that
4026   // behavior may break ABI compatibility of the current unit.
4027   if (const Module *M = F->getOwningModule();
4028       M && M->getTopLevelModule()->isNamedModule() &&
4029       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4030     // There are practices to mark template member function as always-inline
4031     // and mark the template as extern explicit instantiation but not give
4032     // the definition for member function. So we have to emit the function
4033     // from explicitly instantiation with always-inline.
4034     //
4035     // See https://github.com/llvm/llvm-project/issues/86893 for details.
4036     //
4037     // TODO: Maybe it is better to give it a warning if we call a non-inline
4038     // function from other module units which is marked as always-inline.
4039     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4040       return false;
4041     }
4042   }
4043 
4044   if (F->hasAttr<NoInlineAttr>())
4045     return false;
4046 
4047   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4048     // Check whether it would be safe to inline this dllimport function.
4049     DLLImportFunctionVisitor Visitor;
4050     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4051     if (!Visitor.SafeToInline)
4052       return false;
4053 
4054     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4055       // Implicit destructor invocations aren't captured in the AST, so the
4056       // check above can't see them. Check for them manually here.
4057       for (const Decl *Member : Dtor->getParent()->decls())
4058         if (isa<FieldDecl>(Member))
4059           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4060             return false;
4061       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4062         if (HasNonDllImportDtor(B.getType()))
4063           return false;
4064     }
4065   }
4066 
4067   // Inline builtins declaration must be emitted. They often are fortified
4068   // functions.
4069   if (F->isInlineBuiltinDeclaration())
4070     return true;
4071 
4072   // PR9614. Avoid cases where the source code is lying to us. An available
4073   // externally function should have an equivalent function somewhere else,
4074   // but a function that calls itself through asm label/`__builtin_` trickery is
4075   // clearly not equivalent to the real implementation.
4076   // This happens in glibc's btowc and in some configure checks.
4077   return !isTriviallyRecursive(F);
4078 }
4079 
4080 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4081   return CodeGenOpts.OptimizationLevel > 0;
4082 }
4083 
4084 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4085                                                        llvm::GlobalValue *GV) {
4086   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4087 
4088   if (FD->isCPUSpecificMultiVersion()) {
4089     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4090     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4091       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4092   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4093     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4094       // AArch64 favors the default target version over the clone if any.
4095       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4096           TC->isFirstOfVersion(I))
4097         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4098     // Ensure that the resolver function is also emitted.
4099     GetOrCreateMultiVersionResolver(GD);
4100   } else
4101     EmitGlobalFunctionDefinition(GD, GV);
4102 
4103   // Defer the resolver emission until we can reason whether the TU
4104   // contains a default target version implementation.
4105   if (FD->isTargetVersionMultiVersion())
4106     AddDeferredMultiVersionResolverToEmit(GD);
4107 }
4108 
4109 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4110   const auto *D = cast<ValueDecl>(GD.getDecl());
4111 
4112   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4113                                  Context.getSourceManager(),
4114                                  "Generating code for declaration");
4115 
4116   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4117     // At -O0, don't generate IR for functions with available_externally
4118     // linkage.
4119     if (!shouldEmitFunction(GD))
4120       return;
4121 
4122     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4123       std::string Name;
4124       llvm::raw_string_ostream OS(Name);
4125       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4126                                /*Qualified=*/true);
4127       return Name;
4128     });
4129 
4130     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4131       // Make sure to emit the definition(s) before we emit the thunks.
4132       // This is necessary for the generation of certain thunks.
4133       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4134         ABI->emitCXXStructor(GD);
4135       else if (FD->isMultiVersion())
4136         EmitMultiVersionFunctionDefinition(GD, GV);
4137       else
4138         EmitGlobalFunctionDefinition(GD, GV);
4139 
4140       if (Method->isVirtual())
4141         getVTables().EmitThunks(GD);
4142 
4143       return;
4144     }
4145 
4146     if (FD->isMultiVersion())
4147       return EmitMultiVersionFunctionDefinition(GD, GV);
4148     return EmitGlobalFunctionDefinition(GD, GV);
4149   }
4150 
4151   if (const auto *VD = dyn_cast<VarDecl>(D))
4152     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4153 
4154   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4155 }
4156 
4157 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4158                                                       llvm::Function *NewFn);
4159 
4160 static unsigned
4161 TargetMVPriority(const TargetInfo &TI,
4162                  const CodeGenFunction::MultiVersionResolverOption &RO) {
4163   unsigned Priority = 0;
4164   unsigned NumFeatures = 0;
4165   for (StringRef Feat : RO.Conditions.Features) {
4166     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4167     NumFeatures++;
4168   }
4169 
4170   if (!RO.Conditions.Architecture.empty())
4171     Priority = std::max(
4172         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4173 
4174   Priority += TI.multiVersionFeatureCost() * NumFeatures;
4175 
4176   return Priority;
4177 }
4178 
4179 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4180 // TU can forward declare the function without causing problems.  Particularly
4181 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4182 // work with internal linkage functions, so that the same function name can be
4183 // used with internal linkage in multiple TUs.
4184 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
4185                                                        GlobalDecl GD) {
4186   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4187   if (FD->getFormalLinkage() == Linkage::Internal)
4188     return llvm::GlobalValue::InternalLinkage;
4189   return llvm::GlobalValue::WeakODRLinkage;
4190 }
4191 
4192 static FunctionDecl *createDefaultTargetVersionFrom(const FunctionDecl *FD) {
4193   auto *DeclCtx = const_cast<DeclContext *>(FD->getDeclContext());
4194   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
4195   StorageClass SC = FD->getStorageClass();
4196   DeclarationName Name = FD->getNameInfo().getName();
4197 
4198   FunctionDecl *NewDecl =
4199       FunctionDecl::Create(FD->getASTContext(), DeclCtx, FD->getBeginLoc(),
4200                            FD->getEndLoc(), Name, TInfo->getType(), TInfo, SC);
4201 
4202   NewDecl->setIsMultiVersion();
4203   NewDecl->addAttr(TargetVersionAttr::CreateImplicit(
4204       NewDecl->getASTContext(), "default", NewDecl->getSourceRange()));
4205 
4206   return NewDecl;
4207 }
4208 
4209 void CodeGenModule::emitMultiVersionFunctions() {
4210   std::vector<GlobalDecl> MVFuncsToEmit;
4211   MultiVersionFuncs.swap(MVFuncsToEmit);
4212   for (GlobalDecl GD : MVFuncsToEmit) {
4213     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4214     assert(FD && "Expected a FunctionDecl");
4215 
4216     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4217       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4218       StringRef MangledName = getMangledName(CurGD);
4219       llvm::Constant *Func = GetGlobalValue(MangledName);
4220       if (!Func) {
4221         if (Decl->isDefined()) {
4222           EmitGlobalFunctionDefinition(CurGD, nullptr);
4223           Func = GetGlobalValue(MangledName);
4224         } else {
4225           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4226           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4227           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4228                                    /*DontDefer=*/false, ForDefinition);
4229         }
4230         assert(Func && "This should have just been created");
4231       }
4232       return cast<llvm::Function>(Func);
4233     };
4234 
4235     bool HasDefaultDecl = !FD->isTargetVersionMultiVersion();
4236     bool ShouldEmitResolver =
4237         !getContext().getTargetInfo().getTriple().isAArch64();
4238     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4239 
4240     getContext().forEachMultiversionedFunctionVersion(
4241         FD, [&](const FunctionDecl *CurFD) {
4242           llvm::SmallVector<StringRef, 8> Feats;
4243 
4244           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4245             TA->getAddedFeatures(Feats);
4246             llvm::Function *Func = createFunction(CurFD);
4247             Options.emplace_back(Func, TA->getArchitecture(), Feats);
4248           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4249             bool HasDefaultDef = TVA->isDefaultVersion() &&
4250                                  CurFD->doesThisDeclarationHaveABody();
4251             HasDefaultDecl |= TVA->isDefaultVersion();
4252             ShouldEmitResolver |= (CurFD->isUsed() || HasDefaultDef);
4253             TVA->getFeatures(Feats);
4254             llvm::Function *Func = createFunction(CurFD);
4255             Options.emplace_back(Func, /*Architecture*/ "", Feats);
4256           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4257             ShouldEmitResolver |= CurFD->doesThisDeclarationHaveABody();
4258             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4259               if (!TC->isFirstOfVersion(I))
4260                 continue;
4261 
4262               llvm::Function *Func = createFunction(CurFD, I);
4263               StringRef Architecture;
4264               Feats.clear();
4265               if (getTarget().getTriple().isAArch64())
4266                 TC->getFeatures(Feats, I);
4267               else {
4268                 StringRef Version = TC->getFeatureStr(I);
4269                 if (Version.starts_with("arch="))
4270                   Architecture = Version.drop_front(sizeof("arch=") - 1);
4271                 else if (Version != "default")
4272                   Feats.push_back(Version);
4273               }
4274               Options.emplace_back(Func, Architecture, Feats);
4275             }
4276           } else
4277             llvm_unreachable("unexpected MultiVersionKind");
4278         });
4279 
4280     if (!ShouldEmitResolver)
4281       continue;
4282 
4283     if (!HasDefaultDecl) {
4284       FunctionDecl *NewFD = createDefaultTargetVersionFrom(FD);
4285       llvm::Function *Func = createFunction(NewFD);
4286       llvm::SmallVector<StringRef, 1> Feats;
4287       Options.emplace_back(Func, /*Architecture*/ "", Feats);
4288     }
4289 
4290     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4291     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4292       ResolverConstant = IFunc->getResolver();
4293       if (FD->isTargetClonesMultiVersion() &&
4294           !getTarget().getTriple().isAArch64()) {
4295         std::string MangledName = getMangledNameImpl(
4296             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4297         if (!GetGlobalValue(MangledName + ".ifunc")) {
4298           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4299           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4300           // In prior versions of Clang, the mangling for ifuncs incorrectly
4301           // included an .ifunc suffix. This alias is generated for backward
4302           // compatibility. It is deprecated, and may be removed in the future.
4303           auto *Alias = llvm::GlobalAlias::create(
4304               DeclTy, 0, getMultiversionLinkage(*this, GD),
4305               MangledName + ".ifunc", IFunc, &getModule());
4306           SetCommonAttributes(FD, Alias);
4307         }
4308       }
4309     }
4310     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4311 
4312     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4313 
4314     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4315       ResolverFunc->setComdat(
4316           getModule().getOrInsertComdat(ResolverFunc->getName()));
4317 
4318     const TargetInfo &TI = getTarget();
4319     llvm::stable_sort(
4320         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4321                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4322           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4323         });
4324     CodeGenFunction CGF(*this);
4325     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4326   }
4327 
4328   // Ensure that any additions to the deferred decls list caused by emitting a
4329   // variant are emitted.  This can happen when the variant itself is inline and
4330   // calls a function without linkage.
4331   if (!MVFuncsToEmit.empty())
4332     EmitDeferred();
4333 
4334   // Ensure that any additions to the multiversion funcs list from either the
4335   // deferred decls or the multiversion functions themselves are emitted.
4336   if (!MultiVersionFuncs.empty())
4337     emitMultiVersionFunctions();
4338 }
4339 
4340 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4341   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4342   assert(FD && "Not a FunctionDecl?");
4343   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4344   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4345   assert(DD && "Not a cpu_dispatch Function?");
4346 
4347   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4348   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4349 
4350   StringRef ResolverName = getMangledName(GD);
4351   UpdateMultiVersionNames(GD, FD, ResolverName);
4352 
4353   llvm::Type *ResolverType;
4354   GlobalDecl ResolverGD;
4355   if (getTarget().supportsIFunc()) {
4356     ResolverType = llvm::FunctionType::get(
4357         llvm::PointerType::get(DeclTy,
4358                                getTypes().getTargetAddressSpace(FD->getType())),
4359         false);
4360   }
4361   else {
4362     ResolverType = DeclTy;
4363     ResolverGD = GD;
4364   }
4365 
4366   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4367       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4368   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4369   if (supportsCOMDAT())
4370     ResolverFunc->setComdat(
4371         getModule().getOrInsertComdat(ResolverFunc->getName()));
4372 
4373   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4374   const TargetInfo &Target = getTarget();
4375   unsigned Index = 0;
4376   for (const IdentifierInfo *II : DD->cpus()) {
4377     // Get the name of the target function so we can look it up/create it.
4378     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4379                               getCPUSpecificMangling(*this, II->getName());
4380 
4381     llvm::Constant *Func = GetGlobalValue(MangledName);
4382 
4383     if (!Func) {
4384       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4385       if (ExistingDecl.getDecl() &&
4386           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4387         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4388         Func = GetGlobalValue(MangledName);
4389       } else {
4390         if (!ExistingDecl.getDecl())
4391           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4392 
4393       Func = GetOrCreateLLVMFunction(
4394           MangledName, DeclTy, ExistingDecl,
4395           /*ForVTable=*/false, /*DontDefer=*/true,
4396           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4397       }
4398     }
4399 
4400     llvm::SmallVector<StringRef, 32> Features;
4401     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4402     llvm::transform(Features, Features.begin(),
4403                     [](StringRef Str) { return Str.substr(1); });
4404     llvm::erase_if(Features, [&Target](StringRef Feat) {
4405       return !Target.validateCpuSupports(Feat);
4406     });
4407     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4408     ++Index;
4409   }
4410 
4411   llvm::stable_sort(
4412       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4413                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4414         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4415                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4416       });
4417 
4418   // If the list contains multiple 'default' versions, such as when it contains
4419   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4420   // always run on at least a 'pentium'). We do this by deleting the 'least
4421   // advanced' (read, lowest mangling letter).
4422   while (Options.size() > 1 &&
4423          llvm::all_of(llvm::X86::getCpuSupportsMask(
4424                           (Options.end() - 2)->Conditions.Features),
4425                       [](auto X) { return X == 0; })) {
4426     StringRef LHSName = (Options.end() - 2)->Function->getName();
4427     StringRef RHSName = (Options.end() - 1)->Function->getName();
4428     if (LHSName.compare(RHSName) < 0)
4429       Options.erase(Options.end() - 2);
4430     else
4431       Options.erase(Options.end() - 1);
4432   }
4433 
4434   CodeGenFunction CGF(*this);
4435   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4436 
4437   if (getTarget().supportsIFunc()) {
4438     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4439     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4440 
4441     // Fix up function declarations that were created for cpu_specific before
4442     // cpu_dispatch was known
4443     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4444       assert(cast<llvm::Function>(IFunc)->isDeclaration());
4445       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4446                                            &getModule());
4447       GI->takeName(IFunc);
4448       IFunc->replaceAllUsesWith(GI);
4449       IFunc->eraseFromParent();
4450       IFunc = GI;
4451     }
4452 
4453     std::string AliasName = getMangledNameImpl(
4454         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4455     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4456     if (!AliasFunc) {
4457       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4458                                            &getModule());
4459       SetCommonAttributes(GD, GA);
4460     }
4461   }
4462 }
4463 
4464 /// Adds a declaration to the list of multi version functions if not present.
