xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 140bfdca60ae8b1b2ad115846379e3c9ca914bfb)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeGPU.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/StringSwitch.h"
51 #include "llvm/ADT/Triple.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
54 #include "llvm/IR/CallingConv.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ProfileSummary.h"
60 #include "llvm/ProfileData/InstrProfReader.h"
61 #include "llvm/Support/CodeGen.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/ConvertUTF.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/MD5.h"
66 #include "llvm/Support/TimeProfiler.h"
67 #include "llvm/Support/X86TargetParser.h"
68 
69 using namespace clang;
70 using namespace CodeGen;
71 
72 static llvm::cl::opt<bool> LimitedCoverage(
73     "limited-coverage-experimental", llvm::cl::Hidden,
74     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
75 
76 static const char AnnotationSection[] = "llvm.metadata";
77 
78 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
79   switch (CGM.getContext().getCXXABIKind()) {
80   case TargetCXXABI::AppleARM64:
81   case TargetCXXABI::Fuchsia:
82   case TargetCXXABI::GenericAArch64:
83   case TargetCXXABI::GenericARM:
84   case TargetCXXABI::iOS:
85   case TargetCXXABI::WatchOS:
86   case TargetCXXABI::GenericMIPS:
87   case TargetCXXABI::GenericItanium:
88   case TargetCXXABI::WebAssembly:
89   case TargetCXXABI::XL:
90     return CreateItaniumCXXABI(CGM);
91   case TargetCXXABI::Microsoft:
92     return CreateMicrosoftCXXABI(CGM);
93   }
94 
95   llvm_unreachable("invalid C++ ABI kind");
96 }
97 
98 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
99                              const PreprocessorOptions &PPO,
100                              const CodeGenOptions &CGO, llvm::Module &M,
101                              DiagnosticsEngine &diags,
102                              CoverageSourceInfo *CoverageInfo)
103     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
104       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
105       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
106       VMContext(M.getContext()), Types(*this), VTables(*this),
107       SanitizerMD(new SanitizerMetadata(*this)) {
108 
109   // Initialize the type cache.
110   llvm::LLVMContext &LLVMContext = M.getContext();
111   VoidTy = llvm::Type::getVoidTy(LLVMContext);
112   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
113   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
114   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
115   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
116   HalfTy = llvm::Type::getHalfTy(LLVMContext);
117   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
118   FloatTy = llvm::Type::getFloatTy(LLVMContext);
119   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
120   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
121   PointerAlignInBytes =
122     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
123   SizeSizeInBytes =
124     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
125   IntAlignInBytes =
126     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
127   CharTy =
128     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
129   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
130   IntPtrTy = llvm::IntegerType::get(LLVMContext,
131     C.getTargetInfo().getMaxPointerWidth());
132   Int8PtrTy = Int8Ty->getPointerTo(0);
133   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
134   const llvm::DataLayout &DL = M.getDataLayout();
135   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
136   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
137   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
138 
139   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
140 
141   if (LangOpts.ObjC)
142     createObjCRuntime();
143   if (LangOpts.OpenCL)
144     createOpenCLRuntime();
145   if (LangOpts.OpenMP)
146     createOpenMPRuntime();
147   if (LangOpts.CUDA)
148     createCUDARuntime();
149   if (LangOpts.HLSL)
150     createHLSLRuntime();
151 
152   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
153   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
154       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
155     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
156                                getCXXABI().getMangleContext()));
157 
158   // If debug info or coverage generation is enabled, create the CGDebugInfo
159   // object.
160   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
161       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
162     DebugInfo.reset(new CGDebugInfo(*this));
163 
164   Block.GlobalUniqueCount = 0;
165 
166   if (C.getLangOpts().ObjC)
167     ObjCData.reset(new ObjCEntrypoints());
168 
169   if (CodeGenOpts.hasProfileClangUse()) {
170     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
171         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
172     if (auto E = ReaderOrErr.takeError()) {
173       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
174                                               "Could not read profile %0: %1");
175       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
176         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
177                                   << EI.message();
178       });
179     } else
180       PGOReader = std::move(ReaderOrErr.get());
181   }
182 
183   // If coverage mapping generation is enabled, create the
184   // CoverageMappingModuleGen object.
185   if (CodeGenOpts.CoverageMapping)
186     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
187 
188   // Generate the module name hash here if needed.
189   if (CodeGenOpts.UniqueInternalLinkageNames &&
190       !getModule().getSourceFileName().empty()) {
191     std::string Path = getModule().getSourceFileName();
192     // Check if a path substitution is needed from the MacroPrefixMap.
193     for (const auto &Entry : LangOpts.MacroPrefixMap)
194       if (Path.rfind(Entry.first, 0) != std::string::npos) {
195         Path = Entry.second + Path.substr(Entry.first.size());
196         break;
197       }
198     llvm::MD5 Md5;
199     Md5.update(Path);
200     llvm::MD5::MD5Result R;
201     Md5.final(R);
202     SmallString<32> Str;
203     llvm::MD5::stringifyResult(R, Str);
204     // Convert MD5hash to Decimal. Demangler suffixes can either contain
205     // numbers or characters but not both.
206     llvm::APInt IntHash(128, Str.str(), 16);
207     // Prepend "__uniq" before the hash for tools like profilers to understand
208     // that this symbol is of internal linkage type.  The "__uniq" is the
209     // pre-determined prefix that is used to tell tools that this symbol was
210     // created with -funique-internal-linakge-symbols and the tools can strip or
211     // keep the prefix as needed.
212     ModuleNameHash = (Twine(".__uniq.") +
213         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
214   }
215 }
216 
217 CodeGenModule::~CodeGenModule() {}
218 
219 void CodeGenModule::createObjCRuntime() {
220   // This is just isGNUFamily(), but we want to force implementors of
221   // new ABIs to decide how best to do this.
222   switch (LangOpts.ObjCRuntime.getKind()) {
223   case ObjCRuntime::GNUstep:
224   case ObjCRuntime::GCC:
225   case ObjCRuntime::ObjFW:
226     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
227     return;
228 
229   case ObjCRuntime::FragileMacOSX:
230   case ObjCRuntime::MacOSX:
231   case ObjCRuntime::iOS:
232   case ObjCRuntime::WatchOS:
233     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
234     return;
235   }
236   llvm_unreachable("bad runtime kind");
237 }
238 
239 void CodeGenModule::createOpenCLRuntime() {
240   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
241 }
242 
243 void CodeGenModule::createOpenMPRuntime() {
244   // Select a specialized code generation class based on the target, if any.
245   // If it does not exist use the default implementation.
246   switch (getTriple().getArch()) {
247   case llvm::Triple::nvptx:
248   case llvm::Triple::nvptx64:
249   case llvm::Triple::amdgcn:
250     assert(getLangOpts().OpenMPIsDevice &&
251            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
252     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
253     break;
254   default:
255     if (LangOpts.OpenMPSimd)
256       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
257     else
258       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
259     break;
260   }
261 }
262 
263 void CodeGenModule::createCUDARuntime() {
264   CUDARuntime.reset(CreateNVCUDARuntime(*this));
265 }
266 
267 void CodeGenModule::createHLSLRuntime() {
268   HLSLRuntime.reset(new CGHLSLRuntime(*this));
269 }
270 
271 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
272   Replacements[Name] = C;
273 }
274 
275 void CodeGenModule::applyReplacements() {
276   for (auto &I : Replacements) {
277     StringRef MangledName = I.first();
278     llvm::Constant *Replacement = I.second;
279     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
280     if (!Entry)
281       continue;
282     auto *OldF = cast<llvm::Function>(Entry);
283     auto *NewF = dyn_cast<llvm::Function>(Replacement);
284     if (!NewF) {
285       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
286         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
287       } else {
288         auto *CE = cast<llvm::ConstantExpr>(Replacement);
289         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
290                CE->getOpcode() == llvm::Instruction::GetElementPtr);
291         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
292       }
293     }
294 
295     // Replace old with new, but keep the old order.
296     OldF->replaceAllUsesWith(Replacement);
297     if (NewF) {
298       NewF->removeFromParent();
299       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
300                                                        NewF);
301     }
302     OldF->eraseFromParent();
303   }
304 }
305 
306 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
307   GlobalValReplacements.push_back(std::make_pair(GV, C));
308 }
309 
310 void CodeGenModule::applyGlobalValReplacements() {
311   for (auto &I : GlobalValReplacements) {
312     llvm::GlobalValue *GV = I.first;
313     llvm::Constant *C = I.second;
314 
315     GV->replaceAllUsesWith(C);
316     GV->eraseFromParent();
317   }
318 }
319 
320 // This is only used in aliases that we created and we know they have a
321 // linear structure.
322 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
323   const llvm::Constant *C;
324   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
325     C = GA->getAliasee();
326   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
327     C = GI->getResolver();
328   else
329     return GV;
330 
331   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
332   if (!AliaseeGV)
333     return nullptr;
334 
335   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
336   if (FinalGV == GV)
337     return nullptr;
338 
339   return FinalGV;
340 }
341 
342 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
343                                SourceLocation Location, bool IsIFunc,
344                                const llvm::GlobalValue *Alias,
345                                const llvm::GlobalValue *&GV) {
346   GV = getAliasedGlobal(Alias);
347   if (!GV) {
348     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
349     return false;
350   }
351 
352   if (GV->isDeclaration()) {
353     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
354     return false;
355   }
356 
357   if (IsIFunc) {
358     // Check resolver function type.
359     const auto *F = dyn_cast<llvm::Function>(GV);
360     if (!F) {
361       Diags.Report(Location, diag::err_alias_to_undefined)
362           << IsIFunc << IsIFunc;
363       return false;
364     }
365 
366     llvm::FunctionType *FTy = F->getFunctionType();
367     if (!FTy->getReturnType()->isPointerTy()) {
368       Diags.Report(Location, diag::err_ifunc_resolver_return);
369       return false;
370     }
371   }
372 
373   return true;
374 }
375 
376 void CodeGenModule::checkAliases() {
377   // Check if the constructed aliases are well formed. It is really unfortunate
378   // that we have to do this in CodeGen, but we only construct mangled names
379   // and aliases during codegen.
380   bool Error = false;
381   DiagnosticsEngine &Diags = getDiags();
382   for (const GlobalDecl &GD : Aliases) {
383     const auto *D = cast<ValueDecl>(GD.getDecl());
384     SourceLocation Location;
385     bool IsIFunc = D->hasAttr<IFuncAttr>();
386     if (const Attr *A = D->getDefiningAttr())
387       Location = A->getLocation();
388     else
389       llvm_unreachable("Not an alias or ifunc?");
390 
391     StringRef MangledName = getMangledName(GD);
392     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
393     const llvm::GlobalValue *GV = nullptr;
394     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
395       Error = true;
396       continue;
397     }
398 
399     llvm::Constant *Aliasee =
400         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
401                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
402 
403     llvm::GlobalValue *AliaseeGV;
404     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
405       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
406     else
407       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
408 
409     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
410       StringRef AliasSection = SA->getName();
411       if (AliasSection != AliaseeGV->getSection())
412         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
413             << AliasSection << IsIFunc << IsIFunc;
414     }
415 
416     // We have to handle alias to weak aliases in here. LLVM itself disallows
417     // this since the object semantics would not match the IL one. For
418     // compatibility with gcc we implement it by just pointing the alias
419     // to its aliasee's aliasee. We also warn, since the user is probably
420     // expecting the link to be weak.
421     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
422       if (GA->isInterposable()) {
423         Diags.Report(Location, diag::warn_alias_to_weak_alias)
424             << GV->getName() << GA->getName() << IsIFunc;
425         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
426             GA->getAliasee(), Alias->getType());
427 
428         if (IsIFunc)
429           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
430         else
431           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
432       }
433     }
434   }
435   if (!Error)
436     return;
437 
438   for (const GlobalDecl &GD : Aliases) {
439     StringRef MangledName = getMangledName(GD);
440     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
441     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
442     Alias->eraseFromParent();
443   }
444 }
445 
446 void CodeGenModule::clear() {
447   DeferredDeclsToEmit.clear();
448   EmittedDeferredDecls.clear();
449   if (OpenMPRuntime)
450     OpenMPRuntime->clear();
451 }
452 
453 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
454                                        StringRef MainFile) {
455   if (!hasDiagnostics())
456     return;
457   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
458     if (MainFile.empty())
459       MainFile = "<stdin>";
460     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
461   } else {
462     if (Mismatched > 0)
463       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
464 
465     if (Missing > 0)
466       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
467   }
468 }
469 
470 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
471                                              llvm::Module &M) {
472   if (!LO.VisibilityFromDLLStorageClass)
473     return;
474 
475   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
476       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
477   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
478       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
479   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
480       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
481   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
482       CodeGenModule::GetLLVMVisibility(
483           LO.getExternDeclNoDLLStorageClassVisibility());
484 
485   for (llvm::GlobalValue &GV : M.global_values()) {
486     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
487       continue;
488 
489     // Reset DSO locality before setting the visibility. This removes
490     // any effects that visibility options and annotations may have
491     // had on the DSO locality. Setting the visibility will implicitly set
492     // appropriate globals to DSO Local; however, this will be pessimistic
493     // w.r.t. to the normal compiler IRGen.
494     GV.setDSOLocal(false);
495 
496     if (GV.isDeclarationForLinker()) {
497       GV.setVisibility(GV.getDLLStorageClass() ==
498                                llvm::GlobalValue::DLLImportStorageClass
499                            ? ExternDeclDLLImportVisibility
500                            : ExternDeclNoDLLStorageClassVisibility);
501     } else {
502       GV.setVisibility(GV.getDLLStorageClass() ==
503                                llvm::GlobalValue::DLLExportStorageClass
504                            ? DLLExportVisibility
505                            : NoDLLStorageClassVisibility);
506     }
507 
508     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
509   }
510 }
511 
512 void CodeGenModule::Release() {
513   EmitDeferred();
514   DeferredDecls.insert(EmittedDeferredDecls.begin(),
515                        EmittedDeferredDecls.end());
516   EmittedDeferredDecls.clear();
517   EmitVTablesOpportunistically();
518   applyGlobalValReplacements();
519   applyReplacements();
520   emitMultiVersionFunctions();
521   EmitCXXGlobalInitFunc();
522   EmitCXXGlobalCleanUpFunc();
523   registerGlobalDtorsWithAtExit();
524   EmitCXXThreadLocalInitFunc();
525   if (ObjCRuntime)
526     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
527       AddGlobalCtor(ObjCInitFunction);
528   if (Context.getLangOpts().CUDA && CUDARuntime) {
529     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
530       AddGlobalCtor(CudaCtorFunction);
531   }
532   if (OpenMPRuntime) {
533     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
534             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
535       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
536     }
537     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
538     OpenMPRuntime->clear();
539   }
540   if (PGOReader) {
541     getModule().setProfileSummary(
542         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
543         llvm::ProfileSummary::PSK_Instr);
544     if (PGOStats.hasDiagnostics())
545       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
546   }
547   EmitCtorList(GlobalCtors, "llvm.global_ctors");
548   EmitCtorList(GlobalDtors, "llvm.global_dtors");
549   EmitGlobalAnnotations();
550   EmitStaticExternCAliases();
551   checkAliases();
552   EmitDeferredUnusedCoverageMappings();
553   CodeGenPGO(*this).setValueProfilingFlag(getModule());
554   if (CoverageMapping)
555     CoverageMapping->emit();
556   if (CodeGenOpts.SanitizeCfiCrossDso) {
557     CodeGenFunction(*this).EmitCfiCheckFail();
558     CodeGenFunction(*this).EmitCfiCheckStub();
559   }
560   emitAtAvailableLinkGuard();
561   if (Context.getTargetInfo().getTriple().isWasm())
562     EmitMainVoidAlias();
563 
564   if (getTriple().isAMDGPU()) {
565     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
566     // preserve ASAN functions in bitcode libraries.
567     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
568       auto *FT = llvm::FunctionType::get(VoidTy, {});
569       auto *F = llvm::Function::Create(
570           FT, llvm::GlobalValue::ExternalLinkage,
571           "__amdgpu_device_library_preserve_asan_functions", &getModule());
572       auto *Var = new llvm::GlobalVariable(
573           getModule(), FT->getPointerTo(),
574           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
575           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
576           llvm::GlobalVariable::NotThreadLocal);
577       addCompilerUsedGlobal(Var);
578     }
579     // Emit amdgpu_code_object_version module flag, which is code object version
580     // times 100.
581     // ToDo: Enable module flag for all code object version when ROCm device
582     // library is ready.
583     if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) {
584       getModule().addModuleFlag(llvm::Module::Error,
585                                 "amdgpu_code_object_version",
586                                 getTarget().getTargetOpts().CodeObjectVersion);
587     }
588   }
589 
590   // Emit a global array containing all external kernels or device variables
591   // used by host functions and mark it as used for CUDA/HIP. This is necessary
592   // to get kernels or device variables in archives linked in even if these
593   // kernels or device variables are only used in host functions.
594   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
595     SmallVector<llvm::Constant *, 8> UsedArray;
596     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
597       GlobalDecl GD;
598       if (auto *FD = dyn_cast<FunctionDecl>(D))
599         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
600       else
601         GD = GlobalDecl(D);
602       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
603           GetAddrOfGlobal(GD), Int8PtrTy));
604     }
605 
606     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
607 
608     auto *GV = new llvm::GlobalVariable(
609         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
610         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
611     addCompilerUsedGlobal(GV);
612   }
613 
614   emitLLVMUsed();
615   if (SanStats)
616     SanStats->finish();
617 
618   if (CodeGenOpts.Autolink &&
619       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
620     EmitModuleLinkOptions();
621   }
622 
623   // On ELF we pass the dependent library specifiers directly to the linker
624   // without manipulating them. This is in contrast to other platforms where
625   // they are mapped to a specific linker option by the compiler. This
626   // difference is a result of the greater variety of ELF linkers and the fact
627   // that ELF linkers tend to handle libraries in a more complicated fashion
628   // than on other platforms. This forces us to defer handling the dependent
629   // libs to the linker.
630   //
631   // CUDA/HIP device and host libraries are different. Currently there is no
632   // way to differentiate dependent libraries for host or device. Existing
633   // usage of #pragma comment(lib, *) is intended for host libraries on
634   // Windows. Therefore emit llvm.dependent-libraries only for host.
635   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
636     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
637     for (auto *MD : ELFDependentLibraries)
638       NMD->addOperand(MD);
639   }
640 
641   // Record mregparm value now so it is visible through rest of codegen.
642   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
643     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
644                               CodeGenOpts.NumRegisterParameters);
645 
646   if (CodeGenOpts.DwarfVersion) {
647     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
648                               CodeGenOpts.DwarfVersion);
649   }
650 
651   if (CodeGenOpts.Dwarf64)
652     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
653 
654   if (Context.getLangOpts().SemanticInterposition)
655     // Require various optimization to respect semantic interposition.
656     getModule().setSemanticInterposition(true);
657 
658   if (CodeGenOpts.EmitCodeView) {
659     // Indicate that we want CodeView in the metadata.
660     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
661   }
662   if (CodeGenOpts.CodeViewGHash) {
663     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
664   }
665   if (CodeGenOpts.ControlFlowGuard) {
666     // Function ID tables and checks for Control Flow Guard (cfguard=2).
667     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
668   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
669     // Function ID tables for Control Flow Guard (cfguard=1).
670     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
671   }
672   if (CodeGenOpts.EHContGuard) {
673     // Function ID tables for EH Continuation Guard.
674     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
675   }
676   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
677     // We don't support LTO with 2 with different StrictVTablePointers
678     // FIXME: we could support it by stripping all the information introduced
679     // by StrictVTablePointers.
680 
681     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
682 
683     llvm::Metadata *Ops[2] = {
684               llvm::MDString::get(VMContext, "StrictVTablePointers"),
685               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
686                   llvm::Type::getInt32Ty(VMContext), 1))};
687 
688     getModule().addModuleFlag(llvm::Module::Require,
689                               "StrictVTablePointersRequirement",
690                               llvm::MDNode::get(VMContext, Ops));
691   }
692   if (getModuleDebugInfo())
693     // We support a single version in the linked module. The LLVM
694     // parser will drop debug info with a different version number
695     // (and warn about it, too).
696     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
697                               llvm::DEBUG_METADATA_VERSION);
698 
699   // We need to record the widths of enums and wchar_t, so that we can generate
700   // the correct build attributes in the ARM backend. wchar_size is also used by
701   // TargetLibraryInfo.
702   uint64_t WCharWidth =
703       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
704   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
705 
706   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
707   if (   Arch == llvm::Triple::arm
708       || Arch == llvm::Triple::armeb
709       || Arch == llvm::Triple::thumb
710       || Arch == llvm::Triple::thumbeb) {
711     // The minimum width of an enum in bytes
712     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
713     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
714   }
715 
716   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
717     StringRef ABIStr = Target.getABI();
718     llvm::LLVMContext &Ctx = TheModule.getContext();
719     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
720                               llvm::MDString::get(Ctx, ABIStr));
721   }
722 
723   if (CodeGenOpts.SanitizeCfiCrossDso) {
724     // Indicate that we want cross-DSO control flow integrity checks.
725     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
726   }
727 
728   if (CodeGenOpts.WholeProgramVTables) {
729     // Indicate whether VFE was enabled for this module, so that the
730     // vcall_visibility metadata added under whole program vtables is handled
731     // appropriately in the optimizer.
732     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
733                               CodeGenOpts.VirtualFunctionElimination);
734   }
735 
736   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
737     getModule().addModuleFlag(llvm::Module::Override,
738                               "CFI Canonical Jump Tables",
739                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
740   }
741 
742   if (CodeGenOpts.CFProtectionReturn &&
743       Target.checkCFProtectionReturnSupported(getDiags())) {
744     // Indicate that we want to instrument return control flow protection.
745     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
746                               1);
747   }
748 
749   if (CodeGenOpts.CFProtectionBranch &&
750       Target.checkCFProtectionBranchSupported(getDiags())) {
751     // Indicate that we want to instrument branch control flow protection.
752     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
753                               1);
754   }
755 
756   if (CodeGenOpts.IBTSeal)
757     getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1);
758 
759   if (CodeGenOpts.FunctionReturnThunks)
760     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
761 
762   // Add module metadata for return address signing (ignoring
763   // non-leaf/all) and stack tagging. These are actually turned on by function
764   // attributes, but we use module metadata to emit build attributes. This is
765   // needed for LTO, where the function attributes are inside bitcode
766   // serialised into a global variable by the time build attributes are
767   // emitted, so we can't access them. LTO objects could be compiled with
768   // different flags therefore module flags are set to "Min" behavior to achieve
769   // the same end result of the normal build where e.g BTI is off if any object
770   // doesn't support it.
771   if (Context.getTargetInfo().hasFeature("ptrauth") &&
772       LangOpts.getSignReturnAddressScope() !=
773           LangOptions::SignReturnAddressScopeKind::None)
774     getModule().addModuleFlag(llvm::Module::Override,
775                               "sign-return-address-buildattr", 1);
776   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
777     getModule().addModuleFlag(llvm::Module::Override,
778                               "tag-stack-memory-buildattr", 1);
779 
780   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
781       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
782       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
783       Arch == llvm::Triple::aarch64_be) {
784     getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
785                               LangOpts.BranchTargetEnforcement);
786 
787     getModule().addModuleFlag(llvm::Module::Min, "sign-return-address",
788                               LangOpts.hasSignReturnAddress());
789 
790     getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
791                               LangOpts.isSignReturnAddressScopeAll());
792 
793     getModule().addModuleFlag(llvm::Module::Min,
794                               "sign-return-address-with-bkey",
795                               !LangOpts.isSignReturnAddressWithAKey());
796   }
797 
798   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
799     llvm::LLVMContext &Ctx = TheModule.getContext();
800     getModule().addModuleFlag(
801         llvm::Module::Error, "MemProfProfileFilename",
802         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
803   }
804 
805   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
806     // Indicate whether __nvvm_reflect should be configured to flush denormal
807     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
808     // property.)
809     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
810                               CodeGenOpts.FP32DenormalMode.Output !=
811                                   llvm::DenormalMode::IEEE);
812   }
813 
814   if (LangOpts.EHAsynch)
815     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
816 
817   // Indicate whether this Module was compiled with -fopenmp
818   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
819     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
820   if (getLangOpts().OpenMPIsDevice)
821     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
822                               LangOpts.OpenMP);
823 
824   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
825   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
826     EmitOpenCLMetadata();
827     // Emit SPIR version.
828     if (getTriple().isSPIR()) {
829       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
830       // opencl.spir.version named metadata.
831       // C++ for OpenCL has a distinct mapping for version compatibility with
832       // OpenCL.
833       auto Version = LangOpts.getOpenCLCompatibleVersion();
834       llvm::Metadata *SPIRVerElts[] = {
835           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
836               Int32Ty, Version / 100)),
837           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
838               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
839       llvm::NamedMDNode *SPIRVerMD =
840           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
841       llvm::LLVMContext &Ctx = TheModule.getContext();
842       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
843     }
844   }
845 
846   // HLSL related end of code gen work items.
847   if (LangOpts.HLSL)
848     getHLSLRuntime().finishCodeGen();
849 
850   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
851     assert(PLevel < 3 && "Invalid PIC Level");
852     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
853     if (Context.getLangOpts().PIE)
854       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
855   }
856 
857   if (getCodeGenOpts().CodeModel.size() > 0) {
858     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
859                   .Case("tiny", llvm::CodeModel::Tiny)
860                   .Case("small", llvm::CodeModel::Small)
861                   .Case("kernel", llvm::CodeModel::Kernel)
862                   .Case("medium", llvm::CodeModel::Medium)
863                   .Case("large", llvm::CodeModel::Large)
864                   .Default(~0u);
865     if (CM != ~0u) {
866       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
867       getModule().setCodeModel(codeModel);
868     }
869   }
870 
871   if (CodeGenOpts.NoPLT)
872     getModule().setRtLibUseGOT();
873   if (CodeGenOpts.UnwindTables)
874     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
875 
876   switch (CodeGenOpts.getFramePointer()) {
877   case CodeGenOptions::FramePointerKind::None:
878     // 0 ("none") is the default.
