1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CoverageMappingGen.h" 25 #include "CodeGenTBAA.h" 26 #include "TargetInfo.h" 27 #include "clang/AST/ASTContext.h" 28 #include "clang/AST/CharUnits.h" 29 #include "clang/AST/DeclCXX.h" 30 #include "clang/AST/DeclObjC.h" 31 #include "clang/AST/DeclTemplate.h" 32 #include "clang/AST/Mangle.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/RecursiveASTVisitor.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/CharInfo.h" 37 #include "clang/Basic/Diagnostic.h" 38 #include "clang/Basic/Module.h" 39 #include "clang/Basic/SourceManager.h" 40 #include "clang/Basic/TargetInfo.h" 41 #include "clang/Basic/Version.h" 42 #include "clang/Frontend/CodeGenOptions.h" 43 #include "clang/Sema/SemaDiagnostic.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/Triple.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/CallingConv.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/ProfileData/InstrProfReader.h" 53 #include "llvm/Support/ConvertUTF.h" 54 #include "llvm/Support/ErrorHandling.h" 55 56 using namespace clang; 57 using namespace CodeGen; 58 59 static const char AnnotationSection[] = "llvm.metadata"; 60 61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 62 switch (CGM.getTarget().getCXXABI().getKind()) { 63 case TargetCXXABI::GenericAArch64: 64 case TargetCXXABI::GenericARM: 65 case TargetCXXABI::iOS: 66 case TargetCXXABI::iOS64: 67 case TargetCXXABI::GenericItanium: 68 return CreateItaniumCXXABI(CGM); 69 case TargetCXXABI::Microsoft: 70 return CreateMicrosoftCXXABI(CGM); 71 } 72 73 llvm_unreachable("invalid C++ ABI kind"); 74 } 75 76 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 77 llvm::Module &M, const llvm::DataLayout &TD, 78 DiagnosticsEngine &diags, 79 CoverageSourceInfo *CoverageInfo) 80 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 81 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 82 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 83 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 84 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 85 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 86 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 87 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 88 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 89 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 90 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 91 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 92 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 93 94 // Initialize the type cache. 95 llvm::LLVMContext &LLVMContext = M.getContext(); 96 VoidTy = llvm::Type::getVoidTy(LLVMContext); 97 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 98 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 99 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 100 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 101 FloatTy = llvm::Type::getFloatTy(LLVMContext); 102 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 103 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 104 PointerAlignInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 106 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 107 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 108 Int8PtrTy = Int8Ty->getPointerTo(0); 109 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 110 111 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 112 113 if (LangOpts.ObjC1) 114 createObjCRuntime(); 115 if (LangOpts.OpenCL) 116 createOpenCLRuntime(); 117 if (LangOpts.OpenMP) 118 createOpenMPRuntime(); 119 if (LangOpts.CUDA) 120 createCUDARuntime(); 121 122 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 123 if (LangOpts.Sanitize.Thread || 124 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 125 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 126 getCXXABI().getMangleContext()); 127 128 // If debug info or coverage generation is enabled, create the CGDebugInfo 129 // object. 130 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 131 CodeGenOpts.EmitGcovArcs || 132 CodeGenOpts.EmitGcovNotes) 133 DebugInfo = new CGDebugInfo(*this); 134 135 Block.GlobalUniqueCount = 0; 136 137 if (C.getLangOpts().ObjCAutoRefCount) 138 ARCData = new ARCEntrypoints(); 139 RRData = new RREntrypoints(); 140 141 if (!CodeGenOpts.InstrProfileInput.empty()) { 142 if (std::error_code EC = llvm::IndexedInstrProfReader::create( 143 CodeGenOpts.InstrProfileInput, PGOReader)) { 144 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 145 "Could not read profile: %0"); 146 getDiags().Report(DiagID) << EC.message(); 147 } 148 } 149 150 // If coverage mapping generation is enabled, create the 151 // CoverageMappingModuleGen object. 152 if (CodeGenOpts.CoverageMapping) 153 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 154 } 155 156 CodeGenModule::~CodeGenModule() { 157 delete ObjCRuntime; 158 delete OpenCLRuntime; 159 delete OpenMPRuntime; 160 delete CUDARuntime; 161 delete TheTargetCodeGenInfo; 162 delete TBAA; 163 delete DebugInfo; 164 delete ARCData; 165 delete RRData; 166 } 167 168 void CodeGenModule::createObjCRuntime() { 169 // This is just isGNUFamily(), but we want to force implementors of 170 // new ABIs to decide how best to do this. 171 switch (LangOpts.ObjCRuntime.getKind()) { 172 case ObjCRuntime::GNUstep: 173 case ObjCRuntime::GCC: 174 case ObjCRuntime::ObjFW: 175 ObjCRuntime = CreateGNUObjCRuntime(*this); 176 return; 177 178 case ObjCRuntime::FragileMacOSX: 179 case ObjCRuntime::MacOSX: 180 case ObjCRuntime::iOS: 181 ObjCRuntime = CreateMacObjCRuntime(*this); 182 return; 183 } 184 llvm_unreachable("bad runtime kind"); 185 } 186 187 void CodeGenModule::createOpenCLRuntime() { 188 OpenCLRuntime = new CGOpenCLRuntime(*this); 189 } 190 191 void CodeGenModule::createOpenMPRuntime() { 192 OpenMPRuntime = new CGOpenMPRuntime(*this); 193 } 194 195 void CodeGenModule::createCUDARuntime() { 196 CUDARuntime = CreateNVCUDARuntime(*this); 197 } 198 199 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 200 Replacements[Name] = C; 201 } 202 203 void CodeGenModule::applyReplacements() { 204 for (ReplacementsTy::iterator I = Replacements.begin(), 205 E = Replacements.end(); 206 I != E; ++I) { 207 StringRef MangledName = I->first(); 208 llvm::Constant *Replacement = I->second; 209 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 210 if (!Entry) 211 continue; 212 auto *OldF = cast<llvm::Function>(Entry); 213 auto *NewF = dyn_cast<llvm::Function>(Replacement); 214 if (!NewF) { 215 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 216 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 217 } else { 218 auto *CE = cast<llvm::ConstantExpr>(Replacement); 219 assert(CE->getOpcode() == llvm::Instruction::BitCast || 220 CE->getOpcode() == llvm::Instruction::GetElementPtr); 221 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 222 } 223 } 224 225 // Replace old with new, but keep the old order. 226 OldF->replaceAllUsesWith(Replacement); 227 if (NewF) { 228 NewF->removeFromParent(); 229 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 230 } 231 OldF->eraseFromParent(); 232 } 233 } 234 235 // This is only used in aliases that we created and we know they have a 236 // linear structure. 237 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 238 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 239 const llvm::Constant *C = &GA; 240 for (;;) { 241 C = C->stripPointerCasts(); 242 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 243 return GO; 244 // stripPointerCasts will not walk over weak aliases. 245 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 246 if (!GA2) 247 return nullptr; 248 if (!Visited.insert(GA2)) 249 return nullptr; 250 C = GA2->getAliasee(); 251 } 252 } 253 254 void CodeGenModule::checkAliases() { 255 // Check if the constructed aliases are well formed. It is really unfortunate 256 // that we have to do this in CodeGen, but we only construct mangled names 257 // and aliases during codegen. 258 bool Error = false; 259 DiagnosticsEngine &Diags = getDiags(); 260 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 261 E = Aliases.end(); I != E; ++I) { 262 const GlobalDecl &GD = *I; 263 const auto *D = cast<ValueDecl>(GD.getDecl()); 264 const AliasAttr *AA = D->getAttr<AliasAttr>(); 265 StringRef MangledName = getMangledName(GD); 266 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 267 auto *Alias = cast<llvm::GlobalAlias>(Entry); 268 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 269 if (!GV) { 270 Error = true; 271 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 272 } else if (GV->isDeclaration()) { 273 Error = true; 274 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 275 } 276 277 llvm::Constant *Aliasee = Alias->getAliasee(); 278 llvm::GlobalValue *AliaseeGV; 279 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 280 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 281 else 282 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 283 284 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 285 StringRef AliasSection = SA->getName(); 286 if (AliasSection != AliaseeGV->getSection()) 287 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 288 << AliasSection; 289 } 290 291 // We have to handle alias to weak aliases in here. LLVM itself disallows 292 // this since the object semantics would not match the IL one. For 293 // compatibility with gcc we implement it by just pointing the alias 294 // to its aliasee's aliasee. We also warn, since the user is probably 295 // expecting the link to be weak. 296 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 297 if (GA->mayBeOverridden()) { 298 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 299 << GV->getName() << GA->getName(); 300 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 301 GA->getAliasee(), Alias->getType()); 302 Alias->setAliasee(Aliasee); 303 } 304 } 305 } 306 if (!Error) 307 return; 308 309 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 310 E = Aliases.end(); I != E; ++I) { 311 const GlobalDecl &GD = *I; 312 StringRef MangledName = getMangledName(GD); 313 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 314 auto *Alias = cast<llvm::GlobalAlias>(Entry); 315 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 316 Alias->eraseFromParent(); 317 } 318 } 319 320 void CodeGenModule::clear() { 321 DeferredDeclsToEmit.clear(); 322 } 323 324 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 325 StringRef MainFile) { 326 if (!hasDiagnostics()) 327 return; 328 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 329 if (MainFile.empty()) 330 MainFile = "<stdin>"; 331 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 332 } else 333 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 334 << Mismatched; 335 } 336 337 void CodeGenModule::Release() { 338 EmitDeferred(); 339 applyReplacements(); 340 checkAliases(); 341 EmitCXXGlobalInitFunc(); 342 EmitCXXGlobalDtorFunc(); 343 EmitCXXThreadLocalInitFunc(); 344 if (ObjCRuntime) 345 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 346 AddGlobalCtor(ObjCInitFunction); 347 if (getCodeGenOpts().ProfileInstrGenerate) 348 if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this)) 349 AddGlobalCtor(PGOInit, 0); 350 if (PGOReader && PGOStats.hasDiagnostics()) 351 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 352 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 353 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 354 EmitGlobalAnnotations(); 355 EmitStaticExternCAliases(); 356 EmitDeferredUnusedCoverageMappings(); 357 if (CoverageMapping) 358 CoverageMapping->emit(); 359 emitLLVMUsed(); 360 361 if (CodeGenOpts.Autolink && 362 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 363 EmitModuleLinkOptions(); 364 } 365 if (CodeGenOpts.DwarfVersion) 366 // We actually want the latest version when there are conflicts. 367 // We can change from Warning to Latest if such mode is supported. 368 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 369 CodeGenOpts.DwarfVersion); 370 if (DebugInfo) 371 // We support a single version in the linked module. The LLVM 372 // parser will drop debug info with a different version number 373 // (and warn about it, too). 374 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 375 llvm::DEBUG_METADATA_VERSION); 376 377 // We need to record the widths of enums and wchar_t, so that we can generate 378 // the correct build attributes in the ARM backend. 379 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 380 if ( Arch == llvm::Triple::arm 381 || Arch == llvm::Triple::armeb 382 || Arch == llvm::Triple::thumb 383 || Arch == llvm::Triple::thumbeb) { 384 // Width of wchar_t in bytes 385 uint64_t WCharWidth = 386 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 387 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 388 389 // The minimum width of an enum in bytes 390 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 391 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 392 } 393 394 SimplifyPersonality(); 395 396 if (getCodeGenOpts().EmitDeclMetadata) 397 EmitDeclMetadata(); 398 399 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 400 EmitCoverageFile(); 401 402 if (DebugInfo) 403 DebugInfo->finalize(); 404 405 EmitVersionIdentMetadata(); 406 407 EmitTargetMetadata(); 408 } 409 410 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 411 // Make sure that this type is translated. 412 Types.UpdateCompletedType(TD); 413 } 414 415 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 416 if (!TBAA) 417 return nullptr; 418 return TBAA->getTBAAInfo(QTy); 419 } 420 421 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 422 if (!TBAA) 423 return nullptr; 424 return TBAA->getTBAAInfoForVTablePtr(); 425 } 426 427 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 428 if (!TBAA) 429 return nullptr; 430 return TBAA->getTBAAStructInfo(QTy); 431 } 432 433 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 434 if (!TBAA) 435 return nullptr; 436 return TBAA->getTBAAStructTypeInfo(QTy); 437 } 438 439 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 440 llvm::MDNode *AccessN, 441 uint64_t O) { 442 if (!TBAA) 443 return nullptr; 444 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 445 } 446 447 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 448 /// and struct-path aware TBAA, the tag has the same format: 449 /// base type, access type and offset. 450 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 451 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 452 llvm::MDNode *TBAAInfo, 453 bool ConvertTypeToTag) { 454 if (ConvertTypeToTag && TBAA) 455 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 456 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 457 else 458 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 459 } 460 461 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 462 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 463 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 464 } 465 466 /// ErrorUnsupported - Print out an error that codegen doesn't support the 467 /// specified stmt yet. 468 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 469 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 470 "cannot compile this %0 yet"); 471 std::string Msg = Type; 472 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 473 << Msg << S->getSourceRange(); 474 } 475 476 /// ErrorUnsupported - Print out an error that codegen doesn't support the 477 /// specified decl yet. 478 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 479 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 480 "cannot compile this %0 yet"); 481 std::string Msg = Type; 482 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 483 } 484 485 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 486 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 487 } 488 489 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 490 const NamedDecl *D) const { 491 // Internal definitions always have default visibility. 