4465 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4466   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4467   assert(FD && "Not a FunctionDecl?");
4468 
4469   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4470     std::string MangledName =
4471         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4472     if (!DeferredResolversToEmit.insert(MangledName).second)
4473       return;
4474   }
4475   MultiVersionFuncs.push_back(GD);
4476 }
4477 
4478 /// If a dispatcher for the specified mangled name is not in the module, create
4479 /// and return an llvm Function with the specified type.
4480 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4481   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4482   assert(FD && "Not a FunctionDecl?");
4483 
4484   std::string MangledName =
4485       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4486 
4487   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4488   // a separate resolver).
4489   std::string ResolverName = MangledName;
4490   if (getTarget().supportsIFunc()) {
4491     switch (FD->getMultiVersionKind()) {
4492     case MultiVersionKind::None:
4493       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4494     case MultiVersionKind::Target:
4495     case MultiVersionKind::CPUSpecific:
4496     case MultiVersionKind::CPUDispatch:
4497       ResolverName += ".ifunc";
4498       break;
4499     case MultiVersionKind::TargetClones:
4500     case MultiVersionKind::TargetVersion:
4501       break;
4502     }
4503   } else if (FD->isTargetMultiVersion()) {
4504     ResolverName += ".resolver";
4505   }
4506 
4507   // If the resolver has already been created, just return it.
4508   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
4509     return ResolverGV;
4510 
4511   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4512   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4513 
4514   // The resolver needs to be created. For target and target_clones, defer
4515   // creation until the end of the TU.
4516   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4517     AddDeferredMultiVersionResolverToEmit(GD);
4518 
4519   // For cpu_specific, don't create an ifunc yet because we don't know if the
4520   // cpu_dispatch will be emitted in this translation unit.
4521   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4522     llvm::Type *ResolverType = llvm::FunctionType::get(
4523         llvm::PointerType::get(DeclTy,
4524                                getTypes().getTargetAddressSpace(FD->getType())),
4525         false);
4526     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4527         MangledName + ".resolver", ResolverType, GlobalDecl{},
4528         /*ForVTable=*/false);
4529     llvm::GlobalIFunc *GIF =
4530         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4531                                   "", Resolver, &getModule());
4532     GIF->setName(ResolverName);
4533     SetCommonAttributes(FD, GIF);
4534 
4535     return GIF;
4536   }
4537 
4538   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4539       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4540   assert(isa<llvm::GlobalValue>(Resolver) &&
4541          "Resolver should be created for the first time");
4542   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4543   return Resolver;
4544 }
4545 
4546 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4547                                            const llvm::GlobalValue *GV) const {
4548   auto SC = GV->getDLLStorageClass();
4549   if (SC == llvm::GlobalValue::DefaultStorageClass)
4550     return false;
4551   const Decl *MRD = D->getMostRecentDecl();
4552   return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4553             !MRD->hasAttr<DLLImportAttr>()) ||
4554            (SC == llvm::GlobalValue::DLLExportStorageClass &&
4555             !MRD->hasAttr<DLLExportAttr>())) &&
4556           !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4557 }
4558 
4559 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4560 /// module, create and return an llvm Function with the specified type. If there
4561 /// is something in the module with the specified name, return it potentially
4562 /// bitcasted to the right type.
4563 ///
4564 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4565 /// to set the attributes on the function when it is first created.
4566 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4567     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4568     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4569     ForDefinition_t IsForDefinition) {
4570   const Decl *D = GD.getDecl();
4571 
4572   // Any attempts to use a MultiVersion function should result in retrieving
4573   // the iFunc instead. Name Mangling will handle the rest of the changes.
4574   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4575     // For the device mark the function as one that should be emitted.
4576     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4577         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4578         !DontDefer && !IsForDefinition) {
4579       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4580         GlobalDecl GDDef;
4581         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4582           GDDef = GlobalDecl(CD, GD.getCtorType());
4583         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4584           GDDef = GlobalDecl(DD, GD.getDtorType());
4585         else
4586           GDDef = GlobalDecl(FDDef);
4587         EmitGlobal(GDDef);
4588       }
4589     }
4590 
4591     if (FD->isMultiVersion()) {
4592       UpdateMultiVersionNames(GD, FD, MangledName);
4593       if (FD->getASTContext().getTargetInfo().getTriple().isAArch64() &&
4594           !FD->isUsed())
4595         AddDeferredMultiVersionResolverToEmit(GD);
4596       else if (!IsForDefinition)
4597         return GetOrCreateMultiVersionResolver(GD);
4598     }
4599   }
4600 
4601   // Lookup the entry, lazily creating it if necessary.
4602   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4603   if (Entry) {
4604     if (WeakRefReferences.erase(Entry)) {
4605       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4606       if (FD && !FD->hasAttr<WeakAttr>())
4607         Entry->setLinkage(llvm::Function::ExternalLinkage);
4608     }
4609 
4610     // Handle dropped DLL attributes.
4611     if (D && shouldDropDLLAttribute(D, Entry)) {
4612       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4613       setDSOLocal(Entry);
4614     }
4615 
4616     // If there are two attempts to define the same mangled name, issue an
4617     // error.
4618     if (IsForDefinition && !Entry->isDeclaration()) {
4619       GlobalDecl OtherGD;
4620       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4621       // to make sure that we issue an error only once.
4622       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4623           (GD.getCanonicalDecl().getDecl() !=
4624            OtherGD.getCanonicalDecl().getDecl()) &&
4625           DiagnosedConflictingDefinitions.insert(GD).second) {
4626         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4627             << MangledName;
4628         getDiags().Report(OtherGD.getDecl()->getLocation(),
4629                           diag::note_previous_definition);
4630       }
4631     }
4632 
4633     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4634         (Entry->getValueType() == Ty)) {
4635       return Entry;
4636     }
4637 
4638     // Make sure the result is of the correct type.
4639     // (If function is requested for a definition, we always need to create a new
4640     // function, not just return a bitcast.)
4641     if (!IsForDefinition)
4642       return Entry;
4643   }
4644 
4645   // This function doesn't have a complete type (for example, the return
4646   // type is an incomplete struct). Use a fake type instead, and make
4647   // sure not to try to set attributes.
4648   bool IsIncompleteFunction = false;
4649 
4650   llvm::FunctionType *FTy;
4651   if (isa<llvm::FunctionType>(Ty)) {
4652     FTy = cast<llvm::FunctionType>(Ty);
4653   } else {
4654     FTy = llvm::FunctionType::get(VoidTy, false);
4655     IsIncompleteFunction = true;
4656   }
4657 
4658   llvm::Function *F =
4659       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4660                              Entry ? StringRef() : MangledName, &getModule());
4661 
4662   // Store the declaration associated with this function so it is potentially
4663   // updated by further declarations or definitions and emitted at the end.
4664   if (D && D->hasAttr<AnnotateAttr>())
4665     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4666 
4667   // If we already created a function with the same mangled name (but different
4668   // type) before, take its name and add it to the list of functions to be
4669   // replaced with F at the end of CodeGen.
4670   //
4671   // This happens if there is a prototype for a function (e.g. "int f()") and
4672   // then a definition of a different type (e.g. "int f(int x)").
4673   if (Entry) {
4674     F->takeName(Entry);
4675 
4676     // This might be an implementation of a function without a prototype, in
4677     // which case, try to do special replacement of calls which match the new
4678     // prototype.  The really key thing here is that we also potentially drop
4679     // arguments from the call site so as to make a direct call, which makes the
4680     // inliner happier and suppresses a number of optimizer warnings (!) about
4681     // dropping arguments.
4682     if (!Entry->use_empty()) {
4683       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4684       Entry->removeDeadConstantUsers();
4685     }
4686 
4687     addGlobalValReplacement(Entry, F);
4688   }
4689 
4690   assert(F->getName() == MangledName && "name was uniqued!");
4691   if (D)
4692     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4693   if (ExtraAttrs.hasFnAttrs()) {
4694     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4695     F->addFnAttrs(B);
4696   }
4697 
4698   if (!DontDefer) {
4699     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4700     // each other bottoming out with the base dtor.  Therefore we emit non-base
4701     // dtors on usage, even if there is no dtor definition in the TU.
4702     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4703         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4704                                            GD.getDtorType()))
4705       addDeferredDeclToEmit(GD);
4706 
4707     // This is the first use or definition of a mangled name.  If there is a
4708     // deferred decl with this name, remember that we need to emit it at the end
4709     // of the file.
4710     auto DDI = DeferredDecls.find(MangledName);
4711     if (DDI != DeferredDecls.end()) {
4712       // Move the potentially referenced deferred decl to the
4713       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4714       // don't need it anymore).
4715       addDeferredDeclToEmit(DDI->second);
4716       DeferredDecls.erase(DDI);
4717 
4718       // Otherwise, there are cases we have to worry about where we're
4719       // using a declaration for which we must emit a definition but where
4720       // we might not find a top-level definition:
4721       //   - member functions defined inline in their classes
4722       //   - friend functions defined inline in some class
4723       //   - special member functions with implicit definitions
4724       // If we ever change our AST traversal to walk into class methods,
4725       // this will be unnecessary.
4726       //
4727       // We also don't emit a definition for a function if it's going to be an
4728       // entry in a vtable, unless it's already marked as used.
4729     } else if (getLangOpts().CPlusPlus && D) {
4730       // Look for a declaration that's lexically in a record.
4731       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4732            FD = FD->getPreviousDecl()) {
4733         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4734           if (FD->doesThisDeclarationHaveABody()) {
4735             addDeferredDeclToEmit(GD.getWithDecl(FD));
4736             break;
4737           }
4738         }
4739       }
4740     }
4741   }
4742 
4743   // Make sure the result is of the requested type.
4744   if (!IsIncompleteFunction) {
4745     assert(F->getFunctionType() == Ty);
4746     return F;
4747   }
4748 
4749   return F;
4750 }
4751 
4752 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4753 /// non-null, then this function will use the specified type if it has to
4754 /// create it (this occurs when we see a definition of the function).
4755 llvm::Constant *
4756 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4757                                  bool DontDefer,
4758                                  ForDefinition_t IsForDefinition) {
4759   // If there was no specific requested type, just convert it now.
4760   if (!Ty) {
4761     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4762     Ty = getTypes().ConvertType(FD->getType());
4763   }
4764 
4765   // Devirtualized destructor calls may come through here instead of via
4766   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4767   // of the complete destructor when necessary.
4768   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4769     if (getTarget().getCXXABI().isMicrosoft() &&
4770         GD.getDtorType() == Dtor_Complete &&
4771         DD->getParent()->getNumVBases() == 0)
4772       GD = GlobalDecl(DD, Dtor_Base);
4773   }
4774 
4775   StringRef MangledName = getMangledName(GD);
4776   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4777                                     /*IsThunk=*/false, llvm::AttributeList(),
4778                                     IsForDefinition);
4779   // Returns kernel handle for HIP kernel stub function.
4780   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4781       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4782     auto *Handle = getCUDARuntime().getKernelHandle(
4783         cast<llvm::Function>(F->stripPointerCasts()), GD);
4784     if (IsForDefinition)
4785       return F;
4786     return Handle;
4787   }
4788   return F;
4789 }
4790 
4791 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4792   llvm::GlobalValue *F =
4793       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4794 
4795   return llvm::NoCFIValue::get(F);
4796 }
4797 
4798 static const FunctionDecl *
4799 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4800   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4801   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4802 
4803   IdentifierInfo &CII = C.Idents.get(Name);
4804   for (const auto *Result : DC->lookup(&CII))
4805     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4806       return FD;
4807 
4808   if (!C.getLangOpts().CPlusPlus)
4809     return nullptr;
4810 
4811   // Demangle the premangled name from getTerminateFn()
4812   IdentifierInfo &CXXII =
4813       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4814           ? C.Idents.get("terminate")
4815           : C.Idents.get(Name);
4816 
4817   for (const auto &N : {"__cxxabiv1", "std"}) {
4818     IdentifierInfo &NS = C.Idents.get(N);
4819     for (const auto *Result : DC->lookup(&NS)) {
4820       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4821       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4822         for (const auto *Result : LSD->lookup(&NS))
4823           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4824             break;
4825 
4826       if (ND)
4827         for (const auto *Result : ND->lookup(&CXXII))
4828           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4829             return FD;
4830     }
4831   }
4832 
4833   return nullptr;
4834 }
4835 
4836 /// CreateRuntimeFunction - Create a new runtime function with the specified
4837 /// type and name.
4838 llvm::FunctionCallee
4839 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4840                                      llvm::AttributeList ExtraAttrs, bool Local,
4841                                      bool AssumeConvergent) {
4842   if (AssumeConvergent) {
4843     ExtraAttrs =
4844         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4845   }
4846 
4847   llvm::Constant *C =
4848       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4849                               /*DontDefer=*/false, /*IsThunk=*/false,
4850                               ExtraAttrs);
4851 
4852   if (auto *F = dyn_cast<llvm::Function>(C)) {
4853     if (F->empty()) {
4854       F->setCallingConv(getRuntimeCC());
4855 
4856       // In Windows Itanium environments, try to mark runtime functions
4857       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4858       // will link their standard library statically or dynamically. Marking
4859       // functions imported when they are not imported can cause linker errors
4860       // and warnings.
4861       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4862           !getCodeGenOpts().LTOVisibilityPublicStd) {
4863         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4864         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4865           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4866           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4867         }
4868       }
4869       setDSOLocal(F);
4870       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4871       // of trying to approximate the attributes using the LLVM function
4872       // signature. This requires revising the API of CreateRuntimeFunction().
4873       markRegisterParameterAttributes(F);
4874     }
4875   }
4876 
4877   return {FTy, C};
4878 }
4879 
4880 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4881 /// create and return an llvm GlobalVariable with the specified type and address
4882 /// space. If there is something in the module with the specified name, return
4883 /// it potentially bitcasted to the right type.
4884 ///
4885 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4886 /// to set the attributes on the global when it is first created.
4887 ///
4888 /// If IsForDefinition is true, it is guaranteed that an actual global with
4889 /// type Ty will be returned, not conversion of a variable with the same
4890 /// mangled name but some other type.
4891 llvm::Constant *
4892 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4893                                      LangAS AddrSpace, const VarDecl *D,
4894                                      ForDefinition_t IsForDefinition) {
4895   // Lookup the entry, lazily creating it if necessary.
4896   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4897   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4898   if (Entry) {
4899     if (WeakRefReferences.erase(Entry)) {
4900       if (D && !D->hasAttr<WeakAttr>())
4901         Entry->setLinkage(llvm::Function::ExternalLinkage);
4902     }
4903 
4904     // Handle dropped DLL attributes.
4905     if (D && shouldDropDLLAttribute(D, Entry))
4906       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4907 
4908     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4909       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4910 
4911     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4912       return Entry;
4913 
4914     // If there are two attempts to define the same mangled name, issue an
4915     // error.
4916     if (IsForDefinition && !Entry->isDeclaration()) {
4917       GlobalDecl OtherGD;
4918       const VarDecl *OtherD;
4919 
4920       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4921       // to make sure that we issue an error only once.