879     break;
880   case CodeGenOptions::FramePointerKind::NonLeaf:
881     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
882     break;
883   case CodeGenOptions::FramePointerKind::All:
884     getModule().setFramePointer(llvm::FramePointerKind::All);
885     break;
886   }
887 
888   SimplifyPersonality();
889 
890   if (getCodeGenOpts().EmitDeclMetadata)
891     EmitDeclMetadata();
892 
893   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
894     EmitCoverageFile();
895 
896   if (CGDebugInfo *DI = getModuleDebugInfo())
897     DI->finalize();
898 
899   if (getCodeGenOpts().EmitVersionIdentMetadata)
900     EmitVersionIdentMetadata();
901 
902   if (!getCodeGenOpts().RecordCommandLine.empty())
903     EmitCommandLineMetadata();
904 
905   if (!getCodeGenOpts().StackProtectorGuard.empty())
906     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
907   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
908     getModule().setStackProtectorGuardReg(
909         getCodeGenOpts().StackProtectorGuardReg);
910   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
911     getModule().setStackProtectorGuardSymbol(
912         getCodeGenOpts().StackProtectorGuardSymbol);
913   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
914     getModule().setStackProtectorGuardOffset(
915         getCodeGenOpts().StackProtectorGuardOffset);
916   if (getCodeGenOpts().StackAlignment)
917     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
918   if (getCodeGenOpts().SkipRaxSetup)
919     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
920 
921   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
922 
923   EmitBackendOptionsMetadata(getCodeGenOpts());
924 
925   // If there is device offloading code embed it in the host now.
926   EmbedObject(&getModule(), CodeGenOpts, getDiags());
927 
928   // Set visibility from DLL storage class
929   // We do this at the end of LLVM IR generation; after any operation
930   // that might affect the DLL storage class or the visibility, and
931   // before anything that might act on these.
932   setVisibilityFromDLLStorageClass(LangOpts, getModule());
933 }
934 
935 void CodeGenModule::EmitOpenCLMetadata() {
936   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
937   // opencl.ocl.version named metadata node.
938   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
939   auto Version = LangOpts.getOpenCLCompatibleVersion();
940   llvm::Metadata *OCLVerElts[] = {
941       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
942           Int32Ty, Version / 100)),
943       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
944           Int32Ty, (Version % 100) / 10))};
945   llvm::NamedMDNode *OCLVerMD =
946       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
947   llvm::LLVMContext &Ctx = TheModule.getContext();
948   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
949 }
950 
951 void CodeGenModule::EmitBackendOptionsMetadata(
952     const CodeGenOptions CodeGenOpts) {
953   switch (getTriple().getArch()) {
954   default:
955     break;
956   case llvm::Triple::riscv32:
957   case llvm::Triple::riscv64:
958     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
959                               CodeGenOpts.SmallDataLimit);
960     break;
961   }
962 }
963 
964 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
965   // Make sure that this type is translated.
966   Types.UpdateCompletedType(TD);
967 }
968 
969 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
970   // Make sure that this type is translated.
971   Types.RefreshTypeCacheForClass(RD);
972 }
973 
974 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
975   if (!TBAA)
976     return nullptr;
977   return TBAA->getTypeInfo(QTy);
978 }
979 
980 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
981   if (!TBAA)
982     return TBAAAccessInfo();
983   if (getLangOpts().CUDAIsDevice) {
984     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
985     // access info.
986     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
987       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
988           nullptr)
989         return TBAAAccessInfo();
990     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
991       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
992           nullptr)
993         return TBAAAccessInfo();
994     }
995   }
996   return TBAA->getAccessInfo(AccessType);
997 }
998 
999 TBAAAccessInfo
1000 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1001   if (!TBAA)
1002     return TBAAAccessInfo();
1003   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1004 }
1005 
1006 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1007   if (!TBAA)
1008     return nullptr;
1009   return TBAA->getTBAAStructInfo(QTy);
1010 }
1011 
1012 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1013   if (!TBAA)
1014     return nullptr;
1015   return TBAA->getBaseTypeInfo(QTy);
1016 }
1017 
1018 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1019   if (!TBAA)
1020     return nullptr;
1021   return TBAA->getAccessTagInfo(Info);
1022 }
1023 
1024 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1025                                                    TBAAAccessInfo TargetInfo) {
1026   if (!TBAA)
1027     return TBAAAccessInfo();
1028   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1029 }
1030 
1031 TBAAAccessInfo
1032 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1033                                                    TBAAAccessInfo InfoB) {
1034   if (!TBAA)
1035     return TBAAAccessInfo();
1036   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1037 }
1038 
1039 TBAAAccessInfo
1040 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1041                                               TBAAAccessInfo SrcInfo) {
1042   if (!TBAA)
1043     return TBAAAccessInfo();
1044   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1045 }
1046 
1047 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1048                                                 TBAAAccessInfo TBAAInfo) {
1049   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1050     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1051 }
1052 
1053 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1054     llvm::Instruction *I, const CXXRecordDecl *RD) {
1055   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1056                  llvm::MDNode::get(getLLVMContext(), {}));
1057 }
1058 
1059 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1060   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1061   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1062 }
1063 
1064 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1065 /// specified stmt yet.
1066 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1067   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1068                                                "cannot compile this %0 yet");
1069   std::string Msg = Type;
1070   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1071       << Msg << S->getSourceRange();
1072 }
1073 
1074 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1075 /// specified decl yet.
1076 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1077   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1078                                                "cannot compile this %0 yet");
1079   std::string Msg = Type;
1080   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1081 }
1082 
1083 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1084   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1085 }
1086 
1087 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1088                                         const NamedDecl *D) const {
1089   if (GV->hasDLLImportStorageClass())
1090     return;
1091   // Internal definitions always have default visibility.
1092   if (GV->hasLocalLinkage()) {
1093     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1094     return;
1095   }
1096   if (!D)
1097     return;
1098   // Set visibility for definitions, and for declarations if requested globally
1099   // or set explicitly.
1100   LinkageInfo LV = D->getLinkageAndVisibility();
1101   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1102       !GV->isDeclarationForLinker())
1103     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1104 }
1105 
1106 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1107                                  llvm::GlobalValue *GV) {
1108   if (GV->hasLocalLinkage())
1109     return true;
1110 
1111   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1112     return true;
1113 
1114   // DLLImport explicitly marks the GV as external.
1115   if (GV->hasDLLImportStorageClass())
1116     return false;
1117 
1118   const llvm::Triple &TT = CGM.getTriple();
1119   if (TT.isWindowsGNUEnvironment()) {
1120     // In MinGW, variables without DLLImport can still be automatically
1121     // imported from a DLL by the linker; don't mark variables that
1122     // potentially could come from another DLL as DSO local.
1123 
1124     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1125     // (and this actually happens in the public interface of libstdc++), so
1126     // such variables can't be marked as DSO local. (Native TLS variables
1127     // can't be dllimported at all, though.)
1128     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1129         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1130       return false;
1131   }
1132 
1133   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1134   // remain unresolved in the link, they can be resolved to zero, which is
1135   // outside the current DSO.
1136   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1137     return false;
1138 
1139   // Every other GV is local on COFF.
1140   // Make an exception for windows OS in the triple: Some firmware builds use
1141   // *-win32-macho triples. This (accidentally?) produced windows relocations
1142   // without GOT tables in older clang versions; Keep this behaviour.
1143   // FIXME: even thread local variables?
1144   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1145     return true;
1146 
1147   // Only handle COFF and ELF for now.
1148   if (!TT.isOSBinFormatELF())
1149     return false;
1150 
1151   // If this is not an executable, don't assume anything is local.
1152   const auto &CGOpts = CGM.getCodeGenOpts();
1153   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1154   const auto &LOpts = CGM.getLangOpts();
1155   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1156     // On ELF, if -fno-semantic-interposition is specified and the target
1157     // supports local aliases, there will be neither CC1
1158     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1159     // dso_local on the function if using a local alias is preferable (can avoid
1160     // PLT indirection).
1161     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1162       return false;
1163     return !(CGM.getLangOpts().SemanticInterposition ||
1164              CGM.getLangOpts().HalfNoSemanticInterposition);
1165   }
1166 
1167   // A definition cannot be preempted from an executable.
1168   if (!GV->isDeclarationForLinker())
1169     return true;
1170 
1171   // Most PIC code sequences that assume that a symbol is local cannot produce a
1172   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1173   // depended, it seems worth it to handle it here.
1174   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1175     return false;
1176 
1177   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1178   if (TT.isPPC64())
1179     return false;
1180 
1181   if (CGOpts.DirectAccessExternalData) {
1182     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1183     // for non-thread-local variables. If the symbol is not defined in the
1184     // executable, a copy relocation will be needed at link time. dso_local is
1185     // excluded for thread-local variables because they generally don't support
1186     // copy relocations.
1187     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1188       if (!Var->isThreadLocal())
1189         return true;
1190 
1191     // -fno-pic sets dso_local on a function declaration to allow direct
1192     // accesses when taking its address (similar to a data symbol). If the
1193     // function is not defined in the executable, a canonical PLT entry will be
1194     // needed at link time. -fno-direct-access-external-data can avoid the
1195     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1196     // it could just cause trouble without providing perceptible benefits.
1197     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1198       return true;
1199   }
1200 
1201   // If we can use copy relocations we can assume it is local.
1202 
1203   // Otherwise don't assume it is local.
1204   return false;
1205 }
1206 
1207 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1208   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1209 }
1210 
1211 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1212                                           GlobalDecl GD) const {
1213   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1214   // C++ destructors have a few C++ ABI specific special cases.
1215   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1216     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1217     return;
1218   }
1219   setDLLImportDLLExport(GV, D);
1220 }
1221 
1222 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1223                                           const NamedDecl *D) const {
1224   if (D && D->isExternallyVisible()) {
1225     if (D->hasAttr<DLLImportAttr>())
1226       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1227     else if ((D->hasAttr<DLLExportAttr>() ||
1228               shouldMapVisibilityToDLLExport(D)) &&
1229              !GV->isDeclarationForLinker())
1230       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1231   }
1232 }
1233 
1234 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1235                                     GlobalDecl GD) const {
1236   setDLLImportDLLExport(GV, GD);
1237   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1238 }
1239 
1240 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1241                                     const NamedDecl *D) const {
1242   setDLLImportDLLExport(GV, D);
1243   setGVPropertiesAux(GV, D);
1244 }
1245 
1246 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1247                                        const NamedDecl *D) const {
1248   setGlobalVisibility(GV, D);
1249   setDSOLocal(GV);
1250   GV->setPartition(CodeGenOpts.SymbolPartition);
1251 }
1252 
1253 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1254   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1255       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1256       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1257       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1258       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1259 }
1260 
1261 llvm::GlobalVariable::ThreadLocalMode
1262 CodeGenModule::GetDefaultLLVMTLSModel() const {
1263   switch (CodeGenOpts.getDefaultTLSModel()) {
1264   case CodeGenOptions::GeneralDynamicTLSModel:
1265     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1266   case CodeGenOptions::LocalDynamicTLSModel:
1267     return llvm::GlobalVariable::LocalDynamicTLSModel;
1268   case CodeGenOptions::InitialExecTLSModel:
1269     return llvm::GlobalVariable::InitialExecTLSModel;
1270   case CodeGenOptions::LocalExecTLSModel:
1271     return llvm::GlobalVariable::LocalExecTLSModel;
1272   }
1273   llvm_unreachable("Invalid TLS model!");
1274 }
1275 
1276 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1277   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1278 
1279   llvm::GlobalValue::ThreadLocalMode TLM;
1280   TLM = GetDefaultLLVMTLSModel();
1281 
1282   // Override the TLS model if it is explicitly specified.
1283   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1284     TLM = GetLLVMTLSModel(Attr->getModel());
1285   }
1286 
1287   GV->setThreadLocalMode(TLM);
1288 }
1289 
1290 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1291                                           StringRef Name) {
1292   const TargetInfo &Target = CGM.getTarget();
1293   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1294 }
1295 
1296 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1297                                                  const CPUSpecificAttr *Attr,
1298                                                  unsigned CPUIndex,
1299                                                  raw_ostream &Out) {
1300   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1301   // supported.
1302   if (Attr)
1303     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1304   else if (CGM.getTarget().supportsIFunc())
1305     Out << ".resolver";
1306 }
1307 
1308 static void AppendTargetMangling(const CodeGenModule &CGM,
1309                                  const TargetAttr *Attr, raw_ostream &Out) {
1310   if (Attr->isDefaultVersion())
1311     return;
1312 
1313   Out << '.';
1314   const TargetInfo &Target = CGM.getTarget();
1315   ParsedTargetAttr Info =
1316       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1317         // Multiversioning doesn't allow "no-${feature}", so we can
1318         // only have "+" prefixes here.
1319         assert(LHS.startswith("+") && RHS.startswith("+") &&
1320                "Features should always have a prefix.");
1321         return Target.multiVersionSortPriority(LHS.substr(1)) >
1322                Target.multiVersionSortPriority(RHS.substr(1));
1323       });
1324 
1325   bool IsFirst = true;
1326 
1327   if (!Info.Architecture.empty()) {
1328     IsFirst = false;
1329     Out << "arch_" << Info.Architecture;
1330   }
1331 
1332   for (StringRef Feat : Info.Features) {
1333     if (!IsFirst)
1334       Out << '_';
1335     IsFirst = false;
1336     Out << Feat.substr(1);
1337   }
1338 }
1339 
1340 // Returns true if GD is a function decl with internal linkage and
1341 // needs a unique suffix after the mangled name.
1342 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1343                                         CodeGenModule &CGM) {
1344   const Decl *D = GD.getDecl();
1345   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1346          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1347 }
1348 
1349 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1350                                        const TargetClonesAttr *Attr,
1351                                        unsigned VersionIndex,
1352                                        raw_ostream &Out) {
1353   Out << '.';
1354   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1355   if (FeatureStr.startswith("arch="))
1356     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1357   else
1358     Out << FeatureStr;
1359 
1360   Out << '.' << Attr->getMangledIndex(VersionIndex);
1361 }
1362 
1363 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1364                                       const NamedDecl *ND,
1365                                       bool OmitMultiVersionMangling = false) {
1366   SmallString<256> Buffer;
1367   llvm::raw_svector_ostream Out(Buffer);
1368   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1369   if (!CGM.getModuleNameHash().empty())
1370     MC.needsUniqueInternalLinkageNames();
1371   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1372   if (ShouldMangle)
1373     MC.mangleName(GD.getWithDecl(ND), Out);
1374   else {
1375     IdentifierInfo *II = ND->getIdentifier();
1376     assert(II && "Attempt to mangle unnamed decl.");
1377     const auto *FD = dyn_cast<FunctionDecl>(ND);
1378 
1379     if (FD &&
1380         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1381       Out << "__regcall3__" << II->getName();
1382     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1383                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1384       Out << "__device_stub__" << II->getName();
1385     } else {
1386       Out << II->getName();
1387     }
1388   }
1389 
1390   // Check if the module name hash should be appended for internal linkage
1391   // symbols.   This should come before multi-version target suffixes are
1392   // appended. This is to keep the name and module hash suffix of the
1393   // internal linkage function together.  The unique suffix should only be
1394   // added when name mangling is done to make sure that the final name can
1395   // be properly demangled.  For example, for C functions without prototypes,
1396   // name mangling is not done and the unique suffix should not be appeneded
1397   // then.
1398   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1399     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1400            "Hash computed when not explicitly requested");
1401     Out << CGM.getModuleNameHash();
1402   }
1403 
1404   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1405     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1406       switch (FD->getMultiVersionKind()) {
1407       case MultiVersionKind::CPUDispatch:
1408       case MultiVersionKind::CPUSpecific:
1409         AppendCPUSpecificCPUDispatchMangling(CGM,
1410                                              FD->getAttr<CPUSpecificAttr>(),
1411                                              GD.getMultiVersionIndex(), Out);
1412         break;
1413       case MultiVersionKind::Target:
1414         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1415         break;
1416       case MultiVersionKind::TargetClones:
1417         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1418                                    GD.getMultiVersionIndex(), Out);
1419         break;
1420       case MultiVersionKind::None:
1421         llvm_unreachable("None multiversion type isn't valid here");
1422       }
1423     }
1424 
1425   // Make unique name for device side static file-scope variable for HIP.
1426   if (CGM.getContext().shouldExternalize(ND) &&
1427       CGM.getLangOpts().GPURelocatableDeviceCode &&
1428       CGM.getLangOpts().CUDAIsDevice)
1429     CGM.printPostfixForExternalizedDecl(Out, ND);
1430 
1431   return std::string(Out.str());
1432 }
1433 
1434 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1435                                             const FunctionDecl *FD,
1436                                             StringRef &CurName) {
1437   if (!FD->isMultiVersion())
1438     return;
1439 
1440   // Get the name of what this would be without the 'target' attribute.  This
1441   // allows us to lookup the version that was emitted when this wasn't a
1442   // multiversion function.
1443   std::string NonTargetName =
1444       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1445   GlobalDecl OtherGD;
1446   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1447     assert(OtherGD.getCanonicalDecl()
1448                .getDecl()
1449                ->getAsFunction()
1450                ->isMultiVersion() &&
1451            "Other GD should now be a multiversioned function");
1452     // OtherFD is the version of this function that was mangled BEFORE
1453     // becoming a MultiVersion function.  It potentially needs to be updated.
1454     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1455                                       .getDecl()
1456                                       ->getAsFunction()
1457                                       ->getMostRecentDecl();
1458     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1459     // This is so that if the initial version was already the 'default'
1460     // version, we don't try to update it.
1461     if (OtherName != NonTargetName) {
1462       // Remove instead of erase, since others may have stored the StringRef
1463       // to this.
1464       const auto ExistingRecord = Manglings.find(NonTargetName);
1465       if (ExistingRecord != std::end(Manglings))
1466         Manglings.remove(&(*ExistingRecord));
1467       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1468       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1469           Result.first->first();
1470       // If this is the current decl is being created, make sure we update the name.
1471       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1472         CurName = OtherNameRef;
1473       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1474         Entry->setName(OtherName);
1475     }
1476   }
1477 }
1478 
1479 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1480   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1481 
1482   // Some ABIs don't have constructor variants.  Make sure that base and
1483   // complete constructors get mangled the same.
1484   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1485     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1486       CXXCtorType OrigCtorType = GD.getCtorType();
1487       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1488       if (OrigCtorType == Ctor_Base)
1489         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1490     }
1491   }
1492 
1493   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1494   // static device variable depends on whether the variable is referenced by
1495   // a host or device host function. Therefore the mangled name cannot be
1496   // cached.
1497   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1498     auto FoundName = MangledDeclNames.find(CanonicalGD);
1499     if (FoundName != MangledDeclNames.end())
1500       return FoundName->second;
1501   }
1502 
1503   // Keep the first result in the case of a mangling collision.
1504   const auto *ND = cast<NamedDecl>(GD.getDecl());
1505   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1506 
1507   // Ensure either we have different ABIs between host and device compilations,
1508   // says host compilation following MSVC ABI but device compilation follows
1509   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1510   // mangling should be the same after name stubbing. The later checking is
1511   // very important as the device kernel name being mangled in host-compilation
1512   // is used to resolve the device binaries to be executed. Inconsistent naming
1513   // result in undefined behavior. Even though we cannot check that naming
1514   // directly between host- and device-compilations, the host- and
1515   // device-mangling in host compilation could help catching certain ones.
1516   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1517          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1518          (getContext().getAuxTargetInfo() &&
1519           (getContext().getAuxTargetInfo()->getCXXABI() !=
1520            getContext().getTargetInfo().getCXXABI())) ||
1521          getCUDARuntime().getDeviceSideName(ND) ==
1522              getMangledNameImpl(
1523                  *this,
1524                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1525                  ND));
1526 
1527   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1528   return MangledDeclNames[CanonicalGD] = Result.first->first();
1529 }
1530 
1531 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1532                                              const BlockDecl *BD) {
1533   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1534   const Decl *D = GD.getDecl();
1535 
1536   SmallString<256> Buffer;
1537   llvm::raw_svector_ostream Out(Buffer);
1538   if (!D)
1539     MangleCtx.mangleGlobalBlock(BD,
1540       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1541   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1542     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1543   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1544     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1545   else
1546     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1547 
1548   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1549   return Result.first->first();
1550 }
1551 
1552 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1553   auto it = MangledDeclNames.begin();
1554   while (it != MangledDeclNames.end()) {
1555     if (it->second == Name)
1556       return it->first;
1557     it++;
1558   }
1559   return GlobalDecl();
1560 }
1561 
1562 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1563   return getModule().getNamedValue(Name);
1564 }
1565 
1566 /// AddGlobalCtor - Add a function to the list that will be called before
1567 /// main() runs.
1568 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1569                                   llvm::Constant *AssociatedData) {
1570   // FIXME: Type coercion of void()* types.
1571   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1572 }
1573 
1574 /// AddGlobalDtor - Add a function to the list that will be called
1575 /// when the module is unloaded.
1576 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1577                                   bool IsDtorAttrFunc) {
1578   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1579       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1580     DtorsUsingAtExit[Priority].push_back(Dtor);
1581     return;
1582   }
1583 
1584   // FIXME: Type coercion of void()* types.
1585   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1586 }
1587 
1588 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1589   if (Fns.empty()) return;
1590 
1591   // Ctor function type is void()*.
1592   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1593   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1594       TheModule.getDataLayout().getProgramAddressSpace());
1595 
1596   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1597   llvm::StructType *CtorStructTy = llvm::StructType::get(
1598       Int32Ty, CtorPFTy, VoidPtrTy);
1599 
1600   // Construct the constructor and destructor arrays.
1601   ConstantInitBuilder builder(*this);
1602   auto ctors = builder.beginArray(CtorStructTy);
1603   for (const auto &I : Fns) {
1604     auto ctor = ctors.beginStruct(CtorStructTy);
1605     ctor.addInt(Int32Ty, I.Priority);
1606     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1607     if (I.AssociatedData)
1608       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1609     else
1610       ctor.addNullPointer(VoidPtrTy);
1611     ctor.finishAndAddTo(ctors);
1612   }
1613 
1614   auto list =
1615     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1616                                 /*constant*/ false,
1617                                 llvm::GlobalValue::AppendingLinkage);
1618 
1619   // The LTO linker doesn't seem to like it when we set an alignment
1620   // on appending variables.  Take it off as a workaround.
1621   list->setAlignment(llvm::None);
1622 
1623   Fns.clear();
1624 }
1625 
1626 llvm::GlobalValue::LinkageTypes
1627 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1628   const auto *D = cast<FunctionDecl>(GD.getDecl());
1629 
1630   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1631 
1632   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1633     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1634 
1635   if (isa<CXXConstructorDecl>(D) &&
1636       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1637       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1638     // Our approach to inheriting constructors is fundamentally different from
1639     // that used by the MS ABI, so keep our inheriting constructor thunks
1640     // internal rather than trying to pick an unambiguous mangling for them.
1641     return llvm::GlobalValue::InternalLinkage;
1642   }
1643 
1644   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1645 }
1646 
1647 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1648   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1649   if (!MDS) return nullptr;
1650 
1651   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1652 }
1653 
1654 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1655                                               const CGFunctionInfo &Info,
1656                                               llvm::Function *F, bool IsThunk) {
1657   unsigned CallingConv;
1658   llvm::AttributeList PAL;
1659   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1660                          /*AttrOnCallSite=*/false, IsThunk);
1661   F->setAttributes(PAL);
1662   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1663 }
1664 
1665 static void removeImageAccessQualifier(std::string& TyName) {
1666   std::string ReadOnlyQual("__read_only");
1667   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1668   if (ReadOnlyPos != std::string::npos)
1669     // "+ 1" for the space after access qualifier.
1670     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1671   else {
1672     std::string WriteOnlyQual("__write_only");
1673     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1674     if (WriteOnlyPos != std::string::npos)
1675       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1676     else {
1677       std::string ReadWriteQual("__read_write");
1678       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1679       if (ReadWritePos != std::string::npos)
1680         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1681     }
1682   }
1683 }
1684 
1685 // Returns the address space id that should be produced to the
1686 // kernel_arg_addr_space metadata. This is always fixed to the ids
1687 // as specified in the SPIR 2.0 specification in order to differentiate
1688 // for example in clGetKernelArgInfo() implementation between the address
1689 // spaces with targets without unique mapping to the OpenCL address spaces
1690 // (basically all single AS CPUs).
1691 static unsigned ArgInfoAddressSpace(LangAS AS) {
1692   switch (AS) {
1693   case LangAS::opencl_global:
1694     return 1;
1695   case LangAS::opencl_constant:
1696     return 2;
1697   case LangAS::opencl_local:
1698     return 3;
1699   case LangAS::opencl_generic:
1700     return 4; // Not in SPIR 2.0 specs.
1701   case LangAS::opencl_global_device:
1702     return 5;
1703   case LangAS::opencl_global_host:
1704     return 6;
1705   default:
1706     return 0; // Assume private.
1707   }
1708 }
1709 
1710 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1711                                          const FunctionDecl *FD,
1712                                          CodeGenFunction *CGF) {
1713   assert(((FD && CGF) || (!FD && !CGF)) &&
1714          "Incorrect use - FD and CGF should either be both null or not!");
1715   // Create MDNodes that represent the kernel arg metadata.
1716   // Each MDNode is a list in the form of "key", N number of values which is
1717   // the same number of values as their are kernel arguments.
1718 
1719   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1720 
1721   // MDNode for the kernel argument address space qualifiers.
1722   SmallVector<llvm::Metadata *, 8> addressQuals;
1723 
1724   // MDNode for the kernel argument access qualifiers (images only).
1725   SmallVector<llvm::Metadata *, 8> accessQuals;
1726 
1727   // MDNode for the kernel argument type names.
1728   SmallVector<llvm::Metadata *, 8> argTypeNames;
1729 
1730   // MDNode for the kernel argument base type names.
1731   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1732 
1733   // MDNode for the kernel argument type qualifiers.
1734   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1735 
1736   // MDNode for the kernel argument names.
1737   SmallVector<llvm::Metadata *, 8> argNames;
1738 
1739   if (FD && CGF)
1740     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1741       const ParmVarDecl *parm = FD->getParamDecl(i);
1742       // Get argument name.
1743       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1744 
1745       if (!getLangOpts().OpenCL)
1746         continue;
1747       QualType ty = parm->getType();
1748       std::string typeQuals;
1749 
1750       // Get image and pipe access qualifier:
1751       if (ty->isImageType() || ty->isPipeType()) {
1752         const Decl *PDecl = parm;
1753         if (auto *TD = dyn_cast<TypedefType>(ty))
1754           PDecl = TD->getDecl();
1755         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1756         if (A && A->isWriteOnly())
1757           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1758         else if (A && A->isReadWrite())
1759           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1760         else
1761           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1762       } else
1763         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1764 
1765       auto getTypeSpelling = [&](QualType Ty) {
1766         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1767 
1768         if (Ty.isCanonical()) {
1769           StringRef typeNameRef = typeName;
1770           // Turn "unsigned type" to "utype"
1771           if (typeNameRef.consume_front("unsigned "))
1772             return std::string("u") + typeNameRef.str();
1773           if (typeNameRef.consume_front("signed "))
1774             return typeNameRef.str();
1775         }
1776 
1777         return typeName;
1778       };
1779 
1780       if (ty->isPointerType()) {
1781         QualType pointeeTy = ty->getPointeeType();
1782 
1783         // Get address qualifier.