492 if (GV->hasLocalLinkage()) { 493 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 494 return; 495 } 496 497 // Set visibility for definitions. 498 LinkageInfo LV = D->getLinkageAndVisibility(); 499 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 500 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 501 } 502 503 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 504 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 505 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 506 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 507 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 508 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 509 } 510 511 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 512 CodeGenOptions::TLSModel M) { 513 switch (M) { 514 case CodeGenOptions::GeneralDynamicTLSModel: 515 return llvm::GlobalVariable::GeneralDynamicTLSModel; 516 case CodeGenOptions::LocalDynamicTLSModel: 517 return llvm::GlobalVariable::LocalDynamicTLSModel; 518 case CodeGenOptions::InitialExecTLSModel: 519 return llvm::GlobalVariable::InitialExecTLSModel; 520 case CodeGenOptions::LocalExecTLSModel: 521 return llvm::GlobalVariable::LocalExecTLSModel; 522 } 523 llvm_unreachable("Invalid TLS model!"); 524 } 525 526 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 527 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 528 529 llvm::GlobalValue::ThreadLocalMode TLM; 530 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 531 532 // Override the TLS model if it is explicitly specified. 533 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 534 TLM = GetLLVMTLSModel(Attr->getModel()); 535 } 536 537 GV->setThreadLocalMode(TLM); 538 } 539 540 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 541 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 542 if (!FoundStr.empty()) 543 return FoundStr; 544 545 const auto *ND = cast<NamedDecl>(GD.getDecl()); 546 SmallString<256> Buffer; 547 StringRef Str; 548 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 549 llvm::raw_svector_ostream Out(Buffer); 550 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 551 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 552 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 553 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 554 else 555 getCXXABI().getMangleContext().mangleName(ND, Out); 556 Str = Out.str(); 557 } else { 558 IdentifierInfo *II = ND->getIdentifier(); 559 assert(II && "Attempt to mangle unnamed decl."); 560 Str = II->getName(); 561 } 562 563 // Keep the first result in the case of a mangling collision. 564 auto Result = Manglings.insert(std::make_pair(Str, GD)); 565 return FoundStr = Result.first->first(); 566 } 567 568 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 569 const BlockDecl *BD) { 570 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 571 const Decl *D = GD.getDecl(); 572 573 SmallString<256> Buffer; 574 llvm::raw_svector_ostream Out(Buffer); 575 if (!D) 576 MangleCtx.mangleGlobalBlock(BD, 577 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 578 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 579 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 580 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 581 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 582 else 583 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 584 585 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 586 return Result.first->first(); 587 } 588 589 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 590 return getModule().getNamedValue(Name); 591 } 592 593 /// AddGlobalCtor - Add a function to the list that will be called before 594 /// main() runs. 595 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 596 llvm::Constant *AssociatedData) { 597 // FIXME: Type coercion of void()* types. 598 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 599 } 600 601 /// AddGlobalDtor - Add a function to the list that will be called 602 /// when the module is unloaded. 603 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 604 // FIXME: Type coercion of void()* types. 605 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 606 } 607 608 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 609 // Ctor function type is void()*. 610 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 611 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 612 613 // Get the type of a ctor entry, { i32, void ()*, i8* }. 614 llvm::StructType *CtorStructTy = llvm::StructType::get( 615 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, NULL); 616 617 // Construct the constructor and destructor arrays. 618 SmallVector<llvm::Constant*, 8> Ctors; 619 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 620 llvm::Constant *S[] = { 621 llvm::ConstantInt::get(Int32Ty, I->Priority, false), 622 llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy), 623 (I->AssociatedData 624 ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy) 625 : llvm::Constant::getNullValue(VoidPtrTy)) 626 }; 627 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 628 } 629 630 if (!Ctors.empty()) { 631 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 632 new llvm::GlobalVariable(TheModule, AT, false, 633 llvm::GlobalValue::AppendingLinkage, 634 llvm::ConstantArray::get(AT, Ctors), 635 GlobalName); 636 } 637 } 638 639 llvm::GlobalValue::LinkageTypes 640 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 641 const auto *D = cast<FunctionDecl>(GD.getDecl()); 642 643 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 644 645 if (isa<CXXDestructorDecl>(D) && 646 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 647 GD.getDtorType())) { 648 // Destructor variants in the Microsoft C++ ABI are always internal or 649 // linkonce_odr thunks emitted on an as-needed basis. 650 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 651 : llvm::GlobalValue::LinkOnceODRLinkage; 652 } 653 654 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 655 } 656 657 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 658 llvm::Function *F) { 659 setNonAliasAttributes(D, F); 660 } 661 662 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 663 const CGFunctionInfo &Info, 664 llvm::Function *F) { 665 unsigned CallingConv; 666 AttributeListType AttributeList; 667 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 668 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 669 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 670 } 671 672 /// Determines whether the language options require us to model 673 /// unwind exceptions. We treat -fexceptions as mandating this 674 /// except under the fragile ObjC ABI with only ObjC exceptions 675 /// enabled. This means, for example, that C with -fexceptions 676 /// enables this. 677 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 678 // If exceptions are completely disabled, obviously this is false. 679 if (!LangOpts.Exceptions) return false; 680 681 // If C++ exceptions are enabled, this is true. 682 if (LangOpts.CXXExceptions) return true; 683 684 // If ObjC exceptions are enabled, this depends on the ABI. 685 if (LangOpts.ObjCExceptions) { 686 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 687 } 688 689 return true; 690 } 691 692 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 693 llvm::Function *F) { 694 llvm::AttrBuilder B; 695 696 if (CodeGenOpts.UnwindTables) 697 B.addAttribute(llvm::Attribute::UWTable); 698 699 if (!hasUnwindExceptions(LangOpts)) 700 B.addAttribute(llvm::Attribute::NoUnwind); 701 702 if (D->hasAttr<NakedAttr>()) { 703 // Naked implies noinline: we should not be inlining such functions. 704 B.addAttribute(llvm::Attribute::Naked); 705 B.addAttribute(llvm::Attribute::NoInline); 706 } else if (D->hasAttr<OptimizeNoneAttr>()) { 707 // OptimizeNone implies noinline; we should not be inlining such functions. 708 B.addAttribute(llvm::Attribute::OptimizeNone); 709 B.addAttribute(llvm::Attribute::NoInline); 710 } else if (D->hasAttr<NoDuplicateAttr>()) { 711 B.addAttribute(llvm::Attribute::NoDuplicate); 712 } else if (D->hasAttr<NoInlineAttr>()) { 713 B.addAttribute(llvm::Attribute::NoInline); 714 } else if (D->hasAttr<AlwaysInlineAttr>() && 715 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 716 llvm::Attribute::NoInline)) { 717 // (noinline wins over always_inline, and we can't specify both in IR) 718 B.addAttribute(llvm::Attribute::AlwaysInline); 719 } 720 721 if (D->hasAttr<ColdAttr>()) { 722 B.addAttribute(llvm::Attribute::OptimizeForSize); 723 B.addAttribute(llvm::Attribute::Cold); 724 } 725 726 if (D->hasAttr<MinSizeAttr>()) 727 B.addAttribute(llvm::Attribute::MinSize); 728 729 if (D->hasAttr<OptimizeNoneAttr>()) { 730 // OptimizeNone wins over OptimizeForSize and MinSize. 731 B.removeAttribute(llvm::Attribute::OptimizeForSize); 732 B.removeAttribute(llvm::Attribute::MinSize); 733 } 734 735 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 736 B.addAttribute(llvm::Attribute::StackProtect); 737 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 738 B.addAttribute(llvm::Attribute::StackProtectStrong); 739 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 740 B.addAttribute(llvm::Attribute::StackProtectReq); 741 742 // Add sanitizer attributes if function is not blacklisted. 743 if (!isInSanitizerBlacklist(F, D->getLocation())) { 744 // When AddressSanitizer is enabled, set SanitizeAddress attribute 745 // unless __attribute__((no_sanitize_address)) is used. 746 if (LangOpts.Sanitize.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 747 B.addAttribute(llvm::Attribute::SanitizeAddress); 748 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 749 if (LangOpts.Sanitize.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) 750 B.addAttribute(llvm::Attribute::SanitizeThread); 751 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 752 if (LangOpts.Sanitize.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 753 B.addAttribute(llvm::Attribute::SanitizeMemory); 754 } 755 756 F->addAttributes(llvm::AttributeSet::FunctionIndex, 757 llvm::AttributeSet::get( 758 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 759 760 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 761 F->setUnnamedAddr(true); 762 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 763 if (MD->isVirtual()) 764 F->setUnnamedAddr(true); 765 766 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 767 if (alignment) 768 F->setAlignment(alignment); 769 770 // C++ ABI requires 2-byte alignment for member functions. 771 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 772 F->setAlignment(2); 773 } 774 775 void CodeGenModule::SetCommonAttributes(const Decl *D, 776 llvm::GlobalValue *GV) { 777 if (const auto *ND = dyn_cast<NamedDecl>(D)) 778 setGlobalVisibility(GV, ND); 779 else 780 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 781 782 if (D->hasAttr<UsedAttr>()) 783 addUsedGlobal(GV); 784 } 785 786 void CodeGenModule::setAliasAttributes(const Decl *D, 787 llvm::GlobalValue *GV) { 788 SetCommonAttributes(D, GV); 789 790 // Process the dllexport attribute based on whether the original definition 791 // (not necessarily the aliasee) was exported. 792 if (D->hasAttr<DLLExportAttr>()) 793 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 794 } 795 796 void CodeGenModule::setNonAliasAttributes(const Decl *D, 797 llvm::GlobalObject *GO) { 798 SetCommonAttributes(D, GO); 799 800 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 801 GO->setSection(SA->getName()); 802 803 getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this); 804 } 805 806 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 807 llvm::Function *F, 808 const CGFunctionInfo &FI) { 809 SetLLVMFunctionAttributes(D, FI, F); 810 SetLLVMFunctionAttributesForDefinition(D, F); 811 812 F->setLinkage(llvm::Function::InternalLinkage); 813 814 setNonAliasAttributes(D, F); 815 } 816 817 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 818 const NamedDecl *ND) { 819 // Set linkage and visibility in case we never see a definition. 820 LinkageInfo LV = ND->getLinkageAndVisibility(); 821 if (LV.getLinkage() != ExternalLinkage) { 822 // Don't set internal linkage on declarations. 823 } else { 824 if (ND->hasAttr<DLLImportAttr>()) { 825 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 826 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 827 } else if (ND->hasAttr<DLLExportAttr>()) { 828 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 829 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 830 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 831 // "extern_weak" is overloaded in LLVM; we probably should have 832 // separate linkage types for this. 833 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 834 } 835 836 // Set visibility on a declaration only if it's explicit. 837 if (LV.isVisibilityExplicit()) 838 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 839 } 840 } 841 842 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 843 llvm::Function *F, 844 bool IsIncompleteFunction) { 845 if (unsigned IID = F->getIntrinsicID()) { 846 // If this is an intrinsic function, set the function's attributes 847 // to the intrinsic's attributes. 848 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 849 (llvm::Intrinsic::ID)IID)); 850 return; 851 } 852 853 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 854 855 if (!IsIncompleteFunction) 856 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 857 858 // Add the Returned attribute for "this", except for iOS 5 and earlier 859 // where substantial code, including the libstdc++ dylib, was compiled with 860 // GCC and does not actually return "this". 861 if (getCXXABI().HasThisReturn(GD) && 862 !(getTarget().getTriple().isiOS() && 863 getTarget().getTriple().isOSVersionLT(6))) { 864 assert(!F->arg_empty() && 865 F->arg_begin()->getType() 866 ->canLosslesslyBitCastTo(F->getReturnType()) && 867 "unexpected this return"); 868 F->addAttribute(1, llvm::Attribute::Returned); 869 } 870 871 // Only a few attributes are set on declarations; these may later be 872 // overridden by a definition. 873 874 setLinkageAndVisibilityForGV(F, FD); 875 876 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 877 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 878 // Don't dllexport/import destructor thunks. 879 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 880 } 881 } 882 883 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 884 F->setSection(SA->getName()); 885 886 // A replaceable global allocation function does not act like a builtin by 887 // default, only if it is invoked by a new-expression or delete-expression. 