4922       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4923           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4924           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4925           OtherD->hasInit() &&
4926           DiagnosedConflictingDefinitions.insert(D).second) {
4927         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4928             << MangledName;
4929         getDiags().Report(OtherGD.getDecl()->getLocation(),
4930                           diag::note_previous_definition);
4931       }
4932     }
4933 
4934     // Make sure the result is of the correct type.
4935     if (Entry->getType()->getAddressSpace() != TargetAS)
4936       return llvm::ConstantExpr::getAddrSpaceCast(
4937           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
4938 
4939     // (If global is requested for a definition, we always need to create a new
4940     // global, not just return a bitcast.)
4941     if (!IsForDefinition)
4942       return Entry;
4943   }
4944 
4945   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4946 
4947   auto *GV = new llvm::GlobalVariable(
4948       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4949       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4950       getContext().getTargetAddressSpace(DAddrSpace));
4951 
4952   // If we already created a global with the same mangled name (but different
4953   // type) before, take its name and remove it from its parent.
4954   if (Entry) {
4955     GV->takeName(Entry);
4956 
4957     if (!Entry->use_empty()) {
4958       Entry->replaceAllUsesWith(GV);
4959     }
4960 
4961     Entry->eraseFromParent();
4962   }
4963 
4964   // This is the first use or definition of a mangled name.  If there is a
4965   // deferred decl with this name, remember that we need to emit it at the end
4966   // of the file.
4967   auto DDI = DeferredDecls.find(MangledName);
4968   if (DDI != DeferredDecls.end()) {
4969     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4970     // list, and remove it from DeferredDecls (since we don't need it anymore).
4971     addDeferredDeclToEmit(DDI->second);
4972     DeferredDecls.erase(DDI);
4973   }
4974 
4975   // Handle things which are present even on external declarations.
4976   if (D) {
4977     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4978       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4979 
4980     // FIXME: This code is overly simple and should be merged with other global
4981     // handling.
4982     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
4983 
4984     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4985 
4986     setLinkageForGV(GV, D);
4987 
4988     if (D->getTLSKind()) {
4989       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4990         CXXThreadLocals.push_back(D);
4991       setTLSMode(GV, *D);
4992     }
4993 
4994     setGVProperties(GV, D);
4995 
4996     // If required by the ABI, treat declarations of static data members with
4997     // inline initializers as definitions.
4998     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4999       EmitGlobalVarDefinition(D);
5000     }
5001 
5002     // Emit section information for extern variables.
5003     if (D->hasExternalStorage()) {
5004       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
5005         GV->setSection(SA->getName());
5006     }
5007 
5008     // Handle XCore specific ABI requirements.
5009     if (getTriple().getArch() == llvm::Triple::xcore &&
5010         D->getLanguageLinkage() == CLanguageLinkage &&
5011         D->getType().isConstant(Context) &&
5012         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
5013       GV->setSection(".cp.rodata");
5014 
5015     // Handle code model attribute
5016     if (const auto *CMA = D->getAttr<CodeModelAttr>())
5017       GV->setCodeModel(CMA->getModel());
5018 
5019     // Check if we a have a const declaration with an initializer, we may be
5020     // able to emit it as available_externally to expose it's value to the
5021     // optimizer.
5022     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5023         D->getType().isConstQualified() && !GV->hasInitializer() &&
5024         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5025       const auto *Record =
5026           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5027       bool HasMutableFields = Record && Record->hasMutableFields();
5028       if (!HasMutableFields) {
5029         const VarDecl *InitDecl;
5030         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5031         if (InitExpr) {
5032           ConstantEmitter emitter(*this);
5033           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5034           if (Init) {
5035             auto *InitType = Init->getType();
5036             if (GV->getValueType() != InitType) {
5037               // The type of the initializer does not match the definition.
5038               // This happens when an initializer has a different type from
5039               // the type of the global (because of padding at the end of a
5040               // structure for instance).
5041               GV->setName(StringRef());
5042               // Make a new global with the correct type, this is now guaranteed
5043               // to work.
5044               auto *NewGV = cast<llvm::GlobalVariable>(
5045                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5046                       ->stripPointerCasts());
5047 
5048               // Erase the old global, since it is no longer used.
5049               GV->eraseFromParent();
5050               GV = NewGV;
5051             } else {
5052               GV->setInitializer(Init);
5053               GV->setConstant(true);
5054               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5055             }
5056             emitter.finalize(GV);
5057           }
5058         }
5059       }
5060     }
5061   }
5062 
5063   if (D &&
5064       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5065     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5066     // External HIP managed variables needed to be recorded for transformation
5067     // in both device and host compilations.
5068     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5069         D->hasExternalStorage())
5070       getCUDARuntime().handleVarRegistration(D, *GV);
5071   }
5072 
5073   if (D)
5074     SanitizerMD->reportGlobal(GV, *D);
5075 
5076   LangAS ExpectedAS =
5077       D ? D->getType().getAddressSpace()
5078         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5079   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5080   if (DAddrSpace != ExpectedAS) {
5081     return getTargetCodeGenInfo().performAddrSpaceCast(
5082         *this, GV, DAddrSpace, ExpectedAS,
5083         llvm::PointerType::get(getLLVMContext(), TargetAS));
5084   }
5085 
5086   return GV;
5087 }
5088 
5089 llvm::Constant *
5090 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5091   const Decl *D = GD.getDecl();
5092 
5093   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5094     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5095                                 /*DontDefer=*/false, IsForDefinition);
5096 
5097   if (isa<CXXMethodDecl>(D)) {
5098     auto FInfo =
5099         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5100     auto Ty = getTypes().GetFunctionType(*FInfo);
5101     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5102                              IsForDefinition);
5103   }
5104 
5105   if (isa<FunctionDecl>(D)) {
5106     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5107     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5108     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5109                              IsForDefinition);
5110   }
5111 
5112   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5113 }
5114 
5115 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5116     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5117     llvm::Align Alignment) {
5118   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5119   llvm::GlobalVariable *OldGV = nullptr;
5120 
5121   if (GV) {
5122     // Check if the variable has the right type.
5123     if (GV->getValueType() == Ty)
5124       return GV;
5125 
5126     // Because C++ name mangling, the only way we can end up with an already
5127     // existing global with the same name is if it has been declared extern "C".
5128     assert(GV->isDeclaration() && "Declaration has wrong type!");
5129     OldGV = GV;
5130   }
5131 
5132   // Create a new variable.
5133   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5134                                 Linkage, nullptr, Name);
5135 
5136   if (OldGV) {
5137     // Replace occurrences of the old variable if needed.
5138     GV->takeName(OldGV);
5139 
5140     if (!OldGV->use_empty()) {
5141       OldGV->replaceAllUsesWith(GV);
5142     }
5143 
5144     OldGV->eraseFromParent();
5145   }
5146 
5147   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5148       !GV->hasAvailableExternallyLinkage())
5149     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5150 
5151   GV->setAlignment(Alignment);
5152 
5153   return GV;
5154 }
5155 
5156 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5157 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5158 /// then it will be created with the specified type instead of whatever the
5159 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5160 /// that an actual global with type Ty will be returned, not conversion of a
5161 /// variable with the same mangled name but some other type.
5162 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5163                                                   llvm::Type *Ty,
5164                                            ForDefinition_t IsForDefinition) {
5165   assert(D->hasGlobalStorage() && "Not a global variable");
5166   QualType ASTTy = D->getType();
5167   if (!Ty)
5168     Ty = getTypes().ConvertTypeForMem(ASTTy);
5169 
5170   StringRef MangledName = getMangledName(D);
5171   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5172                                IsForDefinition);
5173 }
5174 
5175 /// CreateRuntimeVariable - Create a new runtime global variable with the
5176 /// specified type and name.
5177 llvm::Constant *
5178 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5179                                      StringRef Name) {
5180   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5181                                                        : LangAS::Default;
5182   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5183   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5184   return Ret;
5185 }
5186 
5187 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5188   assert(!D->getInit() && "Cannot emit definite definitions here!");
5189 
5190   StringRef MangledName = getMangledName(D);
5191   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5192 
5193   // We already have a definition, not declaration, with the same mangled name.
5194   // Emitting of declaration is not required (and actually overwrites emitted
5195   // definition).
5196   if (GV && !GV->isDeclaration())
5197     return;
5198 
5199   // If we have not seen a reference to this variable yet, place it into the
5200   // deferred declarations table to be emitted if needed later.
5201   if (!MustBeEmitted(D) && !GV) {
5202       DeferredDecls[MangledName] = D;
5203       return;
5204   }
5205 
5206   // The tentative definition is the only definition.
5207   EmitGlobalVarDefinition(D);
5208 }
5209 
5210 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5211   if (auto const *V = dyn_cast<const VarDecl>(D))
5212     EmitExternalVarDeclaration(V);
5213   if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5214     EmitExternalFunctionDeclaration(FD);
5215 }
5216 
5217 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5218   return Context.toCharUnitsFromBits(
5219       getDataLayout().getTypeStoreSizeInBits(Ty));
5220 }
5221 
5222 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5223   if (LangOpts.OpenCL) {
5224     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5225     assert(AS == LangAS::opencl_global ||
5226            AS == LangAS::opencl_global_device ||
5227            AS == LangAS::opencl_global_host ||
5228            AS == LangAS::opencl_constant ||
5229            AS == LangAS::opencl_local ||
5230            AS >= LangAS::FirstTargetAddressSpace);
5231     return AS;
5232   }
5233 
5234   if (LangOpts.SYCLIsDevice &&
5235       (!D || D->getType().getAddressSpace() == LangAS::Default))
5236     return LangAS::sycl_global;
5237 
5238   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5239     if (D) {
5240       if (D->hasAttr<CUDAConstantAttr>())
5241         return LangAS::cuda_constant;
5242       if (D->hasAttr<CUDASharedAttr>())
5243         return LangAS::cuda_shared;
5244       if (D->hasAttr<CUDADeviceAttr>())
5245         return LangAS::cuda_device;
5246       if (D->getType().isConstQualified())
5247         return LangAS::cuda_constant;
5248     }
5249     return LangAS::cuda_device;
5250   }
5251 
5252   if (LangOpts.OpenMP) {
5253     LangAS AS;
5254     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5255       return AS;
5256   }
5257   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5258 }
5259 
5260 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5261   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5262   if (LangOpts.OpenCL)
5263     return LangAS::opencl_constant;
5264   if (LangOpts.SYCLIsDevice)
5265     return LangAS::sycl_global;
5266   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5267     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5268     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5269     // with OpVariable instructions with Generic storage class which is not
5270     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5271     // UniformConstant storage class is not viable as pointers to it may not be
5272     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5273     return LangAS::cuda_device;
5274   if (auto AS = getTarget().getConstantAddressSpace())
5275     return *AS;
5276   return LangAS::Default;
5277 }
5278 
5279 // In address space agnostic languages, string literals are in default address
5280 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5281 // emitted in constant address space in LLVM IR. To be consistent with other
5282 // parts of AST, string literal global variables in constant address space
5283 // need to be casted to default address space before being put into address
5284 // map and referenced by other part of CodeGen.
5285 // In OpenCL, string literals are in constant address space in AST, therefore
5286 // they should not be casted to default address space.
5287 static llvm::Constant *
5288 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5289                                        llvm::GlobalVariable *GV) {
5290   llvm::Constant *Cast = GV;
5291   if (!CGM.getLangOpts().OpenCL) {
5292     auto AS = CGM.GetGlobalConstantAddressSpace();
5293     if (AS != LangAS::Default)
5294       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5295           CGM, GV, AS, LangAS::Default,
5296           llvm::PointerType::get(
5297               CGM.getLLVMContext(),
5298               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5299   }
5300   return Cast;
5301 }
5302 
5303 template<typename SomeDecl>
5304 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5305                                                llvm::GlobalValue *GV) {
5306   if (!getLangOpts().CPlusPlus)
5307     return;
5308 
5309   // Must have 'used' attribute, or else inline assembly can't rely on
5310   // the name existing.
5311   if (!D->template hasAttr<UsedAttr>())
5312     return;
5313 
5314   // Must have internal linkage and an ordinary name.
5315   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5316     return;
5317 
5318   // Must be in an extern "C" context. Entities declared directly within
5319   // a record are not extern "C" even if the record is in such a context.
5320   const SomeDecl *First = D->getFirstDecl();
5321   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5322     return;
5323 
5324   // OK, this is an internal linkage entity inside an extern "C" linkage
5325   // specification. Make a note of that so we can give it the "expected"
5326   // mangled name if nothing else is using that name.
5327   std::pair<StaticExternCMap::iterator, bool> R =
5328       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5329 
5330   // If we have multiple internal linkage entities with the same name
5331   // in extern "C" regions, none of them gets that name.
5332   if (!R.second)
5333     R.first->second = nullptr;
5334 }
5335 
5336 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5337   if (!CGM.supportsCOMDAT())
5338     return false;
5339 
5340   if (D.hasAttr<SelectAnyAttr>())
5341     return true;
5342 
5343   GVALinkage Linkage;
5344   if (auto *VD = dyn_cast<VarDecl>(&D))
5345     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5346   else
5347     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5348 
5349   switch (Linkage) {
5350   case GVA_Internal:
5351   case GVA_AvailableExternally:
5352   case GVA_StrongExternal:
5353     return false;
5354   case GVA_DiscardableODR:
5355   case GVA_StrongODR:
5356     return true;
5357   }
5358   llvm_unreachable("No such linkage");
5359 }
5360 
5361 bool CodeGenModule::supportsCOMDAT() const {
5362   return getTriple().supportsCOMDAT();
5363 }
5364 
5365 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5366                                           llvm::GlobalObject &GO) {
5367   if (!shouldBeInCOMDAT(*this, D))
5368     return;
5369   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5370 }
5371 
5372 /// Pass IsTentative as true if you want to create a tentative definition.
5373 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5374                                             bool IsTentative) {
5375   // OpenCL global variables of sampler type are translated to function calls,
5376   // therefore no need to be translated.
5377   QualType ASTTy = D->getType();
5378   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5379     return;
5380 
5381   // If this is OpenMP device, check if it is legal to emit this global
5382   // normally.
5383   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5384       OpenMPRuntime->emitTargetGlobalVariable(D))
5385     return;
5386 
5387   llvm::TrackingVH<llvm::Constant> Init;
5388   bool NeedsGlobalCtor = false;
5389   // Whether the definition of the variable is available externally.
5390   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5391   // since this is the job for its original source.
5392   bool IsDefinitionAvailableExternally =
5393       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5394   bool NeedsGlobalDtor =
5395       !IsDefinitionAvailableExternally &&
5396       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5397 
5398   // It is helpless to emit the definition for an available_externally variable
5399   // which can't be marked as const.
5400   // We don't need to check if it needs global ctor or dtor. See the above
5401   // comment for ideas.
5402   if (IsDefinitionAvailableExternally &&
5403       (!D->hasConstantInitialization() ||
5404        // TODO: Update this when we have interface to check constexpr
5405        // destructor.