1784         addressQuals.push_back(
1785             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1786                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1787 
1788         // Get argument type name.
1789         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1790         std::string baseTypeName =
1791             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1792         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1793         argBaseTypeNames.push_back(
1794             llvm::MDString::get(VMContext, baseTypeName));
1795 
1796         // Get argument type qualifiers:
1797         if (ty.isRestrictQualified())
1798           typeQuals = "restrict";
1799         if (pointeeTy.isConstQualified() ||
1800             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1801           typeQuals += typeQuals.empty() ? "const" : " const";
1802         if (pointeeTy.isVolatileQualified())
1803           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1804       } else {
1805         uint32_t AddrSpc = 0;
1806         bool isPipe = ty->isPipeType();
1807         if (ty->isImageType() || isPipe)
1808           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1809 
1810         addressQuals.push_back(
1811             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1812 
1813         // Get argument type name.
1814         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1815         std::string typeName = getTypeSpelling(ty);
1816         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1817 
1818         // Remove access qualifiers on images
1819         // (as they are inseparable from type in clang implementation,
1820         // but OpenCL spec provides a special query to get access qualifier
1821         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1822         if (ty->isImageType()) {
1823           removeImageAccessQualifier(typeName);
1824           removeImageAccessQualifier(baseTypeName);
1825         }
1826 
1827         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1828         argBaseTypeNames.push_back(
1829             llvm::MDString::get(VMContext, baseTypeName));
1830 
1831         if (isPipe)
1832           typeQuals = "pipe";
1833       }
1834       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1835     }
1836 
1837   if (getLangOpts().OpenCL) {
1838     Fn->setMetadata("kernel_arg_addr_space",
1839                     llvm::MDNode::get(VMContext, addressQuals));
1840     Fn->setMetadata("kernel_arg_access_qual",
1841                     llvm::MDNode::get(VMContext, accessQuals));
1842     Fn->setMetadata("kernel_arg_type",
1843                     llvm::MDNode::get(VMContext, argTypeNames));
1844     Fn->setMetadata("kernel_arg_base_type",
1845                     llvm::MDNode::get(VMContext, argBaseTypeNames));
1846     Fn->setMetadata("kernel_arg_type_qual",
1847                     llvm::MDNode::get(VMContext, argTypeQuals));
1848   }
1849   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1850       getCodeGenOpts().HIPSaveKernelArgName)
1851     Fn->setMetadata("kernel_arg_name",
1852                     llvm::MDNode::get(VMContext, argNames));
1853 }
1854 
1855 /// Determines whether the language options require us to model
1856 /// unwind exceptions.  We treat -fexceptions as mandating this
1857 /// except under the fragile ObjC ABI with only ObjC exceptions
1858 /// enabled.  This means, for example, that C with -fexceptions
1859 /// enables this.
1860 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1861   // If exceptions are completely disabled, obviously this is false.
1862   if (!LangOpts.Exceptions) return false;
1863 
1864   // If C++ exceptions are enabled, this is true.
1865   if (LangOpts.CXXExceptions) return true;
1866 
1867   // If ObjC exceptions are enabled, this depends on the ABI.
1868   if (LangOpts.ObjCExceptions) {
1869     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1870   }
1871 
1872   return true;
1873 }
1874 
1875 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1876                                                       const CXXMethodDecl *MD) {
1877   // Check that the type metadata can ever actually be used by a call.
1878   if (!CGM.getCodeGenOpts().LTOUnit ||
1879       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1880     return false;
1881 
1882   // Only functions whose address can be taken with a member function pointer
1883   // need this sort of type metadata.
1884   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1885          !isa<CXXDestructorDecl>(MD);
1886 }
1887 
1888 std::vector<const CXXRecordDecl *>
1889 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1890   llvm::SetVector<const CXXRecordDecl *> MostBases;
1891 
1892   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1893   CollectMostBases = [&](const CXXRecordDecl *RD) {
1894     if (RD->getNumBases() == 0)
1895       MostBases.insert(RD);
1896     for (const CXXBaseSpecifier &B : RD->bases())
1897       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1898   };
1899   CollectMostBases(RD);
1900   return MostBases.takeVector();
1901 }
1902 
1903 llvm::GlobalVariable *
1904 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
1905   auto It = RTTIProxyMap.find(Addr);
1906   if (It != RTTIProxyMap.end())
1907     return It->second;
1908 
1909   auto *FTRTTIProxy = new llvm::GlobalVariable(
1910       TheModule, Addr->getType(),
1911       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
1912       "__llvm_rtti_proxy");
1913   FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1914 
1915   RTTIProxyMap[Addr] = FTRTTIProxy;
1916   return FTRTTIProxy;
1917 }
1918 
1919 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1920                                                            llvm::Function *F) {
1921   llvm::AttrBuilder B(F->getContext());
1922 
1923   if (CodeGenOpts.UnwindTables)
1924     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1925 
1926   if (CodeGenOpts.StackClashProtector)
1927     B.addAttribute("probe-stack", "inline-asm");
1928 
1929   if (!hasUnwindExceptions(LangOpts))
1930     B.addAttribute(llvm::Attribute::NoUnwind);
1931 
1932   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1933     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1934       B.addAttribute(llvm::Attribute::StackProtect);
1935     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1936       B.addAttribute(llvm::Attribute::StackProtectStrong);
1937     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1938       B.addAttribute(llvm::Attribute::StackProtectReq);
1939   }
1940 
1941   if (!D) {
1942     // If we don't have a declaration to control inlining, the function isn't
1943     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1944     // disabled, mark the function as noinline.
1945     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1946         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1947       B.addAttribute(llvm::Attribute::NoInline);
1948 
1949     F->addFnAttrs(B);
1950     return;
1951   }
1952 
1953   // Track whether we need to add the optnone LLVM attribute,
1954   // starting with the default for this optimization level.
1955   bool ShouldAddOptNone =
1956       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1957   // We can't add optnone in the following cases, it won't pass the verifier.
1958   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1959   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1960 
1961   // Add optnone, but do so only if the function isn't always_inline.
1962   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1963       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1964     B.addAttribute(llvm::Attribute::OptimizeNone);
1965 
1966     // OptimizeNone implies noinline; we should not be inlining such functions.
1967     B.addAttribute(llvm::Attribute::NoInline);
1968 
1969     // We still need to handle naked functions even though optnone subsumes
1970     // much of their semantics.
1971     if (D->hasAttr<NakedAttr>())
1972       B.addAttribute(llvm::Attribute::Naked);
1973 
1974     // OptimizeNone wins over OptimizeForSize and MinSize.
1975     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1976     F->removeFnAttr(llvm::Attribute::MinSize);
1977   } else if (D->hasAttr<NakedAttr>()) {
1978     // Naked implies noinline: we should not be inlining such functions.
1979     B.addAttribute(llvm::Attribute::Naked);
1980     B.addAttribute(llvm::Attribute::NoInline);
1981   } else if (D->hasAttr<NoDuplicateAttr>()) {
1982     B.addAttribute(llvm::Attribute::NoDuplicate);
1983   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1984     // Add noinline if the function isn't always_inline.
1985     B.addAttribute(llvm::Attribute::NoInline);
1986   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1987              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1988     // (noinline wins over always_inline, and we can't specify both in IR)
1989     B.addAttribute(llvm::Attribute::AlwaysInline);
1990   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1991     // If we're not inlining, then force everything that isn't always_inline to
1992     // carry an explicit noinline attribute.
1993     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1994       B.addAttribute(llvm::Attribute::NoInline);
1995   } else {
1996     // Otherwise, propagate the inline hint attribute and potentially use its
1997     // absence to mark things as noinline.
1998     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1999       // Search function and template pattern redeclarations for inline.
2000       auto CheckForInline = [](const FunctionDecl *FD) {
2001         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2002           return Redecl->isInlineSpecified();
2003         };
2004         if (any_of(FD->redecls(), CheckRedeclForInline))
2005           return true;
2006         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2007         if (!Pattern)
2008           return false;
2009         return any_of(Pattern->redecls(), CheckRedeclForInline);
2010       };
2011       if (CheckForInline(FD)) {
2012         B.addAttribute(llvm::Attribute::InlineHint);
2013       } else if (CodeGenOpts.getInlining() ==
2014                      CodeGenOptions::OnlyHintInlining &&
2015                  !FD->isInlined() &&
2016                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2017         B.addAttribute(llvm::Attribute::NoInline);
2018       }
2019     }
2020   }
2021 
2022   // Add other optimization related attributes if we are optimizing this
2023   // function.
2024   if (!D->hasAttr<OptimizeNoneAttr>()) {
2025     if (D->hasAttr<ColdAttr>()) {
2026       if (!ShouldAddOptNone)
2027         B.addAttribute(llvm::Attribute::OptimizeForSize);
2028       B.addAttribute(llvm::Attribute::Cold);
2029     }
2030     if (D->hasAttr<HotAttr>())
2031       B.addAttribute(llvm::Attribute::Hot);
2032     if (D->hasAttr<MinSizeAttr>())
2033       B.addAttribute(llvm::Attribute::MinSize);
2034   }
2035 
2036   F->addFnAttrs(B);
2037 
2038   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2039   if (alignment)
2040     F->setAlignment(llvm::Align(alignment));
2041 
2042   if (!D->hasAttr<AlignedAttr>())
2043     if (LangOpts.FunctionAlignment)
2044       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2045 
2046   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2047   // reserve a bit for differentiating between virtual and non-virtual member
2048   // functions. If the current target's C++ ABI requires this and this is a
2049   // member function, set its alignment accordingly.
2050   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2051     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2052       F->setAlignment(llvm::Align(2));
2053   }
2054 
2055   // In the cross-dso CFI mode with canonical jump tables, we want !type
2056   // attributes on definitions only.
2057   if (CodeGenOpts.SanitizeCfiCrossDso &&
2058       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2059     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2060       // Skip available_externally functions. They won't be codegen'ed in the
2061       // current module anyway.
2062       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2063         CreateFunctionTypeMetadataForIcall(FD, F);
2064     }
2065   }
2066 
2067   // Emit type metadata on member functions for member function pointer checks.
2068   // These are only ever necessary on definitions; we're guaranteed that the
2069   // definition will be present in the LTO unit as a result of LTO visibility.
2070   auto *MD = dyn_cast<CXXMethodDecl>(D);
2071   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2072     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2073       llvm::Metadata *Id =
2074           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2075               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2076       F->addTypeMetadata(0, Id);
2077     }
2078   }
2079 }
2080 
2081 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2082                                                   llvm::Function *F) {
2083   if (D->hasAttr<StrictFPAttr>()) {
2084     llvm::AttrBuilder FuncAttrs(F->getContext());
2085     FuncAttrs.addAttribute("strictfp");
2086     F->addFnAttrs(FuncAttrs);
2087   }
2088 }
2089 
2090 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2091   const Decl *D = GD.getDecl();
2092   if (isa_and_nonnull<NamedDecl>(D))
2093     setGVProperties(GV, GD);
2094   else
2095     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2096 
2097   if (D && D->hasAttr<UsedAttr>())
2098     addUsedOrCompilerUsedGlobal(GV);
2099 
2100   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2101     const auto *VD = cast<VarDecl>(D);
2102     if (VD->getType().isConstQualified() &&
2103         VD->getStorageDuration() == SD_Static)
2104       addUsedOrCompilerUsedGlobal(GV);
2105   }
2106 }
2107 
2108 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2109                                                 llvm::AttrBuilder &Attrs) {
2110   // Add target-cpu and target-features attributes to functions. If
2111   // we have a decl for the function and it has a target attribute then
2112   // parse that and add it to the feature set.
2113   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2114   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2115   std::vector<std::string> Features;
2116   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2117   FD = FD ? FD->getMostRecentDecl() : FD;
2118   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2119   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2120   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2121   bool AddedAttr = false;
2122   if (TD || SD || TC) {
2123     llvm::StringMap<bool> FeatureMap;
2124     getContext().getFunctionFeatureMap(FeatureMap, GD);
2125 
2126     // Produce the canonical string for this set of features.
2127     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2128       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2129 
2130     // Now add the target-cpu and target-features to the function.
2131     // While we populated the feature map above, we still need to
2132     // get and parse the target attribute so we can get the cpu for
2133     // the function.
2134     if (TD) {
2135       ParsedTargetAttr ParsedAttr = TD->parse();
2136       if (!ParsedAttr.Architecture.empty() &&
2137           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2138         TargetCPU = ParsedAttr.Architecture;
2139         TuneCPU = ""; // Clear the tune CPU.
2140       }
2141       if (!ParsedAttr.Tune.empty() &&
2142           getTarget().isValidCPUName(ParsedAttr.Tune))
2143         TuneCPU = ParsedAttr.Tune;
2144     }
2145 
2146     if (SD) {
2147       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2148       // favor this processor.
2149       TuneCPU = getTarget().getCPUSpecificTuneName(
2150           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2151     }
2152   } else {
2153     // Otherwise just add the existing target cpu and target features to the
2154     // function.
2155     Features = getTarget().getTargetOpts().Features;
2156   }
2157 
2158   if (!TargetCPU.empty()) {
2159     Attrs.addAttribute("target-cpu", TargetCPU);
2160     AddedAttr = true;
2161   }
2162   if (!TuneCPU.empty()) {
2163     Attrs.addAttribute("tune-cpu", TuneCPU);
2164     AddedAttr = true;
2165   }
2166   if (!Features.empty()) {
2167     llvm::sort(Features);
2168     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2169     AddedAttr = true;
2170   }
2171 
2172   return AddedAttr;
2173 }
2174 
2175 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2176                                           llvm::GlobalObject *GO) {
2177   const Decl *D = GD.getDecl();
2178   SetCommonAttributes(GD, GO);
2179 
2180   if (D) {
2181     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2182       if (D->hasAttr<RetainAttr>())
2183         addUsedGlobal(GV);
2184       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2185         GV->addAttribute("bss-section", SA->getName());
2186       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2187         GV->addAttribute("data-section", SA->getName());
2188       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2189         GV->addAttribute("rodata-section", SA->getName());
2190       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2191         GV->addAttribute("relro-section", SA->getName());
2192     }
2193 
2194     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2195       if (D->hasAttr<RetainAttr>())
2196         addUsedGlobal(F);
2197       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2198         if (!D->getAttr<SectionAttr>())
2199           F->addFnAttr("implicit-section-name", SA->getName());
2200 
2201       llvm::AttrBuilder Attrs(F->getContext());
2202       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2203         // We know that GetCPUAndFeaturesAttributes will always have the
2204         // newest set, since it has the newest possible FunctionDecl, so the
2205         // new ones should replace the old.
2206         llvm::AttributeMask RemoveAttrs;
2207         RemoveAttrs.addAttribute("target-cpu");
2208         RemoveAttrs.addAttribute("target-features");
2209         RemoveAttrs.addAttribute("tune-cpu");
2210         F->removeFnAttrs(RemoveAttrs);
2211         F->addFnAttrs(Attrs);
2212       }
2213     }
2214 
2215     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2216       GO->setSection(CSA->getName());
2217     else if (const auto *SA = D->getAttr<SectionAttr>())
2218       GO->setSection(SA->getName());
2219   }
2220 
2221   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2222 }
2223 
2224 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2225                                                   llvm::Function *F,
2226                                                   const CGFunctionInfo &FI) {
2227   const Decl *D = GD.getDecl();
2228   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2229   SetLLVMFunctionAttributesForDefinition(D, F);
2230 
2231   F->setLinkage(llvm::Function::InternalLinkage);
2232 
2233   setNonAliasAttributes(GD, F);
2234 }
2235 
2236 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2237   // Set linkage and visibility in case we never see a definition.
2238   LinkageInfo LV = ND->getLinkageAndVisibility();
2239   // Don't set internal linkage on declarations.
2240   // "extern_weak" is overloaded in LLVM; we probably should have
2241   // separate linkage types for this.
2242   if (isExternallyVisible(LV.getLinkage()) &&
2243       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2244     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2245 }
2246 
2247 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2248                                                        llvm::Function *F) {
2249   // Only if we are checking indirect calls.
2250   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2251     return;
2252 
2253   // Non-static class methods are handled via vtable or member function pointer
2254   // checks elsewhere.
2255   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2256     return;
2257 
2258   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2259   F->addTypeMetadata(0, MD);
2260   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2261 
2262   // Emit a hash-based bit set entry for cross-DSO calls.
2263   if (CodeGenOpts.SanitizeCfiCrossDso)
2264     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2265       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2266 }
2267 
2268 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2269                                           bool IsIncompleteFunction,
2270                                           bool IsThunk) {
2271 
2272   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2273     // If this is an intrinsic function, set the function's attributes
2274     // to the intrinsic's attributes.
2275     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2276     return;
2277   }
2278 
2279   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2280 
2281   if (!IsIncompleteFunction)
2282     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2283                               IsThunk);
2284 
2285   // Add the Returned attribute for "this", except for iOS 5 and earlier
2286   // where substantial code, including the libstdc++ dylib, was compiled with
2287   // GCC and does not actually return "this".
2288   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2289       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2290     assert(!F->arg_empty() &&
2291            F->arg_begin()->getType()
2292              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2293            "unexpected this return");
2294     F->addParamAttr(0, llvm::Attribute::Returned);
2295   }
2296 
2297   // Only a few attributes are set on declarations; these may later be
2298   // overridden by a definition.
2299 
2300   setLinkageForGV(F, FD);
2301   setGVProperties(F, FD);
2302 
2303   // Setup target-specific attributes.
2304   if (!IsIncompleteFunction && F->isDeclaration())
2305     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2306 
2307   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2308     F->setSection(CSA->getName());
2309   else if (const auto *SA = FD->getAttr<SectionAttr>())
2310      F->setSection(SA->getName());
2311 
2312   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2313     if (EA->isError())
2314       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2315     else if (EA->isWarning())
2316       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2317   }
2318 
2319   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2320   if (FD->isInlineBuiltinDeclaration()) {
2321     const FunctionDecl *FDBody;
2322     bool HasBody = FD->hasBody(FDBody);
2323     (void)HasBody;
2324     assert(HasBody && "Inline builtin declarations should always have an "
2325                       "available body!");
2326     if (shouldEmitFunction(FDBody))
2327       F->addFnAttr(llvm::Attribute::NoBuiltin);
2328   }
2329 
2330   if (FD->isReplaceableGlobalAllocationFunction()) {
2331     // A replaceable global allocation function does not act like a builtin by
2332     // default, only if it is invoked by a new-expression or delete-expression.
2333     F->addFnAttr(llvm::Attribute::NoBuiltin);
2334   }
2335 
2336   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2337     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2338   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2339     if (MD->isVirtual())
2340       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2341 
2342   // Don't emit entries for function declarations in the cross-DSO mode. This
2343   // is handled with better precision by the receiving DSO. But if jump tables
2344   // are non-canonical then we need type metadata in order to produce the local
2345   // jump table.
2346   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2347       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2348     CreateFunctionTypeMetadataForIcall(FD, F);
2349 
2350   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2351     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2352 
2353   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2354     // Annotate the callback behavior as metadata:
2355     //  - The callback callee (as argument number).
2356     //  - The callback payloads (as argument numbers).
2357     llvm::LLVMContext &Ctx = F->getContext();
2358     llvm::MDBuilder MDB(Ctx);
2359 
2360     // The payload indices are all but the first one in the encoding. The first
2361     // identifies the callback callee.
2362     int CalleeIdx = *CB->encoding_begin();
2363     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2364     F->addMetadata(llvm::LLVMContext::MD_callback,
2365                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2366                                                CalleeIdx, PayloadIndices,
2367                                                /* VarArgsArePassed */ false)}));
2368   }
2369 }
2370 
2371 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2372   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2373          "Only globals with definition can force usage.");
2374   LLVMUsed.emplace_back(GV);
2375 }
2376 
2377 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2378   assert(!GV->isDeclaration() &&
2379          "Only globals with definition can force usage.");
2380   LLVMCompilerUsed.emplace_back(GV);
2381 }
2382 
2383 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2384   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2385          "Only globals with definition can force usage.");
2386   if (getTriple().isOSBinFormatELF())
2387     LLVMCompilerUsed.emplace_back(GV);
2388   else
2389     LLVMUsed.emplace_back(GV);
2390 }
2391 
2392 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2393                      std::vector<llvm::WeakTrackingVH> &List) {
2394   // Don't create llvm.used if there is no need.
2395   if (List.empty())
2396     return;
2397 
2398   // Convert List to what ConstantArray needs.
2399   SmallVector<llvm::Constant*, 8> UsedArray;
2400   UsedArray.resize(List.size());
2401   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2402     UsedArray[i] =
2403         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2404             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2405   }
2406 
2407   if (UsedArray.empty())
2408     return;
2409   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2410 
2411   auto *GV = new llvm::GlobalVariable(
2412       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2413       llvm::ConstantArray::get(ATy, UsedArray), Name);
2414 
2415   GV->setSection("llvm.metadata");
2416 }
2417 
2418 void CodeGenModule::emitLLVMUsed() {
2419   emitUsed(*this, "llvm.used", LLVMUsed);
2420   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2421 }
2422 
2423 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2424   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2425   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2426 }
2427 
2428 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2429   llvm::SmallString<32> Opt;
2430   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2431   if (Opt.empty())
2432     return;
2433   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2434   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2435 }
2436 
2437 void CodeGenModule::AddDependentLib(StringRef Lib) {
2438   auto &C = getLLVMContext();
2439   if (getTarget().getTriple().isOSBinFormatELF()) {
2440       ELFDependentLibraries.push_back(
2441         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2442     return;
2443   }
2444 
2445   llvm::SmallString<24> Opt;
2446   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2447   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2448   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2449 }
2450 
2451 /// Add link options implied by the given module, including modules
2452 /// it depends on, using a postorder walk.
2453 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2454                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2455                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2456   // Import this module's parent.
2457   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2458     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2459   }
2460 
2461   // Import this module's dependencies.
2462   for (Module *Import : llvm::reverse(Mod->Imports)) {
2463     if (Visited.insert(Import).second)
2464       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2465   }
2466 
2467   // Add linker options to link against the libraries/frameworks
2468   // described by this module.
2469   llvm::LLVMContext &Context = CGM.getLLVMContext();
2470   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2471 
2472   // For modules that use export_as for linking, use that module
2473   // name instead.
2474   if (Mod->UseExportAsModuleLinkName)
2475     return;
2476 
2477   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2478     // Link against a framework.  Frameworks are currently Darwin only, so we
2479     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2480     if (LL.IsFramework) {
2481       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2482                                  llvm::MDString::get(Context, LL.Library)};
2483 
2484       Metadata.push_back(llvm::MDNode::get(Context, Args));
2485       continue;
2486     }
2487 
2488     // Link against a library.
2489     if (IsELF) {
2490       llvm::Metadata *Args[2] = {
2491           llvm::MDString::get(Context, "lib"),
2492           llvm::MDString::get(Context, LL.Library),
2493       };
2494       Metadata.push_back(llvm::MDNode::get(Context, Args));
2495     } else {
2496       llvm::SmallString<24> Opt;
2497       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2498       auto *OptString = llvm::MDString::get(Context, Opt);
2499       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2500     }
2501   }
2502 }
2503 
2504 void CodeGenModule::EmitModuleLinkOptions() {
2505   // Collect the set of all of the modules we want to visit to emit link
2506   // options, which is essentially the imported modules and all of their
2507   // non-explicit child modules.
2508   llvm::SetVector<clang::Module *> LinkModules;
2509   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2510   SmallVector<clang::Module *, 16> Stack;
2511 
2512   // Seed the stack with imported modules.
2513   for (Module *M : ImportedModules) {
2514     // Do not add any link flags when an implementation TU of a module imports
2515     // a header of that same module.
2516     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2517         !getLangOpts().isCompilingModule())
2518       continue;
2519     if (Visited.insert(M).second)
2520       Stack.push_back(M);
2521   }
2522 
2523   // Find all of the modules to import, making a little effort to prune
2524   // non-leaf modules.
2525   while (!Stack.empty()) {
2526     clang::Module *Mod = Stack.pop_back_val();
2527 
2528     bool AnyChildren = false;
2529 
2530     // Visit the submodules of this module.
2531     for (const auto &SM : Mod->submodules()) {
2532       // Skip explicit children; they need to be explicitly imported to be
2533       // linked against.
2534       if (SM->IsExplicit)
2535         continue;
2536 
2537       if (Visited.insert(SM).second) {
2538         Stack.push_back(SM);
2539         AnyChildren = true;
2540       }
2541     }
2542 
2543     // We didn't find any children, so add this module to the list of
2544     // modules to link against.
2545     if (!AnyChildren) {
2546       LinkModules.insert(Mod);
2547     }
2548   }
2549 
2550   // Add link options for all of the imported modules in reverse topological
2551   // order.  We don't do anything to try to order import link flags with respect
2552   // to linker options inserted by things like #pragma comment().
2553   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2554   Visited.clear();
2555   for (Module *M : LinkModules)
2556     if (Visited.insert(M).second)
2557       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2558   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2559   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2560 
2561   // Add the linker options metadata flag.
2562   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2563   for (auto *MD : LinkerOptionsMetadata)
2564     NMD->addOperand(MD);
2565 }
2566 
2567 void CodeGenModule::EmitDeferred() {
2568   // Emit deferred declare target declarations.
2569   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2570     getOpenMPRuntime().emitDeferredTargetDecls();
2571 
2572   // Emit code for any potentially referenced deferred decls.  Since a
2573   // previously unused static decl may become used during the generation of code
2574   // for a static function, iterate until no changes are made.
2575 
2576   if (!DeferredVTables.empty()) {
2577     EmitDeferredVTables();
2578 
2579     // Emitting a vtable doesn't directly cause more vtables to
2580     // become deferred, although it can cause functions to be
2581     // emitted that then need those vtables.
2582     assert(DeferredVTables.empty());
2583   }
2584 
2585   // Emit CUDA/HIP static device variables referenced by host code only.
2586   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2587   // needed for further handling.
2588   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2589     llvm::append_range(DeferredDeclsToEmit,
2590                        getContext().CUDADeviceVarODRUsedByHost);
2591 
2592   // Stop if we're out of both deferred vtables and deferred declarations.
2593   if (DeferredDeclsToEmit.empty())
2594     return;
2595 
2596   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2597   // work, it will not interfere with this.
2598   std::vector<GlobalDecl> CurDeclsToEmit;
2599   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2600 
2601   for (GlobalDecl &D : CurDeclsToEmit) {
2602     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2603     // to get GlobalValue with exactly the type we need, not something that
2604     // might had been created for another decl with the same mangled name but
2605     // different type.