888 if (FD->isReplaceableGlobalAllocationFunction()) 889 F->addAttribute(llvm::AttributeSet::FunctionIndex, 890 llvm::Attribute::NoBuiltin); 891 } 892 893 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 894 assert(!GV->isDeclaration() && 895 "Only globals with definition can force usage."); 896 LLVMUsed.push_back(GV); 897 } 898 899 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 900 assert(!GV->isDeclaration() && 901 "Only globals with definition can force usage."); 902 LLVMCompilerUsed.push_back(GV); 903 } 904 905 static void emitUsed(CodeGenModule &CGM, StringRef Name, 906 std::vector<llvm::WeakVH> &List) { 907 // Don't create llvm.used if there is no need. 908 if (List.empty()) 909 return; 910 911 // Convert List to what ConstantArray needs. 912 SmallVector<llvm::Constant*, 8> UsedArray; 913 UsedArray.resize(List.size()); 914 for (unsigned i = 0, e = List.size(); i != e; ++i) { 915 UsedArray[i] = 916 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 917 CGM.Int8PtrTy); 918 } 919 920 if (UsedArray.empty()) 921 return; 922 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 923 924 auto *GV = new llvm::GlobalVariable( 925 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 926 llvm::ConstantArray::get(ATy, UsedArray), Name); 927 928 GV->setSection("llvm.metadata"); 929 } 930 931 void CodeGenModule::emitLLVMUsed() { 932 emitUsed(*this, "llvm.used", LLVMUsed); 933 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 934 } 935 936 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 937 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 938 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 939 } 940 941 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 942 llvm::SmallString<32> Opt; 943 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 944 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 945 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 946 } 947 948 void CodeGenModule::AddDependentLib(StringRef Lib) { 949 llvm::SmallString<24> Opt; 950 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 951 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 952 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 953 } 954 955 /// \brief Add link options implied by the given module, including modules 956 /// it depends on, using a postorder walk. 957 static void addLinkOptionsPostorder(CodeGenModule &CGM, 958 Module *Mod, 959 SmallVectorImpl<llvm::Value *> &Metadata, 960 llvm::SmallPtrSet<Module *, 16> &Visited) { 961 // Import this module's parent. 962 if (Mod->Parent && Visited.insert(Mod->Parent)) { 963 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 964 } 965 966 // Import this module's dependencies. 967 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 968 if (Visited.insert(Mod->Imports[I-1])) 969 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 970 } 971 972 // Add linker options to link against the libraries/frameworks 973 // described by this module. 974 llvm::LLVMContext &Context = CGM.getLLVMContext(); 975 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 976 // Link against a framework. Frameworks are currently Darwin only, so we 977 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 978 if (Mod->LinkLibraries[I-1].IsFramework) { 979 llvm::Value *Args[2] = { 980 llvm::MDString::get(Context, "-framework"), 981 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 982 }; 983 984 Metadata.push_back(llvm::MDNode::get(Context, Args)); 985 continue; 986 } 987 988 // Link against a library. 989 llvm::SmallString<24> Opt; 990 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 991 Mod->LinkLibraries[I-1].Library, Opt); 992 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 993 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 994 } 995 } 996 997 void CodeGenModule::EmitModuleLinkOptions() { 998 // Collect the set of all of the modules we want to visit to emit link 999 // options, which is essentially the imported modules and all of their 1000 // non-explicit child modules. 1001 llvm::SetVector<clang::Module *> LinkModules; 1002 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1003 SmallVector<clang::Module *, 16> Stack; 1004 1005 // Seed the stack with imported modules. 1006 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 1007 MEnd = ImportedModules.end(); 1008 M != MEnd; ++M) { 1009 if (Visited.insert(*M)) 1010 Stack.push_back(*M); 1011 } 1012 1013 // Find all of the modules to import, making a little effort to prune 1014 // non-leaf modules. 1015 while (!Stack.empty()) { 1016 clang::Module *Mod = Stack.pop_back_val(); 1017 1018 bool AnyChildren = false; 1019 1020 // Visit the submodules of this module. 1021 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1022 SubEnd = Mod->submodule_end(); 1023 Sub != SubEnd; ++Sub) { 1024 // Skip explicit children; they need to be explicitly imported to be 1025 // linked against. 1026 if ((*Sub)->IsExplicit) 1027 continue; 1028 1029 if (Visited.insert(*Sub)) { 1030 Stack.push_back(*Sub); 1031 AnyChildren = true; 1032 } 1033 } 1034 1035 // We didn't find any children, so add this module to the list of 1036 // modules to link against. 1037 if (!AnyChildren) { 1038 LinkModules.insert(Mod); 1039 } 1040 } 1041 1042 // Add link options for all of the imported modules in reverse topological 1043 // order. We don't do anything to try to order import link flags with respect 1044 // to linker options inserted by things like #pragma comment(). 1045 SmallVector<llvm::Value *, 16> MetadataArgs; 1046 Visited.clear(); 1047 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 1048 MEnd = LinkModules.end(); 1049 M != MEnd; ++M) { 1050 if (Visited.insert(*M)) 1051 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 1052 } 1053 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1054 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1055 1056 // Add the linker options metadata flag. 1057 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1058 llvm::MDNode::get(getLLVMContext(), 1059 LinkerOptionsMetadata)); 1060 } 1061 1062 void CodeGenModule::EmitDeferred() { 1063 // Emit code for any potentially referenced deferred decls. Since a 1064 // previously unused static decl may become used during the generation of code 1065 // for a static function, iterate until no changes are made. 1066 1067 while (true) { 1068 if (!DeferredVTables.empty()) { 1069 EmitDeferredVTables(); 1070 1071 // Emitting a v-table doesn't directly cause more v-tables to 1072 // become deferred, although it can cause functions to be 1073 // emitted that then need those v-tables. 1074 assert(DeferredVTables.empty()); 1075 } 1076 1077 // Stop if we're out of both deferred v-tables and deferred declarations. 1078 if (DeferredDeclsToEmit.empty()) break; 1079 1080 DeferredGlobal &G = DeferredDeclsToEmit.back(); 1081 GlobalDecl D = G.GD; 1082 llvm::GlobalValue *GV = G.GV; 1083 DeferredDeclsToEmit.pop_back(); 1084 1085 assert(GV == GetGlobalValue(getMangledName(D))); 1086 // Check to see if we've already emitted this. This is necessary 1087 // for a couple of reasons: first, decls can end up in the 1088 // deferred-decls queue multiple times, and second, decls can end 1089 // up with definitions in unusual ways (e.g. by an extern inline 1090 // function acquiring a strong function redefinition). Just 1091 // ignore these cases. 1092 if(!GV->isDeclaration()) 1093 continue; 1094 1095 // Otherwise, emit the definition and move on to the next one. 1096 EmitGlobalDefinition(D, GV); 1097 } 1098 } 1099 1100 void CodeGenModule::EmitGlobalAnnotations() { 1101 if (Annotations.empty()) 1102 return; 1103 1104 // Create a new global variable for the ConstantStruct in the Module. 1105 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1106 Annotations[0]->getType(), Annotations.size()), Annotations); 1107 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1108 llvm::GlobalValue::AppendingLinkage, 1109 Array, "llvm.global.annotations"); 1110 gv->setSection(AnnotationSection); 1111 } 1112 1113 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1114 llvm::Constant *&AStr = AnnotationStrings[Str]; 1115 if (AStr) 1116 return AStr; 1117 1118 // Not found yet, create a new global. 1119 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1120 auto *gv = 1121 new llvm::GlobalVariable(getModule(), s->getType(), true, 1122 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1123 gv->setSection(AnnotationSection); 1124 gv->setUnnamedAddr(true); 1125 AStr = gv; 1126 return gv; 1127 } 1128 1129 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1130 SourceManager &SM = getContext().getSourceManager(); 1131 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1132 if (PLoc.isValid()) 1133 return EmitAnnotationString(PLoc.getFilename()); 1134 return EmitAnnotationString(SM.getBufferName(Loc)); 1135 } 1136 1137 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1138 SourceManager &SM = getContext().getSourceManager(); 1139 PresumedLoc PLoc = SM.getPresumedLoc(L); 1140 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1141 SM.getExpansionLineNumber(L); 1142 return llvm::ConstantInt::get(Int32Ty, LineNo); 1143 } 1144 1145 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1146 const AnnotateAttr *AA, 1147 SourceLocation L) { 1148 // Get the globals for file name, annotation, and the line number. 1149 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1150 *UnitGV = EmitAnnotationUnit(L), 1151 *LineNoCst = EmitAnnotationLineNo(L); 1152 1153 // Create the ConstantStruct for the global annotation. 1154 llvm::Constant *Fields[4] = { 1155 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1156 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1157 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1158 LineNoCst 1159 }; 1160 return llvm::ConstantStruct::getAnon(Fields); 1161 } 1162 1163 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1164 llvm::GlobalValue *GV) { 1165 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1166 // Get the struct elements for these annotations. 1167 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1168 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1169 } 1170 1171 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1172 SourceLocation Loc) const { 1173 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1174 // Blacklist by function name. 1175 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1176 return true; 1177 // Blacklist by location. 1178 if (!Loc.isInvalid()) 1179 return SanitizerBL.isBlacklistedLocation(Loc); 1180 // If location is unknown, this may be a compiler-generated function. Assume 1181 // it's located in the main file. 1182 auto &SM = Context.getSourceManager(); 1183 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1184 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1185 } 1186 return false; 1187 } 1188 1189 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1190 // Never defer when EmitAllDecls is specified. 1191 if (LangOpts.EmitAllDecls) 1192 return false; 1193 1194 return !getContext().DeclMustBeEmitted(Global); 1195 } 1196 1197 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1198 const CXXUuidofExpr* E) { 1199 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1200 // well-formed. 1201 StringRef Uuid = E->getUuidAsStringRef(Context); 1202 std::string Name = "_GUID_" + Uuid.lower(); 1203 std::replace(Name.begin(), Name.end(), '-', '_'); 1204 1205 // Look for an existing global. 1206 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1207 return GV; 1208 1209 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1210 assert(Init && "failed to initialize as constant"); 1211 1212 auto *GV = new llvm::GlobalVariable( 1213 getModule(), Init->getType(), 1214 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1215 return GV; 1216 } 1217 1218 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1219 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1220 assert(AA && "No alias?"); 1221 1222 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1223 1224 // See if there is already something with the target's name in the module. 1225 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1226 if (Entry) { 1227 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1228 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1229 } 1230 1231 llvm::Constant *Aliasee; 1232 if (isa<llvm::FunctionType>(DeclTy)) 1233 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1234 GlobalDecl(cast<FunctionDecl>(VD)), 1235 /*ForVTable=*/false); 1236 else 1237 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1238 llvm::PointerType::getUnqual(DeclTy), 1239 nullptr); 1240 1241 auto *F = cast<llvm::GlobalValue>(Aliasee); 1242 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1243 WeakRefReferences.insert(F); 1244 1245 return Aliasee; 1246 } 1247 1248 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1249 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1250 1251 // Weak references don't produce any output by themselves. 1252 if (Global->hasAttr<WeakRefAttr>()) 1253 return; 1254 1255 // If this is an alias definition (which otherwise looks like a declaration) 1256 // emit it now. 1257 if (Global->hasAttr<AliasAttr>()) 1258 return EmitAliasDefinition(GD); 1259 1260 // If this is CUDA, be selective about which declarations we emit. 1261 if (LangOpts.CUDA) { 1262 if (CodeGenOpts.CUDAIsDevice) { 1263 if (!Global->hasAttr<CUDADeviceAttr>() && 1264 !Global->hasAttr<CUDAGlobalAttr>() && 1265 !Global->hasAttr<CUDAConstantAttr>() && 1266 !Global->hasAttr<CUDASharedAttr>()) 1267 return; 1268 } else { 1269 if (!Global->hasAttr<CUDAHostAttr>() && ( 1270 Global->hasAttr<CUDADeviceAttr>() || 1271 Global->hasAttr<CUDAConstantAttr>() || 1272 Global->hasAttr<CUDASharedAttr>())) 1273 return; 1274 } 1275 } 1276 1277 // Ignore declarations, they will be emitted on their first use. 1278 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1279 // Forward declarations are emitted lazily on first use. 1280 if (!FD->doesThisDeclarationHaveABody()) { 1281 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1282 return; 1283 1284 StringRef MangledName = getMangledName(GD); 1285 1286 // Compute the function info and LLVM type. 1287 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1288 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1289 1290 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1291 /*DontDefer=*/false); 1292 return; 1293 } 1294 } else { 1295 const auto *VD = cast<VarDecl>(Global); 1296 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1297 1298 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1299 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1300 return; 1301 } 1302 1303 // Defer code generation when possible if this is a static definition, inline 1304 // function etc. These we only want to emit if they are used. 1305 if (!MayDeferGeneration(Global)) { 1306 // Emit the definition if it can't be deferred. 1307 EmitGlobalDefinition(GD); 1308 return; 1309 } 1310 1311 // If we're deferring emission of a C++ variable with an 1312 // initializer, remember the order in which it appeared in the file. 1313 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1314 cast<VarDecl>(Global)->hasInit()) { 1315 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1316 CXXGlobalInits.push_back(nullptr); 1317 } 1318 1319 // If the value has already been used, add it directly to the 1320 // DeferredDeclsToEmit list. 1321 StringRef MangledName = getMangledName(GD); 1322 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1323 addDeferredDeclToEmit(GV, GD); 1324 else { 1325 // Otherwise, remember that we saw a deferred decl with this name. The 1326 // first use of the mangled name will cause it to move into 1327 // DeferredDeclsToEmit. 