5406        D->needsDestruction(getContext()) ||
5407        !D->getType().isConstantStorage(getContext(), true, true)))
5408     return;
5409 
5410   const VarDecl *InitDecl;
5411   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5412 
5413   std::optional<ConstantEmitter> emitter;
5414 
5415   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5416   // as part of their declaration."  Sema has already checked for
5417   // error cases, so we just need to set Init to UndefValue.
5418   bool IsCUDASharedVar =
5419       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5420   // Shadows of initialized device-side global variables are also left
5421   // undefined.
5422   // Managed Variables should be initialized on both host side and device side.
5423   bool IsCUDAShadowVar =
5424       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5425       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5426        D->hasAttr<CUDASharedAttr>());
5427   bool IsCUDADeviceShadowVar =
5428       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5429       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5430        D->getType()->isCUDADeviceBuiltinTextureType());
5431   if (getLangOpts().CUDA &&
5432       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5433     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5434   else if (D->hasAttr<LoaderUninitializedAttr>())
5435     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5436   else if (!InitExpr) {
5437     // This is a tentative definition; tentative definitions are
5438     // implicitly initialized with { 0 }.
5439     //
5440     // Note that tentative definitions are only emitted at the end of
5441     // a translation unit, so they should never have incomplete
5442     // type. In addition, EmitTentativeDefinition makes sure that we
5443     // never attempt to emit a tentative definition if a real one
5444     // exists. A use may still exists, however, so we still may need
5445     // to do a RAUW.
5446     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5447     Init = EmitNullConstant(D->getType());
5448   } else {
5449     initializedGlobalDecl = GlobalDecl(D);
5450     emitter.emplace(*this);
5451     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5452     if (!Initializer) {
5453       QualType T = InitExpr->getType();
5454       if (D->getType()->isReferenceType())
5455         T = D->getType();
5456 
5457       if (getLangOpts().CPlusPlus) {
5458         if (InitDecl->hasFlexibleArrayInit(getContext()))
5459           ErrorUnsupported(D, "flexible array initializer");
5460         Init = EmitNullConstant(T);
5461 
5462         if (!IsDefinitionAvailableExternally)
5463           NeedsGlobalCtor = true;
5464       } else {
5465         ErrorUnsupported(D, "static initializer");
5466         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5467       }
5468     } else {
5469       Init = Initializer;
5470       // We don't need an initializer, so remove the entry for the delayed
5471       // initializer position (just in case this entry was delayed) if we
5472       // also don't need to register a destructor.
5473       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5474         DelayedCXXInitPosition.erase(D);
5475 
5476 #ifndef NDEBUG
5477       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5478                           InitDecl->getFlexibleArrayInitChars(getContext());
5479       CharUnits CstSize = CharUnits::fromQuantity(
5480           getDataLayout().getTypeAllocSize(Init->getType()));
5481       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5482 #endif
5483     }
5484   }
5485 
5486   llvm::Type* InitType = Init->getType();
5487   llvm::Constant *Entry =
5488       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5489 
5490   // Strip off pointer casts if we got them.
5491   Entry = Entry->stripPointerCasts();
5492 
5493   // Entry is now either a Function or GlobalVariable.
5494   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5495 
5496   // We have a definition after a declaration with the wrong type.
5497   // We must make a new GlobalVariable* and update everything that used OldGV
5498   // (a declaration or tentative definition) with the new GlobalVariable*
5499   // (which will be a definition).
5500   //
5501   // This happens if there is a prototype for a global (e.g.
5502   // "extern int x[];") and then a definition of a different type (e.g.
5503   // "int x[10];"). This also happens when an initializer has a different type
5504   // from the type of the global (this happens with unions).
5505   if (!GV || GV->getValueType() != InitType ||
5506       GV->getType()->getAddressSpace() !=
5507           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5508 
5509     // Move the old entry aside so that we'll create a new one.
5510     Entry->setName(StringRef());
5511 
5512     // Make a new global with the correct type, this is now guaranteed to work.
5513     GV = cast<llvm::GlobalVariable>(
5514         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5515             ->stripPointerCasts());
5516 
5517     // Replace all uses of the old global with the new global
5518     llvm::Constant *NewPtrForOldDecl =
5519         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5520                                                              Entry->getType());
5521     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5522 
5523     // Erase the old global, since it is no longer used.
5524     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5525   }
5526 
5527   MaybeHandleStaticInExternC(D, GV);
5528 
5529   if (D->hasAttr<AnnotateAttr>())
5530     AddGlobalAnnotations(D, GV);
5531 
5532   // Set the llvm linkage type as appropriate.
5533   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5534 
5535   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5536   // the device. [...]"
5537   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5538   // __device__, declares a variable that: [...]
5539   // Is accessible from all the threads within the grid and from the host
5540   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5541   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5542   if (LangOpts.CUDA) {
5543     if (LangOpts.CUDAIsDevice) {
5544       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5545           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5546            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5547            D->getType()->isCUDADeviceBuiltinTextureType()))
5548         GV->setExternallyInitialized(true);
5549     } else {
5550       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5551     }
5552     getCUDARuntime().handleVarRegistration(D, *GV);
5553   }
5554 
5555   GV->setInitializer(Init);
5556   if (emitter)
5557     emitter->finalize(GV);
5558 
5559   // If it is safe to mark the global 'constant', do so now.
5560   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5561                   D->getType().isConstantStorage(getContext(), true, true));
5562 
5563   // If it is in a read-only section, mark it 'constant'.
5564   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5565     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5566     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5567       GV->setConstant(true);
5568   }
5569 
5570   CharUnits AlignVal = getContext().getDeclAlign(D);
5571   // Check for alignment specifed in an 'omp allocate' directive.
5572   if (std::optional<CharUnits> AlignValFromAllocate =
5573           getOMPAllocateAlignment(D))
5574     AlignVal = *AlignValFromAllocate;
5575   GV->setAlignment(AlignVal.getAsAlign());
5576 
5577   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5578   // function is only defined alongside the variable, not also alongside
5579   // callers. Normally, all accesses to a thread_local go through the
5580   // thread-wrapper in order to ensure initialization has occurred, underlying
5581   // variable will never be used other than the thread-wrapper, so it can be
5582   // converted to internal linkage.
5583   //
5584   // However, if the variable has the 'constinit' attribute, it _can_ be
5585   // referenced directly, without calling the thread-wrapper, so the linkage
5586   // must not be changed.
5587   //
5588   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5589   // weak or linkonce, the de-duplication semantics are important to preserve,
5590   // so we don't change the linkage.
5591   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5592       Linkage == llvm::GlobalValue::ExternalLinkage &&
5593       Context.getTargetInfo().getTriple().isOSDarwin() &&
5594       !D->hasAttr<ConstInitAttr>())
5595     Linkage = llvm::GlobalValue::InternalLinkage;
5596 
5597   GV->setLinkage(Linkage);
5598   if (D->hasAttr<DLLImportAttr>())
5599     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5600   else if (D->hasAttr<DLLExportAttr>())
5601     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5602   else
5603     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5604 
5605   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5606     // common vars aren't constant even if declared const.
5607     GV->setConstant(false);
5608     // Tentative definition of global variables may be initialized with
5609     // non-zero null pointers. In this case they should have weak linkage
5610     // since common linkage must have zero initializer and must not have
5611     // explicit section therefore cannot have non-zero initial value.
5612     if (!GV->getInitializer()->isNullValue())
5613       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5614   }
5615 
5616   setNonAliasAttributes(D, GV);
5617 
5618   if (D->getTLSKind() && !GV->isThreadLocal()) {
5619     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5620       CXXThreadLocals.push_back(D);
5621     setTLSMode(GV, *D);
5622   }
5623 
5624   maybeSetTrivialComdat(*D, *GV);
5625 
5626   // Emit the initializer function if necessary.
5627   if (NeedsGlobalCtor || NeedsGlobalDtor)
5628     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5629 
5630   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5631 
5632   // Emit global variable debug information.
5633   if (CGDebugInfo *DI = getModuleDebugInfo())
5634     if (getCodeGenOpts().hasReducedDebugInfo())
5635       DI->EmitGlobalVariable(GV, D);
5636 }
5637 
5638 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5639   if (CGDebugInfo *DI = getModuleDebugInfo())
5640     if (getCodeGenOpts().hasReducedDebugInfo()) {
5641       QualType ASTTy = D->getType();
5642       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5643       llvm::Constant *GV =
5644           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5645       DI->EmitExternalVariable(
5646           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5647     }
5648 }
5649 
5650 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5651   if (CGDebugInfo *DI = getModuleDebugInfo())
5652     if (getCodeGenOpts().hasReducedDebugInfo()) {
5653       auto *Ty = getTypes().ConvertType(FD->getType());
5654       StringRef MangledName = getMangledName(FD);
5655       auto *Fn = dyn_cast<llvm::Function>(
5656           GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5657       if (!Fn->getSubprogram())
5658         DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5659     }
5660 }
5661 
5662 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5663                                       CodeGenModule &CGM, const VarDecl *D,
5664                                       bool NoCommon) {
5665   // Don't give variables common linkage if -fno-common was specified unless it
5666   // was overridden by a NoCommon attribute.
5667   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5668     return true;
5669 
5670   // C11 6.9.2/2:
5671   //   A declaration of an identifier for an object that has file scope without
5672   //   an initializer, and without a storage-class specifier or with the
5673   //   storage-class specifier static, constitutes a tentative definition.
5674   if (D->getInit() || D->hasExternalStorage())
5675     return true;
5676 
5677   // A variable cannot be both common and exist in a section.
5678   if (D->hasAttr<SectionAttr>())
5679     return true;
5680 
5681   // A variable cannot be both common and exist in a section.
5682   // We don't try to determine which is the right section in the front-end.
5683   // If no specialized section name is applicable, it will resort to default.
5684   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5685       D->hasAttr<PragmaClangDataSectionAttr>() ||
5686       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5687       D->hasAttr<PragmaClangRodataSectionAttr>())
5688     return true;
5689 
5690   // Thread local vars aren't considered common linkage.
5691   if (D->getTLSKind())
5692     return true;
5693 
5694   // Tentative definitions marked with WeakImportAttr are true definitions.
5695   if (D->hasAttr<WeakImportAttr>())
5696     return true;
5697 
5698   // A variable cannot be both common and exist in a comdat.
5699   if (shouldBeInCOMDAT(CGM, *D))
5700     return true;
5701 
5702   // Declarations with a required alignment do not have common linkage in MSVC
5703   // mode.
5704   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5705     if (D->hasAttr<AlignedAttr>())
5706       return true;
5707     QualType VarType = D->getType();
5708     if (Context.isAlignmentRequired(VarType))
5709       return true;
5710 
5711     if (const auto *RT = VarType->getAs<RecordType>()) {
5712       const RecordDecl *RD = RT->getDecl();
5713       for (const FieldDecl *FD : RD->fields()) {
5714         if (FD->isBitField())
5715           continue;
5716         if (FD->hasAttr<AlignedAttr>())
5717           return true;
5718         if (Context.isAlignmentRequired(FD->getType()))
5719           return true;
5720       }
5721     }
5722   }
5723 
5724   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5725   // common symbols, so symbols with greater alignment requirements cannot be
5726   // common.
5727   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5728   // alignments for common symbols via the aligncomm directive, so this
5729   // restriction only applies to MSVC environments.
5730   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5731       Context.getTypeAlignIfKnown(D->getType()) >
5732           Context.toBits(CharUnits::fromQuantity(32)))
5733     return true;
5734 
5735   return false;
5736 }
5737 
5738 llvm::GlobalValue::LinkageTypes
5739 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5740                                            GVALinkage Linkage) {
5741   if (Linkage == GVA_Internal)
5742     return llvm::Function::InternalLinkage;
5743 
5744   if (D->hasAttr<WeakAttr>())
5745     return llvm::GlobalVariable::WeakAnyLinkage;
5746 
5747   if (const auto *FD = D->getAsFunction())
5748     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5749       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5750 
5751   // We are guaranteed to have a strong definition somewhere else,
5752   // so we can use available_externally linkage.
5753   if (Linkage == GVA_AvailableExternally)
5754     return llvm::GlobalValue::AvailableExternallyLinkage;
5755 
5756   // Note that Apple's kernel linker doesn't support symbol
5757   // coalescing, so we need to avoid linkonce and weak linkages there.
5758   // Normally, this means we just map to internal, but for explicit
5759   // instantiations we'll map to external.
5760 
5761   // In C++, the compiler has to emit a definition in every translation unit
5762   // that references the function.  We should use linkonce_odr because
5763   // a) if all references in this translation unit are optimized away, we
5764   // don't need to codegen it.  b) if the function persists, it needs to be
5765   // merged with other definitions. c) C++ has the ODR, so we know the
5766   // definition is dependable.
5767   if (Linkage == GVA_DiscardableODR)
5768     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5769                                             : llvm::Function::InternalLinkage;
5770 
5771   // An explicit instantiation of a template has weak linkage, since
5772   // explicit instantiations can occur in multiple translation units
5773   // and must all be equivalent. However, we are not allowed to
5774   // throw away these explicit instantiations.
5775   //
5776   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5777   // so say that CUDA templates are either external (for kernels) or internal.
5778   // This lets llvm perform aggressive inter-procedural optimizations. For
5779   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5780   // therefore we need to follow the normal linkage paradigm.
5781   if (Linkage == GVA_StrongODR) {
5782     if (getLangOpts().AppleKext)
5783       return llvm::Function::ExternalLinkage;
5784     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5785         !getLangOpts().GPURelocatableDeviceCode)
5786       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5787                                           : llvm::Function::InternalLinkage;
5788     return llvm::Function::WeakODRLinkage;
5789   }
5790 
5791   // C++ doesn't have tentative definitions and thus cannot have common
5792   // linkage.
5793   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5794       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5795                                  CodeGenOpts.NoCommon))
5796     return llvm::GlobalVariable::CommonLinkage;
5797 
5798   // selectany symbols are externally visible, so use weak instead of
5799   // linkonce.  MSVC optimizes away references to const selectany globals, so
5800   // all definitions should be the same and ODR linkage should be used.
5801   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5802   if (D->hasAttr<SelectAnyAttr>())
5803     return llvm::GlobalVariable::WeakODRLinkage;
5804 
5805   // Otherwise, we have strong external linkage.
5806   assert(Linkage == GVA_StrongExternal);
5807   return llvm::GlobalVariable::ExternalLinkage;
5808 }
5809 
5810 llvm::GlobalValue::LinkageTypes
5811 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5812   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5813   return getLLVMLinkageForDeclarator(VD, Linkage);
5814 }
5815 
5816 /// Replace the uses of a function that was declared with a non-proto type.
5817 /// We want to silently drop extra arguments from call sites
5818 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5819                                           llvm::Function *newFn) {
5820   // Fast path.
5821   if (old->use_empty())
5822     return;
5823 
5824   llvm::Type *newRetTy = newFn->getReturnType();
5825   SmallVector<llvm::Value *, 4> newArgs;
5826 
5827   SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5828 
5829   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5830        ui != ue; ui++) {
5831     llvm::User *user = ui->getUser();
5832 
5833     // Recognize and replace uses of bitcasts.  Most calls to
5834     // unprototyped functions will use bitcasts.