2606     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2607         GetAddrOfGlobal(D, ForDefinition));
2608 
2609     // In case of different address spaces, we may still get a cast, even with
2610     // IsForDefinition equal to true. Query mangled names table to get
2611     // GlobalValue.
2612     if (!GV)
2613       GV = GetGlobalValue(getMangledName(D));
2614 
2615     // Make sure GetGlobalValue returned non-null.
2616     assert(GV);
2617 
2618     // Check to see if we've already emitted this.  This is necessary
2619     // for a couple of reasons: first, decls can end up in the
2620     // deferred-decls queue multiple times, and second, decls can end
2621     // up with definitions in unusual ways (e.g. by an extern inline
2622     // function acquiring a strong function redefinition).  Just
2623     // ignore these cases.
2624     if (!GV->isDeclaration())
2625       continue;
2626 
2627     // If this is OpenMP, check if it is legal to emit this global normally.
2628     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2629       continue;
2630 
2631     // Otherwise, emit the definition and move on to the next one.
2632     EmitGlobalDefinition(D, GV);
2633 
2634     // If we found out that we need to emit more decls, do that recursively.
2635     // This has the advantage that the decls are emitted in a DFS and related
2636     // ones are close together, which is convenient for testing.
2637     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2638       EmitDeferred();
2639       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2640     }
2641   }
2642 }
2643 
2644 void CodeGenModule::EmitVTablesOpportunistically() {
2645   // Try to emit external vtables as available_externally if they have emitted
2646   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2647   // is not allowed to create new references to things that need to be emitted
2648   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2649 
2650   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2651          && "Only emit opportunistic vtables with optimizations");
2652 
2653   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2654     assert(getVTables().isVTableExternal(RD) &&
2655            "This queue should only contain external vtables");
2656     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2657       VTables.GenerateClassData(RD);
2658   }
2659   OpportunisticVTables.clear();
2660 }
2661 
2662 void CodeGenModule::EmitGlobalAnnotations() {
2663   if (Annotations.empty())
2664     return;
2665 
2666   // Create a new global variable for the ConstantStruct in the Module.
2667   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2668     Annotations[0]->getType(), Annotations.size()), Annotations);
2669   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2670                                       llvm::GlobalValue::AppendingLinkage,
2671                                       Array, "llvm.global.annotations");
2672   gv->setSection(AnnotationSection);
2673 }
2674 
2675 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2676   llvm::Constant *&AStr = AnnotationStrings[Str];
2677   if (AStr)
2678     return AStr;
2679 
2680   // Not found yet, create a new global.
2681   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2682   auto *gv =
2683       new llvm::GlobalVariable(getModule(), s->getType(), true,
2684                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2685   gv->setSection(AnnotationSection);
2686   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2687   AStr = gv;
2688   return gv;
2689 }
2690 
2691 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2692   SourceManager &SM = getContext().getSourceManager();
2693   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2694   if (PLoc.isValid())
2695     return EmitAnnotationString(PLoc.getFilename());
2696   return EmitAnnotationString(SM.getBufferName(Loc));
2697 }
2698 
2699 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2700   SourceManager &SM = getContext().getSourceManager();
2701   PresumedLoc PLoc = SM.getPresumedLoc(L);
2702   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2703     SM.getExpansionLineNumber(L);
2704   return llvm::ConstantInt::get(Int32Ty, LineNo);
2705 }
2706 
2707 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2708   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2709   if (Exprs.empty())
2710     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2711 
2712   llvm::FoldingSetNodeID ID;
2713   for (Expr *E : Exprs) {
2714     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2715   }
2716   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2717   if (Lookup)
2718     return Lookup;
2719 
2720   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2721   LLVMArgs.reserve(Exprs.size());
2722   ConstantEmitter ConstEmiter(*this);
2723   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2724     const auto *CE = cast<clang::ConstantExpr>(E);
2725     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2726                                     CE->getType());
2727   });
2728   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2729   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2730                                       llvm::GlobalValue::PrivateLinkage, Struct,
2731                                       ".args");
2732   GV->setSection(AnnotationSection);
2733   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2734   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2735 
2736   Lookup = Bitcasted;
2737   return Bitcasted;
2738 }
2739 
2740 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2741                                                 const AnnotateAttr *AA,
2742                                                 SourceLocation L) {
2743   // Get the globals for file name, annotation, and the line number.
2744   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2745                  *UnitGV = EmitAnnotationUnit(L),
2746                  *LineNoCst = EmitAnnotationLineNo(L),
2747                  *Args = EmitAnnotationArgs(AA);
2748 
2749   llvm::Constant *GVInGlobalsAS = GV;
2750   if (GV->getAddressSpace() !=
2751       getDataLayout().getDefaultGlobalsAddressSpace()) {
2752     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2753         GV, GV->getValueType()->getPointerTo(
2754                 getDataLayout().getDefaultGlobalsAddressSpace()));
2755   }
2756 
2757   // Create the ConstantStruct for the global annotation.
2758   llvm::Constant *Fields[] = {
2759       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2760       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2761       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2762       LineNoCst,
2763       Args,
2764   };
2765   return llvm::ConstantStruct::getAnon(Fields);
2766 }
2767 
2768 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2769                                          llvm::GlobalValue *GV) {
2770   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2771   // Get the struct elements for these annotations.
2772   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2773     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2774 }
2775 
2776 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2777                                        SourceLocation Loc) const {
2778   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2779   // NoSanitize by function name.
2780   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2781     return true;
2782   // NoSanitize by location.
2783   if (Loc.isValid())
2784     return NoSanitizeL.containsLocation(Kind, Loc);
2785   // If location is unknown, this may be a compiler-generated function. Assume
2786   // it's located in the main file.
2787   auto &SM = Context.getSourceManager();
2788   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2789     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2790   }
2791   return false;
2792 }
2793 
2794 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2795                                        llvm::GlobalVariable *GV,
2796                                        SourceLocation Loc, QualType Ty,
2797                                        StringRef Category) const {
2798   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2799   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2800     return true;
2801   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2802     return true;
2803   // Check global type.
2804   if (!Ty.isNull()) {
2805     // Drill down the array types: if global variable of a fixed type is
2806     // not sanitized, we also don't instrument arrays of them.
2807     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2808       Ty = AT->getElementType();
2809     Ty = Ty.getCanonicalType().getUnqualifiedType();
2810     // Only record types (classes, structs etc.) are ignored.
2811     if (Ty->isRecordType()) {
2812       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2813       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
2814         return true;
2815     }
2816   }
2817   return false;
2818 }
2819 
2820 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2821                                    StringRef Category) const {
2822   const auto &XRayFilter = getContext().getXRayFilter();
2823   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2824   auto Attr = ImbueAttr::NONE;
2825   if (Loc.isValid())
2826     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2827   if (Attr == ImbueAttr::NONE)
2828     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2829   switch (Attr) {
2830   case ImbueAttr::NONE:
2831     return false;
2832   case ImbueAttr::ALWAYS:
2833     Fn->addFnAttr("function-instrument", "xray-always");
2834     break;
2835   case ImbueAttr::ALWAYS_ARG1:
2836     Fn->addFnAttr("function-instrument", "xray-always");
2837     Fn->addFnAttr("xray-log-args", "1");
2838     break;
2839   case ImbueAttr::NEVER:
2840     Fn->addFnAttr("function-instrument", "xray-never");
2841     break;
2842   }
2843   return true;
2844 }
2845 
2846 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2847                                            SourceLocation Loc) const {
2848   const auto &ProfileList = getContext().getProfileList();
2849   // If the profile list is empty, then instrument everything.
2850   if (ProfileList.isEmpty())
2851     return false;
2852   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2853   // First, check the function name.
2854   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2855   if (V)
2856     return *V;
2857   // Next, check the source location.
2858   if (Loc.isValid()) {
2859     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2860     if (V)
2861       return *V;
2862   }
2863   // If location is unknown, this may be a compiler-generated function. Assume
2864   // it's located in the main file.
2865   auto &SM = Context.getSourceManager();
2866   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2867     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2868     if (V)
2869       return *V;
2870   }
2871   return ProfileList.getDefault();
2872 }
2873 
2874 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2875   // Never defer when EmitAllDecls is specified.
2876   if (LangOpts.EmitAllDecls)
2877     return true;
2878 
2879   if (CodeGenOpts.KeepStaticConsts) {
2880     const auto *VD = dyn_cast<VarDecl>(Global);
2881     if (VD && VD->getType().isConstQualified() &&
2882         VD->getStorageDuration() == SD_Static)
2883       return true;
2884   }
2885 
2886   return getContext().DeclMustBeEmitted(Global);
2887 }
2888 
2889 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2890   // In OpenMP 5.0 variables and function may be marked as
2891   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2892   // that they must be emitted on the host/device. To be sure we need to have
2893   // seen a declare target with an explicit mentioning of the function, we know
2894   // we have if the level of the declare target attribute is -1. Note that we
2895   // check somewhere else if we should emit this at all.
2896   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2897     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2898         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2899     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2900       return false;
2901   }
2902 
2903   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2904     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2905       // Implicit template instantiations may change linkage if they are later
2906       // explicitly instantiated, so they should not be emitted eagerly.
2907       return false;
2908   }
2909   if (const auto *VD = dyn_cast<VarDecl>(Global))
2910     if (Context.getInlineVariableDefinitionKind(VD) ==
2911         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2912       // A definition of an inline constexpr static data member may change
2913       // linkage later if it's redeclared outside the class.
2914       return false;
2915   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2916   // codegen for global variables, because they may be marked as threadprivate.
2917   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2918       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2919       !isTypeConstant(Global->getType(), false) &&
2920       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2921     return false;
2922 
2923   return true;
2924 }
2925 
2926 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2927   StringRef Name = getMangledName(GD);
2928 
2929   // The UUID descriptor should be pointer aligned.
2930   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2931 
2932   // Look for an existing global.
2933   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2934     return ConstantAddress(GV, GV->getValueType(), Alignment);
2935 
2936   ConstantEmitter Emitter(*this);
2937   llvm::Constant *Init;
2938 
2939   APValue &V = GD->getAsAPValue();
2940   if (!V.isAbsent()) {
2941     // If possible, emit the APValue version of the initializer. In particular,
2942     // this gets the type of the constant right.
2943     Init = Emitter.emitForInitializer(
2944         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2945   } else {
2946     // As a fallback, directly construct the constant.
2947     // FIXME: This may get padding wrong under esoteric struct layout rules.
2948     // MSVC appears to create a complete type 'struct __s_GUID' that it
2949     // presumably uses to represent these constants.
2950     MSGuidDecl::Parts Parts = GD->getParts();
2951     llvm::Constant *Fields[4] = {
2952         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2953         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2954         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2955         llvm::ConstantDataArray::getRaw(
2956             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2957             Int8Ty)};
2958     Init = llvm::ConstantStruct::getAnon(Fields);
2959   }
2960 
2961   auto *GV = new llvm::GlobalVariable(
2962       getModule(), Init->getType(),
2963       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2964   if (supportsCOMDAT())
2965     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2966   setDSOLocal(GV);
2967 
2968   if (!V.isAbsent()) {
2969     Emitter.finalize(GV);
2970     return ConstantAddress(GV, GV->getValueType(), Alignment);
2971   }
2972 
2973   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2974   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
2975       GV, Ty->getPointerTo(GV->getAddressSpace()));
2976   return ConstantAddress(Addr, Ty, Alignment);
2977 }
2978 
2979 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
2980     const UnnamedGlobalConstantDecl *GCD) {
2981   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
2982 
2983   llvm::GlobalVariable **Entry = nullptr;
2984   Entry = &UnnamedGlobalConstantDeclMap[GCD];
2985   if (*Entry)
2986     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
2987 
2988   ConstantEmitter Emitter(*this);
2989   llvm::Constant *Init;
2990 
2991   const APValue &V = GCD->getValue();
2992 
2993   assert(!V.isAbsent());
2994   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
2995                                     GCD->getType());
2996 
2997   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
2998                                       /*isConstant=*/true,
2999                                       llvm::GlobalValue::PrivateLinkage, Init,
3000                                       ".constant");
3001   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3002   GV->setAlignment(Alignment.getAsAlign());
3003 
3004   Emitter.finalize(GV);
3005 
3006   *Entry = GV;
3007   return ConstantAddress(GV, GV->getValueType(), Alignment);
3008 }
3009 
3010 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3011     const TemplateParamObjectDecl *TPO) {
3012   StringRef Name = getMangledName(TPO);
3013   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3014 
3015   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3016     return ConstantAddress(GV, GV->getValueType(), Alignment);
3017 
3018   ConstantEmitter Emitter(*this);
3019   llvm::Constant *Init = Emitter.emitForInitializer(
3020         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3021 
3022   if (!Init) {
3023     ErrorUnsupported(TPO, "template parameter object");
3024     return ConstantAddress::invalid();
3025   }
3026 
3027   auto *GV = new llvm::GlobalVariable(
3028       getModule(), Init->getType(),
3029       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3030   if (supportsCOMDAT())
3031     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3032   Emitter.finalize(GV);
3033 
3034   return ConstantAddress(GV, GV->getValueType(), Alignment);
3035 }
3036 
3037 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3038   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3039   assert(AA && "No alias?");
3040 
3041   CharUnits Alignment = getContext().getDeclAlign(VD);
3042   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3043 
3044   // See if there is already something with the target's name in the module.
3045   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3046   if (Entry) {
3047     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
3048     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3049     return ConstantAddress(Ptr, DeclTy, Alignment);
3050   }
3051 
3052   llvm::Constant *Aliasee;
3053   if (isa<llvm::FunctionType>(DeclTy))
3054     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3055                                       GlobalDecl(cast<FunctionDecl>(VD)),
3056                                       /*ForVTable=*/false);
3057   else
3058     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3059                                     nullptr);
3060 
3061   auto *F = cast<llvm::GlobalValue>(Aliasee);
3062   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3063   WeakRefReferences.insert(F);
3064 
3065   return ConstantAddress(Aliasee, DeclTy, Alignment);
3066 }
3067 
3068 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3069   const auto *Global = cast<ValueDecl>(GD.getDecl());
3070 
3071   // Weak references don't produce any output by themselves.
3072   if (Global->hasAttr<WeakRefAttr>())
3073     return;
3074 
3075   // If this is an alias definition (which otherwise looks like a declaration)
3076   // emit it now.
3077   if (Global->hasAttr<AliasAttr>())
3078     return EmitAliasDefinition(GD);
3079 
3080   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3081   if (Global->hasAttr<IFuncAttr>())
3082     return emitIFuncDefinition(GD);
3083 
3084   // If this is a cpu_dispatch multiversion function, emit the resolver.
3085   if (Global->hasAttr<CPUDispatchAttr>())
3086     return emitCPUDispatchDefinition(GD);
3087 
3088   // If this is CUDA, be selective about which declarations we emit.
3089   if (LangOpts.CUDA) {
3090     if (LangOpts.CUDAIsDevice) {
3091       if (!Global->hasAttr<CUDADeviceAttr>() &&
3092           !Global->hasAttr<CUDAGlobalAttr>() &&
3093           !Global->hasAttr<CUDAConstantAttr>() &&
3094           !Global->hasAttr<CUDASharedAttr>() &&
3095           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3096           !Global->getType()->isCUDADeviceBuiltinTextureType())
3097         return;
3098     } else {
3099       // We need to emit host-side 'shadows' for all global
3100       // device-side variables because the CUDA runtime needs their
3101       // size and host-side address in order to provide access to
3102       // their device-side incarnations.
3103 
3104       // So device-only functions are the only things we skip.
3105       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3106           Global->hasAttr<CUDADeviceAttr>())
3107         return;
3108 
3109       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3110              "Expected Variable or Function");
3111     }
3112   }
3113 
3114   if (LangOpts.OpenMP) {
3115     // If this is OpenMP, check if it is legal to emit this global normally.
3116     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3117       return;
3118     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3119       if (MustBeEmitted(Global))
3120         EmitOMPDeclareReduction(DRD);
3121       return;
3122     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3123       if (MustBeEmitted(Global))
3124         EmitOMPDeclareMapper(DMD);
3125       return;
3126     }
3127   }
3128 
3129   // Ignore declarations, they will be emitted on their first use.
3130   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3131     // Forward declarations are emitted lazily on first use.
3132     if (!FD->doesThisDeclarationHaveABody()) {
3133       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3134         return;
3135 
3136       StringRef MangledName = getMangledName(GD);
3137 
3138       // Compute the function info and LLVM type.
3139       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3140       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3141 
3142       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3143                               /*DontDefer=*/false);
3144       return;
3145     }
3146   } else {
3147     const auto *VD = cast<VarDecl>(Global);
3148     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3149     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3150         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3151       if (LangOpts.OpenMP) {
3152         // Emit declaration of the must-be-emitted declare target variable.
3153         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3154                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3155           bool UnifiedMemoryEnabled =
3156               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3157           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3158               !UnifiedMemoryEnabled) {
3159             (void)GetAddrOfGlobalVar(VD);
3160           } else {
3161             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3162                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3163                      UnifiedMemoryEnabled)) &&
3164                    "Link clause or to clause with unified memory expected.");
3165             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3166           }
3167 
3168           return;
3169         }
3170       }
3171       // If this declaration may have caused an inline variable definition to
3172       // change linkage, make sure that it's emitted.
3173       if (Context.getInlineVariableDefinitionKind(VD) ==
3174           ASTContext::InlineVariableDefinitionKind::Strong)
3175         GetAddrOfGlobalVar(VD);
3176       return;
3177     }
3178   }
3179 
3180   // Defer code generation to first use when possible, e.g. if this is an inline
3181   // function. If the global must always be emitted, do it eagerly if possible
3182   // to benefit from cache locality.
3183   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3184     // Emit the definition if it can't be deferred.
3185     EmitGlobalDefinition(GD);
3186     return;
3187   }
3188 
3189   // If we're deferring emission of a C++ variable with an
3190   // initializer, remember the order in which it appeared in the file.
3191   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3192       cast<VarDecl>(Global)->hasInit()) {
3193     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3194     CXXGlobalInits.push_back(nullptr);
3195   }
3196 
3197   StringRef MangledName = getMangledName(GD);
3198   if (GetGlobalValue(MangledName) != nullptr) {
3199     // The value has already been used and should therefore be emitted.
3200     addDeferredDeclToEmit(GD);
3201   } else if (MustBeEmitted(Global)) {
3202     // The value must be emitted, but cannot be emitted eagerly.
3203     assert(!MayBeEmittedEagerly(Global));
3204     addDeferredDeclToEmit(GD);
3205   } else {
3206     // Otherwise, remember that we saw a deferred decl with this name.  The
3207     // first use of the mangled name will cause it to move into
3208     // DeferredDeclsToEmit.
3209     DeferredDecls[MangledName] = GD;
3210   }
3211 }
3212 
3213 // Check if T is a class type with a destructor that's not dllimport.
3214 static bool HasNonDllImportDtor(QualType T) {
3215   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3216     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3217       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3218         return true;
3219 
3220   return false;
3221 }
3222 
3223 namespace {
3224   struct FunctionIsDirectlyRecursive
3225       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3226     const StringRef Name;
3227     const Builtin::Context &BI;
3228     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3229         : Name(N), BI(C) {}
3230 
3231     bool VisitCallExpr(const CallExpr *E) {
3232       const FunctionDecl *FD = E->getDirectCallee();
3233       if (!FD)
3234         return false;
3235       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3236       if (Attr && Name == Attr->getLabel())
3237         return true;
3238       unsigned BuiltinID = FD->getBuiltinID();
3239       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3240         return false;
3241       StringRef BuiltinName = BI.getName(BuiltinID);
3242       if (BuiltinName.startswith("__builtin_") &&
3243           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3244         return true;
3245       }
3246       return false;
3247     }
3248 
3249     bool VisitStmt(const Stmt *S) {
3250       for (const Stmt *Child : S->children())
3251         if (Child && this->Visit(Child))
3252           return true;
3253       return false;
3254     }
3255   };
3256 
3257   // Make sure we're not referencing non-imported vars or functions.
3258   struct DLLImportFunctionVisitor
3259       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3260     bool SafeToInline = true;
3261 
3262     bool shouldVisitImplicitCode() const { return true; }
3263 
3264     bool VisitVarDecl(VarDecl *VD) {
3265       if (VD->getTLSKind()) {
3266         // A thread-local variable cannot be imported.
3267         SafeToInline = false;
3268         return SafeToInline;
3269       }
3270 
3271       // A variable definition might imply a destructor call.
3272       if (VD->isThisDeclarationADefinition())
3273         SafeToInline = !HasNonDllImportDtor(VD->getType());
3274 
3275       return SafeToInline;
3276     }
3277 
3278     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3279       if (const auto *D = E->getTemporary()->getDestructor())
3280         SafeToInline = D->hasAttr<DLLImportAttr>();
3281       return SafeToInline;
3282     }
3283 
3284     bool VisitDeclRefExpr(DeclRefExpr *E) {
3285       ValueDecl *VD = E->getDecl();
3286       if (isa<FunctionDecl>(VD))
3287         SafeToInline = VD->hasAttr<DLLImportAttr>();
3288       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3289         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3290       return SafeToInline;
3291     }
3292 
3293     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3294       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3295       return SafeToInline;
3296     }
3297 
3298     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3299       CXXMethodDecl *M = E->getMethodDecl();
3300       if (!M) {
3301         // Call through a pointer to member function. This is safe to inline.
3302         SafeToInline = true;
3303       } else {
3304         SafeToInline = M->hasAttr<DLLImportAttr>();
3305       }
3306       return SafeToInline;
3307     }
3308 
3309     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3310       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3311       return SafeToInline;
3312     }
3313 
3314     bool VisitCXXNewExpr(CXXNewExpr *E) {
3315       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3316       return SafeToInline;
3317     }
3318   };
3319 }
3320 
3321 // isTriviallyRecursive - Check if this function calls another
3322 // decl that, because of the asm attribute or the other decl being a builtin,
3323 // ends up pointing to itself.
3324 bool
3325 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3326   StringRef Name;
3327   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3328     // asm labels are a special kind of mangling we have to support.
3329     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3330     if (!Attr)
3331       return false;
3332     Name = Attr->getLabel();
3333   } else {
3334     Name = FD->getName();
3335   }
3336 
3337   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3338   const Stmt *Body = FD->getBody();
3339   return Body ? Walker.Visit(Body) : false;
3340 }
3341 
3342 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3343   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3344     return true;
3345   const auto *F = cast<FunctionDecl>(GD.getDecl());
3346   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3347     return false;
3348 
3349   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3350     // Check whether it would be safe to inline this dllimport function.
3351     DLLImportFunctionVisitor Visitor;
3352     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3353     if (!Visitor.SafeToInline)
3354       return false;
3355 
3356     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3357       // Implicit destructor invocations aren't captured in the AST, so the
3358       // check above can't see them. Check for them manually here.
3359       for (const Decl *Member : Dtor->getParent()->decls())
3360         if (isa<FieldDecl>(Member))
3361           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3362             return false;
3363       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3364         if (HasNonDllImportDtor(B.getType()))
3365           return false;
3366     }
3367   }
3368 
3369   // Inline builtins declaration must be emitted. They often are fortified
3370   // functions.
3371   if (F->isInlineBuiltinDeclaration())
3372     return true;
3373 
3374   // PR9614. Avoid cases where the source code is lying to us. An available
3375   // externally function should have an equivalent function somewhere else,
3376   // but a function that calls itself through asm label/`__builtin_` trickery is
3377   // clearly not equivalent to the real implementation.
3378   // This happens in glibc's btowc and in some configure checks.
3379   return !isTriviallyRecursive(F);
3380 }
3381 
3382 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3383   return CodeGenOpts.OptimizationLevel > 0;
3384 }
3385 
3386 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3387                                                        llvm::GlobalValue *GV) {
3388   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3389 
3390   if (FD->isCPUSpecificMultiVersion()) {
3391     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3392     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3393       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3394   } else if (FD->isTargetClonesMultiVersion()) {
3395     auto *Clone = FD->getAttr<TargetClonesAttr>();
3396     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3397       if (Clone->isFirstOfVersion(I))
3398         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3399     // Ensure that the resolver function is also emitted.
3400     GetOrCreateMultiVersionResolver(GD);
3401   } else
3402     EmitGlobalFunctionDefinition(GD, GV);
3403 }
3404 
3405 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3406   const auto *D = cast<ValueDecl>(GD.getDecl());
3407 
3408   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3409                                  Context.getSourceManager(),
3410                                  "Generating code for declaration");
3411 
3412   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3413     // At -O0, don't generate IR for functions with available_externally
3414     // linkage.
3415     if (!shouldEmitFunction(GD))
3416       return;
3417 
3418     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3419       std::string Name;
3420       llvm::raw_string_ostream OS(Name);
3421       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3422                                /*Qualified=*/true);
3423       return Name;
3424     });
3425 
3426     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3427       // Make sure to emit the definition(s) before we emit the thunks.
3428       // This is necessary for the generation of certain thunks.
3429       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3430         ABI->emitCXXStructor(GD);
3431       else if (FD->isMultiVersion())
3432         EmitMultiVersionFunctionDefinition(GD, GV);
3433       else
3434         EmitGlobalFunctionDefinition(GD, GV);
3435 
3436       if (Method->isVirtual())
3437         getVTables().EmitThunks(GD);
3438 
3439       return;
3440     }
3441 
3442     if (FD->isMultiVersion())
3443       return EmitMultiVersionFunctionDefinition(GD, GV);
3444     return EmitGlobalFunctionDefinition(GD, GV);
3445   }
3446 
3447   if (const auto *VD = dyn_cast<VarDecl>(D))
3448     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3449 
3450   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3451 }
3452 
3453 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3454                                                       llvm::Function *NewFn);
3455 
3456 static unsigned
3457 TargetMVPriority(const TargetInfo &TI,
3458                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3459   unsigned Priority = 0;
3460   for (StringRef Feat : RO.Conditions.Features)
3461     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3462 
3463   if (!RO.Conditions.Architecture.empty())
3464     Priority = std::max(
3465         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3466   return Priority;
3467 }
3468 
3469 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3470 // TU can forward declare the function without causing problems.  Particularly
3471 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3472 // work with internal linkage functions, so that the same function name can be
3473 // used with internal linkage in multiple TUs.