1328 DeferredDecls[MangledName] = GD; 1329 } 1330 } 1331 1332 namespace { 1333 struct FunctionIsDirectlyRecursive : 1334 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1335 const StringRef Name; 1336 const Builtin::Context &BI; 1337 bool Result; 1338 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1339 Name(N), BI(C), Result(false) { 1340 } 1341 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1342 1343 bool TraverseCallExpr(CallExpr *E) { 1344 const FunctionDecl *FD = E->getDirectCallee(); 1345 if (!FD) 1346 return true; 1347 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1348 if (Attr && Name == Attr->getLabel()) { 1349 Result = true; 1350 return false; 1351 } 1352 unsigned BuiltinID = FD->getBuiltinID(); 1353 if (!BuiltinID) 1354 return true; 1355 StringRef BuiltinName = BI.GetName(BuiltinID); 1356 if (BuiltinName.startswith("__builtin_") && 1357 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1358 Result = true; 1359 return false; 1360 } 1361 return true; 1362 } 1363 }; 1364 } 1365 1366 // isTriviallyRecursive - Check if this function calls another 1367 // decl that, because of the asm attribute or the other decl being a builtin, 1368 // ends up pointing to itself. 1369 bool 1370 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1371 StringRef Name; 1372 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1373 // asm labels are a special kind of mangling we have to support. 1374 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1375 if (!Attr) 1376 return false; 1377 Name = Attr->getLabel(); 1378 } else { 1379 Name = FD->getName(); 1380 } 1381 1382 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1383 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1384 return Walker.Result; 1385 } 1386 1387 bool 1388 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1389 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1390 return true; 1391 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1392 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1393 return false; 1394 // PR9614. Avoid cases where the source code is lying to us. An available 1395 // externally function should have an equivalent function somewhere else, 1396 // but a function that calls itself is clearly not equivalent to the real 1397 // implementation. 1398 // This happens in glibc's btowc and in some configure checks. 1399 return !isTriviallyRecursive(F); 1400 } 1401 1402 /// If the type for the method's class was generated by 1403 /// CGDebugInfo::createContextChain(), the cache contains only a 1404 /// limited DIType without any declarations. Since EmitFunctionStart() 1405 /// needs to find the canonical declaration for each method, we need 1406 /// to construct the complete type prior to emitting the method. 1407 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1408 if (!D->isInstance()) 1409 return; 1410 1411 if (CGDebugInfo *DI = getModuleDebugInfo()) 1412 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1413 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1414 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1415 } 1416 } 1417 1418 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1419 const auto *D = cast<ValueDecl>(GD.getDecl()); 1420 1421 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1422 Context.getSourceManager(), 1423 "Generating code for declaration"); 1424 1425 if (isa<FunctionDecl>(D)) { 1426 // At -O0, don't generate IR for functions with available_externally 1427 // linkage. 1428 if (!shouldEmitFunction(GD)) 1429 return; 1430 1431 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1432 CompleteDIClassType(Method); 1433 // Make sure to emit the definition(s) before we emit the thunks. 1434 // This is necessary for the generation of certain thunks. 1435 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1436 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1437 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1438 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1439 else 1440 EmitGlobalFunctionDefinition(GD, GV); 1441 1442 if (Method->isVirtual()) 1443 getVTables().EmitThunks(GD); 1444 1445 return; 1446 } 1447 1448 return EmitGlobalFunctionDefinition(GD, GV); 1449 } 1450 1451 if (const auto *VD = dyn_cast<VarDecl>(D)) 1452 return EmitGlobalVarDefinition(VD); 1453 1454 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1455 } 1456 1457 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1458 /// module, create and return an llvm Function with the specified type. If there 1459 /// is something in the module with the specified name, return it potentially 1460 /// bitcasted to the right type. 1461 /// 1462 /// If D is non-null, it specifies a decl that correspond to this. This is used 1463 /// to set the attributes on the function when it is first created. 1464 llvm::Constant * 1465 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1466 llvm::Type *Ty, 1467 GlobalDecl GD, bool ForVTable, 1468 bool DontDefer, 1469 llvm::AttributeSet ExtraAttrs) { 1470 const Decl *D = GD.getDecl(); 1471 1472 // Lookup the entry, lazily creating it if necessary. 1473 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1474 if (Entry) { 1475 if (WeakRefReferences.erase(Entry)) { 1476 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1477 if (FD && !FD->hasAttr<WeakAttr>()) 1478 Entry->setLinkage(llvm::Function::ExternalLinkage); 1479 } 1480 1481 // Handle dropped DLL attributes. 1482 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1483 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1484 1485 if (Entry->getType()->getElementType() == Ty) 1486 return Entry; 1487 1488 // Make sure the result is of the correct type. 1489 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1490 } 1491 1492 // This function doesn't have a complete type (for example, the return 1493 // type is an incomplete struct). Use a fake type instead, and make 1494 // sure not to try to set attributes. 1495 bool IsIncompleteFunction = false; 1496 1497 llvm::FunctionType *FTy; 1498 if (isa<llvm::FunctionType>(Ty)) { 1499 FTy = cast<llvm::FunctionType>(Ty); 1500 } else { 1501 FTy = llvm::FunctionType::get(VoidTy, false); 1502 IsIncompleteFunction = true; 1503 } 1504 1505 llvm::Function *F = llvm::Function::Create(FTy, 1506 llvm::Function::ExternalLinkage, 1507 MangledName, &getModule()); 1508 assert(F->getName() == MangledName && "name was uniqued!"); 1509 if (D) 1510 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1511 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1512 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1513 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1514 llvm::AttributeSet::get(VMContext, 1515 llvm::AttributeSet::FunctionIndex, 1516 B)); 1517 } 1518 1519 if (!DontDefer) { 1520 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1521 // each other bottoming out with the base dtor. Therefore we emit non-base 1522 // dtors on usage, even if there is no dtor definition in the TU. 1523 if (D && isa<CXXDestructorDecl>(D) && 1524 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1525 GD.getDtorType())) 1526 addDeferredDeclToEmit(F, GD); 1527 1528 // This is the first use or definition of a mangled name. If there is a 1529 // deferred decl with this name, remember that we need to emit it at the end 1530 // of the file. 1531 auto DDI = DeferredDecls.find(MangledName); 1532 if (DDI != DeferredDecls.end()) { 1533 // Move the potentially referenced deferred decl to the 1534 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1535 // don't need it anymore). 1536 addDeferredDeclToEmit(F, DDI->second); 1537 DeferredDecls.erase(DDI); 1538 1539 // Otherwise, if this is a sized deallocation function, emit a weak 1540 // definition 1541 // for it at the end of the translation unit. 1542 } else if (D && cast<FunctionDecl>(D) 1543 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1544 addDeferredDeclToEmit(F, GD); 1545 1546 // Otherwise, there are cases we have to worry about where we're 1547 // using a declaration for which we must emit a definition but where 1548 // we might not find a top-level definition: 1549 // - member functions defined inline in their classes 1550 // - friend functions defined inline in some class 1551 // - special member functions with implicit definitions 1552 // If we ever change our AST traversal to walk into class methods, 1553 // this will be unnecessary. 1554 // 1555 // We also don't emit a definition for a function if it's going to be an 1556 // entry in a vtable, unless it's already marked as used. 1557 } else if (getLangOpts().CPlusPlus && D) { 1558 // Look for a declaration that's lexically in a record. 1559 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1560 FD = FD->getPreviousDecl()) { 1561 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1562 if (FD->doesThisDeclarationHaveABody()) { 1563 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1564 break; 1565 } 1566 } 1567 } 1568 } 1569 } 1570 1571 // Make sure the result is of the requested type. 1572 if (!IsIncompleteFunction) { 1573 assert(F->getType()->getElementType() == Ty); 1574 return F; 1575 } 1576 1577 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1578 return llvm::ConstantExpr::getBitCast(F, PTy); 1579 } 1580 1581 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1582 /// non-null, then this function will use the specified type if it has to 1583 /// create it (this occurs when we see a definition of the function). 1584 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1585 llvm::Type *Ty, 1586 bool ForVTable, 1587 bool DontDefer) { 1588 // If there was no specific requested type, just convert it now. 1589 if (!Ty) 1590 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1591 1592 StringRef MangledName = getMangledName(GD); 1593 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1594 } 1595 1596 /// CreateRuntimeFunction - Create a new runtime function with the specified 1597 /// type and name. 1598 llvm::Constant * 1599 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1600 StringRef Name, 1601 llvm::AttributeSet ExtraAttrs) { 1602 llvm::Constant *C = 1603 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1604 /*DontDefer=*/false, ExtraAttrs); 1605 if (auto *F = dyn_cast<llvm::Function>(C)) 1606 if (F->empty()) 1607 F->setCallingConv(getRuntimeCC()); 1608 return C; 1609 } 1610 1611 /// isTypeConstant - Determine whether an object of this type can be emitted 1612 /// as a constant. 1613 /// 1614 /// If ExcludeCtor is true, the duration when the object's constructor runs 1615 /// will not be considered. The caller will need to verify that the object is 1616 /// not written to during its construction. 1617 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1618 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1619 return false; 1620 1621 if (Context.getLangOpts().CPlusPlus) { 1622 if (const CXXRecordDecl *Record 1623 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1624 return ExcludeCtor && !Record->hasMutableFields() && 1625 Record->hasTrivialDestructor(); 1626 } 1627 1628 return true; 1629 } 1630 1631 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1632 /// create and return an llvm GlobalVariable with the specified type. If there 1633 /// is something in the module with the specified name, return it potentially 1634 /// bitcasted to the right type. 1635 /// 1636 /// If D is non-null, it specifies a decl that correspond to this. This is used 1637 /// to set the attributes on the global when it is first created. 1638 llvm::Constant * 1639 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1640 llvm::PointerType *Ty, 1641 const VarDecl *D) { 1642 // Lookup the entry, lazily creating it if necessary. 1643 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1644 if (Entry) { 1645 if (WeakRefReferences.erase(Entry)) { 1646 if (D && !D->hasAttr<WeakAttr>()) 1647 Entry->setLinkage(llvm::Function::ExternalLinkage); 1648 } 1649 1650 // Handle dropped DLL attributes. 1651 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1652 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1653 1654 if (Entry->getType() == Ty) 1655 return Entry; 1656 1657 // Make sure the result is of the correct type. 1658 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1659 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1660 1661 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1662 } 1663 1664 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1665 auto *GV = new llvm::GlobalVariable( 1666 getModule(), Ty->getElementType(), false, 1667 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1668 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1669 1670 // This is the first use or definition of a mangled name. If there is a 1671 // deferred decl with this name, remember that we need to emit it at the end 1672 // of the file. 1673 auto DDI = DeferredDecls.find(MangledName); 1674 if (DDI != DeferredDecls.end()) { 1675 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1676 // list, and remove it from DeferredDecls (since we don't need it anymore). 1677 addDeferredDeclToEmit(GV, DDI->second); 1678 DeferredDecls.erase(DDI); 1679 } 1680 1681 // Handle things which are present even on external declarations. 1682 if (D) { 1683 // FIXME: This code is overly simple and should be merged with other global 1684 // handling. 1685 GV->setConstant(isTypeConstant(D->getType(), false)); 1686 1687 setLinkageAndVisibilityForGV(GV, D); 1688 1689 if (D->getTLSKind()) { 1690 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1691 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1692 setTLSMode(GV, *D); 1693 } 1694 1695 // If required by the ABI, treat declarations of static data members with 1696 // inline initializers as definitions. 1697 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1698 EmitGlobalVarDefinition(D); 1699 } 1700 1701 // Handle XCore specific ABI requirements. 1702 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1703 D->getLanguageLinkage() == CLanguageLinkage && 1704 D->getType().isConstant(Context) && 1705 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1706 GV->setSection(".cp.rodata"); 1707 } 1708 1709 if (AddrSpace != Ty->getAddressSpace()) 1710 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1711 1712 return GV; 1713 } 1714 1715 1716 llvm::GlobalVariable * 1717 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1718 llvm::Type *Ty, 1719 llvm::GlobalValue::LinkageTypes Linkage) { 1720 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1721 llvm::GlobalVariable *OldGV = nullptr; 1722 1723 if (GV) { 1724 // Check if the variable has the right type. 1725 if (GV->getType()->getElementType() == Ty) 1726 return GV; 1727 1728 // Because C++ name mangling, the only way we can end up with an already 1729 // existing global with the same name is if it has been declared extern "C". 1730 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1731 OldGV = GV; 1732 } 1733 1734 // Create a new variable. 1735 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1736 Linkage, nullptr, Name); 1737 1738 if (OldGV) { 1739 // Replace occurrences of the old variable if needed. 