5835     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5836       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5837         replaceUsesOfNonProtoConstant(bitcast, newFn);
5838       continue;
5839     }
5840 
5841     // Recognize calls to the function.
5842     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5843     if (!callSite)
5844       continue;
5845     if (!callSite->isCallee(&*ui))
5846       continue;
5847 
5848     // If the return types don't match exactly, then we can't
5849     // transform this call unless it's dead.
5850     if (callSite->getType() != newRetTy && !callSite->use_empty())
5851       continue;
5852 
5853     // Get the call site's attribute list.
5854     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5855     llvm::AttributeList oldAttrs = callSite->getAttributes();
5856 
5857     // If the function was passed too few arguments, don't transform.
5858     unsigned newNumArgs = newFn->arg_size();
5859     if (callSite->arg_size() < newNumArgs)
5860       continue;
5861 
5862     // If extra arguments were passed, we silently drop them.
5863     // If any of the types mismatch, we don't transform.
5864     unsigned argNo = 0;
5865     bool dontTransform = false;
5866     for (llvm::Argument &A : newFn->args()) {
5867       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5868         dontTransform = true;
5869         break;
5870       }
5871 
5872       // Add any parameter attributes.
5873       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5874       argNo++;
5875     }
5876     if (dontTransform)
5877       continue;
5878 
5879     // Okay, we can transform this.  Create the new call instruction and copy
5880     // over the required information.
5881     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5882 
5883     // Copy over any operand bundles.
5884     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5885     callSite->getOperandBundlesAsDefs(newBundles);
5886 
5887     llvm::CallBase *newCall;
5888     if (isa<llvm::CallInst>(callSite)) {
5889       newCall =
5890           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5891     } else {
5892       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5893       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5894                                          oldInvoke->getUnwindDest(), newArgs,
5895                                          newBundles, "", callSite);
5896     }
5897     newArgs.clear(); // for the next iteration
5898 
5899     if (!newCall->getType()->isVoidTy())
5900       newCall->takeName(callSite);
5901     newCall->setAttributes(
5902         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5903                                  oldAttrs.getRetAttrs(), newArgAttrs));
5904     newCall->setCallingConv(callSite->getCallingConv());
5905 
5906     // Finally, remove the old call, replacing any uses with the new one.
5907     if (!callSite->use_empty())
5908       callSite->replaceAllUsesWith(newCall);
5909 
5910     // Copy debug location attached to CI.
5911     if (callSite->getDebugLoc())
5912       newCall->setDebugLoc(callSite->getDebugLoc());
5913 
5914     callSitesToBeRemovedFromParent.push_back(callSite);
5915   }
5916 
5917   for (auto *callSite : callSitesToBeRemovedFromParent) {
5918     callSite->eraseFromParent();
5919   }
5920 }
5921 
5922 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5923 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5924 /// existing call uses of the old function in the module, this adjusts them to
5925 /// call the new function directly.
5926 ///
5927 /// This is not just a cleanup: the always_inline pass requires direct calls to
5928 /// functions to be able to inline them.  If there is a bitcast in the way, it
5929 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5930 /// run at -O0.
5931 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5932                                                       llvm::Function *NewFn) {
5933   // If we're redefining a global as a function, don't transform it.
5934   if (!isa<llvm::Function>(Old)) return;
5935 
5936   replaceUsesOfNonProtoConstant(Old, NewFn);
5937 }
5938 
5939 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5940   auto DK = VD->isThisDeclarationADefinition();
5941   if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) ||
5942       (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD)))
5943     return;
5944 
5945   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5946   // If we have a definition, this might be a deferred decl. If the
5947   // instantiation is explicit, make sure we emit it at the end.
5948   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5949     GetAddrOfGlobalVar(VD);
5950 
5951   EmitTopLevelDecl(VD);
5952 }
5953 
5954 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5955                                                  llvm::GlobalValue *GV) {
5956   const auto *D = cast<FunctionDecl>(GD.getDecl());
5957 
5958   // Compute the function info and LLVM type.
5959   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5960   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5961 
5962   // Get or create the prototype for the function.
5963   if (!GV || (GV->getValueType() != Ty))
5964     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5965                                                    /*DontDefer=*/true,
5966                                                    ForDefinition));
5967 
5968   // Already emitted.
5969   if (!GV->isDeclaration())
5970     return;
5971 
5972   // We need to set linkage and visibility on the function before
5973   // generating code for it because various parts of IR generation
5974   // want to propagate this information down (e.g. to local static
5975   // declarations).
5976   auto *Fn = cast<llvm::Function>(GV);
5977   setFunctionLinkage(GD, Fn);
5978 
5979   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5980   setGVProperties(Fn, GD);
5981 
5982   MaybeHandleStaticInExternC(D, Fn);
5983 
5984   maybeSetTrivialComdat(*D, *Fn);
5985 
5986   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5987 
5988   setNonAliasAttributes(GD, Fn);
5989   SetLLVMFunctionAttributesForDefinition(D, Fn);
5990 
5991   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5992     AddGlobalCtor(Fn, CA->getPriority());
5993   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5994     AddGlobalDtor(Fn, DA->getPriority(), true);
5995   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
5996     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
5997 }
5998 
5999 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
6000   const auto *D = cast<ValueDecl>(GD.getDecl());
6001   const AliasAttr *AA = D->getAttr<AliasAttr>();
6002   assert(AA && "Not an alias?");
6003 
6004   StringRef MangledName = getMangledName(GD);
6005 
6006   if (AA->getAliasee() == MangledName) {
6007     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6008     return;
6009   }
6010 
6011   // If there is a definition in the module, then it wins over the alias.
6012   // This is dubious, but allow it to be safe.  Just ignore the alias.
6013   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6014   if (Entry && !Entry->isDeclaration())
6015     return;
6016 
6017   Aliases.push_back(GD);
6018 
6019   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6020 
6021   // Create a reference to the named value.  This ensures that it is emitted
6022   // if a deferred decl.
6023   llvm::Constant *Aliasee;
6024   llvm::GlobalValue::LinkageTypes LT;
6025   if (isa<llvm::FunctionType>(DeclTy)) {
6026     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6027                                       /*ForVTable=*/false);
6028     LT = getFunctionLinkage(GD);
6029   } else {
6030     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6031                                     /*D=*/nullptr);
6032     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6033       LT = getLLVMLinkageVarDefinition(VD);
6034     else
6035       LT = getFunctionLinkage(GD);
6036   }
6037 
6038   // Create the new alias itself, but don't set a name yet.
6039   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6040   auto *GA =
6041       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6042 
6043   if (Entry) {
6044     if (GA->getAliasee() == Entry) {
6045       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6046       return;
6047     }
6048 
6049     assert(Entry->isDeclaration());
6050 
6051     // If there is a declaration in the module, then we had an extern followed
6052     // by the alias, as in:
6053     //   extern int test6();
6054     //   ...
6055     //   int test6() __attribute__((alias("test7")));
6056     //
6057     // Remove it and replace uses of it with the alias.
6058     GA->takeName(Entry);
6059 
6060     Entry->replaceAllUsesWith(GA);
6061     Entry->eraseFromParent();
6062   } else {
6063     GA->setName(MangledName);
6064   }
6065 
6066   // Set attributes which are particular to an alias; this is a
6067   // specialization of the attributes which may be set on a global
6068   // variable/function.
6069   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6070       D->isWeakImported()) {
6071     GA->setLinkage(llvm::Function::WeakAnyLinkage);
6072   }
6073 
6074   if (const auto *VD = dyn_cast<VarDecl>(D))
6075     if (VD->getTLSKind())
6076       setTLSMode(GA, *VD);
6077 
6078   SetCommonAttributes(GD, GA);
6079 
6080   // Emit global alias debug information.
6081   if (isa<VarDecl>(D))
6082     if (CGDebugInfo *DI = getModuleDebugInfo())
6083       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6084 }
6085 
6086 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6087   const auto *D = cast<ValueDecl>(GD.getDecl());
6088   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6089   assert(IFA && "Not an ifunc?");
6090 
6091   StringRef MangledName = getMangledName(GD);
6092 
6093   if (IFA->getResolver() == MangledName) {
6094     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6095     return;
6096   }
6097 
6098   // Report an error if some definition overrides ifunc.
6099   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6100   if (Entry && !Entry->isDeclaration()) {
6101     GlobalDecl OtherGD;
6102     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6103         DiagnosedConflictingDefinitions.insert(GD).second) {
6104       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6105           << MangledName;
6106       Diags.Report(OtherGD.getDecl()->getLocation(),
6107                    diag::note_previous_definition);
6108     }
6109     return;
6110   }
6111 
6112   Aliases.push_back(GD);
6113 
6114   // The resolver might not be visited yet. Specify a dummy non-function type to
6115   // indicate IsIncompleteFunction. Either the type is ignored (if the resolver
6116   // was emitted) or the whole function will be replaced (if the resolver has
6117   // not been emitted).
6118   llvm::Constant *Resolver =
6119       GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {},
6120                               /*ForVTable=*/false);
6121   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6122   llvm::GlobalIFunc *GIF =
6123       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
6124                                 "", Resolver, &getModule());
6125   if (Entry) {
6126     if (GIF->getResolver() == Entry) {
6127       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6128       return;
6129     }
6130     assert(Entry->isDeclaration());
6131 
6132     // If there is a declaration in the module, then we had an extern followed
6133     // by the ifunc, as in:
6134     //   extern int test();
6135     //   ...
6136     //   int test() __attribute__((ifunc("resolver")));
6137     //
6138     // Remove it and replace uses of it with the ifunc.
6139     GIF->takeName(Entry);
6140 
6141     Entry->replaceAllUsesWith(GIF);
6142     Entry->eraseFromParent();
6143   } else
6144     GIF->setName(MangledName);
6145   SetCommonAttributes(GD, GIF);
6146 }
6147 
6148 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6149                                             ArrayRef<llvm::Type*> Tys) {
6150   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
6151                                          Tys);
6152 }
6153 
6154 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6155 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6156                          const StringLiteral *Literal, bool TargetIsLSB,
6157                          bool &IsUTF16, unsigned &StringLength) {
6158   StringRef String = Literal->getString();
6159   unsigned NumBytes = String.size();
6160 
6161   // Check for simple case.
6162   if (!Literal->containsNonAsciiOrNull()) {
6163     StringLength = NumBytes;
6164     return *Map.insert(std::make_pair(String, nullptr)).first;
6165   }
6166 
6167   // Otherwise, convert the UTF8 literals into a string of shorts.
6168   IsUTF16 = true;
6169 
6170   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6171   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6172   llvm::UTF16 *ToPtr = &ToBuf[0];
6173 
6174   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6175                                  ToPtr + NumBytes, llvm::strictConversion);
6176 
6177   // ConvertUTF8toUTF16 returns the length in ToPtr.
6178   StringLength = ToPtr - &ToBuf[0];
6179 
6180   // Add an explicit null.
6181   *ToPtr = 0;
6182   return *Map.insert(std::make_pair(
6183                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6184                                    (StringLength + 1) * 2),
6185                          nullptr)).first;
6186 }
6187 
6188 ConstantAddress
6189 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6190   unsigned StringLength = 0;
6191   bool isUTF16 = false;
6192   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6193       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6194                                getDataLayout().isLittleEndian(), isUTF16,
6195                                StringLength);
6196 
6197   if (auto *C = Entry.second)
6198     return ConstantAddress(
6199         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6200 
6201   const ASTContext &Context = getContext();
6202   const llvm::Triple &Triple = getTriple();
6203 
6204   const auto CFRuntime = getLangOpts().CFRuntime;
6205   const bool IsSwiftABI =
6206       static_cast<unsigned>(CFRuntime) >=
6207       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6208   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6209 
6210   // If we don't already have it, get __CFConstantStringClassReference.
6211   if (!CFConstantStringClassRef) {
6212     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6213     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6214     Ty = llvm::ArrayType::get(Ty, 0);
6215 
6216     switch (CFRuntime) {
6217     default: break;
6218     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6219     case LangOptions::CoreFoundationABI::Swift5_0:
6220       CFConstantStringClassName =
6221           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6222                               : "$s10Foundation19_NSCFConstantStringCN";
6223       Ty = IntPtrTy;
6224       break;
6225     case LangOptions::CoreFoundationABI::Swift4_2:
6226       CFConstantStringClassName =
6227           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6228                               : "$S10Foundation19_NSCFConstantStringCN";
6229       Ty = IntPtrTy;
6230       break;
6231     case LangOptions::CoreFoundationABI::Swift4_1:
6232       CFConstantStringClassName =
6233           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6234                               : "__T010Foundation19_NSCFConstantStringCN";
6235       Ty = IntPtrTy;
6236       break;
6237     }
6238 
6239     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6240 
6241     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6242       llvm::GlobalValue *GV = nullptr;
6243 
6244       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6245         IdentifierInfo &II = Context.Idents.get(GV->getName());
6246         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6247         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6248 
6249         const VarDecl *VD = nullptr;
6250         for (const auto *Result : DC->lookup(&II))
6251           if ((VD = dyn_cast<VarDecl>(Result)))
6252             break;
6253 
6254         if (Triple.isOSBinFormatELF()) {
6255           if (!VD)
6256             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6257         } else {
6258           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6259           if (!VD || !VD->hasAttr<DLLExportAttr>())
6260             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6261           else
6262             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6263         }
6264 
6265         setDSOLocal(GV);
6266       }
6267     }
6268 
6269     // Decay array -> ptr
6270     CFConstantStringClassRef =
6271         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6272   }
6273 
6274   QualType CFTy = Context.getCFConstantStringType();
6275 
6276   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6277 
6278   ConstantInitBuilder Builder(*this);
6279   auto Fields = Builder.beginStruct(STy);
6280 
6281   // Class pointer.
6282   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6283 
6284   // Flags.
6285   if (IsSwiftABI) {
6286     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6287     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6288   } else {
6289     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6290   }
6291 
6292   // String pointer.
6293   llvm::Constant *C = nullptr;
6294   if (isUTF16) {
6295     auto Arr = llvm::ArrayRef(
6296         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6297         Entry.first().size() / 2);
6298     C = llvm::ConstantDataArray::get(VMContext, Arr);
6299   } else {
6300     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6301   }
6302 
6303   // Note: -fwritable-strings doesn't make the backing store strings of
6304   // CFStrings writable.
6305   auto *GV =
6306       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6307                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6308   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6309   // Don't enforce the target's minimum global alignment, since the only use
6310   // of the string is via this class initializer.
6311   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6312                             : Context.getTypeAlignInChars(Context.CharTy);
6313   GV->setAlignment(Align.getAsAlign());
6314 
6315   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6316   // Without it LLVM can merge the string with a non unnamed_addr one during
6317   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6318   if (Triple.isOSBinFormatMachO())
6319     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6320                            : "__TEXT,__cstring,cstring_literals");
6321   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6322   // the static linker to adjust permissions to read-only later on.
6323   else if (Triple.isOSBinFormatELF())
6324     GV->setSection(".rodata");
6325 
6326   // String.