3474 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3475                                                        GlobalDecl GD) {
3476   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3477   if (FD->getFormalLinkage() == InternalLinkage)
3478     return llvm::GlobalValue::InternalLinkage;
3479   return llvm::GlobalValue::WeakODRLinkage;
3480 }
3481 
3482 void CodeGenModule::emitMultiVersionFunctions() {
3483   std::vector<GlobalDecl> MVFuncsToEmit;
3484   MultiVersionFuncs.swap(MVFuncsToEmit);
3485   for (GlobalDecl GD : MVFuncsToEmit) {
3486     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3487     assert(FD && "Expected a FunctionDecl");
3488 
3489     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3490     if (FD->isTargetMultiVersion()) {
3491       getContext().forEachMultiversionedFunctionVersion(
3492           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3493             GlobalDecl CurGD{
3494                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3495             StringRef MangledName = getMangledName(CurGD);
3496             llvm::Constant *Func = GetGlobalValue(MangledName);
3497             if (!Func) {
3498               if (CurFD->isDefined()) {
3499                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3500                 Func = GetGlobalValue(MangledName);
3501               } else {
3502                 const CGFunctionInfo &FI =
3503                     getTypes().arrangeGlobalDeclaration(GD);
3504                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3505                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3506                                          /*DontDefer=*/false, ForDefinition);
3507               }
3508               assert(Func && "This should have just been created");
3509             }
3510 
3511             const auto *TA = CurFD->getAttr<TargetAttr>();
3512             llvm::SmallVector<StringRef, 8> Feats;
3513             TA->getAddedFeatures(Feats);
3514 
3515             Options.emplace_back(cast<llvm::Function>(Func),
3516                                  TA->getArchitecture(), Feats);
3517           });
3518     } else if (FD->isTargetClonesMultiVersion()) {
3519       const auto *TC = FD->getAttr<TargetClonesAttr>();
3520       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3521            ++VersionIndex) {
3522         if (!TC->isFirstOfVersion(VersionIndex))
3523           continue;
3524         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3525                          VersionIndex};
3526         StringRef Version = TC->getFeatureStr(VersionIndex);
3527         StringRef MangledName = getMangledName(CurGD);
3528         llvm::Constant *Func = GetGlobalValue(MangledName);
3529         if (!Func) {
3530           if (FD->isDefined()) {
3531             EmitGlobalFunctionDefinition(CurGD, nullptr);
3532             Func = GetGlobalValue(MangledName);
3533           } else {
3534             const CGFunctionInfo &FI =
3535                 getTypes().arrangeGlobalDeclaration(CurGD);
3536             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3537             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3538                                      /*DontDefer=*/false, ForDefinition);
3539           }
3540           assert(Func && "This should have just been created");
3541         }
3542 
3543         StringRef Architecture;
3544         llvm::SmallVector<StringRef, 1> Feature;
3545 
3546         if (Version.startswith("arch="))
3547           Architecture = Version.drop_front(sizeof("arch=") - 1);
3548         else if (Version != "default")
3549           Feature.push_back(Version);
3550 
3551         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3552       }
3553     } else {
3554       assert(0 && "Expected a target or target_clones multiversion function");
3555       continue;
3556     }
3557 
3558     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3559     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3560       ResolverConstant = IFunc->getResolver();
3561     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3562 
3563     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3564 
3565     if (supportsCOMDAT())
3566       ResolverFunc->setComdat(
3567           getModule().getOrInsertComdat(ResolverFunc->getName()));
3568 
3569     const TargetInfo &TI = getTarget();
3570     llvm::stable_sort(
3571         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3572                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3573           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3574         });
3575     CodeGenFunction CGF(*this);
3576     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3577   }
3578 
3579   // Ensure that any additions to the deferred decls list caused by emitting a
3580   // variant are emitted.  This can happen when the variant itself is inline and
3581   // calls a function without linkage.
3582   if (!MVFuncsToEmit.empty())
3583     EmitDeferred();
3584 
3585   // Ensure that any additions to the multiversion funcs list from either the
3586   // deferred decls or the multiversion functions themselves are emitted.
3587   if (!MultiVersionFuncs.empty())
3588     emitMultiVersionFunctions();
3589 }
3590 
3591 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3592   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3593   assert(FD && "Not a FunctionDecl?");
3594   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3595   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3596   assert(DD && "Not a cpu_dispatch Function?");
3597 
3598   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3599   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3600 
3601   StringRef ResolverName = getMangledName(GD);
3602   UpdateMultiVersionNames(GD, FD, ResolverName);
3603 
3604   llvm::Type *ResolverType;
3605   GlobalDecl ResolverGD;
3606   if (getTarget().supportsIFunc()) {
3607     ResolverType = llvm::FunctionType::get(
3608         llvm::PointerType::get(DeclTy,
3609                                Context.getTargetAddressSpace(FD->getType())),
3610         false);
3611   }
3612   else {
3613     ResolverType = DeclTy;
3614     ResolverGD = GD;
3615   }
3616 
3617   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3618       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3619   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3620   if (supportsCOMDAT())
3621     ResolverFunc->setComdat(
3622         getModule().getOrInsertComdat(ResolverFunc->getName()));
3623 
3624   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3625   const TargetInfo &Target = getTarget();
3626   unsigned Index = 0;
3627   for (const IdentifierInfo *II : DD->cpus()) {
3628     // Get the name of the target function so we can look it up/create it.
3629     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3630                               getCPUSpecificMangling(*this, II->getName());
3631 
3632     llvm::Constant *Func = GetGlobalValue(MangledName);
3633 
3634     if (!Func) {
3635       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3636       if (ExistingDecl.getDecl() &&
3637           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3638         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3639         Func = GetGlobalValue(MangledName);
3640       } else {
3641         if (!ExistingDecl.getDecl())
3642           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3643 
3644       Func = GetOrCreateLLVMFunction(
3645           MangledName, DeclTy, ExistingDecl,
3646           /*ForVTable=*/false, /*DontDefer=*/true,
3647           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3648       }
3649     }
3650 
3651     llvm::SmallVector<StringRef, 32> Features;
3652     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3653     llvm::transform(Features, Features.begin(),
3654                     [](StringRef Str) { return Str.substr(1); });
3655     llvm::erase_if(Features, [&Target](StringRef Feat) {
3656       return !Target.validateCpuSupports(Feat);
3657     });
3658     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3659     ++Index;
3660   }
3661 
3662   llvm::stable_sort(
3663       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3664                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3665         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3666                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3667       });
3668 
3669   // If the list contains multiple 'default' versions, such as when it contains
3670   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3671   // always run on at least a 'pentium'). We do this by deleting the 'least
3672   // advanced' (read, lowest mangling letter).
3673   while (Options.size() > 1 &&
3674          llvm::X86::getCpuSupportsMask(
3675              (Options.end() - 2)->Conditions.Features) == 0) {
3676     StringRef LHSName = (Options.end() - 2)->Function->getName();
3677     StringRef RHSName = (Options.end() - 1)->Function->getName();
3678     if (LHSName.compare(RHSName) < 0)
3679       Options.erase(Options.end() - 2);
3680     else
3681       Options.erase(Options.end() - 1);
3682   }
3683 
3684   CodeGenFunction CGF(*this);
3685   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3686 
3687   if (getTarget().supportsIFunc()) {
3688     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3689     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3690 
3691     // Fix up function declarations that were created for cpu_specific before
3692     // cpu_dispatch was known
3693     if (!isa<llvm::GlobalIFunc>(IFunc)) {
3694       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3695       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3696                                            &getModule());
3697       GI->takeName(IFunc);
3698       IFunc->replaceAllUsesWith(GI);
3699       IFunc->eraseFromParent();
3700       IFunc = GI;
3701     }
3702 
3703     std::string AliasName = getMangledNameImpl(
3704         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3705     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3706     if (!AliasFunc) {
3707       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3708                                            &getModule());
3709       SetCommonAttributes(GD, GA);
3710     }
3711   }
3712 }
3713 
3714 /// If a dispatcher for the specified mangled name is not in the module, create
3715 /// and return an llvm Function with the specified type.
3716 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3717   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3718   assert(FD && "Not a FunctionDecl?");
3719 
3720   std::string MangledName =
3721       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3722 
3723   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3724   // a separate resolver).
3725   std::string ResolverName = MangledName;
3726   if (getTarget().supportsIFunc())
3727     ResolverName += ".ifunc";
3728   else if (FD->isTargetMultiVersion())
3729     ResolverName += ".resolver";
3730 
3731   // If the resolver has already been created, just return it.
3732   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3733     return ResolverGV;
3734 
3735   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3736   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3737 
3738   // The resolver needs to be created. For target and target_clones, defer
3739   // creation until the end of the TU.
3740   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3741     MultiVersionFuncs.push_back(GD);
3742 
3743   // For cpu_specific, don't create an ifunc yet because we don't know if the
3744   // cpu_dispatch will be emitted in this translation unit.
3745   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3746     llvm::Type *ResolverType = llvm::FunctionType::get(
3747         llvm::PointerType::get(
3748             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3749         false);
3750     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3751         MangledName + ".resolver", ResolverType, GlobalDecl{},
3752         /*ForVTable=*/false);
3753     llvm::GlobalIFunc *GIF =
3754         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3755                                   "", Resolver, &getModule());
3756     GIF->setName(ResolverName);
3757     SetCommonAttributes(FD, GIF);
3758 
3759     return GIF;
3760   }
3761 
3762   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3763       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3764   assert(isa<llvm::GlobalValue>(Resolver) &&
3765          "Resolver should be created for the first time");
3766   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3767   return Resolver;
3768 }
3769 
3770 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3771 /// module, create and return an llvm Function with the specified type. If there
3772 /// is something in the module with the specified name, return it potentially
3773 /// bitcasted to the right type.
3774 ///
3775 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3776 /// to set the attributes on the function when it is first created.
3777 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3778     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3779     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3780     ForDefinition_t IsForDefinition) {
3781   const Decl *D = GD.getDecl();
3782 
3783   // Any attempts to use a MultiVersion function should result in retrieving
3784   // the iFunc instead. Name Mangling will handle the rest of the changes.
3785   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3786     // For the device mark the function as one that should be emitted.
3787     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3788         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3789         !DontDefer && !IsForDefinition) {
3790       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3791         GlobalDecl GDDef;
3792         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3793           GDDef = GlobalDecl(CD, GD.getCtorType());
3794         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3795           GDDef = GlobalDecl(DD, GD.getDtorType());
3796         else
3797           GDDef = GlobalDecl(FDDef);
3798         EmitGlobal(GDDef);
3799       }
3800     }
3801 
3802     if (FD->isMultiVersion()) {
3803       UpdateMultiVersionNames(GD, FD, MangledName);
3804       if (!IsForDefinition)
3805         return GetOrCreateMultiVersionResolver(GD);
3806     }
3807   }
3808 
3809   // Lookup the entry, lazily creating it if necessary.
3810   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3811   if (Entry) {
3812     if (WeakRefReferences.erase(Entry)) {
3813       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3814       if (FD && !FD->hasAttr<WeakAttr>())
3815         Entry->setLinkage(llvm::Function::ExternalLinkage);
3816     }
3817 
3818     // Handle dropped DLL attributes.
3819     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
3820         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
3821       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3822       setDSOLocal(Entry);
3823     }
3824 
3825     // If there are two attempts to define the same mangled name, issue an
3826     // error.
3827     if (IsForDefinition && !Entry->isDeclaration()) {
3828       GlobalDecl OtherGD;
3829       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3830       // to make sure that we issue an error only once.
3831       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3832           (GD.getCanonicalDecl().getDecl() !=
3833            OtherGD.getCanonicalDecl().getDecl()) &&
3834           DiagnosedConflictingDefinitions.insert(GD).second) {
3835         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3836             << MangledName;
3837         getDiags().Report(OtherGD.getDecl()->getLocation(),
3838                           diag::note_previous_definition);
3839       }
3840     }
3841 
3842     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3843         (Entry->getValueType() == Ty)) {
3844       return Entry;
3845     }
3846 
3847     // Make sure the result is of the correct type.
3848     // (If function is requested for a definition, we always need to create a new
3849     // function, not just return a bitcast.)
3850     if (!IsForDefinition)
3851       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3852   }
3853 
3854   // This function doesn't have a complete type (for example, the return
3855   // type is an incomplete struct). Use a fake type instead, and make
3856   // sure not to try to set attributes.
3857   bool IsIncompleteFunction = false;
3858 
3859   llvm::FunctionType *FTy;
3860   if (isa<llvm::FunctionType>(Ty)) {
3861     FTy = cast<llvm::FunctionType>(Ty);
3862   } else {
3863     FTy = llvm::FunctionType::get(VoidTy, false);
3864     IsIncompleteFunction = true;
3865   }
3866 
3867   llvm::Function *F =
3868       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3869                              Entry ? StringRef() : MangledName, &getModule());
3870 
3871   // If we already created a function with the same mangled name (but different
3872   // type) before, take its name and add it to the list of functions to be
3873   // replaced with F at the end of CodeGen.
3874   //
3875   // This happens if there is a prototype for a function (e.g. "int f()") and
3876   // then a definition of a different type (e.g. "int f(int x)").
3877   if (Entry) {
3878     F->takeName(Entry);
3879 
3880     // This might be an implementation of a function without a prototype, in
3881     // which case, try to do special replacement of calls which match the new
3882     // prototype.  The really key thing here is that we also potentially drop
3883     // arguments from the call site so as to make a direct call, which makes the
3884     // inliner happier and suppresses a number of optimizer warnings (!) about
3885     // dropping arguments.
3886     if (!Entry->use_empty()) {
3887       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3888       Entry->removeDeadConstantUsers();
3889     }
3890 
3891     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3892         F, Entry->getValueType()->getPointerTo());
3893     addGlobalValReplacement(Entry, BC);
3894   }
3895 
3896   assert(F->getName() == MangledName && "name was uniqued!");
3897   if (D)
3898     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3899   if (ExtraAttrs.hasFnAttrs()) {
3900     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
3901     F->addFnAttrs(B);
3902   }
3903 
3904   if (!DontDefer) {
3905     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3906     // each other bottoming out with the base dtor.  Therefore we emit non-base
3907     // dtors on usage, even if there is no dtor definition in the TU.
3908     if (D && isa<CXXDestructorDecl>(D) &&
3909         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3910                                            GD.getDtorType()))
3911       addDeferredDeclToEmit(GD);
3912 
3913     // This is the first use or definition of a mangled name.  If there is a
3914     // deferred decl with this name, remember that we need to emit it at the end
3915     // of the file.
3916     auto DDI = DeferredDecls.find(MangledName);
3917     if (DDI != DeferredDecls.end()) {
3918       // Move the potentially referenced deferred decl to the
3919       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3920       // don't need it anymore).
3921       addDeferredDeclToEmit(DDI->second);
3922       DeferredDecls.erase(DDI);
3923 
3924       // Otherwise, there are cases we have to worry about where we're
3925       // using a declaration for which we must emit a definition but where
3926       // we might not find a top-level definition:
3927       //   - member functions defined inline in their classes
3928       //   - friend functions defined inline in some class
3929       //   - special member functions with implicit definitions
3930       // If we ever change our AST traversal to walk into class methods,
3931       // this will be unnecessary.
3932       //
3933       // We also don't emit a definition for a function if it's going to be an
3934       // entry in a vtable, unless it's already marked as used.
3935     } else if (getLangOpts().CPlusPlus && D) {
3936       // Look for a declaration that's lexically in a record.
3937       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3938            FD = FD->getPreviousDecl()) {
3939         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3940           if (FD->doesThisDeclarationHaveABody()) {
3941             addDeferredDeclToEmit(GD.getWithDecl(FD));
3942             break;
3943           }
3944         }
3945       }
3946     }
3947   }
3948 
3949   // Make sure the result is of the requested type.
3950   if (!IsIncompleteFunction) {
3951     assert(F->getFunctionType() == Ty);
3952     return F;
3953   }
3954 
3955   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3956   return llvm::ConstantExpr::getBitCast(F, PTy);
3957 }
3958 
3959 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3960 /// non-null, then this function will use the specified type if it has to
3961 /// create it (this occurs when we see a definition of the function).
3962 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3963                                                  llvm::Type *Ty,
3964                                                  bool ForVTable,
3965                                                  bool DontDefer,
3966                                               ForDefinition_t IsForDefinition) {
3967   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3968          "consteval function should never be emitted");
3969   // If there was no specific requested type, just convert it now.
3970   if (!Ty) {
3971     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3972     Ty = getTypes().ConvertType(FD->getType());
3973   }
3974 
3975   // Devirtualized destructor calls may come through here instead of via
3976   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3977   // of the complete destructor when necessary.
3978   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3979     if (getTarget().getCXXABI().isMicrosoft() &&
3980         GD.getDtorType() == Dtor_Complete &&
3981         DD->getParent()->getNumVBases() == 0)
3982       GD = GlobalDecl(DD, Dtor_Base);
3983   }
3984 
3985   StringRef MangledName = getMangledName(GD);
3986   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3987                                     /*IsThunk=*/false, llvm::AttributeList(),
3988                                     IsForDefinition);
3989   // Returns kernel handle for HIP kernel stub function.
3990   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3991       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3992     auto *Handle = getCUDARuntime().getKernelHandle(
3993         cast<llvm::Function>(F->stripPointerCasts()), GD);
3994     if (IsForDefinition)
3995       return F;
3996     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3997   }
3998   return F;
3999 }
4000 
4001 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4002   llvm::GlobalValue *F =
4003       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4004 
4005   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
4006                                         llvm::Type::getInt8PtrTy(VMContext));
4007 }
4008 
4009 static const FunctionDecl *
4010 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4011   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4012   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4013 
4014   IdentifierInfo &CII = C.Idents.get(Name);
4015   for (const auto *Result : DC->lookup(&CII))
4016     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4017       return FD;
4018 
4019   if (!C.getLangOpts().CPlusPlus)
4020     return nullptr;
4021 
4022   // Demangle the premangled name from getTerminateFn()
4023   IdentifierInfo &CXXII =
4024       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4025           ? C.Idents.get("terminate")
4026           : C.Idents.get(Name);
4027 
4028   for (const auto &N : {"__cxxabiv1", "std"}) {
4029     IdentifierInfo &NS = C.Idents.get(N);
4030     for (const auto *Result : DC->lookup(&NS)) {
4031       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4032       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4033         for (const auto *Result : LSD->lookup(&NS))
4034           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4035             break;
4036 
4037       if (ND)
4038         for (const auto *Result : ND->lookup(&CXXII))
4039           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4040             return FD;
4041     }
4042   }
4043 
4044   return nullptr;
4045 }
4046 
4047 /// CreateRuntimeFunction - Create a new runtime function with the specified
4048 /// type and name.
4049 llvm::FunctionCallee
4050 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4051                                      llvm::AttributeList ExtraAttrs, bool Local,
4052                                      bool AssumeConvergent) {
4053   if (AssumeConvergent) {
4054     ExtraAttrs =
4055         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4056   }
4057 
4058   llvm::Constant *C =
4059       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4060                               /*DontDefer=*/false, /*IsThunk=*/false,
4061                               ExtraAttrs);
4062 
4063   if (auto *F = dyn_cast<llvm::Function>(C)) {
4064     if (F->empty()) {
4065       F->setCallingConv(getRuntimeCC());
4066 
4067       // In Windows Itanium environments, try to mark runtime functions
4068       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4069       // will link their standard library statically or dynamically. Marking
4070       // functions imported when they are not imported can cause linker errors
4071       // and warnings.
4072       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4073           !getCodeGenOpts().LTOVisibilityPublicStd) {
4074         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4075         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4076           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4077           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4078         }
4079       }
4080       setDSOLocal(F);
4081     }
4082   }
4083 
4084   return {FTy, C};
4085 }
4086 
4087 /// isTypeConstant - Determine whether an object of this type can be emitted
4088 /// as a constant.
4089 ///
4090 /// If ExcludeCtor is true, the duration when the object's constructor runs
4091 /// will not be considered. The caller will need to verify that the object is
4092 /// not written to during its construction.
4093 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4094   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4095     return false;
4096 
4097   if (Context.getLangOpts().CPlusPlus) {
4098     if (const CXXRecordDecl *Record
4099           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4100       return ExcludeCtor && !Record->hasMutableFields() &&
4101              Record->hasTrivialDestructor();
4102   }
4103 
4104   return true;
4105 }
4106 
4107 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4108 /// create and return an llvm GlobalVariable with the specified type and address
4109 /// space. If there is something in the module with the specified name, return
4110 /// it potentially bitcasted to the right type.
4111 ///
4112 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4113 /// to set the attributes on the global when it is first created.
4114 ///
4115 /// If IsForDefinition is true, it is guaranteed that an actual global with
4116 /// type Ty will be returned, not conversion of a variable with the same
4117 /// mangled name but some other type.
4118 llvm::Constant *
4119 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4120                                      LangAS AddrSpace, const VarDecl *D,
4121                                      ForDefinition_t IsForDefinition) {
4122   // Lookup the entry, lazily creating it if necessary.
4123   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4124   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4125   if (Entry) {
4126     if (WeakRefReferences.erase(Entry)) {
4127       if (D && !D->hasAttr<WeakAttr>())
4128         Entry->setLinkage(llvm::Function::ExternalLinkage);
4129     }
4130 
4131     // Handle dropped DLL attributes.
4132     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4133         !shouldMapVisibilityToDLLExport(D))
4134       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4135 
4136     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4137       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4138 
4139     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4140       return Entry;
4141 
4142     // If there are two attempts to define the same mangled name, issue an
4143     // error.
4144     if (IsForDefinition && !Entry->isDeclaration()) {
4145       GlobalDecl OtherGD;
4146       const VarDecl *OtherD;
4147 
4148       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4149       // to make sure that we issue an error only once.
4150       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4151           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4152           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4153           OtherD->hasInit() &&
4154           DiagnosedConflictingDefinitions.insert(D).second) {
4155         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4156             << MangledName;
4157         getDiags().Report(OtherGD.getDecl()->getLocation(),
4158                           diag::note_previous_definition);
4159       }
4160     }
4161 
4162     // Make sure the result is of the correct type.
4163     if (Entry->getType()->getAddressSpace() != TargetAS) {
4164       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4165                                                   Ty->getPointerTo(TargetAS));
4166     }
4167 
4168     // (If global is requested for a definition, we always need to create a new
4169     // global, not just return a bitcast.)
4170     if (!IsForDefinition)
4171       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4172   }
4173 
4174   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4175 
4176   auto *GV = new llvm::GlobalVariable(
4177       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4178       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4179       getContext().getTargetAddressSpace(DAddrSpace));
4180 
4181   // If we already created a global with the same mangled name (but different
4182   // type) before, take its name and remove it from its parent.
4183   if (Entry) {
4184     GV->takeName(Entry);
4185 
4186     if (!Entry->use_empty()) {
4187       llvm::Constant *NewPtrForOldDecl =
4188           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4189       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4190     }
4191 
4192     Entry->eraseFromParent();
4193   }
4194 
4195   // This is the first use or definition of a mangled name.  If there is a
4196   // deferred decl with this name, remember that we need to emit it at the end
4197   // of the file.
4198   auto DDI = DeferredDecls.find(MangledName);
4199   if (DDI != DeferredDecls.end()) {
4200     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4201     // list, and remove it from DeferredDecls (since we don't need it anymore).
4202     addDeferredDeclToEmit(DDI->second);
4203     DeferredDecls.erase(DDI);
4204   }
4205 
4206   // Handle things which are present even on external declarations.
4207   if (D) {
4208     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4209       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4210 
4211     // FIXME: This code is overly simple and should be merged with other global
4212     // handling.
4213     GV->setConstant(isTypeConstant(D->getType(), false));
4214 
4215     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4216 
4217     setLinkageForGV(GV, D);
4218 
4219     if (D->getTLSKind()) {
4220       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4221         CXXThreadLocals.push_back(D);
4222       setTLSMode(GV, *D);
4223     }
4224 
4225     setGVProperties(GV, D);
4226 
4227     // If required by the ABI, treat declarations of static data members with
4228     // inline initializers as definitions.
4229     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4230       EmitGlobalVarDefinition(D);
4231     }
4232 
4233     // Emit section information for extern variables.
4234     if (D->hasExternalStorage()) {
4235       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4236         GV->setSection(SA->getName());
4237     }
4238 
4239     // Handle XCore specific ABI requirements.
4240     if (getTriple().getArch() == llvm::Triple::xcore &&
4241         D->getLanguageLinkage() == CLanguageLinkage &&
4242         D->getType().isConstant(Context) &&
4243         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4244       GV->setSection(".cp.rodata");
4245 
4246     // Check if we a have a const declaration with an initializer, we may be
4247     // able to emit it as available_externally to expose it's value to the
4248     // optimizer.
4249     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4250         D->getType().isConstQualified() && !GV->hasInitializer() &&
4251         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4252       const auto *Record =
4253           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4254       bool HasMutableFields = Record && Record->hasMutableFields();
4255       if (!HasMutableFields) {
4256         const VarDecl *InitDecl;
4257         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4258         if (InitExpr) {
4259           ConstantEmitter emitter(*this);
4260           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4261           if (Init) {
4262             auto *InitType = Init->getType();
4263             if (GV->getValueType() != InitType) {
4264               // The type of the initializer does not match the definition.
4265               // This happens when an initializer has a different type from
4266               // the type of the global (because of padding at the end of a
4267               // structure for instance).
4268               GV->setName(StringRef());
4269               // Make a new global with the correct type, this is now guaranteed
4270               // to work.
4271               auto *NewGV = cast<llvm::GlobalVariable>(
4272                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4273                       ->stripPointerCasts());
4274 
4275               // Erase the old global, since it is no longer used.
4276               GV->eraseFromParent();
4277               GV = NewGV;
4278             } else {
4279               GV->setInitializer(Init);
4280               GV->setConstant(true);
4281               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4282             }
4283             emitter.finalize(GV);
4284           }
4285         }
4286       }
4287     }
4288   }
4289 
4290   if (GV->isDeclaration()) {
4291     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4292     // External HIP managed variables needed to be recorded for transformation
4293     // in both device and host compilations.
4294     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4295         D->hasExternalStorage())
4296       getCUDARuntime().handleVarRegistration(D, *GV);
4297   }
4298 
4299   if (D)
4300     SanitizerMD->reportGlobal(GV, *D);
4301 
4302   LangAS ExpectedAS =
4303       D ? D->getType().getAddressSpace()
4304         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4305   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4306   if (DAddrSpace != ExpectedAS) {
4307     return getTargetCodeGenInfo().performAddrSpaceCast(
4308         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4309   }
4310 
4311   return GV;
4312 }
4313 
4314 llvm::Constant *
4315 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4316   const Decl *D = GD.getDecl();
4317 
4318   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4319     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4320                                 /*DontDefer=*/false, IsForDefinition);
4321 
4322   if (isa<CXXMethodDecl>(D)) {
4323     auto FInfo =
4324         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4325     auto Ty = getTypes().GetFunctionType(*FInfo);
4326     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4327                              IsForDefinition);
4328   }
4329 
4330   if (isa<FunctionDecl>(D)) {
4331     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4332     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4333     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4334                              IsForDefinition);
4335   }
4336 
4337   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4338 }
4339 
4340 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4341     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4342     unsigned Alignment) {
4343   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4344   llvm::GlobalVariable *OldGV = nullptr;
4345 
4346   if (GV) {
4347     // Check if the variable has the right type.