1740 GV->takeName(OldGV); 1741 1742 if (!OldGV->use_empty()) { 1743 llvm::Constant *NewPtrForOldDecl = 1744 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1745 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1746 } 1747 1748 OldGV->eraseFromParent(); 1749 } 1750 1751 return GV; 1752 } 1753 1754 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1755 /// given global variable. If Ty is non-null and if the global doesn't exist, 1756 /// then it will be created with the specified type instead of whatever the 1757 /// normal requested type would be. 1758 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1759 llvm::Type *Ty) { 1760 assert(D->hasGlobalStorage() && "Not a global variable"); 1761 QualType ASTTy = D->getType(); 1762 if (!Ty) 1763 Ty = getTypes().ConvertTypeForMem(ASTTy); 1764 1765 llvm::PointerType *PTy = 1766 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1767 1768 StringRef MangledName = getMangledName(D); 1769 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1770 } 1771 1772 /// CreateRuntimeVariable - Create a new runtime global variable with the 1773 /// specified type and name. 1774 llvm::Constant * 1775 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1776 StringRef Name) { 1777 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1778 } 1779 1780 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1781 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1782 1783 if (MayDeferGeneration(D)) { 1784 // If we have not seen a reference to this variable yet, place it 1785 // into the deferred declarations table to be emitted if needed 1786 // later. 1787 StringRef MangledName = getMangledName(D); 1788 if (!GetGlobalValue(MangledName)) { 1789 DeferredDecls[MangledName] = D; 1790 return; 1791 } 1792 } 1793 1794 // The tentative definition is the only definition. 1795 EmitGlobalVarDefinition(D); 1796 } 1797 1798 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1799 return Context.toCharUnitsFromBits( 1800 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1801 } 1802 1803 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1804 unsigned AddrSpace) { 1805 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1806 if (D->hasAttr<CUDAConstantAttr>()) 1807 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1808 else if (D->hasAttr<CUDASharedAttr>()) 1809 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1810 else 1811 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1812 } 1813 1814 return AddrSpace; 1815 } 1816 1817 template<typename SomeDecl> 1818 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1819 llvm::GlobalValue *GV) { 1820 if (!getLangOpts().CPlusPlus) 1821 return; 1822 1823 // Must have 'used' attribute, or else inline assembly can't rely on 1824 // the name existing. 1825 if (!D->template hasAttr<UsedAttr>()) 1826 return; 1827 1828 // Must have internal linkage and an ordinary name. 1829 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1830 return; 1831 1832 // Must be in an extern "C" context. Entities declared directly within 1833 // a record are not extern "C" even if the record is in such a context. 1834 const SomeDecl *First = D->getFirstDecl(); 1835 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1836 return; 1837 1838 // OK, this is an internal linkage entity inside an extern "C" linkage 1839 // specification. Make a note of that so we can give it the "expected" 1840 // mangled name if nothing else is using that name. 1841 std::pair<StaticExternCMap::iterator, bool> R = 1842 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1843 1844 // If we have multiple internal linkage entities with the same name 1845 // in extern "C" regions, none of them gets that name. 1846 if (!R.second) 1847 R.first->second = nullptr; 1848 } 1849 1850 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1851 llvm::Constant *Init = nullptr; 1852 QualType ASTTy = D->getType(); 1853 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1854 bool NeedsGlobalCtor = false; 1855 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1856 1857 const VarDecl *InitDecl; 1858 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1859 1860 if (!InitExpr) { 1861 // This is a tentative definition; tentative definitions are 1862 // implicitly initialized with { 0 }. 1863 // 1864 // Note that tentative definitions are only emitted at the end of 1865 // a translation unit, so they should never have incomplete 1866 // type. In addition, EmitTentativeDefinition makes sure that we 1867 // never attempt to emit a tentative definition if a real one 1868 // exists. A use may still exists, however, so we still may need 1869 // to do a RAUW. 1870 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1871 Init = EmitNullConstant(D->getType()); 1872 } else { 1873 initializedGlobalDecl = GlobalDecl(D); 1874 Init = EmitConstantInit(*InitDecl); 1875 1876 if (!Init) { 1877 QualType T = InitExpr->getType(); 1878 if (D->getType()->isReferenceType()) 1879 T = D->getType(); 1880 1881 if (getLangOpts().CPlusPlus) { 1882 Init = EmitNullConstant(T); 1883 NeedsGlobalCtor = true; 1884 } else { 1885 ErrorUnsupported(D, "static initializer"); 1886 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1887 } 1888 } else { 1889 // We don't need an initializer, so remove the entry for the delayed 1890 // initializer position (just in case this entry was delayed) if we 1891 // also don't need to register a destructor. 1892 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1893 DelayedCXXInitPosition.erase(D); 1894 } 1895 } 1896 1897 llvm::Type* InitType = Init->getType(); 1898 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1899 1900 // Strip off a bitcast if we got one back. 1901 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1902 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1903 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1904 // All zero index gep. 1905 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1906 Entry = CE->getOperand(0); 1907 } 1908 1909 // Entry is now either a Function or GlobalVariable. 1910 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1911 1912 // We have a definition after a declaration with the wrong type. 1913 // We must make a new GlobalVariable* and update everything that used OldGV 1914 // (a declaration or tentative definition) with the new GlobalVariable* 1915 // (which will be a definition). 1916 // 1917 // This happens if there is a prototype for a global (e.g. 1918 // "extern int x[];") and then a definition of a different type (e.g. 1919 // "int x[10];"). This also happens when an initializer has a different type 1920 // from the type of the global (this happens with unions). 1921 if (!GV || 1922 GV->getType()->getElementType() != InitType || 1923 GV->getType()->getAddressSpace() != 1924 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1925 1926 // Move the old entry aside so that we'll create a new one. 1927 Entry->setName(StringRef()); 1928 1929 // Make a new global with the correct type, this is now guaranteed to work. 1930 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1931 1932 // Replace all uses of the old global with the new global 1933 llvm::Constant *NewPtrForOldDecl = 1934 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1935 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1936 1937 // Erase the old global, since it is no longer used. 1938 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1939 } 1940 1941 MaybeHandleStaticInExternC(D, GV); 1942 1943 if (D->hasAttr<AnnotateAttr>()) 1944 AddGlobalAnnotations(D, GV); 1945 1946 GV->setInitializer(Init); 1947 1948 // If it is safe to mark the global 'constant', do so now. 1949 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1950 isTypeConstant(D->getType(), true)); 1951 1952 // If it is in a read-only section, mark it 'constant'. 1953 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 1954 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 1955 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 1956 GV->setConstant(true); 1957 } 1958 1959 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1960 1961 // Set the llvm linkage type as appropriate. 1962 llvm::GlobalValue::LinkageTypes Linkage = 1963 getLLVMLinkageVarDefinition(D, GV->isConstant()); 1964 1965 // On Darwin, the backing variable for a C++11 thread_local variable always 1966 // has internal linkage; all accesses should just be calls to the 1967 // Itanium-specified entry point, which has the normal linkage of the 1968 // variable. 1969 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 1970 Context.getTargetInfo().getTriple().isMacOSX()) 1971 Linkage = llvm::GlobalValue::InternalLinkage; 1972 1973 GV->setLinkage(Linkage); 1974 if (D->hasAttr<DLLImportAttr>()) 1975 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1976 else if (D->hasAttr<DLLExportAttr>()) 1977 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1978 1979 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1980 // common vars aren't constant even if declared const. 1981 GV->setConstant(false); 1982 1983 setNonAliasAttributes(D, GV); 1984 1985 if (D->getTLSKind() && !GV->isThreadLocal()) { 1986 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1987 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1988 setTLSMode(GV, *D); 1989 } 1990 1991 // Emit the initializer function if necessary. 1992 if (NeedsGlobalCtor || NeedsGlobalDtor) 1993 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1994 1995 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 1996 1997 // Emit global variable debug information. 1998 if (CGDebugInfo *DI = getModuleDebugInfo()) 1999 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2000 DI->EmitGlobalVariable(GV, D); 2001 } 2002 2003 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2004 const VarDecl *D, bool NoCommon) { 2005 // Don't give variables common linkage if -fno-common was specified unless it 2006 // was overridden by a NoCommon attribute. 2007 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2008 return true; 2009 2010 // C11 6.9.2/2: 2011 // A declaration of an identifier for an object that has file scope without 2012 // an initializer, and without a storage-class specifier or with the 2013 // storage-class specifier static, constitutes a tentative definition. 2014 if (D->getInit() || D->hasExternalStorage()) 2015 return true; 2016 2017 // A variable cannot be both common and exist in a section. 2018 if (D->hasAttr<SectionAttr>()) 2019 return true; 2020 2021 // Thread local vars aren't considered common linkage. 2022 if (D->getTLSKind()) 2023 return true; 2024 2025 // Tentative definitions marked with WeakImportAttr are true definitions. 2026 if (D->hasAttr<WeakImportAttr>()) 2027 return true; 2028 2029 // Declarations with a required alignment do not have common linakge in MSVC 2030 // mode. 2031 if (Context.getLangOpts().MSVCCompat && 2032 (Context.isAlignmentRequired(D->getType()) || D->hasAttr<AlignedAttr>())) 2033 return true; 2034 2035 return false; 2036 } 2037 2038 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2039 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2040 if (Linkage == GVA_Internal) 2041 return llvm::Function::InternalLinkage; 2042 2043 if (D->hasAttr<WeakAttr>()) { 2044 if (IsConstantVariable) 2045 return llvm::GlobalVariable::WeakODRLinkage; 2046 else 2047 return llvm::GlobalVariable::WeakAnyLinkage; 2048 } 2049 2050 // We are guaranteed to have a strong definition somewhere else, 2051 // so we can use available_externally linkage. 2052 if (Linkage == GVA_AvailableExternally) 2053 return llvm::Function::AvailableExternallyLinkage; 2054 2055 // Note that Apple's kernel linker doesn't support symbol 2056 // coalescing, so we need to avoid linkonce and weak linkages there. 2057 // Normally, this means we just map to internal, but for explicit 2058 // instantiations we'll map to external. 2059 2060 // In C++, the compiler has to emit a definition in every translation unit 2061 // that references the function. We should use linkonce_odr because 2062 // a) if all references in this translation unit are optimized away, we 2063 // don't need to codegen it. b) if the function persists, it needs to be 2064 // merged with other definitions. c) C++ has the ODR, so we know the 2065 // definition is dependable. 2066 if (Linkage == GVA_DiscardableODR) 2067 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2068 : llvm::Function::InternalLinkage; 2069 2070 // An explicit instantiation of a template has weak linkage, since 2071 // explicit instantiations can occur in multiple translation units 2072 // and must all be equivalent. However, we are not allowed to 2073 // throw away these explicit instantiations. 2074 if (Linkage == GVA_StrongODR) 2075 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2076 : llvm::Function::ExternalLinkage; 2077 2078 // C++ doesn't have tentative definitions and thus cannot have common 2079 // linkage. 2080 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2081 !isVarDeclStrongDefinition(Context, cast<VarDecl>(D), 2082 CodeGenOpts.NoCommon)) 2083 return llvm::GlobalVariable::CommonLinkage; 2084 2085 // selectany symbols are externally visible, so use weak instead of 2086 // linkonce. MSVC optimizes away references to const selectany globals, so 2087 // all definitions should be the same and ODR linkage should be used. 2088 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2089 if (D->hasAttr<SelectAnyAttr>()) 2090 return llvm::GlobalVariable::WeakODRLinkage; 2091 2092 // Otherwise, we have strong external linkage. 2093 assert(Linkage == GVA_StrongExternal); 2094 return llvm::GlobalVariable::ExternalLinkage; 2095 } 2096 2097 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2098 const VarDecl *VD, bool IsConstant) { 2099 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2100 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2101 } 2102 2103 /// Replace the uses of a function that was declared with a non-proto type. 2104 /// We want to silently drop extra arguments from call sites 2105 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2106 llvm::Function *newFn) { 2107 // Fast path. 2108 if (old->use_empty()) return; 2109 2110 llvm::Type *newRetTy = newFn->getReturnType(); 2111 SmallVector<llvm::Value*, 4> newArgs; 2112 2113 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2114 ui != ue; ) { 2115 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2116 llvm::User *user = use->getUser(); 2117 2118 // Recognize and replace uses of bitcasts. Most calls to 2119 // unprototyped functions will use bitcasts. 2120 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2121 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2122 replaceUsesOfNonProtoConstant(bitcast, newFn); 2123 continue; 2124 } 2125 2126 // Recognize calls to the function. 2127 llvm::CallSite callSite(user); 2128 if (!callSite) continue; 2129 if (!callSite.isCallee(&*use)) continue; 2130 2131 // If the return types don't match exactly, then we can't 2132 // transform this call unless it's dead. 2133 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2134 continue; 2135 2136 // Get the call site's attribute list. 2137 SmallVector<llvm::AttributeSet, 8> newAttrs; 2138 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2139 2140 // Collect any return attributes from the call. 2141 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2142 newAttrs.push_back( 2143 llvm::AttributeSet::get(newFn->getContext(), 2144 oldAttrs.getRetAttributes())); 2145 2146 // If the function was passed too few arguments, don't transform. 2147 unsigned newNumArgs = newFn->arg_size(); 2148 if (callSite.arg_size() < newNumArgs) continue; 2149 2150 // If extra arguments were passed, we silently drop them. 2151 // If any of the types mismatch, we don't transform. 