6327   Fields.add(GV);
6328 
6329   // String length.
6330   llvm::IntegerType *LengthTy =
6331       llvm::IntegerType::get(getModule().getContext(),
6332                              Context.getTargetInfo().getLongWidth());
6333   if (IsSwiftABI) {
6334     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6335         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6336       LengthTy = Int32Ty;
6337     else
6338       LengthTy = IntPtrTy;
6339   }
6340   Fields.addInt(LengthTy, StringLength);
6341 
6342   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6343   // properly aligned on 32-bit platforms.
6344   CharUnits Alignment =
6345       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6346 
6347   // The struct.
6348   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6349                                     /*isConstant=*/false,
6350                                     llvm::GlobalVariable::PrivateLinkage);
6351   GV->addAttribute("objc_arc_inert");
6352   switch (Triple.getObjectFormat()) {
6353   case llvm::Triple::UnknownObjectFormat:
6354     llvm_unreachable("unknown file format");
6355   case llvm::Triple::DXContainer:
6356   case llvm::Triple::GOFF:
6357   case llvm::Triple::SPIRV:
6358   case llvm::Triple::XCOFF:
6359     llvm_unreachable("unimplemented");
6360   case llvm::Triple::COFF:
6361   case llvm::Triple::ELF:
6362   case llvm::Triple::Wasm:
6363     GV->setSection("cfstring");
6364     break;
6365   case llvm::Triple::MachO:
6366     GV->setSection("__DATA,__cfstring");
6367     break;
6368   }
6369   Entry.second = GV;
6370 
6371   return ConstantAddress(GV, GV->getValueType(), Alignment);
6372 }
6373 
6374 bool CodeGenModule::getExpressionLocationsEnabled() const {
6375   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6376 }
6377 
6378 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6379   if (ObjCFastEnumerationStateType.isNull()) {
6380     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6381     D->startDefinition();
6382 
6383     QualType FieldTypes[] = {
6384         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6385         Context.getPointerType(Context.UnsignedLongTy),
6386         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6387                                      nullptr, ArraySizeModifier::Normal, 0)};
6388 
6389     for (size_t i = 0; i < 4; ++i) {
6390       FieldDecl *Field = FieldDecl::Create(Context,
6391                                            D,
6392                                            SourceLocation(),
6393                                            SourceLocation(), nullptr,
6394                                            FieldTypes[i], /*TInfo=*/nullptr,
6395                                            /*BitWidth=*/nullptr,
6396                                            /*Mutable=*/false,
6397                                            ICIS_NoInit);
6398       Field->setAccess(AS_public);
6399       D->addDecl(Field);
6400     }
6401 
6402     D->completeDefinition();
6403     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6404   }
6405 
6406   return ObjCFastEnumerationStateType;
6407 }
6408 
6409 llvm::Constant *
6410 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6411   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6412 
6413   // Don't emit it as the address of the string, emit the string data itself
6414   // as an inline array.
6415   if (E->getCharByteWidth() == 1) {
6416     SmallString<64> Str(E->getString());
6417 
6418     // Resize the string to the right size, which is indicated by its type.
6419     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6420     assert(CAT && "String literal not of constant array type!");
6421     Str.resize(CAT->getZExtSize());
6422     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6423   }
6424 
6425   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6426   llvm::Type *ElemTy = AType->getElementType();
6427   unsigned NumElements = AType->getNumElements();
6428 
6429   // Wide strings have either 2-byte or 4-byte elements.
6430   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6431     SmallVector<uint16_t, 32> Elements;
6432     Elements.reserve(NumElements);
6433 
6434     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6435       Elements.push_back(E->getCodeUnit(i));
6436     Elements.resize(NumElements);
6437     return llvm::ConstantDataArray::get(VMContext, Elements);
6438   }
6439 
6440   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6441   SmallVector<uint32_t, 32> Elements;
6442   Elements.reserve(NumElements);
6443 
6444   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6445     Elements.push_back(E->getCodeUnit(i));
6446   Elements.resize(NumElements);
6447   return llvm::ConstantDataArray::get(VMContext, Elements);
6448 }
6449 
6450 static llvm::GlobalVariable *
6451 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6452                       CodeGenModule &CGM, StringRef GlobalName,
6453                       CharUnits Alignment) {
6454   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6455       CGM.GetGlobalConstantAddressSpace());
6456 
6457   llvm::Module &M = CGM.getModule();
6458   // Create a global variable for this string
6459   auto *GV = new llvm::GlobalVariable(
6460       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6461       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6462   GV->setAlignment(Alignment.getAsAlign());
6463   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6464   if (GV->isWeakForLinker()) {
6465     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6466     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6467   }
6468   CGM.setDSOLocal(GV);
6469 
6470   return GV;
6471 }
6472 
6473 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6474 /// constant array for the given string literal.
6475 ConstantAddress
6476 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6477                                                   StringRef Name) {
6478   CharUnits Alignment =
6479       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6480 
6481   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6482   llvm::GlobalVariable **Entry = nullptr;
6483   if (!LangOpts.WritableStrings) {
6484     Entry = &ConstantStringMap[C];
6485     if (auto GV = *Entry) {
6486       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6487         GV->setAlignment(Alignment.getAsAlign());
6488       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6489                              GV->getValueType(), Alignment);
6490     }
6491   }
6492 
6493   SmallString<256> MangledNameBuffer;
6494   StringRef GlobalVariableName;
6495   llvm::GlobalValue::LinkageTypes LT;
6496 
6497   // Mangle the string literal if that's how the ABI merges duplicate strings.
6498   // Don't do it if they are writable, since we don't want writes in one TU to
6499   // affect strings in another.
6500   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6501       !LangOpts.WritableStrings) {
6502     llvm::raw_svector_ostream Out(MangledNameBuffer);
6503     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6504     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6505     GlobalVariableName = MangledNameBuffer;
6506   } else {
6507     LT = llvm::GlobalValue::PrivateLinkage;
6508     GlobalVariableName = Name;
6509   }
6510 
6511   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6512 
6513   CGDebugInfo *DI = getModuleDebugInfo();
6514   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6515     DI->AddStringLiteralDebugInfo(GV, S);
6516 
6517   if (Entry)
6518     *Entry = GV;
6519 
6520   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6521 
6522   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6523                          GV->getValueType(), Alignment);
6524 }
6525 
6526 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6527 /// array for the given ObjCEncodeExpr node.
6528 ConstantAddress
6529 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6530   std::string Str;
6531   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6532 
6533   return GetAddrOfConstantCString(Str);
6534 }
6535 
6536 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6537 /// the literal and a terminating '\0' character.
6538 /// The result has pointer to array type.
6539 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6540     const std::string &Str, const char *GlobalName) {
6541   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6542   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6543       getContext().CharTy, /*VD=*/nullptr);
6544 
6545   llvm::Constant *C =
6546       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6547 
6548   // Don't share any string literals if strings aren't constant.
6549   llvm::GlobalVariable **Entry = nullptr;
6550   if (!LangOpts.WritableStrings) {
6551     Entry = &ConstantStringMap[C];
6552     if (auto GV = *Entry) {
6553       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6554         GV->setAlignment(Alignment.getAsAlign());
6555       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6556                              GV->getValueType(), Alignment);
6557     }
6558   }
6559 
6560   // Get the default prefix if a name wasn't specified.
6561   if (!GlobalName)
6562     GlobalName = ".str";
6563   // Create a global variable for this.
6564   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6565                                   GlobalName, Alignment);
6566   if (Entry)
6567     *Entry = GV;
6568 
6569   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6570                          GV->getValueType(), Alignment);
6571 }
6572 
6573 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6574     const MaterializeTemporaryExpr *E, const Expr *Init) {
6575   assert((E->getStorageDuration() == SD_Static ||
6576           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6577   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6578 
6579   // If we're not materializing a subobject of the temporary, keep the
6580   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6581   QualType MaterializedType = Init->getType();
6582   if (Init == E->getSubExpr())
6583     MaterializedType = E->getType();
6584 
6585   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6586 
6587   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6588   if (!InsertResult.second) {
6589     // We've seen this before: either we already created it or we're in the
6590     // process of doing so.
6591     if (!InsertResult.first->second) {
6592       // We recursively re-entered this function, probably during emission of
6593       // the initializer. Create a placeholder. We'll clean this up in the
6594       // outer call, at the end of this function.
6595       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6596       InsertResult.first->second = new llvm::GlobalVariable(
6597           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6598           nullptr);
6599     }
6600     return ConstantAddress(InsertResult.first->second,
6601                            llvm::cast<llvm::GlobalVariable>(
6602                                InsertResult.first->second->stripPointerCasts())
6603                                ->getValueType(),
6604                            Align);
6605   }
6606 
6607   // FIXME: If an externally-visible declaration extends multiple temporaries,
6608   // we need to give each temporary the same name in every translation unit (and
6609   // we also need to make the temporaries externally-visible).
6610   SmallString<256> Name;
6611   llvm::raw_svector_ostream Out(Name);
6612   getCXXABI().getMangleContext().mangleReferenceTemporary(
6613       VD, E->getManglingNumber(), Out);
6614 
6615   APValue *Value = nullptr;
6616   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6617     // If the initializer of the extending declaration is a constant
6618     // initializer, we should have a cached constant initializer for this
6619     // temporary. Note that this might have a different value from the value
6620     // computed by evaluating the initializer if the surrounding constant
6621     // expression modifies the temporary.
6622     Value = E->getOrCreateValue(false);
6623   }
6624 
6625   // Try evaluating it now, it might have a constant initializer.
6626   Expr::EvalResult EvalResult;
6627   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6628       !EvalResult.hasSideEffects())
6629     Value = &EvalResult.Val;
6630 
6631   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6632 
6633   std::optional<ConstantEmitter> emitter;
6634   llvm::Constant *InitialValue = nullptr;
6635   bool Constant = false;
6636   llvm::Type *Type;
6637   if (Value) {
6638     // The temporary has a constant initializer, use it.
6639     emitter.emplace(*this);
6640     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6641                                                MaterializedType);
6642     Constant =
6643         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6644                                            /*ExcludeDtor*/ false);
6645     Type = InitialValue->getType();
6646   } else {
6647     // No initializer, the initialization will be provided when we
6648     // initialize the declaration which performed lifetime extension.
6649     Type = getTypes().ConvertTypeForMem(MaterializedType);
6650   }
6651 
6652   // Create a global variable for this lifetime-extended temporary.
6653   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6654   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6655     const VarDecl *InitVD;
6656     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6657         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6658       // Temporaries defined inside a class get linkonce_odr linkage because the
6659       // class can be defined in multiple translation units.
6660       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6661     } else {
6662       // There is no need for this temporary to have external linkage if the
6663       // VarDecl has external linkage.
6664       Linkage = llvm::GlobalVariable::InternalLinkage;
6665     }
6666   }
6667   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6668   auto *GV = new llvm::GlobalVariable(
6669       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6670       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6671   if (emitter) emitter->finalize(GV);
6672   // Don't assign dllimport or dllexport to local linkage globals.
6673   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6674     setGVProperties(GV, VD);
6675     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6676       // The reference temporary should never be dllexport.
6677       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6678   }
6679   GV->setAlignment(Align.getAsAlign());
6680   if (supportsCOMDAT() && GV->isWeakForLinker())
6681     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6682   if (VD->getTLSKind())
6683     setTLSMode(GV, *VD);
6684   llvm::Constant *CV = GV;
6685   if (AddrSpace != LangAS::Default)
6686     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6687         *this, GV, AddrSpace, LangAS::Default,
6688         llvm::PointerType::get(
6689             getLLVMContext(),
6690             getContext().getTargetAddressSpace(LangAS::Default)));
6691 
6692   // Update the map with the new temporary. If we created a placeholder above,
6693   // replace it with the new global now.
6694   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6695   if (Entry) {
6696     Entry->replaceAllUsesWith(CV);
6697     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6698   }
6699   Entry = CV;
6700 
6701   return ConstantAddress(CV, Type, Align);
6702 }
6703 
6704 /// EmitObjCPropertyImplementations - Emit information for synthesized
6705 /// properties for an implementation.
6706 void CodeGenModule::EmitObjCPropertyImplementations(const
6707                                                     ObjCImplementationDecl *D) {
6708   for (const auto *PID : D->property_impls()) {
6709     // Dynamic is just for type-checking.
6710     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6711       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6712 
6713       // Determine which methods need to be implemented, some may have
6714       // been overridden. Note that ::isPropertyAccessor is not the method
6715       // we want, that just indicates if the decl came from a
6716       // property. What we want to know is if the method is defined in
6717       // this implementation.
6718       auto *Getter = PID->getGetterMethodDecl();
6719       if (!Getter || Getter->isSynthesizedAccessorStub())
6720         CodeGenFunction(*this).GenerateObjCGetter(
6721             const_cast<ObjCImplementationDecl *>(D), PID);
6722       auto *Setter = PID->getSetterMethodDecl();
6723       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6724         CodeGenFunction(*this).GenerateObjCSetter(
6725                                  const_cast<ObjCImplementationDecl *>(D), PID);
6726     }
6727   }
6728 }
6729 
6730 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6731   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6732   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6733        ivar; ivar = ivar->getNextIvar())
6734     if (ivar->getType().isDestructedType())
6735       return true;
6736 
6737   return false;
6738 }
6739 
6740 static bool AllTrivialInitializers(CodeGenModule &CGM,
6741                                    ObjCImplementationDecl *D) {
6742   CodeGenFunction CGF(CGM);
6743   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6744        E = D->init_end(); B != E; ++B) {
6745     CXXCtorInitializer *CtorInitExp = *B;
6746     Expr *Init = CtorInitExp->getInit();
6747     if (!CGF.isTrivialInitializer(Init))
6748       return false;
6749   }
6750   return true;
6751 }
6752 
6753 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6754 /// for an implementation.
6755 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6756   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6757   if (needsDestructMethod(D)) {
6758     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6759     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6760     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6761         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6762         getContext().VoidTy, nullptr, D,
6763         /*isInstance=*/true, /*isVariadic=*/false,
6764         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6765         /*isImplicitlyDeclared=*/true,
6766         /*isDefined=*/false, ObjCImplementationControl::Required);
6767     D->addInstanceMethod(DTORMethod);
6768     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6769     D->setHasDestructors(true);
6770   }
6771 
6772   // If the implementation doesn't have any ivar initializers, we don't need
6773   // a .cxx_construct.
6774   if (D->getNumIvarInitializers() == 0 ||
6775       AllTrivialInitializers(*this, D))
6776     return;
6777 
6778   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6779   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6780   // The constructor returns 'self'.
6781   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6782       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6783       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6784       /*isVariadic=*/false,
6785       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6786       /*isImplicitlyDeclared=*/true,
6787       /*isDefined=*/false, ObjCImplementationControl::Required);
6788   D->addInstanceMethod(CTORMethod);
6789   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6790   D->setHasNonZeroConstructors(true);
6791 }
6792 
6793 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6794 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6795   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6796       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6797     ErrorUnsupported(LSD, "linkage spec");
6798     return;
6799   }
6800 
6801   EmitDeclContext(LSD);
6802 }
6803 
6804 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6805   // Device code should not be at top level.