4348     if (GV->getValueType() == Ty)
4349       return GV;
4350 
4351     // Because C++ name mangling, the only way we can end up with an already
4352     // existing global with the same name is if it has been declared extern "C".
4353     assert(GV->isDeclaration() && "Declaration has wrong type!");
4354     OldGV = GV;
4355   }
4356 
4357   // Create a new variable.
4358   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4359                                 Linkage, nullptr, Name);
4360 
4361   if (OldGV) {
4362     // Replace occurrences of the old variable if needed.
4363     GV->takeName(OldGV);
4364 
4365     if (!OldGV->use_empty()) {
4366       llvm::Constant *NewPtrForOldDecl =
4367       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4368       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4369     }
4370 
4371     OldGV->eraseFromParent();
4372   }
4373 
4374   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4375       !GV->hasAvailableExternallyLinkage())
4376     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4377 
4378   GV->setAlignment(llvm::MaybeAlign(Alignment));
4379 
4380   return GV;
4381 }
4382 
4383 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4384 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4385 /// then it will be created with the specified type instead of whatever the
4386 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4387 /// that an actual global with type Ty will be returned, not conversion of a
4388 /// variable with the same mangled name but some other type.
4389 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4390                                                   llvm::Type *Ty,
4391                                            ForDefinition_t IsForDefinition) {
4392   assert(D->hasGlobalStorage() && "Not a global variable");
4393   QualType ASTTy = D->getType();
4394   if (!Ty)
4395     Ty = getTypes().ConvertTypeForMem(ASTTy);
4396 
4397   StringRef MangledName = getMangledName(D);
4398   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4399                                IsForDefinition);
4400 }
4401 
4402 /// CreateRuntimeVariable - Create a new runtime global variable with the
4403 /// specified type and name.
4404 llvm::Constant *
4405 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4406                                      StringRef Name) {
4407   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4408                                                        : LangAS::Default;
4409   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4410   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4411   return Ret;
4412 }
4413 
4414 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4415   assert(!D->getInit() && "Cannot emit definite definitions here!");
4416 
4417   StringRef MangledName = getMangledName(D);
4418   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4419 
4420   // We already have a definition, not declaration, with the same mangled name.
4421   // Emitting of declaration is not required (and actually overwrites emitted
4422   // definition).
4423   if (GV && !GV->isDeclaration())
4424     return;
4425 
4426   // If we have not seen a reference to this variable yet, place it into the
4427   // deferred declarations table to be emitted if needed later.
4428   if (!MustBeEmitted(D) && !GV) {
4429       DeferredDecls[MangledName] = D;
4430       return;
4431   }
4432 
4433   // The tentative definition is the only definition.
4434   EmitGlobalVarDefinition(D);
4435 }
4436 
4437 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4438   EmitExternalVarDeclaration(D);
4439 }
4440 
4441 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4442   return Context.toCharUnitsFromBits(
4443       getDataLayout().getTypeStoreSizeInBits(Ty));
4444 }
4445 
4446 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4447   if (LangOpts.OpenCL) {
4448     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4449     assert(AS == LangAS::opencl_global ||
4450            AS == LangAS::opencl_global_device ||
4451            AS == LangAS::opencl_global_host ||
4452            AS == LangAS::opencl_constant ||
4453            AS == LangAS::opencl_local ||
4454            AS >= LangAS::FirstTargetAddressSpace);
4455     return AS;
4456   }
4457 
4458   if (LangOpts.SYCLIsDevice &&
4459       (!D || D->getType().getAddressSpace() == LangAS::Default))
4460     return LangAS::sycl_global;
4461 
4462   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4463     if (D && D->hasAttr<CUDAConstantAttr>())
4464       return LangAS::cuda_constant;
4465     else if (D && D->hasAttr<CUDASharedAttr>())
4466       return LangAS::cuda_shared;
4467     else if (D && D->hasAttr<CUDADeviceAttr>())
4468       return LangAS::cuda_device;
4469     else if (D && D->getType().isConstQualified())
4470       return LangAS::cuda_constant;
4471     else
4472       return LangAS::cuda_device;
4473   }
4474 
4475   if (LangOpts.OpenMP) {
4476     LangAS AS;
4477     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4478       return AS;
4479   }
4480   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4481 }
4482 
4483 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4484   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4485   if (LangOpts.OpenCL)
4486     return LangAS::opencl_constant;
4487   if (LangOpts.SYCLIsDevice)
4488     return LangAS::sycl_global;
4489   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4490     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4491     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4492     // with OpVariable instructions with Generic storage class which is not
4493     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4494     // UniformConstant storage class is not viable as pointers to it may not be
4495     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4496     return LangAS::cuda_device;
4497   if (auto AS = getTarget().getConstantAddressSpace())
4498     return *AS;
4499   return LangAS::Default;
4500 }
4501 
4502 // In address space agnostic languages, string literals are in default address
4503 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4504 // emitted in constant address space in LLVM IR. To be consistent with other
4505 // parts of AST, string literal global variables in constant address space
4506 // need to be casted to default address space before being put into address
4507 // map and referenced by other part of CodeGen.
4508 // In OpenCL, string literals are in constant address space in AST, therefore
4509 // they should not be casted to default address space.
4510 static llvm::Constant *
4511 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4512                                        llvm::GlobalVariable *GV) {
4513   llvm::Constant *Cast = GV;
4514   if (!CGM.getLangOpts().OpenCL) {
4515     auto AS = CGM.GetGlobalConstantAddressSpace();
4516     if (AS != LangAS::Default)
4517       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4518           CGM, GV, AS, LangAS::Default,
4519           GV->getValueType()->getPointerTo(
4520               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4521   }
4522   return Cast;
4523 }
4524 
4525 template<typename SomeDecl>
4526 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4527                                                llvm::GlobalValue *GV) {
4528   if (!getLangOpts().CPlusPlus)
4529     return;
4530 
4531   // Must have 'used' attribute, or else inline assembly can't rely on
4532   // the name existing.
4533   if (!D->template hasAttr<UsedAttr>())
4534     return;
4535 
4536   // Must have internal linkage and an ordinary name.
4537   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4538     return;
4539 
4540   // Must be in an extern "C" context. Entities declared directly within
4541   // a record are not extern "C" even if the record is in such a context.
4542   const SomeDecl *First = D->getFirstDecl();
4543   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4544     return;
4545 
4546   // OK, this is an internal linkage entity inside an extern "C" linkage
4547   // specification. Make a note of that so we can give it the "expected"
4548   // mangled name if nothing else is using that name.
4549   std::pair<StaticExternCMap::iterator, bool> R =
4550       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4551 
4552   // If we have multiple internal linkage entities with the same name
4553   // in extern "C" regions, none of them gets that name.
4554   if (!R.second)
4555     R.first->second = nullptr;
4556 }
4557 
4558 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4559   if (!CGM.supportsCOMDAT())
4560     return false;
4561 
4562   if (D.hasAttr<SelectAnyAttr>())
4563     return true;
4564 
4565   GVALinkage Linkage;
4566   if (auto *VD = dyn_cast<VarDecl>(&D))
4567     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4568   else
4569     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4570 
4571   switch (Linkage) {
4572   case GVA_Internal:
4573   case GVA_AvailableExternally:
4574   case GVA_StrongExternal:
4575     return false;
4576   case GVA_DiscardableODR:
4577   case GVA_StrongODR:
4578     return true;
4579   }
4580   llvm_unreachable("No such linkage");
4581 }
4582 
4583 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4584                                           llvm::GlobalObject &GO) {
4585   if (!shouldBeInCOMDAT(*this, D))
4586     return;
4587   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4588 }
4589 
4590 /// Pass IsTentative as true if you want to create a tentative definition.
4591 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4592                                             bool IsTentative) {
4593   // OpenCL global variables of sampler type are translated to function calls,
4594   // therefore no need to be translated.
4595   QualType ASTTy = D->getType();
4596   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4597     return;
4598 
4599   // If this is OpenMP device, check if it is legal to emit this global
4600   // normally.
4601   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4602       OpenMPRuntime->emitTargetGlobalVariable(D))
4603     return;
4604 
4605   llvm::TrackingVH<llvm::Constant> Init;
4606   bool NeedsGlobalCtor = false;
4607   bool NeedsGlobalDtor =
4608       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4609 
4610   const VarDecl *InitDecl;
4611   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4612 
4613   Optional<ConstantEmitter> emitter;
4614 
4615   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4616   // as part of their declaration."  Sema has already checked for
4617   // error cases, so we just need to set Init to UndefValue.
4618   bool IsCUDASharedVar =
4619       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4620   // Shadows of initialized device-side global variables are also left
4621   // undefined.
4622   // Managed Variables should be initialized on both host side and device side.
4623   bool IsCUDAShadowVar =
4624       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4625       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4626        D->hasAttr<CUDASharedAttr>());
4627   bool IsCUDADeviceShadowVar =
4628       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4629       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4630        D->getType()->isCUDADeviceBuiltinTextureType());
4631   if (getLangOpts().CUDA &&
4632       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4633     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4634   else if (D->hasAttr<LoaderUninitializedAttr>())
4635     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4636   else if (!InitExpr) {
4637     // This is a tentative definition; tentative definitions are
4638     // implicitly initialized with { 0 }.
4639     //
4640     // Note that tentative definitions are only emitted at the end of
4641     // a translation unit, so they should never have incomplete
4642     // type. In addition, EmitTentativeDefinition makes sure that we
4643     // never attempt to emit a tentative definition if a real one
4644     // exists. A use may still exists, however, so we still may need
4645     // to do a RAUW.
4646     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4647     Init = EmitNullConstant(D->getType());
4648   } else {
4649     initializedGlobalDecl = GlobalDecl(D);
4650     emitter.emplace(*this);
4651     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4652     if (!Initializer) {
4653       QualType T = InitExpr->getType();
4654       if (D->getType()->isReferenceType())
4655         T = D->getType();
4656 
4657       if (getLangOpts().CPlusPlus) {
4658         if (InitDecl->hasFlexibleArrayInit(getContext()))
4659           ErrorUnsupported(D, "flexible array initializer");
4660         Init = EmitNullConstant(T);
4661         NeedsGlobalCtor = true;
4662       } else {
4663         ErrorUnsupported(D, "static initializer");
4664         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4665       }
4666     } else {
4667       Init = Initializer;
4668       // We don't need an initializer, so remove the entry for the delayed
4669       // initializer position (just in case this entry was delayed) if we
4670       // also don't need to register a destructor.
4671       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4672         DelayedCXXInitPosition.erase(D);
4673 
4674 #ifndef NDEBUG
4675       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4676                           InitDecl->getFlexibleArrayInitChars(getContext());
4677       CharUnits CstSize = CharUnits::fromQuantity(
4678           getDataLayout().getTypeAllocSize(Init->getType()));
4679       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4680 #endif
4681     }
4682   }
4683 
4684   llvm::Type* InitType = Init->getType();
4685   llvm::Constant *Entry =
4686       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4687 
4688   // Strip off pointer casts if we got them.
4689   Entry = Entry->stripPointerCasts();
4690 
4691   // Entry is now either a Function or GlobalVariable.
4692   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4693 
4694   // We have a definition after a declaration with the wrong type.
4695   // We must make a new GlobalVariable* and update everything that used OldGV
4696   // (a declaration or tentative definition) with the new GlobalVariable*
4697   // (which will be a definition).
4698   //
4699   // This happens if there is a prototype for a global (e.g.
4700   // "extern int x[];") and then a definition of a different type (e.g.
4701   // "int x[10];"). This also happens when an initializer has a different type
4702   // from the type of the global (this happens with unions).
4703   if (!GV || GV->getValueType() != InitType ||
4704       GV->getType()->getAddressSpace() !=
4705           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4706 
4707     // Move the old entry aside so that we'll create a new one.
4708     Entry->setName(StringRef());
4709 
4710     // Make a new global with the correct type, this is now guaranteed to work.
4711     GV = cast<llvm::GlobalVariable>(
4712         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4713             ->stripPointerCasts());
4714 
4715     // Replace all uses of the old global with the new global
4716     llvm::Constant *NewPtrForOldDecl =
4717         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4718                                                              Entry->getType());
4719     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4720 
4721     // Erase the old global, since it is no longer used.
4722     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4723   }
4724 
4725   MaybeHandleStaticInExternC(D, GV);
4726 
4727   if (D->hasAttr<AnnotateAttr>())
4728     AddGlobalAnnotations(D, GV);
4729 
4730   // Set the llvm linkage type as appropriate.
4731   llvm::GlobalValue::LinkageTypes Linkage =
4732       getLLVMLinkageVarDefinition(D, GV->isConstant());
4733 
4734   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4735   // the device. [...]"
4736   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4737   // __device__, declares a variable that: [...]
4738   // Is accessible from all the threads within the grid and from the host
4739   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4740   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4741   if (GV && LangOpts.CUDA) {
4742     if (LangOpts.CUDAIsDevice) {
4743       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4744           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4745            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4746            D->getType()->isCUDADeviceBuiltinTextureType()))
4747         GV->setExternallyInitialized(true);
4748     } else {
4749       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4750     }
4751     getCUDARuntime().handleVarRegistration(D, *GV);
4752   }
4753 
4754   GV->setInitializer(Init);
4755   if (emitter)
4756     emitter->finalize(GV);
4757 
4758   // If it is safe to mark the global 'constant', do so now.
4759   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4760                   isTypeConstant(D->getType(), true));
4761 
4762   // If it is in a read-only section, mark it 'constant'.
4763   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4764     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4765     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4766       GV->setConstant(true);
4767   }
4768 
4769   CharUnits AlignVal = getContext().getDeclAlign(D);
4770   // Check for alignment specifed in an 'omp allocate' directive.
4771   if (llvm::Optional<CharUnits> AlignValFromAllocate =
4772           getOMPAllocateAlignment(D))
4773     AlignVal = *AlignValFromAllocate;
4774   GV->setAlignment(AlignVal.getAsAlign());
4775 
4776   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4777   // function is only defined alongside the variable, not also alongside
4778   // callers. Normally, all accesses to a thread_local go through the
4779   // thread-wrapper in order to ensure initialization has occurred, underlying
4780   // variable will never be used other than the thread-wrapper, so it can be
4781   // converted to internal linkage.
4782   //
4783   // However, if the variable has the 'constinit' attribute, it _can_ be
4784   // referenced directly, without calling the thread-wrapper, so the linkage
4785   // must not be changed.
4786   //
4787   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4788   // weak or linkonce, the de-duplication semantics are important to preserve,
4789   // so we don't change the linkage.
4790   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4791       Linkage == llvm::GlobalValue::ExternalLinkage &&
4792       Context.getTargetInfo().getTriple().isOSDarwin() &&
4793       !D->hasAttr<ConstInitAttr>())
4794     Linkage = llvm::GlobalValue::InternalLinkage;
4795 
4796   GV->setLinkage(Linkage);
4797   if (D->hasAttr<DLLImportAttr>())
4798     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4799   else if (D->hasAttr<DLLExportAttr>())
4800     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4801   else
4802     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4803 
4804   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4805     // common vars aren't constant even if declared const.
4806     GV->setConstant(false);
4807     // Tentative definition of global variables may be initialized with
4808     // non-zero null pointers. In this case they should have weak linkage
4809     // since common linkage must have zero initializer and must not have
4810     // explicit section therefore cannot have non-zero initial value.
4811     if (!GV->getInitializer()->isNullValue())
4812       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4813   }
4814 
4815   setNonAliasAttributes(D, GV);
4816 
4817   if (D->getTLSKind() && !GV->isThreadLocal()) {
4818     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4819       CXXThreadLocals.push_back(D);
4820     setTLSMode(GV, *D);
4821   }
4822 
4823   maybeSetTrivialComdat(*D, *GV);
4824 
4825   // Emit the initializer function if necessary.
4826   if (NeedsGlobalCtor || NeedsGlobalDtor)
4827     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4828 
4829   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
4830 
4831   // Emit global variable debug information.
4832   if (CGDebugInfo *DI = getModuleDebugInfo())
4833     if (getCodeGenOpts().hasReducedDebugInfo())
4834       DI->EmitGlobalVariable(GV, D);
4835 }
4836 
4837 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4838   if (CGDebugInfo *DI = getModuleDebugInfo())
4839     if (getCodeGenOpts().hasReducedDebugInfo()) {
4840       QualType ASTTy = D->getType();
4841       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4842       llvm::Constant *GV =
4843           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4844       DI->EmitExternalVariable(
4845           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4846     }
4847 }
4848 
4849 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4850                                       CodeGenModule &CGM, const VarDecl *D,
4851                                       bool NoCommon) {
4852   // Don't give variables common linkage if -fno-common was specified unless it
4853   // was overridden by a NoCommon attribute.
4854   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4855     return true;
4856 
4857   // C11 6.9.2/2:
4858   //   A declaration of an identifier for an object that has file scope without
4859   //   an initializer, and without a storage-class specifier or with the
4860   //   storage-class specifier static, constitutes a tentative definition.
4861   if (D->getInit() || D->hasExternalStorage())
4862     return true;
4863 
4864   // A variable cannot be both common and exist in a section.
4865   if (D->hasAttr<SectionAttr>())
4866     return true;
4867 
4868   // A variable cannot be both common and exist in a section.
4869   // We don't try to determine which is the right section in the front-end.
4870   // If no specialized section name is applicable, it will resort to default.
4871   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4872       D->hasAttr<PragmaClangDataSectionAttr>() ||
4873       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4874       D->hasAttr<PragmaClangRodataSectionAttr>())
4875     return true;
4876 
4877   // Thread local vars aren't considered common linkage.
4878   if (D->getTLSKind())
4879     return true;
4880 
4881   // Tentative definitions marked with WeakImportAttr are true definitions.
4882   if (D->hasAttr<WeakImportAttr>())
4883     return true;
4884 
4885   // A variable cannot be both common and exist in a comdat.
4886   if (shouldBeInCOMDAT(CGM, *D))
4887     return true;
4888 
4889   // Declarations with a required alignment do not have common linkage in MSVC
4890   // mode.
4891   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4892     if (D->hasAttr<AlignedAttr>())
4893       return true;
4894     QualType VarType = D->getType();
4895     if (Context.isAlignmentRequired(VarType))
4896       return true;
4897 
4898     if (const auto *RT = VarType->getAs<RecordType>()) {
4899       const RecordDecl *RD = RT->getDecl();
4900       for (const FieldDecl *FD : RD->fields()) {
4901         if (FD->isBitField())
4902           continue;
4903         if (FD->hasAttr<AlignedAttr>())
4904           return true;
4905         if (Context.isAlignmentRequired(FD->getType()))
4906           return true;
4907       }
4908     }
4909   }
4910 
4911   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4912   // common symbols, so symbols with greater alignment requirements cannot be
4913   // common.
4914   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4915   // alignments for common symbols via the aligncomm directive, so this
4916   // restriction only applies to MSVC environments.
4917   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4918       Context.getTypeAlignIfKnown(D->getType()) >
4919           Context.toBits(CharUnits::fromQuantity(32)))
4920     return true;
4921 
4922   return false;
4923 }
4924 
4925 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4926     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4927   if (Linkage == GVA_Internal)
4928     return llvm::Function::InternalLinkage;
4929 
4930   if (D->hasAttr<WeakAttr>())
4931     return llvm::GlobalVariable::WeakAnyLinkage;
4932 
4933   if (const auto *FD = D->getAsFunction())
4934     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4935       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4936 
4937   // We are guaranteed to have a strong definition somewhere else,
4938   // so we can use available_externally linkage.
4939   if (Linkage == GVA_AvailableExternally)
4940     return llvm::GlobalValue::AvailableExternallyLinkage;
4941 
4942   // Note that Apple's kernel linker doesn't support symbol
4943   // coalescing, so we need to avoid linkonce and weak linkages there.
4944   // Normally, this means we just map to internal, but for explicit
4945   // instantiations we'll map to external.
4946 
4947   // In C++, the compiler has to emit a definition in every translation unit
4948   // that references the function.  We should use linkonce_odr because
4949   // a) if all references in this translation unit are optimized away, we
4950   // don't need to codegen it.  b) if the function persists, it needs to be
4951   // merged with other definitions. c) C++ has the ODR, so we know the
4952   // definition is dependable.
4953   if (Linkage == GVA_DiscardableODR)
4954     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4955                                             : llvm::Function::InternalLinkage;
4956 
4957   // An explicit instantiation of a template has weak linkage, since
4958   // explicit instantiations can occur in multiple translation units
4959   // and must all be equivalent. However, we are not allowed to
4960   // throw away these explicit instantiations.
4961   //
4962   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4963   // so say that CUDA templates are either external (for kernels) or internal.
4964   // This lets llvm perform aggressive inter-procedural optimizations. For
4965   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4966   // therefore we need to follow the normal linkage paradigm.
4967   if (Linkage == GVA_StrongODR) {
4968     if (getLangOpts().AppleKext)
4969       return llvm::Function::ExternalLinkage;
4970     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4971         !getLangOpts().GPURelocatableDeviceCode)
4972       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4973                                           : llvm::Function::InternalLinkage;
4974     return llvm::Function::WeakODRLinkage;
4975   }
4976 
4977   // C++ doesn't have tentative definitions and thus cannot have common
4978   // linkage.
4979   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4980       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4981                                  CodeGenOpts.NoCommon))
4982     return llvm::GlobalVariable::CommonLinkage;
4983 
4984   // selectany symbols are externally visible, so use weak instead of
4985   // linkonce.  MSVC optimizes away references to const selectany globals, so
4986   // all definitions should be the same and ODR linkage should be used.
4987   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4988   if (D->hasAttr<SelectAnyAttr>())
4989     return llvm::GlobalVariable::WeakODRLinkage;
4990 
4991   // Otherwise, we have strong external linkage.
4992   assert(Linkage == GVA_StrongExternal);
4993   return llvm::GlobalVariable::ExternalLinkage;
4994 }
4995 
4996 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4997     const VarDecl *VD, bool IsConstant) {
4998   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4999   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5000 }
5001 
5002 /// Replace the uses of a function that was declared with a non-proto type.
5003 /// We want to silently drop extra arguments from call sites
5004 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5005                                           llvm::Function *newFn) {
5006   // Fast path.
5007   if (old->use_empty()) return;
5008 
5009   llvm::Type *newRetTy = newFn->getReturnType();
5010   SmallVector<llvm::Value*, 4> newArgs;
5011 
5012   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5013          ui != ue; ) {
5014     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5015     llvm::User *user = use->getUser();
5016 
5017     // Recognize and replace uses of bitcasts.  Most calls to
5018     // unprototyped functions will use bitcasts.
5019     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5020       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5021         replaceUsesOfNonProtoConstant(bitcast, newFn);
5022       continue;
5023     }
5024 
5025     // Recognize calls to the function.
5026     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5027     if (!callSite) continue;
5028     if (!callSite->isCallee(&*use))
5029       continue;
5030 
5031     // If the return types don't match exactly, then we can't
5032     // transform this call unless it's dead.
5033     if (callSite->getType() != newRetTy && !callSite->use_empty())
5034       continue;
5035 
5036     // Get the call site's attribute list.
5037     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5038     llvm::AttributeList oldAttrs = callSite->getAttributes();
5039 
5040     // If the function was passed too few arguments, don't transform.
5041     unsigned newNumArgs = newFn->arg_size();
5042     if (callSite->arg_size() < newNumArgs)
5043       continue;
5044 
5045     // If extra arguments were passed, we silently drop them.
5046     // If any of the types mismatch, we don't transform.
5047     unsigned argNo = 0;
5048     bool dontTransform = false;
5049     for (llvm::Argument &A : newFn->args()) {
5050       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5051         dontTransform = true;
5052         break;
5053       }
5054 
5055       // Add any parameter attributes.
5056       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5057       argNo++;
5058     }
5059     if (dontTransform)
5060       continue;
5061 
5062     // Okay, we can transform this.  Create the new call instruction and copy
5063     // over the required information.
5064     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5065 
5066     // Copy over any operand bundles.
5067     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5068     callSite->getOperandBundlesAsDefs(newBundles);
5069 
5070     llvm::CallBase *newCall;
5071     if (isa<llvm::CallInst>(callSite)) {
5072       newCall =
5073           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5074     } else {
5075       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5076       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5077                                          oldInvoke->getUnwindDest(), newArgs,
5078                                          newBundles, "", callSite);
5079     }
5080     newArgs.clear(); // for the next iteration
5081 
5082     if (!newCall->getType()->isVoidTy())
5083       newCall->takeName(callSite);
5084     newCall->setAttributes(
5085         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5086                                  oldAttrs.getRetAttrs(), newArgAttrs));
5087     newCall->setCallingConv(callSite->getCallingConv());
5088 
5089     // Finally, remove the old call, replacing any uses with the new one.
5090     if (!callSite->use_empty())
5091       callSite->replaceAllUsesWith(newCall);
5092 
5093     // Copy debug location attached to CI.
5094     if (callSite->getDebugLoc())
5095       newCall->setDebugLoc(callSite->getDebugLoc());
5096 
5097     callSite->eraseFromParent();
5098   }
5099 }
5100 
5101 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5102 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5103 /// existing call uses of the old function in the module, this adjusts them to
5104 /// call the new function directly.
5105 ///
5106 /// This is not just a cleanup: the always_inline pass requires direct calls to
5107 /// functions to be able to inline them.  If there is a bitcast in the way, it
5108 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5109 /// run at -O0.
5110 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5111                                                       llvm::Function *NewFn) {
5112   // If we're redefining a global as a function, don't transform it.
5113   if (!isa<llvm::Function>(Old)) return;
5114 
5115   replaceUsesOfNonProtoConstant(Old, NewFn);
5116 }
5117 
5118 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5119   auto DK = VD->isThisDeclarationADefinition();
5120   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5121     return;
5122 
5123   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5124   // If we have a definition, this might be a deferred decl. If the
5125   // instantiation is explicit, make sure we emit it at the end.
5126   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5127     GetAddrOfGlobalVar(VD);
5128 
5129   EmitTopLevelDecl(VD);
5130 }
5131 
5132 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5133                                                  llvm::GlobalValue *GV) {
5134   const auto *D = cast<FunctionDecl>(GD.getDecl());
5135 
5136   // Compute the function info and LLVM type.
5137   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5138   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5139 
5140   // Get or create the prototype for the function.
5141   if (!GV || (GV->getValueType() != Ty))
5142     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5143                                                    /*DontDefer=*/true,
5144                                                    ForDefinition));
5145 
5146   // Already emitted.
5147   if (!GV->isDeclaration())
5148     return;
5149 
5150   // We need to set linkage and visibility on the function before
5151   // generating code for it because various parts of IR generation
5152   // want to propagate this information down (e.g. to local static
5153   // declarations).