2152 unsigned argNo = 0; 2153 bool dontTransform = false; 2154 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2155 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2156 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2157 dontTransform = true; 2158 break; 2159 } 2160 2161 // Add any parameter attributes. 2162 if (oldAttrs.hasAttributes(argNo + 1)) 2163 newAttrs. 2164 push_back(llvm:: 2165 AttributeSet::get(newFn->getContext(), 2166 oldAttrs.getParamAttributes(argNo + 1))); 2167 } 2168 if (dontTransform) 2169 continue; 2170 2171 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2172 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2173 oldAttrs.getFnAttributes())); 2174 2175 // Okay, we can transform this. Create the new call instruction and copy 2176 // over the required information. 2177 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2178 2179 llvm::CallSite newCall; 2180 if (callSite.isCall()) { 2181 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2182 callSite.getInstruction()); 2183 } else { 2184 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2185 newCall = llvm::InvokeInst::Create(newFn, 2186 oldInvoke->getNormalDest(), 2187 oldInvoke->getUnwindDest(), 2188 newArgs, "", 2189 callSite.getInstruction()); 2190 } 2191 newArgs.clear(); // for the next iteration 2192 2193 if (!newCall->getType()->isVoidTy()) 2194 newCall->takeName(callSite.getInstruction()); 2195 newCall.setAttributes( 2196 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2197 newCall.setCallingConv(callSite.getCallingConv()); 2198 2199 // Finally, remove the old call, replacing any uses with the new one. 2200 if (!callSite->use_empty()) 2201 callSite->replaceAllUsesWith(newCall.getInstruction()); 2202 2203 // Copy debug location attached to CI. 2204 if (!callSite->getDebugLoc().isUnknown()) 2205 newCall->setDebugLoc(callSite->getDebugLoc()); 2206 callSite->eraseFromParent(); 2207 } 2208 } 2209 2210 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2211 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2212 /// existing call uses of the old function in the module, this adjusts them to 2213 /// call the new function directly. 2214 /// 2215 /// This is not just a cleanup: the always_inline pass requires direct calls to 2216 /// functions to be able to inline them. If there is a bitcast in the way, it 2217 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2218 /// run at -O0. 2219 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2220 llvm::Function *NewFn) { 2221 // If we're redefining a global as a function, don't transform it. 2222 if (!isa<llvm::Function>(Old)) return; 2223 2224 replaceUsesOfNonProtoConstant(Old, NewFn); 2225 } 2226 2227 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2228 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2229 // If we have a definition, this might be a deferred decl. If the 2230 // instantiation is explicit, make sure we emit it at the end. 2231 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2232 GetAddrOfGlobalVar(VD); 2233 2234 EmitTopLevelDecl(VD); 2235 } 2236 2237 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2238 llvm::GlobalValue *GV) { 2239 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2240 2241 // Compute the function info and LLVM type. 2242 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2243 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2244 2245 // Get or create the prototype for the function. 2246 if (!GV) { 2247 llvm::Constant *C = 2248 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2249 2250 // Strip off a bitcast if we got one back. 2251 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2252 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2253 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2254 } else { 2255 GV = cast<llvm::GlobalValue>(C); 2256 } 2257 } 2258 2259 if (!GV->isDeclaration()) { 2260 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2261 GlobalDecl OldGD = Manglings.lookup(GV->getName()); 2262 if (auto *Prev = OldGD.getDecl()) 2263 getDiags().Report(Prev->getLocation(), diag::note_previous_definition); 2264 return; 2265 } 2266 2267 if (GV->getType()->getElementType() != Ty) { 2268 // If the types mismatch then we have to rewrite the definition. 2269 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2270 2271 // F is the Function* for the one with the wrong type, we must make a new 2272 // Function* and update everything that used F (a declaration) with the new 2273 // Function* (which will be a definition). 2274 // 2275 // This happens if there is a prototype for a function 2276 // (e.g. "int f()") and then a definition of a different type 2277 // (e.g. "int f(int x)"). Move the old function aside so that it 2278 // doesn't interfere with GetAddrOfFunction. 2279 GV->setName(StringRef()); 2280 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2281 2282 // This might be an implementation of a function without a 2283 // prototype, in which case, try to do special replacement of 2284 // calls which match the new prototype. The really key thing here 2285 // is that we also potentially drop arguments from the call site 2286 // so as to make a direct call, which makes the inliner happier 2287 // and suppresses a number of optimizer warnings (!) about 2288 // dropping arguments. 2289 if (!GV->use_empty()) { 2290 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2291 GV->removeDeadConstantUsers(); 2292 } 2293 2294 // Replace uses of F with the Function we will endow with a body. 2295 if (!GV->use_empty()) { 2296 llvm::Constant *NewPtrForOldDecl = 2297 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2298 GV->replaceAllUsesWith(NewPtrForOldDecl); 2299 } 2300 2301 // Ok, delete the old function now, which is dead. 2302 GV->eraseFromParent(); 2303 2304 GV = NewFn; 2305 } 2306 2307 // We need to set linkage and visibility on the function before 2308 // generating code for it because various parts of IR generation 2309 // want to propagate this information down (e.g. to local static 2310 // declarations). 2311 auto *Fn = cast<llvm::Function>(GV); 2312 setFunctionLinkage(GD, Fn); 2313 2314 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2315 setGlobalVisibility(Fn, D); 2316 2317 MaybeHandleStaticInExternC(D, Fn); 2318 2319 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2320 2321 setFunctionDefinitionAttributes(D, Fn); 2322 SetLLVMFunctionAttributesForDefinition(D, Fn); 2323 2324 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2325 AddGlobalCtor(Fn, CA->getPriority()); 2326 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2327 AddGlobalDtor(Fn, DA->getPriority()); 2328 if (D->hasAttr<AnnotateAttr>()) 2329 AddGlobalAnnotations(D, Fn); 2330 } 2331 2332 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2333 const auto *D = cast<ValueDecl>(GD.getDecl()); 2334 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2335 assert(AA && "Not an alias?"); 2336 2337 StringRef MangledName = getMangledName(GD); 2338 2339 // If there is a definition in the module, then it wins over the alias. 2340 // This is dubious, but allow it to be safe. Just ignore the alias. 2341 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2342 if (Entry && !Entry->isDeclaration()) 2343 return; 2344 2345 Aliases.push_back(GD); 2346 2347 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2348 2349 // Create a reference to the named value. This ensures that it is emitted 2350 // if a deferred decl. 2351 llvm::Constant *Aliasee; 2352 if (isa<llvm::FunctionType>(DeclTy)) 2353 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2354 /*ForVTable=*/false); 2355 else 2356 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2357 llvm::PointerType::getUnqual(DeclTy), 2358 /*D=*/nullptr); 2359 2360 // Create the new alias itself, but don't set a name yet. 2361 auto *GA = llvm::GlobalAlias::create( 2362 cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0, 2363 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2364 2365 if (Entry) { 2366 if (GA->getAliasee() == Entry) { 2367 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2368 return; 2369 } 2370 2371 assert(Entry->isDeclaration()); 2372 2373 // If there is a declaration in the module, then we had an extern followed 2374 // by the alias, as in: 2375 // extern int test6(); 2376 // ... 2377 // int test6() __attribute__((alias("test7"))); 2378 // 2379 // Remove it and replace uses of it with the alias. 2380 GA->takeName(Entry); 2381 2382 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2383 Entry->getType())); 2384 Entry->eraseFromParent(); 2385 } else { 2386 GA->setName(MangledName); 2387 } 2388 2389 // Set attributes which are particular to an alias; this is a 2390 // specialization of the attributes which may be set on a global 2391 // variable/function. 2392 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2393 D->isWeakImported()) { 2394 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2395 } 2396 2397 if (const auto *VD = dyn_cast<VarDecl>(D)) 2398 if (VD->getTLSKind()) 2399 setTLSMode(GA, *VD); 2400 2401 setAliasAttributes(D, GA); 2402 } 2403 2404 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2405 ArrayRef<llvm::Type*> Tys) { 2406 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2407 Tys); 2408 } 2409 2410 static llvm::StringMapEntry<llvm::Constant*> & 2411 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2412 const StringLiteral *Literal, 2413 bool TargetIsLSB, 2414 bool &IsUTF16, 2415 unsigned &StringLength) { 2416 StringRef String = Literal->getString(); 2417 unsigned NumBytes = String.size(); 2418 2419 // Check for simple case. 2420 if (!Literal->containsNonAsciiOrNull()) { 2421 StringLength = NumBytes; 2422 return Map.GetOrCreateValue(String); 2423 } 2424 2425 // Otherwise, convert the UTF8 literals into a string of shorts. 2426 IsUTF16 = true; 2427 2428 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2429 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2430 UTF16 *ToPtr = &ToBuf[0]; 2431 2432 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2433 &ToPtr, ToPtr + NumBytes, 2434 strictConversion); 2435 2436 // ConvertUTF8toUTF16 returns the length in ToPtr. 2437 StringLength = ToPtr - &ToBuf[0]; 2438 2439 // Add an explicit null. 2440 *ToPtr = 0; 2441 return Map. 2442 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2443 (StringLength + 1) * 2)); 2444 } 2445 2446 static llvm::StringMapEntry<llvm::Constant*> & 2447 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2448 const StringLiteral *Literal, 2449 unsigned &StringLength) { 2450 StringRef String = Literal->getString(); 2451 StringLength = String.size(); 2452 return Map.GetOrCreateValue(String); 2453 } 2454 2455 llvm::Constant * 2456 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2457 unsigned StringLength = 0; 2458 bool isUTF16 = false; 2459 llvm::StringMapEntry<llvm::Constant*> &Entry = 2460 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2461 getDataLayout().isLittleEndian(), 2462 isUTF16, StringLength); 2463 2464 if (llvm::Constant *C = Entry.getValue()) 2465 return C; 2466 2467 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2468 llvm::Constant *Zeros[] = { Zero, Zero }; 2469 llvm::Value *V; 2470 2471 // If we don't already have it, get __CFConstantStringClassReference. 2472 if (!CFConstantStringClassRef) { 2473 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2474 Ty = llvm::ArrayType::get(Ty, 0); 2475 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2476 "__CFConstantStringClassReference"); 2477 // Decay array -> ptr 2478 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2479 CFConstantStringClassRef = V; 2480 } 2481 else 2482 V = CFConstantStringClassRef; 2483 2484 QualType CFTy = getContext().getCFConstantStringType(); 2485 2486 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2487 2488 llvm::Constant *Fields[4]; 2489 2490 // Class pointer. 2491 Fields[0] = cast<llvm::ConstantExpr>(V); 2492 2493 // Flags. 2494 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2495 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2496 llvm::ConstantInt::get(Ty, 0x07C8); 2497 2498 // String pointer. 2499 llvm::Constant *C = nullptr; 2500 if (isUTF16) { 2501 ArrayRef<uint16_t> Arr = 2502 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2503 const_cast<char *>(Entry.getKey().data())), 2504 Entry.getKey().size() / 2); 2505 C = llvm::ConstantDataArray::get(VMContext, Arr); 2506 } else { 2507 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2508 } 2509 2510 // Note: -fwritable-strings doesn't make the backing store strings of 2511 // CFStrings writable. (See <rdar://problem/10657500>) 2512 auto *GV = 2513 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2514 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2515 GV->setUnnamedAddr(true); 2516 // Don't enforce the target's minimum global alignment, since the only use 2517 // of the string is via this class initializer. 2518 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2519 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2520 // that changes the section it ends in, which surprises ld64. 2521 if (isUTF16) { 2522 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2523 GV->setAlignment(Align.getQuantity()); 2524 GV->setSection("__TEXT,__ustring"); 2525 } else { 2526 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2527 GV->setAlignment(Align.getQuantity()); 2528 GV->setSection("__TEXT,__cstring,cstring_literals"); 2529 } 2530 2531 // String. 2532 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2533 2534 if (isUTF16) 2535 // Cast the UTF16 string to the correct type. 2536 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2537 2538 // String length. 2539 Ty = getTypes().ConvertType(getContext().LongTy); 2540 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2541 2542 // The struct. 2543 C = llvm::ConstantStruct::get(STy, Fields); 2544 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2545 llvm::GlobalVariable::PrivateLinkage, C, 2546 "_unnamed_cfstring_"); 2547 GV->setSection("__DATA,__cfstring"); 2548 Entry.setValue(GV); 2549 2550 return GV; 2551 } 2552 2553 llvm::Constant * 2554 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2555 unsigned StringLength = 0; 2556 llvm::StringMapEntry<llvm::Constant*> &Entry = 2557 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2558 2559 if (llvm::Constant *C = Entry.getValue()) 2560 return C; 2561 2562 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2563 llvm::Constant *Zeros[] = { Zero, Zero }; 2564 llvm::Value *V; 2565 // If we don't already have it, get _NSConstantStringClassReference. 2566 if (!ConstantStringClassRef) { 2567 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2568 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2569 llvm::Constant *GV; 2570 if (LangOpts.ObjCRuntime.isNonFragile()) { 2571 std::string str = 2572 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2573 : "OBJC_CLASS_$_" + StringClass; 2574 GV = getObjCRuntime().GetClassGlobal(str); 2575 // Make sure the result is of the correct type. 2576 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2577 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2578 ConstantStringClassRef = V; 2579 } else { 2580 std::string str = 2581 StringClass.empty() ? "_NSConstantStringClassReference" 2582 : "_" + StringClass + "ClassReference"; 2583 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2584 GV = CreateRuntimeVariable(PTy, str); 2585 // Decay array -> ptr 2586 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2587 ConstantStringClassRef = V; 2588 } 2589 } 2590 else 2591 V = ConstantStringClassRef; 2592 2593 if (!NSConstantStringType) { 2594 // Construct the type for a constant NSString. 