6806   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6807     return;
6808 
6809   std::unique_ptr<CodeGenFunction> &CurCGF =
6810       GlobalTopLevelStmtBlockInFlight.first;
6811 
6812   // We emitted a top-level stmt but after it there is initialization.
6813   // Stop squashing the top-level stmts into a single function.
6814   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6815     CurCGF->FinishFunction(D->getEndLoc());
6816     CurCGF = nullptr;
6817   }
6818 
6819   if (!CurCGF) {
6820     // void __stmts__N(void)
6821     // FIXME: Ask the ABI name mangler to pick a name.
6822     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6823     FunctionArgList Args;
6824     QualType RetTy = getContext().VoidTy;
6825     const CGFunctionInfo &FnInfo =
6826         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6827     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6828     llvm::Function *Fn = llvm::Function::Create(
6829         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6830 
6831     CurCGF.reset(new CodeGenFunction(*this));
6832     GlobalTopLevelStmtBlockInFlight.second = D;
6833     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6834                           D->getBeginLoc(), D->getBeginLoc());
6835     CXXGlobalInits.push_back(Fn);
6836   }
6837 
6838   CurCGF->EmitStmt(D->getStmt());
6839 }
6840 
6841 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6842   for (auto *I : DC->decls()) {
6843     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6844     // are themselves considered "top-level", so EmitTopLevelDecl on an
6845     // ObjCImplDecl does not recursively visit them. We need to do that in
6846     // case they're nested inside another construct (LinkageSpecDecl /
6847     // ExportDecl) that does stop them from being considered "top-level".
6848     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6849       for (auto *M : OID->methods())
6850         EmitTopLevelDecl(M);
6851     }
6852 
6853     EmitTopLevelDecl(I);
6854   }
6855 }
6856 
6857 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6858 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6859   // Ignore dependent declarations.
6860   if (D->isTemplated())
6861     return;
6862 
6863   // Consteval function shouldn't be emitted.
6864   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6865     return;
6866 
6867   switch (D->getKind()) {
6868   case Decl::CXXConversion:
6869   case Decl::CXXMethod:
6870   case Decl::Function:
6871     EmitGlobal(cast<FunctionDecl>(D));
6872     // Always provide some coverage mapping
6873     // even for the functions that aren't emitted.
6874     AddDeferredUnusedCoverageMapping(D);
6875     break;
6876 
6877   case Decl::CXXDeductionGuide:
6878     // Function-like, but does not result in code emission.
6879     break;
6880 
6881   case Decl::Var:
6882   case Decl::Decomposition:
6883   case Decl::VarTemplateSpecialization:
6884     EmitGlobal(cast<VarDecl>(D));
6885     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6886       for (auto *B : DD->bindings())
6887         if (auto *HD = B->getHoldingVar())
6888           EmitGlobal(HD);
6889     break;
6890 
6891   // Indirect fields from global anonymous structs and unions can be
6892   // ignored; only the actual variable requires IR gen support.
6893   case Decl::IndirectField:
6894     break;
6895 
6896   // C++ Decls
6897   case Decl::Namespace:
6898     EmitDeclContext(cast<NamespaceDecl>(D));
6899     break;
6900   case Decl::ClassTemplateSpecialization: {
6901     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6902     if (CGDebugInfo *DI = getModuleDebugInfo())
6903       if (Spec->getSpecializationKind() ==
6904               TSK_ExplicitInstantiationDefinition &&
6905           Spec->hasDefinition())
6906         DI->completeTemplateDefinition(*Spec);
6907   } [[fallthrough]];
6908   case Decl::CXXRecord: {
6909     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6910     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6911       if (CRD->hasDefinition())
6912         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6913       if (auto *ES = D->getASTContext().getExternalSource())
6914         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6915           DI->completeUnusedClass(*CRD);
6916     }
6917     // Emit any static data members, they may be definitions.
6918     for (auto *I : CRD->decls())
6919       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6920         EmitTopLevelDecl(I);
6921     break;
6922   }
6923     // No code generation needed.
6924   case Decl::UsingShadow:
6925   case Decl::ClassTemplate:
6926   case Decl::VarTemplate:
6927   case Decl::Concept:
6928   case Decl::VarTemplatePartialSpecialization:
6929   case Decl::FunctionTemplate:
6930   case Decl::TypeAliasTemplate:
6931   case Decl::Block:
6932   case Decl::Empty:
6933   case Decl::Binding:
6934     break;
6935   case Decl::Using:          // using X; [C++]
6936     if (CGDebugInfo *DI = getModuleDebugInfo())
6937         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6938     break;
6939   case Decl::UsingEnum: // using enum X; [C++]
6940     if (CGDebugInfo *DI = getModuleDebugInfo())
6941       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6942     break;
6943   case Decl::NamespaceAlias:
6944     if (CGDebugInfo *DI = getModuleDebugInfo())
6945         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6946     break;
6947   case Decl::UsingDirective: // using namespace X; [C++]
6948     if (CGDebugInfo *DI = getModuleDebugInfo())
6949       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6950     break;
6951   case Decl::CXXConstructor:
6952     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6953     break;
6954   case Decl::CXXDestructor:
6955     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6956     break;
6957 
6958   case Decl::StaticAssert:
6959     // Nothing to do.
6960     break;
6961 
6962   // Objective-C Decls
6963 
6964   // Forward declarations, no (immediate) code generation.
6965   case Decl::ObjCInterface:
6966   case Decl::ObjCCategory:
6967     break;
6968 
6969   case Decl::ObjCProtocol: {
6970     auto *Proto = cast<ObjCProtocolDecl>(D);
6971     if (Proto->isThisDeclarationADefinition())
6972       ObjCRuntime->GenerateProtocol(Proto);
6973     break;
6974   }
6975 
6976   case Decl::ObjCCategoryImpl:
6977     // Categories have properties but don't support synthesize so we
6978     // can ignore them here.
6979     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6980     break;
6981 
6982   case Decl::ObjCImplementation: {
6983     auto *OMD = cast<ObjCImplementationDecl>(D);
6984     EmitObjCPropertyImplementations(OMD);
6985     EmitObjCIvarInitializations(OMD);
6986     ObjCRuntime->GenerateClass(OMD);
6987     // Emit global variable debug information.
6988     if (CGDebugInfo *DI = getModuleDebugInfo())
6989       if (getCodeGenOpts().hasReducedDebugInfo())
6990         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6991             OMD->getClassInterface()), OMD->getLocation());
6992     break;
6993   }
6994   case Decl::ObjCMethod: {
6995     auto *OMD = cast<ObjCMethodDecl>(D);
6996     // If this is not a prototype, emit the body.
6997     if (OMD->getBody())
6998       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6999     break;
7000   }
7001   case Decl::ObjCCompatibleAlias:
7002     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
7003     break;
7004 
7005   case Decl::PragmaComment: {
7006     const auto *PCD = cast<PragmaCommentDecl>(D);
7007     switch (PCD->getCommentKind()) {
7008     case PCK_Unknown:
7009       llvm_unreachable("unexpected pragma comment kind");
7010     case PCK_Linker:
7011       AppendLinkerOptions(PCD->getArg());
7012       break;
7013     case PCK_Lib:
7014         AddDependentLib(PCD->getArg());
7015       break;
7016     case PCK_Compiler:
7017     case PCK_ExeStr:
7018     case PCK_User:
7019       break; // We ignore all of these.
7020     }
7021     break;
7022   }
7023 
7024   case Decl::PragmaDetectMismatch: {
7025     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7026     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7027     break;
7028   }
7029 
7030   case Decl::LinkageSpec:
7031     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7032     break;
7033 
7034   case Decl::FileScopeAsm: {
7035     // File-scope asm is ignored during device-side CUDA compilation.
7036     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7037       break;
7038     // File-scope asm is ignored during device-side OpenMP compilation.
7039     if (LangOpts.OpenMPIsTargetDevice)
7040       break;
7041     // File-scope asm is ignored during device-side SYCL compilation.
7042     if (LangOpts.SYCLIsDevice)
7043       break;
7044     auto *AD = cast<FileScopeAsmDecl>(D);
7045     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7046     break;
7047   }
7048 
7049   case Decl::TopLevelStmt:
7050     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7051     break;
7052 
7053   case Decl::Import: {
7054     auto *Import = cast<ImportDecl>(D);
7055 
7056     // If we've already imported this module, we're done.
7057     if (!ImportedModules.insert(Import->getImportedModule()))
7058       break;
7059 
7060     // Emit debug information for direct imports.
7061     if (!Import->getImportedOwningModule()) {
7062       if (CGDebugInfo *DI = getModuleDebugInfo())
7063         DI->EmitImportDecl(*Import);
7064     }
7065 
7066     // For C++ standard modules we are done - we will call the module
7067     // initializer for imported modules, and that will likewise call those for
7068     // any imports it has.
7069     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
7070         !Import->getImportedOwningModule()->isModuleMapModule())
7071       break;
7072 
7073     // For clang C++ module map modules the initializers for sub-modules are
7074     // emitted here.
7075 
7076     // Find all of the submodules and emit the module initializers.
7077     llvm::SmallPtrSet<clang::Module *, 16> Visited;
7078     SmallVector<clang::Module *, 16> Stack;
7079     Visited.insert(Import->getImportedModule());
7080     Stack.push_back(Import->getImportedModule());
7081 
7082     while (!Stack.empty()) {
7083       clang::Module *Mod = Stack.pop_back_val();
7084       if (!EmittedModuleInitializers.insert(Mod).second)
7085         continue;
7086 
7087       for (auto *D : Context.getModuleInitializers(Mod))
7088         EmitTopLevelDecl(D);
7089 
7090       // Visit the submodules of this module.
7091       for (auto *Submodule : Mod->submodules()) {
7092         // Skip explicit children; they need to be explicitly imported to emit
7093         // the initializers.
7094         if (Submodule->IsExplicit)
7095           continue;
7096 
7097         if (Visited.insert(Submodule).second)
7098           Stack.push_back(Submodule);
7099       }
7100     }
7101     break;
7102   }
7103 
7104   case Decl::Export:
7105     EmitDeclContext(cast<ExportDecl>(D));
7106     break;
7107 
7108   case Decl::OMPThreadPrivate:
7109     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7110     break;
7111 
7112   case Decl::OMPAllocate:
7113     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7114     break;
7115 
7116   case Decl::OMPDeclareReduction:
7117     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7118     break;
7119 
7120   case Decl::OMPDeclareMapper:
7121     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7122     break;
7123 
7124   case Decl::OMPRequires:
7125     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7126     break;
7127 
7128   case Decl::Typedef:
7129   case Decl::TypeAlias: // using foo = bar; [C++11]
7130     if (CGDebugInfo *DI = getModuleDebugInfo())
7131       DI->EmitAndRetainType(
7132           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7133     break;
7134 
7135   case Decl::Record:
7136     if (CGDebugInfo *DI = getModuleDebugInfo())
7137       if (cast<RecordDecl>(D)->getDefinition())
7138         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7139     break;
7140 
7141   case Decl::Enum:
7142     if (CGDebugInfo *DI = getModuleDebugInfo())
7143       if (cast<EnumDecl>(D)->getDefinition())
7144         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7145     break;
7146 
7147   case Decl::HLSLBuffer:
7148     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7149     break;
7150 
7151   default:
7152     // Make sure we handled everything we should, every other kind is a
7153     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7154     // function. Need to recode Decl::Kind to do that easily.
7155     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7156     break;
7157   }
7158 }
7159 
7160 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7161   // Do we need to generate coverage mapping?
7162   if (!CodeGenOpts.CoverageMapping)
7163     return;
7164   switch (D->getKind()) {
7165   case Decl::CXXConversion:
7166   case Decl::CXXMethod:
7167   case Decl::Function:
7168   case Decl::ObjCMethod:
7169   case Decl::CXXConstructor:
7170   case Decl::CXXDestructor: {
7171     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7172       break;
7173     SourceManager &SM = getContext().getSourceManager();
7174     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7175       break;
7176     if (!llvm::coverage::SystemHeadersCoverage &&
7177         SM.isInSystemHeader(D->getBeginLoc()))
7178       break;
7179     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7180     break;
7181   }
7182   default:
7183     break;
7184   };
7185 }
7186 
7187 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7188   // Do we need to generate coverage mapping?
7189   if (!CodeGenOpts.CoverageMapping)
7190     return;
7191   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7192     if (Fn->isTemplateInstantiation())
7193       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7194   }
7195   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7196 }
7197 
7198 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7199   // We call takeVector() here to avoid use-after-free.
7200   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7201   // we deserialize function bodies to emit coverage info for them, and that
7202   // deserializes more declarations. How should we handle that case?
7203   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7204     if (!Entry.second)
7205       continue;
7206     const Decl *D = Entry.first;
7207     switch (D->getKind()) {
7208     case Decl::CXXConversion:
7209     case Decl::CXXMethod:
7210     case Decl::Function:
7211     case Decl::ObjCMethod: {
7212       CodeGenPGO PGO(*this);
7213       GlobalDecl GD(cast<FunctionDecl>(D));
7214       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7215                                   getFunctionLinkage(GD));
7216       break;
7217     }
7218     case Decl::CXXConstructor: {
7219       CodeGenPGO PGO(*this);
7220       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7221       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7222                                   getFunctionLinkage(GD));
7223       break;
7224     }
7225     case Decl::CXXDestructor: {
7226       CodeGenPGO PGO(*this);
7227       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7228       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7229                                   getFunctionLinkage(GD));
7230       break;
7231     }
7232     default:
7233       break;
7234     };
7235   }
7236 }
7237 
7238 void CodeGenModule::EmitMainVoidAlias() {
7239   // In order to transition away from "__original_main" gracefully, emit an
7240   // alias for "main" in the no-argument case so that libc can detect when
7241   // new-style no-argument main is in used.
7242   if (llvm::Function *F = getModule().getFunction("main")) {
7243     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7244         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7245       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7246       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7247     }
7248   }
7249 }
7250 
7251 /// Turns the given pointer into a constant.
7252 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7253                                           const void *Ptr) {
7254   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7255   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7256   return llvm::ConstantInt::get(i64, PtrInt);
7257 }
7258 
7259 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7260                                    llvm::NamedMDNode *&GlobalMetadata,
7261                                    GlobalDecl D,
7262                                    llvm::GlobalValue *Addr) {
7263   if (!GlobalMetadata)
7264     GlobalMetadata =
7265       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7266 
7267   // TODO: should we report variant information for ctors/dtors?
7268   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7269                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7270                                CGM.getLLVMContext(), D.getDecl()))};
7271   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7272 }
7273 
7274 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7275                                                  llvm::GlobalValue *CppFunc) {
7276   // Store the list of ifuncs we need to replace uses in.
7277   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7278   // List of ConstantExprs that we should be able to delete when we're done
7279   // here.
7280   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7281 
7282   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7283   if (Elem == CppFunc)
7284     return false;
7285 
7286   // First make sure that all users of this are ifuncs (or ifuncs via a
7287   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7288   // later.