5154   auto *Fn = cast<llvm::Function>(GV);
5155   setFunctionLinkage(GD, Fn);
5156 
5157   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5158   setGVProperties(Fn, GD);
5159 
5160   MaybeHandleStaticInExternC(D, Fn);
5161 
5162   maybeSetTrivialComdat(*D, *Fn);
5163 
5164   // Set CodeGen attributes that represent floating point environment.
5165   setLLVMFunctionFEnvAttributes(D, Fn);
5166 
5167   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5168 
5169   setNonAliasAttributes(GD, Fn);
5170   SetLLVMFunctionAttributesForDefinition(D, Fn);
5171 
5172   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5173     AddGlobalCtor(Fn, CA->getPriority());
5174   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5175     AddGlobalDtor(Fn, DA->getPriority(), true);
5176   if (D->hasAttr<AnnotateAttr>())
5177     AddGlobalAnnotations(D, Fn);
5178 }
5179 
5180 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5181   const auto *D = cast<ValueDecl>(GD.getDecl());
5182   const AliasAttr *AA = D->getAttr<AliasAttr>();
5183   assert(AA && "Not an alias?");
5184 
5185   StringRef MangledName = getMangledName(GD);
5186 
5187   if (AA->getAliasee() == MangledName) {
5188     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5189     return;
5190   }
5191 
5192   // If there is a definition in the module, then it wins over the alias.
5193   // This is dubious, but allow it to be safe.  Just ignore the alias.
5194   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5195   if (Entry && !Entry->isDeclaration())
5196     return;
5197 
5198   Aliases.push_back(GD);
5199 
5200   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5201 
5202   // Create a reference to the named value.  This ensures that it is emitted
5203   // if a deferred decl.
5204   llvm::Constant *Aliasee;
5205   llvm::GlobalValue::LinkageTypes LT;
5206   if (isa<llvm::FunctionType>(DeclTy)) {
5207     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5208                                       /*ForVTable=*/false);
5209     LT = getFunctionLinkage(GD);
5210   } else {
5211     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5212                                     /*D=*/nullptr);
5213     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5214       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5215     else
5216       LT = getFunctionLinkage(GD);
5217   }
5218 
5219   // Create the new alias itself, but don't set a name yet.
5220   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5221   auto *GA =
5222       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5223 
5224   if (Entry) {
5225     if (GA->getAliasee() == Entry) {
5226       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5227       return;
5228     }
5229 
5230     assert(Entry->isDeclaration());
5231 
5232     // If there is a declaration in the module, then we had an extern followed
5233     // by the alias, as in:
5234     //   extern int test6();
5235     //   ...
5236     //   int test6() __attribute__((alias("test7")));
5237     //
5238     // Remove it and replace uses of it with the alias.
5239     GA->takeName(Entry);
5240 
5241     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5242                                                           Entry->getType()));
5243     Entry->eraseFromParent();
5244   } else {
5245     GA->setName(MangledName);
5246   }
5247 
5248   // Set attributes which are particular to an alias; this is a
5249   // specialization of the attributes which may be set on a global
5250   // variable/function.
5251   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5252       D->isWeakImported()) {
5253     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5254   }
5255 
5256   if (const auto *VD = dyn_cast<VarDecl>(D))
5257     if (VD->getTLSKind())
5258       setTLSMode(GA, *VD);
5259 
5260   SetCommonAttributes(GD, GA);
5261 
5262   // Emit global alias debug information.
5263   if (isa<VarDecl>(D))
5264     if (CGDebugInfo *DI = getModuleDebugInfo())
5265       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()), GD);
5266 }
5267 
5268 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5269   const auto *D = cast<ValueDecl>(GD.getDecl());
5270   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5271   assert(IFA && "Not an ifunc?");
5272 
5273   StringRef MangledName = getMangledName(GD);
5274 
5275   if (IFA->getResolver() == MangledName) {
5276     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5277     return;
5278   }
5279 
5280   // Report an error if some definition overrides ifunc.
5281   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5282   if (Entry && !Entry->isDeclaration()) {
5283     GlobalDecl OtherGD;
5284     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5285         DiagnosedConflictingDefinitions.insert(GD).second) {
5286       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5287           << MangledName;
5288       Diags.Report(OtherGD.getDecl()->getLocation(),
5289                    diag::note_previous_definition);
5290     }
5291     return;
5292   }
5293 
5294   Aliases.push_back(GD);
5295 
5296   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5297   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5298   llvm::Constant *Resolver =
5299       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5300                               /*ForVTable=*/false);
5301   llvm::GlobalIFunc *GIF =
5302       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5303                                 "", Resolver, &getModule());
5304   if (Entry) {
5305     if (GIF->getResolver() == Entry) {
5306       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5307       return;
5308     }
5309     assert(Entry->isDeclaration());
5310 
5311     // If there is a declaration in the module, then we had an extern followed
5312     // by the ifunc, as in:
5313     //   extern int test();
5314     //   ...
5315     //   int test() __attribute__((ifunc("resolver")));
5316     //
5317     // Remove it and replace uses of it with the ifunc.
5318     GIF->takeName(Entry);
5319 
5320     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5321                                                           Entry->getType()));
5322     Entry->eraseFromParent();
5323   } else
5324     GIF->setName(MangledName);
5325 
5326   SetCommonAttributes(GD, GIF);
5327 }
5328 
5329 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5330                                             ArrayRef<llvm::Type*> Tys) {
5331   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5332                                          Tys);
5333 }
5334 
5335 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5336 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5337                          const StringLiteral *Literal, bool TargetIsLSB,
5338                          bool &IsUTF16, unsigned &StringLength) {
5339   StringRef String = Literal->getString();
5340   unsigned NumBytes = String.size();
5341 
5342   // Check for simple case.
5343   if (!Literal->containsNonAsciiOrNull()) {
5344     StringLength = NumBytes;
5345     return *Map.insert(std::make_pair(String, nullptr)).first;
5346   }
5347 
5348   // Otherwise, convert the UTF8 literals into a string of shorts.
5349   IsUTF16 = true;
5350 
5351   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5352   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5353   llvm::UTF16 *ToPtr = &ToBuf[0];
5354 
5355   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5356                                  ToPtr + NumBytes, llvm::strictConversion);
5357 
5358   // ConvertUTF8toUTF16 returns the length in ToPtr.
5359   StringLength = ToPtr - &ToBuf[0];
5360 
5361   // Add an explicit null.
5362   *ToPtr = 0;
5363   return *Map.insert(std::make_pair(
5364                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5365                                    (StringLength + 1) * 2),
5366                          nullptr)).first;
5367 }
5368 
5369 ConstantAddress
5370 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5371   unsigned StringLength = 0;
5372   bool isUTF16 = false;
5373   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5374       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5375                                getDataLayout().isLittleEndian(), isUTF16,
5376                                StringLength);
5377 
5378   if (auto *C = Entry.second)
5379     return ConstantAddress(
5380         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5381 
5382   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5383   llvm::Constant *Zeros[] = { Zero, Zero };
5384 
5385   const ASTContext &Context = getContext();
5386   const llvm::Triple &Triple = getTriple();
5387 
5388   const auto CFRuntime = getLangOpts().CFRuntime;
5389   const bool IsSwiftABI =
5390       static_cast<unsigned>(CFRuntime) >=
5391       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5392   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5393 
5394   // If we don't already have it, get __CFConstantStringClassReference.
5395   if (!CFConstantStringClassRef) {
5396     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5397     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5398     Ty = llvm::ArrayType::get(Ty, 0);
5399 
5400     switch (CFRuntime) {
5401     default: break;
5402     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5403     case LangOptions::CoreFoundationABI::Swift5_0:
5404       CFConstantStringClassName =
5405           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5406                               : "$s10Foundation19_NSCFConstantStringCN";
5407       Ty = IntPtrTy;
5408       break;
5409     case LangOptions::CoreFoundationABI::Swift4_2:
5410       CFConstantStringClassName =
5411           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5412                               : "$S10Foundation19_NSCFConstantStringCN";
5413       Ty = IntPtrTy;
5414       break;
5415     case LangOptions::CoreFoundationABI::Swift4_1:
5416       CFConstantStringClassName =
5417           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5418                               : "__T010Foundation19_NSCFConstantStringCN";
5419       Ty = IntPtrTy;
5420       break;
5421     }
5422 
5423     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5424 
5425     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5426       llvm::GlobalValue *GV = nullptr;
5427 
5428       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5429         IdentifierInfo &II = Context.Idents.get(GV->getName());
5430         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5431         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5432 
5433         const VarDecl *VD = nullptr;
5434         for (const auto *Result : DC->lookup(&II))
5435           if ((VD = dyn_cast<VarDecl>(Result)))
5436             break;
5437 
5438         if (Triple.isOSBinFormatELF()) {
5439           if (!VD)
5440             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5441         } else {
5442           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5443           if (!VD || !VD->hasAttr<DLLExportAttr>())
5444             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5445           else
5446             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5447         }
5448 
5449         setDSOLocal(GV);
5450       }
5451     }
5452 
5453     // Decay array -> ptr
5454     CFConstantStringClassRef =
5455         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5456                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5457   }
5458 
5459   QualType CFTy = Context.getCFConstantStringType();
5460 
5461   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5462 
5463   ConstantInitBuilder Builder(*this);
5464   auto Fields = Builder.beginStruct(STy);
5465 
5466   // Class pointer.
5467   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5468 
5469   // Flags.
5470   if (IsSwiftABI) {
5471     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5472     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5473   } else {
5474     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5475   }
5476 
5477   // String pointer.
5478   llvm::Constant *C = nullptr;
5479   if (isUTF16) {
5480     auto Arr = llvm::makeArrayRef(
5481         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5482         Entry.first().size() / 2);
5483     C = llvm::ConstantDataArray::get(VMContext, Arr);
5484   } else {
5485     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5486   }
5487 
5488   // Note: -fwritable-strings doesn't make the backing store strings of
5489   // CFStrings writable. (See <rdar://problem/10657500>)
5490   auto *GV =
5491       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5492                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5493   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5494   // Don't enforce the target's minimum global alignment, since the only use
5495   // of the string is via this class initializer.
5496   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5497                             : Context.getTypeAlignInChars(Context.CharTy);
5498   GV->setAlignment(Align.getAsAlign());
5499 
5500   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5501   // Without it LLVM can merge the string with a non unnamed_addr one during
5502   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5503   if (Triple.isOSBinFormatMachO())
5504     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5505                            : "__TEXT,__cstring,cstring_literals");
5506   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5507   // the static linker to adjust permissions to read-only later on.
5508   else if (Triple.isOSBinFormatELF())
5509     GV->setSection(".rodata");
5510 
5511   // String.
5512   llvm::Constant *Str =
5513       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5514 
5515   if (isUTF16)
5516     // Cast the UTF16 string to the correct type.
5517     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5518   Fields.add(Str);
5519 
5520   // String length.
5521   llvm::IntegerType *LengthTy =
5522       llvm::IntegerType::get(getModule().getContext(),
5523                              Context.getTargetInfo().getLongWidth());
5524   if (IsSwiftABI) {
5525     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5526         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5527       LengthTy = Int32Ty;
5528     else
5529       LengthTy = IntPtrTy;
5530   }
5531   Fields.addInt(LengthTy, StringLength);
5532 
5533   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5534   // properly aligned on 32-bit platforms.
5535   CharUnits Alignment =
5536       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5537 
5538   // The struct.
5539   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5540                                     /*isConstant=*/false,
5541                                     llvm::GlobalVariable::PrivateLinkage);
5542   GV->addAttribute("objc_arc_inert");
5543   switch (Triple.getObjectFormat()) {
5544   case llvm::Triple::UnknownObjectFormat:
5545     llvm_unreachable("unknown file format");
5546   case llvm::Triple::DXContainer:
5547   case llvm::Triple::GOFF:
5548   case llvm::Triple::SPIRV:
5549   case llvm::Triple::XCOFF:
5550     llvm_unreachable("unimplemented");
5551   case llvm::Triple::COFF:
5552   case llvm::Triple::ELF:
5553   case llvm::Triple::Wasm:
5554     GV->setSection("cfstring");
5555     break;
5556   case llvm::Triple::MachO:
5557     GV->setSection("__DATA,__cfstring");
5558     break;
5559   }
5560   Entry.second = GV;
5561 
5562   return ConstantAddress(GV, GV->getValueType(), Alignment);
5563 }
5564 
5565 bool CodeGenModule::getExpressionLocationsEnabled() const {
5566   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5567 }
5568 
5569 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5570   if (ObjCFastEnumerationStateType.isNull()) {
5571     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5572     D->startDefinition();
5573 
5574     QualType FieldTypes[] = {
5575       Context.UnsignedLongTy,
5576       Context.getPointerType(Context.getObjCIdType()),
5577       Context.getPointerType(Context.UnsignedLongTy),
5578       Context.getConstantArrayType(Context.UnsignedLongTy,
5579                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5580     };
5581 
5582     for (size_t i = 0; i < 4; ++i) {
5583       FieldDecl *Field = FieldDecl::Create(Context,
5584                                            D,
5585                                            SourceLocation(),
5586                                            SourceLocation(), nullptr,
5587                                            FieldTypes[i], /*TInfo=*/nullptr,
5588                                            /*BitWidth=*/nullptr,
5589                                            /*Mutable=*/false,
5590                                            ICIS_NoInit);
5591       Field->setAccess(AS_public);
5592       D->addDecl(Field);
5593     }
5594 
5595     D->completeDefinition();
5596     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5597   }
5598 
5599   return ObjCFastEnumerationStateType;
5600 }
5601 
5602 llvm::Constant *
5603 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5604   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5605 
5606   // Don't emit it as the address of the string, emit the string data itself
5607   // as an inline array.
5608   if (E->getCharByteWidth() == 1) {
5609     SmallString<64> Str(E->getString());
5610 
5611     // Resize the string to the right size, which is indicated by its type.
5612     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5613     Str.resize(CAT->getSize().getZExtValue());
5614     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5615   }
5616 
5617   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5618   llvm::Type *ElemTy = AType->getElementType();
5619   unsigned NumElements = AType->getNumElements();
5620 
5621   // Wide strings have either 2-byte or 4-byte elements.
5622   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5623     SmallVector<uint16_t, 32> Elements;
5624     Elements.reserve(NumElements);
5625 
5626     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5627       Elements.push_back(E->getCodeUnit(i));
5628     Elements.resize(NumElements);
5629     return llvm::ConstantDataArray::get(VMContext, Elements);
5630   }
5631 
5632   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5633   SmallVector<uint32_t, 32> Elements;
5634   Elements.reserve(NumElements);
5635 
5636   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5637     Elements.push_back(E->getCodeUnit(i));
5638   Elements.resize(NumElements);
5639   return llvm::ConstantDataArray::get(VMContext, Elements);
5640 }
5641 
5642 static llvm::GlobalVariable *
5643 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5644                       CodeGenModule &CGM, StringRef GlobalName,
5645                       CharUnits Alignment) {
5646   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5647       CGM.GetGlobalConstantAddressSpace());
5648 
5649   llvm::Module &M = CGM.getModule();
5650   // Create a global variable for this string
5651   auto *GV = new llvm::GlobalVariable(
5652       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5653       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5654   GV->setAlignment(Alignment.getAsAlign());
5655   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5656   if (GV->isWeakForLinker()) {
5657     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5658     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5659   }
5660   CGM.setDSOLocal(GV);
5661 
5662   return GV;
5663 }
5664 
5665 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5666 /// constant array for the given string literal.
5667 ConstantAddress
5668 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5669                                                   StringRef Name) {
5670   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5671 
5672   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5673   llvm::GlobalVariable **Entry = nullptr;
5674   if (!LangOpts.WritableStrings) {
5675     Entry = &ConstantStringMap[C];
5676     if (auto GV = *Entry) {
5677       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5678         GV->setAlignment(Alignment.getAsAlign());
5679       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5680                              GV->getValueType(), Alignment);
5681     }
5682   }
5683 
5684   SmallString<256> MangledNameBuffer;
5685   StringRef GlobalVariableName;
5686   llvm::GlobalValue::LinkageTypes LT;
5687 
5688   // Mangle the string literal if that's how the ABI merges duplicate strings.
5689   // Don't do it if they are writable, since we don't want writes in one TU to
5690   // affect strings in another.
5691   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5692       !LangOpts.WritableStrings) {
5693     llvm::raw_svector_ostream Out(MangledNameBuffer);
5694     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5695     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5696     GlobalVariableName = MangledNameBuffer;
5697   } else {
5698     LT = llvm::GlobalValue::PrivateLinkage;
5699     GlobalVariableName = Name;
5700   }
5701 
5702   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5703 
5704   CGDebugInfo *DI = getModuleDebugInfo();
5705   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5706     DI->AddStringLiteralDebugInfo(GV, S);
5707 
5708   if (Entry)
5709     *Entry = GV;
5710 
5711   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5712 
5713   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5714                          GV->getValueType(), Alignment);
5715 }
5716 
5717 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5718 /// array for the given ObjCEncodeExpr node.
5719 ConstantAddress
5720 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5721   std::string Str;
5722   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5723 
5724   return GetAddrOfConstantCString(Str);
5725 }
5726 
5727 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5728 /// the literal and a terminating '\0' character.
5729 /// The result has pointer to array type.
5730 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5731     const std::string &Str, const char *GlobalName) {
5732   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5733   CharUnits Alignment =
5734     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5735 
5736   llvm::Constant *C =
5737       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5738 
5739   // Don't share any string literals if strings aren't constant.
5740   llvm::GlobalVariable **Entry = nullptr;
5741   if (!LangOpts.WritableStrings) {
5742     Entry = &ConstantStringMap[C];
5743     if (auto GV = *Entry) {
5744       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5745         GV->setAlignment(Alignment.getAsAlign());
5746       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5747                              GV->getValueType(), Alignment);
5748     }
5749   }
5750 
5751   // Get the default prefix if a name wasn't specified.
5752   if (!GlobalName)
5753     GlobalName = ".str";
5754   // Create a global variable for this.
5755   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5756                                   GlobalName, Alignment);
5757   if (Entry)
5758     *Entry = GV;
5759 
5760   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5761                          GV->getValueType(), Alignment);
5762 }
5763 
5764 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5765     const MaterializeTemporaryExpr *E, const Expr *Init) {
5766   assert((E->getStorageDuration() == SD_Static ||
5767           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5768   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5769 
5770   // If we're not materializing a subobject of the temporary, keep the
5771   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5772   QualType MaterializedType = Init->getType();
5773   if (Init == E->getSubExpr())
5774     MaterializedType = E->getType();
5775 
5776   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5777 
5778   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5779   if (!InsertResult.second) {
5780     // We've seen this before: either we already created it or we're in the
5781     // process of doing so.
5782     if (!InsertResult.first->second) {
5783       // We recursively re-entered this function, probably during emission of
5784       // the initializer. Create a placeholder. We'll clean this up in the
5785       // outer call, at the end of this function.
5786       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5787       InsertResult.first->second = new llvm::GlobalVariable(
5788           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5789           nullptr);
5790     }
5791     return ConstantAddress(InsertResult.first->second,
5792                            llvm::cast<llvm::GlobalVariable>(
5793                                InsertResult.first->second->stripPointerCasts())
5794                                ->getValueType(),
5795                            Align);
5796   }
5797 
5798   // FIXME: If an externally-visible declaration extends multiple temporaries,
5799   // we need to give each temporary the same name in every translation unit (and
5800   // we also need to make the temporaries externally-visible).
5801   SmallString<256> Name;
5802   llvm::raw_svector_ostream Out(Name);
5803   getCXXABI().getMangleContext().mangleReferenceTemporary(
5804       VD, E->getManglingNumber(), Out);
5805 
5806   APValue *Value = nullptr;
5807   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5808     // If the initializer of the extending declaration is a constant
5809     // initializer, we should have a cached constant initializer for this
5810     // temporary. Note that this might have a different value from the value
5811     // computed by evaluating the initializer if the surrounding constant
5812     // expression modifies the temporary.
5813     Value = E->getOrCreateValue(false);
5814   }
5815 
5816   // Try evaluating it now, it might have a constant initializer.
5817   Expr::EvalResult EvalResult;
5818   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5819       !EvalResult.hasSideEffects())
5820     Value = &EvalResult.Val;
5821 
5822   LangAS AddrSpace =
5823       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5824 
5825   Optional<ConstantEmitter> emitter;
5826   llvm::Constant *InitialValue = nullptr;
5827   bool Constant = false;
5828   llvm::Type *Type;
5829   if (Value) {
5830     // The temporary has a constant initializer, use it.
5831     emitter.emplace(*this);
5832     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5833                                                MaterializedType);
5834     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5835     Type = InitialValue->getType();
5836   } else {
5837     // No initializer, the initialization will be provided when we
5838     // initialize the declaration which performed lifetime extension.
5839     Type = getTypes().ConvertTypeForMem(MaterializedType);
5840   }
5841 
5842   // Create a global variable for this lifetime-extended temporary.
5843   llvm::GlobalValue::LinkageTypes Linkage =
5844       getLLVMLinkageVarDefinition(VD, Constant);
5845   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5846     const VarDecl *InitVD;
5847     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5848         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5849       // Temporaries defined inside a class get linkonce_odr linkage because the
5850       // class can be defined in multiple translation units.
5851       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5852     } else {
5853       // There is no need for this temporary to have external linkage if the
5854       // VarDecl has external linkage.
5855       Linkage = llvm::GlobalVariable::InternalLinkage;
5856     }
5857   }
5858   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5859   auto *GV = new llvm::GlobalVariable(
5860       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5861       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5862   if (emitter) emitter->finalize(GV);
5863   setGVProperties(GV, VD);
5864   if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
5865     // The reference temporary should never be dllexport.
5866     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5867   GV->setAlignment(Align.getAsAlign());
5868   if (supportsCOMDAT() && GV->isWeakForLinker())
5869     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5870   if (VD->getTLSKind())
5871     setTLSMode(GV, *VD);
5872   llvm::Constant *CV = GV;
5873   if (AddrSpace != LangAS::Default)
5874     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5875         *this, GV, AddrSpace, LangAS::Default,
5876         Type->getPointerTo(
5877             getContext().getTargetAddressSpace(LangAS::Default)));
5878 
5879   // Update the map with the new temporary. If we created a placeholder above,
5880   // replace it with the new global now.
5881   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5882   if (Entry) {
5883     Entry->replaceAllUsesWith(
5884         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5885     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5886   }
5887   Entry = CV;
5888 
5889   return ConstantAddress(CV, Type, Align);
5890 }
5891 
5892 /// EmitObjCPropertyImplementations - Emit information for synthesized
5893 /// properties for an implementation.
5894 void CodeGenModule::EmitObjCPropertyImplementations(const
5895                                                     ObjCImplementationDecl *D) {
5896   for (const auto *PID : D->property_impls()) {
5897     // Dynamic is just for type-checking.
5898     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5899       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5900 
5901       // Determine which methods need to be implemented, some may have
5902       // been overridden. Note that ::isPropertyAccessor is not the method
5903       // we want, that just indicates if the decl came from a
5904       // property. What we want to know is if the method is defined in
5905       // this implementation.
5906       auto *Getter = PID->getGetterMethodDecl();
5907       if (!Getter || Getter->isSynthesizedAccessorStub())
5908         CodeGenFunction(*this).GenerateObjCGetter(
5909             const_cast<ObjCImplementationDecl *>(D), PID);
5910       auto *Setter = PID->getSetterMethodDecl();
5911       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5912         CodeGenFunction(*this).GenerateObjCSetter(
5913                                  const_cast<ObjCImplementationDecl *>(D), PID);
5914     }
5915   }
5916 }
5917 
5918 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5919   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5920   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5921        ivar; ivar = ivar->getNextIvar())
5922     if (ivar->getType().isDestructedType())
5923       return true;
5924 
5925   return false;
5926 }
5927 
5928 static bool AllTrivialInitializers(CodeGenModule &CGM,
5929                                    ObjCImplementationDecl *D) {
5930   CodeGenFunction CGF(CGM);
5931   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5932        E = D->init_end(); B != E; ++B) {
5933     CXXCtorInitializer *CtorInitExp = *B;
5934     Expr *Init = CtorInitExp->getInit();
5935     if (!CGF.isTrivialInitializer(Init))
5936       return false;
5937   }
5938   return true;
5939 }
5940 
5941 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5942 /// for an implementation.
5943 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5944   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5945   if (needsDestructMethod(D)) {
5946     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5947     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5948     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5949         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5950         getContext().VoidTy, nullptr, D,
5951         /*isInstance=*/true, /*isVariadic=*/false,
5952         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5953         /*isImplicitlyDeclared=*/true,
5954         /*isDefined=*/false, ObjCMethodDecl::Required);
5955     D->addInstanceMethod(DTORMethod);
5956     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5957     D->setHasDestructors(true);
5958   }
5959 
5960   // If the implementation doesn't have any ivar initializers, we don't need
5961   // a .cxx_construct.
5962   if (D->getNumIvarInitializers() == 0 ||
5963       AllTrivialInitializers(*this, D))
5964     return;
5965 
5966   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5967   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5968   // The constructor returns 'self'.
5969   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5970       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5971       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5972       /*isVariadic=*/false,
5973       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5974       /*isImplicitlyDeclared=*/true,
5975       /*isDefined=*/false, ObjCMethodDecl::Required);
5976   D->addInstanceMethod(CTORMethod);
5977   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5978   D->setHasNonZeroConstructors(true);
5979 }
5980 
5981 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5982 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5983   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5984       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5985     ErrorUnsupported(LSD, "linkage spec");
5986     return;
5987   }
5988 
5989   EmitDeclContext(LSD);
5990 }
5991 
5992 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5993   for (auto *I : DC->decls()) {
5994     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5995     // are themselves considered "top-level", so EmitTopLevelDecl on an
5996     // ObjCImplDecl does not recursively visit them. We need to do that in
5997     // case they're nested inside another construct (LinkageSpecDecl /
5998     // ExportDecl) that does stop them from being considered "top-level".
5999     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6000       for (auto *M : OID->methods())
6001         EmitTopLevelDecl(M);
6002     }
6003 
6004     EmitTopLevelDecl(I);
6005   }
6006 }
6007 
6008 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6009 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6010   // Ignore dependent declarations.
6011   if (D->isTemplated())
6012     return;
6013 
6014   // Consteval function shouldn't be emitted.
6015   if (auto *FD = dyn_cast<FunctionDecl>(D))
6016     if (FD->isConsteval())
6017       return;
6018 
6019   switch (D->getKind()) {
6020   case Decl::CXXConversion:
6021   case Decl::CXXMethod:
6022   case Decl::Function:
6023     EmitGlobal(cast<FunctionDecl>(D));
6024     // Always provide some coverage mapping
6025     // even for the functions that aren't emitted.