2595 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2596 D->startDefinition(); 2597 2598 QualType FieldTypes[3]; 2599 2600 // const int *isa; 2601 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2602 // const char *str; 2603 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2604 // unsigned int length; 2605 FieldTypes[2] = Context.UnsignedIntTy; 2606 2607 // Create fields 2608 for (unsigned i = 0; i < 3; ++i) { 2609 FieldDecl *Field = FieldDecl::Create(Context, D, 2610 SourceLocation(), 2611 SourceLocation(), nullptr, 2612 FieldTypes[i], /*TInfo=*/nullptr, 2613 /*BitWidth=*/nullptr, 2614 /*Mutable=*/false, 2615 ICIS_NoInit); 2616 Field->setAccess(AS_public); 2617 D->addDecl(Field); 2618 } 2619 2620 D->completeDefinition(); 2621 QualType NSTy = Context.getTagDeclType(D); 2622 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2623 } 2624 2625 llvm::Constant *Fields[3]; 2626 2627 // Class pointer. 2628 Fields[0] = cast<llvm::ConstantExpr>(V); 2629 2630 // String pointer. 2631 llvm::Constant *C = 2632 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2633 2634 llvm::GlobalValue::LinkageTypes Linkage; 2635 bool isConstant; 2636 Linkage = llvm::GlobalValue::PrivateLinkage; 2637 isConstant = !LangOpts.WritableStrings; 2638 2639 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2640 Linkage, C, ".str"); 2641 GV->setUnnamedAddr(true); 2642 // Don't enforce the target's minimum global alignment, since the only use 2643 // of the string is via this class initializer. 2644 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2645 GV->setAlignment(Align.getQuantity()); 2646 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2647 2648 // String length. 2649 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2650 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2651 2652 // The struct. 2653 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2654 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2655 llvm::GlobalVariable::PrivateLinkage, C, 2656 "_unnamed_nsstring_"); 2657 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2658 const char *NSStringNonFragileABISection = 2659 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2660 // FIXME. Fix section. 2661 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2662 ? NSStringNonFragileABISection 2663 : NSStringSection); 2664 Entry.setValue(GV); 2665 2666 return GV; 2667 } 2668 2669 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2670 if (ObjCFastEnumerationStateType.isNull()) { 2671 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2672 D->startDefinition(); 2673 2674 QualType FieldTypes[] = { 2675 Context.UnsignedLongTy, 2676 Context.getPointerType(Context.getObjCIdType()), 2677 Context.getPointerType(Context.UnsignedLongTy), 2678 Context.getConstantArrayType(Context.UnsignedLongTy, 2679 llvm::APInt(32, 5), ArrayType::Normal, 0) 2680 }; 2681 2682 for (size_t i = 0; i < 4; ++i) { 2683 FieldDecl *Field = FieldDecl::Create(Context, 2684 D, 2685 SourceLocation(), 2686 SourceLocation(), nullptr, 2687 FieldTypes[i], /*TInfo=*/nullptr, 2688 /*BitWidth=*/nullptr, 2689 /*Mutable=*/false, 2690 ICIS_NoInit); 2691 Field->setAccess(AS_public); 2692 D->addDecl(Field); 2693 } 2694 2695 D->completeDefinition(); 2696 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2697 } 2698 2699 return ObjCFastEnumerationStateType; 2700 } 2701 2702 llvm::Constant * 2703 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2704 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2705 2706 // Don't emit it as the address of the string, emit the string data itself 2707 // as an inline array. 2708 if (E->getCharByteWidth() == 1) { 2709 SmallString<64> Str(E->getString()); 2710 2711 // Resize the string to the right size, which is indicated by its type. 2712 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2713 Str.resize(CAT->getSize().getZExtValue()); 2714 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2715 } 2716 2717 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2718 llvm::Type *ElemTy = AType->getElementType(); 2719 unsigned NumElements = AType->getNumElements(); 2720 2721 // Wide strings have either 2-byte or 4-byte elements. 2722 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2723 SmallVector<uint16_t, 32> Elements; 2724 Elements.reserve(NumElements); 2725 2726 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2727 Elements.push_back(E->getCodeUnit(i)); 2728 Elements.resize(NumElements); 2729 return llvm::ConstantDataArray::get(VMContext, Elements); 2730 } 2731 2732 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2733 SmallVector<uint32_t, 32> Elements; 2734 Elements.reserve(NumElements); 2735 2736 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2737 Elements.push_back(E->getCodeUnit(i)); 2738 Elements.resize(NumElements); 2739 return llvm::ConstantDataArray::get(VMContext, Elements); 2740 } 2741 2742 static llvm::GlobalVariable * 2743 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2744 CodeGenModule &CGM, StringRef GlobalName, 2745 unsigned Alignment) { 2746 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2747 unsigned AddrSpace = 0; 2748 if (CGM.getLangOpts().OpenCL) 2749 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2750 2751 // Create a global variable for this string 2752 auto *GV = new llvm::GlobalVariable( 2753 CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, 2754 GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2755 GV->setAlignment(Alignment); 2756 GV->setUnnamedAddr(true); 2757 return GV; 2758 } 2759 2760 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2761 /// constant array for the given string literal. 2762 llvm::GlobalVariable * 2763 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 2764 StringRef Name) { 2765 auto Alignment = 2766 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2767 2768 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2769 llvm::GlobalVariable **Entry = nullptr; 2770 if (!LangOpts.WritableStrings) { 2771 Entry = &ConstantStringMap[C]; 2772 if (auto GV = *Entry) { 2773 if (Alignment > GV->getAlignment()) 2774 GV->setAlignment(Alignment); 2775 return GV; 2776 } 2777 } 2778 2779 SmallString<256> MangledNameBuffer; 2780 StringRef GlobalVariableName; 2781 llvm::GlobalValue::LinkageTypes LT; 2782 2783 // Mangle the string literal if the ABI allows for it. However, we cannot 2784 // do this if we are compiling with ASan or -fwritable-strings because they 2785 // rely on strings having normal linkage. 2786 if (!LangOpts.WritableStrings && !LangOpts.Sanitize.Address && 2787 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2788 llvm::raw_svector_ostream Out(MangledNameBuffer); 2789 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2790 Out.flush(); 2791 2792 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2793 GlobalVariableName = MangledNameBuffer; 2794 } else { 2795 LT = llvm::GlobalValue::PrivateLinkage; 2796 GlobalVariableName = Name; 2797 } 2798 2799 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2800 if (Entry) 2801 *Entry = GV; 2802 2803 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>"); 2804 return GV; 2805 } 2806 2807 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2808 /// array for the given ObjCEncodeExpr node. 2809 llvm::GlobalVariable * 2810 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2811 std::string Str; 2812 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2813 2814 return GetAddrOfConstantCString(Str); 2815 } 2816 2817 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2818 /// the literal and a terminating '\0' character. 2819 /// The result has pointer to array type. 2820 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 2821 const std::string &Str, const char *GlobalName, unsigned Alignment) { 2822 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2823 if (Alignment == 0) { 2824 Alignment = getContext() 2825 .getAlignOfGlobalVarInChars(getContext().CharTy) 2826 .getQuantity(); 2827 } 2828 2829 llvm::Constant *C = 2830 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 2831 2832 // Don't share any string literals if strings aren't constant. 2833 llvm::GlobalVariable **Entry = nullptr; 2834 if (!LangOpts.WritableStrings) { 2835 Entry = &ConstantStringMap[C]; 2836 if (auto GV = *Entry) { 2837 if (Alignment > GV->getAlignment()) 2838 GV->setAlignment(Alignment); 2839 return GV; 2840 } 2841 } 2842 2843 // Get the default prefix if a name wasn't specified. 2844 if (!GlobalName) 2845 GlobalName = ".str"; 2846 // Create a global variable for this. 2847 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 2848 GlobalName, Alignment); 2849 if (Entry) 2850 *Entry = GV; 2851 return GV; 2852 } 2853 2854 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2855 const MaterializeTemporaryExpr *E, const Expr *Init) { 2856 assert((E->getStorageDuration() == SD_Static || 2857 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2858 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 2859 2860 // If we're not materializing a subobject of the temporary, keep the 2861 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2862 QualType MaterializedType = Init->getType(); 2863 if (Init == E->GetTemporaryExpr()) 2864 MaterializedType = E->getType(); 2865 2866 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2867 if (Slot) 2868 return Slot; 2869 2870 // FIXME: If an externally-visible declaration extends multiple temporaries, 2871 // we need to give each temporary the same name in every translation unit (and 2872 // we also need to make the temporaries externally-visible). 2873 SmallString<256> Name; 2874 llvm::raw_svector_ostream Out(Name); 2875 getCXXABI().getMangleContext().mangleReferenceTemporary( 2876 VD, E->getManglingNumber(), Out); 2877 Out.flush(); 2878 2879 APValue *Value = nullptr; 2880 if (E->getStorageDuration() == SD_Static) { 2881 // We might have a cached constant initializer for this temporary. Note 2882 // that this might have a different value from the value computed by 2883 // evaluating the initializer if the surrounding constant expression 2884 // modifies the temporary. 2885 Value = getContext().getMaterializedTemporaryValue(E, false); 2886 if (Value && Value->isUninit()) 2887 Value = nullptr; 2888 } 2889 2890 // Try evaluating it now, it might have a constant initializer. 2891 Expr::EvalResult EvalResult; 2892 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2893 !EvalResult.hasSideEffects()) 2894 Value = &EvalResult.Val; 2895 2896 llvm::Constant *InitialValue = nullptr; 2897 bool Constant = false; 2898 llvm::Type *Type; 2899 if (Value) { 2900 // The temporary has a constant initializer, use it. 2901 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 2902 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2903 Type = InitialValue->getType(); 2904 } else { 2905 // No initializer, the initialization will be provided when we 2906 // initialize the declaration which performed lifetime extension. 2907 Type = getTypes().ConvertTypeForMem(MaterializedType); 2908 } 2909 2910 // Create a global variable for this lifetime-extended temporary. 2911 llvm::GlobalValue::LinkageTypes Linkage = 2912 getLLVMLinkageVarDefinition(VD, Constant); 2913 // There is no need for this temporary to have global linkage if the global 2914 // variable has external linkage. 2915 if (Linkage == llvm::GlobalVariable::ExternalLinkage) 2916 Linkage = llvm::GlobalVariable::PrivateLinkage; 2917 unsigned AddrSpace = GetGlobalVarAddressSpace( 2918 VD, getContext().getTargetAddressSpace(MaterializedType)); 2919 auto *GV = new llvm::GlobalVariable( 2920 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 2921 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2922 AddrSpace); 2923 setGlobalVisibility(GV, VD); 2924 GV->setAlignment( 2925 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2926 if (VD->getTLSKind()) 2927 setTLSMode(GV, *VD); 2928 Slot = GV; 2929 return GV; 2930 } 2931 2932 /// EmitObjCPropertyImplementations - Emit information for synthesized 2933 /// properties for an implementation. 2934 void CodeGenModule::EmitObjCPropertyImplementations(const 2935 ObjCImplementationDecl *D) { 2936 for (const auto *PID : D->property_impls()) { 2937 // Dynamic is just for type-checking. 2938 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2939 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2940 2941 // Determine which methods need to be implemented, some may have 2942 // been overridden. Note that ::isPropertyAccessor is not the method 2943 // we want, that just indicates if the decl came from a 2944 // property. What we want to know is if the method is defined in 2945 // this implementation. 2946 if (!D->getInstanceMethod(PD->getGetterName())) 2947 CodeGenFunction(*this).GenerateObjCGetter( 2948 const_cast<ObjCImplementationDecl *>(D), PID); 2949 if (!PD->isReadOnly() && 2950 !D->getInstanceMethod(PD->getSetterName())) 2951 CodeGenFunction(*this).GenerateObjCSetter( 2952 const_cast<ObjCImplementationDecl *>(D), PID); 2953 } 2954 } 2955 } 2956 2957 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2958 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2959 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2960 ivar; ivar = ivar->getNextIvar()) 2961 if (ivar->getType().isDestructedType()) 2962 return true; 2963 2964 return false; 2965 } 2966 2967 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2968 /// for an implementation. 2969 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2970 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2971 if (needsDestructMethod(D)) { 2972 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2973 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2974 ObjCMethodDecl *DTORMethod = 2975 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2976 cxxSelector, getContext().VoidTy, nullptr, D, 2977 /*isInstance=*/true, /*isVariadic=*/false, 2978 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2979 /*isDefined=*/false, ObjCMethodDecl::Required); 2980 D->addInstanceMethod(DTORMethod); 2981 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2982 D->setHasDestructors(true); 2983 } 2984 2985 // If the implementation doesn't have any ivar initializers, we don't need 2986 // a .cxx_construct. 2987 if (D->getNumIvarInitializers() == 0) 2988 return; 2989 2990 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2991 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2992 // The constructor returns 'self'. 2993 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2994 D->getLocation(), 2995 D->getLocation(), 2996 cxxSelector, 2997 getContext().getObjCIdType(), 2998 nullptr, D, /*isInstance=*/true, 2999 /*isVariadic=*/false, 3000 /*isPropertyAccessor=*/true, 3001 /*isImplicitlyDeclared=*/true, 3002 /*isDefined=*/false, 3003 ObjCMethodDecl::Required); 3004 D->addInstanceMethod(CTORMethod); 3005 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3006 D->setHasNonZeroConstructors(true); 3007 } 3008 3009 /// EmitNamespace - Emit all declarations in a namespace. 