7289   for (llvm::User *User : Elem->users()) {
7290     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7291     // ifunc directly. In any other case, just give up, as we don't know what we
7292     // could break by changing those.
7293     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7294       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7295         return false;
7296 
7297       for (llvm::User *CEUser : ConstExpr->users()) {
7298         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7299           IFuncs.push_back(IFunc);
7300         } else {
7301           return false;
7302         }
7303       }
7304       CEs.push_back(ConstExpr);
7305     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7306       IFuncs.push_back(IFunc);
7307     } else {
7308       // This user is one we don't know how to handle, so fail redirection. This
7309       // will result in an ifunc retaining a resolver name that will ultimately
7310       // fail to be resolved to a defined function.
7311       return false;
7312     }
7313   }
7314 
7315   // Now we know this is a valid case where we can do this alias replacement, we
7316   // need to remove all of the references to Elem (and the bitcasts!) so we can
7317   // delete it.
7318   for (llvm::GlobalIFunc *IFunc : IFuncs)
7319     IFunc->setResolver(nullptr);
7320   for (llvm::ConstantExpr *ConstExpr : CEs)
7321     ConstExpr->destroyConstant();
7322 
7323   // We should now be out of uses for the 'old' version of this function, so we
7324   // can erase it as well.
7325   Elem->eraseFromParent();
7326 
7327   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7328     // The type of the resolver is always just a function-type that returns the
7329     // type of the IFunc, so create that here. If the type of the actual
7330     // resolver doesn't match, it just gets bitcast to the right thing.
7331     auto *ResolverTy =
7332         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7333     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7334         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7335     IFunc->setResolver(Resolver);
7336   }
7337   return true;
7338 }
7339 
7340 /// For each function which is declared within an extern "C" region and marked
7341 /// as 'used', but has internal linkage, create an alias from the unmangled
7342 /// name to the mangled name if possible. People expect to be able to refer
7343 /// to such functions with an unmangled name from inline assembly within the
7344 /// same translation unit.
7345 void CodeGenModule::EmitStaticExternCAliases() {
7346   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7347     return;
7348   for (auto &I : StaticExternCValues) {
7349     const IdentifierInfo *Name = I.first;
7350     llvm::GlobalValue *Val = I.second;
7351 
7352     // If Val is null, that implies there were multiple declarations that each
7353     // had a claim to the unmangled name. In this case, generation of the alias
7354     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7355     if (!Val)
7356       break;
7357 
7358     llvm::GlobalValue *ExistingElem =
7359         getModule().getNamedValue(Name->getName());
7360 
7361     // If there is either not something already by this name, or we were able to
7362     // replace all uses from IFuncs, create the alias.
7363     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7364       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7365   }
7366 }
7367 
7368 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7369                                              GlobalDecl &Result) const {
7370   auto Res = Manglings.find(MangledName);
7371   if (Res == Manglings.end())
7372     return false;
7373   Result = Res->getValue();
7374   return true;
7375 }
7376 
7377 /// Emits metadata nodes associating all the global values in the
7378 /// current module with the Decls they came from.  This is useful for
7379 /// projects using IR gen as a subroutine.
7380 ///
7381 /// Since there's currently no way to associate an MDNode directly
7382 /// with an llvm::GlobalValue, we create a global named metadata
7383 /// with the name 'clang.global.decl.ptrs'.
7384 void CodeGenModule::EmitDeclMetadata() {
7385   llvm::NamedMDNode *GlobalMetadata = nullptr;
7386 
7387   for (auto &I : MangledDeclNames) {
7388     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7389     // Some mangled names don't necessarily have an associated GlobalValue
7390     // in this module, e.g. if we mangled it for DebugInfo.
7391     if (Addr)
7392       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7393   }
7394 }
7395 
7396 /// Emits metadata nodes for all the local variables in the current
7397 /// function.
7398 void CodeGenFunction::EmitDeclMetadata() {
7399   if (LocalDeclMap.empty()) return;
7400 
7401   llvm::LLVMContext &Context = getLLVMContext();
7402 
7403   // Find the unique metadata ID for this name.
7404   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7405 
7406   llvm::NamedMDNode *GlobalMetadata = nullptr;
7407 
7408   for (auto &I : LocalDeclMap) {
7409     const Decl *D = I.first;
7410     llvm::Value *Addr = I.second.emitRawPointer(*this);
7411     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7412       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7413       Alloca->setMetadata(
7414           DeclPtrKind, llvm::MDNode::get(
7415                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7416     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7417       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7418       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7419     }
7420   }
7421 }
7422 
7423 void CodeGenModule::EmitVersionIdentMetadata() {
7424   llvm::NamedMDNode *IdentMetadata =
7425     TheModule.getOrInsertNamedMetadata("llvm.ident");
7426   std::string Version = getClangFullVersion();
7427   llvm::LLVMContext &Ctx = TheModule.getContext();
7428 
7429   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7430   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7431 }
7432 
7433 void CodeGenModule::EmitCommandLineMetadata() {
7434   llvm::NamedMDNode *CommandLineMetadata =
7435     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7436   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7437   llvm::LLVMContext &Ctx = TheModule.getContext();
7438 
7439   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7440   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7441 }
7442 
7443 void CodeGenModule::EmitCoverageFile() {
7444   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7445   if (!CUNode)
7446     return;
7447 
7448   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7449   llvm::LLVMContext &Ctx = TheModule.getContext();
7450   auto *CoverageDataFile =
7451       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7452   auto *CoverageNotesFile =
7453       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7454   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7455     llvm::MDNode *CU = CUNode->getOperand(i);
7456     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7457     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7458   }
7459 }
7460 
7461 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7462                                                        bool ForEH) {
7463   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7464   // FIXME: should we even be calling this method if RTTI is disabled
7465   // and it's not for EH?
7466   if (!shouldEmitRTTI(ForEH))
7467     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7468 
7469   if (ForEH && Ty->isObjCObjectPointerType() &&
7470       LangOpts.ObjCRuntime.isGNUFamily())
7471     return ObjCRuntime->GetEHType(Ty);
7472 
7473   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7474 }
7475 
7476 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7477   // Do not emit threadprivates in simd-only mode.
7478   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7479     return;
7480   for (auto RefExpr : D->varlists()) {
7481     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7482     bool PerformInit =
7483         VD->getAnyInitializer() &&
7484         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7485                                                         /*ForRef=*/false);
7486 
7487     Address Addr(GetAddrOfGlobalVar(VD),
7488                  getTypes().ConvertTypeForMem(VD->getType()),
7489                  getContext().getDeclAlign(VD));
7490     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7491             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7492       CXXGlobalInits.push_back(InitFunction);
7493   }
7494 }
7495 
7496 llvm::Metadata *
7497 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7498                                             StringRef Suffix) {
7499   if (auto *FnType = T->getAs<FunctionProtoType>())
7500     T = getContext().getFunctionType(
7501         FnType->getReturnType(), FnType->getParamTypes(),
7502         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7503 
7504   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7505   if (InternalId)
7506     return InternalId;
7507 
7508   if (isExternallyVisible(T->getLinkage())) {
7509     std::string OutName;
7510     llvm::raw_string_ostream Out(OutName);
7511     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7512         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7513 
7514     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7515       Out << ".normalized";
7516 
7517     Out << Suffix;
7518 
7519     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7520   } else {
7521     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7522                                            llvm::ArrayRef<llvm::Metadata *>());
7523   }
7524 
7525   return InternalId;
7526 }
7527 
7528 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7529   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7530 }
7531 
7532 llvm::Metadata *
7533 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7534   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7535 }
7536 
7537 // Generalize pointer types to a void pointer with the qualifiers of the
7538 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7539 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7540 // 'void *'.
7541 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7542   if (!Ty->isPointerType())
7543     return Ty;
7544 
7545   return Ctx.getPointerType(
7546       QualType(Ctx.VoidTy).withCVRQualifiers(
7547           Ty->getPointeeType().getCVRQualifiers()));
7548 }
7549 
7550 // Apply type generalization to a FunctionType's return and argument types
7551 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7552   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7553     SmallVector<QualType, 8> GeneralizedParams;
7554     for (auto &Param : FnType->param_types())
7555       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7556 
7557     return Ctx.getFunctionType(
7558         GeneralizeType(Ctx, FnType->getReturnType()),
7559         GeneralizedParams, FnType->getExtProtoInfo());
7560   }
7561 
7562   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7563     return Ctx.getFunctionNoProtoType(
7564         GeneralizeType(Ctx, FnType->getReturnType()));
7565 
7566   llvm_unreachable("Encountered unknown FunctionType");
7567 }
7568 
7569 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7570   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7571                                       GeneralizedMetadataIdMap, ".generalized");
7572 }
7573 
7574 /// Returns whether this module needs the "all-vtables" type identifier.
7575 bool CodeGenModule::NeedAllVtablesTypeId() const {
7576   // Returns true if at least one of vtable-based CFI checkers is enabled and
7577   // is not in the trapping mode.
7578   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7579            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7580           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7581            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7582           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7583            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7584           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7585            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7586 }
7587 
7588 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7589                                           CharUnits Offset,
7590                                           const CXXRecordDecl *RD) {
7591   llvm::Metadata *MD =
7592       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7593   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7594 
7595   if (CodeGenOpts.SanitizeCfiCrossDso)
7596     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7597       VTable->addTypeMetadata(Offset.getQuantity(),
7598                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7599 
7600   if (NeedAllVtablesTypeId()) {
7601     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7602     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7603   }
7604 }
7605 
7606 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7607   if (!SanStats)
7608     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7609 
7610   return *SanStats;
7611 }
7612 
7613 llvm::Value *
7614 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7615                                                   CodeGenFunction &CGF) {
7616   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7617   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7618   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7619   auto *Call = CGF.EmitRuntimeCall(
7620       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7621   return Call;
7622 }
7623 
7624 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7625     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7626   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7627                                  /* forPointeeType= */ true);
7628 }
7629 
7630 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7631                                                  LValueBaseInfo *BaseInfo,
7632                                                  TBAAAccessInfo *TBAAInfo,
7633                                                  bool forPointeeType) {
7634   if (TBAAInfo)
7635     *TBAAInfo = getTBAAAccessInfo(T);
7636 
7637   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7638   // that doesn't return the information we need to compute BaseInfo.
7639 
7640   // Honor alignment typedef attributes even on incomplete types.
7641   // We also honor them straight for C++ class types, even as pointees;
7642   // there's an expressivity gap here.
7643   if (auto TT = T->getAs<TypedefType>()) {
7644     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7645       if (BaseInfo)
7646         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7647       return getContext().toCharUnitsFromBits(Align);
7648     }
7649   }
7650 
7651   bool AlignForArray = T->isArrayType();
7652 
7653   // Analyze the base element type, so we don't get confused by incomplete
7654   // array types.
7655   T = getContext().getBaseElementType(T);
7656 
7657   if (T->isIncompleteType()) {
7658     // We could try to replicate the logic from
7659     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7660     // type is incomplete, so it's impossible to test. We could try to reuse
7661     // getTypeAlignIfKnown, but that doesn't return the information we need
7662     // to set BaseInfo.  So just ignore the possibility that the alignment is
7663     // greater than one.
7664     if (BaseInfo)
7665       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7666     return CharUnits::One();
7667   }
7668 
7669   if (BaseInfo)
7670     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7671 
7672   CharUnits Alignment;
7673   const CXXRecordDecl *RD;
7674   if (T.getQualifiers().hasUnaligned()) {
7675     Alignment = CharUnits::One();
7676   } else if (forPointeeType && !AlignForArray &&
7677              (RD = T->getAsCXXRecordDecl())) {
7678     // For C++ class pointees, we don't know whether we're pointing at a
7679     // base or a complete object, so we generally need to use the
7680     // non-virtual alignment.
7681     Alignment = getClassPointerAlignment(RD);
7682   } else {
7683     Alignment = getContext().getTypeAlignInChars(T);
7684   }
7685 
7686   // Cap to the global maximum type alignment unless the alignment
7687   // was somehow explicit on the type.
7688   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7689     if (Alignment.getQuantity() > MaxAlign &&
7690         !getContext().isAlignmentRequired(T))
7691       Alignment = CharUnits::fromQuantity(MaxAlign);
7692   }
7693   return Alignment;
7694 }
7695 
7696 bool CodeGenModule::stopAutoInit() {
7697   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7698   if (StopAfter) {
7699     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7700     // used
7701     if (NumAutoVarInit >= StopAfter) {
7702       return true;
7703     }
7704     if (!NumAutoVarInit) {
7705       unsigned DiagID = getDiags().getCustomDiagID(
7706           DiagnosticsEngine::Warning,
7707           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7708           "number of times ftrivial-auto-var-init=%1 gets applied.");
7709       getDiags().Report(DiagID)
7710           << StopAfter
7711           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7712                       LangOptions::TrivialAutoVarInitKind::Zero
7713                   ? "zero"
7714                   : "pattern");
7715     }
7716     ++NumAutoVarInit;
7717   }
7718   return false;
7719 }
7720 
7721 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7722                                                     const Decl *D) const {
7723   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7724   // postfix beginning with '.' since the symbol name can be demangled.
7725   if (LangOpts.HIP)
7726     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7727   else
7728     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7729 
7730   // If the CUID is not specified we try to generate a unique postfix.
7731   if (getLangOpts().CUID.empty()) {
7732     SourceManager &SM = getContext().getSourceManager();
7733     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7734     assert(PLoc.isValid() && "Source location is expected to be valid.");
7735 
7736     // Get the hash of the user defined macros.
7737     llvm::MD5 Hash;
7738     llvm::MD5::MD5Result Result;
7739     for (const auto &Arg : PreprocessorOpts.Macros)
7740       Hash.update(Arg.first);
7741     Hash.final(Result);
7742 
7743     // Get the UniqueID for the file containing the decl.
7744     llvm::sys::fs::UniqueID ID;
7745     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7746       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7747       assert(PLoc.isValid() && "Source location is expected to be valid.");
7748       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7749         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7750             << PLoc.getFilename() << EC.message();
7751     }
7752     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7753        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7754   } else {
7755     OS << getContext().getCUIDHash();
7756   }
7757 }
7758 
7759 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7760   assert(DeferredDeclsToEmit.empty() &&
7761          "Should have emitted all decls deferred to emit.");
7762   assert(NewBuilder->DeferredDecls.empty() &&
7763          "Newly created module should not have deferred decls");
7764   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7765   assert(EmittedDeferredDecls.empty() &&
7766          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7767 
7768   assert(NewBuilder->DeferredVTables.empty() &&
7769          "Newly created module should not have deferred vtables");
7770   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7771 
7772   assert(NewBuilder->MangledDeclNames.empty() &&
7773          "Newly created module should not have mangled decl names");
7774   assert(NewBuilder->Manglings.empty() &&
7775          "Newly created module should not have manglings");
7776   NewBuilder->Manglings = std::move(Manglings);
7777 
7778   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7779 
7780   NewBuilder->TBAA = std::move(TBAA);
7781 
7782   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7783 }
7784