6026     AddDeferredUnusedCoverageMapping(D);
6027     break;
6028 
6029   case Decl::CXXDeductionGuide:
6030     // Function-like, but does not result in code emission.
6031     break;
6032 
6033   case Decl::Var:
6034   case Decl::Decomposition:
6035   case Decl::VarTemplateSpecialization:
6036     EmitGlobal(cast<VarDecl>(D));
6037     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6038       for (auto *B : DD->bindings())
6039         if (auto *HD = B->getHoldingVar())
6040           EmitGlobal(HD);
6041     break;
6042 
6043   // Indirect fields from global anonymous structs and unions can be
6044   // ignored; only the actual variable requires IR gen support.
6045   case Decl::IndirectField:
6046     break;
6047 
6048   // C++ Decls
6049   case Decl::Namespace:
6050     EmitDeclContext(cast<NamespaceDecl>(D));
6051     break;
6052   case Decl::ClassTemplateSpecialization: {
6053     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6054     if (CGDebugInfo *DI = getModuleDebugInfo())
6055       if (Spec->getSpecializationKind() ==
6056               TSK_ExplicitInstantiationDefinition &&
6057           Spec->hasDefinition())
6058         DI->completeTemplateDefinition(*Spec);
6059   } LLVM_FALLTHROUGH;
6060   case Decl::CXXRecord: {
6061     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6062     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6063       if (CRD->hasDefinition())
6064         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6065       if (auto *ES = D->getASTContext().getExternalSource())
6066         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6067           DI->completeUnusedClass(*CRD);
6068     }
6069     // Emit any static data members, they may be definitions.
6070     for (auto *I : CRD->decls())
6071       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6072         EmitTopLevelDecl(I);
6073     break;
6074   }
6075     // No code generation needed.
6076   case Decl::UsingShadow:
6077   case Decl::ClassTemplate:
6078   case Decl::VarTemplate:
6079   case Decl::Concept:
6080   case Decl::VarTemplatePartialSpecialization:
6081   case Decl::FunctionTemplate:
6082   case Decl::TypeAliasTemplate:
6083   case Decl::Block:
6084   case Decl::Empty:
6085   case Decl::Binding:
6086     break;
6087   case Decl::Using:          // using X; [C++]
6088     if (CGDebugInfo *DI = getModuleDebugInfo())
6089         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6090     break;
6091   case Decl::UsingEnum: // using enum X; [C++]
6092     if (CGDebugInfo *DI = getModuleDebugInfo())
6093       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6094     break;
6095   case Decl::NamespaceAlias:
6096     if (CGDebugInfo *DI = getModuleDebugInfo())
6097         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6098     break;
6099   case Decl::UsingDirective: // using namespace X; [C++]
6100     if (CGDebugInfo *DI = getModuleDebugInfo())
6101       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6102     break;
6103   case Decl::CXXConstructor:
6104     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6105     break;
6106   case Decl::CXXDestructor:
6107     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6108     break;
6109 
6110   case Decl::StaticAssert:
6111     // Nothing to do.
6112     break;
6113 
6114   // Objective-C Decls
6115 
6116   // Forward declarations, no (immediate) code generation.
6117   case Decl::ObjCInterface:
6118   case Decl::ObjCCategory:
6119     break;
6120 
6121   case Decl::ObjCProtocol: {
6122     auto *Proto = cast<ObjCProtocolDecl>(D);
6123     if (Proto->isThisDeclarationADefinition())
6124       ObjCRuntime->GenerateProtocol(Proto);
6125     break;
6126   }
6127 
6128   case Decl::ObjCCategoryImpl:
6129     // Categories have properties but don't support synthesize so we
6130     // can ignore them here.
6131     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6132     break;
6133 
6134   case Decl::ObjCImplementation: {
6135     auto *OMD = cast<ObjCImplementationDecl>(D);
6136     EmitObjCPropertyImplementations(OMD);
6137     EmitObjCIvarInitializations(OMD);
6138     ObjCRuntime->GenerateClass(OMD);
6139     // Emit global variable debug information.
6140     if (CGDebugInfo *DI = getModuleDebugInfo())
6141       if (getCodeGenOpts().hasReducedDebugInfo())
6142         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6143             OMD->getClassInterface()), OMD->getLocation());
6144     break;
6145   }
6146   case Decl::ObjCMethod: {
6147     auto *OMD = cast<ObjCMethodDecl>(D);
6148     // If this is not a prototype, emit the body.
6149     if (OMD->getBody())
6150       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6151     break;
6152   }
6153   case Decl::ObjCCompatibleAlias:
6154     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6155     break;
6156 
6157   case Decl::PragmaComment: {
6158     const auto *PCD = cast<PragmaCommentDecl>(D);
6159     switch (PCD->getCommentKind()) {
6160     case PCK_Unknown:
6161       llvm_unreachable("unexpected pragma comment kind");
6162     case PCK_Linker:
6163       AppendLinkerOptions(PCD->getArg());
6164       break;
6165     case PCK_Lib:
6166         AddDependentLib(PCD->getArg());
6167       break;
6168     case PCK_Compiler:
6169     case PCK_ExeStr:
6170     case PCK_User:
6171       break; // We ignore all of these.
6172     }
6173     break;
6174   }
6175 
6176   case Decl::PragmaDetectMismatch: {
6177     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6178     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6179     break;
6180   }
6181 
6182   case Decl::LinkageSpec:
6183     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6184     break;
6185 
6186   case Decl::FileScopeAsm: {
6187     // File-scope asm is ignored during device-side CUDA compilation.
6188     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6189       break;
6190     // File-scope asm is ignored during device-side OpenMP compilation.
6191     if (LangOpts.OpenMPIsDevice)
6192       break;
6193     // File-scope asm is ignored during device-side SYCL compilation.
6194     if (LangOpts.SYCLIsDevice)
6195       break;
6196     auto *AD = cast<FileScopeAsmDecl>(D);
6197     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6198     break;
6199   }
6200 
6201   case Decl::Import: {
6202     auto *Import = cast<ImportDecl>(D);
6203 
6204     // If we've already imported this module, we're done.
6205     if (!ImportedModules.insert(Import->getImportedModule()))
6206       break;
6207 
6208     // Emit debug information for direct imports.
6209     if (!Import->getImportedOwningModule()) {
6210       if (CGDebugInfo *DI = getModuleDebugInfo())
6211         DI->EmitImportDecl(*Import);
6212     }
6213 
6214     // Find all of the submodules and emit the module initializers.
6215     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6216     SmallVector<clang::Module *, 16> Stack;
6217     Visited.insert(Import->getImportedModule());
6218     Stack.push_back(Import->getImportedModule());
6219 
6220     while (!Stack.empty()) {
6221       clang::Module *Mod = Stack.pop_back_val();
6222       if (!EmittedModuleInitializers.insert(Mod).second)
6223         continue;
6224 
6225       for (auto *D : Context.getModuleInitializers(Mod))
6226         EmitTopLevelDecl(D);
6227 
6228       // Visit the submodules of this module.
6229       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6230                                              SubEnd = Mod->submodule_end();
6231            Sub != SubEnd; ++Sub) {
6232         // Skip explicit children; they need to be explicitly imported to emit
6233         // the initializers.
6234         if ((*Sub)->IsExplicit)
6235           continue;
6236 
6237         if (Visited.insert(*Sub).second)
6238           Stack.push_back(*Sub);
6239       }
6240     }
6241     break;
6242   }
6243 
6244   case Decl::Export:
6245     EmitDeclContext(cast<ExportDecl>(D));
6246     break;
6247 
6248   case Decl::OMPThreadPrivate:
6249     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6250     break;
6251 
6252   case Decl::OMPAllocate:
6253     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6254     break;
6255 
6256   case Decl::OMPDeclareReduction:
6257     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6258     break;
6259 
6260   case Decl::OMPDeclareMapper:
6261     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6262     break;
6263 
6264   case Decl::OMPRequires:
6265     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6266     break;
6267 
6268   case Decl::Typedef:
6269   case Decl::TypeAlias: // using foo = bar; [C++11]
6270     if (CGDebugInfo *DI = getModuleDebugInfo())
6271       DI->EmitAndRetainType(
6272           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6273     break;
6274 
6275   case Decl::Record:
6276     if (CGDebugInfo *DI = getModuleDebugInfo())
6277       if (cast<RecordDecl>(D)->getDefinition())
6278         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6279     break;
6280 
6281   case Decl::Enum:
6282     if (CGDebugInfo *DI = getModuleDebugInfo())
6283       if (cast<EnumDecl>(D)->getDefinition())
6284         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6285     break;
6286 
6287   default:
6288     // Make sure we handled everything we should, every other kind is a
6289     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6290     // function. Need to recode Decl::Kind to do that easily.
6291     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6292     break;
6293   }
6294 }
6295 
6296 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6297   // Do we need to generate coverage mapping?
6298   if (!CodeGenOpts.CoverageMapping)
6299     return;
6300   switch (D->getKind()) {
6301   case Decl::CXXConversion:
6302   case Decl::CXXMethod:
6303   case Decl::Function:
6304   case Decl::ObjCMethod:
6305   case Decl::CXXConstructor:
6306   case Decl::CXXDestructor: {
6307     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6308       break;
6309     SourceManager &SM = getContext().getSourceManager();
6310     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6311       break;
6312     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6313     if (I == DeferredEmptyCoverageMappingDecls.end())
6314       DeferredEmptyCoverageMappingDecls[D] = true;
6315     break;
6316   }
6317   default:
6318     break;
6319   };
6320 }
6321 
6322 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6323   // Do we need to generate coverage mapping?
6324   if (!CodeGenOpts.CoverageMapping)
6325     return;
6326   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6327     if (Fn->isTemplateInstantiation())
6328       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6329   }
6330   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6331   if (I == DeferredEmptyCoverageMappingDecls.end())
6332     DeferredEmptyCoverageMappingDecls[D] = false;
6333   else
6334     I->second = false;
6335 }
6336 
6337 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6338   // We call takeVector() here to avoid use-after-free.
6339   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6340   // we deserialize function bodies to emit coverage info for them, and that
6341   // deserializes more declarations. How should we handle that case?
6342   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6343     if (!Entry.second)
6344       continue;
6345     const Decl *D = Entry.first;
6346     switch (D->getKind()) {
6347     case Decl::CXXConversion:
6348     case Decl::CXXMethod:
6349     case Decl::Function:
6350     case Decl::ObjCMethod: {
6351       CodeGenPGO PGO(*this);
6352       GlobalDecl GD(cast<FunctionDecl>(D));
6353       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6354                                   getFunctionLinkage(GD));
6355       break;
6356     }
6357     case Decl::CXXConstructor: {
6358       CodeGenPGO PGO(*this);
6359       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6360       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6361                                   getFunctionLinkage(GD));
6362       break;
6363     }
6364     case Decl::CXXDestructor: {
6365       CodeGenPGO PGO(*this);
6366       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6367       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6368                                   getFunctionLinkage(GD));
6369       break;
6370     }
6371     default:
6372       break;
6373     };
6374   }
6375 }
6376 
6377 void CodeGenModule::EmitMainVoidAlias() {
6378   // In order to transition away from "__original_main" gracefully, emit an
6379   // alias for "main" in the no-argument case so that libc can detect when
6380   // new-style no-argument main is in used.
6381   if (llvm::Function *F = getModule().getFunction("main")) {
6382     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6383         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6384       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6385       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6386     }
6387   }
6388 }
6389 
6390 /// Turns the given pointer into a constant.
6391 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6392                                           const void *Ptr) {
6393   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6394   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6395   return llvm::ConstantInt::get(i64, PtrInt);
6396 }
6397 
6398 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6399                                    llvm::NamedMDNode *&GlobalMetadata,
6400                                    GlobalDecl D,
6401                                    llvm::GlobalValue *Addr) {
6402   if (!GlobalMetadata)
6403     GlobalMetadata =
6404       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6405 
6406   // TODO: should we report variant information for ctors/dtors?
6407   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6408                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6409                                CGM.getLLVMContext(), D.getDecl()))};
6410   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6411 }
6412 
6413 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6414                                                  llvm::GlobalValue *CppFunc) {
6415   // Store the list of ifuncs we need to replace uses in.
6416   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6417   // List of ConstantExprs that we should be able to delete when we're done
6418   // here.
6419   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6420 
6421   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6422   if (Elem == CppFunc)
6423     return false;
6424 
6425   // First make sure that all users of this are ifuncs (or ifuncs via a
6426   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6427   // later.
6428   for (llvm::User *User : Elem->users()) {
6429     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6430     // ifunc directly. In any other case, just give up, as we don't know what we
6431     // could break by changing those.
6432     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6433       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6434         return false;
6435 
6436       for (llvm::User *CEUser : ConstExpr->users()) {
6437         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6438           IFuncs.push_back(IFunc);
6439         } else {
6440           return false;
6441         }
6442       }
6443       CEs.push_back(ConstExpr);
6444     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6445       IFuncs.push_back(IFunc);
6446     } else {
6447       // This user is one we don't know how to handle, so fail redirection. This
6448       // will result in an ifunc retaining a resolver name that will ultimately
6449       // fail to be resolved to a defined function.
6450       return false;
6451     }
6452   }
6453 
6454   // Now we know this is a valid case where we can do this alias replacement, we
6455   // need to remove all of the references to Elem (and the bitcasts!) so we can
6456   // delete it.
6457   for (llvm::GlobalIFunc *IFunc : IFuncs)
6458     IFunc->setResolver(nullptr);
6459   for (llvm::ConstantExpr *ConstExpr : CEs)
6460     ConstExpr->destroyConstant();
6461 
6462   // We should now be out of uses for the 'old' version of this function, so we
6463   // can erase it as well.
6464   Elem->eraseFromParent();
6465 
6466   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6467     // The type of the resolver is always just a function-type that returns the
6468     // type of the IFunc, so create that here. If the type of the actual
6469     // resolver doesn't match, it just gets bitcast to the right thing.
6470     auto *ResolverTy =
6471         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6472     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6473         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6474     IFunc->setResolver(Resolver);
6475   }
6476   return true;
6477 }
6478 
6479 /// For each function which is declared within an extern "C" region and marked
6480 /// as 'used', but has internal linkage, create an alias from the unmangled
6481 /// name to the mangled name if possible. People expect to be able to refer
6482 /// to such functions with an unmangled name from inline assembly within the
6483 /// same translation unit.
6484 void CodeGenModule::EmitStaticExternCAliases() {
6485   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6486     return;
6487   for (auto &I : StaticExternCValues) {
6488     IdentifierInfo *Name = I.first;
6489     llvm::GlobalValue *Val = I.second;
6490 
6491     // If Val is null, that implies there were multiple declarations that each
6492     // had a claim to the unmangled name. In this case, generation of the alias
6493     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6494     if (!Val)
6495       break;
6496 
6497     llvm::GlobalValue *ExistingElem =
6498         getModule().getNamedValue(Name->getName());
6499 
6500     // If there is either not something already by this name, or we were able to
6501     // replace all uses from IFuncs, create the alias.
6502     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6503       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6504   }
6505 }
6506 
6507 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6508                                              GlobalDecl &Result) const {
6509   auto Res = Manglings.find(MangledName);
6510   if (Res == Manglings.end())
6511     return false;
6512   Result = Res->getValue();
6513   return true;
6514 }
6515 
6516 /// Emits metadata nodes associating all the global values in the
6517 /// current module with the Decls they came from.  This is useful for
6518 /// projects using IR gen as a subroutine.
6519 ///
6520 /// Since there's currently no way to associate an MDNode directly
6521 /// with an llvm::GlobalValue, we create a global named metadata
6522 /// with the name 'clang.global.decl.ptrs'.
6523 void CodeGenModule::EmitDeclMetadata() {
6524   llvm::NamedMDNode *GlobalMetadata = nullptr;
6525 
6526   for (auto &I : MangledDeclNames) {
6527     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6528     // Some mangled names don't necessarily have an associated GlobalValue
6529     // in this module, e.g. if we mangled it for DebugInfo.
6530     if (Addr)
6531       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6532   }
6533 }
6534 
6535 /// Emits metadata nodes for all the local variables in the current
6536 /// function.
6537 void CodeGenFunction::EmitDeclMetadata() {
6538   if (LocalDeclMap.empty()) return;
6539 
6540   llvm::LLVMContext &Context = getLLVMContext();
6541 
6542   // Find the unique metadata ID for this name.
6543   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6544 
6545   llvm::NamedMDNode *GlobalMetadata = nullptr;
6546 
6547   for (auto &I : LocalDeclMap) {
6548     const Decl *D = I.first;
6549     llvm::Value *Addr = I.second.getPointer();
6550     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6551       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6552       Alloca->setMetadata(
6553           DeclPtrKind, llvm::MDNode::get(
6554                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6555     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6556       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6557       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6558     }
6559   }
6560 }
6561 
6562 void CodeGenModule::EmitVersionIdentMetadata() {
6563   llvm::NamedMDNode *IdentMetadata =
6564     TheModule.getOrInsertNamedMetadata("llvm.ident");
6565   std::string Version = getClangFullVersion();
6566   llvm::LLVMContext &Ctx = TheModule.getContext();
6567 
6568   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6569   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6570 }
6571 
6572 void CodeGenModule::EmitCommandLineMetadata() {
6573   llvm::NamedMDNode *CommandLineMetadata =
6574     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6575   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6576   llvm::LLVMContext &Ctx = TheModule.getContext();
6577 
6578   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6579   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6580 }
6581 
6582 void CodeGenModule::EmitCoverageFile() {
6583   if (getCodeGenOpts().CoverageDataFile.empty() &&
6584       getCodeGenOpts().CoverageNotesFile.empty())
6585     return;
6586 
6587   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6588   if (!CUNode)
6589     return;
6590 
6591   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6592   llvm::LLVMContext &Ctx = TheModule.getContext();
6593   auto *CoverageDataFile =
6594       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6595   auto *CoverageNotesFile =
6596       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6597   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6598     llvm::MDNode *CU = CUNode->getOperand(i);
6599     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6600     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6601   }
6602 }
6603 
6604 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6605                                                        bool ForEH) {
6606   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6607   // FIXME: should we even be calling this method if RTTI is disabled
6608   // and it's not for EH?
6609   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6610       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6611        getTriple().isNVPTX()))
6612     return llvm::Constant::getNullValue(Int8PtrTy);
6613 
6614   if (ForEH && Ty->isObjCObjectPointerType() &&
6615       LangOpts.ObjCRuntime.isGNUFamily())
6616     return ObjCRuntime->GetEHType(Ty);
6617 
6618   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6619 }
6620 
6621 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6622   // Do not emit threadprivates in simd-only mode.
6623   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6624     return;
6625   for (auto RefExpr : D->varlists()) {
6626     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6627     bool PerformInit =
6628         VD->getAnyInitializer() &&
6629         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6630                                                         /*ForRef=*/false);
6631 
6632     Address Addr(GetAddrOfGlobalVar(VD),
6633                  getTypes().ConvertTypeForMem(VD->getType()),
6634                  getContext().getDeclAlign(VD));
6635     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6636             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6637       CXXGlobalInits.push_back(InitFunction);
6638   }
6639 }
6640 
6641 llvm::Metadata *
6642 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6643                                             StringRef Suffix) {
6644   if (auto *FnType = T->getAs<FunctionProtoType>())
6645     T = getContext().getFunctionType(
6646         FnType->getReturnType(), FnType->getParamTypes(),
6647         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6648 
6649   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6650   if (InternalId)
6651     return InternalId;
6652 
6653   if (isExternallyVisible(T->getLinkage())) {
6654     std::string OutName;
6655     llvm::raw_string_ostream Out(OutName);
6656     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6657     Out << Suffix;
6658 
6659     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6660   } else {
6661     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6662                                            llvm::ArrayRef<llvm::Metadata *>());
6663   }
6664 
6665   return InternalId;
6666 }
6667 
6668 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6669   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6670 }
6671 
6672 llvm::Metadata *
6673 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6674   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6675 }
6676 
6677 // Generalize pointer types to a void pointer with the qualifiers of the
6678 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6679 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6680 // 'void *'.
6681 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6682   if (!Ty->isPointerType())
6683     return Ty;
6684 
6685   return Ctx.getPointerType(
6686       QualType(Ctx.VoidTy).withCVRQualifiers(
6687           Ty->getPointeeType().getCVRQualifiers()));
6688 }
6689 
6690 // Apply type generalization to a FunctionType's return and argument types
6691 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6692   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6693     SmallVector<QualType, 8> GeneralizedParams;
6694     for (auto &Param : FnType->param_types())
6695       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6696 
6697     return Ctx.getFunctionType(
6698         GeneralizeType(Ctx, FnType->getReturnType()),
6699         GeneralizedParams, FnType->getExtProtoInfo());
6700   }
6701 
6702   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6703     return Ctx.getFunctionNoProtoType(
6704         GeneralizeType(Ctx, FnType->getReturnType()));
6705 
6706   llvm_unreachable("Encountered unknown FunctionType");
6707 }
6708 
6709 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6710   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6711                                       GeneralizedMetadataIdMap, ".generalized");
6712 }
6713 
6714 /// Returns whether this module needs the "all-vtables" type identifier.
6715 bool CodeGenModule::NeedAllVtablesTypeId() const {
6716   // Returns true if at least one of vtable-based CFI checkers is enabled and
6717   // is not in the trapping mode.
6718   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6719            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6720           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6721            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6722           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6723            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6724           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6725            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6726 }
6727 
6728 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6729                                           CharUnits Offset,
6730                                           const CXXRecordDecl *RD) {
6731   llvm::Metadata *MD =
6732       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6733   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6734 
6735   if (CodeGenOpts.SanitizeCfiCrossDso)
6736     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6737       VTable->addTypeMetadata(Offset.getQuantity(),
6738                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6739 
6740   if (NeedAllVtablesTypeId()) {
6741     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6742     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6743   }
6744 }
6745 
6746 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6747   if (!SanStats)
6748     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6749 
6750   return *SanStats;
6751 }
6752 
6753 llvm::Value *
6754 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6755                                                   CodeGenFunction &CGF) {
6756   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6757   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6758   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6759   auto *Call = CGF.EmitRuntimeCall(
6760       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6761   return Call;
6762 }
6763 
6764 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6765     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6766   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6767                                  /* forPointeeType= */ true);
6768 }
6769 
6770 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6771                                                  LValueBaseInfo *BaseInfo,
6772                                                  TBAAAccessInfo *TBAAInfo,
6773                                                  bool forPointeeType) {
6774   if (TBAAInfo)
6775     *TBAAInfo = getTBAAAccessInfo(T);
6776 
6777   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6778   // that doesn't return the information we need to compute BaseInfo.
6779 
6780   // Honor alignment typedef attributes even on incomplete types.
6781   // We also honor them straight for C++ class types, even as pointees;
6782   // there's an expressivity gap here.
6783   if (auto TT = T->getAs<TypedefType>()) {
6784     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6785       if (BaseInfo)
6786         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6787       return getContext().toCharUnitsFromBits(Align);
6788     }
6789   }
6790 
6791   bool AlignForArray = T->isArrayType();
6792 
6793   // Analyze the base element type, so we don't get confused by incomplete
6794   // array types.
6795   T = getContext().getBaseElementType(T);
6796 
6797   if (T->isIncompleteType()) {
6798     // We could try to replicate the logic from
6799     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6800     // type is incomplete, so it's impossible to test. We could try to reuse
6801     // getTypeAlignIfKnown, but that doesn't return the information we need
6802     // to set BaseInfo.  So just ignore the possibility that the alignment is
6803     // greater than one.
6804     if (BaseInfo)
6805       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6806     return CharUnits::One();
6807   }
6808 
6809   if (BaseInfo)
6810     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6811 
6812   CharUnits Alignment;
6813   const CXXRecordDecl *RD;
6814   if (T.getQualifiers().hasUnaligned()) {
6815     Alignment = CharUnits::One();
6816   } else if (forPointeeType && !AlignForArray &&
6817              (RD = T->getAsCXXRecordDecl())) {
6818     // For C++ class pointees, we don't know whether we're pointing at a
6819     // base or a complete object, so we generally need to use the
6820     // non-virtual alignment.
6821     Alignment = getClassPointerAlignment(RD);
6822   } else {
6823     Alignment = getContext().getTypeAlignInChars(T);
6824   }
6825 
6826   // Cap to the global maximum type alignment unless the alignment
6827   // was somehow explicit on the type.
6828   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6829     if (Alignment.getQuantity() > MaxAlign &&
6830         !getContext().isAlignmentRequired(T))
6831       Alignment = CharUnits::fromQuantity(MaxAlign);
6832   }
6833   return Alignment;
6834 }
6835 
6836 bool CodeGenModule::stopAutoInit() {
6837   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6838   if (StopAfter) {
6839     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6840     // used
6841     if (NumAutoVarInit >= StopAfter) {
6842       return true;
6843     }
6844     if (!NumAutoVarInit) {
6845       unsigned DiagID = getDiags().getCustomDiagID(
6846           DiagnosticsEngine::Warning,
6847           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6848           "number of times ftrivial-auto-var-init=%1 gets applied.");
6849       getDiags().Report(DiagID)
6850           << StopAfter
6851           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6852                       LangOptions::TrivialAutoVarInitKind::Zero
6853                   ? "zero"
6854                   : "pattern");
6855     }
6856     ++NumAutoVarInit;
6857   }
6858   return false;
6859 }
6860 
6861 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
6862                                                     const Decl *D) const {
6863   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
6864   // postfix beginning with '.' since the symbol name can be demangled.
6865   if (LangOpts.HIP)
6866     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
6867   else
6868     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
6869 
6870   // If the CUID is not specified we try to generate a unique postfix.
6871   if (getLangOpts().CUID.empty()) {
6872     SourceManager &SM = getContext().getSourceManager();
6873     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
6874     assert(PLoc.isValid() && "Source location is expected to be valid.");
6875 
6876     // Get the hash of the user defined macros.
6877     llvm::MD5 Hash;
6878     llvm::MD5::MD5Result Result;
6879     for (const auto &Arg : PreprocessorOpts.Macros)
6880       Hash.update(Arg.first);
6881     Hash.final(Result);
6882 
6883     // Get the UniqueID for the file containing the decl.
6884     llvm::sys::fs::UniqueID ID;
6885     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
6886       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
6887       assert(PLoc.isValid() && "Source location is expected to be valid.");
6888       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
6889         SM.getDiagnostics().Report(diag::err_cannot_open_file)
6890             << PLoc.getFilename() << EC.message();
6891     }
6892     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
6893        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
6894   } else {
6895     OS << getContext().getCUIDHash();
6896   }
6897 }
6898