3010 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3011 for (auto *I : ND->decls()) { 3012 if (const auto *VD = dyn_cast<VarDecl>(I)) 3013 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3014 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3015 continue; 3016 EmitTopLevelDecl(I); 3017 } 3018 } 3019 3020 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3021 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3022 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3023 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3024 ErrorUnsupported(LSD, "linkage spec"); 3025 return; 3026 } 3027 3028 for (auto *I : LSD->decls()) { 3029 // Meta-data for ObjC class includes references to implemented methods. 3030 // Generate class's method definitions first. 3031 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3032 for (auto *M : OID->methods()) 3033 EmitTopLevelDecl(M); 3034 } 3035 EmitTopLevelDecl(I); 3036 } 3037 } 3038 3039 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3040 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3041 // Ignore dependent declarations. 3042 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3043 return; 3044 3045 switch (D->getKind()) { 3046 case Decl::CXXConversion: 3047 case Decl::CXXMethod: 3048 case Decl::Function: 3049 // Skip function templates 3050 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3051 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3052 return; 3053 3054 EmitGlobal(cast<FunctionDecl>(D)); 3055 // Always provide some coverage mapping 3056 // even for the functions that aren't emitted. 3057 AddDeferredUnusedCoverageMapping(D); 3058 break; 3059 3060 case Decl::Var: 3061 // Skip variable templates 3062 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3063 return; 3064 case Decl::VarTemplateSpecialization: 3065 EmitGlobal(cast<VarDecl>(D)); 3066 break; 3067 3068 // Indirect fields from global anonymous structs and unions can be 3069 // ignored; only the actual variable requires IR gen support. 3070 case Decl::IndirectField: 3071 break; 3072 3073 // C++ Decls 3074 case Decl::Namespace: 3075 EmitNamespace(cast<NamespaceDecl>(D)); 3076 break; 3077 // No code generation needed. 3078 case Decl::UsingShadow: 3079 case Decl::ClassTemplate: 3080 case Decl::VarTemplate: 3081 case Decl::VarTemplatePartialSpecialization: 3082 case Decl::FunctionTemplate: 3083 case Decl::TypeAliasTemplate: 3084 case Decl::Block: 3085 case Decl::Empty: 3086 break; 3087 case Decl::Using: // using X; [C++] 3088 if (CGDebugInfo *DI = getModuleDebugInfo()) 3089 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3090 return; 3091 case Decl::NamespaceAlias: 3092 if (CGDebugInfo *DI = getModuleDebugInfo()) 3093 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3094 return; 3095 case Decl::UsingDirective: // using namespace X; [C++] 3096 if (CGDebugInfo *DI = getModuleDebugInfo()) 3097 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3098 return; 3099 case Decl::CXXConstructor: 3100 // Skip function templates 3101 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3102 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3103 return; 3104 3105 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3106 break; 3107 case Decl::CXXDestructor: 3108 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3109 return; 3110 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3111 break; 3112 3113 case Decl::StaticAssert: 3114 // Nothing to do. 3115 break; 3116 3117 // Objective-C Decls 3118 3119 // Forward declarations, no (immediate) code generation. 3120 case Decl::ObjCInterface: 3121 case Decl::ObjCCategory: 3122 break; 3123 3124 case Decl::ObjCProtocol: { 3125 auto *Proto = cast<ObjCProtocolDecl>(D); 3126 if (Proto->isThisDeclarationADefinition()) 3127 ObjCRuntime->GenerateProtocol(Proto); 3128 break; 3129 } 3130 3131 case Decl::ObjCCategoryImpl: 3132 // Categories have properties but don't support synthesize so we 3133 // can ignore them here. 3134 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3135 break; 3136 3137 case Decl::ObjCImplementation: { 3138 auto *OMD = cast<ObjCImplementationDecl>(D); 3139 EmitObjCPropertyImplementations(OMD); 3140 EmitObjCIvarInitializations(OMD); 3141 ObjCRuntime->GenerateClass(OMD); 3142 // Emit global variable debug information. 3143 if (CGDebugInfo *DI = getModuleDebugInfo()) 3144 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3145 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3146 OMD->getClassInterface()), OMD->getLocation()); 3147 break; 3148 } 3149 case Decl::ObjCMethod: { 3150 auto *OMD = cast<ObjCMethodDecl>(D); 3151 // If this is not a prototype, emit the body. 3152 if (OMD->getBody()) 3153 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3154 break; 3155 } 3156 case Decl::ObjCCompatibleAlias: 3157 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3158 break; 3159 3160 case Decl::LinkageSpec: 3161 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3162 break; 3163 3164 case Decl::FileScopeAsm: { 3165 auto *AD = cast<FileScopeAsmDecl>(D); 3166 StringRef AsmString = AD->getAsmString()->getString(); 3167 3168 const std::string &S = getModule().getModuleInlineAsm(); 3169 if (S.empty()) 3170 getModule().setModuleInlineAsm(AsmString); 3171 else if (S.end()[-1] == '\n') 3172 getModule().setModuleInlineAsm(S + AsmString.str()); 3173 else 3174 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3175 break; 3176 } 3177 3178 case Decl::Import: { 3179 auto *Import = cast<ImportDecl>(D); 3180 3181 // Ignore import declarations that come from imported modules. 3182 if (clang::Module *Owner = Import->getOwningModule()) { 3183 if (getLangOpts().CurrentModule.empty() || 3184 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3185 break; 3186 } 3187 3188 ImportedModules.insert(Import->getImportedModule()); 3189 break; 3190 } 3191 3192 case Decl::ClassTemplateSpecialization: { 3193 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3194 if (DebugInfo && 3195 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3196 DebugInfo->completeTemplateDefinition(*Spec); 3197 } 3198 3199 default: 3200 // Make sure we handled everything we should, every other kind is a 3201 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3202 // function. Need to recode Decl::Kind to do that easily. 3203 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3204 } 3205 } 3206 3207 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3208 // Do we need to generate coverage mapping? 3209 if (!CodeGenOpts.CoverageMapping) 3210 return; 3211 switch (D->getKind()) { 3212 case Decl::CXXConversion: 3213 case Decl::CXXMethod: 3214 case Decl::Function: 3215 case Decl::ObjCMethod: 3216 case Decl::CXXConstructor: 3217 case Decl::CXXDestructor: { 3218 if (!cast<FunctionDecl>(D)->hasBody()) 3219 return; 3220 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3221 if (I == DeferredEmptyCoverageMappingDecls.end()) 3222 DeferredEmptyCoverageMappingDecls[D] = true; 3223 break; 3224 } 3225 default: 3226 break; 3227 }; 3228 } 3229 3230 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3231 // Do we need to generate coverage mapping? 3232 if (!CodeGenOpts.CoverageMapping) 3233 return; 3234 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3235 if (Fn->isTemplateInstantiation()) 3236 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3237 } 3238 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3239 if (I == DeferredEmptyCoverageMappingDecls.end()) 3240 DeferredEmptyCoverageMappingDecls[D] = false; 3241 else 3242 I->second = false; 3243 } 3244 3245 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3246 std::vector<const Decl *> DeferredDecls; 3247 for (const auto I : DeferredEmptyCoverageMappingDecls) { 3248 if (!I.second) 3249 continue; 3250 DeferredDecls.push_back(I.first); 3251 } 3252 // Sort the declarations by their location to make sure that the tests get a 3253 // predictable order for the coverage mapping for the unused declarations. 3254 if (CodeGenOpts.DumpCoverageMapping) 3255 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3256 [] (const Decl *LHS, const Decl *RHS) { 3257 return LHS->getLocStart() < RHS->getLocStart(); 3258 }); 3259 for (const auto *D : DeferredDecls) { 3260 switch (D->getKind()) { 3261 case Decl::CXXConversion: 3262 case Decl::CXXMethod: 3263 case Decl::Function: 3264 case Decl::ObjCMethod: { 3265 CodeGenPGO PGO(*this); 3266 GlobalDecl GD(cast<FunctionDecl>(D)); 3267 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3268 getFunctionLinkage(GD)); 3269 break; 3270 } 3271 case Decl::CXXConstructor: { 3272 CodeGenPGO PGO(*this); 3273 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3274 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3275 getFunctionLinkage(GD)); 3276 break; 3277 } 3278 case Decl::CXXDestructor: { 3279 CodeGenPGO PGO(*this); 3280 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3281 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3282 getFunctionLinkage(GD)); 3283 break; 3284 } 3285 default: 3286 break; 3287 }; 3288 } 3289 } 3290 3291 /// Turns the given pointer into a constant. 3292 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3293 const void *Ptr) { 3294 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3295 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3296 return llvm::ConstantInt::get(i64, PtrInt); 3297 } 3298 3299 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3300 llvm::NamedMDNode *&GlobalMetadata, 3301 GlobalDecl D, 3302 llvm::GlobalValue *Addr) { 3303 if (!GlobalMetadata) 3304 GlobalMetadata = 3305 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3306 3307 // TODO: should we report variant information for ctors/dtors? 3308 llvm::Value *Ops[] = { 3309 Addr, 3310 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3311 }; 3312 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3313 } 3314 3315 /// For each function which is declared within an extern "C" region and marked 3316 /// as 'used', but has internal linkage, create an alias from the unmangled 3317 /// name to the mangled name if possible. People expect to be able to refer 3318 /// to such functions with an unmangled name from inline assembly within the 3319 /// same translation unit. 3320 void CodeGenModule::EmitStaticExternCAliases() { 3321 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3322 E = StaticExternCValues.end(); 3323 I != E; ++I) { 3324 IdentifierInfo *Name = I->first; 3325 llvm::GlobalValue *Val = I->second; 3326 if (Val && !getModule().getNamedValue(Name->getName())) 3327 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3328 } 3329 } 3330 3331 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3332 GlobalDecl &Result) const { 3333 auto Res = Manglings.find(MangledName); 3334 if (Res == Manglings.end()) 3335 return false; 3336 Result = Res->getValue(); 3337 return true; 3338 } 3339 3340 /// Emits metadata nodes associating all the global values in the 3341 /// current module with the Decls they came from. This is useful for 3342 /// projects using IR gen as a subroutine. 3343 /// 3344 /// Since there's currently no way to associate an MDNode directly 3345 /// with an llvm::GlobalValue, we create a global named metadata 3346 /// with the name 'clang.global.decl.ptrs'. 3347 void CodeGenModule::EmitDeclMetadata() { 3348 llvm::NamedMDNode *GlobalMetadata = nullptr; 3349 3350 // StaticLocalDeclMap 3351 for (auto &I : MangledDeclNames) { 3352 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3353 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3354 } 3355 } 3356 3357 /// Emits metadata nodes for all the local variables in the current 3358 /// function. 3359 void CodeGenFunction::EmitDeclMetadata() { 3360 if (LocalDeclMap.empty()) return; 3361 3362 llvm::LLVMContext &Context = getLLVMContext(); 3363 3364 // Find the unique metadata ID for this name. 3365 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3366 3367 llvm::NamedMDNode *GlobalMetadata = nullptr; 3368 3369 for (auto &I : LocalDeclMap) { 3370 const Decl *D = I.first; 3371 llvm::Value *Addr = I.second; 3372 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3373 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3374 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3375 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3376 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3377 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3378 } 3379 } 3380 } 3381 3382 void CodeGenModule::EmitVersionIdentMetadata() { 3383 llvm::NamedMDNode *IdentMetadata = 3384 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3385 std::string Version = getClangFullVersion(); 3386 llvm::LLVMContext &Ctx = TheModule.getContext(); 3387 3388 llvm::Value *IdentNode[] = { 3389 llvm::MDString::get(Ctx, Version) 3390 }; 3391 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3392 } 3393 3394 void CodeGenModule::EmitTargetMetadata() { 3395 // Warning, new MangledDeclNames may be appended within this loop. 3396 // We rely on MapVector insertions adding new elements to the end 3397 // of the container. 3398 // FIXME: Move this loop into the one target that needs it, and only 3399 // loop over those declarations for which we couldn't emit the target 3400 // metadata when we emitted the declaration. 3401 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3402 auto Val = *(MangledDeclNames.begin() + I); 3403 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3404 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3405 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3406 } 3407 } 3408 3409 void CodeGenModule::EmitCoverageFile() { 3410 if (!getCodeGenOpts().CoverageFile.empty()) { 3411 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3412 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3413 llvm::LLVMContext &Ctx = TheModule.getContext(); 3414 llvm::MDString *CoverageFile = 3415 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3416 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3417 llvm::MDNode *CU = CUNode->getOperand(i); 3418 llvm::Value *node[] = { CoverageFile, CU }; 3419 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3420 GCov->addOperand(N); 3421 } 3422 } 3423 } 3424 } 3425 3426 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3427 // Sema has checked that all uuid strings are of the form 3428 // "12345678-1234-1234-1234-1234567890ab". 3429 assert(Uuid.size() == 36); 3430 for (unsigned i = 0; i < 36; ++i) { 3431 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3432 else assert(isHexDigit(Uuid[i])); 3433 } 3434 3435 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3436 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3437 3438 llvm::Constant *Field3[8]; 3439 for (unsigned Idx = 0; Idx < 8; ++Idx) 3440 Field3[Idx] = llvm::ConstantInt::get( 3441 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3442 3443 llvm::Constant *Fields[4] = { 3444 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3445 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3446 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3447 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3448 }; 3449 3450 return llvm::ConstantStruct::getAnon(Fields); 3451 } 3452 3453 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3454 bool ForEH) { 3455 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3456 // FIXME: should we even be calling this method if RTTI is disabled 3457 // and it's not for EH? 3458 if (!ForEH && !getLangOpts().RTTI) 3459 return llvm::Constant::getNullValue(Int8PtrTy); 3460 3461 if (ForEH && Ty->isObjCObjectPointerType() && 3462 LangOpts.ObjCRuntime.isGNUFamily()) 3463 return ObjCRuntime->GetEHType(Ty); 3464 3465 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3466 } 3467 3468